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Preface

About This Volume

This volume highlights the fruits of the mathematical research collaborations
initiated at the 2019 Women in Symplectic and Contact Geometry and Topology
(WiSCon) Workshop. This event was held at the Institute for Computational and
Experimental Research in Mathematics (ICERM) in Providence, Rhode Island on
July 22–26, 2019. The WiSCon Workshop is a Research Collaboration Conference
for Women (RCCW) in the fields of contact and symplectic geometry, topology,
and related areas of low-dimensional topology. RCCWs are week-long conferences,
held at mathematics institutes, where women and nonbinary mathematicians at
various career stages in certain mathematical areas collaborate in groups on projects
designed and guided by leaders in the field. This peer-reviewed volume is the
proceedings of the first WiSCon workshop and features seven submissions from
nine project groups featured in the WiSCon Workshop.
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viii Preface

About the 2019 WiSCon Workshop

The 2019 WiSCon Workshop was organized by Bahar Acu, Catherine Cannizzo,
Dusa McDuff, Ziva Myer, Yu Pan, and Lisa Traynor. The event was attended by
68 participants at various career stages including faculty, postdoctoral fellows, and
graduate students. These participants came to Providence from all over the world,
including from 14 states in the USA, Australia, Canada, China, England, France,
Germany, Hungary, Pakistan, Portugal, Scotland, Serbia, and Sweden.

Based on their research interests and backgrounds, each participant was assigned
to one of the nine project groups led by leading researchers in the field of symplectic
and contact geometry and topology. In addition to intense research time, the event
featured:

• A plenary talk by Dusa McDuff titled “Symplectic and Contact Geometry Today”
• Project introductions by project leaders
• Five research talks by junior participants
• Presentations reporting the progress by group spokespersons
• A career panel about funding opportunities; postdoc/tenure-track job applications
• A panel discussion about mentoring, diversity, equity, and inclusion and imposter

syndrome

In this volume, you will find seven peer-reviewed research outputs from these
nine projects whose detailed descriptions can be found in the Introduction section
of this volume (Table 1).

For the full workshop schedule, please follow the workshop link below: https://
icerm.brown.edu/topical_workshops/tw19-4-wiscon/

Table 1 Project titles and project leaders as they appeared in the WiSCon workshop

Project titles and leaders

Title Leaders

Applications of Heegaard Floer homology to
low-dimensional topology

Jen Hom and Allison Moore

Khovanov homology and related invariants: local and
global approaches

Radmila Sazdanović and Christine
Ruey Shan Lee

Bordered invariants in contact manifolds Ina Petkova and Vera Vértesi

Polyfold Laboratory Katrin Wehrheim

Mirror symmetry and symplectic geometry Chiu-Chu Melissa Liu and Ailsa
Keating

Homological invariants, braids, transverse links, and
surfaces

Eli Grigsby, Diana Hubbard, Keiko
Kawamuro, and Olga
Plamenevskaya

Weinstein Kirby calculus and Fukaya categories Emmy Murphy and Laura Starkston

Lagrangian cobordisms between Legendrian
submanifolds

Yu Pan and Lisa Traynor

Symmetry and moment maps in symplectic geometry
and topology

Tara Holm and Ana Rita Pires

https://icerm.brown.edu/topical_workshops/tw19-4-wiscon/
https://icerm.brown.edu/topical_workshops/tw19-4-wiscon/
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Introduction

The first notions of symplectic geometry date back to the mid-nineteenth century
when Hamilton formulated the notion of a symplectic form in connection with his
study of classical mechanics and the dynamics of energy conserving flows. Much
work was done during the next century, by many including Poincaré, Brouwer,
Arnold, and Moser, to understand the special properties of these flows. These were
easiest to understand in two dimensions where they are simply area-preserving
flows; many special features were discovered, for example, the existence in many
situations of unexpectedly many fixed points.

The modern theory was inspired by the great Russian mathematician Arnold,
who, motivated by results known in two dimensions, made far-reaching conjectures
about analogous properties that should hold in higher dimensions. His conjectures
concern not only the dynamical aspects of these flows but also the geometric
properties of the phase space in which the flow takes place. Early work by Eliashberg
on wave fronts in high dimensions and Thurston and Bennequin on flows in three
manifolds showed that these new geometric structures were very rich. Another
major achievement was the proof by Conley–Zehnder in 1984 of the Arnold
conjectures about the fixed points of Hamiltonian flows on the standard 2n-torus,
which they proved by purely analytic methods. The key geometric breakthrough
occurred very soon after, with the publication in 1985 of Gromov’s paper about
pseudo-holomorphic curves in symplectic manifolds. These “curves” have two real
dimensions (equivalently, complex dimension one) and are the analog of geodesics
in symplectic manifolds. They provide a key tool with which to analyze the structure
of a symplectic manifold and its special submanifolds—for example, its Lagrangian
submanifolds, which are manifolds of half the dimension of the ambient manifold
and on which the symplectic form vanishes.

Gromov’s paper contained several key results, for example, the nonsqueezing
theorem, stating that a round ball cannot be symplectically embedded into a thinner
cylinder, and the fact that there are no closed, exact Lagrangian submanifolds in
standard symplectic Euclidean space R2n. These are instances of the hard aspect of
symplectic geometry. Other results of Gromov’s (e.g., the existence of symplectic
structures on any noncompact manifold that satisfies a mild topological condition on

xiii



xiv Introduction

its tangent bundle) are instances of softness. These days, this hard/soft dichotomy is
often phrased in terms of rigidity versus flexibility, and trying to pinpoint exactly
where the boundary lies between these two regimes remains a central topic of
investigation. Papers 1 and 2 in this volume directly stem from aspects of Gromov’s
work and explore the line between rigidity and flexibility.

The odd dimensional analog of a symplectic structure is a contact structure, a
field of maximally non-integrable hyperplanes on a manifold X. The interesting
geometric interplay between these two kinds of structure is illustrated in Paper
5. This paper, as well as many of the others presented here, focuses on four-
dimensional phenomena, in part because this dimension is large enough to be
interesting while being small enough for there to be extra topological tools that
enable detailed calculations. Note that although dimension four is very special in
smooth topology and many of the structures seen there either become simpler or
simply disappear in high dimensions, the same simplification is not expected to
happen (or at least not to the same extent) in symplectic/contact geometry.

One major advance in the 1990s was the reformulation of gauge theory (which
at present exists only in four dimensions) in terms of the Seiberg–Witten equations,
and the subsequent discovery by Taubes that Gromov’s pseudo-holomorphic curves
are limits of solutions of a suitably perturbed Seiberg–Witten equation. This created
a very important link between smooth and symplectic geometry in dimensions four
and below. It also led to further refinements of the Seiberg–Witten equations, most
importantly to Ozsváth and Szabó’s definition of a new class of gauge-theoretic
invariants for three-manifolds and the curves (knots and links) that they contain.
After much work, it is understood that the resulting knot invariants may be defined
purely combinatorially and are closely related to other new invariants such as those
coming from Khovanov homology. Thus, in low dimensions, there is a strong
connection between symplectic and smooth topology, with similar structures being
investigated and with many similarities among the tools used.

Today, the field of symplectic and contact geometry is extremely broad. The
projects undertaken in the workshop give a sampling of this breadth. Here is a more
detailed description of each of the papers in this volume.

Paper 1: A Polyfold Proof of Gromov’s Nonsqueezing Theorem

Gromov’s nonsqueezing theorem is a foundational result of symplectic topology,
and it can be proved in many different ways. Gromov’s original proof uses pseudo-
holomorphic curves. These curves form the foundation for building many systems
of invariants such as the Fukaya category and symplectic field theory. However,
as these theories become more sophisticated, the analysis needed to define them
rigorously becomes much more complicated, mostly because standard implicit
function theorems are inadequate to deal with the bubbling and splitting of these
curves. Polyfold theory is a completely new way of doing this analysis that has
been developed over many years by Hofer–Wysocki–Zehnder, and is still rather
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little known and understood. This paper explains how this new theory can be used
to give a fully detailed and rigorous proof of the nonsqueezing theorem. Thus, it is
a short and accessible introduction to this very important theory.

Paper 2: Infinite Staircases for Hirzebruch Surfaces

The Gromov width of a symplectic manifold X detects the largest radius of a
standard ball that admits a symplectic embedding into X. This idea has been gen-
eralized to embeddings of ellipsoids: the ellipsoidal embedding capacity function
cX(λ) for a symplectic four manifold X specifies exactly how much one needs to
expand X in order for it to contain a symplectically embedded standard ellipsoid
of eccentricity λ. This function is the maximum of the volume constraint and a
piecewise linear function, and if it has infinitely many nonsmooth points, the target
X is said to have a staircase. When X is a four-ball (or, equivalently, the projective
plane), this function has been fully calculated, and was found to have a staircase
with numerics determined by the Fibonacci numbers. The present paper studies
the capacity function as X ranges over the family of Hirzebruch surfaces formed
by blowing up the projective plane by a ball of varying size b, paying particular
attention to finding values of b for which there is a staircase. This problem was
explored by a fruitful combination of computer exploration with theory, and was
found to have much more structure than might at first be imagined.

Paper 3: Action-Angle and Complex Coordinates on Toric
Manifolds

A symplectic toric manifold is a 2n-dimensional symplectic manifoldM that admits
a Hamiltonian action of the n-torus T . These manifolds have a simple explicit
description in terms of the quotient M/T which (at least when M is compact) is
a convex polytope. Because they have such a simple global description, they form
important examples in which, for example, one can test ideas in mirror symmetry.
Toric manifolds can also be thought of as a (partial) compactification of a complex
n-dimensional torus. This paper explores the relation between the two natural
systems of coordinates that are defined on this complex torus, writing down explicit
formulas for the key objects of interest. It then describes various explicit examples
that illustrate some key results in the theory of homological mirror symmetry.
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Paper 4: An Introduction to Weinstein Handlebodies for
Complements of Smooth Toric Divisors

A Weinstein domain is a special kind of symplectic manifold that can be built
from handles. Because these domains have such an explicit description, they form
a useful class of examples in which to explore the intricacies of the rigid/flexible
boundary, or the properties of mirror symmetry. In four dimensions, they can be
encoded diagrammatically by Legendrian fronts, with different diagrams related by
explicit moves coming from “Weinstein Kirby calculus.” This paper describes, and
illustrates, an algorithm to produce Weinstein handle diagrams for the complements
of certain (partially) smoothed toric divisors in toric four-manifolds.

Paper 5: Constructions of Lagrangian Cobordisms

A well-known result of Gromov is that there are no closed exact Lagrangian
submanifolds in standard Euclidean space. However, in a symplectic manifold that
is equivalent to standard Euclidean space, there do exist compact, exact Lagrangians
with Legendrian boundary. These so called Lagrangian cobordisms at times mimic
the flexibility seen in the world of topology, and at other times exhibit rigidity phe-
nomena. There are many powerful techniques, coming from pseudo-holomorphic
curves and Heegaard Floer theory, that have been employed to find obstructions to
the existence of Lagrangian cobordisms in four dimensions. To complement these
obstructions, there are some known combinatorial and geometric constructions,
which are explained in this survey article. A basic question roughly asks whether
the existence of a connected Lagrangian cobordism between two Legendrian knots
is equivalent to the existence of a “decomposable” Lagrangian cobordism, which
is one that can be constructed by stacking “elementary” cobordisms between
intermediate Legendrians. This survey article gathers together a number of theorems
that give potential candidates for Legendrians that are connected by a Lagrangian
cobordism but not by one that is decomposable. In this way, this survey outlines
strategies for finding a non-decomposable Lagrangian cobordism through explicit
constructions from combinatorial and geometrical moves.

Paper 6: On Khovanov Homology and Related Invariants

In 2006, Plamenevskaya defined an invariant of a link transverse to the standard
contact structure in the three-sphere using Khovanov homology. This unexpected
discovery established a connection between Khovanov homology, a combinatorial
invariant of links considered up to regular isotopy, and the contact geometry
of transverse links, considered up to isotopy preserving the transversality of the
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link to the standard contact structure of the three-sphere. Related works have
similarly defined transverse link invariants using sl(n) homology, a generalization
of Khovanov homology. This paper surveys recent applications of Khovanov-type
theories to low-dimensional topology and then derives new applications: a new
obstruction to ribbon concordance, and new bounds to the alternating number and
Turaev genus of a knot in S3. This paper fits into the broader goal of understanding
these link homology theories and their Plamenevskaya-type invariants.

Paper 7: Braids, Fibered Knots, and Concordance Questions

To understand three-dimensional contact manifolds, a number of techniques from
low-dimensional topology have been employed and adapted. For example, there is
a bijection between the set of oriented contact structures on a three-dimensional
manifold M up to isotopy and the set of open book decompositions of M up
to positive stabilization. Furthermore, it is known that a contact structure is tight
if and only if the monodromy of each compatible open book is “right-veering.”
This paper explores different notions of monodromy that can be associated to a
knot in S3: a knot has braid representations, which can in turn be thought of as
diffeomorphisms of punctured disks. Second, in the case that the knot is fibered,
it can also be associated to the monodromy of its fibration. This article proves
new results as well as poses conjectures and questions exploring how properties
of these monodromies relate to four-dimensional properties of the corresponding
knots. The primary objects of study in this paper—braids, fibered knots, open book
decompositions, and the fractional Dehn twist coefficient—are all interesting in
their own right both in the context of smooth low-dimensional topology and in
the context of contact geometry. A deeper understanding of the relationships of
these objects to each other helps to illuminate the connections between smooth and
contact geometry.



A Polyfold Proof of Gromov’s
Non-squeezing Theorem

Franziska Beckschulte, Ipsita Datta, Irene Seifert, Anna-Maria Vocke,
and Katrin Wehrheim

1 Introduction

The non-squeezing theorem, proven by Mikhail Gromov in 1985, essentially
excludes nontrivial symplectic embeddings between balls BR and cylinders Zr of
radius R, r > 0 given by

BR : = BnR := {
(xi, yi)i=1,...,n ∈ R

2n
∣∣ ∑n

i=1 x
2
i + y2

i ≤ R2
}
, and

Zr : = B2
r × R

2n−2 := {
(xi, yi)i=1,...,n ∈ R

2n
∣∣ x2

1 + y2
1 ≤ r2},

in any dimension 2n ≥ 4. More precisely, we equip both the closed balls and closed
cylinders above with the standard symplectic form ωst = ∑n

i=1 dxi ∧dyi as subsets
of R2n with coordinates x1, y1, . . . , xn, yn. Then it is easy to see that for any choice
of R and r there are volume preserving embeddings BR ↪→ Zr , due to the infinite
length of the cylinder. If we only consider symplectic embeddings ϕ : BR ↪→ Zr
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2 F. Beckschulte et al.

with ϕ∗ωst = ωst, there are trivial embeddings for R ≤ r . However, symplectic
embeddings cannot exist for R > r , as was shown by Gromov [7]—with various
more detailed proofs published subsequently, e.g. [8, 11, 15, 20].1

Theorem 1.1 If there is a symplectic embedding ϕ : BR ↪→ Zr , then R ≤ r .
The idea of the proof is to construct an almost complex structure J1 on the

cylinder that pulls back to the standard complex structure ϕ∗J1 = Jst on the ball,
and find a non-constant J1-holomorphic curve C1 ⊂ Zr passing through ϕ(0) with
symplectic area at most πr2. Then the pullback ϕ−1(C1) ⊂ BR is a Jst-holomorphic
curve, and thus a minimal surface with respect to the standard metric on R

2n. As it
passes through the center of the ball 0 ∈ BR , comparison with the flat disk of area
πR2 implies R ≤ r via a monotonicity lemma. To find such a J1-holomorphic
curve, one observes that the disk cross-section of Zr at the height of ϕ(0) has
the required properties, except that it is holomorphic with respect to the standard
complex structure J0. The idea is then to establish the existence of Jt -holomorphic
curves for a path Jt of almost complex structures connecting J0 to J1. This requires
subtle geometric analysis that is best performed by studying spheres in the closed
symplectic manifold CP

1 ×T 2n−2 as described in Sect. 2.1. In this setting, the main
work is to find a pseudoholomorphic curve in the homology class [CP1 × {pt}]
through a fixed point. Here and throughout we denote the (2n − 2)-dimensional
torus by T and note that the following existence of pseudoholomorphic spheres can
be generalized to other closed symplectic manifolds T (see Remark 1.3).

Theorem 1.2 Given any point p0 and compatible almost complex structure J on
CP

1 × T , there exists a J -holomorphic sphere u : S2 → CP
1 × T with p0 ∈ u(S2)

and homology class u∗[S2] = [CP1 × {pt}].
Assuming this existence, Sect. 2.3 proves Theorem 1.1 by applying a monotonic-

ity lemma for pseudoholomorphic maps that we discuss in Appendix 3.7.

Remark 1.3 We will prove Theorem 1.2 for any compact symplectic manifold
(T , ωT )with ωT (π2(T )) = 0, which excludes bubbling in the given homology class
of minimal symplectic area. The torus satisfies this assumption since π2(T ) = 0.
For more general symplectic manifolds, our line of argument still applies but the
polyfold setup would require the inclusion of bubble trees. Moreover, this only
proves the result with a possibly nodal J -curve.

Classical non-squeezing proofs establish Theorem 1.2 only for “generic” J and
require a delicate analysis of linearized Cauchy-Riemann operators to show that
their surjectivity can be achieved alongside the condition ϕ∗J = Jst. Our proof
of this more general result demonstrates what proofs of geometric statements look

1Theorem 1.1, stated for closed balls and cylinders, implies the analogous statement for open balls
and cylinders as follows: Assume there is a symplectic embedding ϕ of the open ball of radius R
into the open cylinder of radius r , where R > r . Then there is ε > 0 such that R − ε > r + ε, and
ϕ restricts to a symplectic embedding of the closed ball of radius R − ε into the closed cylinder of
radius r + ε. This is a contradiction to Theorem 1.1.
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like when they can build on abstract polyfold theory [9] and an existing polyfold
description of the relevant moduli spaces, like for Gromov–Witten spaces given in
[10]. When analytical difficulties are outsourced to polyfold theory, the proof of
Theorem 1.2 becomes a transparent geometric argument:

• The space M(J ) of solutions in Theorem 1.2 modulo reparameterization is the
zero set of a Fredholm section σJ : B → EJ as described in Sect. 3.

• For the standard complex structure J = J0 we show in Lemma 2.2 that M(J0) =
{[u0]} consists of a unique solution u0(z) = (z, πT (p0)). Theorem 3.17
moreover shows that the linearized operator D[u0]σJ0 is surjective.

• Given any other J = J1, Sect. 2.4 explains that a smooth family (Jt ) of
compatible almost complex structures connecting it to J0 gives rise to a compact
family of moduli spaces

⊔
t∈[0,1] M(Jt ). Section 3 identifies it with the zero set

of the Fredholm section σ(t, [u]) = σJt ([u]) over [0, 1] × B.
• If we assume M(J1) to be empty, this implies transversality of σ over the

boundary {0, 1} × B. Then Sect. 2.5 uses the polyfold regularization scheme
explained in Sect. 1.1 to construct a compact 1-dimensional cobordism (σ +
p)−1(0) between M(J0) = {[u0]} and M(J1) = ∅. This proves Theorem 1.2 by
contradiction.

Remark 1.4 The exact meaning of ‘Fredholm section’ in the first step determines
the class in which the last step provides a contradiction. Minimal work in the first
step would be to cite [4, 10] for a general description in which B is a polyfold
(possibly containing nodal curves or curves with nontrivial isotropy). However, this
would force us to work with multivalued perturbations p and discuss weighted
branched orbifolds in the last step.2 Instead, we show in Sect. 3 that the specific
choice of homology class rules out isotropy, so that we are working with an M-
polyfold B. Then p is single-valued, and the perturbed solution set (σ + p)−1(0) is
a manifold, contradicting the fact that compact 1-manifolds have an even number of
boundary points.

The above outline uses polyfold theory entirely as a “black box” with two
features: (a) it describes compactified moduli spaces as zero sets of ‘Fredholm
sections’; (b) such ‘Fredholm sections’ can be perturbed to regularize the moduli
space. To demystify feature (a), Sect. 3 gives an introduction to the rather technical
polyfold description of general Gromov-Witten moduli spaces by going through the
details of [10] for our specific case. Since we consider curves of minimal positive
symplectic area, we can exclude nodal curves arising from bubbling so that our
ambient space B is the space of maps S2 → CP

1 × T (of Sobolev class W 3,2)
modulo Möbius transformations of S2 that fix a marked point. Moreover, we show
that this space has trivial isotropy, that is, none of these maps—holomorphic or

2 The perturbation p is generally a ‘multisection functor’ resulting in M̃p := (σ+p)−1(0) being a
weighted branched orbifold. The contradiction to its boundary (in appropriate orientation) ∂M̃p =
M(J0) being a single point (of trivial isotropy and weight 1) then arises from Stokes’ Theorem
0 = ∫

M̃p d(1) = ∫
∂M̃p 1 = 1 which holds in this context by Hofer et al. [9, §9.5].
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otherwise—is invariant under reparameterization with a nontrivial Möbius trans-
formation. This gives the ambient space B the structure of a sc-Hilbert manifold.
We describe this notion in the following section as part of a brief introduction to
polyfold theory. This section also demystifies feature (b) by stating the perturbation
theorem in the trivial isotropy case that is relevant for the non-squeezing proof.

1.1 Polyfold Notions and Regularization Theorems

Polyfold theory was developed by Hofer, Wysocki, and Zehnder (see [9] and the
citations therein) as a general solution to the challenge of regularizing compactified
moduli spaces of pseudoholomorphic curves. The expectation is that any compact
moduli space M that is described as zero set of a section can be regularized by
appropriate perturbations of the section. For smooth sections in finite dimensions
this is proven in e.g. [6, ch.2].

Theorem 1.5 (Finite Dimensional Regularization) LetE → B be a smooth finite
dimensional vector bundle, and let s : B → E be a smooth section such that
s−1(0) is compact. Then there exist arbitrarily small, compactly supported, smooth
perturbation sections p : B → E such that s + p is transverse to the zero section,
and hence (s + p)−1(0) is a manifold of dimension dim(B)− rank(E).

Moreover, the perturbed zero sets (s + p′)−1(0) and (s + p)−1(0) of any two
such perturbations p, p′ : B → E are cobordant.

A direct generalization of this theorem applies when B has boundary giving
rise to perturbed zero sets with boundary ∂(s + p)−1(0) = (s + p)−1(0) ∩ ∂B.
Unfortunately, moduli spaces of pseudoholomorphic curves generally do not have
natural descriptions to which this theorem applies. There are several reasons:

1. The space of pseudoholomorphic maps u : S → M , with fixed domain
S and target M , is the zero set of a Fredholm section of a Banach bundle.
But due to ‘bubbling and breaking’ phenomena, its compactification contains
maps defined on different domains.3 To put a topology on the resulting set
of maps from varying domains, one uses ‘pregluing constructions’ to transfer
maps from ‘nodal or broken’ domains to nearby smooth domains. However,
these constructions do not provide homeomorphisms to open subsets of Banach
spaces (see e.g. [3, p.10]), so they do not yield local charts for any classical
generalization of (topological or smooth) manifolds.

2. The moduli spaces typically arise as quotients of spaces of pseudoholomorphic
maps by groups of reparameterizations of their domains. If these groups act with
nontrivial isotropy, then we expect an orbifold structure on any ambient space
that contains the moduli space.

3The domains have fixed genus and number of punctures/ends, but vary in nodal structure. Some
‘SFT neck stretching’ moduli spaces also vary the target spaceM .
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3. If we wish for a differentiable structure on this ambient space, then we need to
ensure that reparameterizations act differentiably. However, this is not the case
for the classical Banach manifold structures on spaces of maps. As a result, while
there are local charts for maps-modulo-reparameterization with fixed domain
(constructed as local slices to the group action), the transition maps between
different charts are nowhere differentiable.

The classical regularization constructions for moduli spaces of pseudoholo-
morphic curves, such as [15], work around these problems by finding geometric
perturbations that achieve transversality for spaces of maps with fixed domain.
Once they achieve finite dimensional spaces of perturbed solutions, this requires
further steps to take quotients and compactify. Whether or not there are sufficiently
many geometric perturbations that are both equivariant and compatible with gluing
constructions depends on the particular geometric setting. The classical proof of
the non-squeezing theorem makes use of the geometric setting of ‘least energy’ to
rule out (1) nodal curves as well as (2) isotropy (due to multiple covers), so that
only (3) the differentiability challenge is present. The latter is resolved by finding a
regular choice of J with ϕ∗J = Jst. This requires showing that holomorphic maps in
the desired homology class all pass injectively through a part of (CP1 ×T )\ϕ(BR),
where we can freely vary the almost complex structure. While this approach yields
a rigorous proof, it requires—even in the simplest case—sophisticated analysis
combined with specific geometric properties of the holomorphic curves.

Polyfold theory, on the other hand, uses the above challenges as a guide to
generalize the notion of a section in Theorem 1.5 so that the abstract perturbation
theory applies to the desired moduli spaces, and no further case-specific analysis or
geometric properties are needed. The main features are as follows:

1. The ‘pregluing constructions’ generalize open subsets of Banach spaces to
images of retractions as new local models. For example, the neighbourhood
of a nodal sphere is described by an open subset of the model space im ρ =⋃
a∈C{a} × πa(V ) that arises from a family of projections ρ : C × V →

C × V, (a, v) �→ (a, πav) on a Banach space V , which are centered at π0 = id
and imπa � V for a = 0. For further details see e.g. [3, 2.3].

2. The orbifold structure is captured by formulating the notion of an atlas as
a groupoid. This provides a nonsingular structure as in (1) on the object
space (where e.g. perturbations are constructed), with isotropy appearing in the
morphisms (e.g. forcing the perturbations to become multivalued).

3. Differentiability of transition maps between different local charts (resp. the
structure maps in the groupoid) is achieved by defining a new notion of scale-
differentiability for maps between Banach spaces equipped with an additional
scale structure. These notions are obtained by formalizing the differentiability
features of reparameterization maps between Sobolev spaces into a notion that
satisfies a chain rule (see [3, 2.2]).

Restricted to finite dimensional Banach spaces, the retractions in (1) are trivial,
and (3) coincides with classical differentiability, so (2) reproduces the notion
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of an orbifold being represented by a proper étale groupoid (see e.g. [13] for
an introduction). In infinite dimensions, these generalizations yield the following
new notions. Here and throughout, we restrict the notions of [9] to metrizable
topologies4and sc-Hilbert spaces.5 In each case, sc-compatibility means that the
transition maps are scale-smooth.

• A sc-Hilbert manifold is a metric space equipped with sc-compatible local
homeomorphisms to open subsets of sc-Hilbert spaces.

• An M-polyfold is a metric space equipped with sc-compatible local homeomor-
phisms to open subsets of scale-smooth retracts in sc-Hilbert spaces.

• A polyfold is a metric space equipped with sc-compatible local homeomor-
phisms to finite quotients of open subsets of scale-smooth retracts in sc-Hilbert
spaces. These domains with group actions and lifts of transition maps form a
proper groupoid whose object and morphism spaces are M-polyfolds, and whose
structure maps are local sc-diffeomorphisms.

• A sc-Hilbert manifold/M-polyfold/polyfold B with boundary6 is a space with
compatible charts as before but allowing for open subsets of [0,∞)×H , where
H is a sc-Hilbert space. Its boundary ∂B is the union of all preimages of {0}×H .

Remark 1.6 Every manifold M (with boundary) is a sc-Hilbert manifold: It is
locally homeomorphic to open subsets of R

n (or [0,∞) × R
n−1). Here each R

k

is a sc-Hilbert space with trivial scale structure; see [3, Ex.4.1.8].

With this language in place, the application of polyfold theory to a given moduli
space M—for example the moduli space in Theorem 1.2—has two steps:

(a) Describe M ∼= σ−1(0) as the zero set of a section σ : B → E over a polyfold
or M-polyfold B with E a ‘strong bundle’ and σ ‘scale-Fredholm’ as defined
in [3, 9]. Intuitively, B is the same space of possibly-nodal-maps-modulo-
reparameterization as M but allows for general maps in some Sobolev space,
with the pseudoholomorphic condition encoded in the section σ([u]) = [∂J u]
of an appropriate bundle E . This step is best achieved by combining existing
polyfold descriptions such as [10] with general construction principles such as
restrictions [4], pullbacks [17], quotients [21]. For our example, we describe
this in detail in Sect. 3.

(b) Apply the corresponding regularization theorem to draw the desired conclu-
sions. For general polyfolds (with boundary) this is [9, Thm.15.4 (15.5)] and

4Metrizability of polyfolds is guaranteed by paracompactness and [9, Thm.7.2].
5Hilbert spaces equipped with scale structures automatically admit scale-smooth bump functions
by Hofer et al. [9, §5.5]. These are crucial for the existence of transverse perturbations.
6For an introduction to the notion of corners in polyfold theory see [3, §5.3]. Note, however, that
corners usually appear together with coherence conditions—in which perturbations on boundary
strata need to coincide with the perturbations of other moduli spaces which are identified with
these boundary strata. The construction of coherent perturbations then requires not just a workable
notion of boundary and corner strata, but an ordering of the moduli spaces that prevents circular
coherence conditions when constructing perturbations.
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involves multivalued perturbations. In our example, the M-polyfold versions in
Theorem 1.7 and Remark 1.8 below suffice.

The following generalization of the finite dimensional regularization Theo-
rem 1.5 is proven in [9, Theorems 3.4, 5.5, 5.6]. It resolves the challenges (1) and
(3) above, hence covering the case required for the non-squeezing proof.

Theorem 1.7 (M-Polyfold Regularization) Let E → B be a strong M-polyfold
bundle, and let σ : B → E be a scale-smooth Fredholm section such that σ−1(0)
is compact. Then there exists a class of perturbation sections p : B → E supported
near σ−1(0) such that (σ + p)−1(0) carries the structure of a smooth compact
manifold of dimension index(σ ) with boundary ∂(σ+p)−1(0) = (σ+p)−1(0)∩∂B.

Moreover, for any other such perturbation p′ : B → E , there exists a smooth
cobordism between (σ + p′)−1(0) and (σ + p)−1(0).

Remark 1.8 Suppose that the section σ in Theorem 1.7 restricts to a transverse
section on the boundary, i.e. σ |∂B : ∂B → E |∂B has surjective linearizations at
all points in σ−1(0) ∩ ∂B. Then we can choose the perturbation section p to be
supported in the interior, i.e. p|∂B ≡ 0. As a result, (σ + p)−1(0) has boundary
∂(σ + p)−1(0) = (σ + p)−1(0) ∩ ∂B = (σ |∂B)−1(0).

This can be proven by following the proof of the regularization theorem in [9].
It is explicitly stated and proven in the last part of [5, Thm.A9]. In our case, the
map e : X → ∅ and submanifolds Ci = ∅ are trivial, and the polyfold X = B has
trivial isotropy. So, the ‘multisection’ λwill be represented by a perturbation section
p : B → E . Our transversality assumption on the boundary means that the ‘trivial
multisection λδ representing’ p|∂B ≡ 0 yields an ‘admissible . . . multisection in
general position to the perturbed zero set in the boundary’ {x ∈ ∂B | σ(x) = 0}.
The conclusion is the existence of a perturbation section p with p|∂B ≡ 0 so that
σ + p is ‘admissible’ and in ‘general position’, as required for the conclusions of
Theorem 1.7.

For readers interested in regularization theorems that resolve the challenge (2)
of nontrivial isotropy, we recommend the brief overview [3, Rmk.2.1.7] and the
in-depth discussion of the finite dimensional case [12] before diving into the
technicalities of [9] or their summary in [17]. Despite a lot of notational overhead,
the general polyfold regularization theorem [9, Thm.15.4] can be understood as a
direct combination of the regularization theorems for sections over M-polyfolds and
finite dimensional orbifolds.

2 Outline of the Proof

Let us consider a symplectic embedding ϕ : BR ↪→ Zr for radii R > 0 and r > 0.
We will prove R ≤ r by showing that R′ ≤ r + ε for any choice of 0 < R′ < R and
ε > 0. These choices are needed for constructions in the following section.
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2.1 Compactifying the Target Space

The proof uses the theory of pseudoholomorphic curves. Since the analytic setup is
simpler for closed manifolds, we prefer to work with a compact target space. For
that purpose we fix an ε > 0. Then we can understand ϕ as an embedding

ϕ : BR ↪→ Z̊r+ε

into the slightly larger open cylinder Z̊r+ε = B̊2
r+ε × R

2n−2. The first factor of this
cylinder compactifies to a CP

1. The standard symplectic form on B̊2
r+ε descends to

a symplectic (and thus, area) form ω
CP

1 such that CP1 has area

∫

CP
1
ω
CP

1 = π(r + ε)2.

So we may view ϕ as a symplectic embedding

ϕ : (BR, ωst) ↪→ (CP1 × R
2n−2, ω

CP
1 ⊕ ωst).

Now, we want to compactify the second factor of the cylinder as well. Remember
that BR is the closed ball. So, the projection to R

2n−2 of its image under the
continuous map ϕ is compact. This means that we can choose N > 0 sufficiently
large such that ϕ(BR) ⊂ CP

1 × (− 1
2N,

1
2N)

2n−2. Then we can view ϕ(BR) as
a subset of the (2n − 2)-dimensional torus T := R

2n−2/NZ
2n−2 with standard

symplectic form ωT induced from ωst on R
2n−2. This means we get a symlplectic

embedding (again denoted by) ϕ,

ϕ : (BR, ωst) ↪→ (CP1 × T , ω := ω
CP

1 ⊕ ωT ).

The proof now proceeds by studying pseudoholomorphic curves in CP
1 × T . Here

we wish to work with an almost complex structure J1 on CP
1 × T so that the

pullback of J1-holomorphic maps under the embedding ϕ yields pseudoholomor-
phic maps to BR with respect to the standard complex structure Jst on BR ⊂ R

2n.
This is crucial for the last step of the non-squeezing proof in Sect. 2.3 which uses
monotonicity with respect to the standard metric ωst(·, Jst·) on BR . To do this
rigorously, we need to shrink the ball slightly to interpolate between almost complex
structures.

Lemma 2.1 For any 0 < R′ < R there is an almost complex structure J1 on
CP

1 × T that is compatible with ω = ω
CP

1 ⊕ ωT and satisfies ϕ∗J1|BR′ = Jst.

Proof The basic idea is to define J1 = ϕ∗Jst on the image of ϕ and to set
J1 = J0 outside a neighbourhood of the image. But as a weighted sum of two
almost complex structures will in general not be an almost complex structure, we
can not directly interpolate between these. Instead, we interpolate between the
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corresponding Riemannian metrics g0 := ω(·, J0·) on CP
1 × T and gϕ∗Jst :=

ω(·, ϕ∗Jst·) on ϕ(BR). To do this, we choose a partition of unity ψ0 + ψ1 = 1
subordinate to the cover CP1 × T = U0 ∪ U1 where U0 := CP

1 × T \ ϕ(BR′)
and U1 := ϕ(B̊R). (These are open subsets because ϕ, being an embedding,
maps open/closed subsets to open/closed subsets.) Since ψi is supported in Ui
and ϕ(B ′

R) ∩ U0 = ∅, we have ψ1|ϕ(B ′
R)

≡ 1 and thus obtain a metric g1 with
g1|ϕ(B ′

R)
= gϕ∗Jst by interpolating with this partition of unity,

g1 := ψ0 · g0 + ψ1 · gϕ∗Jst .

Finally, a pair of a Riemannian metric g and a symplectic form ω determine an
almost complex structure J compatible with ω and if g was of the form g =
ω(·, J ·), then the determined almost complex structure is in fact the same J , see
[14, Prop. 2.50 (ii)]. Thus, g1 and ω together determine an almost complex structure
J1 that has the required properties. ��

There are two more properties of pullbacks C0 := ϕ−1(C1) ⊂ BR′ of J1-
holomorphic curves C1 ⊂ CP

1 × T that are required for their to prove the
non-squeezing result R′ ≤ r + ε. First, we need C1 to pass through the point
p0 := ϕ(0) ∈ CP

1 × T , so that C0 ⊂ BR′ passes through the center 0 of the
ball. Second, we wish to bound the symplectic area

∫
C0
ωst ≤ ∫

C1
ω ≤ π(r + ε)2.

The latter is achieved by prescribing the homology class [C1] = [CP1 × {pt}] since
this determines the integral of the closed symplectic form ω,

∫

C1

ω =
∫

CP
1×{pt}

ω
CP

1 ⊕ ωT =
∫

CP
1
ω
CP

1 +
∫

{pt}
ωT = π(r + ε)2 + 0.

Ultimately, we will find a not necessarily embedded curve C1 = u(S2) by studying
J1-holomorphic maps u : (S2, i) → (CP1 × T 2n−2, J1) with a point constraint
u(z0) = p0 in the homology class [u] = [CP1 × {pt}]. Their existence is stated, for
general J on a product manifold CP

1 ×T , in Theorem 1.2. The proof starts with the
existence of a unique J0-holomorphic map for a specific J0 described in Sect. 2.2,
and is completed in Sect. 2.5 based on the polyfold constructions in Sect. 3.

2.2 The Unique J0-Holomorphic Curve

This section begins our study of pseudoholomorphic curves in CP
1 × T by

considering a split almost complex structure J0 = i⊕JT on CP
1 ×T . Here (T , ωT )

can be any compact symplectic manifold, though its topology will be restriced
in following sections. For the nonsqueezing proof, there is a standard complex
structure JT on the torus T = R

2n−2/NZ
2n−2; in general, we choose any ωT -

compatible almost complex structure JT on T . This ensures that J0 is compatible
with ω = ω

CP
1 ⊕ ωT , meaning g0 = ω(·, J0·) is a Riemannian metric. In the
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following, we view S2 as a Riemann surface by identifying it with CP
1 and using

the standard complex structure i on CP
1. Then we find a J0-holomorphic sphere

passing through any given point p0 = (z0,m0) ∈ CP
1 × T by combining the

identification S2 ∼= CP
1 with a constant map to T ,

u0 : (S2, i)→ (CP1 × T , J0), z �→ (z,m0).

The symplectic area of this sphere—a quantity that only depends on the homology
class—is

E(u0) =
∫

S2
u∗

0ω =
∫

CP
1
ω
CP

1 = π(r + ε)2. (1)

The next lemma shows that, up to reparameterization, this is the only sphere with
these properties in its homology class.

Lemma 2.2 Assume u : (S2, i) → (CP1 × T , J0) is J0-holomorphic, passes
through p0, and represents the class [CP1 × {pt}] ∈ H2(CP

1 × T ;Z). Then, there
is a biholomorphism ψ : (S2, i)→ (S2, i) such that u ◦ ψ = u0.

Proof Since u is (J0 = i ⊕ JT )-holomorphic, its composition with projection to
each factor yields holomorphic maps f := pr

CP
1 ◦ u : S2 → CP

1 ∼= S2 and g :=
prT ◦ u : S2 → T . Moreover, the homology condition specifies g∗[S2] = [{pt}] =
0 ∈ H2(T ) and f∗[S2] = [S2] ∈ H2(S

2). The energy identity
∫
g∗ω = ∫ 1

2 |dg|2
(see [15, Lemma 2.2.1]) then implies

∫ |dg|2 = 0. So, g must be constant. Since
u passes through p0 = (z0,m0), this means g(z) = prT (u(z)) = m0. Moreover,
f∗[S2] = [S2] ∈ H2(S

2) implies that f is neither constant nor a multiple cover of
another holomorphic map. Thus, ψ := f−1 exists and is a biholomorphism of S2.
Then we obtain the claim as (u ◦ ψ)(z) = (

f (f−1(z)) , g(ψ(z)
) = (z,m0) = u0

for all z ∈ S2. ��
Remark 2.3 It is part of both the classical and our polyfold proof to show that the
curve u0 is transversely cut out of the space of all curves in its homology class
passing through p0. This statement will be made precise in Theorem 3.17.

2.3 Using the Monotonicity Lemma

This section finishes the proof of the nonsqueezing Theorem 1.1 assuming that we
have found a J1-holomorphic map u1 : S2 → CP

1 × T with the same properties as
the unique J0-holomorphic curve in Lemma 2.2, except that J1 is an almost complex
structure as in Lemma 2.1 with ϕ∗J1 = Jst. The existence of u1 follows from
Theorem 1.2, proven in Sect. 2.5. Given such u1 : S2 → CP

1 × T , we obtain a
Jst-holomorphic map on S̃ := u−1

1 (ϕ(B̊R′)) ⊂ S2,
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v := ϕ−1 ◦ u1 : S̃ −→ R
2n.

This map passes through the center ϕ−1(p0) = 0 of the ball BR′ and has area∫
v∗ωst ≤ ∫

u∗
1ω = π(r + ε)2, so comparison with the minimal surface through the

center of the ball—the disk of area π(R′)2—will yield R′ ≤ r + ε. To deduce this
inequality directly from the classical monotonicity formula for minimal surfaces
(e.g. [2, Prop.1.12.]), we would have to show that v is an embedding. Instead, we
use the monotonicity Lemma A.2 for holomorphic maps to a complex Hilbert space.
To ensure accessibility (and establish this result in maximal generality) we include
a detailed proof of this “well known result” in the appendix.

Proof of Theorem 1.1 We will apply Lemma A.2 to the map v : S̃ → R
2n with

(V , J ) := (R2n, Jst) and open balls B̊Rk := B̊Rk (0) ⊂ R
2n of radii Rk → R′.

The preimage of the center is nonempty, v−1({0}) = u−1({p0}) = ∅, since u1
passes through p0 = ϕ(0). The domain S̃ of v is an open subset of S2 because
ϕ(B̊R′) ⊂ CP

1 × T is the image of an open set under an embedding. To apply the
lemma we need to restrict v to a compact subdomain Sk ⊂ S̃ with smooth boundary
such that ‖v(z)‖ ≥ Rk for all z ∈ ∂Sk . For that purpose we consider the smooth
function ρ : S̃ → R, z �→ ‖v(z)‖2. Since its regular values are dense we can find
a sequence 0 < Rk < R′ with limit limk→∞ Rk = R′ such that R2

k are regular
values of ρ. Then Sk := {z ∈ S̃ | ‖v(z)‖ ≤ Rk} is a domain with smooth boundary
∂Sk = ρ−1(R2

k ). It is compact because Sk = v−1(BRk ) = u−1
1 (ϕ(BRk ) ⊂ S2 is a

closed subset of the compact S2. Moreover, v|Sk is nonconstant on each connected
component of Sk , since u1 is nonconstant (as it has positive energy) and its critical
points in S2 are a finite set by McDuff and Salamon [15, Lemma 2.4.1].

So, we can apply Lemma A.2 to v|Sk : Sk → V = R
2n and the open ball

B̊Rk = {q ∈ R
n | ‖q‖ < Rk} centered at p = 0 ∈ R

2n to obtain

πR2
k ≤

∫

v−1(B̊Rk )

v∗ωst =
∫

u−1
1 (ϕ(B̊Rk ))

u∗
1ω ≤

∫

S2
u∗

1ω = π(r + ε)2.

As Rk → R′, this yields π(R′)2 ≤ π(r + ε)2 as claimed; and by taking R′ → R

and ε → 0 this proves the non-squeezing R ≤ r . ��

2.4 A Compact Moduli Space

In this and the next subsection, we prove Theorem 1.2, while assuming that the
M-polyfold construction in Sect. 3 holds.

Our argument is a special case of proving the independence of Gromov-Witten
invariants from the choice of a compatible almost complex structure J . Indeed, in
Lemma 2.2 we compute the number of pseudoholomorphic curves in the particular
homology class intersecting the given point p0 to be 1 for J = J0. So, by showing
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that this count is independent of J , we can show the existence of a J1-holomorphic
map in Theorem 1.2.

For that, we use the fact that the space ofω-compatible almost complex structures
is contractible (see e.g. [14, Prop. 4.1]). Thus, we can choose a smooth path
(Jt )t∈[0,1] of ω-compatible almost complex structures from J0 to J1. Moreover, we
fix a marked point z0 ∈ S2 that we require is mapped to p0 by all the considered
maps.

Then, for every t ∈ [0, 1], we define the moduli space of Jt -holomorphic curves

Mt :=
{
u : S2 → CP

1 × T
smooth

∣∣∣∣
u(z0) = p0, ∂Jt u = 0,

[u] = [CP1 × {pt}]
}/

∼, (2)

where u ∼ u′ iff there is a biholomorphism ψ : S2 → S2 such that u′ = u ◦ ψ .
Here ∂Jt is the Cauchy-Riemann operator for Jt , that is, ∂Jt u = 1

2 (du+ Jt ◦ du ◦ i).
Now consider the moduli space for the family (Jt )t∈[0,1]

M := {(t, [u]) | t ∈ [0, 1], [u] ∈ Mt } . (3)

We will prove Theorem 1.2 by contradiction: Assuming M1 = ∅, in Sect. 2.5 we
will show that a perturbation of M is a compact 1-dimensional cobordism from M0
to M1. However, M0 = {[u0]} consists of exactly one element (see Lemma 2.2).
Therefore, this cobordism contradicts that M1 is empty.

The first step in completing the proof of Theorem 1.2 is to establish compactness
of the unperturbed moduli space. This is a special case of Gromov’s compactness
theorem, where bubbling is excluded in the given homology class using the
restriction of the topology of T from Remark 1.3. For general symplectic manifolds
(T , ωT ), we would need to compactify M by bubble trees. So, the subsequent proof
of M1 being nonempty would only show the existence of (possibly singular) J1-
curves and not necessarily smooth spheres in the required homology class.

Theorem 2.4 Let (T , ωT ) be a compact symplectic manifold with ωT (π2(T )) = 0.
Then the moduli space M defined in Eq. (3) is compact with respect to the quotient
topology induced by [0, 1] × C∞(S2,M).

Proof This proof follows [8, Chapter 4] and [1]. Let (tn, [un]) be a sequence in
the moduli space M. In particular, un is a sequence of Jtn -holomorphic maps
in M. We want to show that there exists a subsequence which converges to an
element (t∞, [u∞]) ∈ M, meaning that u∞ is a Jt∞ -holomorphic map. Here, by
convergence we mean the following:

(1) tn converges to t∞ in the usual topology of [0, 1] ⊂ R,
(2) [un] converges to [u∞] ∈ Mt∞ in the Gromov sense, that is, there exist

biholomorphic maps ϕn : (S2, j) → (S2, j) with ϕn(z0) = z0 such that the
reparameterized maps un ◦ ϕn : S2 → Q converge in C∞ to u∞.
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To achieve (1) we can choose a subsequence of tn ∈ [0, 1] with tn converging
to a t∞ ∈ [0, 1] since the interval is compact. Then, as {Jt }t∈[0,1] is a continuous
path, we can deduce C∞-convergence of the almost complex structures Jtn → Jt∞ .
To achieve (2), we consider this subsequence, denoting it again by (tn, [un]). The
key observation is that the area functional is uniformly bounded on M. Indeed, all
Jtn -holomorphic curves un represent the same homology class [u] = [CP1 × {pt}],
so that

E(un) =
∫

CP
1
u∗
nω = ω([CP1 × {pt}]) = π(r + ε)2

is constant and hence bounded. Moreover, S2 is a closed surface. Thus, by Gromov’s
compactness theorem (e.g. [8, Chapter V, Thm. 1.2]) there exists a subsequence of
[un] converging in the Gromov sense to a Jt∞ -holomorphic cusp curve u∞ of the
same energy E(u∞) = π(r + ε)2.

Actually, this cusp curve consists of a single Jt∞ -holomorphic sphere. Indeed,
let [v1], . . . , [vk] be the non-constant components of u∞ of energy E(vn) =∫
CP

1 v∗
nω > 0 which sum to E(v1) + . . . + E(vk) = E(u∞) = π(r + ε)2. Since

the symplectic form ω = ω
CP

1 ⊕ ωT splits, the energies are the sums E(un) =
ω
CP

1(αn) + ωT (βn) of symplectic areas of the projections αn := [pr
CP

1 ◦ un] and
βn := [prT ◦ un] to the factors CP

1 and T . Here we have ωT (βn) = 0 because
of the assumption ωT (π2(T )) = 0, and ω

CP
1(αn) ∈ Zπ(r + ε)2 since H2(CP

1)

is generated by [CP1] which has symplectic area π(r + ε)2 by construction. Thus
each nontrivial component has energy at least E(vn) ≥ π(r+ε)2, but since the total
energy of the bubble tree is π(r + ε)2 this implies k = 1. This means that the limit
cusp curve u∞ has one non-constant component. Since it has only one marked point
(arising from z0 in the definition of Mt ), it cannot have ghost components, and thus
u∞ consists of a single Jt∞ -holomorphic sphere u∞ : S2 → CP

1 × T .
The meaning of Gromov-convergence [un] → u∞ = [u∞] is exactly as

stated in (2) above, so we have shown that M is sequentially compact. Finally,
compactness follows from the fact that the Gromov-topology is metrizable; see [15,
Theorem 5.6.6.]. ��

2.5 Applying the Polyfold Regularization Scheme

This section proves Theorem 1.2. We will use the notation and facts established
in Sects. 2.2 and 2.4, the polyfold constructions from Sect. 3, and the polyfold
regularization scheme from Sect. 1.1.

Proof of Theorem 1.2 Assume that M1 = ∅. Under this assumption, we will the
polyfold regularization scheme in Theorem 1.7 to perturb M just enough to achieve
a smooth structure, while not loosing compactness, or changing its boundary at
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t = 0, 1. With that, we obtain a compact cobordism between M0 = {[u0]} and
M1 = ∅. For that purpose we construct the following objects in Sect. 3:7

• an ambient M-polyfold [0, 1] × B ⊃ M modeled on sc-Hilbert spaces
(Theorem 3.5),

• a tame strong M-polyfold bundle E → [0, 1] × B (Theorem 3.10),
• a sc-Fredholm section σ : [0, 1] × B → E such that M = σ−1(0) ⊂ [0, 1] × B

(Theorem 3.14).

The use of sc-Hilbert spaces guarantees the existence of sc-smooth bump functions
on B by Hofer et al. [9, §5.5], which is required for Theorem 1.7. We prove that σ is
transverse to the zero section at {0}×B in Theorem 3.17. Moreover, the assumption
M1 = ∅ implies transversality of σ at {1} × B (see Remark 3.18). Now we apply
the M-polyfold regularization scheme, see Theorem 1.7. This gives a perturbation
section p : [0, 1]×B → E , such that (σ+p)−1 =: Mp is a compact 1-dimensional
manifold. By Remark 1.8, we can assume p to be supported inside (0, 1) × B. So,
the boundary of Mp is

∂(Mp) = Mp ∩ ∂([0, 1] × B) = Mp ∩ ({0, 1} × B) ∼= M0 � M1 = {[u0]}.
Thus, the boundary ∂(Mp) consists of only one point. Such a manifold does
not exist. Therefore, the assumption M1 = ∅ was false and we have proven
Theorem 1.2. ��
Remark 2.5 If we dropped the condition u(z0) = p0 in the construction of the
moduli spaces Mt in Eq. (2), then we could directly use the polyfold setup for
Gromov-Witten moduli spaces with one marked point from [10]. Then the above
arguments would provide a (2n+1)-dimensional cobordism Mp between the 2n-
dimensional manifolds M0 and Mp

1 , where the latter is obtained from M1 by the
perturbation p|{1}×B. One would need to choose the perturbation to be supported
away from J1-curves intersecting the point p0 ∈ CP

1 × T (which by assumption
do not exist), so that the evaluation map on the perturbed moduli space ev :
Mp

1 → CP
1 × T does not contain p0 in its image and hence has degree 0.

Moreover, one would need to formulate Lemma 2.2 in a way that the evaluation map
ev : M0 → CP

1 × T is a bijection and thus has degree 1. This difference between
degrees is then in contradiction to the fact that the evaluation map B → CP

1 × T
extends both ev|Mp

1
and ev|M0 to a continuous map ev : Mp → CP

1 × T on the
cobordism.

7We introduce a candidate space B in (4), then we establish the M-polyfold structure on an open
subset B′ ⊂ B, that we rename into B here for ease of notation. The exact choice of B′ as discussed
in Remark 3.6 is immaterial, since the moduli space M and all its regular perturbations will be
automatically contained in [0, 1] × B′.
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3 Polyfold Setup

This section provides the polyfold description of the compact moduli space M that
is the basis of the proof of Theorem 1.2 in Sect. 2.5.

Recall that (T , ωT , JT ) denotes the torus with a compatible pair of symplectic
form and almost complex structure (e.g. the one constructed in Sect. 2.1). We may
consider any other compact symplectic manifold with ωT (π2(T )) = 0, as explained
in Remark 1.3. Moreover, we fix a point p0 and compatible almost complex structure
J on (Q,ω) = (CP1 × T , ω

CP
1 × ωT ). We choose a smooth path (Jt )t∈[0,1] of ω-

compatible almost complex structures from J0 = i × JT to J1 = J . Then, Sect. 2.4
proves compactness of the family M = {(t, [u]) | t ∈ [0, 1], [u] ∈ Mt } of moduli
spaces

Mt =
{
u : S2 → CP

1 × T
smooth

∣∣∣∣
u(z0) = p0, ∂Jt u = 0,

[u] = [CP1 × {pt}]
}/

∼,

with the equivalence relation

u ∼ v :⇐⇒ ∃ψ : S2 → S2 biholomorphism with ψ(z0) = z0 and u = v ◦ ψ.

The polyfold setup starts with a choice of an ambient space that contains M (as a
compact zero set of a sc-Fredholm section). For the family M = ⋃

t∈[0,1] Mt , the
natural choice of ambient space is [0, 1] × B, where B is an ambient space for each
of the moduli spaces Mt , given by

B :=
{
u : S2 → CP

1 × T
of classW 3,2

∣∣∣∣
u(z0) = p0,

[u] = [CP1 × {pt}]
}/

∼ . (4)

This uses the same equivalence relation ∼ as in the definition of Mt , but we equip
B with the quotient topology induced by the metrizable topology on the Hilbert
manifold H = W 3,2(S2,CP1 × T ), unlike the smooth topology in Theorem 2.4.
The condition [u] = [CP1 × {pt}] specifies some connected component(s) of H ,
and u(z0) = p0 cuts out a further submanifold, so that B is the quotient of a Hilbert
manifold. However, the action by reparameterization with biholomorphisms is not
differentiable (see e.g. [3, § 2.2]), and so B does not inherit the smooth structure of
a Hilbert manifold. Instead, we will show in Theorem 3.5 that it carries the structure
of a sc-Hilbert manifold.8

8Strictly speaking, our proofs establish the polyfold structures not for B and E → B as stated,
but after restriction to a W 3,2-open neighbourhood B′ ⊂ B of the dense subset of smooth curves
B∞ ⊂ B. Additional estimates could prove B′ = B, but applications of the polyfold description
yield the results for any B∞ ⊂ B′ ⊂ B ; see Remark 3.6.
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We sometimes write an equivalence class as α ∈B instead of [u] ∈B, indi-
cating that there is no preferred representative in the class. To build the bundle
E → [0, 1] ×B, we consider for each (t, α) ∈ [0, 1] × B, the Hilbert space quotient

E(t,α) :=
{

(u, ξ)

∣∣∣∣
[u] = α

ξ ∈ Λ0,1
Jt

(
S2, u∗T(CP1 × T )) of classW 2,2

}/
∼, (5)

whereΛ0,1
J (S

2, u∗TQ) denotes the 1-forms on S2 with values in the pullback bundle
u∗TQ that are complex antilinear with respect to i on S2 and J on Q = CP

1 × T .
The equivalence relation ∼ is given by

(u, ξ) ∼ (v, ζ ) :⇐⇒ ∃ψ : S2 → S2 biholomorphism with ψ(z0) = z0

and u = v ◦ ψ and ξ = ζ ◦ dψ.

Now the bundle E → [0, 1] × B is given by the total space

E :=
{
(t, [(u, ξ)])

∣∣∣ t ∈ [0, 1], α ∈ B, [(u, ξ)] ∈ E(t,α)
}

(6)

with the projection to [0, 1]×B. This projection is well-defined since (u, ξ) ∼ (v, ζ )
implies u ∼ v. We equip E with the quotient topology obtained by embedding Q
into a Euclidean space and viewing the pairs (u, ξ) as subset of the pairs of W 2,3-
maps and vector-valued 1-forms of classW 2,2.

Finally, the section

σ : [0, 1] × B → E, (t, [u]) �→ (t, [(u, ∂Jt u)]) (7)

cuts out the moduli space σ−1(0) = M. To apply the M-polyfold regularization
Theorem 1.7, we need to equip the spaces B and E with sc-smooth structures such
that σ is sc-smooth, and moreover show that σ is a sc-Fredholm section.

3.1 The Gromov-Witten Space of Stable Curves

The sc-smooth structure on the base space B is obtained in Sect. 3.3 by understand-
ing it as a subset B ⊂ Z of a space of stable curves in the manifold Q = CP

1 × T .
The space

Z :=
{
u : S2 → Q of classW 3,2

∣∣ [u] = [CP1 × {pt}]
}/

∼ (8)

does not satisfy the condition u(z0) = p0, but the marked point z0 is present in the
definition of the equivalence relation ∼, that equals the one in (4). Thus, there exists
a well defined evaluation map ev : Z → Q, ev([u]) := u(z0).
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Then, the base space B can be viewed as the preimage of the point p0 ∈ Q under
the evaluation map ev, that is

B = {[u] ∈ Z | u(z0) = p0} = ev−1({p0}) ⊂ Z. (9)

The space Z is a subspace of a polyfold that Hofer, Wysocki and Zehnder construct
in [10], which we will denote by ZHWZ. In [10], Hofer, Wysocki and Zehnder also
construct a strong polyfold bundle W → ZHWZ and a sc-Fredholm section ∂ :
ZHWZ → W , that cuts out holomorphic curves. More precisely, for any numbers
g, k ∈ N0 and nontrivial homology class A ∈ H2(Q), the polyfold ZHWZ has a
component9 ZHWZ

g,k,A so that

∂
−1
(0) ∩ ZHWZ

g,k,A = Mg,k(A)

is the compactified Gromov-Witten moduli space of (possibly nodal) pseudoholo-
morphic curves in class A of genus g, with k marked points. In the following, we
will explain how considering genus g = 0, one marked point, and homology class
A := [CP1 × {pt}] ∈ H2(Q) will provide an identification Z ∼= ZHWZ

0,1,A ⊂ ZHWZ.

In general, the space ZHWZ = {(S, j,M,D, u)| . . .}/ ∼ is defined in [10,
Definition 1.4,1.5] as a set, and given a topology in [10, §3.4], as a quotient of

⎧
⎨

⎩
(S, j,M,D, u)

∣∣∣∣

(S, j,M,D) connected nodal Riemann surface,
u ∈ W 3,2,δ(S,Q),

∫
C
u∗ω ≥ 0 for each component C ⊂ S,∫

C
u∗ω > 0 for each non-stable component C ⊂ S

⎫
⎬

⎭
.

Here (S, j) is a (not necessarily connected) Riemann surface, M ⊂ S is a finite
set of marked points, and D is a finite set of nodal pairs in S. These nodal pairs
are identified in order to obtain a noded Riemann surface—which is required to be
connected. The maps u : S → Q are then required to descend to a continuous map
from the noded Riemann surface, and they are required to be of weighted Sobolev
classW 3,2,δ on the complement S \D of the nodal points.

Two stable maps (S, . . . , u) ∼ (S′, . . . , u′) are equivalent if there is a biholomor-
phism ψ between the corresponding marked noded Riemann surfaces (i.e., compat-
ible with M and D), such that u′ = u ◦ ψ . The conditions on the symplectic area
in ZHWZ are known to guarantee that pseudoholomorphic curves of this type are
stable, meaning that their isotropy groups are finite. We show in Lemma 3.2 that
all maps in ZHWZ have finite isotropy. In fact, Lemma 3.3 proves that all maps in
our particular case ZHWZ

0,1,A have trivial isotropy. To begin with, the following Lemma
simplifies the description of this space to the description given in Eq. (8).

9These components are open and closed but not necessarily connected.
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Lemma 3.1 The polyfold ZHWZ
0,1,A for A = [CP1 × {pt}] ∈ H2(Q) is naturally

identified with Z. The same holds true if we replace the torus T in Q = CP
1 × T

by any compact symplectic manifold with ωT (π2(T )) = 0.

Proof First recall that the symplectic area of a map u : S → Q depends only
on its homology class. Thus, for [u] = [CP1 × {pt}] = A ∈ H2(Q), we obtain∫
S
u∗ω = ω(A) = π(r + ε)2 > 0, as computed in Eq. (1). This is the symplectic

area of all equivalence classes of (possibly nodal) maps in

ZHWZ
0,1,A =

{
[(S, j,M,D, u)] ∈ ZHWZ

∣∣∣∣
genus of (S, j,D) is g = 0, #M = 1,

[u] = A = [CP1 × {pt}]
}
.

We claim that this can be simplified to the formulation given in (8). For that, we
first recall that all the nodal surfaces of genus g = 0 are trees of spheres. Next, note
that the assumption ωT (π2(T )) = 0 guarantees that all components S2 � C ⊂ S

have energy
∫
C
u∗ω ∈ ω(π2(Q)) = ω

CP
1(π2(CP

1)) = Zπ(r + ε)2. Recall here
that we chose the symplectic form on CP

1 in Sect. 2.1 in such a way that we
have ω

CP
1([CP1]) = ∫

CP
1 ω

CP
1 = π(r + ε)2. As in the proof of Theorem 2.4,

the homology condition [u] = [CP1 × {pt}] implies that S can only have one
component, on which u is non-constant. Indeed, the total symplectic area

∫
S
u∗ω =

ω([CP1 × {pt}]) = π(r + ε)2 is the sum of non-negative areas of all components,
but each non-constant component has energy

∫
C
u∗ω ≥ π(r + ε)2. Moreover, S

cannot have so-called ghost components C ⊂ S with
∫
C
u∗ω = 0 because stability

of such components would require at least three special points, while there is only
one marked point from k = 1 and at most one nodal point connecting C to the
unique non-constant component. Thus all nodal surfaces (S, j,D), that are needed
for the component ZHWZ

0,1,A ⊂ ZHWZ, are single spheres, i.e. D = ∅.
The absence of nodes, i.e. D = ∅, also explains why we do not need to consider

weighted Sobolev spaces but can directly work with maps of Sobolev class W 3,2.
Moreover, the topology specified in [10, §3.4] simplifies in this setting to the
quotient topology coming from the space ofW 3,2-maps.

Finally, we will use the fact that any compact genus 0 Riemann surface (S, j)
without nodes is biholomorphic to (S2, i), so that for each point in ZHWZ

0,1,A we can

choose representatives [(S2, i,M,∅, u)]. The remaining equivalence relation is then
by biholomorphisms of (S2, i), which we can use to fix the marked pointM = {z0}
and reduce the equivalence relation to reparameterization with biholomorphisms
ψ : S2 → S2 that fix the marked point ψ(z0) = z0 as in Eq. (4). This identifies the
polyfold given in [10] with Z as defined in Eq. (8) in the following way:

ZHWZ
0,1,A =

⎧
⎨

⎩
(S, j,M,∅, u)

∣∣∣∣

u ∈ W 3,2(S,Q)

. . .

[u] = [CP1 × {pt}]

⎫
⎬

⎭

/
(S, j,M, u)

∼ (S′, ψ∗j, ψ−1(M), u ◦ ψ)



A Polyfold Proof of Gromov’s Non-squeezing Theorem 19

∼=
{
(S2, i, {z0},∅, u)

∣∣∣∣
u ∈ W 3,2(S2,Q)

[u] = [CP1 × {pt}]
}/

∼

∼=
{
u ∈ W 3,2(S2,Q)

∣∣ [u] = [CP1 × {pt}]
}/ ∼ = Z. ��

3.2 Trivial Isotropy

In this section, we show that all (not necessarily pseudoholomorphic) maps in the
space Z defined in (8) have trivial isotropy due to their specific homology class. We
start by showing that maps of nontrivial finite energy have finite isotropy groups for
any compact domain and target.

Lemma 3.2 Let (Q,ω) be any symplectic manifold, (Σ, j) a compact connected
Riemann surface, and let u : Σ → Q be a C1-map with positive symplectic area∫
Σ
u∗ω > 0. Then it has a finite isotropy group

Gu := {ψ : (Σ, j)→ (Σ, j) biholomorphic | u ◦ ψ = u}.

Proof Having positive symplectic area implies that there exists an open ball
B ⊂ Σ , so that u is injective on B. Indeed, since

∫
u∗ω > 0 there must be

a point p ∈ Σ such that (u∗ω)p does not vanish as a bilinear form on TpΣ ,
i.e. there are vectors v,w ∈ TpΣ with (u∗ω)p(v,w) > 0. This is equivalent
to ωu(p)(du(p)(v), du(p)(w)) > 0. Since ω is skew-symmetric, we know that
du(p)(v), du(p)(w) are linearly independent. Thus du(p) has maximal rank 2, and
we can find a ball B around p such that u|B is injective and

∫
B
u∗ω > 0.

Next, we claim that the images g(B) of B under the automorphisms g ∈ Gu
are all disjoint. Assume this is not the case. Then there exists a g ∈ Gu \ {id}
such that B ∩ g(B) ⊃ U contains a nonempty open set U . For every p ∈ U we
have p = g(qp) for some qp ∈ B. Since u ◦ g = u we have u(p) = u(qp),
so that the injectivity of u|B implies that p = qp. This shows g|U ≡ id, so that
unique continuation for biholomorphisms on the connected surface Σ implies g =
id, contradicting the assumption.

Therefore,
⋃
g∈Gu g(B) is a disjoint union of open sets, and each restriction

u|g(B) has the same positive energy

∫

g(B)

u∗ω =
∫

B

g∗u∗ω =
∫

B

u∗ω =: δ > 0.

If u∗ω is everywhere non-negative, this implies that Gu cannot have more than
δ−1

∫
Σ
u∗ω elements. This is the case for u being pseudoholomorphic. To prove

finiteness of Gu in general, we pick metrics on Σ and Q with respect to which du
and ω are bounded. Then we have

∫
g(B)

u∗ω ≤ C Vol(g(B)) for some constant
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C > 0, and hence Vol(g(B)) ≥ δ
C

. Since the total volume of Σ is finite, and the
sets g(B) are disjoint, this implies that Gu must be finite. ��

For spheres in the specific homology class [u] = [CP1 × {pt}] inQ = CP
1 × T

we can extend this argument to show that the isotropy groups are in fact trivial.

Lemma 3.3 If [u] ∈ Z, then Gu = {id}.
Proof The Sobolev embedding W 3,2(S2,Q) ⊂ C1(S2,Q) and Lemma 3.2 imply
that elements of Z have finite isotropy groups. To prove that they are trivial, we
consider u ∈ W 3,2(S2,Q) with finite but nontrivial isotropy group Gu = {id} and
we will show that [u] = [CP1 × {pt}], and thus [u] /∈ Z.

Note that Gu ⊂ Aut(S2, i) = PSL(2,C) is a subgroup of the Möbius group.
SinceGu is finite, it must consist of elements of finite order. Möbius transformations
are classified into parabolic, elliptic and hyperbolic/loxodromic ones, corresponding
to their geometric and algebraic properties.10 The only Möbius transformations of
finite order k > 1 are elliptic ones corresponding to a rotation by angle 2π

k
around

two different fixed points in the extended complex plane. Since Gu is assumed to
be nontrivial, it must contain some such rotation f ∈ Aut(S2, i). We can moreover
choose a biholomorphism ψ of C ∪ {∞} that maps the fixed points of the rotation
to 0 and ∞. Then the map u′ := u ◦ ψ−1 represents the same homology class as
u and its isotropy group contains g := ψ ◦ f ◦ ψ−1, which is a rotation of order
k > 1 fixing 0 and ∞. Thus, g : C ∪ {∞} → C ∪ {∞} is given by g(z) = e2πi/kz,
and we have u′(reiθ+m·2πi/k) = u′(reiθ ) for allm ∈ Z since gm ∈ Gu′ . This allows
us to factorize u′ = v ◦ ρk with v(reiθ ) := u′(reiθ/k) and ρk(reiθ ) := rekiθ for
r ∈ (0,∞), θ ∈ [0, 2π ]. By identifying S2 ∼= C ∪ {∞}, this defines continuous
maps v : S2 → Q and ρk : S2 → S2 with v(0) = u(0), v(∞) = u(∞), ρk(0) = 0,
and ρk(∞) = ∞. Finally, this implies [u] = [u′] = deg(ρk) · [v] ∈ H2(Q),
where deg(ρk) = k > 1, because ρk is a k-fold cover of S2. This contradicts
[u] = [CP1 × {pt}], since 1

k
[CP1] ∈ H2(CP

1) is not representable by a map
pr

CP
1 ◦ v : S2 → CP

1. ��

3.3 The Base Space

Within this section, we explain how to equip the base space B defined in (4) (and
thus also [0, 1]×B—see Corollary 3.9) with a polyfold structure. Since the isotropy
is trivial by Lemma 3.3, this means we give B an M-polyfold structure, as discussed
in Sect. 1.1. In fact, due to the absence of nodal maps, we can specify this further
to an atlas of local homeomorphisms to open subsets of sc-Hilbert spaces, whose
transition maps are sc-smooth.

10See for example the lecture notes [16] for a detailed geometric description of the Möbius group,
especially [16, Cor. 12.1] for the statement about elements of finite order.



A Polyfold Proof of Gromov’s Non-squeezing Theorem 21

Remark 3.4 Before stating this result rigorously, we need to introduce one more
piece of polyfold notation (also see [3, §4.1]). Every polyfold (and thus also M-
polyfold or sc-Hilbert manifold) Z contains a dense subset Z∞ ⊂ Z of so-called
smooth points and a nested sequence of subsets

Z∞ ⊂ . . . ⊂ Zk+1 ⊂ Zk ⊂ . . . Z0 = Z.

Each of these is equipped with its own metrizable topology, so that, in particular,
the inclusion maps Zk+1 ↪→ Zk are continuous.

In most applications, the smooth points z ∈ Z∞ are the smooth maps modulo
reparameterization, whose domains may be nodal. For the Gromov-Witten polyfold
Z in Eq. (8), the points [u] ∈ Zk are given by maps u : S2 → Q of class W 3+k,2,
and Zk is equipped with the quotient of theW 3+k,2 -topology. Correspondingly, Z∞
consists of the equivalence classes of smooth maps.

Theorem 3.5 After replacing the base space B with an open neighborhood B′ ⊂ B
of the smooth points B∞ = B ∩ Z∞, it carries the natural structure of a sc-Hilbert
manifold and thus of an M-polyfold.

Remark 3.6 In practice, we expect B′ = B by an analogue of the estimates in [10,
Theorems 3.8, 3.10], which guarantee that charts constructed on neighbourhoods of
smooth points b ∈ B∞ := B ∩ Z∞ cover all of B.

We need to center charts at smooth points in both proof approaches that we will
present. Since we avoid all avoidable estimates, this proves a sc-Hilbert structure on
an open neighbourhood B′ ⊂ B of B∞. That is, B′ contains all equivalence classes
of smooth maps u : S2 → Q. (In fact, B′ contains a W 3,2-neighbourhood of each
such smooth point [u]). However, we may have [v] ∈ B\B′ for some v ∈ W 3,2\C∞.
While this makes the description of the base space less explicit, it does not affect
the rest of the proof.

In fact, we could even allow for a more drastic restriction of the base space
B′ ⊂ B as follows. Proving Theorem 3.5, by applying [4, Thm. 5.10 (I)] directly,
establishes an M-polyfold structure on a Z1-open subset B′ ⊂ B ∩ Z1 such that
B ∩ Z∞ ⊂ B′. This would remove all maps in W 3,2 \W 4,2 from B′ and guarantee
only that B′ contains aW 4,2-neighbourhood of smooth maps.

However, the moduli spaces Mt and their perturbations automatically lie in the
∞-level B∞ due to the regularizing property of sc-Fredholm sections [9, Def.3.8].
So neither a shift to Z1-topology nor restricting to a neighbourhood of B∞ affects
how we can use the M-polyfold regularization scheme (see Theorem 1.7) in the
proof of Theorem 1.1.

There are several ways to prove Theorem 3.5. We will first explain how the
natural11 polyfold structure for Z ⊂ ZHWZ constructed in [10] induces a polyfold

11The choices made in the general construction for Gromov-Witten spaces, of a “gluing profile”
and sequence 2π > . . . δm+1 > δm > . . . > 0 of exponential weights, turn out to be irrelevant in
our special case due to the absence of nodes.
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structure on its subset B = ev−1({p0}) ⊂ Z. This proof applies an implicit function
theorem by Filippenko [4] to the evaluation map ev : Z → Q.

Proof of Theorem 3.5 by Implicit Function Theorem In [10], the spaceZHWZ and
thus also its (open and closed) component Z is given a polyfold structure. Following
the proof in [10], one sees that for the component Z considered here (i.e. genus
0, homology class [CP1 × {pt}]), the model spaces are sc-Hilbert spaces (i.e. all
retractions are identity maps). Their scale structure corresponds to the dense subsets
Zm = {[u] ∈ Z | u ∈ W 3+m,2(S2,Q)} ⊂ Z. Moreover, by Lemma 3.3 we have
trivial isotropy. So [10] actually constructs Z as a sc-Hilbert manifold.

Now we will use the description of B = ev−1({p0}) in Eq. (9) as a preimage
of p0 ∈ Q under the evaluation map ev : Z → Q, [u] �→ u(z0). Note that the
evaluation map is classically smooth on each level Zm ⊂ Z, so it is sc-smooth12 by
Hofer et al. [9, Cor. 1.1]. Furthermore, [4, §5.1] explains why the evaluation map is
transverse (in the sense of [4, Def. 5.9]) to every submanifold ofQ, so in particular
transverse to {p0} ⊂ Q. Now we can apply [4, Thm. 5.10 (I)] to deduce that
B = ev−1({p0}) is an M-polyfold. Though, strictly speaking, [4] constructs an M-
polyfold structure on an open neighbourhood of the ∞-level B∞ := B ∩ Z∞ in the
1-level B ∩ Z1. The proof of nonsqueezing could work with such a neighbourhood
(see Remark 3.6), but we will argue that the proof of [4, Thm. 5.10(I)] in our
specific setting does not actually require a shift in the topology—just a restriction to
a neighbourhood B′ ⊂ B of B∞.

By Filippenko [4, Rmk.1.4 (ii)], the linear model for B near [u] ∈ B is given
by the kernel of the differential D ev ([u]) : T[u]Z → Tp0Q, which we need to
equip with a sc-structure. This yields two reasons for the restrictions in [4]: First,
the tangent space T[u]Z of an M-polyfold carries a sc-structure only at [u] ∈ Z∞.
This is why [4] builds charts centered at smooth points only, and so do we. Second,
the differential of a general sc-smooth map Z → Q is defined only at points in the
1-level Z1. In our case, the evaluation map ev is classically smooth on Z0, so there
is no need to restrict to [u] ∈ Z1 when using the differential D ev ([u]).

Moreover, the construction of local charts for B uses a local submersion normal
form, which [4, Lemma 2.1] guarantees only if the map is C1 (see [4, Rmk.1.4 (iii)]).
Since [4] considers general sc-smooth maps Z → Q, this requires a restriction to
the C1-map Z1 → Q. In our case there is no need for this restriction, since the
evaluation map ev : Z0 → Q is C1 without a shift.

So the charts for B constructed by Filippenko [4] are homeomorphisms between
open neighbourhoods of smooth points [u] ∈ B∞ and open subsets of the kernel of
the differential D ev([u]). (No retractions appear here due to the absence of nodes
in B.) Since these kernels are sc-Hilbert spaces, this induces a sc-Hilbert manifold
structure on the subset B′ ⊂ B that is covered by the charts. ��

12The manifoldQ is finite-dimensional and so carries the constant scale structure whereQm = Q
for all m.
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Another way to construct the sc-Hilbert manifold structure on B is to directly
incorporate the condition u(z0) = p0 in the construction of charts from [10]. Going
through this proof should also serve to illuminate the general approach of [10] in
this simplified setting.

Proof of Theorem 3.5 by Construction of Charts To begin, one needs to check
that B is a metrizable space. In general, this is proven in [10, Thm.3.27] using
the Urysohn criteria (Hausdorff, second countable, and completely regular) that
imply metrizability. These criteria are easily checked in our setting: First note
that the topology on W 3,2(S2,Q) can be obtained by viewing it as a subset of
the Hilbert space W 3,2(S2,RN) via some choice of embedding M ⊂ R

N . Now
B = B̂/Aut(S2, i, z0) is the quotient of a subset B̂ ⊂ W 3,2(S2,Q) (given by
specifying the homology class and value u(z0) = p0), modulo reparameterization
by the biholomorphisms in Aut(S2, i, z0) that fix z0 ∈ S2. The relative topology
on the subset B̂ is automatically metric (thus Hausdorff) and second countable,
however not all these properties are inherited by the quotient. The metric induces a
pseudometric on the quotient, which implies that the quotient topology is completely
regular. To show that the quotient is Hausdorff and second countable, it suffices to
prove that the quotient map π : B̂ → B is open. To check this we consider any open
subset Û ⊂ B̂ and show that π(Û) is open by checking that any u ∈ π−1(π(Û))

has an open neighbourhood contained in π−1(π(Û)). Note that u ◦ ψ = û ∈ Û for
some ψ ∈ Aut(S2, i, z0) and {w ∈ B̂ | ‖w − û‖W 3,2 < ε} ⊂ Û for some ε > 0
since Û is open. Now let C > 0 be a constant bounding all derivatives of ψ up
to third order. Then we claim that the ε

C
ball around u provides the required open

neighbourhood, i.e. is contained in π−1(π(Û)). Indeed, ‖v − u‖W 3,2 < ε
C

implies
‖v ◦ ψ − û‖W 3,2 < ε, thus v ◦ ψ ∈ Û and v ∈ π−1(π(Û)). This proves that the
quotient map is open and thus finishes the proof of metrizability.

Next, the main technical work is the construction of a chart for a neighbourhood
of a given point α ∈ B. For that purpose we pick a representative u : S2 → Q of
α = [u]. Since B is a quotient by the reparameterization action, the charts are
constructed as local slices to this action, which involves choices of additional
marked points and transverse constraints. More precisely, we need to choose good
data centered at u in the sense of [10, Def. 3.6]. Such good data exists by Hofer
et al. [10, Prop. 3.7]. Recall here that the isotropy group G = Gu = {id} is trivial
in our case. Then good data in our setting consists of the following objects with the
following properties13

1. Marked points stabilizing the surface: These exist by Hofer et al. [10, Lemma
3.2]. In our case a stabilization of (S2, i, {z0},∅) for the map u consists of two
points Σ = {z1, z2} ⊂ S2 that satisfy the following conditions:

• z0, z1, z2 ∈ S2 are pairwise different.

13We essentially use the numbering of [10, Def. 3.6], but merged (5) into 8.), merged (7) into 2.)
and 4.), merged (8) into 7.), and left out (9), (10) which are trivially satisfied in our case.
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• Denote p1 := u(z1), p2 = u(z2). Then p0, p1, p2 are pairwise different.
• For i = 1, 2, the map du(zi) is injective, the bilinear form u∗ω(zi) is non-

degenerate, and it determines the correct orientation on Tzi S
2.

Now the Riemann surface with the additional marked points (S2, i, {z0, z1, z2})
is stable; in fact its isotropy group is trivial in our case. [10] also requires a choice
of good uniformizing family parameterizing variations of the surface and marked
points, but in our case, since the Deligne-Mumford space of three marked points
on a sphere is trivial, this family is constant. It remains to choose small disk
structures, that is holomorphic embeddings of the closed disk D2 � Dzi ⊂ S2

with center 0 � zi that are disjoint for i = 1, 2.
2. Charts for the target space: Open neighbourhoods U(pi) ⊂ Q of pi for i =

1, 2 and diffeomorphisms ψi : (U(pi), pi)→ (R2n, 0) are chosen so that

• U(p1) and U(p2) are disjoint;
• u|Dzi is an embedding for i = 1, 2, with image contained in U1(pi).

Here and in the following we denote by Uρ(pi) := ψ−1
i ({x ∈ R

2n | |x| < ρ})
the preimages of balls of any radius ρ > 0.

3. A Riemannian metric onQ is chosen such that it agrees on the open setsU4(pi)

with the pullback of the standard metric on R
2n by ψi .

Moreover, we choose an open neighbourhood of the zero-section Õ ⊂ TQ,
which is fiberwise convex and such that for every q ∈ Q, the exponential map
induced by the chosen metric, exp : Õq := Õ ∩ TqQ→ Q is an embedding.

4. Transverse hypersurfaces: We choose submanifolds Mpi ⊂ U(pi) ⊂ Q of
codimension 2 for i = 1, 2 such that pi ∈ Mpi and

• ψi(Mpi ) ⊂ R
2n is a linear subspace;

• TpiQ = im du(zi)⊕Hpi for Hpi := TpiMpi ;
• {zi} = Dzi ∩ u−1(Mpi ) is the only point in Dzi that u maps toMpi .

This in particular implies that u|Dzi is transverse toMpi for i = 1, 2.
6. Concentric subdisks: We choose SDzi ⊂ Dzi for i = 1, 2 to be the image of

smaller disks under the holomorphic embeddings D2 � Dzi .
7. An open neighbourhood U ⊂ W 3,2(S2, u∗TQ) of 0 is chosen such that

• every section η ∈ U takes values in u∗Õ;
• for every η ∈ U and i = 1, 2, the map u′ := expu(η) : S2 → Q

satisfies u′(Dzi ) ⊂ U2(pi), and u′|Dzi is an embedding transverse toMpi that
intersectsMpi at a single point p′

i = u′(z′i ), the preimage of some z′i ∈ SDzi .
From now on we will assume that we chose good data for a smooth map u ∈ C∞,

since it suffices to construct charts centered at smooth points α ∈ B∞.14 Now the

14Hofer et al.[10, Thms.3.8, 3.10] imply that for every [u′] ∈ Z there is a smooth u : S2 → Q and
good data centered at u such that u′ = expu(η) for some η ∈ U . This means that the charts coming
from good data centered at the smooth points of Z will cover all of Z. This can be extended to
include the conditions u′(z0) = p0 and η(z0) = 0, and thus prove the same for B.
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only place where our constructions for B = {[u′] | u′(z0) = p0} ⊂ Z differ from
the constructions in [10] for Z is the definition of a linear subspace of the sc-space(
W 3+k,2(S2, u∗TQ)

)
k∈N0

. Our choice

Eu := {η ∈ W 3,2(S2, u∗TQ) | η(z0) = 0, η(zi) ∈ Hpi for i = 1, 2} (10)

adds the condition η(z0) = 0 that linearizes the condition u′(z0) = p0 = u(z0). We
then consider its open subset O := Eu ∩ U and claim that the map

O → B, η �→ [expu η] (11)

is a homeomorphism onto a neighbourhood of [u]. While this is not explicitly stated
in [10, §3.1], we can check the properties of this map in our case:

Continuity Equation (11) is the composition of two continuous maps: the
pointwise exponential map and a quotient projection. The latter is continuous by
definition of the quotient topology on B. The first map is the composition η �→ E◦η
with the smooth exponential map E : u∗TQ→ Q. Checking that this is continuous
between W 3,2-topologies requires local estimates, which hold since 3 · 2 > dim S2

(see e.g. [19, Lemma B.8]).

Injectivity Consider η, η̃ ∈ O with [expu η] = [expu η̃] ∈ B. This means that there
is a biholomorphism ψ : S2 → S2 with ψ(z0) = z0 and expu η = expu η̃ ◦ ψ .
By property 4.), the maps expu η and expu η̃ intersect the submanifolds Mpi ,
i = 1, 2 in unique points p′

i , p̃i ∈ Mpi with unique preimages z′i , z̃i ∈ SDzi . It
follows that ψ(z′i ) = z̃i for i = 1, 2. On the other hand, η(zi), η̃(zi) ∈ Hpi =
TpiMpi and the fact that Mpi ⊂ U(pi) is totally geodesic imply expu η ∈ Mpi and
expu η̃ ∈ Mi , so the uniqueness of intersection points in property 7.) implies z′i = zi
and z̃i = zi for i = 1, 2. Thus we have ψ(zi) = zi for i = 0, 1, 2, which implies
ψ = idS2 . From this we deduce expu η = expu η̃ and thus η = η̃.

Continuity of the Inverse To show that the map in (11) is a homeomorphism, it
remains to check that it maps open subsets of Eu to open subsets of B. So we fix
some η ∈ O and need to show that any α ∈ B sufficiently close to [expu η] can
be written as α = [expu η

′] for some η′ ∈ O. First note that v := expu η satisfies
v(z0) = p0 along with the slicing conditions v(zi) ∈ Mpi for i = 1, 2. Next,
α being close to [v] in the quotient topology of B means that α = [v′] for some
representative v′ that is W 3,2-close to v. By construction of B, this map satisfies
v′(z0) = p0. Moreover, since v is locally transverse to the slicing conditions (as
specified in 4.), we will have v′(z′i ) ∈ Mpi for some z′i ≈ zi . Now we can compose
v′ with a small Möbius transformation that fixes z0 and maps zi to z′i to obtain
a new representative α = [w] that satisfies w(z0) = p0 and w(zi) ∈ Mpi . This
adjustment in slicing conditions guarantees that η′(z) := exp−1

u(z)(w(z)) defines a

section η′ ∈ Eu. Moreover, the construction is done such that w is still W 3,2-close
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to v, which guarantees η′ ≈ η and thus η′ ∈ O for α sufficiently close to [v]. This
proves openness and thus continuity of the inverse.

Thus we have constructed C0-charts for B centered at any point [u]. It remains to
equip the local models with sc-structures and show that the transition maps between
these charts are sc-smooth. This is where we (just as [10, §3.2]) have to restrict to
centering our charts at points [u] ∈ B∞ represented by smooth maps u : S2 → Q.
This regularity is required to give the pullback bundle u∗TQ a classically smooth
structure, so that we can define the Sobolev spaces W 3+k,2(S2, u∗TQ) of sections
by closure of the smooth sections. Then we obtain a sc-structure on the Hilbert space
Eu in (11) by the subspaces Eu ∩W 3+k,2(S2, u∗TQ) for k ∈ N0.

Finally, compatibility of the charts follows directly from [10], since our transition
maps are the same maps as theirs, just restricted to subsets of their domains.
More precisely, transition maps between different charts for Z can be obtained
from its ep-groupoid description by composing local inverses of the source map
with the target map. Both of these structure maps are local sc-diffeomorphisms by
the étale property in [9, Def.7.3] (for the Gromov-Witten case this is established
in [10, Prop.3.19]). So sc-smoothness of transition maps follows since they are
compositions of local sc-diffeomorphisms. ��
Remark 3.7 (sc-Smoothness) The key point why sc-smoothness appears here is
the following: The choice of stabilization points z1, z2 above depended on u. For
different u′ we might have other z′1, z′2, and so the transition map between the
charts centered at u and u′ needs to reparameterize all the vector fields η. But the
reparameterization biholomorphism is not fixed for one transition map, but depends
also on the vector field. So we get a map of the form

O � η �−→ η ◦ dψη ∈ O′,

which is not classically differentiable w.r.t. any of the usual Sobolev or Hölder
norms. It is however scale-smooth; see [3, §2.1,2.2] for further discussion.

Remark 3.8 (Good Data Centered at u0) For the holomorphic map u0(z) = (z,m0)

from Sect. 2.2, it is easy to find good data: In the first factor, u0 is the identity, and in
the second factor it is the constant map to m0 ∈ T . For this map, any choice of two
different points z1, z2 ∈ S2 \ {z0} yields a stabilization as required. Then Mpi :=
{zi} × T are transverse hypersurfaces since their tangent spaces Hpi = {0} × Tm0T

satisfy

im du0(zi)⊕Hpi = TziCP
1 ⊕ Tm0T = Tu0(zi )Q.

This choice of charts will be used in Sect. 3.7. In particular, we will use

Eu0 := {η ∈ W 3,2(S2, u∗TQ) | η(z0) = 0, η(zi) ∈ {0} × Tm0T for i = 1, 2}.
(12)
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Corollary 3.9 The product [0, 1] × B is a sc-Hilbert manifold with boundary
∂([0, 1] × B) = {0, 1} × B.
Proof As a finite dimensional manifold, the interval [0, 1] is trivially a sc-Hilbert
manifold and the notion of boundary is the same as the classical notion (see also
Remark 1.6). This means that the product [0, 1] × B also is a sc-Hilbert manifold.
In fact, for every pair (t0, [u]) ∈ [0, 1] × B we can choose an open interval It0 ⊆
[0, 1] containing t0 and a chart O → B centered at [u] as in (11), then a sc-Hilbert
manifold chart for a neighbourhood of (t0, [u]) is given by

It0 × O −→ [0, 1] × B, (t, η) �−→ (t, [expu η]).

Sc-smoothness of transition maps between these charts follows directly from sc-
smooth compatibility of the charts for B. Finally, O has no boundary, and boundary
of It0 arises only from ∂[0, 1] = {0, 1}. Since boundary and corner stratifications
are determined in local charts, this proves the claim. ��

3.4 The Bundle

The purpose of this section is to give the projection E → [0, 1] × B defined in (6)
the structure of a tame strong polyfold bundle. To achieve this, we first describe the
bundleW → ZHWZ from [10] restricted to Z ⊂ ZHWZ.

The fibers of W are defined in [10, §1.2] with respect to a fixed almost complex
structure J on the target manifold. Using the previous simplifications forZ ⊂ ZHWZ

(i.e. genus 0, S = S2, homology class [CP1 × {pt}]) we see that the fiber Wα over
α ∈ Z is the quotient space

Wα =
{
(u, η)

∣∣∣∣
[u] = α

η ∈ Λ0,1
J

(
S2, u∗T(CP1 × T )) of classW 2,2

}/
∼

of complex antilinear 1-forms of classW 2,2 with values in the pullback bundle along
a representative u. Here complex antilinearity of η is required with respect to a fixed
almost complex structure J on CP

1 × T and the standard complex structure on S2.
The equivalence relation is given by

(u, η) ∼ (v, μ) :⇐⇒ ∃ψ : S2 → S2 holomorphic
with u = v ◦ ψ and η = μ ◦ dψ.

For α ∈ B ⊂ Z we can choose a representative [u] = α with u(z0) =
p0, and restricting to such representatives reduces the equivalence relation to
biholomorphisms ψ with ψ(z0) = z0. So if we choose J = Jt for some t ∈ [0, 1],
then this identifies our fibers E(t,α) = Wα with the fibers of a tame strong polyfold
bundle constructed in [10]. However, we wish to simultaneously extend and restrict
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the base space: We extend by allowing the almost complex structure to vary, and we
restrict to curves through the fixed point p0 ∈ Q.

Theorem 3.10 Let B′ ⊂ B be as in Theorem 3.5,15 then E |[0,1]×B′ → [0, 1] × B′
is a tame strong M-polyfold bundle.

There are again several ways to prove this. Filippenko [4] has a result about
the restriction of bundles to sub-polyfolds which we explain in Remark 3.13.
Unfortunately, this would require an existing polyfold description for Gromov-
Witten moduli spaces with varying J , which we discuss in Remark 3.11. In any
case, the proof of transversality of the section σ at t = 0 requires a fairly explicit
bundle chart, so our actual proof is an adaptation of [10]—to our simplified setting,
but extending the constructions to varying J .

Remark 3.11 The analysis in [10] is formulated for a fixed almost complex structure
J on the target manifoldQ. This might be deemed as sufficient due to the following
graph trick:

Given a smooth family (Jt )t∈Rk of almost complex structures, parameterized by
a finite dimensional space R

k , we can identify the moduli space of Jt -holomorphic
curves in Q for some t ∈ R

k with a moduli space of certain pseudoholomorphic
curves in the product manifold Q̃ := C

k × Q as follows. We define an almost
complex structure J̃ on Q̃ by J̃ (t+ is, q) := JCk ×Jt at the point (t+ is, q) ∈ Q̃ =
C
k×Q. Then J̃ -holomorphic maps ũ : S → Q̃ = C

k×Q in a class Ã := [{pt}]×A,
A ∈ H2(Q) are constant in C

k , so that a constraint ũ(z0) ∈ R
k × Q at a marked

point z0 ∈ S picks out the maps ũ that are of the form z �→ (t, u(z)) for some t ∈ R
k

and a Jt -holomorphic map u : S → Q. Thus pairs (t, u) of Jt -holomorphic maps
in class A for some t ∈ R

k can be identified with J̃ -holomorphic maps in class Ã
satisfying the point constraint.

Our variation of almost complex structures (Jt )t∈[0,1] can be formulated in this
way by choosing Jt to be constant near t = 0 and t = 1, so that its constant
extension to t ∈ R is smooth. However, the polyfold bundle W̃ → Z̃ that [10]
constructs for the almost complex manifold (Q̃, J̃ ) contains already in its base many
more (reparameterization classes of) maps ũ : S2 → C × Q than those of the
form ũ(z) = (t, u(z)). The point constraint ũ(z0) ∈ R × Q does not force the
C-component to be constant. Similarly, the fibers of W̃ , consisting of anti-linear 1-
forms with values in C ×Q, contain an extra factor Λ0,1(S,C) compared with the
fibersWα above that are used in the polyfold description of a moduli space for fixed
J . These infinite dimensional extra factors would have to be split off near maps of
the form (0, u(z)) or (1, u(z)) in order to relate the moduli spaces for J0 and J1 with
parts of the moduli space for J̃ in this setup.

Alternatively, extending such a splitting along (t, u(z)) for all t ∈ R would yield
a smaller polyfold description in which the base space consists only of maps of the

15Recall we expect B′ = B by Remark 3.6.
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form (t, u(z)). Rather than attempting such a splitting construction, we will directly
construct the resulting polyfold bundle.

Proof of Theorem 3.10 We construct bundle charts as in [10, §6.3].16 Fix a pair
(t0, [u]) ∈ [0, 1] × B∞, a representative u of [u], an open interval It0 ⊂ [0, 1]
around t0 (whose ‘sufficiently small’ choice will be specified below), and good data
centered at u. These choices determine a chart for the base space as in Sect. 3.3, by

It0 × O → [0, 1] × B, (t, η) �→ (t, [expu(η)]).

(See Sect. 3.3 for the definition of O = Eu ∩ U ⊂ W 3,2(S2, u∗TQ).) To build
charts for the bundle, recall that we abbreviate Q := CP

1 × T . Then, using the
chosen representative u, the bundle fiber Et0,[u] can be identified with the Hilbert
space

F := W 2,2-closure of Λ
0,1
Jt0
(S2, u∗TQ). (13)

Here Λ0,1
J (. . .) denotes smooth complex-antilinear 1-forms, and to take theirW 2,2-

closure we view them as functions on S2 with values in a bundle whose fiber over
z ∈ S2 are the linear maps TzS2 → Tu(z)Q. This Hilbert space can be equipped
with a scale structure whose k-th level consists of forms of regularity W 2+k,2. So
we can define a trivial strong bundle17

It0 × O � F → It0 × O (14)

which we will use as local model for E → [0, 1] × B near the pair (t0, [u]).
To trivialize the bundle, we need to map Jt0 -antilinear one-forms with values in

u∗TQ to Jt -antilinear one-forms with values in v∗TQ for pairs (t, v) near (t0, u).
We will do this in two steps, first changing the almost complex structure and then
the pullback bundle. For every t ∈ It0 we can define a linear map from the space of
antilinear 1-forms with respect to J0 to the space of antilinear 1-forms with respect
to Jt (both with values in u∗TQ),

Kt : Λ0,1
Jt0

(
S2, u∗TQ

)
−→ Λ

0,1
Jt

(
S2, u∗TQ

)
(15)

ξ �−→ 1
2 (ξ + Jt (u) ◦ ξ ◦ i) .

16Notation here is the same as in [10], with lots of simplifications because we work with a constant
Riemann surface and trivial isotropy. On the other hand, we allow the almost complex structure to
vary in a 1-parameter family, whereas [10] fixes it.
17As a set, O � F is the Cartesian product O × F . The symbol � means that we consider it as a
strong bundle, which is a condition on the scale structure: For η ∈ O on level m, i.e. of Sobolev
class W 3+m,2, it makes sense to talk about sections along u′ := expu η of Sobolev class up to
W 3+m,2 = W 2+k,2, i.e. up to level k = m+ 1.
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Note that Kt0 is the identity map. Moreover, the explicit form of Kt allows us to
check that this family of operators is smooth with respect to theW 2+k,2-topology on
u∗TQ-valued 1-forms for any k ∈ N0.18 In particular, it extends continuously to F ,
which is the W 2,2-closure of Λ0,1

Jt0

(
S2, u∗TQ

)
, taking values in the W 2,2-closures

of Λ0,1
Jt

(
S2, u∗TQ

)
. So by choosing It0 as sufficiently small neighbourhood of

t0 we can guarantee that Kt , after extension to the W 2,2-closures, is a linear sc-
isomorphism for all t ∈ It0 .

The rest of the bundle chart construction—i.e. the step from the pullback bundle
u∗TQ to the pullback bundle v∗TQ—proceeds as in [10]; we just need to ensure
sc-smooth dependence on the extra parameter. We construct a family of connections
∇̃ t on TQ for t ∈ [0, 1] as follows:19 Let ∇ t denote the Levi–Civita connection of
the metric gt := ω(·, Jt ·) onQ and define a new connection by ∇̃ tXY := 1

2 (∇ tXY −
Jt∇ tX(JtY )). Then the family is smooth in t , and ∇̃ t is a complex connection on the
almost complex vector bundle (TQ,Jt ), that is, it satisfies ∇̃ tX(JtY ) = Jt (∇̃ tXY ).
Moreover, recall that the good data used to construct the above chart for B included
the choice of an open neighbourhood Õ of the zero section of TQ, such that Õ is
fiberwise convex and the exponential map (for a fixed metric on Q that does not
vary with t) restricts to an embedding on each fiber Õq , q ∈ Q. Then for a tangent
vector ηq ∈ Õq , consider the geodesic path [0, 1] → Q, s �→ expq(sηq) from q

to p := expq(ηq). Parallel transport with respect to ∇̃ t along this path defines a
Jt -complex linear map20

Γt(ηq) : (TqQ, Jt (q)) −→ (TpQ, Jt (p)). (16)

This in fact is an isomorphism for each t ∈ [0, 1] and ηq ∈ TqQ, and these
isomorphisms vary smoothly with t ∈ [0, 1], q ∈ Q and η ∈ TQ.

The resulting bundle chart covering the chart (11) of the base space given by
It0 × O → [0, 1)× B, (t, η) �→ (t, [expu η]) is

It0 × O � F −→ E

(t, η, ξ) �−→
(
t,
[(

expu η , Ξ(η, ξ) := Γt (η) ◦Kt(ξ)
)])
. (17)

Here the complex antilinear 1-form Ξ(η, ξ) ∈ Λ0,1
Jt
(S2, v∗TQ) with values in the

pullback bundle by v := expu η is given at each z ∈ S2 by the complex antilinear

18For fixed k, the continuity of Kt requires u ∈ C2+k , which is why we center these charts at
smooth points [u] ∈ B∞.
19Any smooth family of complex connections suffices for the present construction. In Sect. 3.6,
however, we will need ∇̃0 to split along the factors ofQ = CP

1 × T , see Remark 3.12.
20Note here that parallel transport is defined along any path, so there is no issue with the fact that
the path is induced by an exponential map for a different metric than the family of metrics used in
the construction of the connection.
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map

Γt (η(z)) ◦Kt(ξ)(z) : (
TzS

2, i
) → (

Tu(z)Q, Jt (u(z))
) → (

Tv(z)Q, Jt (v(z))
)
.

It coincides with the construction in [10, (3.9)] in case Kt = id due to J being
fixed. We can now follow the arguments of [10, §3.6] to construct E as tame strong
M-polyfold bundle. For that purpose first note that each map (17) covers an M-
polyfold chart for [0, 1] × B′ ⊂ [0, 1] × B, so the images of these maps cover only
E |[0,1]×B′ . Second, these are bundle charts in the sense that they are linear bijections
on each fiber. They are local homeomorphisms because the topology on the total
space E |[0,1]×B′ is defined in this manner as in [10, Thm.1.9].

Strong sc-smooth compatibility of these bundle charts is proven for fixed
J in [10, Prop.3.39], using the language of [9, Prop.3.39]. The strong bundle
isomorphism μ that is considered here, and proven to be a local sc-diffeomorphism,
in fact encodes all transition maps between different bundle charts. The proof of [10,
Prop.3.39] directly extends to the case of varying J thanks to its explicit nature (15)
ofKt as family of linear 0-th order operators. Here we have to again require u ∈ C∞
to ensure that Kt is a bounded operator on each of the W 2+k,2-scales. In fact, these
operators vary smoothly with t ∈ [0, 1] on each scale. Thus the charts (17) equip
E |[0,1]×B′ with the structure of a strong M-polyfold bundle. Finally, tameness is a
condition on the underlying M-polyfold that is automatically satisfied in our case
since all retractions are trivial; see [9, Def.2.17]. ��
Remark 3.12 For t = 0, remember that J0 = i ⊕ JT splits along the factors of
Q = CP

1 × T . This means that also the metric splits and so does its Levi-Civita
connection ∇. Then also the connection ∇̃0 splits, and thus the parallel transport
map Γ0 in (16) preserves the factors of T(z,p)Q = TzCP1 × TpT .

Remark 3.13 An alternative proof of Theorem 3.10 is to construct the bundle E →
[0, 1] × B in (6) from an implicit function theorem in [4].

This proof requires as starting point a polyfold description of the Gromov-
Witten moduli space M for a family (Jt )t∈[0,1] of almost complex structures. Such
a description is obtained by performing the constructions of Theorem 3.10 over
[0, 1] × Z to obtain a tame strong M-polyfold bundle p̃ : W̃ → [0, 1] × Z which
restricts on every slice {t} × Z to the bundle W → Z from [10] for the almost
complex structure Jt .

Now the projection E → [0, 1] × B in (6) is obtained from W̃ → [0, 1] × Z by
restriction to B = ev−1({p0}) ⊂ Z as in the first proof of Theorem 3.5. Here the
map [0, 1] × Z → Q, (t, [u]) �→ ev[u] = u(z0) is transverse to {p0} ∈ Q since the
evaluation map—without the [0, 1]-factor—is already transverse by Filippenko [4,
§1.5]. Thus [4, Theorem 5.10 (II)] provides an open neighbourhood B̃ ⊂ [0, 1] ×
(B ∩ Z1) of [0, 1] × B∞ such that p̃−1(B̃) = E |B̃ → B̃ inherits the structure of
a tame strong M-polyfold bundle. In our special case, the shift to Z1-topology is
actually not needed for the reasons already stated in Theorem 3.5, and since the
retracts are all trivial. Furthermore, B̃ can be replaced by [0, 1] × B′′ for an open
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neighbourhood B′′ ⊂ B of B∞ that may just be somewhat smaller than B′ from
Theorem 3.10.

Indeed, B̃ is given by a union of charts for [0, 1] × B centered at smooth points,
which lift to strong bundle charts. Each of these charts is constructed in product
form, and since [0, 1] is compact we can find for every b ∈ B∞ finitely many such
product charts that cover [0, 1] × {b}. This implies [0, 1] × Ub ⊂ B̃ for some open
neighbourhood Ub ⊂ B of b. This proves the claim with B′ = ⋃

b∈B∞ Ub.

3.5 The Section

This section finalizes the polyfold description of the moduli space M = σ−1(0) by
establishing the relevant properties of the section σ : [0, 1] × B → E introduced
in (7). Up to quotienting by reparameterization in the base, its principal part (given
by its values in the fibers) is (t, u) �→ ∂Jt u.

Theorem 3.14 Let B′ ⊂ B be as in Theorem 3.5,21 then σ : [0, 1] × B′ → E is a
sc-Fredholm section of Fredholm index 1.

As for the bundle structure in Remark 3.13, the Fredholm property of the section
could be proven by the restriction results of Filippenko [4]—if the Fredholm
property of the Cauchy-Riemann operator with varying J was firmly established.
We explain this approach in Remark 3.15, after giving a direct proof of the Fredholm
property based on the explicit bundle charts in Theorem 3.10.

Proof of Theorem 3.14 We work in local coordinates centered at a pair (t0, [u]) ∈
[0, 1] ×B∞ that were defined in (17). The principal part of the section σ is given in
these coordinates by

f : It0 × O −→ F, (t, η) �−→ K−1
t

(
Γt (η)

−1(∂Jt expu η)
)
,

with the family of sc-isomorphisms Kt : F → Λ
0,1
Jt

(
S2, u∗TQ

)
given in (15), and

parallel transport Γt(η) as in (16). Both of these are linear and explicitly given in
terms of point-wise operations. Thus routine computations show that f is not just
sc-smooth, but for any k ∈ N0 restricts to a classically smooth map with respect to
the Wk+3,2-norm on O and the Wk,2-norm on F . (For the present proof, it suffices
to check continuous differentiability.) We can moreover see that the section σ has
classical Fredholm linearizations at any zero (t0, [u]) ∈ σ−1(0). Indeed, in the
coordinates centered at a point with ∂Jt0u = 0 we have df (t0, 0)(T , ζ ) : R×Eu →
F given by

df (t0, 0)(T , ζ ) = − 1
2T · Jt0(∂tJt )|t=t0∂Jt0u + (Du∂Jt0 )ζ, (18)

21Recall we expect B′ = B by Remark 3.6.
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with Eu given in (10). The first part, T �→ − 1
2T · Jt0(∂tJt )|t=t0∂Jt0u, is a bounded

linear operator R → F with respect to any W�,2-norm on F , hence it is compact
with respect to theW 2,2-norm on F . The second part is a restriction of the classical
Cauchy-Riemann operator Du∂Jt0 : X := W 3,2(S2, u∗TQ) → F . This classical
operator is known to be Fredholm, see e.g. [15, Thm.C.1.10], and restriction to the
finite codimension subspace Eu ⊂ X preserves the Fredholm property. This shows
that df (t0, 0) is classically Fredholm with index given by the index of the restriction
Du∂Jt0 |Eu plus the dimension of the domain R of the compact factor. The index of

Du∂Jt0 is 2n+2c1([CP1×{pt}]) by the Riemann-Roch Theorem. The Chern number
can be computed with respect to any compatible almost complex structure onQ, and
for J0 = J

CP
1 ⊕ JT we have

c1([CP1 × {pt}]) =
∫

CP
1×{pt}

c1(TQ,J0)

=
∫

CP
1
c1(TCP

1, J
CP

1)+
∫

{pt}
c1(TT , JT ) = 2 + 0.

Finally, restricting an operator to a subspace reduces the Fredholm index (via a mix
of its effects on kernel and image) by the codimension of the subspace. In this case,
Eu ⊂ W 3,2(S2, u∗TQ) has codimension 2n+4 since it is given by the codimension
2n condition η(z0) = 0 and the two codimension 2 conditions η(zi) ∈ Hpi . Thus
we obtain the claimed Fredholm index

index(df (t0, 0)) = 1 + 2n+ 2c1([CP1 × {pt}])− 2n− 4 = 1.

This also establishes the classical Fredholm property of the section σ in local
coordinates. The nonlinear sc-Fredholm property of polyfold theory, however,
demands more than just the linearizations being sc-Fredholm.22 The sc-Fredholm
property of a section as defined in [9, Def. 3.8] requires three conditions. The first,
sc-smoothness, follows from the classical smoothness in local coordinates. The
second condition, σ being regularizing, means that if (t, v) ∈ [0, 1] × W 3+m,2
with ∂Jt v ∈ W 2+m+1,2, then (t, v) ∈ [0, 1] × W 3+m+1,2. This follows from the
corresponding property of ∂Jt for fixed t—which is known from elliptic regularity.
The third condition seems less transparent but is very important for the implicit
function theorem in scale calculus: At every smooth point (t0, [u]) ∈ [0, 1] × B∞,
the section needs to have the sc-Fredholm germ property [9, Def. 3.7], that is, after
subtraction of a local sc+-section, (a filled version of)23 the germ of σ needs to
be conjugate to a basic germ as defined in [9, Def. 3.6]. The latter means that

22The linear sc-Fredholm property [9, Def. 1.8] is a direct analogue of the classical linear
Fredholm property—kernel and image need to have complements that respect the sc-structure,
these complements need to be sc-isomorphic, and kernel and cokernel should be finite dimensional.
23In our setting, there is no need for a filling since all retractions are trivial.
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after splitting off a finite dimensional factor from the domain and projecting to the
complement of a finite dimensional factor in the image, the germ is the identity plus
a contraction mapping. It is this third property that implies that linearizations of a
sc-Fredholm section are sc-Fredholm operators, see [9, Prop. 3.10]. The index is
then defined as the Fredholm index of the linearization at the lowest level of the
scale structure, which we computed above to be 1.

To establish the equivalence to a contraction germ normal form, we proceed
similar to [10, Prop. 4.26], using the fact that the section is classically differentiable
in all but finitely many directions. In fact, the local representative f above is
continuously differentiable in all directions, and thus satisfies the conditions of
being sc-Fredholm with respect to the trivial splitting Eu ∼= {0} × Eu, as defined
in [18, Def. 4.1]. Indeed, we already established the regularizing property (i). The
differentiablity conditions (ii) in the trivial splitting follow from classical continuous
differentiability. Besides, in this setting the linearized sc-Fredholm property (iii) is
only required of D0f—though for any (not necessarily holomorphic) base point
(t0, [u]). We can make up for the latter complication by subtracting from f the
sc+-section

f0 : It0 × O −→ F, (t, η) �−→ K−1
t

(
∂Jt u

)
,

which takes the same value at (t0, 0) as f . Thus the linearization of f −f0 at (t0, 0)
is well defined, and it can be computed as follows:

d(f −f0)(t0, 0)(T , ζ ) = T ·∂t (Γt (η)−1)(∂Jt0
u) + D0Γ

−1
t (ζ )(∂Jt0

u) + Du∂Jt0 ζ.

To check that this is a linear sc-Fredholm operator we use the conditions of [18,
Def. 3.1]. (1) It is bounded on each level of the scale structure. (2) It is regularizing
by elliptic regularity for the linearized Cauchy-Riemann operator. Lastly, we have
to check in (3) the classical Fredholm property on the lowest level of the scale
structure. Note that the first two summands actually are bounded with respect to the
W 3,2-norm on F , and thus induce compact operators to F with the W 2,2-topology.
Thus the Fredholm property again follows from the corresponding property of the
linearized Cauchy-Riemann operator. All in all, we have shown that the section
f − f0 in local coordinates satisfies all conditions of [18, Thm. 4.5], which implies
its contraction germ normal form.24 This finishes the proof. ��
Remark 3.15 An alternative proof of Theorem 3.14 is to combine an implicit
function theorem from [4] with a polyfold description of the Gromov-Witten moduli
space M for a family (Jt )t∈[0,1] of almost complex structures. Such a description
is obtained as follows. First, one follows Remark 3.13 to construct an M-polyfold
bundle p̃ : W̃ → [0, 1] × Z which restricts on every slice {t} × Z to the

24Strictly speaking, the statement of this theorem shifts the scale structure. We can avoid this by
observing that all the differentiability and linearized Fredholm properties of f : R × Eu → F

persist w.r.t. theW 2,2-topology on Eu and theW 1,2-topology on F .
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bundle W → Z from [10] for the almost complex structure Jt . Then, the section
∂ : [0, 1] × Z → W̃ , (t, [u]) �→ (

t,
[
(u, ∂Jt u)

])
is shown to be sc-Fredholm by

following the arguments of [10, Thm.4.6]25 or our proof of Theorem 3.14. Given
such a description, we claim that the sc-Fredholm property is preserved when we
restrict from [0, 1]×Z to the preimage [0, 1]×B = ẽv−1({p0}) of the submanifold
{p0} ⊂ Q under the evaluation map ẽv : [0, 1] × Z → Q, (t, [u]) �→ ev([u]). For
that purpose we can again quote the results by Filippenko: [4, §5.1] explains why
the Cauchy-Riemann section, the evaluation map and the submanifold {p0} ⊂ Q

satisfy all compatibility conditions of [4, Theorem 5.10 (III)]. A direct application
of that result asserts that σ |B̃ : B̃ → W |B̃ is sc-Fredholm for some open subset
B̃ ⊂ [0, 1] ×B1 containing [0, 1] ×B∞. However, the shift in topology is again not
needed since the evaluation map is classically smooth on all levels. Furthermore, as
in Remark 3.13, the open subset B̃ ⊂ [0, 1] × B can be replaced by [0, 1] × B′′′
for an open neighbourhood B′′′ ⊂ B of B∞ that may just be smaller than B′ from
Theorem 3.10.

3.6 Linearization

The goal of Sect. 3.7 will be to prove transversality of the unperturbed section σ
at t = 0. For that purpose we will need to consider its linearization at the unique
solution [u0] ∈ B for t = 0 (see Sect. 2.2). In fact, it will be sufficient to consider
the linearization of σ0 := σ(0, ·) : B → E |{0}×B at [u0] ∈ B, which is what we
will compute now. We do the computation in a local chart for the restricted bundle
E |{0}×B centered at [u0], given by

O × F → E |{0}×B, (η, ξ) �→ (
0 , [expu0

η, Γ0(η) ◦ ξ ]
)
.

This chart is obtained from the chart (17) for the bundle E → [0, 1]×B centered
at (0, [u0]) as in Sect. 3.4, by restriction to O×F ∼= {0}×O � F ⊂ [0, 1]×O � F .
Here O ⊂ Eu0 is an open subset of the vector space Eu0 given in (12), F is defined
in (13), the exponential map is induced by a fixed metric chosen as part of the good
data in the second proof of Theorem 3.5, and Γt is defined in (16). The map Kt
from (15) does not show up here because we have t = t0 = 0 and so Kt is the
identity map. In this chart, the restricted section σ0 from (7) is given by

σ 0 : O → O × F, η �→ (
η , Γ0(η)

−1 ◦ ∂J0

(
expu0

η
) )
.

Since u0 is the center of the chart, it corresponds to η = 0. So the linearized operator
Du0σ0 in the coordinates of this chart is represented by dσ 0(0) : Eu → F , which

25To generalize the Fredholm analysis in [10] to allow for a finite dimensional family of almost
complex structures, note that this introduces an extra factor in the domain—in our case [0, 1]—
along which the section is classically smooth. Since it is finite dimensional, it can also be split off
when constructing the contraction germ normal form.
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we can compute for η̂ ∈ Eu as follows:

dσ 0(0)(η̂) = d

dθ

∣∣∣
θ=0
ξ(θη̂) = d

dθ

∣∣∣
θ=0
Γ0

(
θη̂

)−1

︸ ︷︷ ︸
=:Aθ

◦ ∂J0

(
expu0

θη̂
)

︸ ︷︷ ︸
=:μθ

= A0︸︷︷︸
=id

◦ d
dθ

∣∣∣
θ=0
μθ + d

dθ

∣∣∣
θ=0
Aθ ◦ μ0︸︷︷︸

=0

= 1
2

(∇η̂ + J0(u0) ◦ ∇η̂ ◦ i) .

Here ∇ denotes the Levi-Civita connection onQ corresponding to the metric g0 that
is compatible with J0. It is A0 = Γ0 (0)−1 = idu∗

0TQ, as for every z ∈ S2 it is (the
inverse of) parallel transport from u0(z) to itself via the constant path, and μ0 =
∂J0

(
expu0

0
) = ∂J0u0 = 0 since u0 is J0-holomorphic. In the last step we used a

formula from [15, Prop. 3.1.1] and again the fact that u0 is J0-holomorphic. Thus
we have shown that the polyfold-theoretic linearization Du0σ0 in an appropriate
bundle chart is given by a restriction of the classical Cauchy-Riemann operator of
the complex bundle (u∗

0TQ,J0(u0)),

dσ 0(0) : Eu → F, η̂ �→ 1
2

(∇η̂ + J0(u0) ◦ ∇η̂ ◦ i) = DJ0(u0)η̂.

Indeed, this operator differs from the classical Cauchy-Riemann operator DJ0(u0) :
X → F as in [15, Rmk.C.1.2] only by the domain Eu0 being a subspace of X :=
W 3,2(S2, u∗

0TQ).

3.7 Transversality at the Boundary

The last missing ingredient for the proof of Gromov’s nonsqueezing Theorem 1.2
in Sect. 2.5 is to show that the unique J0-holomorphic curve is cut out transversely.

Remark 3.16 The following proof is a first instance of the general principle “clas-
sical transversality implies polyfold transversality”. The core difference between
the two notions is that, classically, one usually proves surjectivity of a linearized
Cauchy-Riemann operator D : X → F on a tangent space X = Tu0X to a space
X of all maps (in a given homology class, etc.). In our case (ignoring the homology
class and point constraint u(z0) = p0), this total space would be X = W 3,2(S2,Q)).
This space still carries the action of a group of reparameterizations. In our case a
group Aut of automorphisms of S2 acts on X , and preserves the Cauchy-Riemann
operator, so that the tangent space of its orbit lies in the kernel, Tu0{u0 ◦ ϕ |ϕ ∈
Aut} ⊂ ker D.

In contrast, the polyfold setup works with the quotient space B = X /Aut whose
tangent space T[u0]B is represented by a subspace Eu0 ⊂ X = W 3,2(S2, u∗

0TQ).
So, the main challenge in deducing surjectivity of the linearized polyfold section
D[u0]σ = D|Eu0

from surjectivity of the classical Cauchy-Riemann operator D is
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in showing that this quotient construction results in a splitting of the total space
X = Eu0 +A with a complement A ⊂ ker D that represents the infinitesimal action
of reparameterizations.

Theorem 3.17 σ is transverse to the zero section at t = 0.

Proof Since u0 is the only solution for t = 0 (see Lemma 2.2), for checking
transversality of σ at the boundary t = 0 it suffices to consider the linearization
of σ at (0, u0) and show that it is surjective. For this it is sufficient to show
that the linearization of σ0 := σ(0, ·) is surjective. In Sect. 3.6 we computed
this linearization Du0σ0 in a local chart centered at u0 ∈ B to be the restriction
dσ 0(0) = DJ0(u0)|Eu0

: Eu0 → F of the classical Cauchy-Riemann operator

DJ0(u0) : X → F to the subspace Eu0 ⊂ X = W 3,2(S2, u∗
0TQ) given by (12).

Its codomain F is defined in (13). We will first show that this classical operator is
surjective; see also [20, Lemma 5.5].

Recall from Sect. 2.2 that u0 : S2 → Q = CP
1 × T , z �→ (z,m0) is the

product of the identifying map S2 ∼= CP
1 and a constant map to the torus. Thus

the complex structure along u0 splits J0(u0) = J
CP

1 ⊕ JT (m0) into the standard
complex structure J

CP
1 on TCP1 ∼= id∗TCP1 and the constant complex structure

JT (m0) = Jst on Tm0T = R
2n−2. Thus we have a natural splitting of complex

vector bundles

u∗
0(TQ,J0) = (TCP1, J

CP
1)⊕ E(n−1)

0 ,

where E(n−1)
0 is the trivial complex bundle of rank n − 1 over S2 with fibers

(R2n−2, Jst). The domain of the Cauchy-Riemann operator thus splits into

X = W 3,2
(
S2, u∗

0T
(
CP

1 × T
))

= W 3,2(S2,TCP1)︸ ︷︷ ︸
=:X

CP1

×W 3,2(S2, E
(n−1)
0 )

︸ ︷︷ ︸
=:XT

,

and, analogously, the codomain splits F = F
CP

1 × FT into the W 2,2-closures of

smooth complex antilinear 1-forms on S2 with values in TCP1 resp. E(n−1)
0 . This

shows that the classical Cauchy-Riemann operator splits

DJ0(u0) = DJ
CP1 ⊕ DJst : X = X

CP
1 ×XT → F = F

CP
1 × FT

into the classical Cauchy-Riemann operator DJ
CP1 : X

CP
1 → F

CP
1 of the complex

line bundle (TCP1, J
CP

1) over CP1 ∼= S2 and the Cauchy-Riemann operator DJst :
XT → FT of the trivial bundle E(n−1)

0 over S2. The latter splits further DJst =
Di ⊕ . . . ⊕ Di into n − 1 copies of the Cauchy-Riemann operator Di of the trivial
complex line bundle E(1)0 = C × S2 → S2. These complex line bundles satisfy

c1(TCP1) + 2χ(S2) = 2 + 2 · 2 > 0 resp. c1(E
(1)
0 ) + 2χ(S2) = 0 + 2 · 2 >

0, so the Riemann-Roch Theorem (e.g. [15, Thm.C.1.10.(iii)]) guarantees that the
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corresponding Cauchy-Riemann operators are surjective. This proves surjectivity of
the product DJ0(u0) of these surjective operators arising from complex line bundles.

Towards proving surjectivity of the restriction dσ 0(0) = DJ0(u0)|Eu0
: Eu0 →

F , note the above surjectivity means DJ0(u0)(X) = F . If we can now show that
X = Eu0 + V can be written as the sum of Eu0 and a subspace of the kernel
V ⊂ ker DJ0(u0), then it follows that DJ0(u0)(Eu0) = DJ0(u0)(Eu0 + V ) = F , so the
restriction dσ 0(0) = DJ0(u0)|Eu0

is surjective as well. To find this subspace V note
that our choice of transverse hypersurfaces in Remark 3.8 was made such that the
vector space Eu0 defined in (12) splits as Eu0 = E

CP
1 × ET , where

E
CP

1 = {η ∈ X
CP

1 | η(zi) = 0 for i = 0, 1, 2}, ET = {η ∈ XT | η(z0) = 0}.

So we can construct V ⊂ X as product V := V
CP

1 × VT of subspaces satisfying

(a) X
CP

1 = E
CP

1 + V
CP

1 and DJ
CP1 (VCP1) = 0,

(b) XT = ET + VT and DJst(VT ) = 0.

To meet these requirements, we choose the subspaces of holomorphic sections

V
CP

1 := TidAut(S2) and VT := {ηT : S2 → Tm0T constant}.

With this choice it is easy to verify (b): Every η ∈ XT is the sum of the constant
vector field taking the value η(z0) and the vector field η(·)−η(z0) ∈ ET . Moreover,
DJst(VT ) = 0 holds since all the elements of VT are constant.

To verify (a), first recall that Aut(S2) is the group of biholomorphisms S2 →
CP

1, i.e. solutions ψ : S2 → CP
1 of the nonlinear Cauchy-Riemann equation

∂J
CP1ψ = 0. So the tangent space TidAut(S2) to this finite dimensional family

of holomorphic maps at the identity map is a subspace of the kernel of the
linearized Cauchy-Riemann operator ker DJ

CP1 ⊂ X
CP

1 . In particular, V
CP

1 =
TidAut(S2) is a subspace of the space of smooth sections C∞(S2,TCP1) ⊂ X

CP
1 =

W 3,2(S2,TCP1) since these tangent vectors are obtained as derivatives of paths of
maps in Aut(S2),

TidAut(S2) = { d
dt

∣∣
t=0γ (t)

∣∣ γ : (−ε, ε)→ Aut(S2) with γ (0) = id
}
.

These derivatives take values d
dt

∣∣
t=0γ (t)(z) ∈ Tγ (0)(z)CP1 = TzCP1 at z ∈ S2.

So, strictly speaking, they are sections of the pullback bundle id∗TCP1 under the

identification id : S2
∼=→ CP

1. More concretely, the automorphisms of S2 = C∪{∞}
are of the form ∞ = z �→ az+b

cz+d and ∞ �→ a
c

with a, b, c, d ∈ C such that
ad−bc = 0. Thus, each γ : (−ε, ε)→ Aut(S2) is given by differentiable functions
a, b, c, d : (−ε, ε) → C that satisfy a(0) = 1 = d(0), b(0) = 0 = c(0) and
a(t)d(t)−b(t)c(t) = 0 for all t . We can compute their derivative at any z ∈ S2\{∞},
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d

dt

∣∣∣∣
t=0
γ (t)(z) = d

dt

∣∣∣∣
t=0

a(t)z+ b(t)
c(t)z+ d(t) = ȧ(0)z+ ḃ(0)

0z+ 1
− (1z+ 0)(ċ(0)z+ ḋ(0))

(0z+ 1)2

= zȧ(0)+ ḃ(0)− z2ċ(0)− zḋ(0).

Conversely, any choice of numbers A,B,C,D ∈ C induces a tuple of functions
(−ε, ε) → C as above, given by a(t) = 1 + tA, b(t) = tB, c(t) = tC, d(t) =
1 + tD. These define a section26 ηV = d

dt

∣∣
t=0γ (t) : S2 → TS2 in X

CP
1 , which on

S2 \ {∞} � C is of the form27

ηV (z) = z(A−D)+ B − z2C ∈ C ∼= TzCP
1. (19)

Now, to prove (a), given any η ∈ X
CP

1 , we need to find ηE ∈ E
CP

1 and ηV ∈ V
CP

1

with η = ηE + ηV . Since ηE needs to satisfy ηE(zi) = 0 for i = 0, 1, 2, we need
ηV to agree with η on all marked points. Without loss of generality, we can assume
that z0 = 0, and by Remark 3.8 we are free to choose the points z1, z2 ∈ S2 as we
like. We choose z1 := 1 and z2 := −1. Then, given η ∈ X

CP
1 the requirements

ηV (zi) = η(zi) translate by (19) into

B = ηV (0) = η(0),

A+ B − C −D = ηV (1) = η(1),

−A+ B − C +D = ηV (−1) = η(−1).

This system of 3 equations for 4 variables can be solved by choosing D = 0,

A = η(1)−η(−1)
2 , B = η(0), C = η(0)− η(1)+η(−1)

2 , D = 0.

As explained above, this choice defines a vector field ηV ∈ TidAut(S2) = V
CP

1 on
S2, and using (19) we ensured that it has the desired values ηV (zi) = η(zi). Now
ηE := η− ηV satisfies ηE(zi) = 0 for i = 0, 1, 2, and hence we have η = ηE + ηV
with ηE ∈ E

CP
1 . This finishes the proof of (a) and thus proves this theorem. ��

Remark 3.18 If M1 = ∅, then σ is transverse to the zero section at t = 1. The
statement that the linearization is surjective for all u ∈ M1 is then vacuously true.

26Since a(t)d(t) − b(t)c(t) = 1 is an open condition and satisfied at t = 0, by continuity it is
satisfied for all small enough t .
27This computation uses the chart CP1 \ {∞} ∼= C. To compute the value of ηV at ∞ ∈ CP

1, we
would have to consider a chart near ∞. This is not needed here if we just avoid putting a marked
point at ∞.
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Appendix 1: The Monotonicity Lemma
for Pseudoholomorphic Maps

The purpose of this appendix is to give a detailed proof of the monotonicity lemma
for Jst-holomorphic maps to R

2n that was used in Sect. 2.3, which avoids the
use of special properties of holomorphic maps such as their local representation.
Other proofs can be found in the literature; e.g. [20, Thm.5.2.1]. We also use the
opportunity to establish the result in maximal generality—for maps of regularity
C1, and with (R2n, Jst) generalized to a complex Hilbert space as follows.

Definition A.1 A complex Hilbert space (V , J ) consists of a Hilbert space V with
inner product 〈·, ·〉 and a compatible complex structure J , i.e. an endomorphism
J : V → V with J 2 = −idV that preserves the inner product. The associated
symplectic structure ω : V × V → R is ω(v1, v2) = 〈Jv1, v2〉.

A pseudoholomorphic map v : (S, j)→ (V , J ) consists of a compact Riemann
surface (S, j) with (possibly empty) boundary ∂S and a C1-map28 v : S → V

satisfying the Cauchy-Riemann equation dv ◦ j = J ◦ dv.

Lemma A.2 Consider a nonconstant29 (j, J )-holomorphic map v : S → V and
an open ball B̊R(p) := {q ∈ V | ‖q − p‖ < R} centered at a point p ∈ v(S) in
the image, of radius R > 0 such that ‖v(z) − p‖ ≥ R for all z ∈ ∂S. Then the
symplectic area of v within the ball is at least the area of the flat disk of radius R,
that is

∫

v−1(B̊R(p))

v∗ω ≥ πR2.

Proof We begin by rewriting the 2-form v∗ω on S in local holomorphic coordinates
s + it ∈ C for (S, j) � (C, i) as

v∗ω = ω(∂sv, ∂tv) ds ∧ dt

= 1
2

(‖∂sv‖2 + ‖∂tv‖2) ds ∧ dt (20)

= 1
2

〈(
∂sv ds + ∂tv dt

) ∧ (
∂sv dt − ∂tv ds

)〉 = 1
2 〈dv ∧ ∗dv〉 .

Here the Cauchy-Riemann equation ∂sv + J∂tv = 0 in local coordinates together
with compatibility of ω and J with the inner product implies

ω(∂sv, ∂tv) = 〈J∂sv, ∂tv〉 = 〈−J 2∂tv, ∂tv〉 = ‖∂tv‖2 = ‖∂sv‖2.

28If V is finite dimensional, then v is automatically smooth by elliptic regularity.
29More precisely, we assume that v is not constant on any connected component of the domain.
This excludes the pathological case of v ≡ p on one connected component and on the other
components covering just a small symplectic area in V \ BR(p).
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The final result 1
2 〈dv ∧ ∗dv〉 is a well defined global expression (i.e. independent

of coordinates) that uses the Hodge operator ∗ : TS → TS induced by the complex
structure j . In local holomorphic coordinates the Hodge operator is given by ∗ds =
dt and ∗dt = −ds. Here and below the notation 〈α ∧ β〉 for differential forms with
values in V denotes the wedge product ∧ on the level of differential forms, with two
values in V being multiplied via the inner product 〈·, ·〉.

The second expression for v∗ω in (20) shows that the area A(r) :=∫
v−1(B̊r (p))

v∗ω is non-negative and grows monotone with r , since it integrates

a non-negative multiple of the area form on S over domains v−1(B̊r (p)) that grow
with r . Classical monotonicity proofs now argue that the ratio a(r) := r−2A(r)

as function30 of r ∈ (0, R] satisfies d
dr a ≥ 0 and limr→0 a(r) ≥ π , which

implies the claim a(R) ≥ π . We will follow the same line of argument but avoid
differentiability concerns by establishing a uniform difference estimate

A(r + ε)− A(r) ≥ 2ε
r+εA(r) for all 0 < r < R, 0 < ε < R − r. (21)

Proof of Difference Estimate To prove (21), we simplify notation by assuming
without loss of generality that p = 0. This can be achieved by applying a global
shift which does not affect the area. We can estimate the area of v in B̊r (0) by

A(r) = ∫
v−1(B̊r (0))

v∗ω ≤ 1
2

∫
S
fε(‖v‖)〈dv ∧ ∗dv〉, (22)

where fε : [0,∞) → [0, 1] is the continuous, piecewise linear cutoff function with
fε|[0,r] ≡ 1, fε|[r+ε,∞] ≡ 0, and f ′

ε|(r,r−ε) = −ε−1. On the other hand, integration
by parts yields

∫
S
fε(‖v‖)〈dv ∧ ∗dv〉 = ∫

∂S
fε(‖v‖)〈v, ∗dv〉 − ∫

S
f ′
ε(‖v‖) d‖v‖ ∧ 〈v, ∗dv〉

≤ − ∫
S
f ′
ε(‖v‖) 1

2‖v‖〈dv ∧ ∗dv〉
≤ r+ε

ε

∫
v−1(B̊r+ε(0))\v−1(B̊r (0))

1
2 〈dv ∧ ∗dv〉

= r+ε
ε

(
A(r + ε)− A(r)). (23)

Here the first step uses a weak version of the Laplace equation d ∗ dv = 0 which
follows from the Cauchy-Riemann equation ∂J v = 0. If v is twice differentiable
then this can be checked in local coordinates,

∗d ∗ dv = −∂2
s v − ∂2

t v = (−∂s + J∂t )(∂sv + J∂tv) = (∂J )∗∂J v = 0.

30Monotonicity of A(r) implies that this function is differentiable almost everywhere and has at
most countably many jump discontinuities. Then the same holds for the ratio function a(r) since
r �→ r−2 is smooth on the domain (0, R].
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Otherwise we first consider smooth functions w : S → V with w|∂S = 0 and
calculate using integration by parts

∫

S

〈dw∧∗dv〉 =
∫

S

〈d∗dw, v〉 =
∫

S

〈(∂J )∗∂Jw, v〉 dvol =
∫

S

〈∂Jw, ∂J v〉 dvol = 0.

Then we note that this identity extends by continuity to C1 functions such as w =
fε(‖v‖)v, which vanishes on ∂S since ‖v(∂S)‖ takes values in [R,∞), where fε
vanishes since r + ε < R. This yields the first step in (23), with the integral over ∂S
vanishing.

The second step in (23) can be checked in local holomorphic coordinates and
using (20) again,

d‖v‖ ∧ 〈v, ∗dv〉 = 1
2‖v‖

( 〈v, ∂sv〉 ds + 〈v, ∂tv〉 dt
) ∧ ( 〈v, ∂sv〉 dt − 〈v, ∂tv〉 ds

)

= 1
2‖v‖

( 〈v, ∂sv〉2 + 〈v, ∂tv〉2 )ds ∧ dt

≥ 1
2‖v‖

(‖v‖2‖∂sv‖2 + ‖v‖2‖∂tv‖2)ds ∧ dt = ‖v‖
2 〈dv ∧ ∗dv〉.

The third step in (23) follows from f ′
ε(‖v‖) ≡ 0 unless r + ε ≥ ‖v‖ ≥ r , and

f ′
ε = ε−1 where it doesn’t vanish. Now combining (22) and (23) proves (21),

r+ε
ε

(
A(r + ε)− A(r)) ≥ ∫

S
fε(‖v‖)〈dv ∧ ∗dv〉 ≥ 2A(r).

Monotone Growth of Ratio Function In terms of the ratio function a(r) =
r−2A(r), the difference estimate (21) implies

(r + ε)2(a(r + ε)− a(r)) = A(r + ε)− (r+ε)2
r2 A(r)

≥ A(r)+ 2ε
r+εA(r)− (r+ε)2

r2 A(r)

= r3+εr2+2εr2−r3−3εr2−3ε2r−ε3

(r+ε)r2 A(r) = −ε2 3r+ε
r+ε a(r).

Now for fixed 0 < r0 < r1 < R we have a(r+ε)−a(r) ≥ −Cε2 for all r ∈ [r0, r1]
and 0 < ε < R − r1, with a non-negative constant

C := max
r∈[r0,r1],ε∈(0,R−r1)

3r + ε
(r + ε)3 a(r) ≤ 3r1 + (R − r1)

r05

∫

S

u∗ω.

Then summation with ε = r1−r0
N

(with N sufficiently large for ε < R − r1) yields

a(r1)− a(r0) = ∑N−1
n=0 a(r0 + nε + ε)− a(r0 + nε) ≥ −NC( r1−r0

N

)2
.

Taking N → ∞ this implies a(r1) ≥ a(r0) for any 0 < r0 < r1 < R. Next, taking
the limit r1 → R for fixed r0 > 0 yields
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A(R) ≥ lim
r1→R

A(r1) ≥ lim
r1→R

r2
1a(r1) ≥ R2a(r0). (24)

So to prove the claim A(R) ≥ πR2 it remains to establish limr0→0 a(r0) ≥ π .

Centering the Ball at a Regular Point Before studying the r → 0 limit, we claim
that it suffices to prove the area bound A(R) ≥ πR2 after replacing p = v(z) with
a sequence pn = v(zn) → p of images of regular points S \ ∂S � zn → z, regular
just meaning that they are not critical points of v. Indeed, given such a sequence and
assuming the area bound holds on all balls B̊R(pn), we have

A(R) =
∫

v−1(B̊R(p))

v∗ω ≥
∫

v−1(B̊R−‖pn−p‖(pn))
v∗ω ≥ π(R − ‖pn − p‖)2

since B̊R−‖pn−p‖(pn) ⊂ B̊R(p). This proves A(R) ≥ πR2 in the limit ‖pn −
p‖ → 0. Moreover, such a sequence of regular points exists since the critical points
of v are isolated in S. For dimV < ∞ this is proven in [15, Lemma 2.4.1]. If
dimV = ∞ first note that by the Cauchy-Riemann equation in local coordinates,
J∂sv = ∂tv, any z ∈ S is either regular (i.e. dzv is injective) or critical (i.e. dzv =
0). Next, choose a complex splitting (V , J ) � (C, i) ⊕ (V ′, J ′) in which the first
component prC◦v is nonconstant (e.g. by splitting off im dzv ∼= C at a regular point).
Then classical complex analysis asserts that the critical points of the nonconstant
holomorphic map prC ◦ v : S → C are isolated, so in particular the critical points
of v are isolated.

Lower Bound for Ratio as r → 0 Once p = v(z0) is the image of a regular point
z0 ∈ S \ ∂S of v, we choose a neighbourhood U0 ⊂ S of z0 with local holomorphic
coordinates U0 ∼= Dδ := {(s, t) ∈ R

2 | s2 + t2 < δ2} for some δ > 0, so that
z0 ∼= (0, 0) and v|U0 is given by v0(s, t) = p+ sX0 + tJX0 + h(s, t) with a vector
X0 = ∂sv0(0, 0) ∈ V of length ‖X0‖ = 1 and an error term h with h(0, 0) = 0
and dh(0, 0) = 0. Then we can bound the area A(r) ≥ ∫

Dδ
χ
( ‖v0−p‖

r

)
v∗

0ω by an
integral of the characteristic function χ with χ |[0,1] ≡ 1, χ |(1,∞) ≡ 0. Moreover,
the limit limr→0 a(r) exists, since we already proved monotonicity of a and it is
bounded below by 0. So to prove limr→0 a(r) ≥ π it suffices to find a sequence
rn → 0 with limn→∞ r−2

n

∫
Drn
χ
( ‖v0−p‖

rn

)
v∗

0ω = π . To construct this sequence of
radii we use the continuous differentiability of h to choose 0 < rn ≤ δ for each
n ∈ N so that ‖dh(s, t)‖ ≤ 1

n
and ‖h(s, t)‖ ≤ 1

n
|(s, t)| for |(s, t)| ≤ rn. Then on

Drn we can estimate

∣∣ω(∂sv, ∂tv)− 1
∣∣ = ∣∣ω

(
X0 + ∂sh , JX0 + ∂th

) − ω(X0, JX0)
∣∣

= ∣∣ω(X0, ∂th)+ ω(∂sh,X0)+ ω(∂sh, ∂th)
∣∣

≤ 1
n

+ 1
n

+ ( 1
n
)2 ≤ 3

n
.

To control the distance ‖v(s, t)− p‖ we use 2xy ≤ 1
n
x2 + ny2 to obtain
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∣∣‖v(s, t)− p‖2 − |(s, t)|2∣∣ = ∥∥sX0 + tJX0 + h(s, t)∥∥2 − (s2 + t2)
≤ 2|s||〈X0, h(s, t)〉| + 2|t ||〈JX0, h(s, t)〉| + ‖h(s, t)‖2

≤ 1
n
(s2 + t2)+ n(|〈X0, h(s, t)〉|2 + |〈JX0, h(s, t)〉|2

) + ‖h(s, t)‖2 ≤ 4
n
|(s, t)|2.

This holds for (s, t) ∈ Drn and implies χ
( ‖v(s,t)−p‖

rn

) = 1 for |(s, t)| ≤ rn√
1+4n−1

=:
ρn. Now writing π = r−2

n

∫
Drn

ds dt , from the above we obtain

∣∣∣r−2
n

∫
Drn
χ
( ‖v−p‖

rn

)
v∗ω − π

∣∣∣

= r−2
n

∣∣∣
∫
Drn

(
χ
( ‖v−p‖

rn

)
ω(∂sv, ∂tv) − 1

)
ds dt

∣∣∣

≤ r−2
n

(∫
Dρn

∣∣ω(∂sv, ∂tv)− 1
∣∣ + ∫

Drn\Dρn
∣∣χ

( ‖v−p‖
rn

)
ω(∂sv, ∂tv)− 1

∣∣
)

≤ r−2
n

(∫
Dρn

4
n

ds dt + ∫
Drn\Dρn 1 ds dt

)

= r−2
n

(
4
n
πρ2
n + πr2

n − πρ2
n

)
= 4πn−1

1−4n−1 + π − π
1−4n−1 −→

n→∞ 0.

Together with (24) this finishes the proof,

A(R) ≥ R2 limn→∞ a(rn) ≥ R2 r−2
n

∫
Drn
χ
( ‖v−p‖

rn

)
v∗ω −→

n→∞ R2π. ��
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Infinite Staircases for Hirzebruch
Surfaces

Maria Bertozzi, Tara S. Holm, Emily Maw, Dusa McDuff,
Grace T. Mwakyoma, Ana Rita Pires, and Morgan Weiler

1 Introduction

1.1 Overview of Results

Given a four-dimensional symplectic manifold (X, ω), we define its ellipsoid
embedding function to be
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cX(z) := inf
{
λ

∣∣∣ E(1, z)
s
↪→ λX

}
,

where z ≥ 1 is a real variable, λX := (X, λω) is the symplectic scaling of X, an
ellipsoid E(c, d) ⊂ C2 is the set

E(c, d) =
{
(ζ1, ζ2) ∈ C2

∣∣ π
( |ζ1|2
c

+ |ζ2|2
d

)
< 1

}
,

and we writeE
s
↪→ λX if there is a symplectic embedding ofE into λX. One simple

property of this function is that it is bounded below by the volume curve, because
symplectomorphisms preserve volume:

cX(z) ≥
√

z

vol(X)
,

where vol(X) is the appropriately normalized volume ofX. Similarly, the invariance
of symplectomorphisms under scaling ω �→ λω of the symplectic form implies the
following scaling property

cX(λz) ≤ λcX(z), z ≥ 1, λ ≥ 1; (1.1.1)

indeed, if E(1, z)
s
↪→ X then E(1, λz) ⊂ λ(E(1, z)) s

↪→ λX.
The first ellipsoid embedding function to be computed was that of a ball B4,

by McDuff and Schlenk in [17]. They describe the following striking behavior: on
the interval [1, τ 4] the function is piecewise linear, alternating between horizontal
line segments and line segments that extend to lines passing through the origin
in increasingly smaller intervals, creating what looks like an infinite staircase

accumulating at τ 4, where τ =
(

1 + √
5
)
/2 is the golden ratio. Similar behavior

has been described for other targets X: the symmetric polydisk B2(1) × B2(1) in
[8], certain convex toric domains in [7], and certain infinite families of polydisks
B2(1) × B2(β) with irrational ratios β in [19]. For Delzant toric domains, [7]
establishes that the open manifold has the same embedding function as its closure;
for example the functions for the 4-ball and the projective plane CP 2 are the same.
Further, for all convex toric domainsX of finite type, the capacity function exhibits
packing stability: it coincides with the volume function for sufficiently large z (cf.
[7, Prop. 2.1]). Moreover, the function z �→ cX(z) is piecewise linear when not
identically equal to the volume constraint curve, and when its graph has infinitely
many nonsmooth points lying above the volume curve, we say that cX has an infinite
staircase: see Definition 24.

For 0 ≤ b < 1, we denote by

Hb := CP 2
1 #CP

2
b
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the one point blow up of CP 2, where the line has symplectic area 1 and the
exceptional divisor has symplectic area b. In light of [7, 17], we know that the
ellipsoid embedding functions of CP 2 and of H1/3 have infinite staircases. In
this note we report on the search for infinite staircases in the ellipsoid embedding
functions of the Hirzebruch surfaces in Hb.

By Cristofaro-Gardiner et al. [7, Theorem 1.11], which applies because the
moment polytope of Hb has rational conormals, we know that if cHb has an infinite
staircase, then its accumulation point is at the point z = acc(b), the unique solution
> 1 of the following quadratic equation involving b:

z2 −
(
(3 − b)2
1 − b2 − 2

)

z+ 1 = 0 (1.1.2)

Furthermore, if an infinite staircase exists, then at z = acc(b) the ellipsoid
embedding function must coincide with the volume constraint curve, that is we must
have

cHb(acc(b)) =
√

acc(b)

1 − b2
=: Vb(acc(b)). (1.1.3)

As shown in Fig. 1, the function b �→ acc(b) decreases for b ∈ [0, 1/3), with
minimum value acc(1/3) = 3+2

√
2, and then increases. The nature of this function

leads to an interesting and as yet not well understood interplay between the z-
coordinates that parametrize the domain1 and the b-coordinates parametrizing the
target. The point b = 1/3 is the only known nonzero rational number such that Hb
has a staircase, and according to [7, Conjecture 1.20] it is expected to be the only
such value. In this paper, we focus on irrational values of b.

The capacity function cHb may be described either in terms of exceptional
divisors E as recounted in Sect. 2 or in terms of ECH capacities as laid out in Sect. 4.
Both approaches have added to our understanding in this project. ECH capacities
gave us a way to understand the broad outlines of the problem and to discover
interesting phenomena. Exceptional divisors are then well-adapted to establishing
the intricate details; they also yield intriguing numerical data. The most relevant
exceptional classes have “centers” at rational numbers that, in the case of a staircase,
form the first coordinate of the corners of the steps. We now lay out two results that
we obtained early on. For notation, see Sect. 2. We say that a staircase ascends (resp.
descends) if the steps occur at increasing (resp. decreasing) values of the domain
parameter z.

In the first result, we identify intervals of shape parameters b for whichHb cannot
admit an infinite staircase. Exceptional divisors B give rise to obstruction functions
μb,B(z) that give lower bounds

1Our convention is that a general point in the domain is denoted by the letter z while special points
(such as step corners, or break points of constraints) are denoted a.
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5.5 6 6.5 7

2.5

3

3.5

z

y

Fig. 1 This curve indicates the location of the accumulation point (z, y) = (
acc(b), Vb(acc(b))

)

for 0 ≤ b < 1. The blue point with b = 0 is at (τ 4, τ 2) and is the accumulation point for the
Fibonacci stairs. The green point at (3 + 2

√
2, 1/3) is the accumulation point for the stairs in

H1/3, and is the minimum of the function b �→ acc(b). The black point at (6, 5/2) corresponds to
b = 1/5 and is the location where Vb(acc(b)) takes its minimum

cHb(z) ≥ μB,b(z).

For a fixed class B, then, we can let b vary and determine intervals of b for which

μB,b(acc(b)) > Vb(acc(b)),

violating (1.1.3) and thereby blocking the existence of a staircase for those b
parameters.

Theorem 1 For each n ≥ 0, the exceptional divisor in class

BUn := (n+ 3)L− (n+ 2)E0 −
2n+6∑

i=1

Ei

blocks the existence of a staircase for b in the interval

1/3 < βBUn ,�
:= (2n2 + 6n+ 3)− √

σn

2n2 + 6n+ 2
< b <

(n+ 3)
(
3n+ 7 + √

σn
)

5n2 + 30n+ 44
=: βBUn ,u

< 1,

where σn := (2n + 1)(2n + 5). Correspondingly, there is no staircase with
accumulation point in the interval
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αBUn ,�
:= σn + (2n+ 3)

√
σn

2(2n+ 1)
< z < 6 + σn + (2n+ 3)

√
σn

2(2n+ 5)
=: αBUn ,u

,

where αBUn ,�
and αBUn ,u

have continued fraction expansions

αBUn ,�
= [{2n+ 5, 2n+ 1}∞], αBUn ,u

= [2n+ 7; {2n+ 5, 2n+ 1}∞]

For a proof see the end of Sect. 3.2. We will say that an interval such as(
βBUn ,�

, βBUn ,u
)

that is blocked by an exceptional divisor B is a B-blocked b-
interval, and denote it by JB. The corresponding interval acc(JB) on the z-axis
is denoted IB = (αB,�, αB,u), and, if JB ⊂ (1/3, 1) (resp. if JB ⊂ [0, 1/3)), consists
of points that cannot be the accumulation point of any staircase for b > 1/3 (resp.
b < 1/3). The class B itself is called a blocking class.

In Theorem 1, the blocked z-intervals (αBUn ,�
, αBUn ,u

) have ‘centers’ 2n at
distance 2 apart, while their lengths increase with limit 2. Correspondingly most
values of b close to 1 are blocked; see Fig. 4. Further, the above classes BUn are
center-blocking in the sense of Definition 37, which implies by Proposition 42
that they also block the existence of a descending (resp. ascending) staircase that
accumulates at the lower endpoint αBUn ,�

(resp. upper endpoint αBUn ,u
) of IB.

In our second main result, proved in Sect. 3.3, we find a new infinite family of
shape parameters for which the embedding capacity function does include an infinite
staircase.

Theorem 2 There is a decreasing sequence of parameter values bn := bEu,n,∞
in the interval (1/5, 1/3), for n ≥ 0, with limit 1/5, so that each Hbn admits a
descending staircase SEu,n = (

EEu,n,k
)
k≥0 whose steps have exterior corners at the

points z = aEu,n,k with continued fraction expansions

aEu,n,k = [5; 1, 2n+ 6, {2n+ 5, 2n+ 1}k, 2n+ 4], k ≥ 0.

The accumulation point acc(bEu,n,∞) is

aEu,n,∞ = [5; 1, 2n+ 6, {2n+ 5, 2n+ 1}∞].

These accumulation points form an increasing sequence that converges to 6 as n→
∞.

We found this family of staircases by trial and error, using a combination of
the computer programs described in Sect. 5 and the algebro-geometric methods
described in Remark 19.

Remark 3

(i) Note that, in contrast to the z-coordinates, the continued fraction expansions of
the shape parameters bEu,n,∞ seem to have no special properties. On the other
hand, because the value σn that occurs in the formula for bn is so closely related
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to the iterated pair 2n+ 5, 2n+ 1 in the continued fraction of the accumulation
points aEu,n,∞, one can show that the aEu,n,∞ are also numbers in Q + Q

√
σn.

From this point of view, the fact that the shape parameters bEu,n,∞ also involve
the surd

√
σn is rather mysterious, but this follows because the new staircases

accumulate at the end points of blocked z-intervals; see Corollary 45.
(ii) The staircases in Theorem 2 actually consist of two intertwining sequences

of classes that are fully described in Theorem 58 below. In fact, all the new
staircases that we find in this paper have this form. In Fig. 2, one can see the
steps with centers [5; 1, 5, 1, 4] = 199/34 ≈ 5.853 and [5; 1, 5, 1, 5, 2] =
521/89 ≈ 5.8539, while in Fig. 3, one can see the steps with centers [7; 5, 2] =
79/11 ≈ 7.1818 and [7; 5, 1, 4] = 208/29 ≈ 7.172. The small step with center
just > 7.190 is not part of the staircase. ♦

Rather surprisingly, the two theorems above are related both numerically (the
same square roots and continued fractions occur) and geometrically, in ways that
we explore in Sect. 2.4 and Sect. 3.1. In general, we make the following conjecture:

Conjecture 4 For each center-blocking class B with corresponding blocked b-
interval JB = (βB,�, βB,u), bothHβB,� andHβB,u admit staircases SβB,� ,SβB,u where
SβB,� ascends and SβB,u descends if J ⊂ (1/3, 1) and the reverse holds true if
J ⊂ [0, 1/3). Further, if b is irrational and Hb has a staircase, then b is the endpoint
of some (center-)blocked b-interval JB.

Figures 2 and 3 illustrate Conjecture 4 for the center-blocking class BU0 of
Theorem 1.

As evidence for this conjecture, we prove the following theorem in Sect. 3.3.

Theorem 5 For each n ≥ 1 there is a center-blocking class BEn blocking b-values
JBEn

⊂ (0, 1/3) such that the accumulation point aEu,n,∞ of the decreasing staircase

SEu,n in Theorem 2 is the upper endpoint αBEn ,u
of the corresponding z-interval IBEn .

It turns out that this second set of center-blocking classes (BEn )n≥1 is related to
the first set (BUn )n≥0 by a symmetry (described in Corollary 60) that arises from the
properties of the recursive sequence 1, 6, 35, 204, . . . . In fact, in Sect. 3.1 we define
three families of center-blocking classes, the two (BUn ), (B

E
n ) that are mentioned

above, together with one more called (BLn ), that are all related by symmetries. We
also describe the six associated families of staircases, with full proofs of our claims
given in Sects. 3.2–3.4. As explained in Remark 61, these symmetries generate yet
more staircases, that will be explored more fully in our next paper.

As we show in Sect. 3.1, these new staircases are variants of the Fibonacci
staircase for the ball, and belong to a class of staircases (called pre-staircases
and defined in Definition 46) made up of exceptional classes whose entries are
determined by the centers of the steps together with a linear relation. As we show in
Theorem 52, the coefficients of this relation are in turn determined by the parameters
of the associated center-blocking class. Thus the structure of these staircases is very
different from that of the staircase at b = 1/3 (described in Example 35 on p. 76),
which is not associated to any blocking class.
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5.852 5.853 5.854 5.855 5.856
2.6174

2.6176

2.6178

2.6180

2.6182

2.6184

Fig. 2 In blue is the plot of a lower bound for cHb , where b = βBU0 ,�
=

(
3 − √

5
)
/2 >

1/3, which contains the infinite staircase with the same numerics as the n = 0 case of the
family SU�,n (Theorem 56) whose accumulation point has a z-value with continued fraction
[{5, 1}∞]; see Remark 57. The volume constraint Vb is in orange, and the parametrized curve(
acc(b), Vb(acc(b))

)
, which intersects the volume constraint at the accumulation point of SU�,0, is

in green. The obstruction μBU0 ,b
(see (2.1.6)) from BU0 is in brown

Our last main result concerns the point b = 1/5 that has associated accumulation
point acc(1/5) = 6. It is relatively straightforward to show that H1/5 is unob-
structed, that is its capacity and volume functions agree at the point z = acc(b);
see Examples 22, 28 (i). As we remarked above, this is a necessary condition forHb
to admit a staircase; however, as the following result shows, it is not sufficient.

Theorem 6 H1/5 is unobstructed, but does not have a staircase.

We prove this fact in Sect. 4.3, using ECH tools developed in [4].
The fundamental question that concerns us here is that of the structure of the sets

Stair : = {b | Hb has a staircase} ⊂ [0, 1), and

Block : =
⋃{

JB
∣∣ B is a blocking class

} ⊂ [0, 1).

Block is a union of open intervals, and as far as we know it could be dense in
[0, 1). Indeed, Proposition 49 shows that most (if not all) of the classes in the new
staircases are themselves blocking classes. Note also that if Conjecture 4 is true,
then Hb is unobstructed at each end of a center-blocked b-interval (provided these
are irrational), so that each such class determines a single connected component of
Block. It is unknown whether there are other components of Block. Further, Stair is
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7.170 7.175 7.180 7.185 7.190 7.195 7.200

3.448

3.450

3.452

3.454

Fig. 3 In blue is the plot of a lower bound for cHb where b = βBU0 ,u
, which contains the

infinite staircase SUu,0 (Theorem 56) whose accumulation point has a z-value with continued
fraction [7; {5, 1}∞]. The volume constraint Vb is in orange, and the parameterized curve(
acc(b), Vb(acc(b))

)
, which intersects the volume constraint at the accumulation point of SUu,0,

is in green. The obstruction μBU0 ,b
(see (2.1.6)) from the blocking class BU0 is in brown

contained in the closed set [0, 1)�Block, but is not equal to it by Theorem 6. This
result also shows that the subset Stair is not closed, since Theorem 2 shows that 1/5
is the limit point of a sequence in Stair (and also the limit of a sequence of endpoints
of blocked b-intervals by Theorem 5), while 1/5 /∈ Stair by Theorem 6.

We conjecture above that the irrational points in Stair are precisely the union of
the endpoints of the center-blocked intervals in Block, while, by Cristofaro-Gardiner
et al. [7, Conj. 1.20], the only rational points in Stair are believed to be 0 and 1/3.
However, at the moment we cannot say anything more about these sets. There are
many open questions here. For example, are there any blocking classes that are not
center-blocking? Do all staircases (except for the one at b = 1/3) have the special
structure of a pre-staircase? We will explore such questions in more depth in our
forthcoming manuscript.

Remark 7 All the staircases that we mention here are generated by families of
perfect exceptional classes in the sense of Definition 12. Hence, the proof of [6,
Prop.3.6.1] should generalize to show that they all stabilize when we multiply both
domain and target by Ck . ♦
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1.2 Organization of the Paper

In Sect. 2, we first explain how to define the embedding capacity function cHb
from knowledge of exceptional spheres. We then develop the general properties
of exceptional classes, contrasting the notion of a quasi-perfect class (which
is numerically defined) with that of a perfect class (which satisfies an addition
geometric condition); see Definition 12. Proposition 21 shows how to tell when
a class is live, i.e. contributes to the capacity function; while Propositions 26 and 30
formulate our basic staircase recognition criteria. After introducing the notion of
a blocking class in Sect. 2.3, we show in Proposition 42 that suitable knowledge
about the capacity function forces a quasi-perfect blocking class to be perfect.
We also begin to analyse the relation between blocking classes and staircases.
Finally Sect. 2.4 introduces the notion of a pre-staircase (Definition 46), which is a
numerically defined set of classes of special form. The main results are Theorem 51
which gives criteria for a pre-staircase to be an actual staircase, and Theorem 52
which explains how the existence of suitable perfect pre-staircases that converge to
the ends of a potential blocking class forces that class to be a perfect blocking class.

The next section describes the three staircase families in Theorems 54, 56 and 58.
This can be read once the basic definitions are understood. The rest of the section
develops the techniques necessary to prove that these really are staircases. There are
two parts to this proof. The first part (in Sects. 3.2 and 3.3) involves showing that
the staircase classes are quasi-perfect and that the estimates in Theorem 51 hold.
The second part is a proof that the staircase classes are perfect, in other words that
they satisfy the necessary geometric condition (reduction under Cremona moves) to
be true (rather than fake) exceptional classes. Here the proof is greatly eased by the
existence of the symmetries described in Corollary 60 that transform one staircase
into another: see Proposition 86.

Section 4 describes a different (but equivalent) way to compute the capacity
function, this time using capacities coming from embedded contact homology.
These “ECH capacities” are the most efficient way to do certain calculations, as
is shown in the proof in Sect. 4.3 that cHb has no infinite staircase at b = 1/5.
In Sect. 4.2 we also prove Lemma 92, which explains the relationship between the
obstructions from perfect classes and those from ECH capacities. This allowed us to
identify live classes using computer models based on ECH capacities, as explained
in Sect. 5.4.

Finally, Sect. 5 explains the computer programs that we used for our graphical
explorations. In Sect. 5.1 we explain the combinatorics of lattice paths which
allowed us to reduce computation time; our methods should generalize to any
convex toric domain with two sides with rational slopes. After discussing our actual
Mathematica code in Sects. 5.2 and 5.3, in Sect. 5.4 we explain our strategy for
identifying values of b for which cHb has an infinite staircase. We conclude with
plots of cHb which illustrate several of the major phenomena we discuss in this
paper. Remark 19 describes how the computer-aided approach of Sect. 5 interacted
fruitfully with the methods of Sect. 2 in our search for potential staircases.
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2 Embedding Obstructions from Exceptional Spheres

In this section, we explain how to define the embedding capacity function cHb using
exceptional spheres. The first subsection explains the general properties of excep-
tional classes, and the second discusses the properties of quasi-perfect and perfect
classes, and formulates our first staircase recognition criteria (in Propositions 26
and 30). The next subsection explains the properties of blocking classes, while the
last introduces the notion of a pre-staircase and, by combining their properties with
those of blocking classes, gives in Theorem 51 a powerful staircase recognition
criterion and in Theorem 52 a blocking class recognition criterion.

2.1 The Role of Exceptional Spheres

It was shown in [15] that the existence of a symplectic embedding of a rational
ellipsoid E(1, z) into either the projective plane CP 2 or another rational ellipsoid
is equivalent to a particular embedding of balls into CP 2. This result extends
trivially to embeddings of ellipsoids into any blow up of CP 2; with some additional
argument to embeddings into rational convex toric domains (see [3, Theorem 1.6]
and [7, Theorem 1.2]); and into certain other toric domains (see [14]). In our
framework, when z is rational there is a symplectic embedding

E(1, z)
s
↪→ λHb ⇐⇒

n⊔

j=1

B(wj )
s
↪→ λHb ⇐⇒

n⊔

j=1

B(wj )
⊔
B(λb)

s
↪→ B(λ).

(2.1.1)
Here, w(z) = (w1, . . . , wn) is the weight expansion of z ∈ Q defined in (2.1.3)
below. Thus the ellipsoid embedding question converts into a question about
symplectic forms on an (n+ 1)-fold blowup2 of CP 2, a problem that was solved in
the 1990s.

The natural basis for H2
(
CP 2#(n+ 1)CP 2

)
consists of the original generator L

on CP 2, plus the classes of the n + 1 exceptional spheres E0, . . . , En. It is known
that there is a ball embedding as in (2.1.1) if and only if there is a symplectic form
ω on CP 2#(n+ 1)CP 2 satisfying

PD[ω] = λL− λbE0 −
n∑

i=1

wiEi

with canonical class K satisfying

2For discussion of the relationship between ball embeddings and the symplectic blow up, see for
example, [18, Ch.7.1].
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PD(K) = −3L+ E0 +
n∑

i=1

Ei.

We set En+1 to be the set of exceptional classes in H2
(
CP 2#(n+ 1)CP 2

)
. It

consists of those classes A that have square −1, A · K = −1, and that can be
represented by a smoothly embedded, symplectic sphere. Li and Li have shown
that the requirement that a sphere be symplectic is superfluous [12]; thus En+1 is
independent of ω (though it depends on K). An exceptional class

E := (d,m; m) := dL−mE0 −
∑

i≥1

miEi

must satisfy the following Diophantine equations, which correspond to the homo-
logical conditions A2 = −1 and A ·K = −1:

d2 −m2 −
n∑

i=1

m2
i = −1 and 3d −m−

n∑

i=1

mi = 1. (2.1.2)

We call classes that satisfy these two equations (2.1.2) Diophantine classes. As
explained in Sect. 3.4, Diophantine classes are exceptional if and only if they reduce
to the class E1 under repeated Cremona moves.

Li-Liu [13] proved that the symplectic cone of CP 2#(n + 1)CP 2 consists of
classes [ω] such that [ω]2 > 0 and PD([ω]) · E > 0 for all E ∈ En+1 . It follows
that there is a symplectic embedding (2.1.1) if and only if

• the volume of E(1, z) is less than that of λHb, that is z < λ2(1 − b2);
• for each exceptional class E := (d,m; m) ∈ En+1, we have ω(E) > 0, that is
mb + ∑n

i=1mi
wi
λ
< d; or equivalently

λ >

∑n
i=1miwi

d −mb = m · w(z)
d −mb .

Thus, the exceptional classes provide potential obstructions to the desired embed-
dings.

For any exceptional class E = (d,m; m), we may vary z to get an obstruction
function as follows. Any real number z has (possibly infinitely long) weight
expansion w(z) = (w1, w2, . . . ) defined for z > 1 as follows:

• w1 = 1 and wn ≥ wn+1 > 0 for all n,
• if wi > wi+1 = · · · = wn (where we set w0 := z), then

wn+1 =
{
wi+1 if wi+1 + · · · + wn+1 = (n− i + 1)wi+1 < wi,

wi − (n− i)wi+1 otherwise
(2.1.3)
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Thus w(z) starts with %z& copies of 1 (where %z& is the largest integer ≤ z), is finite
for rational z, and satisfies the recursive relation

w(z) =
(

1×%z&, (z− %z&)w( 1

z− %z&
))
,

where we take w
( 1
z−%z&

)
to be empty if z = %z&. If we think of the weight expansion

as an infinitely long sequence w(z) = (w1, w2, . . . ), appending infinitely many
zeros if necessary, then the coordinates of the weight expansion are continuous (but
not differentiable!) functions wi(z) of z.

Example 8 If z = p/q (in lowest terms) and k0 < p/q < k0 + 1 , then

qw(p/q) =
(
q×k0 , (p − k0q)

×k1 , (q − k1(p − k0q))
×k2 , . . . , 1

)
(2.1.4)

where z has continued fraction expansion [k0; k1, k2, . . . ], i.e. the multiplicities
of the entries in w(z) give the continued fraction expansion of z. Notice that all
the entries here are integral and that the last entry is 1. Conversely, the continued
fraction expansion of z determines the (continuous!) linear functions of z = p/q

that give the weight expansion. For example,

w
(35

6

)
=

(
1×5,

5

6
,

1

6

×5)
,

35

6
= [5; 1, 5] = 5 + 1

1 + 1
5

.

We call qw(p/q) the integral weight expansion of p/q = [�0; �1, . . . , �N ]. An
easy inductive argument on the length N shows that the integers p, q found by this
inductive process from a continued fraction [�0; �1, . . . , �N ] are always relatively
prime. For more details, see [17, §1.2], and also Example 13 below. ♦

As in [17, §1.2], it is not hard to check the following identities for the weight
expansion w(z) at z = p/q:

∑

i

wi = z+ 1 − 1

q
,

∑

i

w2
i = p

q
. (2.1.5)

To define the obstruction function z �→ μE,b(z) associated to E, we first pad
(d,m; m) with zeros on the right to make it infinitely long, and then set

μE,b(z) := μ(d,m;m),b(z) := m · w(z)
d −mb . (2.1.6)

The above discussion implies that these obstruction functions, together with the
volume, completely determine the embedding capacity function cHb , namely
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cHb(z) = sup
E∈E

(
μE,b(z), Vb(z)

)
, (2.1.7)

where Vb(z) :=
√

z
1−b2 denotes the volume obstruction.

Remark 9 A key point in our analysis of staircases is the result in [7, Theorem 1.8]
that the geometry of the target Hb determines the accumulation point acc(b) of any
staircase via (1.1.2). This result is valid (and the proof is the same) when the target
X is any blow up of CP2

1 by balls of sizes b1, . . . , bN , provided that we replace 3−b
by 3 − ∑

i bi and 1 − b2 by the volume 1 − ∑
i b

2
i . ♦

Definition 10 An obstruction μE,b is said to be nontrivial at z if μE,b(z) > Vb(z),
and live at z if it is nontrivial and equals the capacity function cHb at z. Further, it is
said to block b if it is nontrivial at the accumulation point acc(b), that is, if

μE,b(acc(b)) > Vb(acc(b)).

We say that Hb is unobstructed at acc(b) (or simply unobstructed) if

cHb(acc(b)) = Vb(acc(b)).

Otherwise, we say that Hb is obstructed or, equivalently, blocked. Further, a b-
interval J is blocked if cHb(acc(b)) > Vb(acc(b)) for all b ∈ J .

Since all functions involved are continuous, the condition that μE,b is nontrivial
at z is continuous in both z and b. Similarly, the condition that μE,b blocks b is an
open condition on b, so that the set

Block := {b ∈ [0, 1) | Hb is blocked} (2.1.8)

is open. Thus the set of b that are unobstructed is closed and contains the set

Stair = {b ∈ [0, 1) | Hb has a staircase}.

Theorem 6 guarantees that Stair is a proper subset of the unobstructed values.
Observe that the condition of being live at (z0, b0) need not be continuous with

respect to either variable z or b since it might happen that two different classes are
live at (z0, b0), one remaining live as z or b increases and the other remaining live
as z or b decreases. If b is kept fixed, there is no known example of this behavior at
an outward corner3 of the capacity function, though it does happen at other corners
provided that these are not on the volume curve.

3I.e. a nonsmooth point where the slope decreases.



60 M. Bertozzi et al.

Remark 11 Hutchings [9] was the first to observe that the inequalities defining the
capacity function do not require that E ∈ E but only that E be Diophantine: that its
entries satisfy (2.1.2). However, it is sometimes very important to know that a class
does lie in E because any two such classes have nonnegative intersection. See, for
example, Proposition 21. ♦
Definition 12 Let E := (d,m; m) be a Diophantine class. If there is a rational
number a = p/q such that m = qw(a), then we say that E has center a = p/q and
(as in [19, Def.1.4]) call the class quasi-perfect. If in addition E is an exceptional
class, then we say that E is perfect. A class that is quasi-perfect but not perfect, is
called fake.

Finally, for a quasi-perfect, resp. perfect, class E, if |bd − m| < √
1 − b2 then

we say that E is b -quasi-perfect, resp. b-perfect.

Example 13 We now show how to compute an obstruction function on a small
interval. Let a = 35/6 with w(35/6) = (1×5, 5/6, (1/6)×5) as in Example 8.
It is not hard to check that there is a corresponding exceptional class E3 =
(15, 4; 6w(35/6)). If 35/6 ≤ z < 6 then w(z) = (1×5, z − 5, (6 − z)×k, . . . )
for some k ≥ 5 and we have m · w(z) = 35. On the other hand, if z < 35/6,
then its weight expansion is (1×5, z− 5, (6 − z)×4, (5z− 29)×k, . . . ) provided that
4(6 − z) < z− 5 < 5(6 − z), which is equivalent to 29/5 < z < 35/6. In this case

m · w(z) = 30 + 5(z− 5)+ 4(6 − z)+ (5z− 29) = 6z.

Thus

μE,b(z) =
{

6z
15−4b if 29

5 < z <
35
6

35
15−4b if 35

6 ≤ z < 6.

For a more general result, see Lemma 16 below. ♦
The next task is to determine whether a particular exceptional class E gives us

a useful embedding obstruction. We denote by E := ⋃
n En the set of exceptional

classes in arbitrary blow ups of CP 2, and will define the length �(m) of m (resp.
�(z) of z) to be the number of nonzero entries in the vector m (resp. w(z)). The
following lemma, taken from [7, Lemma 2.21 & Prop.2.23], extends results in [17]
about embeddings into a ball to the case of a general convex toric target such as Hb.

Lemma 14 Let E = (d,m; m) be a Diophantine class with corresponding
obstruction function μE,b.

(i) The function μE,b(z) is continuous with respect to both variables z, b, and for
fixed b, is piecewise linear with rational coefficients.

(ii) For any b, the obstruction μE,b(z) given by E = (d,m; m) is nontrivial at z
only if �(z) ≥ �(m).
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(iii) Any maximal interval I on which μE,b is nontrivial contains a unique point a,
called the break point, with �(a) = �(m). Moreover, the function

I → (0,∞), z �→ μE,b(z)− Vb(z)
reaches its maximum at the break point a.

Proof Denote by wi(z) the ith weight of z considered as a function of z. Then,
by (2.1.3) it is piecewise linear, and is linear on any open interval that does not
contain an element a′ with �(a′) ≤ i. This implies (i).

Property (ii) is an easy consequence of the inequality

√
d2 −m2

√
1 − b2 ≤ d −mb, (2.1.9)

which, after squaring both sides simply reduces to 0 ≤ (db −m)2.

For property (iii), we note that the graph of Vb(z) =
√

z
1−b2 is concave down,

so the function μE,b(z) cannot be linear on any maximal interval on which it is
nontrivial. On the other hand, it follows from (2.1.3) that the formula for wi(z) can
change only if it, or one of the earlier weights, becomes zero. From this, it is not
hard to see that μE,b is linear on every open interval on which �(z) > �(m). The
above remarks imply that I must contain at least one break point a, which occurs
when �(a) = �(m). Moreover this point a is unique because if �(a) = �(a′) for
some a < a′, then it is shown in [17, Lem.2.1.3] that there is z ∈ (a, a′) with
�(z) < �(a) = �(m), contradicting property (ii).

Note that part (iii) of the following lemma shows that, if E is perfect with center
a, then it is b-perfect in the sense of Definition 12 exactly if μE,b is nontrivial at
a. Further, part (ii) establishes that the capacity function cHb(z) is the maximum,
rather than just the supremum, of the obstruction functions μE,b(z).

Lemma 15 Let E = (d,m; m) be a Diophantine class.

(i) If μE,b is nontrivial at z, we must have |bd −m| < √
1 − b2. Furthermore,

μE,b(z) ≤ Vb(z)
√

1 + 1

d2 −m2 .

(ii) If cHb(z) > Vb(z), there is an exceptional class E such that cHb(z) = μE,b(z).
Moreover, cHb is piecewise linear on any interval on which it is bounded away
from the volume. Finally, if J ⊂ [0, 1) is an open subset such that cHb(z) >
Vb(z)+ ε for all b ∈ J and some ε > 0, then for all b outside of a finite subset
of J , we may assume that cHb′ (z) = μE,b′(z) for all b′ in some neighborhood
Jb of b.

(iii) If E has center a = p/q, then μE,b(z) is nontrivial at z = a if and only if
|bd −m| < √

1 − b2. Further, when b0 = m/d, we have

μE,b0(a) = pd

d2 −m2
≤ d

q

(
1 + 2

pq

)
. (2.1.10)
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Proof The obstruction μE,b satisfies

(d −mb)μE,b(z) = m · w(z) ≤ ‖m‖ ‖w‖ = √
z
√
d2 −m2 + 1. (2.1.11)

But
√
z

√
d2−m2+1
d−mb > Vb(z) if

√
d2 −m2 + 1

d −mb >
1√

1 − b2
.

This happens if

(d2 −m2 + 1)(1 − b2) > (d −mb)2, i.e.

d2 −m2 + 1 − b2d2 + b2m2 − b2 > d2 − 2mdb +m2b2, i.e.

1 − b2 > d2b2 − 2mdb +m2, i.e.

1 − b2 > (db −m)2.

This proves the first claim in (i).
Combining the inequality d − mb ≥ √

d2 −m2
√

1 − b2, from (2.1.9)
with (2.1.11), we have

μE,b(z) ≤
√
z
√
d2 −m2 + 1√

d2 −m2
√

1 − b2
= Vb(z)

√

1 + 1

d2 −m2 .

This completes the proof of (i).
To prove (ii), we first show that if cHb(z) = (1 + ε′)Vb(z) for some ε′ > 0 and

a fixed value of b, then there are only finitely many exceptional classes E such that

μE,b(z) > (1 + ε′/2)Vb(z). To this end, notice that (i) implies that
√

1 + 1
d2−m2 >

1 + ε/2 > √
1 + ε, so that we must have 1

d2−m2 > ε. Thus there is a constant C so

that d2 −m2 < C.
Since we must also have |db − m| < 1 by (i), we are then looking for pairs of

non-negative integers (d,m) which lie in a compact region of the plane, so there
is an upper bound for the degrees d of the relevant classes. Further, we must have
�(m) ≤ �(z) by Lemma 14. Therefore there are only a finite number of relevant
classes. Hence, for each b, there is equality for at least one such class.

Moreover, if we now consider sufficiently small neighborhoods I ′ of z and J ′ of
b, then the inequality μE,b′(z′) > (1 + ε/2)Vb′(z′) holds for all z′ ∈ I ′ and b′ ∈ J ′,
so that again there are only finitely many classes E such that cHb′ (z

′) = μE,b′(z′) for
some z′ ∈ I ′ and b′ ∈ J ′. By Lemma 14, each function z �→ μE,b′(z) is piecewise
linear and hence with a finite number of nonsmooth points; see also Lemma 16.
Therefore the same is true for z′ �→ cHb′ (z

′) on any interval on which it is bounded
away from the volume function. Thus for fixed b′, these functions cH ′

b
and μE,b′
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of z′ either agree at a single point or agree on a finite union of closed z′-intervals.
Moreover, as b′ changes these z′-intervals change continuously. Hence if we now
consider our fixed z, all but finitely many b′ values lie in the interior of one of these
intervals. This completes the proof of item (ii).

The first claim in (iii) follows from the first calculation in (i) since in this case,
the inequality in (2.1.11) is an equality. Further, because d2 − m2 = pq − 1 and
m · w(a) = qw(a) · w(a) = p, we have

μE,m/d(a) = pd

d2 −m2
= pd

pq − 1
= d

q

1

1 − 1/pq
≤ d

q

(
1 + 2

pq

)
,

where the last inequality is a consequence of the fact that 1
1−1/x ≤ 1 + 2

x
for x ≥ 2.

This completes the proof.

The calculation in Example 13 generalizes as follows.

Lemma 16 Let E = (d,m; m) be a quasi-perfect class with center a = p/q. Then
the corresponding capacity function μE,b has the following form near a: there are
numbers z1 < a < z2 such that

μE,b(z) =
{

qz
d−mb if z1 < z < a
p

d−mb if a ≤ z < z2.
(2.1.12)

In particular, if μE,b(a) > Vb(a) then this formula applies throughout the
neighborhood of a on which μE,b is nontrivial.

Proof Consider the continued fraction expansion a = [�0; �1, . . . , �N ]. We will
carry out the proof when N is odd, since this is the case for the exceptional classes
En,k that give our new staircases. The proof for N even is similar.

When N is odd, by McDuff and Schlenk [17, Lem.2.2.1] there is ε > 0 and
h > 0 so that z ∈ (a − ε, a) has weight expansion

w(z) = (
1×�0 , (x1(z))

×�1, . . . , (xN(z))
×�N , (xN+1(z))

×h, . . . ,
)
, (2.1.13)

where the functions xj (z) = αj + zβj are linear functions of z, that increase w.r.t.
z when j is odd and decrease when j is even. Denote the kth convergent to a by
pk/qk so that p0/q0 = %a& and ∂n/qn = p/q = a. Then [17, Lem.2.2.3 (ii), (iii)]
shows that

|αj | = pj−1, |βj | = qj−1 for 1 ≤ j ≤ N + 1.

Further, [17, Lem.2.2.3 (i)] shows that the weight expansion w(a) may be written

(
1×�0, (x1(a))

×�1, . . . , (xN(a) = 1/q)×�N
)
,
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where the weights xj (a) are determined by the convergents to the mirror continued
fraction. Because m = qw(a), we have

m · w(z) = qw(a) · w(z) =
N∑

j=1

q�j xj (a) xj (z) = qz, if z ∈ (a − ε, a),

where the last equality holds for odd N by McDuff and Schlenk [17, Cor.2.2.7 (ii)].
This establishes the claimed formula when z < a. The formula for z > a now
follows by McDuff and Schlenk [17, Prop.2.3.2], since the assumption that m = qw
implies that the smallest entry in m is 1.

This proves the first claim. The second holds because the formula for μE,b(z)

can change only at a point a′ with �(a′) ≤ �(m), while Lemma 14 (iii) shows that
a is the unique point with this property in the maximal neighborhood of a on which
μE,b is nontrivial.

Remark 17

(i) When N is odd, the first formula in (2.1.12) holds for all z that have a
continued fraction expansion of the form (2.1.13). Hence we may take our
value z1 = [�0; �1, . . . , �N + 1] < a. (Note that, somewhat counterintuitively,
when you increase an odd-placed coefficient of the continued fraction the
number it represents decreases; see Remark 76.) Similarly, the second formula
holds for all z < z2, where we have the value z2 = [�0; �1, . . . , �N − 1] > a,
unless �N = 2, in which case we have z2 = [�0; �1, . . . , �N−1 + 1].

(ii) In the case of a ball (i.e. H0), the paper [17] considered exceptional classes
as above but with m = 0. In this case, every exceptional class that has a
center a is perfect, and hence (as in Lemma 15) is nontrivial at a. Moreover,
the obstruction function μE,0 is live throughout the interval on which it is
nontrivial. It also turns out that a < τ 4 = acc(0), and that the capacity function
cH0(z) for z < τ 4 is completely determined by these perfect classes.

(iii) The claims in (ii) no longer hold when b > 0. Lemma 15 (iii) shows that every
exceptional class E with center a is live at a for some b, but this b may be
far from the most relevant value of b, namely acc−1(a). (Here b �→ acc(b)
is as in (1.1.3) and we take the appropriate branch of its inverse as in (2.3.2).)
However, as we will see in Sect. 2.3, if E is a perfect blocking class with center
a then it does share some of the characteristics of perfect classes for the ball.
In particular, we show in Proposition 42 that μE,b is live at a for all b ∈ JE,
and hence in particular at acc−1(b). ♦

The following remarks about the structure of a general class E that gives
a nontrivial μE,b can be disregarded on a first reading. They will be useful
when establishing the existence of staircases; see Example 70. They are slight
generalizations of results in [17, §2]. We always assume that m = (m1, . . . , mn)

is ordered, i.e. m1 ≥ m2 ≥ · · · ≥ mn, since, because weight decompositions are
ordered, the obstruction given by an ordered m is at least as large as that given
by the any unordered tuple. If a = [�0; �1, . . . , �N ] has weight decomposition
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w(a) = (1×�0, w
×�1
1 , . . . , w

×�N
N ), we call each group w×�i

i of equal terms a block
of w(a).

Lemma 18 Let E = (d,m; m) be a Diophantine class such that the function μE,b
is nontrivial on a maximal interval I with break point a = [�0; �1, . . . , �N ]. Suppose
further that m = (m1, . . . , mn) is ordered and that z0 ∈ I . Then:
(i) there is a constant α(z0, b) > 0 and a vector ε of length �(z0) such that

m = α(z0, b)w(z0)+ ε, ‖ε‖2 = ε · ε < 1, (2.1.14)

where the constant α(z0, b) is such that the obstruction from α(z0, b)w(z0) is
the volume constraint Vb(z0), that is,

α(z0, b) = d −mb
√
z0(1 − b2)

. (2.1.15)

(ii) The vector m is constant on all blocks of w(z0) of length two or more, except
perhaps for one block on which all the entries but one are the same. In the latter
case, the entries on this block differ by 1.

Proof Since μE,b is nontrivial at z0, it follows from (2.1.14), (2.1.15) that we must
have

w(z0) · ε > 0. (2.1.16)

Indeed, because w(z0) · w(z0) = z0, the choice of α(z0, b) implies that

Vb(z0) < μE,b(z0)

= α(z0, b)w(z0) · w(z0)+ ε · w(z0)

d −mb = Vb(z0)+ ε · w(z0)

d −mb .

Now notice that because E · E = −1 and w(z0) · w(z0) = z0 by (2.1.5), we have

d2 −m2 + 1 = m · m

= (α(z0, b)w(z0)+ ε) · (α(z0, b)w(z0)+ ε)
= α2(z0, b) z0 + 2α(z0, b) ε · w(z0)+ ε · ε

= (d −mb)2
1 − b2

+ 2α(z0, b) ε · w(z0)+ ε · ε by (2.1.15)

= d2 −m2 + (m− bd)2
1 − b2 + 2α(z0, b) ε · w(z0)+ ε · ε.

Therefore, we must have

(m− bd)2
1 − b2

+ 2α(z0, b) ε · w(z0)+ ε · ε = 1. (2.1.17)
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Now observe that α(z0, b) > 0 by (2.1.15), and ε · w(z0) > 0 by (2.1.16). Hence
we have ε · ε < 1 as claimed in (i).

To prove (ii), consider a block of w(z0) of length s ≥ 2, and suppose that the
corresponding entries of m are the integers m1, . . . , ms . If λ is the size of the
corresponding entries in α(z0, b)w(z0) we have

s∑

i=1

(mi − λ)2 ≤ ‖ε‖2 < 1.

In particular, |mi − λ| < 1 for all i, which implies that the integers mi differ by
at most one on this block. Write these entries as m×r , (m − 1)×(s−r), and set μ :=
m− λ. Then

s∑

i=1

(mi − λ)2 = rμ2 + (s − r)(1 − μ)2 = Rμ2 − 2Sμ+ T

where R = s, S = (s − r), T = s − r

and hence has minimum value T − S2/R taken at μ = S/R. It remains to check
that

T − S2

R
= (s − r)r

s
< 1

only if r = 0, 1, s − 1, s.

Remark 19 (Relation to ECH Obstructions)

(i) As explained in Sect. 4 below, there is an alternative approach to these
calculations that use the obstructions coming from embedded contact homology
(ECH). Thus, the capacity function z �→ cHb(z) may also be described as
the supremum of a ratio of ECH lattice counts as in (4.0.1). If a class E :=
E(d,m; qw(p/q)) with center p/q is live at p/q for some value of b, then
cHb(z) = μE,b(z) for z ≈ p/q, and it follows from Lemma 92 that cHb(z)must
equal a ratio of counts for a particular lattice path. Thus, there is some interval
around p/q on which the function z �→ μE,b(z) agrees with the obstruction
given by the kth ECH capacity, where, by (4.2.3),

k = 1
2

(
d(d + 3)−m(m+ 1)

)
. (2.1.18)

However, as is shown by Fig. 9, for other values of z these two obstruction
functions may be quite different. Notice here that E′ = (73, 20; 29w(170/29))
is an exceptional class with center at 170/29 ≈ 5.682. Further,

(
d(d + 3) −

m(m+ 1)
)
/2 = 2564.
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(ii) If we fix b, then we can often figure out from the graph of z �→ cHb(z) exactly
which exceptional classes are giving the obstruction. For example, in Fig. 8,
we see that when b = 3/10, the capacity function cHb has an outer corner
at a = 23/4. There is an exceptional class E with center 23/4, namely E =(
10, 3; 4w(23/4)

)
, such that μE,3/10 is live near 23/4 by Proposition 21 below.

Hence we see that cHb = μE,3/10 is given near a by the 59th ECH capacity. As
another example, we found that the 125th capacity has a corner at about 35/6
and from this it was not too hard to figure out the corresponding exceptional
class. Indeed, with p/q = 35/6 we simply need to find suitable d,m satisfying
(d−m)(d+m) = pq− 1, which we can do in this case by factoring pq− 1 =
209. In this way, we are led to the class E = (

15, 4; 6w(35/6)
)
. This was one

of the first ways we used to identify relevant exceptional classes. Once the first
few such classes were found, we found others by numerical experimentation.
One method, using Mathematica, is explained in Sect. 5.4. ♦

Remark 20 The computer calculations described in Sect. 5 take into account the
ECH obstructions for k ≤ 25,000. The obstruction μE,b given by a class E =
(d,m; m) with break point a corresponds to the kth ECH obstruction near z = a,
where k = (

d(d + 3) − m(m + 1)
)
/2. If we restrict the range of b, then we can

estimate the degree d of E as a function of k since we know from Lemma 15 that
|bd−m| < 1. For example, if b ≤ 1/3, then all relevant classes havem < bd+1 <
d/3 + 1. Combining that with the inequality d(d + 3) − m(m + 1) < 50,000, we
find that 8

9d
2 < 50,000, which roughly corresponds to d ≤ 237. The only proviso

here is that the computer works with a fixed value for b, which is often a rational
approximation to the irrational value b∞ of interest. However, it follows from results
such as Proposition 21 below that one can quantify the b-interval on which a class
is visible. We will rigorously prove all our results, rather than relying on computer
programs to tell us that certain classes cannot exist, since the relevant numbers grow
quickly, escaping the range that is easily accessible to our computers. ♦

2.2 Characterizing Staircases

The section explains how to recognize families of obstructions that give staircases
for the Hirzebruch domains Hb, 0 < b < 1. We begin with a useful criterion for a
class to be live. It is an adaptation of [19, Lem.4.1].

Proposition 21 Suppose that E = (d,m; m) is b-perfect with center a. Then:

(i) If b satisfies

m2 − 1

dm
≤ b ≤ 1 +m(d −m)

1 + d(d −m) , (2.2.1)

the obstruction μE,b is live at a; that is, cb(a) = μE,b(a) > Vb(a).
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(ii) If b < r/s satisfies

m2 − 1

dm
≤ b ≤ s +m(rd − sm)

r + d(rd − sm) , (2.2.2)

then μE,b(a) ≥ μE′,b(a) for every exceptional divisor E′ = (d ′,m′,m′) with
m′/d ′ ≤ r/s.

(iii) If m
d
> r
s
(1 + 1

d2 ) and b > r/s satisfies

m(sm− rd)− s
d(sm− rd)− r ≤ b ≤ m

d
(2.2.3)

then μE,b(a) ≥ μE′,b(a) for every exceptional divisor E′ = (d ′,m′,m′) with
m′/d ′ ≥ r/s.

Proof Suppose that b satisfies (2.2.1), and let E′ = (d ′,m′; m′) be any exceptional
class. Then because E · E′ ≥ 0 we have

dd ′ −mm′ − m · m′ ≥ 0. (2.2.4)

Therefore if b ≤ m/d we have

μE′,b(a) = m′ · w(a)
d ′ −m′b

≤ m′ · m
q(d ′ −m′m

d
)

since b ≤ m

d

≤ d(dd ′ −mm′)
q(dd ′ −mm′)

= d

q
.

On the other hand, because w(a) · w(a) = a = p/q by (2.1.5),

μE,b(a) = m · w(a)
d −mb = p

d −mb ≥ d

q
if pq ≥ d2 − dmb.

Since pq = d2 −m2 + 1 by (2.1.2), this will hold if

dmb ≥ d2 − pq = m2 − 1,

i.e. b ≥ (
m2 − 1

)
/ (dm) . This shows that when

(
m2 − 1

)
/ (dm) ≤ b ≤ m/d the

obstruction μE,b(a) is at least as large as any other that is defined by an exceptional
class. Finally, we have assumed that E is b-perfect, so |bd −m| < √

1 − b2. Hence
μE,b is live at a by Lemma 15 (iii).

Similarly, if b > m/d, we have

μE′,b(a) = m′ · w(a)
d ′ −m′b

≤ dd ′ −mm′

q(d ′ −m′b)
by (2.2.4)
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≤ d −mm′
d ′

q(1 − bm′
d ′ )

≤ d −m
q(1 − b)

where the last inequality uses the fact that because m/d < b < 1 the function
x �→ (

1 − m
d
x
)
/ (1 − bx) increases on the interval (0, 1]. Hence, as above, the

inequality μE,b(a) ≥ μE′,b(a) holds whenever

p

d −mb ≥ d −m
q(1 − b) .

Substituting pq = d2 − m2 + 1, one readily checks that this is equivalent to the
upper bound in (2.2.1). Since we again have assumed |bd − m| < √

1 − b2, this
completes the proof of (i).

Claim (ii) is proved in exactly the same way except that if b > m/d we use the
fact that m′/d ′ ≤ r/s to conclude that μE′,b(a) ≤ sd−rm

q(s−rb) . Hence it suffices that

pq

d −mb = d2 −m2 + 1

d −mb ≥ sd − rm
s − rb ,

which is equivalent to the condition b ≤ s+m(rd−sm)
r+d(rd−sm) .

Finally, to prove (iii) we consider the function x �→ d−mx
1−bx for r/s < b<m/d < 1

and r/s ≤ x < 1. This is a decreasing function. Hence, taking x = m′/d ′ we have

μE′,b(a) ≤ d −mm′
d ′

q(1 − bm′
d ′ )

by (2.2.4)

≤ sd − rm
q(s − rb) .

Hence it suffices that

pq

d −mb = d2 −m2 + 1

d −mb ≥ sd − rm
s − rb ,

which is equivalent to the condition b ≥ sm2−rmd−s
smd−rd2−r , since we assumed that sm >

r(d + 1/d).

Example 22 Consider the exceptional class E = (2, 0; 1×5). It has center a = 5 and
is b-perfect for b such that |2b| < √

1 − b2, i.e. for b ∈ [0, 1/√5). By Lemma 16,
μE,b(z) = 5/2 for all z ≥ 5. Notice that

5/2 = μE,b(6) =
√

6

1 − b2
= Vb(6), when b = 1/5.
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Further b satisfies (2.2.1) precisely if b < 1/5 so that cHb(5) = 5/2 for b ≤ 1/5,
and cH1/5(6) ≥ 5/2, with equality unless there is another obstruction for b = 1/5 at
z = 6. But this would have to have break point at 6 since �(6) is so small, and one
can easily check that no such obstruction exists. Thus H1/5 is unobstructed. Also
there is no ascending staircase at b = 1/5. For further discussion, see Example 34
and Sect. 4.3. ♦
Remark 23 The proof of Lemma 15 only uses the Diophantine conditions (2.1.2)
satisfied by E, and hence holds for fake classes E = (d,m; m) that satisfy
these conditions but do not reduce correctly under Cremona moves, and so are
not exceptional classes. It turns out that there are many such fake classes: see
Example 28 below. By contrast, the proof of Proposition 21 is based on the fact that
different classes in E have nonnegative intersection, which is false for fake classes.
In fact, it seems likely that the obstructions given by fake classes are never live,
though we do not attempt to give a proof here. In any case, it follows from (1.1.3)
that if there were a live fake class for some values of a, b there would have to be a
class in E giving the same obstruction at a, b.

By contrast, results such as Lemma 38 about blocking classes do not require
the class in question to be exceptional, and hence we phrase them in terms of
Diophantine classes. It turns out that many quasi-perfect blocking classes are in
fact perfect: see Proposition 42. ♦

We now give a formal definition of staircase, to clarify the language used below.
In Sect. 1.1, we said that Hb has an infinite staircase precisely when the graph of
cHb has infinitely many nonsmooth points that lie above the volume curve. We saw
in Lemma 15 (ii) that cHb has finitely many nonsmooth points on any interval on
which it is bounded away from the volume. It follows that it can have only countably
many nonsmooth points that lie above the volume curve. Moreover, by Cristofaro-
Gardiner et al. [7, Thm. 1.11], the corresponding set of z-coordinates has a unique
limit point a = acc(b). Hence we can always arrange these z-coordinates into a
convergent sequence ak . By Lemmas 14 (iii) and 15 (ii), each such point ak is the
break point of some obstructive class Ek such that μEk,b is live at ak in the sense of
Definition 10. Hence Hb has an infinite staircase precisely when there is a sequence
of such obstructive classes.

Definition 24 A staircase S for Hb is a sequence of distinct Diophantine classes(
Ek

)
k≥0 such that each μEk,b is live at its break point ak for some sequence of

distinct points ak that converge to a∞ := acc(b). The points ak are called the steps
or exterior corners of S , and S is said to be ascending (respectively descending)
if the sequence of steps ak is increasing (resp. decreasing). We say that an ascending
(resp. descending) staircase is complete if there is a one-sided neighborhood (a∞ −
ε, a∞] (resp. [a∞, a∞ + ε)) of a∞ such that there is no class E′ other than the Ek
with break point a′ in this neighborhood and such that μE′,b is live at a′. Finally we
say that a staircase S is perfect if all its classes are perfect.



Infinite Staircases for Hirzebruch Surfaces 71

Remark 25

(i) It follows from the above remarks thatHb has an infinite staircase if and only if
there is a sequence of classes Ek with the above properties. However notice that
even if

(
Ek

)
is complete, with ascending steps ak , then the capacity function

cHb may not be determined on any interval (a∞ − ε, a∞] by the classes Ek ,
since there might be ‘big’ obstructions as in Example 32.

(ii) The new staircases that we describe in Sect. 3.1 consist of two interwoven sets
of classes. According to our definition, each of these sets forms a staircase, as
does their union. It is likely (though we do not prove that here) that their union
is complete in the sense defined above. ♦

We are now in a position to establish our first staircase recognition criterion.
We will show in the proof that condition (ii) below cannot be satisfied if b∞ = 0,
though we do not assume that from the beginning.

Proposition 26 Suppose that
(

Ek = (
dk,mk; qkw(pk/qk)

))

k≥1
is a sequence of

perfect classes with mk = 0 such that

(i) mk/dk → b∞ ∈ [0, 1) and pk/qk → a∞;

(ii)
m2
k−1
dkmk

< b∞ <
1+mk(dk−mk)
1+dk(dk−mk) for all k ≥ k0.

Then the classes
(
Ek

)
k≥k0

provide a staircase for Hb∞ . Moreover, a∞ = acc(b∞).

Proof Condition (ii) implies that for sufficiently large k there is a constant c
depending on 1 − b∞ > 0 such that

mk

dk
− 1

mkdk
< b∞ <

mk

dk + 1
dk−mk

+ 1

dk(dk −mk) <
mk

dk
+ 1

cd2
k

.

Rearranging, this gives us 1/mk > mk − b∞dk > −1/(cdk). Now we must have
dk → ∞, since there are only finitely many exceptional classes of bounded degree.
Further, since mk = 0, we also have mk → ∞, since otherwise b∞ = 0 and we
have mk < 1/mk , which is impossible since mk ≥ 0 is an integer. This implies
|mk − b∞dk| → 0. We obtain in particular the bound |mk − dkb∞| < √

1 − b2∞
for large k, so that the classes Ek are b∞-perfect for large k. Proposition 21 (i) now
implies that Ek is live at b∞ for sufficiently large k. Thus, we have a sequence of
live obstructions μEk,b∞ whose centers converge to a∞; in other words, a staircase.
Finally, we may use [7, Thm.1.11] to deduce that a∞ = acc(b∞), as desired.

Since condition (ii) above is rather strong, we now establish a weaker version.
We begin by giving conditions that guarantee that Hb∞ is unobstructed.

Lemma 27 Suppose that
(

Ek = (
dk,mk; qkw(pk/qk)

))

k≥1
is a sequence of

distinct quasi-perfect classes such thatmk/dk → b∞ ∈ (0, 1), that |dkb∞−mk| < 1
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for all k, and that ak := pk/qk → a∞. Then

(i) a∞ = acc(b∞).
(ii) If the Ek are perfect, then Hb∞ is unobstructed.

Proof By Lemma 15 (iii) the obstructions μEk,b∞(ak) are nontrivial for all k. The
proof of [7, Thm.1.11] then shows that a∞ = acc(b∞). Indeed, a careful reading of
the [7] argument shows that it never uses the hypothesis that the obstructions μEk,b∞
are live at ak , instead using extensions of the arguments in Lemma 18 above. This
proves (i).

If we now assume that the Ek are perfect and set bk := mk/dk , then Proposi-
tion 21 implies that μEk,bk is live at ak . Thus, by Lemma 15 (i), we have

Vbk (ak) < cHbk
(ak) = μEk,bk (ak) < Vbk (ak)

√
1 + 1/(d2

k −m2
k).

But d2
k − m2

k = pkqk − 1 → ∞. Hence by the continuity of the function (z, b) �→
cHb(z), we must have cHb∞ (a∞) = Vb∞(a∞). In other words, Hb∞ is unobstructed.

Example 28 The following examples illustrate the need for some of these condi-
tions.

(i) For each k ≥ 1 there is an exceptional class Ek = (5k, k + 1; mk) with center
ak = 6 − 1/(2k) = (12k − 1) / (2k), where

mk = (
(2k)×5, 2k − 1, 1×(2k−1)) = 2kw

(12k − 1

2k

)
.

These are exceptional classes because they evidently satisfy (2.1.2) and it is
not hard to prove by induction that they reduce correctly. Since mk/bk →
1/5 and ak → 6 = acc(1/5), the first two conditions in Lemma 27 hold.
However, condition (ii) in Proposition 26 does not hold: indeed Ek is not even
1/5-perfect. Nevertheless, the existence of these classes implies that H1/5 is
unobstructed. We prove that it does not admit a staircase in Sect. 4.3.

(ii) There is an exceptional class E′ = (
73, 20; 29w(170/29)

)
with center a =

170/29. Here we have 29w(170/29) = (29×5, 25, 4×6, 1×4), and it not hard to
check that E′ does reduce correctly under Cremona moves. By Proposition 21
this class is live for b ≈ 20/73 = 0.27397 . . . while4 acc−1

L (170/29) ≈
.275425 . . . is almost the same. Therefore one can expect that this class is
relevant to the study of staircases. Indeed, it turns out that this class is the
entry EE0,0 in the staircase SE0 in Theorem 2.

(iii) There is another related5 class E′′ = (
48, 14; 19w(111/19)

)
with center

111/19, but one can check that this one is fake, i.e. quasi-perfect but not

4The function acc−1
L is a branch of the inverse to b �→ acc(b); see (2.3.2).

5In fact there is a family of such classes, whose centers ai = 6 − i
(i+1)(i+2)−1 , i ≥ 3, converge to

6; for i = 2n+ 4 these are the exceptional classes En,0 in SEn , but they seem to be fake for odd i.
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perfect: see Remark 23. As is shown by Fig. 10, when b is chosen so that
acc(b) = 111/19 (i.e. b ≈ 0.296654) the corresponding function z �→
μE′′,b(z) agrees with the kth ECH capacity where k is given by (2.1.18), and
lies between the volume function and the capacity function cHb . ♦

Although some of the staircases that we identify do satisfy the criteria in
Proposition 26, some of them only satisfy a modification of condition (ii), such
as that in (2.2.2). Thus we have a sequence of classes Ek that are nontrivial, though
perhaps not live, at b∞. In order for such a sequence to form a staircase, we have to
rule out the existence of an overshadowing class E′, defined as follows.

Definition 29 Let I = (y0, y1) be a maximal open interval on which the obstruc-
tion μE′,b is nontrivial. Then we say that

• E′ is a right-overshadowing class at y0 if

◦ acc(b) = y0, and
◦ μE′,b is live on some nonempty subset (y0, y0 + ε) ⊂ I ;

• E′ is a left-overshadowing class at y1 if

◦ acc(b) = y1, and
◦ μE′,b is live on some nonempty subset (y1 − ε, y1) ⊂ I .

If S is a sequence of quasi-perfect classes whose centers ak converge to a∞, we say
that E′ overshadows S (or is an overshadowing class, if S is understood from the
context) if either

• the ak descend and E′ is right-overshadowing (i.e. overshadows to the right of
a∞); or

• the ak ascend and E′ is left-overshadowing at a∞ (i.e. overshadows to the left of
a∞).

Here is a refined version of Proposition 26. Notice that setting r/s = 1 in (iii)
below gives the same as condition (ii) in Proposition 26.

Proposition 30 Let
(

Ek = (
dk,mk; qkw(pk/qk)

))

k≥0
be a sequence of perfect

classes that satisfies the following conditions for some r/s ∈ (0, 1]:
(i) mk/dk → b∞ ∈ [0, r/s) and the centers pk/qk are a monotonic sequence with

limit a∞;

(ii)
m2
k−1
dkmk

≤ b∞ ≤ s+mk(rdk−smk)
r+dk(rdk−smk) for all k ≥ k0.

(iii) There is no overshadowing class E′ at a∞ of degree d ′ < s/(r − sb∞) and
with m′/d ′ > r/s

Then there is k0 such that the classes
(
Ek

)
k≥k0

are live at b∞ and hence form a
staircase for b∞.

Proof We know from Lemma 27 that Hb∞ is unobstructed and acc(b∞) = a∞.
Further, because condition (ii) holds, it follows from Proposition 21 (ii) that
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μEk,b∞(pk/qk) > μE′,b∞(pk/qk) for all exceptional classes E′ = (d ′,m′,m′) with
m′/d ′ ≤ r/s. Hence if Ek is not live at b∞ there is a class E′ = (d ′,m′; m′) with
m′/d ′ > r/s such that μE′,b∞(a∞) > μEk,b∞(a∞). But then Lemma 15 implies
that |b∞d ′ − m′| < 1 and hence |m′/d ′ − b∞| < 1/d ′. Further, b∞ < r/s by (i),
so that m′/d ′ − b∞ > r/s − b∞. Therefore we must have 1/d ′ > r/s − b∞ > 0,
or, equivalently, d ′ < s/(r − sb∞). In particular, there are a finite number of such
classes E′. It follows that either all but finitely many Ek are live at b∞ or there is a
single class E′ with d ′ < s/(r − sb∞) whose obstruction for b = b∞ is live at all
but finitely many of the points ak . But in the first case the (Ek)k≥k0 form a staircase,
while in the second, since Hb∞ is unobstructed, E′ satisfies the conditions to be
an overshadowing class. Since the latter is ruled out by condition (iv), the classes
(Ek)k≥k0 must form a (possibly incomplete) staircase, as claimed.

Remark 31

(i) There is an analogous result for classes Ek such that the ratios bk = mk/dk
decrease with limit b∞ > r/s in which the inequalities in (iii) above are
replaced by (2.2.3) from Proposition 21 (iii):

mk(smk − rdk)− s
dk(smk − rdk)− r ≤ b ≤ mk

dk
, d ′ < s

sb∞ − r .

Notice that if mk/dk > r/s for all k then, since the dk → ∞, the inequality
mk/dk > r(1 + 1/d2

k )/s required by Proposition 21 (iii) does hold for large k.
Further, as above, any potentially overshadowing class would have parameters
d ′,m′ where m′/d ′ < r/s, and could only be live at b∞ if b∞ − r/s < b∞ −
m′/d ′ < 1/d ′, which gives the bound d ′ < s/(sb∞ − r).

(ii) Although in principle there can be overshadowing classes for both ascending
and descending sequences of obstructions, in practice we only seem to have to
worry about them in the descending case. See Lemmas 73 and 74, for example.

♦
Example 32 The exceptional class E′ := (

3, 1; 2, 1×5
)

is a potentially awkward
class that is a rearranged version of the large nontrivial blocking class E0 :=(
3, 2; 1×6

)
in Theorem 1. For many values of z it corresponds to the 8th ECH

capacity, and, as explained in Sect. 5.5, is visible on many of the figures. Though
E′ has no center and so is not perfect, it has break point at a = 6, and gives the
following obstruction

μE′,b(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 + z
3 − b , 5 < z < 6,

7

3 − b , z ≥ 6.

Note that E′ is nontrivial at its break point z = 6 precisely when
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μE′,b(6) = 7

3 − b > Vb(6) =
√

6

1 − b2
i.e. if b ∈

(
1

5
,

5

11

)
.

Further, one can check from (1.1.2) that the range of b in which acc(b) < 6 is also
the interval 1/5 < b < 5/11. Therefore, for b in this range we have

μE′,b
(
acc(b)

) = 1 + acc(b)

3 − b ,

and this turns out to be precisely the same as the volume obstruction. Indeed, if we

define c(b) = (3−b)2
1−b2 − 2, we have

1 + acc(b)

3 − b =
√

acc(b)

1 − b2 (2.2.5)

⇐⇒ (
1 + acc(b)

)2 = acc(b)
(3 − b)2
1 − b2 = acc(b)

(
c(b)+ 2

)
,

⇐⇒ acc(b)2 − c(b)acc(b)+ 1 = 0

which holds by the definition of acc(b) in (1.1.2). Therefore, for b ∈ (1/5, 5/11),
this class satisfies at least some of the conditions to be overshadowing, and so
potentially obstructs the existence of a descending staircase.

However, it does not overshadow the staircases SEu,n, n ≥ 0, defined in
Theorem 58. These are descending with limit points at (an,∞, bn,∞) ∈ (5, 6) ×
(1/5, 1/3); and we show in Example 77 and Lemma 78 that they satisfy condition
(ii) in Proposition 30 (by way of Lemma 67 (ii)) with r/s = 1/3. Therefore, because
E′ has m/d = 1/3 (rather than > 1/3), it is not overshadowing. One can also see
the initial peaks of the steps of SEu,0 poking above the line z �→ μE′,b(z) in Fig. 7.

Remark 33

(i) The observation in (2.2.5) about the function b �→ Vb(acc(b)) turns out to be an
essential ingredient of our proof of the relation between staircases and blocking
classes: see Lemma 44.

(ii) All of the new ascending (resp. descending) staircases that we have found
accumulate at the initial (resp. final) point

(
a∞, V (a∞)

)
of a “big” obstruction,

namely, an obstruction that goes through
(
a∞, V (a∞)

)
and for the given value

of b obstructs above (resp. below) a∞. Moreover, in many cases (though not in
the case of the Fibonacci staircase at b = 0) this big obstruction is given by a
perfect blocking class as described in Sect. 2.3. Note that this phenomenon is
quite different from that of a (potentially) overshadowing class since the latter
type of obstruction overhangs the staircase, and so is active on the staircase side
of the accumulation point. ♦
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Example 34 The degree 5 class E5 := (5, 1; 2×6, 1) also affects the capacity
function for some ranges of b, z, and for b ≈ 1/5 the obstruction μE5,b equals
the obstruction from the 19th ECH capacity for z ≈ 7, a behavior that is discussed
in Sect. 4.2. One can check that the corresponding obstruction is

μE5,b(z) = 6 + z
5 − b , 11/2 < z < 7

which goes through the accumulation point (6, 5/2) when b = 1/5, and is tangent
to the graph of z �→ V1/5(z) at that point. We show in Sect. 4.3 that cH1/5(z) =
μE5,b(z) on some interval [1/5, 1/5 + ε).

We claim that b = 1/5 is the unique value where the obstruction given by E5
might affect the existence of staircases since we have

μE5,b(acc(b)) < Vb(acc(b)), b = 1/5. (2.2.6)

To justify this, recall that Vb(acc(b)) = 1+acc(b)
3−b by (2.2.5). Since μE5,b(z) is

constant for z ≥ 7 and the increasing function z �→ 1+z
3−b is greater than μE5,b(z)

at z = 7, the class E5 can only affect staircases with acc(b) ≤ 7. Moreover,
acc(b) ≥ 3 + 2

√
2 > 11/2, and in this range we have

μE5,b(z) = 6 + z
5 − b =: f1(z),

whose graph is a line of smaller slope than that of 1+z
3−b =: f2(z). Thus (2.2.6)

will hold if we show that for each b = 1/5, the two lines y = f1(z) and y =
f2(z) intersect at a point zb with f2(zb) < Vb(acc(b)). But zb = (13 − 5b)/2, and
f2(zb) = 5/2 < Vb(acc(b)) for all b = 1/5, since the function b �→ Vb(acc(b)) has
a minimum value of 5/2, taken at b = 1/5; see Fig. 1. Thus (2.2.6) holds. ♦
Example 35 (The Staircase at b = 1/3) This staircase is somewhat different from
the new staircases that we find in the current paper. For one thing, it consists of
three interwoven sequences, while the new ones that we discuss here consist of two
such sequences.6 For another, it does not satisfy either the condition (2.2.1) or its
variant (2.2.2). Indeed, both these conditions imply that |b∞dk − mk| = O(d−1

k ),
while the sequences at b = 1/3 satisfy |b∞dk − mk| = O(1). Further, the
ratios mk/dk lie on both sides of 1/3, while in the new staircases these ratios
are monotonic. Finally, as in the case of the Fibonacci staircase in (3.0.1), the
numerators and denominators of the center points ak := pk/qk of each of the three
substaircases fit into a single sequence g0, g1, g2 . . . where ak = gk/gk−1. Thus
there are three interwoven sequences

6See [7] for a discussion of such symmetries.
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Ek,i = (
dk,i , mk,i; gk−1,iw(

gk,i

gk−1,i
)
)
, i = 0, 1, 2

where for each i the numbers gk,i satisfy the recursion formula

gk+1,i = 6gk,i − gk−1,i

with seeds (i.e. initial values)

g0,0 = 1, g1,0 = 2, g0,1 = 1, g1,1 = 4, g0,2 = 1, g1,2 = 5.

Thus in all cases, the sequence of centers gk.i/gk−1.i increases,7 and can be repre-
sented by the continued fractions [5; {1, 4}k+ε, endi], with end0 = 2, end1 = (1, 3)
and end2 = ∅, and ε = 0,±1 as appropriate. (Compare this with the staircase
descriptions in Theorems 54, 56 and 58.) The numbers dk,i , mk,i satisfy modified
versions of this recursion, and are determined for each i and k by the requirement
3dk,i −mk,i = gk,i + gk−1,i and the following additional relation:

dk,0 = 3mk,0 − (−1)k, dk,1 = 3mk,1 + (−1)k, dk,2 = 3mk,2 − (−2)k.

For example, the first sequence starts with the classes:

E1,0 = (
1, 0; w(2)

)
, E2,0 = (

5, 2; 2w(
11

2
)
)
, E3,0 = (

28, 9; 11w(
64

11
)
)
.

Thus the linear relations in this staircase are inhomogeneous, and hence different in
nature from those in the new staircases, which, as we will see in Theorem 52, are
homogeneous and arise because the latter are associated to blocking classes.

The methods developed in [2] and [7] involve identifying staircases by construct-
ing tight packings at the inner corners using almost toric fibrations (ATFs). It might
be rather difficult to use ATF methods for the staircases identified in this manuscript,
since the capacity function cHb∞ may well not have well defined inner corners
because of the presence of an obstruction that nearly overshadows the staircase.8

This possibility is illustrated in Fig. 7 in the case of the descending staircase SEu,0
in Theorems 2 and 58, which is almost overshadowed by the obstruction from
(3, 1; 2, 1×5). Thus, in this case one cannot find tight packings of the fixed target
Hb∞ by a sequence of ellipsoids E(1, zk) where zk increases to a∞.

Nevertheless, one might be able to use tight packings to show that there is a
decreasing sequence of unobstructed points a′

k = acc(b′
k) with b′

k → b∞. This

7In fact, one can check that gk+1,igk−1,i = g2
k,i + ci , where ci = 7 for i = 0, 1 and c2 = 4.

8By contrast, Usher conjectures in [19, Conj.4.23] that in the cases he considers, the capacity
function is defined on (a∞, a1) by the union of the relevant staircase classes, which would imply
that the capacity function has well delineated inner corners.
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would also be enough to show that SEu,0 is a descending staircase for Hb∞ . Further,

as is shown in Figs. 2 and 3, the staircases in the other families SU•,•,SL•,• discussed
in Sect. 3.1 below may not be so nearly obscured, since the problematic class E =
(3, 1; 2, 1×5) in Example 32 is not obstructive in the relevant region. ♦

2.3 Blocking Classes

Let E be a Diophantine class in the sense of Definition 12, and recall from
Definition 10 that an obstruction μE,b is said to block b if

μE,b(acc(b)) > Vb(acc(b)).

Further, we call E = (
d,m; m

)
a blocking class if there is some b0 such that the

corresponding obstruction μE,b0 blocks b0. We will show in Remark 39 that b0 need
not be m/d.

As preparation for discussing the properties of these classes, recall from Sect. 1
that the point acc(b) is the unique solution > 1 of the equation

z2 −
(
(3 − b)2
1 − b2

− 2

)
z+ 1 = 0. (2.3.1)

As illustrated in Fig. 1, this function is at most two-to-one, with minimum value
acc(1/3) = 3 + 2

√
2. Hence for any z ∈ [1,∞), it has a well defined local inverse

that may be calculated as follows. If z, 1/z are the two solutions to (2.3.1), write

� := 2 + z+ 1/z, so that (3−b)2
1−b2 = �. Then we have

b = 3 ± √
�2 − 8�

�+ 1
, � := z+ 1

z
+ 2.

With � = �(z) as above, we will consider the following functions:

acc−1
L :

[

3 + 2
√

2,
7 + 3

√
5

2

]

→
[

0,
1

3

]
, z �→ 3 − √

�2 − 8�

�+ 1
(2.3.2)

acc−1
U :

[
3 + 2

√
2,∞

)
→

[
1

3
, 1

)
, z �→ 3 + √

�2 − 8�

�+ 1
,

writing acc−1 to denote one or other of these branches if there is no need to specify
the branch any further.

The following lemma will simplify some calculations below.
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Lemma 36 Let E = (
d,m; qw(p/q)

)
be a quasi-perfect class, and suppose that

acc(b) = p/q. Then:
(i) b is given by the formula

b = 3pq ± (p + q)√σ
p2 + q2 + 3pq

, where σ := p2 + q2 − 6pq. (2.3.3)

and we use the sign +, resp. −, if b > 1/3, resp. b < 1/3.
(ii) μE,b(p/q) = μE,b(acc(b)) > Vb(acc(b)) if and only if

pq
(
3(p + q)2 ∓ (p + q)√σ)) (2.3.4)

> (p + q)
(
d(p2 + q2 + 3pq)−m(3pq ± (p + q)√σ)

)

where we use the top, resp. bottom, signs if b > 1/3, resp. b < 1/3.

Proof Since

�− 8 = p

q
+ q

p
− 6 = p2 + q2 − 6pq

pq
=: σ
pq
,

we can obtain (2.3.3) by substituting for � in (2.3.2).
To prove (ii), recall from (2.2.5) that Vb(acc(b)) = 1+acc(b)

3−b . Therefore, we have

μE,b(acc(b)) > Vb(acc(b)) if and only if p
d−mb >

1+acc(b)
3−b . Now substitute for b

using (2.3.3).

The general properties of a blocking class are rather subtle, and will be addressed
elsewhere. In this paper we are only concerned with classes that are center-blocking
in the following sense.

Definition 37 Let E = (
d,m; qw(p/q)

)
be a quasi-perfect class with center a =

p/q > 3 + 2
√

2 and with m/d = 1/3. Then we say that E is center-blocking if
μE,b0(a) > Vb0(a), where b0 is the solution to acc(b0) = a that lies in the same
component of [0, 1)�{1/3} as does m/d.

Lemma 38 Let E be a center-blocking class with center a, and let b0 be the solution
to acc(b0) = a that lies in the same component of [0, 1)�{1/3} as does m/d.
Then:

(i) There is an open interval JE containing b0 such that

– μE,b blocks b for all b ∈ JE;
– μE,b(z) = Vb(z) for z = acc(b), b ∈ ∂JE.

(ii) For all b ∈ JE, the z-interval Ib on which μE,b(z) is obstructive contains a.

Proof Since all functions involved are continuous, the set of b such that μE,b blocks
b is open. Let JE be the connected component of this set that contains b0. Then, for
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the appropriate branch of the inverse acc−1,

μE,b(acc−1(b)) > Vb(acc−1(b)), ∀ b ∈ JE.

Therefore by continuity, we must have μE,b(z) = Vb(acc−1(b)) when b ∈ ∂JE.
This proves (i).

Next, observe that for all b ∈ JE, the interval Ib on which μE,b is obstructive
contains a break point by Lemma 14, and because this point is the unique point of
shortest length in Ib and equals a when b = b0, this point must be independent of b
and hence equal to a. Hence a ∈ Ib for all b ∈ JE. This proves (ii).

Remark 39 One might expect that a class E = (d,m; m) would block some b only
if it blocked b = m/d. However, this is not true even if E is perfect. For example,
by Theorem 1, the class BU0 = (3, 2; 1×6) = (3, 2; w(6)) blocks the b-interval
( 3−√

5
2 ,

3(7+√
5)

44

) ≈ (0.382, 0.629); and this interval does not contain m/d = 2/3,

though it does contain 5/11 = acc−1
U (6). For further discussion, see Sect. 5.5. ♦

Example 40 Here are some examples of obstructive exceptional classes that are not
(center)-blocking classes.

• The class E = (2, 0; 1×5) is perfect with center of length 5. Since its center
lies outside the range of b �→ acc(b) this class is certainly not center-blocking.
Moreover, because m = 0 the obstruction μE,b(z) = 5/2 is constant for z > 5,
and, as shown in Fig 1, is always ≤ Vb(acc(b)). Hence E is not a blocking class.

• Similarly, the classes in the (ascending) staircase at b = 1/3 (see Example 35)
are not center-blocking since their centers lie outside the range of b �→ acc(b). It
is unlikely that they are blocking classes; however we do not pursue this question
further here.

• The class E′ := (5, 1; 2×6, 1) with break point 7 gives an obstruction μE′,1/5 at
b = 1/5 that goes through the accumulation point (6, 5/2). It is not a blocking
class because, as we show in Example 34, b = 1/5 is the unique value of b for
which μE′,b(acc(b)) ≥ Vb(acc(b)). ♦

Lemma 41 All the classes (except for the first) in the Fibonacci staircase of (3.0.1)
are center-blocking.

Proof These classes are
(
gk, 0; gk−1w(gk+1/gk−1)

)
, where g0 = 1, g1 = 1, g2 =

2, g3 = 5, . . . . Therefore, by well-known identities for Fibonacci numbers (see [17,
§3.1]), we have d = (p + q)/3,m = 0, d2 = pq − 1 and p2 + q2 = 7pq − 9.
By (2.3.4) we need

3pq(3(p+ q)2 + (p+ q)√σ) > (p+ q)2(p2 + q2 + 3pq) = (p+ q)2(10pq− 9).

Since σ = pq − 9, this holds exactly if

3pq
√
σ > (p + q)(pq − 9) = 3dσ.
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Thus we need pq > d
√
pq − 9. But this holds because d2 = pq − 1.

Proposition 42 Suppose that E = (
d,m; qw(p/q)

)
is a center-blocking class with

center a = p/q that blocks the b-interval JE = (β�, βu) ⊂ [0, 1/3) ∪ (1/3, 1).
(i) if JE = (β�, βu) ⊂ (1/3, 1) then Hβu admits no ascending staircase and Hβ�

admits no descending staircase. If in addition Hb is unobstructed for b ∈ ∂JE,
then μE,bu is live on [a, αu) and μE,b� is live on (α�, a].

(ii) if JE = (β�, βu) ⊂ (0, 1/3), then Hβ� admits no ascending staircase and Hβu
admits no descending staircase. If in addition Hb is unobstructed for b ∈ ∂JE,
then μE,b� is live on [a, αu) and μE,bu is live on (α�, a].

(iii) If Hb is unobstructed for b ∈ ∂JE, then μE,b is live at a for all b ∈ JE and E
is perfect. Moreover, JE is a connected component of Block.

Proof In case (i) the map b �→ acc(b) preserves orientation. Consider the upper
endpoint βu of JE. By Lemma 16, the functionμE,βu(z) is constant for z ∈ [a, αu :=
acc(βu)). Also we have μE,βu(αu) = Vβu(αu) by Lemma 38. If Hβu did have an
ascending staircase, we saw in (1.1.3) that we would have to have cHβu = Vβu(αu),
i.e. Hβu would be unobstructed. But then, because cHβu is nondecreasing, cHβu
would be constant and equal to μE,βu on the interval [a, αu]. Thus there can be
no ascending staircase. (Indeed in this case E is left-overshadowing in the sense of
Definition 29.) This proves the claims in (i) that pertain to the end point βu.

Now consider the lower endpoint β�. By Lemma 16 the graph of μE,β�(z) =
qz

d−mβ� for z ∈ [α�, a] is a line through the origin that passes through the point
(
α�, Vb�(α�)

)
. If Hβ� did have a staircase, then again we would have Vb�(α�) =

cHb�
(α�), i.e.Hβ� would be unobstructed. In this case the the scaling property (1.1.1)

of capacity functions implies that the graph of cHβ� , which as we just saw goes
through (acc(β�), Vβ�), cannot lie above the line z �→ μE,β�(z) = qz

d−mβ� for
z > acc(β�). Thus we again conclude that μE,β� is live for z ∈ (α�, a] (and so
is right-overshadowing), and that there cannot be a decreasing staircase for Hβ� .
This completes the proof of (i).

The proof of (ii) is similar, and is left to the reader.
Now consider (iii). For clarity we will again suppose that JE ⊂ (1/3, 1), leaving

the other case to the reader. First note that if Hb is unobstructed then b /∈ Block, so
that JE is a connected component of Block as claimed.

We next show that μE,b is live at a for all b ∈ JE. To see this, consider the set
of b ∈ [β�, βu] such that μE,b′ is live at a for all b′ ∈ [β�, b). This is a closed,
connected subset of [β�, βu]. If it is empty, define bmax := β�, and if it is nonempty
but proper, let bmax < βu be its maximal element. Then, by Lemma 15 (ii), there
must be an exceptional class E′ = (d ′,m′

0; m′) and ε > 0 such that

μE′,bmax(a) = m′ · w(a)
d ′ −m′

0bmax
= p

d −mbmax
= μE,bmax(a)

and μEmax,b(a) > μE,b(a) for b ∈ (bmax, bmax + ε). In particular,
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∂

∂b

∣∣
b=bmax

μE′,b(a) = μE′,bmax(a)
m′

d ′ −m′
0bmax

.

≥ ∂

∂b

∣∣
b=bmax

μE,b(a)

= μE,bmax(a)
m

d −mbmax
.

But this implies that m′ d ≥ m d ′. Thus, because this inequality is independent of
bmax, it can hold at b = bmax only if it holds for all b ∈ [bmax, βu]. Moreover, we
cannot have m′ d = m d ′ since this would imply that the two obstruction functions
are equal for b ∈ [bmax, bmax + ε). Hence we must have m′ d > m d ′, in which
case μE,b(a) could not be live at b = βu. Therefore this scenario does not happen,
and so bmax = βu. This completes the proof that μE,b(a) is live at a for all b ∈ JB.

It remains to show that E is perfect. By Lemma 15 (ii), there is an exceptional
class E′ = (d ′,m′; m′) and an open subset Jb of JE such that

μE′,b(a) = μE,b(a), ∀ b ∈ Jb.

Then we may write m′ = λm + n where m · n = 0. Since

m′ · w(a)
d ′ −m′b

= λp

d ′ −m′b
= p

d −mb
for all b ∈ Jb, we must have d ′ = λd, m′ = λm for some λ > 0. The identities

m′ · m′ − 1 = d ′2 − (m′)2 = λ2(d2 −m2) = λ2(pq − 1),

m′ · m′ − 1 = λ2m · m + ‖n‖2 − 1 = λ2pq + ‖n‖2 − 1

then imply that ‖n‖2 = 1 − λ2. Therefore, unless E′ = E we must have 0 < λ < 1.
Further

E′ · E = d ′d −m′m− m′ · m = λ(d2 −m2 − m · m) = −λ.

But E′ · E is an integer. It follows that E′ = E, so that E is perfect as claimed.

Remark 43

(i) Notice that there may be no b ∈ JE such that μE,b is live on the whole of the
z-interval on which it is obstructive, since for each such b there may be classes
with break points a′ outside this interval (and hence with �(a′) ≤ �(a)) that
are live near one end or other of this z-interval. For further discussion of this
point, see Sect. 5.5 and the associated figures.

(ii) We will see in Proposition 49 that many of the classes that contribute to a
staircase are themselves center-blocking classes. For example, Fig. 9 shows
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that the class E′ with center 170/29, which is the k = 0 step with end0 = 4 of
the staircase SEu,0, obstructs at acc−1(170/29), and hence is center-blocking. ♦

The next lemma is the key to the proofs of our results about the relation between
blocking classes and staircases.

Lemma 44 Let B = (
d,m; qw(p/q)

)
be a quasi-perfect class with m/d = 1/3

and define acc−1 to be the branch of the inverse whose image contains m/d.

(i) If B = (
d,m; qw(p/q)

)
is center-blocking with JB = (βB,�, βB,u), and IB =

(αB,�, αB,u) = acc(JB), then

acc−1(αB,�) = (1 + αB,�)d − 3qαB,�

(1 + αB,�)m− qαB,�
, (2.3.5)

acc−1(αB,u) := (1 + αB,u)d − 3p

(1 + αB,u)m− p .

(ii) Conversely, suppose given numbers z� < p/q < zu such that �(p/q) < �(z)
for all z ∈ (z�, zu)�{p/q} and

acc−1(z�) = (1 + z�)d − 3qz�
(1 + z�)m− qz� , (2.3.6)

acc−1(zu) := (1 + zu)d − 3p

(1 + zu)m− p .

Then B is center-blocking, and we have IB = (z�, zu).
Proof Let c(b) := (3−b)2

1−b2 − 2. Then, because acc(b) > 0 and 0 ≤ b < 1, we have

1 + acc(b)

3 − b =
√

acc(b)

1 − b2 ⇐⇒ (1 + acc(b))2 = acc(b)
(3 − b)2
1 − b2 = acc(b)

(
c(b)+ 2

)
,

⇐⇒ acc(b)2 − c(b)acc(b)+ 1 = 0, (2.3.7)

which holds by the definition of acc(b) in (1.1.2). Therefore the function

b �→ Vb(acc(b)) =
√

acc(b)

1 − b2

is also given by the formula b �→ 1+acc(b)
3−b .

Since B is a quasi-perfect class, Lemma 16 shows that the obstruction function
z �→ μB,b(z) on IB is given by the formulas z �→ qz

d−mb for z < a and z �→ p
d−mb

for z > a. Thus because Vb(αB,�) = μB,b(αB,�), the point z = αB,� satisfies

1 + αB,�

3 − b = qαB,�

d −mb, where b := acc−1(αB,�).
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Similarly, the point z = αB,u satisfies the equation

1 + αB,u

3 − b = p

d −mb, where b := acc−1(αB,u).

Now rearrange these identities to obtain (2.3.5). This proves (i).
The identities in (2.3.7) show that z = acc(b) if and only if (1 + z)/(3 − b) =

Vb(z). Because the length �(p/q) of the point p/q is minimal among all points in
(z�, zu), Lemma 16 implies that

μB,b(z�) = qz�

d −mb, μB,b(zu) = p

d −mb .

We saw in the proof of (i) above that

b = (1 + z�)d − 3qz�
(1 + z�)m− qz� ⇐⇒ 1 + z�

3 − b = qz�

d −mb .

Hence if b = acc−1(z�) is given by the formula b = (1+z�)d−3qz�
(1+z�)m−qz� , then

Vb(z�) = 1 + z�
3 − b = μB,b(z�), b := acc−1(z�).

A similar argument with zu shows that our hypothesis implies

Vb(zu) = 1 + zu
3 − b = μB,b(zu), b := acc−1(zu)

Hence the constraint defined by the class B equals the volume obstruction at the
two pairs (z, b) = (z�, acc−1(z�)), and (z, b) = (zu, acc−1(zu)) where z� < zu.
It follows that B is a center blocking class that blocks the z-interval (z�, zu), as
claimed.

Corollary 45 If S is a staircase in Hb that accumulates at a point a∞ that is an
endpoint of the blocked z-interval IB for some quasi-perfect blocking class B, then
the two numbers a∞, b can be expressed in terms of the same quadratic surd, i.e.
there is σ ∈ N such that a∞, b ∈ Q + Q

√
σ .

Proof This is an immediate consequence of Lemma 44 (i).

2.4 Pre-staircases and Blocking Classes

In this section we begin by discussing the structure of the staircases that we
encounter, and then relate their properties to those of associated blocking classes.
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Our aim is to clarify exactly what we need to prove in order to show that a particular
sequence of Diophantine classes (Ek) does form a staircase.

Definition 46 We will say that a sequence S = (
Ek

)
k≥0 of quasi-perfect classes

Ek := (
dk,mk; qkw (pk/qk)

)
is a pre-staircase if it has the following properties:

• (Recursion) There is an integer σ ≥ 0 such that σ + 4 is a perfect square, and
each of the sequences xk := dk,mk, pk, qk satisfies the recursion

xk+1 = (σ + 2)xk − xk−1 for all k ≥ 0, (2.4.1)

• (Relation) there are integers R0, R1, R2 such that the following linear relation
holds

R0dk = R1pk + R2qk for all k ≥ 0, (2.4.2)

Moreover, if the classes Ek are perfect for all k, then we say that S is a perfect
pre-staircase.

In this situation, the whole sequence of classes is determined by the first two centers
p0/q0, p1/q1, since the other centers are then determined by the recursion, the dk
are determined by the linear relation (2.4.2), and then the mk are determined by the
linear Diophantine identity 3dk = mk +pk + qk . Of course, for arbitrary choices of
initial data, there is no guarantee that dk , if so defined, is a positive integer, or that
the quadratic Diophantine identity holds.

The following lemma explains the importance of the (Recursion) condition.

Lemma 47 Let xk, k ≥ 0, be a sequence of integers that satisfy the recursion
xk+1 = (σ + 2)xk − xk−1, where σ + 4 is a perfect square, and let λ ∈ Q[√σ ]
be the larger root of the equation x2 − (σ + 2)x + 1 = 0. Then there is a number
X ∈ Q[√σ ] such that

xk = Xλk +X λk, (2.4.3)

where a + b√σ := (a − b√σ), so that λλ = 1.

Proof If the monomials xk = ck satisfy the recursion then we must have c2 − (σ +
2)c + 1 = 0, so that c = (

(σ + 2) ± N√
σ
)
/2, where N2 = σ + 4. Let λ be

the larger solution, so that λ is the smaller one, and we have λλ = 1. Since (2.4.3)
has a unique solution once given the seeds x0, x1, it follows that for each choice of
constants A,B, the numbers

xk := Aλk + Bλk

form the unique solution with
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x0 = A+ B, x1 = Aλ+ Bλ.

Then A,B ∈ Q[√σ ], and it is easy to check that x0, x1 ∈ Q only if we also have
B := A. This completes the proof.

Remark 48

(i) All the pre-staircases that we consider have σ = (2n + 1)(2n + 5) for some
n ≥ 0 so that σ +4 = (2n+3)2, a quantity whose square root happens to equal
the constant R0 in (Relation). Note that, if X = X′ +X′′√σ is as in Lemma 47
and the initial values are x0, x1, we have

λ = σ + 2 + (2n+ 3)
√
σ

2
, X′ = x0

2
, X′′ = 2x1 − x0(σ + 2)

2(2n+ 3)σ
.

(2.4.4)

(ii) It turns out that, as in Lemma 72 (i) below, some of our staircases can be
extended by a ‘class’

(
d−1,m−1, q−1w(p−1/q−1)

)
defined for k = −1 such

that the (Recursion) (2.4.3) and (Relation) (2.4.2) conditions hold for all k ≥
−1. The word ‘class’ above is in quotes because in some cases the numbers
d−1,m−1 are negative (though p−1, q−1 are positive), so that the tuples have no
geometric meaning. However, they can still be used for computational purposes.
For example a quantity such as X in (2.4.3) can be computed from knowledge
of the terms x−1, x0 instead of from x0, x1. Note in particular that ifmk, dk both
satisfy the recursion (2.4.1) for k ≥ −1, then

m0(d1 + d−1) = m0d0(σ + 2) = d0(m−1 +m1),

which implies that

m0d1 −m1d0 = m−1d0 −m0d−1. (2.4.5)

This fact will simplify some calculations below. ♦
The following result shows that at least the tail end of a pre-staircase consists of

center-blocking classes.

Proposition 49 Suppose that S = (Ek) is a pre-staircase as above, let λ be as in
Lemma 47, and denote by D,M,P,Q the constants X defined by (2.4.3), where
xk = dk,mk, pk, qk respectively. Suppose that M/D = 1/3 and that the centers
pk/qk of S are all > 3 + 2

√
2. Then

• P/Q = limpk/qk, M/D = limmk/dk and

acc

(
M

D

)
= P

Q
. (2.4.6)
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• Ek is a center-blocking class for sufficiently large k, and
• If in addition S is a perfect pre-staircase then b∞ := M/D is unobstructed.

Proof The identities

P

Q
= lim

pk

qk
,

M

D
= lim

mk

dk

follow immediately from Lemma 47. Since 3dk = mk + pk + qk and d2
k − m2

k =
pkqk − 1 we have 3D = M + P +Q and D2 −M2 = PQ. (Note that the 1 in the
second identity disappears in the limit, after we divide by λ2k .) By (2.3.7), we have
acc(M/D) = P/Q exactly if

1 + P
Q

3 − M
D

=
√√√√

P
Q

1 − (M
D
)2

or equivalently

P +Q√
PQ

= 3D −M√
D2 −M2

.

But we saw above that the top and bottom entries on both sides are equal.
To prove that Ek is center-blocking, we must check that μEk,bk (pk/qk) is

nontrivial, where bk := acc−1(pk/qk) and we choose the inverse so that M/D is

in its range. Hence by Lemma 15 we must check that |dkbk − mk| <
√

1 − b2
k for

sufficiently large k.
To see this, suppose that M/D < 1/3. (For the other case, we simply choose +

instead of − in (2.3.2).) Then (2.3.2) implies that

bk =
3 −

√
�2
k − 8�k

�k + 1
, where �k = pk

qk
+ qk

pk
+ 2.

Since acc(M/D) = P/Q, we know that

M

D
= 3 − √

L2 − 8L

L+ 1
, L := P

Q
+ Q

P
+ 2.

But our assumptions imply that �k = L+O(λ−2k). Hence

bk = M

D
+O(λ−2k).

Therefore
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|dkbk −mk | = |(Dλk +O(λ−k))(M
D

+O(λ−2k))− (M +O(λ−2k))λk | = O(λ−k).

Therefore, because 1 − b2
k = 1 − (M/D)2 −O(λ−2k) > 0 for large k, the required

inequality |dkbk − mk| <
√

1 − b2
k holds for sufficiently large k. This proves the

second point.
Finally, if the classes Ek are perfect thenM/D is unobstructed by Lemma 27.

Remark 50

(i) Proposition 49 does not quite give an independent proof that any staircase in
the manifold Hb must accumulate at acc(b), since it is not true that a staircase
must be a pre-staircase. For example, we saw in Example 35 that the staircase
in H1/3 is not a pre-staircase since the classes do not satisfy a homogeneous
linear relation. Further, a staircase need not be given by quasi-perfect classes,
though no such examples are known.

(ii) It is very likely that, as in Lemma 41, all the classes Ek in the staircases defined
in Sect. 3.1 are center-blocking, provided that their centers are in the range of
the function b �→ acc(b). One could prove this in any particular case by being
more careful with the estimates in the above lemma. ♦

Here is our most powerful staircase recognition criterion.

Theorem 51 Let S = (Ek) be a perfect pre-staircase with constants P,Q,D,M
as in Proposition 49. Suppose in addition that at least one of the following
conditions holds:

(i) There is r/s > 0 such thatM/D < r/s,

m2
k − 1

dkmk
<
M

D
<
s +mk(rdk − smk)
r + dk(rdk − smk) , ∀ k ≥ k0,

and there is no overshadowing class at (z, b∞) = (P/Q,M/D) of degree
d ′ < s/(r − sb∞) and with m′/d ′ > r/s.

(ii) There is r/s > 0 such thatM/D > r/s,

mk(smk − rdk)− s
dk(smk − rdk)− r <

M

D
<
mk

dk
∀ k ≥ k0,

and there is no overshadowing class at (z, b∞) = (P/Q,M/D) of degree
d ′ < s/(sb∞ − r) and with m′/d ′ < r/s.

Then S is a staircase for HM/D that accumulates at P/Q.

Proof Proposition 49 implies that acc(M/D) = P/Q and that HM/D is unob-
structed. Further mk/dk → M/D and pk/qk → P/Q by Lemma 47. Hence it
remains to show that the staircase is live. If (i) holds this follows from Proposi-
tion 30, while if (ii) holds we argue as in Remark 31.
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So far, the linear relation satisfied by a pre-staircase has played no role in our
analysis except to specify the entries dk,mk of the classes Ek . Our second main
result in this section shows the relevance of this relation, using it to obtain the
following blocking class recognition criterion.

Theorem 52 Let B = (
d,m, qw(p/q)

)
be a quasi-perfect class with d = 3m

and suppose given two perfect pre-staircases S�,Su that satisfy the following
conditions:

(i) If the constants for S� (resp. Su) are denoted D�,M�, P�,Q� (resp.
Du,Mu, Pu,Qu), then

M�

D�
= 1

3
= Mu

Du
, 3 + 2

√
2 <

P�

Q�
<
p

q
<
Pu

Qu
.

Moreover �(p/q) < �(z) for all z = p/q in (
P�/Q�, Pu/Qu

)
.

(ii) S� is ascending with linear relation R0dk = R1pk+R2qk where R0 = d−3m,
R1 = q −m, R2 = −m.

(iii) Su is descending with linear relation R0 = d − 3m, R1 = −m, R2 = p−m.
Then B is a perfect blocking class that blocks the z-interval IB = (α�, αu) where

α� = P�

Q�
, acc−1(α�) = M�

D�
, αu = Pu

Qu
, acc−1(αu) = Mu

Du
(2.4.7)

Proof Since the hypotheses of Proposition 49 hold, we know that

acc(
M�

D�
) = P�

Q�
, acc(

Mu

Du
) = Pu

Qu
.

Moreover, because we assumed that the pre-staircases are perfect, bothM�/D� and
Mu/Du are unobstructed.

By Lemma 44 (ii), to see that B is a class that blocks the given interval IB it
suffices to check that the equations in (2.3.6) hold when d, p,m are defined by B
and with z� = P�/Q�, zu = Pu/Qu. Thus we must check that

M�

D�
= 3qP� − (Q� + P�)d
qP� − (Q� + P�)m = (3q − d)P� − dQ�

(q −m)P� −mQ� and

Mu

Du
= 3pQu − (Qu + Pu)d
pQu − (Qu + Pu)m = (3p − d)Qu − dPu

(p −m)Qu −mPu
Because

(q −m)P� −mQ� = R1P� + R2Q� = (d − 3m)D�,
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the first identity will hold if (d − 3m)M� = (3q − d)P� − dQ�. But becauseM� =
3D� − P� −Q� we have

(d − 3m)M� = 3(d − 3m)D� − (d − 3m)P� − (d − 3m)Q�

= 3
(
(q −m)P� −mQ�)− (d − 3m)P� − (d − 3m)Q�

= (3q − d)P� − dQ�
as required. The proof of the second identity is similar; notice that again the
coefficients in the denominator equal those in the linear relation for Su.

This shows that B is a blocking class that blocks the interval (α�, αu). Since, as
we saw in the first paragraph of this proof,Hβ�,Hβu are unobstructed, the class B is
perfect by Proposition 42 (iii).

3 The Fibonacci Stairs, Its Cognates, and Beyond

The staircases SEn in Theorem 2 were found by trial and error using methods
described in Sect. 5 and Remark 19. They occur for values of b ∈ (

1/5, 1/3
)
. Once

we began looking for staircases in other ranges of b, armed with the numerical
knowledge of these stairs, nascent ideas about the importance of blocking classes,
as well as the visual and computational tools explained in Sect. 5, we found many
other examples. In Sect. 3.1 we describe three important sets of blocking classes,
together with their associated staircases, and explain their relation to the staircases
in Theorem 2. In Sect. 3.2, we explain our proof strategy.

We assume that the reader understands the definition of (quasi-)perfect classes
(Definition 12), center-blocking class (Definition 37) and pre-staircase (Defini-
tion 46). The most important results are Proposition 49 and Theorem 51.

To put our work in context, recall from [17] that the Fibonacci stairs are given by
a family of exceptional divisors

(
gk, 0; gk−1w(

gk+1

gk−1
)
)

(3.0.1)

where the (gk)k≥0 are the odd placed Fibonacci numbers 1, 2, 5, 13, 34, · · · . The
continued fractions of the center points gk+1/gk−1 divide naturally into two classes:
the elements in the odd places have centers

5, [6; 1, 4], [6; 1, 5, 1, 4], . . . , [6; 1, {5, 1}k, 4], . . .

while those in the even places have centers

[6; 2], [6; 1, 5, 2], [6; 1, 5, 1, 5, 2], . . . , [6; 1, {5, 1}k, 5, 2], . . . .
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Moreover, each of these classes form a pre-staircase in the sense of Definition 46,
with recursion xk+1 = 7xk − xk−1 and linear relation 3dk = pk + qk .

The staircases that we describe below all have similar numerics, and limit at
points a∞ = limpk/qk with 2-periodic continued fractions. There are other pre-
staircases with continued fractions of higher periods; these will be discussed in our
next paper.

3.1 The Main Theorems

We now describe three families of perfect center-blocking classes, (BUn ), (B
L
n ), and

(BEn ) together with their associated staircases. The classes (BUn ), (B
E
n ) are those

in Theorems 1 and 5. We will begin with the classes (BLn ), since, as explained
in Remark 55, we can consider the Fibonacci staircase to be the initial (slightly
anomalous) member of the corresponding family of ascending staircases (SL�,n).
We will say that an ascending (respectively descending) staircase S� (resp. Su) is
associated to the blocking class B if it accumulates at the point αB,� (resp. αB,u).
Thus staircases labelled � always ascend, while those labelled u always descend,
regardless of whether the associated value of b is in (0, 1/3) or (1/3, 1).

Remark 53 Each of the staircases below consists of two intertwining sequences of
classes as follows

• the first has centers pn,k/qn,k for k ≥ 0, with endn = 2n+ 4, and
• the second has centers p′

n,k/q
′
n,k for k ≥ 0, with endn = (2n+ 5, 2n+ 2).

Each such sequence is a pre-staircase in the sense of Definition 46. When the first
of the end entries occurs in an even place (as with the ascending staircase SL�,n) then

the fact that 2n + 4 < 2n + 5 means that pn,k/qn,k < p′
n,k/q

′
n,k .

9 Similarly, when
the first of the end entries occurs in an odd place we have pn,k/qn,k > p′

n,k/q
′
n,k .

Recall also from Definition 24 that we use the word ‘staircase’ rather loosely;
thus it could refer to just one of these sequences of classes, or both, depending on
context. ♦
Theorem 54 The classes BLn = (

5n, n − 1; 2nw((12n+ 1) /(2n))
)
, n ≥ 1,

with decreasing centers, are perfect and center-blocking, and have the following
associated staircases SL�,n,SLu,n for n ≥ 1:

• SL�,n is ascending, with limit point aL�,n,∞ = [6; 2n+ 1, {2n+ 5, 2n+ 1}∞], and
has

9Remark 76 explains the order properties of points that are specified in terms of their continued
fraction expansions.
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(Centers) [6; 2n+ 1, {2n+ 5, 2n+ 1}k, endn],
endn = 2n+ 4 or (2n+ 5, 2n+ 2), k ≥ 0;

(Recursion) xn,k+1 = (σn + 2)xn,k − xn,k−1, σn := (2n+ 1)(2n+ 5)
(Relation) (2n+ 3)dn,k = (n+ 1)pn,k − (n− 1)qn,k.

• SLu,n is descending, with limit point aLu,n,∞ = [6; 2n−1, 2n+1, {2n+5, 2n+1}∞]
and has

(Centers) [6; 2n− 1, 2n+ 1, {2n+ 5, 2n+ 1}k, endn],
(Recursion) xn,k+1 = (σn + 2)xn,k − xn,k−1,

(Relation) (2n+ 3)dn,k = −(n− 1)pn,k + (11n+ 2)qn,k

with the same possibilities for endn and the same σn.

The limit points aL•,n,∞ (with • = � or u) form a decreasing sequence in (6, 7) with
limit 6, while the corresponding b-values lie in (0, 1/5) and increase with limit 1/5.

Remark 55 The Fibonacci stairs has the same numerics as the case n = 0 of
SL�,n. However, there cannot be an associated blocking class since this would

have to block a z-interval with lower endpoint αF� equal to the limit point τ 4.
But then acc−1

L (α
F
� ) = 0 would be the upper endpoint of the corresponding b-

interval, which is clearly impossible. Nevertheless, the obstruction given by the class
E0 := (3, 0; 2, 1×6) with break point a = 7 does go through the accumulation point(
τ 4, V0(τ

4) = τ 2
)
, and this class can be considered as a substitute for the blocking

class. In this paper, we will often ignore this distinction and will use the notation
SL�,0 to refer to the Fibonacci stairs. ♦

Here is the analogous result for the blocking classes in Theorem 1.

Theorem 56 The classes BUn = (
n+ 3, n+ 2; w(2n+ 6)

)
, n ≥ 0, with increasing

centers, are perfect and center-blocking, with the following associated staircases
SU�,n,SUu,n, where σn and endn are as in Theorem 54.

• for each n ≥ 1, SU�,n has limit point aU�,n,∞ = [{2n+ 5, 2n+ 1}∞], and has

(Centers) [{2n+ 5, 2n+ 1}k, endn],
(Recursion) xn,k+1 = (σn + 2)xn,k − xn,k−1,

(Relation) (2n+ 3)dn,k = (n+ 1)pn,k + (n+ 2)qn,k.

• for each n ≥ 0, SUu,n has limit point aUu,n,∞ = [2n+ 7; {2n+ 5, 2n+ 1}∞], and
has

(Centers) [2n+ 7; {2n+ 5, 2n+ 1}k, endn],
(Recursion) xn,k+1 = (σn + 2)xn,k − xn,k−1,

(Relation) (2n+ 3)dn,k = (n+ 2)pn,k − (n+ 4)qn,k
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Fig. 4 Depicted are the intervals JBUn for n = 0, . . . , 2 and part of the interval JBU3
, in brown,

red, pink, and blue, respectively, for 1/3 < b < 0.795, transplanted onto the accumulation point
curve b �→ (acc(b), Vb(acc(b))). The infinite staircases SU�,n accumulate at the left endpoints of

the intervals and the infinite staircases SUu,n accumulate at their right endpoints. Note that Stair is
contained in the short green intervals between the intervals blocked by the JBUn

The limit points aU•,n,∞ form increasing unbounded sequences in (6,∞), while the
corresponding b-values lie in (5/11, 1

)
, where 5/11 = acc−1

U (6).

Figure 4 depicts the image under the parameterization b �→ (
acc(b), Vb(acc(b))

)

of the intervals JBUn for n = 0, . . . , 3 and part of the interval JBU4
.

Remark 57 Theorem 56 lists descending staircases SUu,n for all n ≥ 0, but ascending
staircases SU�,n only for n ≥ 1. There is an ascending staircase for n = 0 with

numerics obtained by setting n = 0 in the sequence SU�,n above, and depicted in

Fig. 2, but because the class BU0 has center 6, it has limit point aU�,0,∞ < 6, and
therefore, as we will explain in Remark 61 (iii) below, it is better to consider this
staircase as part of a different family. Indeed. as pointed out in Corollary 60 (ii),
the accumulation points [6; 1, {5, 1}∞] for SU�,0 and [7; {5, 1}∞] for SUu,0 are mutual
images under the reflection Φ of Lemma 59; and we explain in Remark 61 how we
expect that the associated families of staircases are organized. ♦

Finally, here is a sharper version of Theorems 2 and 5. Notice that the centers
6 − 1

2n+6 of the classes BEn increase with n.

Theorem 58 The classes BEn = (
5(n + 3), n + 4; (2n + 6)w( 12n+35

2n+6 )
)
, n ≥ 0,

with increasing centers, are perfect and center-blocking, and have the following
associated staircases SE�,n,SEu,n, where σn and endn are as in Theorem 54.
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• for each n ≥ 1, SE�,n is ascending, with limit point aE�,n,∞ = [5; 1, 2n+4, 2n+1,
{2n+ 5, 2n+ 1}∞], and has

(Centers) [5; 1, 2n+ 4, 2n+ 1, {2n+ 5, 2n+ 1}k, endn],
(Recursion) xn,k+1 = (σn + 2)xn,k − xn,k−1,

(Relation) (2n+ 3)dn,k = (n+ 2)pn,k − (n+ 4)qn,k

• for each n ≥ 0, SEu,n is descending, with limit point aEu,n,∞ = [5; 1, 2n + 6,
{2n+ 5, 2n+ 1}∞], and has

(Centers) [5; 1, 2n+ 6, {2n+ 5, 2n+ 1}k, endn],
(Recursion) xn,k+1 = (σn + 2)xn,k − xn,k−1,

(Relation) (2n+ 3)dn,k = −(n+ 4)pn,k + (11n+ 31)qn,k.

The limit points aE•,n,∞ form an increasing sequence in the interval
(
35/6 =

[6; 1, 5], 6) while the corresponding b-values lie in
(
1/5, 19/61

)
where 19/61 =

acc−1
L (35/6) < 1/3.

The numerics of these three families are very similar, since they all contain
repetitions of the same 2-periodic pair (2n + 5, 2n + 1), which as is shown in
Lemma 63, implies that the recursion is the same. We now observe that there are
symmetries of the z-axis that relate the centers of the different families of blocking
classes, as well as those of the corresponding staircase classes, as follows.

In the following we denote by CF(x) the continued fraction expansion of a
rational number x ≥ 1, and, by abuse of language, we sometimes identify z with
CF(z). For example, every10 rational z ∈ (6, 7) has continued fraction of the form
z = CF(z) = [6; k, CF(x)] for some integer k ≥ 0 and rational number x ≥ 1.

Lemma 59

(i) The fractional linear transformation

Ψ : (6,∞)→ (6,∞) : w �→ 6w − 35

w − 6

reverses orientation and has the following properties:

(a) Ψ ◦ Ψ = 1, Ψ (7) = 7;
(b) Ψ ([6; k, CF(x)]) = [6+k;CF(x)] ∈ (7,∞) for all z = [6; k, CF(x)] ∈

(6, 7);

(ii) The fractional linear transformation

10This is true even for numbers such as 13/2 = [6; 2] since in this case we can also write z =
[6; 1, 1].
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Φ : (35

6
,∞)→ (

35

6
,∞) : w �→ 35w − 204

6w − 35

reverses orientation and has the following properties:

(a) Φ ◦Φ = 1, Φ(6) = 6 and

Φ(7) = 41

7
= [5; 1, 6], Φ(8) = 76

13
= [5; 1, 5, 2].

(b) every z ∈ ( 76
13 ,

41
7

)
has CF(z) = [5; 1, 5, 1, CF(x)] for x > 1 and

Φ([5; 1, 5, 1, CF(x)]) = [7;CF(x)] ∈ (7, 8), for all x > 1.

(iii) The bijective map

Sh : (1,∞)→ (5, 6), z �→ 6z− 1

z

preserves orientation, and for each rational x > 1 and k ≥ 1 we have

Sh(z) = Sh([k + 5;CF(x)]) = [5; 1, k + 4, CF(x)], if z = [k + 5;CF(x)] ∈ (6,∞).

Further, Φ ◦ Ψ = Sh : (6,∞)→ (35/6, 6).

Proof We prove (i). (a) follows immediately from the definition. To prove (b),
observe that

w = [6; k + 1, CF(x)] = 6 + 1

k + 1 + 1
x

= (6k + 7)x + 6

(k + 1)x + 1

which gives

x = w − 6

(6k + 7)− (k + 1)w

Therefore we have

z = [k + 7;CF(x)] = k + 7 + 1

x

= k + 7 + (6k + 7)− (k + 1)w

w − 6

= 6w − 35

w − 6
= Ψ (w)

as claimed. This proves (i).
The proofs of (ii), (iii) are very similar and are left to the reader.
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Corollary 60

(i) For each n ≥ 1, the involution Ψ takes the center 2n+ 6 of the blocking class
BUn to the center [6; 2n] of the blocking class BLn . It also takes the centers of the
associated staircases SU�,n,SUu,n to those of SLu,n,SL�,n, interchanging increasing
and decreasing staircases. Further, Ψ also takes the centers of the decreasing
staircase SUu,0 to the centers of the Fibonacci stairs.

(ii) The involution Φ fixes the center 6 of the blocking class BU0 and interchanges
the steps of the two associated staircases.

(iii) For each n ≥ 1, the shift Sh takes the center 2n+6 of the blocking class BUn to
the center [5; 1, 2n+5] of the blocking class BEn . It also takes the centers of the
associated staircases SU�,n,SUu,n to those of SE�,n,SEu,n, preserving the direction
of the staircases.

Proof This is an immediate consequence of Lemma 59. Note that by Theorem 1
the ascending staircase associated to BU0 has steps at [5; 1, {5, 1}k, end0] while the
descending staircase has steps at [7; {5, 1}k−1, end0]. Further, for these values of z,
Φ moves the first entry in end0 from an even place to an odd place, and hence, in
accordance with Remark 53, takes an ascending stair to a descending one.

Remark 61

(i) Though they might seem similar, the two involutions Φ and Ψ have very
different effects. As shown by part (ii) of Corollary 60, Φ fixes the center
of the blocking class BU0 and interchanges its two staircases, both of which
exist for values of b > 1/3. On the other hand, the fixed point of Ψ is not the
center of a blocking class, and it takes staircases for b > 1/3 to staircases for
b < 1/3. Similarly, Sh takes staircases for b > 1/3 with centers in (6,∞) to
staircases for b < 1/3 with centers in (35/6, 6). However, the transformation
Sh2 := Sh◦Sh should take staircases for b > 1/3 (resp. b < 1/3) to staircases
for b in the same interval.

(ii) The mapsΦ,Ψ, Sh = Φ ◦Ψ generate a set of fractional linear transformations
that act on the centers of the blocking classes and of the staircase steps.
Corollary 60 shows that there has to be some associated action on the other
two entries d,m of a perfect blocking class. However, as yet this is not fully
understood.

(iii) We conjecture that every 2-periodic staircase for b ∈ (1/3, 1) is one of the
following:

• the staircases SU•,n in Theorem 56 with centers in (6,∞);
• their images under Φ with centers in (35/6, 6);
• the images of these two families under Sh2i , i = 1, 2 . . . , with centers in the

disjoint intervals Sh2
(
(35/6, 6)

) = (1189/204, 35/6), Sh4
(
(35/6, 6)

)
, and so

on.

Similarly, the 2-periodic staircase for b ∈ [0, 1/3) should be formed from the
staircases Ψ

(
SU•,n

)
with centers in (6, 7) by involutions and shifts. This idea,
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together with many other related results, will be developed in our next paper. We
have also found many potential staircases of period 2m,m > 1, and have conjectural
description of them as well. In these staircases the repeated portion of the continued
fraction expansion of the centers pk/qk has length 2m, and turns out to consist of a
sequence of integers of the form (2n+ 1, 2n+ 3, . . . , 2n+ 4m− 1) in some order.
Thus these staircases are still in some way derived from the Fibonacci staircases. ♦

3.2 Proof of Theorems 56 and 1

Here is the strategy for proving Theorems 54, 56 and 58.

– Step 1: Check that the classes Bn are quasi-perfect.
– Step 2: Prove that the classes in the two associated families S�,Su are perfect.
– Step 3: Check that the conditions in Theorem 52 hold, and conclude that each

Bn is a perfect blocking class.
– Step 4: Check that each pre-staircase S�,Su satisfies one of the conditions in

Theorem 51, and conclude that both are staircases with the given properties.

We will begin by proving Theorem 56, since this is the most straightforward. As
we will see, in the cases at hand only Steps 2 and 4 require significant argument. The
most computational part of the argument is the proof that the pre-staircase classes
are perfect, rather than just quasi-perfect, which involves showing that they reduce
correctly under Cremona moves. These proofs are all given in Sect. 3.4. As we will
see there, the proofs for the different pre-staircases are closely related.

Remark 62 The arguments given below reduce many of the proofs to checking
some numerical identities that are polynomial in n and of small degree d (less than
10 or so). Therefore if one verifies these identities by computer for d + 1 values of
n, then they will hold for all n. ♦
Step 1: For n ≥ 0, the class

Bn = (
n+ 3, n+ 2; 1×(2n+6))

has d = n+3,m = n+2, p = 2n+6, q = 1 and evidently satisfies the Diophantine
conditions 3d = m + p + q, d2 − m2 = pq − 1. Hence it is quasi-perfect with
center 2n+ 6.

Step 2: We begin by establishing the following lemma.

Lemma 63

(i) For k ≥ 1, let [2n + 5; 2n + 1, {2n + 5, 2n + 1}k−1, 2n + 4] have (integral)
weight expansion

(
a

×(2n+5)
n,k , b

×(2n+1)
n,k , (an,k − (2n+ 1)bn,k)

×(2n+5), . . . , 1×(2n+4))
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and define

an,0 = 1, bn,0 = −1, an,−1 = 2n+ 2. (3.2.1)

Then

(a) bn,1 = 2n+ 4, an,1 = (2n+ 1)(2n+ 4)+ 1.
(b) we have

bn,k+1 = (2n+ 5)an,k + bn,k, an,k = (2n+ 1)bn,k + an,k−1 if k ≥ 0.
(3.2.2)

(c) For each n, the quantities an,•, bn,• satisfy the recursion relation

xn,k+1 = (4n2 + 12n+ 7)xn,k − xn,k−1, k ≥ 1. (3.2.3)

(ii) For k ≥ 1, let [2n + 5; 2n + 1, {2n + 5, 2n + 1}k−1, 2n + 5, 2n + 2] have
(integral) weight expansion

(
a′
n,k

×(2n+5), b′
n,k

×(2n+1), (a′
n,k − (2n+ 1)b′

n,k)
×(2n+5), . . . , (2n+ 2)×(2n+5), 1×(2n+2)).

and define

a′
n,0 = 2n+ 2, b′

n,0 = 1, a′
n,−1 = 1 (3.2.4)

Then

b′
n,1 = (2n+2)(2n+5)+1, a′

n,1 = (2n+1)
(
(2n+2)(2n+5)+1

)+(2n+2);

and (3.2.2), (3.2.3) hold for a′
n,•, b′

n,• as in (i).

Proof First we consider case (i). As explained in Example 8, the integral weight
expansion (x×�0

0 , x
×�1
1 , . . . , x

×�N
N ) of p/q = [�0; �1, . . . , �N ] satisfies the identities

xk+1 = xk−1 − �kxk . Assuming that one knows the multiplicities [�0; �1, . . . , �N ],
one can read this identity in either direction. If one knows p, q then x0 = q so that
x1 = p − �0q, and then one can determine x2, x3, and so on. On the other hand,
since we are dealing with the integral expansion the last weight is 1, and hence we
have xN = 1, xN−1 = �N which determines xN−2, xN−3 and so on. The latter is the
relevant procedure here since going from an,k, bn,k to an,k+1, bn,k+1 means adding
an extra pair (2n + 5, 2n + 1) to the continued fraction. For example, the integral
weight expansion of [2n+ 5; 2n+ 1, 2n+ 4] is

(a
×(2n+5)
n,1 , b

×(2n+1)
n,1 , 1×(2n+4)).

This proves (i:a), and (i:b) holds by similar reasoning. One can check that the
relation also holds when k = 0 with the given definitions of an,0, bn,0 and an,−1.
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Finally, we prove by induction on k ≥ 1 that the numbers an,k, bn,k+1
satisfy (3.2.3). The base case for an,1 follows from the definitions of an,0, an,−1
in (2.4.1), while the claim for bn,2 holds because

bn,2 = (2n+ 5)
(
(2n+ 1)(2n+ 4)+ 1

) + (2n+ 4) by (b)

= (2n+ 4)(4n2 + 12n+ 6)+ (2n+ 5)

= (4n2 + 12n+ 7)(2n+ 4)+ 1 = (4n2 + 12n+ 7)bn,1 − bn,0.

The inductive step then follows from the linear relations bn,k+1 = (2n+5)an,k+bn,k
and an,k+1 = (2n+ 1)bn,k+1 + an,k which were proved in (i)(b). This proves (i).

The proof of (ii) is similar, and is left to the reader.

Lemma 64 Let S be a pre-staircase with linear relation (2n+3)dk = R1pk+R2qk ,
whereR1, R2 ∈ Z[n], the ring of polynomials in n with integer coefficients, and with
steps at the points

pk/qk = [�0; �1, . . . , �r , {2n+ 5, 2n+ 1}k, endn], endn := 2n+ 4, �r ∈ Z[n],

and other coefficients dk,mk . Further, let S ′ be the corresponding pre-staircase
with the same linear relation (2n + 3)d ′

k = R1p
′
k + R2q

′
k and steps p′

k/q
′
k defined

as above but with endn = (2n+ 5, 2n+ 2). Then

(i) pk, qk ∈ Z[n], and (2n + 3) divides R1pk + R2qk if and only if it divides
R1p

′
k + R2q

′
k . Moreover, this holds for all k if and only if it holds for k = 0.

(ii) m1d0 −m0d1 = m′
1d

′
0 −m′

0d
′
1.

Proof By Lemma 63 (i)

qkw(pk/qk) = (
. . . , (�rbn,k+1 + a×�r−1

n,k , b
×�r
n,k+1, a

×2n+5
n,k , . . .

)
.

Therefore, by induction on r , one can see that there are polynomials C1, . . . , C4
that depend only �0, . . . , �r such that

qk = C1bn,k+1 + C2an,k, pk = C3bn,k+1 + C4an,k.

Similarly, we have

q ′
k = C1b

′
n,k+1 + C2a

′
n,k, p′

k = C3b
′
n,k+1 + C4a

′
n,k,

with the same Ci . Therefore, there are elements N5, N6 ∈ Z[n] such that

R1pk + R2qk = N5bn,k+1 +N6an,k, R1p
′
k + R2q

′
k = N5b

′
n,k+1 +N6a

′
n,k

Next note that to prove (i), it suffices to check that it holds for k = 0, 1 since the
general case then follows by the recursion. Hence to prove (i) we must check that
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(2n + 3) divides N5bn,k+1 + N6an,k for k = 0, 1 if and only if it also divides
N5b

′
n,k+1 +N6a

′
n,k for k = 0, 1.

But by Lemma 63, modulo (2n+ 3) we have

an,0 ≡ 1, bn,1 ≡ 1, an,1 ≡ −1, bn,2 ≡ −1, a′
n,0 ≡ −1, b′

n,1 ≡ −1, a′
n,1 ≡ 1, b′

n,2 ≡ 1.

Hence in both cases we need precisely that N5 + N6 is divisible by 2n + 3. Since
this identity follows already from the case k = 0, this proves (i).

To prove (ii), notice that given pk, qk we define dk by the staircase relation.
Therefore we may write dk = C7an,k + C8bn,k+1, where C7, C8 are (possibly
rational, but in practice polynomial) functions of n that depend also on �0, . . . , �r .
When k = 0, 1, (3.2.2) gives an explicit linear expression for bn,k+1 in terms of
an, bn, with coefficients that also depend on n (but are independent of k). Therefore,
for k = 0, 1 we can write dk = N1an,k + N2bn,k where N1, N2 are functions of
n, �0, . . . , �r . Since mk := 3dk − pk − qk , a similar argument shows that there are
functions N1, . . . , N4 of n, �0, . . . , �r such that the first two lines below hold.

d0 = N1an,0 +N2bn,0, m0 = N3an,0 +N4bn,0

d1 = N1an,1 +N2bn,1, m1 = N3an,1 +N4bn,1

d ′
0 = N1a

′
n,0 +N2b

′
n,0, m′

0 = N3a
′
n,0 +N4b

′
n,0

d ′
1 = N1a

′
n,1 +N2b

′
n,1, m′

1 = N3a
′
n,1 +N4b

′
n,1.

The second two lines then hold with the same constants since (3.2.2) also holds in
this case. Hence

m1d0 −m0d1 = (N2N3 −N1N4)(an,1bn,0 − an,0bn,1)
m′

1d
′
0 −m′

0d
′
1 = (N2N3 −N1N4)(a

′
n,1b

′
n,0 − a′

n,0b
′
n,1).

Therefore it suffices to check that

an,1bn,0 − an,0bn,1 = a′
n,1b

′
n,0 − a′

n,0b
′
n,1.

But by Lemma 63 both sides equal −(4n2 + 12n+ 9).

Lemma 65 Suppose that the positive integers dk,mk, pk, qk are defined for k ≥ 0
and satisfy the recursion

xk+1 = Rxk − xk−1, k ≥ 1.

Then the identity d2
k − m2

k = pkqk − 1 holds for all k, if and only if it holds for
k = 0, 1, and also

2(d0d1 −m0m1) = (p1q0 + p0q1)− R. (3.2.5)
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Hence it holds for all k if and only if it holds for k = 0, 1, 2.

Proof Abbreviate x := xk, x′ := xk−1 so that xk+1 = Rx − x′. Then observe that

(
d2 −m2 = pq − 1, (d ′)2 − (m′)2 = p′q ′ − 1

)
⇐⇒ (3.2.6)

(
(Rd − d ′)2 − (Rm−m′)2 = (Rp − p′)(Rq − q ′)− 1

)
,

exactly if

2(dd ′ −mm′) = (pq ′ + p′q)− R,

But if the latter equation holds, we have

2
(
(Rd − d ′)d − (Rm−m′)m

) = 2R(d2 −m2)− 2(dd ′ −mm′)

= 2R(pq − 1)+ R − (pq ′ + p′q)

= −R + (Rp − p′)q + (Rq − q ′)p.

Hence, arguing inductively, we see that (3.2.5) implies

2(dk+1dk −mk+1mk) = −R + (pkqk+1 + pk+1qk), for all k ≥ 0.

Thus, the calculation in (3.2.6) implies that d2
k −m2

k = pkqk−1 holds for all k ≥ 0.

Lemma 66

(i) For each n ≥ 1, the classes in the ascending pre-staircase SU�,n are integral
and satisfy the linear Diophantine identity.

(ii) For each n ≥ 0, the classes in the descending pre-staircase SUu,n are integral
and satisfy the linear Diophantine identity.

Proof First consider case (i) with ending endn = 2n + 4. Then EU�,n,0 has center
2n + 4, and one can calculate the corresponding degree d by using the staircase
relation

(2n+ 3)dU�,n,k = (n+ 1)pU�,n,k + (n+ 2)qU�,n,k.

When k = 1 we may use Lemma 63 (i) to obtain

qU�,n,1 = an,1, pU�,n,1 = (2n+ 5)an,1 + bn,1.

We compute dU�,n,1 using the relation, and then define mU�,n,1 by the linear Diophan-
tine identity. This gives the following:

(
dU�,n,0,m

U
�,n,0, p

U
�,n,0, q

U
�,n,0

) = (
n+ 2, n+ 1, 2n+ 4, 1

)
(3.2.7)
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dU�,n,1 = 4n3 + 20n2 + 30n+ 13, mU�,n,1 = 4n3 + 16n2 + 18n+ 5.

pU�,n,1 = 8n3 + 40n2 + 62n+ 29, qU�,n,1 = 4n2 + 10n+ 5,

The tuples for k ≥ 2 are then defined using the recursion. Since dU�,n,k is an integer
for k = 0, 1, the recursion implies that it is an integer for all k. The tuple satisfies
the linear Diophantine relation by definition.

The claims when endn = (2n + 5, 2n + 2) follow by arguing similarly, using
Lemma 64 (i). This proves (i).

The steps of SUu,n have centers [2n+ 7; {2n + 5, 2n + 1}k, endn] for k ≥ 0, and
the relation is

(2n+ 3)dUu,n,k = (n+ 2)pUu,n,k − (n+ 4)qUu,n,k.

Since the staircase SU�,n has steps with centers

[{2n+ 5, 2n+ 1}k, endn] = qU�,n,k w
(pU�,n,k
qU�,n,k

)
,

it follows that11

qUu,n,k = pU�,n,k, pUu,n,k = (2n+ 7)pU�,n,k + qU�,n,k.

Therefore

R1p
U
u,n,k + R2q

U
u,n,k = (n+ 2)

(
(2n+ 7)pU�,n,k + qU�,n,k

) − (n+ 4)pU�,n,k

≡ (n+ 1)pU�,n,k + (n+ 2)qU�,n,k (mod (2n+ 3)),

and hence is divisible by 2n+ 3 by (i). Again, the linear Diophantine relation holds
by the definition of mUu,n,k . For later use, we note that

(
dUu,n,0,m

U
u,n,0

) = (
2n2 + 11n+ 14, 2n2 + 9n+ 9

)
(3.2.8)

dUu,n,1 = 8n4 + 68n3 + 202n2 + 245n+ 100,

mUu,n,1 = 8n4 + 60n3 + 158n2 + 171n+ 63.

This completes the proof.

To complete Step 2 we must show that the classes are perfect. This proof
is deferred to Sect. 3.4; see Proposition 79. The quadratic Diophantine equality

11In general, if [�0; �1, . . . , ] = p/q then [s; �0, �1, . . . , ] = (sp + q)/p.
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then follows (though one could also prove it by an inductive argument based on
Lemma 65).

Step 3: We must check that the conditions in Theorem 52 hold. The fact that 3 +
2
√

2 < P�/Q� < p/q < Pu/Qu follows immediately from the continued fraction
expansions of P�/Q�, Pu/Qu. See Remark 76, which explains the somewhat subtle
ordering of numbers that are given by continued fractions, and Remark 53 which
explains how to check whether a staircase ascends or descends. The claim that
�(p/q) < �(z) for all z ∈ (

P�/Q�, Pu/Qu
)

is very straightforward in the case of
the staircases SU•,n, since p/q is an integer and �(p/q) = p. We also must check that
M•/D• = 1/3 for • = �, u. Since M•,D• are both numbers of the form a + b√σ
where a, b ∈ Q it suffices to check that rational part a of 3M• is not equal to that
of D•. Therefore, by (2.4.4) it suffices to check that in each staircase 3m0 = d0, a
fact that is immediate from the formulas in (3.2.7) and (3.2.8). Thus condition (i)
in Theorem 52 holds, and conditions (ii) and (iii) can be verified by comparing the
given linear relations with the parameters of BUn .

Step 4: By Step 2 and Sect. 3.4 we know that for each n the pre-staircase classes
are perfect for large k, but it remains to check that they are live at the appropriate
limiting value for b. This requires considerable work, and again we begin with a
general result.

Lemma 67 Consider a pre-staircase with classes
(
dk,mk; qkw(pk/qk)

)
,

where the ratios bk := mk/dk have limit b∞, and let the constants
D,D′,D′′,M,M ′,M ′′, σ := σn be as in (2.4.4), with xk = dk,mk respectively.

(i) Suppose thatMD −MD = 0. Then the bk are strictly increasing iff

MD −MD = 2
√
σn(M

′′D′ −M ′D′′) > 0,

and otherwise they are strictly decreasing.
(ii) ifM ′′D′ −M ′D′′ > 0, b∞ < r/s ≤ 1, and

|M ′′D′ −M ′D′′| ≤ sD − rM
2
√
σ |rD − sM| , (3.2.9)

then there is k0 such that

mk

dk
≤ b∞ = M

D
≤ s +mk(rdk − smk)
r + dk(rdk − smk) , for k ≥ k0.

(iii) ifM ′′D′ −M ′D′′ < 0, b∞ > r/s > 0, and (3.2.9) holds, then there is k0 such
that

bk := mk(smk − rdk)− s
dk(smk − rdk)− r ≤ b∞ = M

D
≤ mk

dk
, for k ≥ k0,
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Proof Write

mk = Mλk +M λk, dk = Dλk +D λk,

as in Lemma 47. Then

bk := mk

dk
= Mλk +M λk
Dλk +D λk

<
Mλk+1 +M λk+1

Dλk+1 +D λk+1
= mk+1

dk+1

if and only if

(
Mλk +M λk)(Dλk+1 +D λk+1)

<
(
Mλk+1 +M λk+1)(

Dλk +D λk).

This is equivalent to

MDλ+MDλ < MDλ+MDλ,

and hence to the condition

(MD −MD)λ > (MD −MD)λ.

Since λ > λ > 0, this holds exactly ifMD −MD > 0.
Now writeM = M ′ +M ′′√σ ,D = D′ +D′′√σ as in Remark 48. Then

MD −MD = (M ′ +M ′′√σ)(D′ −D′′√σ)− (M ′ −M ′′√σ)(D′ +D′′√σ)
= 2

√
σ(M ′′D′ −M ′D′′).

This proves (i).
To prove (ii) we must check that

rM +M(Dλk +D λk)(r(Dλk +D λk)− s(Mλk +M λk))

≤ sD +D(Mλk +M λ
k
)
(
r(Dλk +D λk)− s(Mλk +M λk)).

The coefficients of λ2k are the same on both sides, while, after a little manipulation,
the constant term gives the inequality

(MD −MD)(rD − sM) ≤ sD − rM.

Since b∞ := M/D < r/s ≤ 1 by assumption, we have rD − sM > 0, and
sD − rM > 0 since D > M, s ≥ r . The further assumption

MD −MD = 2
√
σ(M ′′D′ −M ′D′′) > 0,
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shows that the above inequality is equivalent to requiring that |M ′′D′ −M ′D′′| ≤
sD−rM

2
√
σ(sM−rD) , as claimed.
This completes the proof of (ii). The proof of (iii) is almost identical, and is left

to the reader.

Remark 68

(i) The inequalities in Lemma 67 can be simplified because, in the notation
of (2.4.4) we have X = X′ +X′′√σn where

X′ = x0

2
, X′′ = 2x1 − x0(σn + 2)

2(2n+ 3)σn
, σn = (2n+ 1)(2n+ 5). (3.2.10)

Hence if the values of dn,k,mn,k for k = 0, 1 are denoted dk,mk , we have

D′ = d0

2
, D′′ = 2d1 − d0(σn + 2)

2(2n+ 3)σn
, M ′ = m0

2
, M ′′ = 2m1 −m0(σn + 2)

2(2n+ 3)σn

so that

M ′′D′ −M ′D′′ = 1

2(2n+ 3)σn

(
m1d0 −m0d1

)
. (3.2.11)

Therefore, we just need to check the sign of m1d0 − m0d1, and the following
reformulation of (3.2.9):

|m1d0 −m0d1|
2n+ 3

≤
√
σn(sD − rM)
|sM − rD| . (3.2.12)

Note that this inequality only involves the entries in the first two terms of the
pre-staircase.

(ii) By Lemma 64 (ii), the quantity m1d0 − m0d1 does not depend on the chosen
end endn. Further, the ratio M/D is also independent of the end, since P/Q
is by definition, and M/D = acc−1(P/Q). Therefore the right hand side of
the inequality (3.2.11) is also independent of the choice of end. Hence our
arguments below apply with both choices.

(iii) We observe that in all cases encountered below the expression m1d0 −m0d1 is
a multiple of 2n+ 3. Further, the calculations can sometimes be simplified by
noting that the sign of m1d0 − m0d1 determines whether m0/d0 is greater or
less than m1/d1. Since the function x �→ s−rx

|sx−r| is monotonic, it is sometimes

enough to calculate the simpler expression sd0−rm0|sm0−rd0| instead of sD−rM
|sM−rD| .

(iv) If S = (Ek) is a pre-staircase whose steps have centers pk/qk , then we saw in
Proposition 49 that the classes Ek are perfect blocking classes for large k. The
corresponding family of blocked b-intervals JEk cannot include the limit b∞
and if the b values are > 1/3 (resp. < 1/3) these intervals ascend if and only
if the centers ascend (resp. descend). Although, as we saw in Remark 39, the
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values bk = mk/dk do not have to lie in these blocked b-intervals, they cannot
be too far away. Hence one would expect them to increase for ascending (resp.
descending) staircases with b-values > 1/3 (resp. < 1/3.) However, this does
not seem to be true. For example the ascending staircases SU�,n considered in

Lemma 69 have b-values in (1/3, 1) but yet the sequence bU�,n,k decreases.

Since this implies that bU�,n,k > bU�,n,∞, this implies that bU�,n,k /∈ JEUn,k
. A

similar phenomenon happens with the ascending staircases SL�,n,SE�,n with

b-values in (0, 1/3) and yet increasing bL�,n,k, b
E
�,n,k . On the other hand, the

descending staircases do not seem to exhibit this behavior, though in these
cases it can require more work to eliminate potential overshadowing classes. ♦

Lemma 69 The pre-staircase SU�,n satisfies condition (ii) in Theorem 51 for all
n≥ 1.

Proof By Remark 68 (ii) we may suppose that endn = 2n + 4. Then, using the
notation in that remark, we have from Lemma 66 that d0 := dU�,n,0 = n+ 2,m0 :=
mU�,n,0 = n+ 1 and

d1 = 4n3 + 20n2 + 30n+ 13, m1 = 4n3 + 16n2 + 18n+ 5.

Hence

m1d0 −m0d1 = (4n3 + 16n2 + 18n+ 5)(n+ 2)− (4n3 + 20n2 + 30n+ 13)(n+ 1)

= −(2n+ 3).

Therefore, by Lemma 67 (iii), we must check that (3.2.12) holds for suitable r, s,
i.e. for each n we need

|m1d0 −m0m1|
2n+ 3

= 1 <
√
σn(sD − rM)
sM − rD .

But the function x �→ s−rx
sx−r decreases for x ∈ (r/s, 1] with minimum value 1. Hence

for each n, this inequality holds for all r/s < M/D = bU�,n,∞.
Finally, we show that there is no overshadowing class of degree d ′ < sD/(sM−

rD). Fix n and abbreviate bn := bU�,n,∞. We first claim that bn > 1/2 for all n ≥ 1.

Indeed, aU�,1,∞ = [7; 3; {7, 3}∞] > 7 while one can calculate using (2.3.2) that

acc−1
U (7) ≈ 0.596. Hence, for each n we may choose r/s > 0 so that s/(sbn− r) <

2, or equivalently so that 0 < 2r < s(2bn−1). Thus any overshadowing class would
have to have degree 1, and hence does not exist.

It remains to consider the descending pre-staircases SUu,n. Again, it suffices by
Remark 68 (ii) to treat the case endn = 2n+ 4. It is convenient to deal first with the
case n = 0.
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Example 70 When n = 0 the classes EUu,0,k for k = 0, 1 have centers [7; 4] and
[7; 5, 1, 4], and hence have parameters

(d,m, p, q) = (14, 9, 29, 4), (100, 63, 208, 29) with σ = 5.

Since

X := X′ +X′′√σ := x0

2
+ 2x1 − x0(σ + 2)

2(2n+ 3)σ

√
σ ,

we have

D = 7 + 17

5

√
5 ≈ 14.6, M = 9

2
+ 21

10

√
5 ≈ 9.2,

Hence b∞ = M/D ≈ 0.6297, and

m1d0 −m0d1 = 63 · 14 − 9 · 100 = −18,

so that the sequence mUu,0,k/d
U
u,0,k decreases as expected. Since b∞ > 1/2 we

may take r = 1, s = 2, and one can check that this choice gives the estimate√
5(2D−M)
(2M−D) > 6 required by (3.2.12).

Further, since b∞ > 5/8 we have 2/(2b∞ − 1) < 2/0.25 < 8, so that we only
need rule out overshadowing classes of degree d ′ < 8 withm′ < d ′/2. But if d ′ = 7
this means thatm′ ≤ 3, so that d ′b∞−m′ > 1. Hence, by Lemma 15 (i), such a class
cannot be obstructive for b in a nonempty interval of the form (b∞, b∞ + ε), and so
is not overshadowing. A similar argument rules out the cases d ′ = 2, 4, 5, 6, while
if d ′ = 3 we must have m′ ≤ 1 so that E′ = (3, 1; 2, 1×5) or (3, 0; 2, 1×6). But the
centers of both these classes are less than the accumulation point a∞, so that they
cannot overshadow.12 Thus no overshadowing classes satisfy the given restrictions.
It follows that SUu,0 is a staircase, by Theorem 51 (ii). ♦

Lemma 71 For each n ≥ 0, the pre-staircase SUu,n satisfies condition (ii) in
Theorem 51.

Proof Again we carry out the argument for endn = 2n + 4, leaving the other case
to the reader. Since the case n = 0 was treated in Example 70, we will suppose that
n ≥ 1. By (3.2.8) we have

(
d0,m0

) = (
2n2 + 11n+ 14, 2n2 + 9n+ 9

) = (
(2n+ 7)(n+ 2), (2n+ 3)(n+ 3)

)

d1 = 8n4 + 68n3 + 202n2 + 245n+ 100

= (4n2 + 12n+ 7)d0 + 2 = (σn + 2)d0 + 2,

12Notice that when z > 6 the obstruction from (3, 1; 2, 1×5) is no longer given by z �→ 1+z
3−b .
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m1 = 8n4 + 60n3 + 158n2 + 171n+ 63 = (σn + 2)m0.

Therefore

m1d0 −m0d1 = −2m0 < 0,

so that by (3.2.11) the bk decrease, and we are case (iii) of Lemma 67. Further,

M

D
≤ m0

d0
= 2n2 + 9n+ 9

2n2 + 11n+ 14
= 1

1 + y , where y := 2n+ 5

2n2 + 9n+ 9
.

Therefore, because the function x �→ 2−x
2x−1 is decreasing for 1/2 < x ≤ 1, we have

2D −M
2M −D >

2d0 −m0

2m0 − d0
= 1 + 2y

1 − y

≥ 1 + 3y = 2n2 + 15n+ 24

(2n+ 3)(n+ 3)
>

2(n+ 4)

2n+ 3
.

Therefore, because 2n+ 2 <
√
σn < 2n+ 3, we have

|m1d0 −m0d1|
2n+ 3

= 2(n+ 3) ≤ 2(n+ 1)
2(n+ 4)

2n+ 3
≤ √

σn
2D −M
2M −D

where the first inequality uses (n+ 3)(2n+ 3) ≤ 2(n+ 1)(n+ 4) for all n ≥ 1.
This shows that condition (3.2.12), or equivalently (3.2.9), holds with r/s = 1/2.
When n = 1 we can use (3.2.10) and the above formulas for (di,mi) to calculate

b∞ ≈ 0.738 > 0.7. Hence 2/(2b∞ −1) < 5. Therefore it remains to show there are
no overshadowing classes of degree d ′ ≤ 4 and m′/d ′ < 1/2. But the arguments in
Example 70 still apply when n > 0. This completes the proof.

Proof of Theorem 56 This follows from Lemmas 66, 69, and 71, and Corollary 84,
using the reasoning explained at the beginning of Sect. 3.2.

Proof of Theorem 1 Most of the claims in this theorem are restated in Theorem 56,
and hence are proved above. It remains to check the explicit formulas for the
endpoints of JBUn

and IBUn :

β�(n) = (2n2 + 6n+ 3)− √
σn

2n2 + 6n+ 2
,

(n+ 3)
(
3n+ 7 + √

σn
)

5n2 + 30n+ 44
= βu(n),

α�(n) = σn + (2n+ 3)
√
σn

2(2n+ 1)
, 6 + σn + (2n+ 3)

√
σn

2(2n+ 5)
= αu(n).

By Theorem 52, β�(n) = M/D whereM,D are calculated for SU�,n, while βu(n) =
M/D where M,D are calculated for SUu,n. Thus by Lemma 69, and taking endn =
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2n+ 4 we have

β�(n) = (n+ 1)(2n+ 3)
√
σn + (4n3 + 16n2 + 17n+ 3)

(n+ 2)(2n+ 3)
√
σn + (4n3 + 20n2 + 29n+ 12)

,

and one can check that this does simplify to the desired expression. Similarly,
Lemma 71 shows that

βu(n) = (n+ 3)(2n+ 3)
(
(2n+ 3)

√
σn + (σn + 2)

)

(n+ 2)(2n+ 7)
(
(2n+ 3)

√
σn + (σn + 2)

) + 4
,

and one can again check that this does simplify to the desired expression.
The closed formulas for α�(n), αu(n) can be obtained in a similar way from the

ratios P/Q, or by simply calculating acc(β�(n)), acc(βu(n)). Further details are left
to the interested reader.

3.3 Proof of Theorems 54, 58, 2 and 5

Since the statement of Theorem 58 includes those of Theorems 2 and 5, it suffices
to prove the first two theorems.

We will first consider the staircases associated to the classes

BLn =
(

5n, n− 1; 2nw(
12n+ 1

2n
)
)
, n ≥ 1.

(Notice that the case n = 0 makes no sense here.) We follow the procedure laid out
at the beginning of Sect. 3.2. Although we could make the arguments completely
afresh, ignoring the connection between the classes BUn and BLn , we will use the fact
from Corollary 60 that the reflectionΨ : w �→ 6w−35

w−6 takes the centers of the classes
in the staircases SU•,n to those of SL•′,n, where �′ := u, u′ := �, i.e. it interchanges
the ascending and descending staircases.

We saw in Example 8 that the integers p, q calculated from a continued
fraction expansion [�0; . . . , �N ] are always coprime. Further, if gcd(p, q) = 1 then
gcd(6p − 35q, p − 6q) = 1 since any common divisor of 6p − 35q, p − 6q also
divides 6p− 35q − 6(p− 6q) = q and hence also divides p. Since Ψ−1 = Ψ , this
proves the following:

(
gcd(p, q) = 1, Ψ (

p

q
) = p̂

q̂

)
⇐⇒

(
gcd(p̂, q̂) = 1, p̂ = 6p − 35q, q̂ = p − 6q

)
. (3.3.1)

To prove Step 1 we simply need to check that the classes BLn satisfy the
Diophantine equations (2.1.2), which can be done by an easy computation.
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We move on to Step 2, which claims that the staircase classes are perfect. The
next lemma shows that they are well defined (i.e. that the degree d is always an
integer), and satisfy the linear Diophantine identity. The proof that they are perfect
is given in Proposition 86. One could also use Lemma 65 to check the quadratic
Diophantine identity; however, since this follows from Proposition 86 we do not do
that here. Note that there is an analog of Lemma 72 when endn = (2n+ 5, 2n+ 2),
but in view of Lemma 64 we do not need it.

Lemma 72

(i) For n ≥ 2 and endn = 2n + 4, the pre-staircase SLu,n can be extended by the
class for k = −1 with coefficients

(
5(n− 1), (n− 2); (2n− 2)w(

12n− 11

2n− 2
)
)
. (3.3.2)

(ii) The classes in SL�,n and SLu,n are well defined and satisfy the linear Diophantine
identity for n ≥ 1 and all k.

Proof The classes in SLu,n have centers

aLu,n,k = [6; 2n− 1, 2n+ 1, {2n+ 5, 2n+ 1}k, endn], n ≥ 1, k ≥ 0,

= Ψ ([2n+ 5; 2n+ 1, {2n+ 5, 2n+ 1}k, endn] = Ψ (aU�,n,k+1),

where the second identity holds by Lemma 59 (i:b). Notice here that the term in k
for SLu,n corresponds to the term in k+ 1 for SU�,n. Therefore, there should be a term

in SLu,n with center Ψ (endn). When endn = 2n+ 4, the center is

Ψ (2n+ 4) = 6(2n+ 4)− 35

2n+ 4 − 6
= 12n− 11

2n− 2
.

Therefore, because the relation in SLu,n is

(2n+ 3)dn,k = −(n− 1)pn,k + (11n+ 2)qn,k,

this entry is
(
5(n − 1), n − 2; (2n − 2)w( 12n−11

2n−2 )
)
. This is a quasi-perfect class,

as can be verified by direct calculation. Since the (Relation) holds by definition, to
complete the proof that this class can be added to SLu,n as in Remark 48 (ii), we must
check that the (Recursion) holds for the triple k = −1, 0, 1, i.e. that

x1 = (σ + 2)x0 − x−1, x = d, p, q,m.

Since d•,m• are linear combinations of p•, q•, it suffices to prove this for p•, q•.
But by definition pk, qk are linear functions of p′

k, q
′
k , where p′

k/q
′
k = [{2n+5, 2n+
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1}k+1, 2n + 4], and p′
k, q

′
k satisfy the recursion by Lemma 63 (i). This justifies our

extending SLu,n by this class, and hence proves (i).
Since the linear Diophantine equality is always satisfied by definition of m, to

prove (ii) we must check that d as defined by the staircase relation is integral for
each n. By Lemma 64 (i) it suffices to do this in the case endn = 2n + 4, and for
only two adjacent values of k (either k = 0, 1 or k = −1, 0). In the case of SLu,n
with n ≥ 2, we have the integral vectors

(dLu,n,−1,m
L
u,n,−1, p

L
u,n,−1, q

L
u,n,−1) = (

5(n− 1), n− 2, 12n− 11, 2n− 2
); (3.3.3)

(dLu,n,0,m
L
u,n,0, p

L
u,n,0, q

L
u,n,0) = (

20n3 + 40n2 + 6n− 1, 4n3 + 4n2 − 6n− 1.

48n3 + 100n2 + 22n− 1, 8n3 + 16n2 + 2n− 1
)
.

Further, when n = 1, although the tuple (0,−1; 1, 0) obtained by setting n = 1
in (3.3.2) makes no sense geometrically, it does make numerical sense, and so dLu,1,k
is integral for each k as well.

As for SL�,n with endn = 2n+ 4, one can check that its initial classes are

(dL�,n,0,m
L
�,n,0) = (

10n2 + 25n+ 13, 2n2 + 3n
)

(3.3.4)

(dL�,n,1,m
L
�,n,1) = (

40n4 + 220n3 + 422n2 + 331n+ 89, 8n4 + 36n3 + 50n2 + 21n
)
.

Therefore dL�,n,k is integral for all k, n as claimed.

Step 3 again follows immediately from the definitions. (For more details about
how to check this, see this step in Sect. 3.2; it occurs just after Lemma 66.) Hence
it remains to prove the analog of Lemmas 69 and 71. Again it suffices to carry out
the argument only for the case endn = 2n + 4 since the other case will follow by
Remark 68 (ii).

Lemma 73 For all n ≥ 0, the pre-staircase SL�,n satisfies condition (i) in Theo-
rem 51 with appropriate r/s.

Proof We first check the sign of m1d0 −m0d1. By (3.3.4) we have

m1d0 −m0d1 = (
8n4 + 36n3 + 50n2 + 21n

)(
10n2 + 25n+ 13

)

− (
40n4 + 220n3 + 422n2 + 331n+ 89

)(
2n2 + 3n

)

= 4n2 + 6n = (2n+ 3)2n > 0 since n > 0,

Therefore we are in case (ii) of Lemma 67, and, by (3.2.12), need to find r/s >
M/D so that

√
σ(sD − rM)
rD − sM > 2n, (3.3.5)
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where M := M�(n),D := D�(n) are the values appropriate for SL�,n, and σ :=
σn. Since (2n + 2)2 < σ = (2n + 1)(2n + 5) < (2n + 3)2, it suffices to have
sD−rM
rD−sM > 1, or equivalently (s − r)D > (s − r)M . But this holds for all 0 <
r < s, showing that (3.3.5) holds for all such r, s. Therefore, for each n we are
free to choose 1 > r/s > M/D to minimize the degree d ′ < sD/(rD − sM) of a
potentially overshadowing class.

We now claim that M/D < 1/5. One could simply prove this by direct
calculation. Alternatively, recall that we have already proved that this staircase is
associated to the blocking class BLn so thatM/D is one of the endpoints (in fact the
upper one) of the blocked interval JBLn

, which as one can readily check is a subset of
(0, 1/5). Hence we can choose any r/s > 1/5. In particular, if we take r/s = 7/10
then

sD

rD − sM = s

r − sM/D <
s

r − s/5 = 2.

But the only exceptional classes of degree d = 1 are L − Ei − Ej , which do not
overshadow. Hence there are no overshadowing classes, and the proof is complete.

Lemma 74 For all n ≥ 1, the pre-staircase SLu,n satisfies condition (i) in
Theorem 51.

Proof As we pointed out in (2.4.5) in cases when we can extend the staircase by a
term with k = −1 we have m0d1 − m1d0 = m−1d0 − m0d−1. Therefore we can
apply (3.2.11) using the terms with k = −1, 0. By (3.3.2) and (3.3.3) we have

m0d−1 −m−1d0 = (4n3 + 4n2 − 6n− 1)5(n− 1)− (n− 2)(20n3 + 40n2 + 6n− 1)

= 24n2 + 38n+ 3 = (2n+ 3)(12n+ 1) > 0.

Hence, by Lemma 67 (i) and (3.2.11), for each n the sequence (bn,k)k≥−1 increases,
which is what we would expect from a descending staircase with b-values < 1/3
(but see Remark 68 (iv)).

Next, we must check to see if (3.2.12) holds with appropriate r/s. Thus we need

m0d−1 −m−1d0√
σn(2n+ 3)

= 12n+ 1√
σn

<
s − r M

D

r − s M
D

. (3.3.6)

Since 2n + 2 <
√
σn, we have 12n+1√

σn
< 6 for all n ≥ 1. However there are better

upper bounds for small n:

13√
σ1
< 2.84,

25√
σ2
< 3.73,

37√
σ3
< 4.22 (3.3.7)

Notice also that the values bn := bLu,n,∞ = M/D increase with n because
acc(bn) = aLu,n,∞ decreases with n (as one can see because the centers of the
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associated blocking classes BLn decrease). Further, for each n we have

acc−1
L (

12(n− 1)+ 1

2(n− 1)
) < bn < acc−1

L (
12n+ 1

2n
),

since 12n+1
2n is the center point of the blocking class BLn and acc−1

L reverses
orientation. Therefore

0 < b1 < acc−1
L (

13

2
) < b2 < acc−1

L (
25

4
) < b3 < acc−1

L (
37

6
) < b4, (3.3.8)

where, using (2.3.2) to compute acc−1
L (

12n+1
2n ) for n = 1, 2, 3, we find they are

approximately 0.064, 0.121, and 0.144.
It turns out that if we choose r/s = 3/10, we can satisfy the inequality 12n+1√

σn
<

s−rbn
r−sbn for all n, while the requirement in Lemma 15 (i) that an obstructive class E′ =
(d ′,m′; m′) at bn have |bnd ′ − m′| < 1 has no suitable solutions if m′/d ′ > 3/10
and d ′ ≤ 10

3−10bn
. Thus there is no overshadowing class.

Here are the details. Notice that when 0 ≤ x < r/s < 1 the function x �→ s−rx
r−sx

increases. Therefore 10−3b
3−10b > 3 for all b, which in view of (3.3.7) gives the bound

in (3.3.6) for n = 1. In fact, one can check that (3.3.6) holds for all n because, using
the bounds (3.3.8) for bi and the bounds in (3.3.7) for 12n+1√

σn
≤ 6, we have

10 − 3b2

3 − 10b2
> 4,

10 − 3b3

3 − 10b3
> 5,

10 − 3bn
3 − 10bn

> 6, ∀ n ≥ 4.

Next observe that the maximum degree of d ′ of a potentially overshadowing class
is < 10

3−10bn
< 10 because bn = M/D < 1/5 < 3/10. If d ′ = 7, 8, 9 the inequality

m′/d ′ > 3/10 implies that m′ ≥ 3, so that

|bd ′ −m′| = m′ − d ′b ≥ 3 − 9/5 > 1.

Therefore there are no solutions of these degrees. Similarly, one can check that there
are no solutions if d ′ = 4, 5, so that m′ ≥ 2, or if d ′ = 3,m′ = 2. If d ′ ≤ 3 with
m′ = 1 then the only possible solution is E′ = (3, 1; 2, 1×5), but as pointed out in
Example 32 this class is not even obstructive at its break point z = 6 when b < 1/5.

However, if d ′ = 6, then the inequalitym′/d ′ > 3/10 is satisfied withm′ = 2, 3,
and if m′ = 2 there are b < 1/5 such that |6b − 2| < √

1 − b2. We rule this case
out as follows. The break point a′ of any overshadowing class E′ must be > 6, and
hence have �(a′) ≥ 7. Further, because w(a′) starts with a block of length at least
6, it follows from Lemma 18 (ii) that the first 6 entries of m′ are k×5, k′ where
|k′ − k| ≤ 1. The identity

∑
mi = 3d ′ − m′ − 1 = 15 shows that k = 1 or 2,

while the quadratic identity shows that k = 1. Therefore we would have to have
E′ = (6, 2; 3, 2×6), with break point 7; to see this notice that 7 is the unique point
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a > 6 with �(a) = 7. Arguing as in the proof of Lemma 16, we find that

μE′,b(z) = 1 + 2z

6 − 2b
<

1 + z
3 − b , for 6 < z < 7.

But by (2.3.7) when z = acc(b) ∈ (6, 7)we have Vb(z) = 1+z
3−b . Hence the constraint

μE′,b never meets the volume constraint at the accumulation point z = acc(b) and
so cannot be an overshadowing class. This completes the proof.

Proof of Theorem 54 This holds by Lemmas 72–74 together with Proposition 86,
using the proof scheme explained at the beginning of Sect. 3.2.

Now consider the staircases SE•,n with blocking classes

BEn = (
5(n+ 3), n+ 4; (2n+ 6)w(

12n+ 35

2n+ 6
)
)
.

Since we are given simple formulas for the components of BEn , one can readily check
that these are Diophantine classes, and hence quasi-perfect.

For Step 2, we must check that the staircase classes are quasi-perfect. The
argument in Lemma 72 adapts in a straightforward way. In particular, as we show
in Lemma 75 below, the staircase SE�,n can again be extended by a class defined for
k = −1, which simplifies the calculations. We will leave it to the reader to check
the further details of this step.

Step 3 involves checking that the relations in the pre-staircases are those
associated to BEn as described in Theorem 52, and so follows by inspection.
However, the last step, which establishes that the staircase classes are live at the
limiting b-value, is somewhat more tricky, specially in the case SEu,n. First consider
the ascending pre-staircases SE�,n. By Corollary 60 they are the image by the shift

Sh of the corresponding staircases SU�,n, and have b-values in the range (1/5, 1/3).

Lemma 75 The pre-staircases SE�,n, n ≥ 1, satisfy condition (i) in Theorem 51.

Proof We first claim that, as with the staircase SLu,n considered in Lemma 72, when
n ≥ 1 we can extend each SE�,n by a class EE�,n,−1 with center Sh(2n+ 4) = 12n+23

2n+4
and hence with parameters

(5n+ 10, n+ 3; 12n+ 23, 2n+ 4).

To see this, note that by transforming the formulas for p/q in (3.2.7) by Sh and then
using the linear relation (or by direct computation), the parameters of this staircase
are

(d−1,m−1) = (5n+ 10, n+ 3)

(d0,m0) = (20n3 + 100n2 + 156n+ 74, 4n3 + 24n2 + 44n+ 24).
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As in Lemma 72 it is straightforward to check that entries pk, qk of these staircases
satisfy the recursion for k = −1, 0, 1, so that dk,mk do as well. This justifies our
extension of the staircase by a term with k = −1.

We may now calculate

m0d−1 −m−1d0

2n+ 3
= 2n+ 6 > 0.

Therefore, by (2.4.5), and (3.2.11), we are in case (ii) of Lemma 67. Next notice
that, taking r = 1, s = 2, we have

m0d−1 −m−1d0√
σn(2n+ 3)

≤ 2n+ 6

2n+ 2
≤ 2 <

2D −M
D − 2M

, ∀ n ≥ 1, 0 ≤ M

D
<

1

2
.

Therefore, because in factM/D < 1/3 it remains to show there is no overshadowing
class with d ′ < 2/(1 − 2/3) = 6 and m′/d ′ > 1/2. Thus we must have (d ′,m′) =
(3, 2), (4, 3), (5, 3) or (5, 4). But no such classes can be live at b < 1/3 since in
none of these cases is |d ′b − m′| < 1, which is a necessary condition for a class to
be obstructive by Lemma 15 (i). This completes the proof.

It requires somewhat more work to rule out overshadowing classes for the
staircases SEu,n. The following remark will be helpful in understanding the possible
break points of such a class since it explains how the order on Q interacts with
continued fraction expansions.

Remark 76 Each rational number a > 1 has a continued fraction representation
[�0; �1, . . . , �N ], where �i is a positive integer, and N > 0 unless a ∈ Z. By
convention, the last entry in a continued fraction is always taken to be > 1, since
[�0; �1, . . . , �N , 1] = [�0; �1, . . . , �N + 1]; for example

[1; 3, 1] = 1 + 1

3 + 1
1

= 1 + 1

4
= [1; 4].

If N is odd, then [�0; �1, . . . , �N ] > [�0; �1, . . . , �N + 1], in other words, if the last
place is odd, increasing this entry decreases the number represented. For example,
because 2/13 < 3/19, we have

[1; 3, 6, 2] = 1 + 1

3 + 1
6+ 1

2

= 1 + 1

3 + 2
13

> [1; 3, 6, 3] = 1 + 1

3 + 1
6+ 1

3

= 1 + 1

3 + 3
19

,

Further, although increasing an even place usually increases the number repre-
sented, this rule does not hold if one increases an even place13 from 0 to a positive

13This place would necessarily be the last; and notice that the initial place is labelled 0 and hence
is considered to be even.
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number. For example

[1; 4] = 1 + 1

4
> [1; 4, 2] = 1 + 1

4 + 1
2

= 1 + 2

9
> [1; 4, 1] = [1; 5] = 1 + 1

5
.

(3.3.9)

Similarly, if one increases an odd place from 0, the corresponding number increases.
In particular,

[�0; �1, . . . , �N ] > [�0; �1, . . . , �N + 1, . . . ] if N is odd, �N ≥ 2 (3.3.10)

whatever the last entries are. ♦
Example 77 Consider the pre-staircase SEu,0. Its first two steps (with end0 = 4) are

(
73, 20; 29w(

170

29
)
)
,

(
524, 145; 208w(

1219

208
)
)
.

Using (2.4.4), one can calculate

d0 = 73, m0 = 20, d1 = 524, m1 = 145,

D = 73

2
+ 179

10

√
5, M = 10 + 5

√
5,

M

D
= b∞ ≈ 0.27677.

Therefore

m1d0 −m0d1

3
= 35 <

√
5

3D −M
D − 3M

.

Thus we are in case (ii) of Lemma 67 with r = 1, s = 3, and must check that there
are no overshadowing classes with

d ′ < 3

1 − 3b∞
< 18, m′/d ′ > 1/3, and |m′ − d ′b∞| < 1.

It is straightforward to check that the only possibilities for (d ′,m′) are

(d ′,m′) = (11, 4), (8, 3), (5, 2), (4, 2), (2, 1), (1, 1).

For example, the pairs (17, 6), (14, 5) satisfy the first two requirements, but not the
third.

If a′ is the break point of the overshadowing class E′, then a′ > a∞ because E′ is
right-overshadowing, in other words it is obstructive for z > a∞ to the right of a∞;
see Definition 29. Further, we must have �(a′) < �(z) for all z ∈ [a∞, a′) where
a∞ ≈ 5.86 . . . is the accumulation point of the staircase. Therefore we cannot have
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a′ > 6. Since

[5; 2] < [5; 1, 6] < a∞ = [5; 1, 6, {5, 1}∞] < a′,

it follows from Remark 76 that the possibilities for a′ in decreasing order are:

6 > [5; 1, 7] > [5; 1, 6, 4] > [5; 1, 6, 5] > [5; 1, 6, 5, 2] > . . .

Notice for example that Lemma 18 implies that we cannot have a′ = [5; 1, 6, 3] or
[5; 1, 6, 2] because, with z = [5; 1, 6, 5], m′ would differ from w(z) in at least two
places of the last block.

Suppose first that (d ′,m′) = (11, 4). If a′ = 6 then, by Lemmas 14 (iii) and 18,
m′ = (k×5, k + ε) where ε ∈ {−1, 0, 1}. Therefore the linear Diophantine equation
gives

6k + ε = 3d ′ −m′ − 1 = 28,

which has no solution. On the other hand, if a′ = [5; 1, 7] the tuple m′ = (4×5, 1×8)

does satisfy this equation. However, it does not satisfy the quadratic identity (d ′)2 −
(m′)2 = ∑

m2
i − 1. A good way to think of this quadratic identity is as follows.

An exceptional curve in class E′ is obtained by blowing up the singular points of a
rational curve C of degree d ′ with branch points of orders m′,m′

1, . . . , m
′
n, where

m′ = (m′
1, . . . , m

′
n) and the order of a branch point is the number of branches

through that point. Thus a generic perturbation of a branch point of order k has
k(k−1)

2 nearby simple double points. The quadratic identity can be reformulated into
the statement that, when C is perturbed so that it only has simple double points,
then the total number of these double points is (d

′−1)(d ′−2)
2 . Since a curve of degree

11 has 45 double points, and the coefficient m′ = 4 accounts for 6 of them, the
tuple m′ must therefore account for 39 double points. But the tuple (4×5, 1×8) only
accounts for 5 × 6 = 30 double points. Further, if �(a′) were longer any possible
choices for m′ would have even fewer double points. Indeed, when m′ is subject to

the linear Diophantine constraint,
∑
(m′
i )

2 is at most (3d
′−m′−1)2

�(m′) < (d ′)2−(m′)2+1
whenever �(m′) ≥ 8. Therefore there are no solutions for (d ′,m′) = (11, 4).

Similar arguments rule out the cases (8, 3) and (4, 2), while the degree of (2, 1)
is simply too small for the break point to be a′. If (d ′,m′) = (5, 2), there is
an exceptional divisor (5, 2; 2×5, 1×2), but its break point is [5; 2] < a∞ which
is too small. Hence there are no overshadowing classes, so that the pre-staircase
SEu,0 satisfies condition (i) in Theorem 51. Hence it is a staircase as claimed in
Theorem 58. ♦
Lemma 78 The pre-staircases SEu,n, n ≥ 0, satisfy condition (i) in Theorem 51.
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Proof Since the case n = 0 is treated in Example 77, we will suppose that n ≥ 1.
One can calculate that

(d0,m0) = (
10n2 + 55n+ 73, 2n2 + 13n+ 20

)

(d1,m1) = (
40n4 + 340n3 + 1022n2 + 1261n+ 524, 8n4 + 76n3 + 250n2 + 331n+ 145

)

Hence

m1d0 −m0d1 = 24n2 + 106n+ 105 = (2n+ 3)(12n+ 35) > 0.

Therefore, because
√
σn = 2n+ c where 2 < c < 3, we have

m1d0 −m0d1√
σn(2n+ 3)

= 12n+ 35√
σn

= 6 + c′

2n+ c for some c′ > 0.

Thus this function decreases, with limit 6. Further, it is approximately 10.25 when
n = 1, is < 8.8 when n = 2, < 8.1 when n = 3, and < 7.2 when n = 6, and < 7
when n ≥ 8 .

One can calculate that with r/s = 1/3 we have

3d0 −m0

d0 − 3m0
= 28n2 + 152n+ 199

4n2 + 16n+ 13
= 7 + 40n+ 108

4n2 + 16n+ 13

Therefore, because the bk increase, it follows from Remark 68 (ii) that condition (ii)
in Lemma 67 will hold with r/s = 1/3 provided that

12n+ 35√
σn

< 7 + 40n+ 108

4n2 + 16n+ 13
, for all n ≥ 1.

But this is easy to check from the estimates given above for (12n+35)/
√
σn. Indeed,

this is immediate for n ≥ 8 since we saw above that 12n+35√
σn

< 7 in this case. If n = 1
then we saw that RHS ≈ 10.25 while LHS = 7 + 148/33 > 11. The other cases
follow by a similar computation.

Hence it remains to check that there are no overshadowing classes with m′/d ′ >
1/3 and suitably small degree. When n = 1, we have b1,∞ ≈ 0.25416, so that
3/(1 − 3b1,∞) < 13. Therefore we must rule out overshadowing classes of degrees
d ′ ≤ 12, m′/d ′ > 1/3, and |m′ − b1,∞d ′| < 1. Thus, the possibilities for (d ′,m′)
are:

(d ′,m′) = (8, 3), (5, 2), (4, 2), (2, 1), (1, 1). (3.3.11)

Because the steps of SEu,1 have centers [5; 1, 8, {7, 3}k, 6], it follows as in Exam-
ple 77 that the possibilities for the break point a′ of E′ are

6 > [5; 1, 9] > [5; 1, 8, 6] > [5; 1, 8, 7, 4] > . . . .
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But it is straightforward to check that, just as in Example 77, there are no suitable
classes.

When n > 1 the proof is very similar. Since bn,∞ ≤ b1,∞, the only possible
(d ′,m′) are among those listed in (3.3.11), while the possible values of a′ are 6 >
[5; 1, 7+2n] > . . . and so are longer than those for n = 1. Therefore as n increases
the argument gets easier, because in the case of (d ′,m′) = (8, 3), (5, 2), or (4, 2),

we have (3d ′−m′−1)2

�(m′) < (d ′)2 − (m′)2 + 1 whenever �(m′) ≥ 7. Because we have
�([5; 1, 7 + 2n]) = 12 + 2n, the break point of E′ has to be 6, and we showed
above that there is no corresponding overshadowing class. As before, we cannot
have (d ′,m′) = (2, 1) or (1, 1). Therefore, there are no overshadowing classes for
any n, and the proof is complete.

Proof of Theorem 58 This holds by Lemmas 75, 78 and Proposition 86.

3.4 Cremona Reduction

This subsection is devoted to the proof of the following result.

Proposition 79 Each pre-staircase

SL�,n,SUu,n,SEu,n, n ≥ 0, SLu,n,SU�,n,SE�,n, n ≥ 1

mentioned in Sect. 3.1 is perfect, that is, it consists of exceptional classes.

Proof This is contained in Remark 81 (ii) (for the case n = 0), Corollary 84 for the
pre-staircases labelled U , and Proposition 86 for the other cases.

We will use the following recognition principle, which is explained in [17,
Prop.1.2.12], for example.

Lemma 80 An integral class E := dL − ∑N
i=1 niEi in the N fold blowup

CP2#NCP
2
represents an exceptional divisor if and only if it may be reduced to

E1 by repeated application of Cremona transformations.

Here, a Cremona transformation is the composition of the transformation

(
d, n1, n2, n3, . . .

) �→ (
2d − (n1 + n2 + n3), d − (n2 + n3), d − (n1 + n3), d − (n1 + n2), . . .

)

with a reordering operation that is usually taken to put the entries in nonincreasing
order (but does not have to be this). If this reordering does put the entries in
decreasing order, we call it a standard Cremona move.

Note that because Cremona transformations preserve the first Chern class and
the self-intersection number, once we have proved that Ek reduces to E1 there is no
need to make an independent check that Ek · Ek = −1. Further, because Cremona
moves are reversible (indeed if one omits the reordering step they have order 2), they
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generate an equivalence relation on the set of solutions to the Diophantine equations.
Hence any two classes with a common reduction are themselves equivalent.

Remark 81

(i) (On notation) There are two useful notations for an exceptional class, namely
E := (d,m; m), and (d,m1, . . . , mN) with m1 ≥ m2 ≥ · · · ≥ mN . We use
the former (with the semicolon) when we are interested in the geometry of the
class as in Sect. 2, while we use the latter (with no semicolon) when, as in
Example 85, we are interested only in its numerics and therefore include m
among all the other coefficients.

(ii) (The case n = 0) The three pre-staircases SL�,0,SUu,0,SEu,0 are rather special

since they have no twin. Indeed SL�,0 is not even defined in Theorem 54,
although as we saw in Remark 55 it can be identified with the Fibonacci
staircase. We will prove in Proposition 86 that the classes in these three
staircases are all equivalent. Therefore, because the Fibonacci staircase is
known to consist of exceptional classes by McDuff and Schlenk [17], these
three pre-staircases are all perfect. Hence the other arguments below assume
that n ≥ 1.

(iii) As we will see, the reduction processes for the different pre-staircases are
closely related. This appears most clearly in Proposition 86. However, we do
not attempt here to provide a unified proof valid for all pre-staircases, but
instead will consider each pre-staircase family separately. This point will be
discussed more fully in our next paper. Note also that, because our arguments
concern the linear relations among the coefficients at the beginning of the
tuple, for all the arguments except those in Corollary 84 the choice of endn
is irrelevant. ♦

We will first discuss the classes EU�,n,k,E
U
u,n,k, in the pre-staircases SU�,n,SUu,n

with centers

pn,k

qn,k
=

{
[{2n+ 5, 2n+ 1}k, endn], for SU�,n, n ≥ 1, k ≥ 0

[2n+ 7; {2n+ 5, 2n+ 1}k, endn], for SUu,n, n ≥ 1, k ≥ 0,

and linear relations

(2n+ 3)dn,k = (n+ 1)pn,k + (n+ 2)qn,k for SU�,n (3.4.1)

(2n+ 3)dn,k = (n+ 2)pn,k − (n+ 4)qn,k for SUu,n.

As in Lemma 63 (i), the (integral) weight expansion of [{2n+ 5, 2n+ 1}k, 2n+ 4]
for k ≥ 1 is denoted

(
a

×(2n+5)
n,k , b

×(2n+1)
n,k , (an,k − (2n+ 1)bn,k)

×(2n+5), . . . , 1×(2n+4)). (3.4.2)
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while that for [{2n+ 5, 2n+ 1}k, 2n+ 5, 2n+ 2] for k ≥ 1 is denoted

(
a′
n,k

×(2n+5), b′
n,k

×(2n+1), (a′
n,k − (2n+ 1)b′

n,k)
×(2n+5), . . . , 1×(2n+4)). (3.4.3)

Further, in the pre-staircase SU�,n,k we have

pn,k−1 =
{
bn,k, if endn = 2n+ 4,

b′
n,k, if endn = 2n+ 5, 2n+ 2.

(3.4.4)

Here are our two main results about these pre-staircases.

Lemma 82 For each n ≥ 1, k ≥ 0 there is a tuple E′
n,k that reduces to EU�,n,k in

n+2 standard Cremona moves and is such that EUu,n,k reduces to it in n+3 standard
Cremona moves.

Lemma 83 For each n ≥ 1, k ≥ 0 the class EU�,n,k+1 reduces to E′
k,n in 3n + 2

moves all of which are standard except for the last one.

Corollary 84 The classes EU�,n,k and EUu,n,k are perfect for all n ≥ 1, k ≥ 0 and
both choices of endn.

Proof By Lemmas 82 and 83 it suffices to check that the classes EU�,n,0, n ≥ 1, are
perfect. But the center of this class is either 2n+4 or [2n+5; 2n+2] and the relation
is (2n + 3)d = (n + 1)p + (n + 2)q. Therefore with endn = 2n + 4, the class is
(n+ 2, n+ 1; w(2n+ 4)) = BUn−1, which is easily seen to be perfect. Further, with
endn = (2n+ 5, 2n+ 2) the class is

(
(n+ 1)(2n+ 5), (n+ 1)(2n+ 3)− 1; (2n+ 2)×(2n+5), 1×(2n+2))

= (
(n+ 2)(2n+ 1)+ (2n+ 3), (n+ 2)(2n+ 1), (2n+ 2)×(2n+5), 1×(2n+2))

= (
(n+ 3)s + 2, (n+ 2)s, (s + 1)×(2n+5), 1×(2n+2)), s := 2n+ 1.

Each standard Cremona move takes the tuple
(
d,m, (s + 1)×i , 1×j ) to

(
d − s,

m− s, (s+ 1)×(i−2), 1×(j+2)
)
. Hence after (n+ 2) such moves, we obtain the tuple(

2n+ 3, 0, 2n+ 2, 1×(4n+6)
)

that corresponds to the perfect class

(
2n+ 3, 2n+ 2; 1×(4n+6)) = BU2n.

This completes the proof.

Proof of Lemma 82 The class E′
n,k in Lemma 82 has the following form:

(
�, s0, s

×(2n+4)
1 , q×(2n+5), r×(2n+1) . . .

)
, where s0 + s1 = �, s1 := �− q

2n+ 3

(3.4.5)
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and (�, q, r) =
{
(bn,k+1, an,k, bn,k) if endn = (2n+ 4)

(b′
n,k+1, a

′
n,k, b

′
n,k) if endn = (2n+ 5, 2n+ 2),

and where14 (q×(2n+5), r×(2n+1) . . . ) is the integral weight expansion of the center
pU�,n,k/q

U
�,n,k of EU�,n,k .

We first prove that E′
n,k reduces to EU�,n,k . To this end, note that one standard

Cremona move gives

(�, s0, s
×(2n+4)
1 , q×(2n+5), . . . )→ (�− s1, �− 2s1, s

×(2n+2)
1 , q×(2n+5), . . . ),

which still has the property that the first entry equals the sum of the second two.
Hence a total of (n+ 2) such moves gives

(
�− (n+ 2)s1, �− (n+ 3)s1, q

×(2n+5), . . .
)
.

To finish the proof that E′
n,k reduces to EU�,n,k as claimed, we must show that the

above tuple is precisely EU�,n,k .
But by (3.4.5), the center of EU�,n,k is precisely �/q = ((2n+ 5)q + r)/q. Then,

by (3.4.5) we have s1 = q + q+r
2n+3 and we must show that

d :=dU�,n,k = �− (n+ 2)
(
q + q + r

2n+ 3

)
,

m :=mU�,n,k = �− (n+ 3)
(
q + q + r

2n+ 3

)
.

But the linear relation in SU�,n,k gives

(2n+ 3)d = (n+ 1)�+ (n+ 2)q = (n+ 1)
(
(2n+ 5)q + r) + (n+ 2)q.

It is now easy to check that the two expressions for d are the same.
It remains to prove that the class EUu,n,k reduces to E′

n,k . As noted in the proof of
Lemma 66, we now have

qUu,n,k = �, pUu,n,k = (2n+ 7)�+ q,

where �, q are as above, and d,m are redefined as follows:

(2n+ 3)d : = (2n+ 3) dUu,n,k = (n+ 2)
(
(2n+ 7)�+ q) − (n+ 4)�

= (2n2 + 10n+ 10)�+ (n+ 2)q, (3.4.6)

14We assume here that k > 0—the case k = 0 can safely be left to the reader.
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(2n+ 3)m : = (2n+ 3)mUu,n,k = (2n2 + 8n+ 6)�+ (n+ 3)q.

Thus

EUu,n,k = (
d,m, �×(2n+7), q×(2n+5), . . .

)
,

and we aim to reduce it to

E′
n,k = (

�, s0, s
×(2n+4)
1 , q×(2n+5), . . .

)
, s0 + s1 = �, s1 := �− q

2n+ 3

We will do this by n+3 standard Cremona moves, where all the moves until the last
replace 2 copies of � by 2 copies of s1, and the last removes the final 3 copies of �
and shrinks length by 3. The first move uses the identity

d −m− � = s1 = �− q
2n+ 3

,

which follows easily from (3.4.6). These moves have the following form (where . . .
now includes the terms q×(2n+5))

(
d,m, �×(2n+7), . . .

)

→ (
2d −m− 2�, d − 2�, �×(2n+5), . . . , (d −m− �)×2 = s×2

1 , . . .
)

after 1 move

→ (
3d − 2m− 4�, 2d −m− 4�, �×(2n+3), s×4

1 , . . .
)

after 2 moves

→ (
(n+ 3)d − (n+ 2)m− 2(n+ 2)� = 2�, �×3,

(n+ 2)d − (n+ 1)m− 2(n+ 2)� = s0, s×(2n+4)
1 , . . .

)
after n+ 2 moves

→ (
�, s0, s

×(2n+4)
1 , . . .

)
,

where we have used the identity

(n+ 3)d − (n+ 2)m− 2(n+ 2)� = 2�, (3.4.7)

(which follows from (3.4.6)) and its corollary

(n+ 2)d − (n+ 1)m− 2(n+ 2)� = 2�− d +m = �− s1 =: s0.

This completes the proof.

Example 85 Since the proof of Lemma 83 is somewhat more complicated, we begin
with an example. Since EU�,1,2 = (

1538, 987; w(3191/436)
)
, we have

EU�,1,2 = (
1538, 987, 436×7, 139×3, 19×7, 6×3, 1×6)
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which reduces to E′
1,1 as follows:

0 1538 987 436×7 139×3 19×7 . . .

1 1217 666 436×5 139×3 115×2 19×7 . . .

2 896 436×3 345 139×3 115×4 19×7 . . .

3 484 345 139×3 115×4 24×3 19×7 . . .

4 345 206 139 115×4 24×3 19×7 . . . −2
5 230 115×3 91 24×4 19×7 . . . −1
6 139 115 24×6 19×7 . . . −1

All the above Cremona moves are standard, except for the last one where we reduce
on the terms 115×2, 91 instead of the three largest. Further, the last column indicates
the number of terms that have been reduced to zero; thus altogether the length of
the class is reduced by 4. Notice also that these transformations only affect the
beginning terms: nothing happens to any term of size 19 or less. Finally, one can
check that the last row is precisely E′

1,1.

This reduction has several stages. In the notation used in Lemma 83 below, the
first three moves reduce the multiplicity of 436 =: q from 7 to 0; the next move
reduces the multiplicity of 139 =: r from 3 to its final value 1, and finally we
reduce the multiplicity of the new term 115 = s0 from 4 to 1, whilst increasing that
of 24 =: s1.

Finally notice that although the last move was nonstandard, if we replace it by
a standard move we would get (115, 91, 24×4, . . . ) which is precisely what we get
from E′

1,1 by doing one standard move. Hence one can compare the reductions we
do in this paper, with those provided by a computer program. We chose here to
reduce to E′

n,k because it has a nice formula in terms of the basic parameters of the
problem. ♦
Proof of Lemma 83 We must show that for each n ≥ 1, k ≥ 1 the class EU�,n,k+1

may be reduced to E′
n,k by Cremona moves. The class EU�,n,k+1 for k > 0 starts with

the entries15

(
dn,k+1,m0,n,k+1, a

×(2n+5)
n,k+1 , b

×(2n+1)
n,k+1 , . . .

) =: (d,m, q×(2n+5), r×(2n+1), . . .
)
,

(3.4.8)

and we aim to reduce it to

E′
n,k :=

(
r, r − s1, s×(2n+4)

1 , vw
(
r/v

))
, v := an,k = q − (2n+ 1)r, s1 := r − v

2n+ 3
.

(3.4.9)

15Note that the values of d,m, q, r here are different from those in Lemma 82; for example now
q = an,k+1 rather than bn,k+1. However, their geometric meaning is the same.
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The first part of the reduction process is formally the same as that in the reduction
of EUu,n,k to E′

n,k in Lemma 82: we reduce the multiplicity of the term in q from
2n + 5 to 3 by (n + 1) standard moves, and then reduce it to zero by one further
standard move:

(
d,m, q×(2n+5), . . .

)

→ (
(n+ 2)d − (n+ 1)m− 2(n+ 1)q, q×3, (n+ 1)d − nm− 2(n+ 1)q, . . .

(d −m− q)×(2n+2), . . .
)

after n+ 1 moves

→ (
2(n+ 2)d − 2(n+ 1)m− (4n+ 5)q, (n+ 1)d − nm− 2(n+ 1)q, . . .

(d −m− q)×(2n+2), ((n+ 2)d − (n+ 1)m− 2(n+ 2)q)×3 . . .
)

after n+ 2 moves.

We claim that

s0 := d −m− q, s1 := (n+ 2)d − (n+ 1)m− 2(n+ 2)q

satisfy the identities in (3.4.9), namely

s0 + s1 = r, (2n+ 3)s1 = r − v = (2n+ 2)r − q.

These are two linear identities in the quantities d,m, q, r that determine EU�,n,k . The
easiest way to check them is to verify that they hold when k = 0, 1, and then use
the recursion. The values for d,m, q, r at k = 0 can be obtained from Lemma 63;
note in particular that when k = 0 and endn = 2n + 4 we have (d,m, q, r) =
(n + 2, n + 1, 1,−1). The values for k = 1 and endn = 2n + 4 are in (3.2.7). The
details of the other case are left to the reader.

We can write the other entries in the final tuple above as

2(n+2)d−2(n+1)m−(4n+5)q = 2s1+q, (n+1)d−nm−2(n+1)q = q+s1−s0.

Thus, after n+ 2 moves, we have obtained the tuple

(
2s1 + q, q + s1 − s0, r×(2n+1), s

×(2n+2)
0 , s×3

1 , . . .
)
,

and the next task is to perform n moves on the first three terms to reduce the
multiplicity of the term r×(2n+1) to 1. Because 2s1 + q − (q + s1 − s0) − r =
s0 + s1 − r = 0, at each step we reduce the length of the tuple by 2. Moreover,
q + s1 − s0 = 2s1 + q − r so that under these moves the first two terms change as
follows:

(
2s1 + q, 2s1 + q − r) → (

2s1 + q − r, 2s1 + q − 2r
) → · · · → (

2s1 + q − nr, 2s1 + q − (n+ 1)r
)
.

Thus we have

(
2s1 + q − nr, 2s1 + q − (n+ 1)r, r, s×(2n+2)

0 , s×3
1 , . . .

)
.
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The next reduction step gives

(
2s1 + q − nr − s0, 2s1 + q − (n+ 1)r − s0, r − s0, s×(2n+1)

0 , s×3
1 , . . .

)

= (
(n+ 1)s0 − (n− 1)s1, ns0 − ns1, s×(2n+1)

0 , s×4
1 , . . .

)

Finally we do n moves that use two copies of s0 at each step to reduce the
multiplicity of s0 to 1, while building up the multiplicity of s1 to 2n + 4 and
reducing each of the first two terms by s0 − s1 at each step. Note that throughout
this reduction the terms designated by . . . in (3.4.8) remain unchanged, and hence
start with v×(2n+5). Thus finally we have

(
s0 + s1 = r, s0, s×(2n+4)

1 , v×(2n+5), . . .
) =: E′

n,k.

This completes the proof of Lemma 83.

By Corollary 84, we have now completed the proof that the pre-staircases SU•,• are
perfect. It remains to consider the other pre-staircase families. For ease of reference,
here are the steps and relations for the relevant classes:

EU�,n,k+1 p′/q ′ := [2n+ 5; 2n+ 1, {2n+ 5, 2n+ 1}k, endn],
(2n+ 3)d ′ = (n+ 1)p′ + (n+ 2)q ′, n ≥ 1,

ELu,n,k p/q := [6; 2n− 1, 2n+ 1, {2n+ 5, 2n+ 1}k, endn],
(2n+ 3)d = −(n− 1)p + (11n+ 2)q, n ≥ 1,

EE�,n,k p/q := [5; 1, 2n+ 4, 2n+ 1, {2n+ 5, 2n+ 1}k, endn],
(2n+ 3)d = (n+ 2)p − (n+ 4)q, n ≥ 1,

EUu,n,k p′/q ′ := [2n+ 7; {2n+ 5, 2n+ 1}k, endn],
(2n+ 3)d ′ = (n+ 2)p′ − (n+ 4)q ′. n ≥ 0,

EL�,n,k p/q := [6; 2n+ 1, {2n+ 5, 2n+ 1}k, endn],
(2n+ 3)d = −(n+ 1)p + (n+ 2)q, n ≥ 0,

EEu,n,k p/q := [5; 1, 2n+ 6, {2n+ 5, 2n+ 1}k, endn],
(2n+ 3)d = −(n+ 4)p + (11n+ 31)q, n ≥ 0.

Note that we now use ′ to distinguish the entries in SU•,n from those in the other
pre-staircases.

Proposition 86

(i) For n ≥ 1, the tuple obtained from ELu,n,k by 2 standard moves that get rid of

the term q×6 equals the one obtained from EU�,n,k+1 by 3 moves that reduce the
multiplicity of q ′ from 2n+ 5 to 2n− 1, where the first two are standard, each
creating two copies of a new term c′, and the third uses two copies of q ′ and
one of c′.
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(ii) For n ≥ 0, the tuple obtained from EL�,n,k by 3 standard moves, that first get rid

of the term q×6 and then get rid of the new term 2d−2q of multiplicity 3, equals
that obtained from EUu,n,k by 3 standard moves that reduce the multiplicity of
q ′ from 2n+ 7 to 2n+ 1.

(iii) For n ≥ 1, the tuple obtained from EE�,n,k by 5 standard moves equals that

obtained from EU�,n,k+1 by 1 standard move.

(iv) For n ≥ 0, the tuple obtained from EEu,n,k by 5 standard moves equals that

obtained from EUu,n,k by 1 standard move.

In particular, the classes in all the above pre-staircases are perfect.

Proof We prove (i). We have

ELu,n,k = (
d,m; q×6, r×(2n−1), v×(2n+1), . . .

)
, where

(2n+ 3)d = (5n+ 8)q − (n− 1)r, (2n+ 3)m = (n+ 3)q − 5nr.

Thus d = 2q + c, where c := (n+2)q−(n−1)r
2n+3 ; and, if we reorder ELu,n,k so that m

comes after q×6 and then do two moves to get rid of the terms q×6, we obtain the
tuple

(
4c − q, c×3, (2c − q)×3, r×(2n−1), m, . . .

)
. (3.4.10)

On the other hand,

EU�,n,k = (
d ′,m′, (q ′)×(2n+5), (r ′)×(2n+1), . . .

)
, where q ′ = r, r ′ = v

d ′ = (n+ 2)q ′ + n+ 1

2n+ 3
(q ′ + r ′), m′ = (n+ 1)q ′ + n

2n+ 3
(q ′ + r ′).

Hence d ′ − m′ − q ′ = q ′+r ′
2n+3 =: c′. Now reduce three times (using one copy of c′

and two of q ′ at the third move) to obtain

(
d ′,m′, (q ′)×(2n+5), . . .

) → (
2d ′ −m′ − 2q ′, d − 2q ′, (q ′)×(2n+3), (c′)×2, . . .

)

→ (
3d ′ − 2m′ − 4q ′, 2d ′ −m′ − 4q ′, (q ′)×(2n+1), (c′)×4, . . .

)

→ (
6d ′ − 4m′ − 10q ′ − c′, (3d ′ − 2m′ − 5q ′ − c′)×2, 3d ′ − 2m′ − 6q ′,

(q ′)×(2n−1), 2d ′ −m′ − 4q ′, (c′)×3, . . .
)

We now claim that this tuple is precisely the same as that in (3.4.10). To see this,
express all the quantities in terms of the variables q ′, r ′, recalling that

r = q ′, v = r ′, q = (2n− 1)r + v = (2n− 1)q ′ + r ′.
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Further, by definition of c′ we have 3d ′ − 2m′ − 5q ′ − c′ = 2d ′ −m′ − 4q ′ so that
this term occurs with multiplicity 3, and one can check that c = 2d ′ − m′ − 4q ′.
One can then check that the other terms agree:

4c − q = 6d ′ − 4m′ − 10q ′ − c′, 2c − q = c′, m = 3d ′ − 2m′ − 6q ′.

This completes the proof of (i).
The proof of (ii) is very similar, and can be done as above. Details are left to the

reader. Alternatively, since reduction is a linear transformation it suffices to prove
this for k = 0, 1 and arbitrary n; the result for k > 1 then follows by recursion.
One can either do this by calculating the relevant transformations explicitly, or by
noting that when k = 0, 1, the entries d ′,m′, . . . in the tuples EL�,n,k,E

U
u,n,k are

polynomials in n of degree at most 5 (the explicit formulas for endn = 2n + 4 are
given in (3.2.8) and (3.3.4)). Hence we need to prove some polynomial identities of
degree at most 5. But these hold for all n if and only if they hold for 5 different values
of n. Thus, without even explicitly calculating these polynomials, we know that the
claim must hold for all n, k provided that it holds for k = 0, 1 and 0 ≤ n ≤ 5,
something that is very easy to check by computer.

We illustrate (iii), (iv) by an example. We have

EU�,1,1 = (
67, 43, 19×7, . . .

) → (
53, 29, 19×5, . . . , 5×2 . . .

)
.

On the other hand, 5 standard moves on EE�,1,0 give:

EE�,1,0 = (
350, 139×5, 120, 96, 19×6, . . .

) → (
283, 139×2, 120, 96, 72×3, 19×6, . . .

)

→ (
168, 96, 72×3, 24×2, 19×6, . . . , 5, . . .

) −2→ (
96, 72, 24×3, 19×6, . . . , 5, . . .

)

−2→ (
72, 48, 24, 19×6, . . . , 5, . . .

) −1→ (53, 29, 19×5, . . . , 5×2, . . .
)
,

where the superscripts over the arrows denote the number of entries that go to zero
at that step. Thus overall 5 terms go to zero, which is the difference in length
between the center [5; 1, 2n + 4, 2n + 1, {2n + 5, 2n + 1}k, endn] of EE�,n,k and

the corresponding center [2n + 5; 2n + 1, {2n + 5, 2n + 1}k, endn] of EU�,n,k+1. A
formal proof of the general case can be written out by one of the methods explained
above, and is left to the interested reader.

The final claim that all the pre-staircases are perfect holds when n = 0 because
the Fibonacci staircase is perfect (by McDuff and Schlenk [17]) and holds when
n > 0 by Corollary 84.



Infinite Staircases for Hirzebruch Surfaces 129

4 Obstructions from ECH Capacities

An alternative way to characterize the ellipsoid embedding function for the target X
involves the ECH capacities of the ellipsoid and of X. When we use the computer
to plot an approximation of the graph of cX, we use that alternative characterization
of cX:

cX(z) = sup
k

ck(E(1, z))

ck(X)
, (4.0.1)

so long asX is “convex” (see Definition 87); the equality (4.0.1) is a consequence of
[3, Theorem 1.2]. First defined in [9], ECH capacities are invariants of a symplectic
4-manifold (X, ω) that obstruct symplectic embeddings in the following sense:

(X, ω) ↪→ (Y, ω′) )⇒ ∀k∈N0
ck(X,ω) ≤ ck(Y, ω′), (4.0.2)

where the ck form a non-decreasing sequence

0 = c0(X, ω) < c1(X, ω) ≤ c2(X, ω) ≤ . . . ≤ ∞.

4.1 Toric Domains

To compute the ECH capacities of the Hirzebruch surfaces Hb, we use the more
general theory of ECH capacities of toric domains.

Definition 87 A toric domain is the region XΩ in C2 determined by

XΩ :=
{
(z1, z2) ∈ C2

∣∣∣
(
π |z1|2, π |z2|2

)
∈ Ω

}

where Ω ⊂ R2. A toric domain is concave if Ω is a closed region in the first
quadrant under the graph of a convex function with both axis intercepts nonnegative.
Following [11], a toric domain is convex ifΩ is a closed region in the first quadrant
under the graph of a nonincreasing concave function with both axis intercepts
nonnegative.

When X is a toric domain we use the standard symplectic form ω = ∑2
i=1 dxi ∧

dyi , where zi = xi + √−1yi , and we drop ω from the notation for the ECH
capacities. Note that ellipsoids are both concave and convex toric domains.

Let Xb denote the convex toric domain XΩb , where Ωb is the Delzant polytope
ofHb. By Cristofaro-Gardiner et al. [7, Theorem 1.2], embeddings of ellipsoids into
Hb and Xb are equivalent, and therefore cXb = cHb .
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Remark 88 When X is a concave toric domain and Y is a convex toric
domain, (4.0.2) is in fact an equivalence [3, Theorem 1.2]. This is the case
when we have an ellipsoid embedding into Xb, which justifies the alternative
definition (4.0.1). ♦

The way that we use (4.0.1) to plot approximations to the graph is by taking the
maximum over a large but finite number of ratios of ECH capacities, rather than
the supremum. In order to do this, we need to compute the ECH capacities of an
ellipsoid and of Xb.

Remark 89 The sequence of ECH capacities for an ellipsoidE(a, b) is the sequence
N(a, b), where for k ≥ 0, the term N(a, b)k is the (k + 1)st smallest entry in the
array (am+ bn)m,n∈N0

, counted with repetitions [16, §1].
To compute the ECH sequence of Xb we use a different method, based on [3,

Appendix A]. The definitions and theorem below are based on [3, Definitions A.6,
A.7, A.8] and can be found there in more detail. ♦
Definition 90 A convex lattice path is a piecewise linear path Λ : [0, c] → R2

such that all its vertices, including the first (0, x(Λ)) and last (y(Λ), 0), are lattice
points and the region enclosed by Λ and the axes is convex. An edge of Λ is a
vector ν from one vertex of Λ to the next. The lattice point counting function
L(Λ) counts the number of lattice points in the region bounded by a convex lattice
path Λ and the axes, including those on the boundary.

LetΩ ⊂ R2≥0 be a convex region in the first quadrant. TheΩ-length of a convex
lattice path Λ is defined as

�Ω(Λ) =
∑

ν∈Edges(Λ)

det
[
ν pΩ,ν

]
(4.1.1)

where for each edge ν we pick an auxiliary point pΩ,ν on the boundary of Ω such
that Ω lies entirely “to the right” of the line through pΩ,ν and direction ν.

Theorem 91 ([3, Corollary A.5]) Let X be the toric domain corresponding to the
region Ω . Then its kth ECH capacity is given by:

ck(X) = min {�Ω(Λ) : Λ is a convex lattice path with L(Λ) = k + 1} . (4.1.2)

In fact, the lattice path Λ that realizes the minimum in (4.1.2) is shaped roughly
like the boundary of the region Ω , see [10, Ex. 4.16(a)]. In particular, the slopes of
the edges of the minimizing lattice path must also be slopes of edges of Ω , and we
use this fact to compute the capacities of Xb: see Lemma 100.
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4.2 ECH Capacities and Exceptional Classes

In this subsection we prove a relationship between the obstructions from exceptional
classes of Sect. 3 and those from ECH capacities. This relationship underlies our use
of ECH capacities to identify live perfect classes contributing to cHb , as explained
in Sect. 5.4. LetΛd,m denote the lattice path from (0, d−m) to (m, d−m) to (d, 0),
which encloses L(Λd,m) lattice points as in Definition 90.

Lemma 92 If E = (d,m; m) is an exceptional class with m = qw (p/q), then
there is an interval containing the center p/q of E on which the obstructions from
E and cL(Λd,m)−1(Xb) satisfy

μE,b(z) ≤ cL(Λd,m)−1(E(1, z))

cL(Λd,m)−1(Xb)
(4.2.1)

Proof We will show that cL(Λd,m)−1(Xb) ≤ d−mb and that cL(Λd,m)−1(E(1, z)) =
m · w(z) for z sufficiently close to p/q. For the former, we have by (4.1.2)
and (4.1.1):

cL(Λd,m)−1(Xb) ≤ �Ωb(Λd,m) = d − bm.

For the latter, we first analyze cL(Λd,m)−1(E(1, z)). Note that

qN

(
1,
p

q

)

k

= N(q, p)k. (4.2.2)

Let K(p, q) = (p+1)(q+1)
2 − 1. We claim that

N(q, p)K(p,q) = N(q, p)K(p,q)+1 = pq

and these are the only two values of k for which N(q, p)k = pq. If the point in
Z2≥0 with coordinates (n1, n2) is labeled n1q + n2p then N(q, p) is the list of such
labels ordered as follows. Take the line of slope −p/q and move it from left to right
across the plane. Then N(q, p) is the kth label whose lattice point this line crosses,
starting from zero. If points are colinear then their indices start from the number of
lattice points between the line of slope −p/q through n1q + n2p and the axes and
increase from there. Because p and q are coprime,

n1q + n2p = pq ⇒ n2p = (p − n1)q

implies that both n2p and (p − n1)q must equal an integer multiple of pq, and we
conclude that either n1 = 0 or n1 = p. Therefore there are only two values of k for
which N(q, p)k = pq, and the values of k start from the number of lattice points
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between the line of slope −p/q through (pq, 0) and (0, pq) and the axes. There are
exactly K(p, q) such lattice points.

Next we show that L(Λd,m) = K(p, q)+1. Firstly, by counting the lattice points
in the triangle between (0, 0), (0, d), and (d, 0), then removing those in the triangle
between (0, d −m), (0, d), and (m, d −m), we obtain

L(Λd,m) = 1

2
(d(d + 3)−m(m+ 1))+ 1 (4.2.3)

= 1

2
(d2 −m2 + 1 + 3d −m+ 1)

= 1

2
(pq + p + q + 1) by (2.1.2) and (2.1.5)

= K(p, q)+ 1

By (4.2.3) and (4.2.2), we have cL(Λd,m)−1 (E (1, p/q)) = N(1, p/q)K(p,q) = p,
and by (2.1.5), we have m · w (p/q) = p.

We will show that there is an interval I containing p/q for which, when z ∈
I, z ≥ p/q,

N(1, z)K(p,q) = p = m · w(z) (4.2.4)

and when z ∈ I, z ≤ p/q,

N(1, z)K(p,q) = z = m · w(z) (4.2.5)

The first equalities in (4.2.4) and (4.2.5) both follow from considering the lattice
Z2≥0 labeled with n1q+n2zq definingN(q, zq)k . As z increases from p/q, the slope
of the line defining N(q, zq)k decreases from −p/q to −z. When moving this line
from left to right, it will now reach (pq, 0) slightly before it reaches (0, zq), but if z
is not increased too much, the triangle between the line through (pq, 0) and the axes
will still contain K(p, q) points, and there will be no points the line passes strictly
between (pq, 0) and (0, zq), so N(q, zq)K(p,q) = pq, showing the first equality
of (4.2.4).

Similarly, as z decreases, the slope of the line increases from −p/q to −z.
Now the triangle between the line through (0, zq) of slope −z and the axes will
contain K(p, q) points. There will be no points between the line through (0, zq) of
slope −z and the line through (pq, 0) of slope −z if z is close enough to p/q, so
N(q, zq)K(p,q) = z, showing the first equality of (4.2.5).

The second equalities in both (4.2.4) and (4.2.5) follow from Lemma 16.

Remark 93 In all cases we have checked, the inequality (4.2.1) is an equality.
Note that if E is live, then we must have an equality. However, it seems to be
true more generally that there are pairs of lattice paths and exceptional classes for
which (4.2.1) is an equality on an interval, even when E is not live (see Fig. 10), or is
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not quasi-perfect (see Fig. 5). In each of Figs. 10 and 5, there is an interval on which
the obstruction coming from the ECH capacity (in bright blue) coincides with the
obstruction coming from the exceptional class (in brown), and this interval includes
the break point of the exceptional class obstruction. Both figures were plotted using
PlotSingleCapacityObstructionFxn (see Sect. 5.2) for the bright blue curve
and PlotMu (see Sect. 5.3) for the brown curve.

Specifically, every constraint μE,b has a break point a′ in the sense of Lemma 14
even if E is not perfect, and formulas analogous to those in Lemma 16 do always
hold. Exactly what these formulas are depends on the relation between w(a′) and
m. One might be able construct a general proof of this fact using the approach to
ECH capacities taken in [5, 6] where these capacities are interpreted in terms of the

properties of the ECH cobordism map given by a symplectic embeddingE(1, a)
s
↪→

Hb; see in particular the discussion in [6, §3.1]. However, to prove this here would
take us too far afield.

Instead, we will occasionally discuss E which “correspond” to an ECH capacity
ck in the sense that (4.2.1) is an equality on an interval of interest on which μE,b is
nontrivial (if E is quasi-perfect, this interval will always contain its center). ♦

0 1 2 3 4 5 6 7
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 5 Comparison between the ECH and exceptional class obstructions for b = 0.3. Here a
lower bound c≤H0.3

for cH0.3 is in dark blue (see Sect. 5), the volume obstruction is in orange, the
obstruction from the 8th capacity c8(X0.3) is in bright blue, and the obstruction from the class
E = (

3, 1; 2, 1×5
)

is in brown. The plot of μE,0.3 is atop that of the obstruction from c8(X0.3)

where they agree
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4.3 There Is No Infinite Staircase for b = 1/5

Let

X = 5H 1
5

= CP 2
5 #CP

2
1.

The embedding capacity function of X is a scaling of that of H 1
5
, with cX(z) =

1
5c 1

5
(z). Thus, ifX has an infinite staircase then it accumulates at z = acc(1/5) = 6.

Theorem 94 Let X = 5H 1
5
. For sufficiently small ε the ellipsoid embedding

function of X is given by

cX(z) =
{

1
2 for z ∈ (6 − ε, 6]
z+6
24 for z ∈ [6, 6 + ε) .

Thus, there is no infinite staircase for X, or equivalently for the Hirzebruch surface
H 1

5
.

The proof follows closely the proof that the ellipsoid E(3, 4) does not have an
infinite staircase, as presented in [4, Section 2.5].

Proof The main part of the proof is showing the following claim, whose proof we
postpone by a few paragraphs.

Claim 95 For z ∈ [6, 6 + ε), we have cX(z) ≤ (z+ 6)/24.

Assuming this claim, the rest of the proof goes as follows: the claim gives us
an upper bound for cX(z) for z ∈ [6, 6 + ε). To get a lower bound, either see
Example 34 or use ECH capacities and (4.0.1): the 19th ECH capacity of X is 24
(see how to compute it in Sect. 5.1), whereas the 19th ECH capacity of E(1, z) for
this range of z is z + 6, see Remark 89. Then we have cX(z) ≥ (z + 6)/24, and in
fact cX(z) = (z+ 6)/24.

For the range z ∈ (6 − ε, 6], we obtain a lower bound either via Example 22 or
again using ECH capacities and (4.0.1): the 5th ECH capacity ofX is 10 (see how to
compute it in Sect. 5.1), whereas the 5th ECH capacity of E(1, z) for this range of
z is 5, see Remark 89. Therefore cX(z) ≥ 1/2. To get the upper bound cX(z) ≤ 1/2
we first observe that using Claim 95 and the volume constraint at z = 6, we obtain
cX(6) = 1/2. Since cX(z) is nondecreasing, we have cX(z) ≤ cX(6) = 1/2 for
z ≤ 6, and therefore in fact cX(z) = 1/2 for z ∈ (6 − ε, 6].

We now proceed to proving Claim 95. Note that since cX(z) is continuous we
can assume that z is irrational; this will be convenient in some of the arguments that
follow. We begin by observing that

cX(z) ≤ z+ 6

24
⇐⇒ E(1, z) ↪→ z+ 6

24
X
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⇐⇒ E(
24

z+ 6
,

24z

z+ 6
) ↪→ X

⇐⇒ ehrΔz+6
24 ,

z+6
24z
(t) ≥ capX(t), ∀t ∈ Z≥0,

where the cap function counts the number of ECH capacities up to t

capX(t) = # {k|ck(X) ≤ t}

and the Ehrhart function, which is the cap function for an ellipsoid, counts the
number of lattice points inside a scaling of a triangle

ehrΔu,v (t) = #
{
Z2 ∩ tΔu,v

}
,

with Δu,v the triangle with vertices (0, 0), (u, 0) and (0, v).
The last equivalence then follows from (4.0.2), Remark 88, and the fact that the

ECH capacities of X are all integers because the corresponding region Ω ⊂ R2 is a
lattice polygon, see (4.1.1) and (4.1.2).

Because it is hard to count lattice points in a generic triangle, we compare
ehrΔz+6

24 ,
z+6
24z
(t) with ehrΔz+6

24 ,
z+6
24z
(t)|z=6 = ehrΔ 1

2 ,
1
12
(t):

ehrΔz+6
24 ,

z+6
24z
(t) = ehrΔ 1

2 ,
1
12
(t)+D − U − d (4.3.1)

where D = D(t) and U = U(t) are respectively the number of lattice points in the
closed regions RU and RD as in Fig. 6, and d = d(t) is the number of lattice points
on the segment that is the left boundary of RD (but excluding the potential lattice
point (t/4, t/24)).

Fig. 6 The triangles Δz+6
24 t,

z+6
24z t

and Δ 1
2 t,

1
12 t

delimit the regions RU and RD . The corresponding

lattice point count is given in (4.3.1)
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We will then also compare the cap function of X with the Ehrhart function of the
same triangle:

capX(t) = ehrΔ 1
2 ,

1
12
(t)− d̃,

where d̃ = d̃(t) := ehrΔ 1
2 ,

1
12
(t)− capX(t).

The proof of Claim 95 will then be complete if we show the following:

Claim 96 For all t we have U ≤ D, and furthermore for t ≡ 10 (mod 24) we have
U ≤ D − 1 .

Claim 97 For t ≡ 10 (mod 24) we have d̃ ≥ d and for t ≡ 10 (mod 24) we have
d̃ = d − 1.

Proof of Claim 96 Recall that we are assuming that z ∈ Q.
We begin by proving the more general inequality U ≤ D, in the following way:

for each y0 ∈ [t/24, t/12] ∩ Z we define a corresponding y1 := %t/12& − y0 ∈
[0, t/24] ∩Z. The values of y0 range through all possible heights of lattice points in
RU , and for each height we will show that the number of lattice points on that slice
of RU is no greater than the number of lattice points in the slice of RD at height y1,
which implies that U ≤ D:

# {RU ∩ {y = y0}} ≤ # {RD ∩ {y = y1}} . (4.3.3)

We can rewrite (4.3.3) as

%x2& − ,max {0, x1}- + 1 ≤ %x4& − ,x3- + 1, (4.3.4)

where

x1 = t (z+ 6)− 24zy0

24
x2 = t − 12y0

2

x3 = t − 12y1

2
x4 = t (z+ 6)− 24zy1

24
.

Now, since %x2& − ,max {0, x1}- + 1 ≤ %x2& − %x1&, we have that (4.3.4) follows
from proving that

%x2& − %x1& ≤ %x4& − %x3& whenever x3 ∈ Z (4.3.5)

%x2& − %x1& ≤ %x4& − %x3& + 1 whenever x3 ∈ Z. (4.3.6)

We first write

%x2& − %x1& = t

2
−

{
t

2

}
− 6y0 − t (z+ 6)

24
+ zy0 +

{
t (z+ 6)

24
− zy0

}
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%x4& − %x3& = t (z+ 6)

24
− zy1 −

{
t (z+ 6)

24
− zy1

}
− t

2
+

{
t

2

}
+ 6y1,

where {x} = x−%x& is the fractional part of x. We start with the case when x3 ∈ Z,
or equivalently, when t is odd. The inequality (4.3.5) can be rewritten as

− 2

{
t

2

}
− (z− 6)

{
t

12

}
+ δ ≤ 0 (4.3.7)

where

δ =
{
t (z+ 6)

24
− zy0

}
+

{
t (z+ 6)

24
+ zy0 − z% t

12
&
}
.

Since {m} + {n} ≤ {m+ n} + 1, and furthermore we can assume for this
simplification that t ∈ {0, 1, 2, . . . , 11}, we have

δ ≤
{
t

2
+ z

{
t

12

}}
+ 1 ≤ (z− 6)

{
t

12

}
+ 1.

Thus we see that (4.3.7) holds when t is odd, since −2 {t/2} + 1 = 0.
We now move on to the case when x3 ∈ Z, or equivalently, when t is even. The

argument follows exactly as above, except that the right hand side of (4.3.7) is 1 and
−2 {t/2} + 1 = 1.

This concludes the proof that U ≤ D for general t , we now focus on the case
when t ≡ 10 (mod 24) and will show that U ≤ D − 1.

We show that in this case, as y0 ranges over the integers [t/24, t/12] ∩ Z, the
corresponding y1 is never equal to the height of the lattice point

(
t − 12y′

2
, y′

)
∈ Z2 ∩ RD,

where y′ := %t/24&. This means that that lattice point is not accounted for in the
proof given above for U ≤ D, and implies that in fact U ≤ D − 1. Indeed, y1
is maximized for y0 = ,t/24- which makes y1 = %t/12& − ,t/24-. When t ≡
10 (mod 24), this becomes y1 = %t/24& − 1 < y′. This concludes the proof of
Claim 96.

Proof of Claim 97 To prove Claim 97, we must compute d and

d̃ = ehrΔ 1
2 ,

1
12
(t)− capX(t).

Recall that d = d(t) is the number of lattice points on the segment that is the
left boundary of RD (but excluding the potential lattice point (t/4, t/24)). Any
such lattice point (m, n) must satisfy 2m + 12n = t , which implies that t is even.
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Therefore, d(t) = 0 for t odd. Conversely, if t is even and (x, y) is on the left
boundary of RD then x = t−12y

2 and y < t/24. If furthermore y ∈ Z then also
x ∈ Z. It follows that d(t) = ,t/24- for t even.

To compute the function ehrΔ 1
2 ,

1
12
(t) we first use [1, Exercise 2.34] to obtain the

quadratic and linear terms. To obtain the constant terms, we then use the fact that by
[1, Theorem 3.23] the function is quasipolynomial with period at most lcm(2, 12) =
12 and compute the necessary ECH capacities of the ellipsoid E(2, 12) using the
method described in Remark 89:

ehrΔ 1
2 ,

1
12
(t) = t2

48
+

{
t
3 t even
7t
24 t odd

+

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 t ≡ 0, 8 4
3 t ≡ 4

11
16 t ≡ 1, 9 49

48 t ≡ 5
5
4 t ≡ 2, 6 7

12 t ≡ 10
15
16 t ≡ 3, 7 13

48 t ≡ 11

(mod 12)

Alternately, it is possible to compute ehrΔ 1
2 ,

1
12
(t) using Pick’s theorem.

To compute the function capX(t)we use [20, Thm 5.11], withΩ being the region
in R2 corresponding toX, and therefore with area andΩ-perimeter both equal to 24
and affine perimeter equal to 14. We then have that there exists t0 ∈ N such that for
t > t0 this function is a quasipolynomial of the form

capX(t) = ehrΩ(%t/48&)+ γi,

with period 24 and γi ∈ Q for i = 0, . . . , 23. We find that t0 = 42 by checking
the conditions in [20, Thm 5.11] and computing enough values of capX(t) using the
methods in Sect. 5.1:

(i) t0 ≥ 2 × 24 − 14 = 34;
(ii) capX(t0 − 1) < capX(t0) < capX(t0 + 1) < . . . < capX(t0 + 47).

Computing further values of capX(t) we obtain the general formula for t > 42:

capX(t) = t2

48
+ 7t

24
+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 t ≡ 0, 10 13
48 t ≡ 11, 23

11
16 t ≡ 1, 9 − 3

2 t ≡ 12, 22

− 2
3 t ≡ 2, 8 − 5

16 t ≡ 13, 21

− 17
16 t ≡ 3, 7 5

6 t ≡ 14, 20
1
2 t ≡ 4, 6 15

16 t ≡ 15, 19
49
48 t ≡ 5 0 t ≡ 16, 18

− 95
48 t ≡ 17.

(mod 24).

Alternatively, we could compute the function capX(t) by using the fact that the
sequence of ECH capacities of X is given by the sequence subtractionN(5)−N(1),
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whereN(j) is the sequence of ECH capacities of the ball E(j, j), see [7, Definition
2.4 and equation (2.6)].

Still for t ≥ 42 we now compute d̃ = ehrΔ 1
2 ,

1
12
(t)− capX(t) and compare it with

d:

d̃ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

d t ≡ 0, 1, 4, 5, 6, 9, 11, 14, 15, 19, 20, 23

d + 1 t ≡ 2, 8, 13, 16, 18, 21

d + 2 t ≡ 3, 7, 12, 22

d + 3 t ≡ 17

d − 1 t ≡ 10.

(mod 24)

For t ≤ 42 we instead use the computer (see Sect. 5.1) to obtain capX(t) and
conclude that Claim 97 holds also in this range.

Since Claims 96 and 97 are now proven, so is Claim 95, and thus the proof of
Theorem 94 is complete.

5 Mathematica Code

In this section we explain how we experimentally identified the infinite staircases
of Theorems 2, 54, and 56, and the properties of the blocking classes discussed in
Sect. 2.3, particularly Proposition 42.

We first had to produce code which approximated cHb in a reasonable amount of
time and identified the obstructions from different exceptional classes. In Sects. 5.1–
5.3 we explain how to plot a lower bound c≤Hb to cHb , the obstruction from a single
ECH capacity ck(Xb), and the obstruction μE,b from a single exceptional class E
using Mathematica. In Sect. 5.1 we explain the theoretical framework of our code,
while Sects. 5.2 and 5.3 primarily contain the code itself. Our methods allow us to
use 25,000 ECH capacities to plot c≤Hb in a reasonable amount of time (e.g., the
algorithm producing the kth ECH capacity is O(k)). They also allow us to visually
compare the obstructions arising from ECH capacities with those from exceptional
classes, as explained in Sect. 4.2.

Very similar methods allow for the computation of the capacities and ellipsoid
embedding functions for polydisks, with small changes only to the formulas in the
functions LatticePts and Action. These changes are due to the fact that the paths
Λ and the region Ω determining the polydisk as a toric domain will have sides of
different slopes than those of the analogous paths and regions in the case of Hb.
The obstructions from the exceptional classes of polydisks require changes in the
formulas for exceptional classes and obstructions: see [19, §1.1] for the case of
polydisks and [7, §2.2] for the case of general rational toric domains. Note that
our code is optimized for cases where Ω has two sides in addition to the sides on
the axes, as the Diophantine equations solved by the function Index become much
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more computationally expensive as the number of sides ofΩ increases. This makes
the code from [7, Appendix C] more useful when Ω has more than two sides in
addition to the sides on the axes.

In Sect. 5.4 we explain our strategy for identifying blocking classes, approxi-
mating Block, and identifying elements of Stair experimentally. While some of
our methods are generalizations of the analysis of blocking classes from Sect. 2.3,
we explain how we apply these ideas using a computer. Finally, Sect. 5.5 contains
illustrations of examples discussed throughout the paper.

5.1 Computing Many ECH Capacities of Xb Quickly

Implementing Theorem 91 directly in practice is rather slow. The number of lattice
points L(Λ) bounded by the lattice path Λ is a quadratic polynomial in the number
of sides of Λ. Enumerating all convex lattice paths Λ with L(Λ) = k + 1 requires
solving the equation L(Λ) = k + 1 with the path Λ having a number of sides that
ranges between one and some upper bound depending on k. Once k is large enough
that Λ could have three or more sides, this procedure slows dramatically.

In order to shorten our search, we constrain the slopes of the edges of the lattice
paths to lie within a certain range. We then use Lemma 100, inspired by Hutchings
[10, Exercise 4.16(a)], to restrict the set of lattice paths over which the minimum
of (4.1.2) is taken to those with sides parallel to the vectors (1, 0) and (1,−1), at
the expense of allowing a broader range of values of L(Λ).
Definition 98 For any nonzero vector v ∈ R2, define θ(v) ∈ (−2π, 0] to be the
angle for which v is a positive multiple of (cos θ(v), sin θ(v)).

Note that this is not the same as the θ of in [3, Definition A.6].
The proof of the following Lemma was pointed out to us by Michael Hutchings.

Lemma 99 The minimum in (4.1.2) can be taken over convex lattice paths Λ with
L(Λ) = k + 1 and θ(Λ′(t)) ∈ [−π/4, 0] for all t for which Λ(t) is not a vertex of
Λ.

Proof The argument is a repeat of the first proof of Proposition 5.6 in [11].

Lemma 100 WhenΩ = Ωb, the Delzant polytope ofHb, the minimum on the right
hand side of (4.1.2) is the same if it is taken over convex lattice pathsΛ whose edges
are parallel to the edges of Ω and for which

k + 1 ≤ L(Λ) ≤ 2k + 1. (5.1.1)

Remark 101 The first conclusion of Lemma 100 (i.e., without the bound (5.1.1)) is
inspired by Hutchings [10, Exercise 4.16(a)], which holds for convex domains in
T ∗T 2.
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Proof By Lemma 100, if Λ(t) is not a vertex and θ(Λ′(t)) ∈ {0,−π/4} then
θ(Λ′(t)) ∈ (0,−π/4). Let (t0, t1) denote the interval on which θ(Λ′(t)) ∈
(0,−π/4), assuming it is nonempty. Let Λ(t0) = (x0, y0) and Λ(t1) = (x1, y1).

Denote byΛΩ the new convex lattice path obtained by replacingΛ|[t0,t1] with the
convex path consisting of two edges, one parallel to (1, 0) followed by one parallel
to (1,−1). This means the only vertex ofΛΩ with both coordinates greater than zero
is the point (x1 − (y0 − y1), y0); it has positive coordinates because θ(Λ′)|(t0,t1) ∈
(0,−π/4), therefore x1 − x0 > y0 − y1 and y0 > y1 ≥ 0.

The new path ΛΩ is a lattice path, because x1 − x0 and y0 − y1 are integers.
While the argument until this point could apply to more general Ω , it would not
always guarantee that ΛΩ has vertices at lattice points.

The number of lattice points betweenΛΩ and the axes is at least L(Λ). It remains
to show that it is at most 2L(Λ)− 1. It suffices to consider the case x0 = 0, y1 = 0.
We have

L(ΛΩ) = (x1 − y0 + 1)(y0 + 1)+ y0(y0 + 1)

2

while for L(Λ), we have is at least the number of lattice points between the line
from (0, y0) to (x1, 0) and the axes. That is,

L(Λ) ≥ #{lattice points between the line from (0, y0) to (x1, 0) and the axes}

≥ (x1 + 1)(y0 + 1)

2

Therefore if y0 ≥ 1,

L(ΛΩ) ≤ (x1 + 1)(y0 + 1)− 1 ≤ 2L(Λ)− 1

If y0 = 0, then ΛΩ = Λ because Λ consists of a single edge from (0, 0) to (x1, 0).

5.2 Obstructions from Single ECH Capacities and a Lower
Bound for cHb

Recall that

Stair : = {b | Hb has a staircase} ⊂ [0, 1), and

Block : =
⋃{

JB
∣∣ B is a blocking class

} ⊂ [0, 1).

It its not possible for a computer to compute the right hand side of (4.0.1)
for general b. However, understanding a close lower bound for cHb allowed us to
approximate the set Block and to identify many of the blocking classes contributing
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to Block. Define

c
≤
Hb
(z) := max

k=1,...,25000

ck(E(1, z))

ck(Xb)

Then we have

Block≤ :=
{
b ∈ [0, 1)

∣∣∣c≤Hb(acc(b)) > Vb(acc(b))
}

⊂ Block

because for all z,

c
≤
Hb
(z) ≤ cHb(z)

In this subsection we explain our code to plot c≤Hb and the obstructions ck(E(1,z))
ck(Xb)

from a single ECH capacity.
Let Λ be a convex lattice path with edges parallel to the vectors (1, 0) and

(1,−1), i.e., the edges of Ωb. The set of all such lattice paths is in bijection with
the first quadrant, inclusive of the axes, via the Cartesian coordinates (x, y) of the
vertex where the edge parallel to (1, 0) ends and the edge parallel to (1,−1) begins.
In these coordinates, if Λ corresponds to (x, y), we compute L(Λ) using
LatticePts[x_,y_]:=(x+1)(y+1)+(y(y+1))/2

We compute the set of lattice paths Λ with L(Λ) = k + 1 using
Index[k_]:=Values[Solve[LatticePts[x,y] == k+1 && 0≤x && 0≤y,
{x, y},

Integers]]
We compute the set of lattice pathsΛwith sides parallel to (1, 0) and (1,−1) and

L(Λ) at most 50,001, and give it the name LatticePaths50000. By Lemma 100,
this will allow us to compute the first 25,000 ECH capacities of Hb.
LatticePaths50000=Table[{k,Index[k]},{k, 0, 50000}]

Running LatticePaths50000 takes approximately 20 min on a personal laptop.
However, it’s a one-time cost: plotting each cHb takes far less time.

To compute the action of a lattice path Λ corresponding to (x, y), we compute
its Ωb-length. When Ω = Ωb, the definition (4.1.1) is equivalent to

�Ωb(x, y) = x(1 − b)+ y

therefore to compute the action of Λ we use
Action[b_]:=Function[{x,y},x(1-b)+y]

Instead of computing the actions of all the generators from LatticePaths50000
and minimizing in one step, it is much faster to break the process up into the
following three functions:
ActionList50000[b_]:=Table[Table[Action[b]

@@LatticePaths50000[[k+1]][[2]][[i]],
{i,Length[LatticePaths50000[[k+1]][[2]]]}],{k,0,50000}]

MinActionList50000[ALb_]:=Array[Min[ALb[[#]]]&,50001]
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CapacitiesList[MALb_]:=Join[{0.},Table[Min[Array[MALb[[#]]&,k,
k + 1]], {k,1,25000}]]

Because the index origin is set to be k + 1, CapacitiesList minimizes over
the entries k + 1, . . . , 2k + 1 = 2(k + 1) − 1 of MALb, which Lemma 100
guarantees are all we need to consider. In order to compute the capacities of Xb,
it is fastest to run each command in succession, applying MinActionList50000
to the output of ActionList50000, then CapacitiesList to the output of
MinActionList50000, instead of running their composition. It is also much faster
to treat b as a decimal number rather than an exact number. Note that this is the
point in the process where it is possible to introduce imprecision. If the plot of c≤Hb
looks close to but cannot for some reason be less than or equal to the actual plot of
cHb , the rounding inherent in treating b as a decimal is probably to blame. This does
happen for known infinite staircases at extremely small scales.

To compute the capacities of the ellipsoid E(1, z), we use
EllipsoidCap:=Compile[{{z,_Real},{K,_Integer}},Take[Sort[Flatten
[Table[ x+z*y,{x,0,Ceiling[z((4/z)(-z-1/2+Sqrt[(z+1/2)2-z+z*K/2]
))]}, {y,0,Ceiling[(4/z)(-z-1/2+Sqrt[(z+1/2)2-z+z*K/2])]}]],Less]
,K+1]]

The bounds on x and y in EllipsoidCap come from the relationship between
the sequence N(1, z) and triangles in the lattice.

In order to compute the obstruction ck(E(1,z))
ck(Xb)

from the kth ECH capacity, use the
functionSingleCapacityObstructionFxn with EllipsoidCap[z,K] (for K ≥
k + 1) as ECzk, and the list of 25,000 capacities previously computed for Xb as
CLbK:
SingleCapacityObstructionFxn[ECzK_,CLbK
_,k_]:=ECzK[[k+1]]/CLbK[[k+1]]

To plot SingleCapacityObstructionFxn over an interval from zmin to zmax
as a line plot with step zstep, plug the list of capacities for Xb in as CLbK with k at
most the length of CLbK into
PlotSingleCapacityObstructionFxn[zmin_,zmax_,zstep_,CLbK_,k_,b_]
:=Show[ ListLinePlot[Array[{(#-1)*zstep+zmin,SingleCapacityObstr
uctionFxn[ EllipsoidCap[(#-1)*zstep+zmin,k+5],CLbK,k]}&,
Floor[(zmax-zmin)/zstep]], PlotStyle�Cyan]]

To compute c≤Hb(z), find the maximum over the first 25,000 capacities of
ck(E(1,z))

h
, where h is the k + 1st element of the output of CapacitiesList

(remember the first element will be c0(Xb)). This is done by plugging
EllipsoidCap[z,25,000] as ECzk, the list of 25,000 capacities previously
computed for Xb as CLbK, and K = 25,000 into
CapacityFxn[ECzK_,CLbK_,K_]:=Max[Array[ECzK[[#+1]]/CLbK[[#+1]]&,
K]]

In order to plot CapacityFxn on [zmin,zmax] as a line plot with step zstep,
plug your list of capacities for Xb as CLbK with K = 25,000 into
PlotCapacityFxn[zmin_,zmax_,zstep_,CLbK_,K_,b_]:=

Show[Plot[Sqrt[(z/2)/(.5(1-b2))],
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{z,zmin,zmax},PlotStyle�Orange],ListLinePlot[
Array[{(#-1)*zstep+zmin,CapacityFxn[EllipsoidCap[(#-1)*zstep+

zmin,K],
CLbK,K]}&,Floor[(zmax-zmin)/zstep]]]]
Starting with zstep at 0.01 is a good choice if the interval is [1, 10]; when

analyzing the behavior near the accumulation point, with the interval much smaller,
it is possible to make zstep much smaller. We frequently use a zstep of 0.000001.

5.3 Obstructions from Exceptional Classes

We now discuss our code computing μE,b for exceptional classes E.
It is often useful to understand obstructions which do not correspond in the sense

of Remark 93 to any of the first 25,000 ECH capacities. As in the case of identifying
lattice paths, finding all relevant exceptional classes takes a lot of time and effort,
whether done by a computer or a human. But once E is identified, computing
μE,b(z) can be done quickly. We explain our code for this here.

Plotting the obstruction μE,b from a single exceptional class E first requires
computing the weight expansion of a number a, using
WeightDecomp[p_,q_]:=Module[{list={},aux,bux,k},If[p>q,{aux,bux}=
{p,q}, {aux,bux}={q,p}];While[Chop[bux]=0,k=Floor[aux/bux];
AppendTo[list, Table[bux,k]];{aux,bux}={bux,aux-k*bux}];
Flatten[list]]

If z = p/q is rational, then WeightDecomp[p,q] computes qw(z), while
WeightDecomp[z,1] computes w(z).

We take the dot product of vectors of unequal length using
ExtendedDot[M_,w_]:=Take[M,Min[Length[M],Length[w]]].Take[w,Min[

Length[M],Length[w]]]
For E = (d,m,m) we compute μE,b(z) by setting d = d, m = m, M = m, and

z = z in
Mu[b_,d_,m_,M_,z_]:=ExtendedDot[M,WeightDecomp[a,1]]/(d-b*m)

We plot Mu for z ∈ [zmin, zmax] with step zstep using
PlotMu[zmin_,zmax_,zstep_,d_,m_,M_,b_]:=Show[ListLinePlot[Array[
{(#-1)*zstep+zmin,Mu[b,d,m,M,(#-1)*zstep+zmin]}&,Floor[(zmax-
zmin)/ zstep]],PlotStyle�Brown]]

In Fig. 7 we have used PlotMu to depict the obstructions from the exceptional
classes whose obstructions underlay the steps centered at 1219/208, 3194/545, and
8363/1427 in the infinite staircase for b = bE0 of Theorem 58. Using the procedure
PlotMu instead of the procedure PlotSingleCapacityObstructionFxn
allows us to plot these stairs, as the corresponding ECH capacities are the
127,489th, 872,234th, and 5,971,895th, respectively, which do not contribute
to c≤H

bE0

(z). In order not to overload the figure, we have not drawn the obstruction

coming from the classes centered at 170/29, 463/79, whose centers are greater than
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5.86055 5.86056 5.86057 5.86058 5.86059 5.86060

2.51927

2.51927

2.51928

2.51928

2.51928

2.51928

2.51928

Fig. 7 This is a plot of the capacity and volume functions for b = bE0 = acc−1
L ([5; 1, 6, {5, 1}∞]).

The function c≤H
bE0

(z) is in dark blue, and in this case it is not a good approximation of the

true cH
bE0
(z). The volume obstruction is in orange. The green curve is parameterized by b �→

(
acc(b),

√
acc(b)
1−b2

)
, therefore the green curve intersects the orange when z = acc(bE0 ). Using Eu,0,k

to denote the exceptional class with center [5; 1, 6, {5, 1}k, 4] and E′
u,0,k to denote the exceptional

class with center [5; 1, 6, {5, 1}k, 5, 2], the obstruction μEu,0,1,bE0
(z) is in brown, the obstruction

μE′
u,0,1,b

E
0
(z) is in red, and the obstruction μEu,0,2,bE0

(z) is in purple. Because these correspond, in

the sense of Remark 93, to the obstructions from the 127,489th, 872,234th, and 5,971,895th ECH
capacities, respectively, they are not captured by our program computing c≤H

bE0

: in fact, on this

interval c≤H
bE0

is given instead by the obstruction from c8(HbE0
)

the values of z plotted, or the obstructions from the class centered at 21895/3736,
or any obstructions from Theorem 58 with k ≥ 3, which Mathematica cannot plot
at any scale with any definition.

In general, once we have an exceptional class in mind, it is computationally
faster to run PlotMu instead of PlotSingleCapacityObstructionFxn, because
in order to run the latter we first need to compute all the ECH capacities up to ck ,
where k = 1

1 (d(d+3)−m(m+1)). If we are interested in an exact irrational value of
b, there is a great difference, although we almost never do this. However, if we want
to overlay our plots on a graph of c≤Hb , there is no discernible difference, because

once we have computed the first 25,000 capacities ofXb necessary to graph c≤Hb , any
difference in speed between PlotMu and PlotSingleCapacityObstructionFxn
is not noticeable.
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5.4 Strategy for Finding Staircases

In this section we explain our experimental strategy for identifying infinite stair-
cases. We first explain our method for approximating Block≤, then our two methods
for finding staircases once we understood much of Block≤.

We investigate Block≤ by identifying the exceptional class realizing the
values of k for which ck(Xb) determines c≤Hb(acc(b)). At first, we simply chose
values of b at random and identified the smallest k for which the plot from
running PlotSingleCapacityObstructionFxn agreed with the plot from
PlotCapacityFxn for values of z near acc(b). We encode acc(b) using
AccPt[b_]:=(1/2)((3-b)2/(1-b2)-2+Sqrt[((3-b)2/(1-b2)-2)2-4])

We identified the appropriate values of k by visually inspecting the plots of the
obstruction from ck overlaid upon the plots of c≤Hb . See Fig. 8.

Inspired by our computations, when cHb(acc(b)) >
√

acc(b)
1−b2 and k satisfies

ck(E(1, acc(b)))

ck(Xb)
= cHb(acc(b))

5.75 5.80 5.85 5.90

2.51

2.52

2.53

2.54

Fig. 8 Here, b = 0.3. The function c≤H0.3
(z) is in dark blue, the volume obstruction is in orange,

and the obstruction from the 125th ECH capacity is in bright blue. The green curve is parameterized
by the potential accumulation point, therefore the orange and green curves intersect when z =
acc(0.3), and we can see that the dark blue and the light blue plots coincide in a neighbourhood
of that point. Indeed, 125 is the smallest k for which ck obstructs an infinite staircase at b = 0.3.
Note that c≤H0.3

(z) has a corner point at z = 35/6, and near this value is given by the class E =
(
15, 4; 6w(35/6)

)
as described in Remark 19 (ii)
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we say ck obstructs an infinite staircase at b.
For values of b very close to one for which cHb has an infinite staircase, the small-

est k for which ck obstructs an infinite staircase at b becomes very high, so it grows
infeasible to check every possible value of k by inspection of plots such as the one
depicted in Fig. 8. We introduced a new function, IndexAtAccPt[b_,CLbK_,K_].
Again, the list CLbK is the list of the first 25,000 capacities of Hb. IndexAtAccPt
outputs the values of k ∈ {0, . . . , K} for which ck(E(1,acc(b)))

ck(Xb)
is maximized.

The reason we want to be able to use values of K < 25,000 is because when
K = 25,000, IndexAtAccPt is fairly slow.
IndexAtAccPt[b_,CLbK_,K_]:=Block[{list=Array[EllipsoidCap[

AccPt[b],K][[#+1]]/CLbK[[#+1]]&,K]},Position[list,Max[list]]]
Given k and b such that ck obstructs an infinite staircase at b, we also want

to identify any quasi-perfect exceptional classes giving the same obstruction, that
is, those “corresponding” exceptional classes in the sense of Remark 93. For low
values of k, this can be done by hand, see Remark 19 (ii). For large values of k,
we do this by applying the function FindPQFromDM to the values of the output of
FindDMFromK, where
FindDMFromK[k_]:=Solve[.5(d(d+3)-m(m+1))==k&&d≥0&&m≥0,{d,m}
,Integers]
FindPQFromDM[d_,m_]:=Solve[d2+1-m2==p*q&&3d-m==p+q&&p>q&&q≥0&&
GCD[p,q]==1,{p,q},Integers]

Through the application of these two functions we have occasionally found
multiple candidate quasi-perfect classes, but it has always turned out that if there are
any solutions, then exactly one makes sense for the value of b under consideration.

We expect that for many k, the ECH capacity ck obstructs an infinite staircase
for an interval of values of b. In our computations, for each k where ck obstructs
an infinite staircase, we have been able to find a perfect center-blocking class
B corresponding to ck as in Remark 93. Therefore, for every pair b1 ≤ b2 we
have found whose infinite staircases are obstructed by the same ck , we know by
Lemma 38 that

[b1, b2] ⊂ JB,

and therefore

[b1, b2] ⊂ Block≤ ⊂ Block.

By identifying many such pairs b1 and b2, we built up a good approximation
to Block≤. Next we searched for values of b whose embedding function cHb
contained infinite staircases outside our approximation to Block≤. We explain our
two methods for doing so.

Checking Rational Points in [0, 1)\ Block≤ Suppose we know that ck and ck′
obstruct infinite staircases at b, b′ respectively, with b < b′, and that we have
checked enough values b′′ ∈ (b, b′) at small enough resolution to convince ourselves
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that there is no k ∈ {1, . . . , 25,000} for which ck obstructs an infinite staircase at
any b′′ ∈ (b, b′). In terms of our computations, this last condition means that for all
b′′ ∈ (b, b′) we have checked, we have c≤Hb′′ (acc(b′′)) ≤ Vb′′(acc(b′′)).

We would like to search through all rational numbers p/q ∈ (acc(b), acc(b′))
(if b, b′ ≥ 1/3; if b, b′ ≤ 1/3 then we check the interval (acc(b′), acc(b)))
to see if there are any d,m for which (d,m; qw (p/q)) solves the Diophantine
equations (2.1.2) and whose continued fractions contain repeated patterns. We do
this using the function ActualClassesWithCF applied to (acc(b), acc(b′), q1, q2),
which searches through all such rational numbers with q1 ≤ q ≤ q2 (when
b, b′ ≤ 1/3, we switch the places of acc(b) and acc(b′) accordingly). To define
this function we need the preliminary function NonemptyClassesWithCF:
NonemptyClassesWithCF[LB_,UB_,q1_,q2_]:=Select[Table[Table[
{Flatten[{ Values[Solve[d2+1-m2==pq&&3d-m==p+q&&d≥0&&m≥0,{d,m},
Integers]],p,q}], ContinuedFraction[p/q]},{p,Ceiling[LBq],
Floor[UBq]}],{q,q1,q2}],#= {}&]
ActualClassesWithCF[LB_,UB_,q1_,q2_]:=Select[Flatten[

NonemptyClassesWithCF[LB,UB,q1,q2],1],Length[#[[1]]]==4&]
ActualClassesWithCF returns lists with terms of the form ((d,m, p, q),

CF(p/q)) where (d,m, qw (p/q)) solves the Diophantine equations (2.1.2), the
rational p/q ∈ (acc(LB), acc(UB)) has q1 ≤ q ≤ q2, and CF (p/q) is the
continued fraction of p/q. If we see any terms whose CF (p/q) part contains a
periodic piece, we check whether there are any solutions to (2.1.2) for the obvious
extension of the periodic pattern, and if so, whether the associated exceptional
classes reduce properly under Cremona transformations.

This method works well when the periodic pieces are short. To handle the
more complex continued fractions investigated in our next paper, we developed our
second method, explained below, which also illuminates the relationship between
infinite staircases and blocking classes.

Finding the Staircases from a Blocking Class B Our second method provides
insight into the relevance of periodic continued fractions. Often the denominators of
the rationals p/q that we need to check in order to find a pattern are extremely large,
making our first method quite slow. However, the first method has the advantage that
we also learn the ends endn differentiating between the continued fractions of the
centers of the classes contributing to the individual stairs and the continued fraction
of the accumulation point. In contrast, with our second method we can solve for the
accumulation point precisely but need to search or guess to find the individual stairs.

Assume B = (d,m; qw (p/q)) blocks an interval JB with IB = (αB,�, αB,u).
First we identify αB,� and αB,u—these will be the accumulation points of the two
infinite staircases determined by B as in Conjecture 4. Our procedure relies on the
computer so that it will work for complicated B; note however that for simpler B, it
may be possible to find JB by hand using Lemma 44.

To determine αB,�, let a�(b) be the nonzero solution in z to
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qz

d − bm =
√

z

1 − b2 = Vb(z). (5.4.1)

Note that the left hand side of (5.4.1) is the value of μB,b(z) for z close to and
smaller than p/q, by Lemma 16. Then let b� be the solution in b to

acc(b) = a�(b)

with 0 ≤ b < 1 and in the same component of [0, 1) − {1/3} as JB. Then αB,� =
acc(b�). Because αB,� is a quadratic irrationality, its continued fraction is periodic.

With αB,� in hand, we can now attempt to guess the endings of the continued
fractions of the centers of the classes contributing to the staircase SβB,� (if
JB ⊂ (1/3, 1)) or SβB,u (if JB ⊂ [0, 1/3)). We do this using the function
SearchingForEnding, which uses the function FindDMFromCF:
FindDMFromCF[CF_]:=Solve[d2-m2+1==Numerator

FromContinuedFraction[CF]]*
Denominator[FromContinuedFraction[CF]]&&3d-m==Numerator[
FromContinuedFraction[CF]]+Denominator
[FromContinuedFraction[CF]]&&
d≥0&&m≥0,{d,m},Integers]

SearchingForEnding[CF_,end_]:=FindDMFromCF[Join[CF,end]]
By constructing tables consisting of SearchingForEnding[CF,end] with end

varying over judiciously chosen tuples of length up to four, we were able to identify
the necessary ends. This method always contains some element of guess-and-check,
but our general rule of thumb is that if CF(αB,�) = [X, {Y}∞] then there are ways
to write Y = (y1, y2) and Y = (y′

1, y
′
2) so that SearchingForEnding[CF,end]

returns nonempty pairs (d,m) for

CF = {X, {Y}k}, end = exactly one of {y1, 2n+ 2}, {y1, 2n+ 4}, {y1, 2n+ 6}

and for

CF = {X, {Y}k}, end = exactly one of {y′
1, 2n+ 2}, {y′

1, 2n+ 4}, {y′
1, 2n+ 6}.

Identifying the “opposite” staircase SβB,� (if JB ⊂ [0, 1/3) or SβB,u (if JB ⊂
(1/3, 1)) is done in a similar manner, but using αB,u, which is identified as follows.
Let au(b) be the solution in z to

p

d − bm =
√

z

1 − b2 = Vb(z). (5.4.2)

Note that the left hand side of (5.4.2) is the value of μB,b(z) for z close to and larger
than p/q. Then let bu be the solution in b to

acc(b) = au(b)
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which is in the same component of [0, 1) − {1/3} as JB. Then αB,u = acc(bu)
and is again a quadratic irrationality, with a periodic continued fraction. We identify
endings as for αB,� above.

With either method we could only identify staircases for single values of n, but
after seeing enough staircases we could usually guess fairly easily how they ought
to generalize to higher n. We were able to discover all the two-periodic staircases
discussed in this paper using the methods of Sect. 5.4. The methods of Sect. 5.4.
became necessary for all but the simplest 2k-periodic staircases of our next paper
with k > 1.

5.5 Plots of Ellipsoid Embedding Functions

In this section we give figures illustrating some of the phenomena mentioned
throughout the paper. In the following, all plots show μE,b overlaid atop ck(E(1,z))

ck(Xb)

on the interval where they agree.

Perfect Versus Quasi-Perfect Figures 9 and 10 illustrate Lemma 15. Figure 9
shows that the perfect class E′ = (73, 20; 29w (170/29)) of Example 28(iii) is live
at 170/29, as guaranteed by Proposition 21 (i).

5.860 5.862 5.864 5.866

2.5180

2.5185

2.5190

2.5195

Fig. 9 Here b = acc−1
L (170/29) ≈ 5.862. The function c≤Hb is in dark blue, the volume obstruction

is in orange, the obstruction from the 2564th ECH capacity is in bright blue, and the obstruction
from the perfect class E′ = (73, 20; 29w (170/29)) of Example 28(ii) is in brown; notice these
last two agree on an interval including the center 170/29 ≈ 5.86207 of E′. The green curve is as
before, crossing the orange curve with z-coordinate 170/29. This diagram also exhibits E′ (which
is a step in the staircase SLu,0) as a blocking class, illustrating Proposition 49
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5.83 5.84 5.85 5.86

2.528

2.530

2.532

2.534

Fig. 10 Here b = acc−1
L (111/19). The function c≤Hb is in dark blue, the volume obstruction is in

orange, the obstruction from the 1119th ECH capacity is in bright blue, and the obstruction from the
quasi-perfect class E′′ = (48, 14; 19w (111/19)) of Example 28(ii) is in brown; notice these last
two agree on an interval including the center 111/19 of E′′. The green curve is as before, crossing
the orange curve with z-coordinate 111/19. For this value of b the obstruction from the 125th
ECH capacity equals that from the perfect class E′ = (15, 4; 6w (35/6)), and both obstructions are
stronger than those from the 1119th ECH capacity and E′′ near 111

19

In Fig. 10, the point b = acc−1
L (111/19) is obstructed by the 125th capacity

and the perfect class E′ = (15, 4; 6w (35/6)) = BE0 of Example 28(ii). The
1119th capacity and the quasi-perfect class E′′ = (48, 14; 19w (111/19)) of
Example 28(ii), while still providing an obstruction, is strictly less than c≤Hb ≤ cHb .
Therefore Fig. 10 illustrates the conclusion of Lemma 15 (iii) that, for this b,
the obstruction μE′′,b is nontrivial at 111/19. However, there is no reason why
μE′′,b should be live at 111/19 since E′′ does not satisfy the reduction criterion in
Lemma 63 and so is not perfect. Thus Proposition 21 does not apply; see Remark 23.

Typical Behavior of a Blocking Class In this subsection we analyze the effect of
the blocking class BU0 = (3, 2; w(6)) on cHb as b varies. Firstly, by the method
outlined in Sect. 5.4, we find

JBU0
= (βBU0 ,�

, βBU0 ,u
) =

(
3 − √

5

2
,

3(7 + √
5)

44

)

≈ (0.381966, 0.629732),

and by applying acc, we find

IBU0
= (αBU0 ,�

, αBU0 ,u
) ≈ (5.8541, 7.17082).
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Because w(6) = (1×6), the obstruction μBU0 ,b
is nontrivial at z ≥ 6 if

6

3 − 2b
>

√
z

1 − b2
⇔ 6 ≤ z < 36(1 − b2)

(3 − 2b)2
,

and μBU0 ,b
is nontrivial at 5 ≤ z < 6 if

5 + (z− 5)

3 − 2b
>

√
z

1 − b2 ⇔ (3 − 2b)2

1 − b2 < z < 6.

While it is possible for μBU0 ,b
to be nontrivial for z < 5, we have μBU0 ,b

(5) ≤ Vb(5)
for all b, meaning that the maximal z-interval containing the center z = 6 of BU0
on which μBU0 ,b

is nontrivial is
(
(3−2b)2

1−b2 ,
36(1−b2)

(3−2b)2

)
.16 This interval is nonempty so

long as

b ∈
(

6 − √
6

10
,

6 + √
6

10

)

≈ (0.355051, 0.844949),

and if nonempty it contains z = 6. Thus when b = 6−√
6

10 , 6+√
6

10 we have

(3 − 2b)2

1 − b2
= 36(1 − b2)

(3 − 2b)2
= 6.

The interval
(
(3−2b)2

1−b2 ,
36(1−b2)

(3−2b)2

)
is longest when b = 2/3 = m/d, when it is

the interval (5, 36/5) and (3−2b)2

1−b2 reaches a minimum when 36(1−b2)

(3−2b)2
reaches a

maximum; notice that IBU0
⊂ (5, 36/5). However, BU0 does not block b = m/d,

because acc (2/3) ≈ 7.66962 > 36/5, as explained in Remark 39.
Figure 11 depicts cHb for

b = 3 − √
5

2
= βBU�,0

, b = 5/11 = acc−1
U (6), b = 3(7 + √

5)

44
= βBUu,0

highlighting the obstruction μBU0 ,b
. Notice that in (b),(c) there is a new obstruction

coming in from the left that dominates μBU0 ,b
near the left end point of the interval

where μBU0 ,b
is obstructive. This illustrates the point that for general b it is often the

case that μBU0 ,b
is not live over the entire z-interval on which it is nontrivial.

16Note also that by Lemma 14 (ii), if BU0 is nontrivial on an interval containing points less than 5,
then that interval cannot include 6, since �(5) < �(6), but 6 would have to be the break point.
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2.7

2.8

2.9

3.0

3.1

5.5 6.0 6.5 7.0 7.5

3.0

3.1

3.2

3.3

3.4

3.5

(a)

(b)

(c)

Fig. 11 As b increases from βBU0 ,�
to the center of BU0 to βBU0 ,u

, the plot of cHb varies from the

infinite staircase SU�,0 depicted in (a), through blocked staircases such as that of cH5/11 depicted in

(b), to the infinite staircase SU0,u depicted in (c). In all plots the orange curve indicates the volume

obstruction, the function c≤Hb is in dark blue, the obstruction μBU0 ,b
is in brown, and the curve

(acc(b), Vb(acc(b))) is in bright green. (a) b = βBU0 ,�
= 3−√

5
2 . (b) b = acc−1

U (6) = 5
11 . (c)

b = βBU0 ,u
= 3(7+√

5)
44



154 M. Bertozzi et al.

6.5 7.0 7.5

(a)

(b)

8.0 8.5 9.03.4

3.6

3.8

4.0

4.2

7.1 7.2 7.3 7.4 7.5

3.46

3.48

3.50

3.52

3.54

3.56

Fig. 12 In both plots the orange curve indicates the volume obstruction, the function c≤Hb is in
dark blue when visible, the obstruction μBU0 ,b

is in brown, the obstruction μBU1 ,b
is in red, and the

curve (acc(b), Vb(acc(b))) is in bright green. Note the differing scales; the break point 8 of the red
curve is visible in (a) but not in (b). (a) b = 0.7. (b) b = 0.64
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5.5 6.0 6.5 7.0

2.5

2.6

2.7

2.8

2.9

5.5 6.0 6.5 7.0

2.5

2.6

2.7

2.8

2.9

5.8 5.9 6.0 6.1

2.60

2.62

2.64

2.66

2.68

(a)

(b)

(c)

Fig. 13 In all plots the orange curve indicates the volume obstruction, the function c≤Hb is in dark

blue, the obstruction μBU0 ,b
is in brown, the obstruction from (3, 1; 2, 1×5) is in red, and the curve

(acc(b), Vb(acc(b))) is in bright green. Note the differing scales; in all diagrams, both the brown
and red curves break at z = 6. (a) b = 0.37. (b) b = 3

8 = 0.375. (c) b = 0.38
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When b ∈
(

6−√
6

10 , 6+√
6

10

)
−
(

3−√
5

2 ,
3(7+√

5)
44

)
—that is, when μBU0 ,b

is nontrivial

but BU0 is not blocking—this phenomenon persists. Figure 12 illustrates the situation

when b ∈
[

3(7+√
5)

44 , 6+√
6

10

)
≈ (0.629732, 0.844949), showing the interaction

between BU0 and BU1 . When b = 0.7, the obstruction μBU0 ,b
(in brown), though

nontrivial, is not live on the interval (7.125, 7.171875); instead μBU1 ,b
, where

BU1 = (4, 3; w(8)), (in red) is live. As b decreases towards 3(7+√
5)

44 , the intervals
on which μBU0 ,b

(in brown) and μBU1 ,b
(in red) are nontrivial become disjoint, as

predicted by Proposition 42, and one begins to see some staircase classes. Indeed,
by Theorem 56, when b = βBU0 ,u

, Hb admits a descending staircase SUu,0 whose
k = 0 step with end0 = 4 has center 29/4 = [7; 4], the largest center amongst
steps in SUu,0. Meanwhile, the step with the second-lowest center in the ascending

staircase SU�,1 (the k = 0 step with end1 = (7, 4)) has the same center; it is visible
as the large dark blue step in Fig. 12b.

Figure 13 illustrates the situation when b ∈
(

6−√
6

10 , 3−√
5

2

]
. When b ∈

[
3
8 ,

3−√
5

2

)
, as in (c), there is still a z-interval on which μBU0 ,b

(in brown) is live,

but when b ∈
(

6−√
6

10 , 3
8

)
, as in (a), the obstruction from the class (3, 1; 2, 1×5)

(in red) overwhelms μBU0 ,b
. However, note that (3, 1; 2, 1×5) is never blocking in

this interval, because the value of its obstruction function at acc(b) < 6 is always
Vb(acc(b)), as we saw in (2.2.5). In particular, in each of (a), (b), (c) the orange,
green and red curves have a common point of intersection.
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Action-Angle and Complex Coordinates
on Toric Manifolds

Haniya Azam, Catherine Cannizzo, and Heather Lee

1 Introduction

We start off with an overview of the two sets of coordinates, action-angle and
complex, on compact toric manifolds.

Compact symplectic toric manifolds (M2n, ω) modulo T
n ∼= (S1)n equivariant

symplectomorphisms are in one-to-one correspondence with a class of compact
convex polytopes known as Delzant polytopes, modulo translation [11]. One direc-
tion of this correspondence is Atiyah [4] and Guillemin-Sternberg’s [18] convexity
theorem that given a symplectic toric manifold (M2n, ω,μ), where μ : M2n → R

n

is the moment map of the Hamiltonian toric action, the image μ(M2n) is a convex
polytope. Conversely, given a Delzant polytope n, Delzant’s construction produces
a compact symplectic toric manifold M2n

 such that the image of its moment map
μ : M2n

 → R
n is  n. The toric manifold M2n

 is obtained from a symplectic
reduction of Cd (where d is the number of facets of  n) with respect to the action
of a (d − n)-dimensional subtorus N ⊂ T

d . Denote by μN the moment map of this
action byN . The reduced space,M2n

 = C
d//N = μ−1

N (a)/N (for regular values a),
carries a Hamiltonian T

n ∼= T
d/N -action and a canonical Tn-invariant symplectic
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form ω. Each T
n-orbit is a fiber of the moment map μ, i.e. the preimage of a point

in  n under μ. This Tn-action is free on the preimage μ−1( ̊) of the interior  ̊ of
 n, and it is degenerate on the complement, which is the preimage μ−1(∂ n) of
the boundary. Therefore, μ−1( ̊) is diffeomorphic to  ̊× T

n.
Since C

d carries a T
d -invariant Kähler structure, it induces an ω-compatible

T
n-invariant Kähler structure (g, J ) on the reduced space M2n

 . The complex
manifold (M2n

 , J ) is then a toric variety with the complexified torus T
n
C

-action.
This complex torus T

n
C

∼= (C∗)n acts freely and transitively on μ−1( ̊), hence
μ−1( ̊) is diffeomorphic to T

n
C

. We now have two natural sets of coordinates on
μ−1( ̊) ⊂ M2n

 coming from the action-angle coordinates on  ̊ × T
n and the

complex toric coordinates on T
n
C

via the identification

 ̊× T
n ∼= μ−1( ̊) ∼= T

n
C
. (1)

These two sets of coordinates are related by Legendre transform; however, explicit
formulas for switching between them might be complicated or sometimes impos-
sible to obtain, as we will illustrate with examples (most elaborately in Sect. 3.5).
Understanding the relation between these two sets of coordinates was the initial
motivation for this paper (see Sect. 5.3) and is one of the main topics explored.

For the Kähler form ω on M , Guillemin [16] extended this story further by
showing that the ω possesses a Tn-invariant Kähler potential F : Tn

C
→ R such that

ω = 2i∂∂F and it only depends on the real part of the Lie algebra Lie(Tn
C
) ∼= C

n

coordinates, so it is a function F : R
n → R. Guillemin also provided a dual

potential G :  ̊ → R, which is a function of the moment map coordinates and
it is a Legendre transform of F . The formulas for the potential functions are given
by (up to adding constants) the combinatorial structure of  n.

Even though the theories above are all done for compact manifolds, the idea
behind describing symplectic toric manifolds via symplectic reduction carries
over to noncompact manifolds as well. However, for noncompact symplectic toric
manifolds, the moment map image might not be convex and the fibers of the moment
map might not be connected; see [24] for a classification result for noncompact
symplectic manifolds. In this paper, for noncompact examples, we will only focus
on those where the theories for compact toric manifolds carry over, i.e. those with
convex moment map images and connected moment map fibers.

In fact, when it comes to noncompact examples, we will almost exclusively
focus on the total space of the canonical line bundle π : KM → M of a
compact toric manifold. Because the tangent bundle TKM ∼= π∗TM ⊕ KM and
c1(KM) = −c1(TM), we get that c1(TKM ) = 0, so KM is a Calabi-Yau (CY)
toric manifold. In connection to mirror symmetry, the singular symplectic fibration
W : KM → C, where W is the product of the homogeneous coordinates, gives
an example of a Landau-Ginzburg model (KM,W). Furthermore, when M is in
addition Fano, the critical locus of the fibration W : KM → C provides another
source of Calabi-Yau manifolds that are of interest to many. This is behind our
motivation for understanding the symplectic structure on KM , and more generally,
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(KM,W) above serves as a prototypical class of examples of a toric Landau-
Ginzburg model (Y,W), where Y is a CY toric manifold.

Here is an outline of the paper. In Sect. 2, we summarize the construction of
compact toric manifolds M2n as symplectic quotients. In Sect. 3, we discuss the
T
n-action on M2n and its moment map. In Sect. 4, we present Guillemin’s [16]

Kähler potentials. We use many examples to illustrate the theories, with the complex
projective space Pn being the main running example throughout Sects. 2–4. Another
running example throughout this paper is the aforementioned noncompact example
of KM . (In Sects. 2 and 3, the KM example is contained in Sects. 2.3, 3.2, 3.4, 3.5.)
Finally in Sect. 5, we explain some applications to mirror symmetry. In particular,
we mention how to compute the monodromy of a fiber around the singularity
of a symplectic fibration given by a superpotential on KM , where the horizontal
distribution is the ω-orthogonal complement to the tangent space of each fiber; for
this we use the symplectic form ω obtained via symplectic reduction. Section 6 lists
notation used in the text.

2 Toric Manifolds as Symplectic Quotients

In this section, we describe the compact symplectic toric manifold M of complex
dimension n, but we will defer the discussion about the toric T

n-action on M to
Sect. 3 and the Kähler structure to Sect. 4. The description of M doesn’t start until
Sect. 2.2. Below we give a brief summary of the content of each subsection.

Section 2.1 is entirely complex geometric, in which we set up some notation and
describe a proper and holomorphic action of a complex (d − n)-dimensional torus
NC = (C∗)d−n on C

d . We then introduce an open set U where NC acts freely,
and construct the quotient U/NC with the induced complex manifold structure. We
take this complex geometric starting point because many examples we would like
to consider, such as complex projective space, are most naturally described in this
way.

Section 2.2 gives the description of M as a symplectic quotient of Cd (with the
standard symplectic structure) with respect to a Hamiltonian N -action, where N =
U(1)d−n is a real (d − n)-dimensional torus. More explicitly, M can be described
as a quotient μ−1

N (a)/N where a is a regular value of the moment map μN of the
N -action. This symplectic quotient μ−1

N (a)/N can be identified with a complex
geometric quotient Ua/NC for a certain Zariski open set Ua ⊂ C

d on which NC

acts freely. Now U = Ua depends on which chamber a is in, where going from one
chamber to another amounts to crossing a wall of values where μN is not regular.

We use the complex project space Pn as a running example to illustrate the set-up
and theories in Sects. 2.1 and 2.2 (see Examples 2, 3, and 5). In Sect. 2.3, we provide
an example of a noncompact toric manifold KM , which is the canonical line bundle
of a compact toric manifoldM .
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2.1 Complex Geometric Quotients

Consider the action of the complex torus Td
C

= (C∗)d on C
d given by

T
d
C

× C
d → C

d

(t̃ , z) �→ t̃ · z = (̃t1z1, . . . , t̃dzd),
(2)

where t̃ = (̃t1, . . . , t̃d ) ∈ T
d
C

(to distinguish it from coordinates ti on the complex

algebraic torus Tn=dimCM
C

in Chap. 3) and z = (z1, . . . , zd) ∈ C
d .

Let NC := (C∗)d−n and fix any injective group homomorphism

ρC : NC = (C∗)d−n −→ T
d
C

= (C∗)d . (3)

Then the image ρC(NC) is a (d − n)-dimensional subtorus in T
d
C

. We then have a
short exact sequence of abelian groups

1 → NC

ρC−→ T
d
C

βC−→ T
n
C

→ 1, (4)

where T
n
C

:= cokerρC = T
d
C
/NC

∼= (C∗)n and βC is any group homomorphism
that makes the above sequence exact. Let’s fix notations for the maps ρC and βC
below.

1. The map ρC is of the form

ρC(λ1, . . . , λd−n) =
(
d−n∏

�=1

λ
Q�1
� , . . . ,

d−n∏

�=1

λ
Q�d
�

)

(5)

whereQ�k ∈ Z, 1 ≤ � ≤ d − n, 1 ≤ k ≤ d.
2. The map βC is of the form

βC(̃t1, . . . , t̃d ) =
(
d∏

k=1

t̃
vk1
k , . . . ,

d∏

k=1

t̃
vkn
k

)

(6)

where vkm ∈ Z, 1 ≤ k ≤ d, 1 ≤ m ≤ n.
3. The exactness of (4) implies the exponent on each λ� in the mth coordinate of
βC ◦ ρC is 0, namely

d∑

k=1

vkmQ
�
k = 0, 1 ≤ m ≤ n, 1 ≤ � ≤ d − n. (7)
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The choice of βC delimited by Eq. (7) is not unique, and one can see this more
easily by considering the linearized maps in matrix form. Let nC ∼= C

d−n, td
C

∼= C
d ,

and tn
C

∼= C
n be the Lie algebras of NC, Td

C
, and T

n
C

, respectively. Taking the
differentials of the two group homomorphisms in (4) at the identity, we obtain the
following short exact sequence of complex vector spaces:

0 → nC
(dρC)1−→ td

C

(dβC)1−→ tn
C

→ 0. (8)

The linear maps (dρC)1 and (dβC)1 are given by matrices Q and B respectively,
where

Qd×(d−n) =
⎡

⎢
⎣

Q1
1 · · · Qd−n1

...
...

Q1
d · · · Qd−nd

⎤

⎥
⎦ , Bn×d =

⎡

⎢
⎣

v1
1 · · · vd1
...

...

v1
n · · · vdn

⎤

⎥
⎦ . (9)

Equation (7) is then equivalent to BQ = 0. GivenQ, the relation BQ = 0 does not
uniquely determine B since it only requires that the row vectors of B generate Q⊥.
GivenQ, to write B : Zd → Z

d/ 〈col(Q)〉 ∼= Z
n in matrix form we need to make an

identification of Zd/ 〈col(Q)〉 with Z
n, where 〈col(Q)〉 denotes the column space

ofQ. Also because B is surjective, 〈col(B)〉 = Z
n and the column vectors of B are

primitive. Other choices for the matrix B will hence differ by left multiplication of
elements in GL(n,Z) with determinant ±1. (On the other hand, if we fix B, then
the choices for Q would differ by right multiplication of elements in GL(d − n,Z)
so as to keep kerB fixed).

Example 1 (P(1, 2, 3)) As an example, take Q = [1, 2, 3]T , d = 3, and n = 2.
First we make an identification of the quotient with Z

n=2. Extend the column vectors
ofQ to a Z-basis for Z3, given by

{f1, f2, f3} := {(1, 2, 3)T , (0, 1, 0)T , (0, 0, 1)T },

so that

Z
3

〈col(Q)〉 = Zf1 ⊕ Zf2 ⊕ Zf3

Zf1
= Zf2 ⊕ Zf3.

Since kerB = 〈col(Q)〉, let B be the linear map f1 �→ (0, 0), f2 �→ (1, 0), and
f3 �→ (0, 1). Then using that

(1, 0, 0) = f1 − 2f2 − 3f3 )⇒ B : (1, 0, 0) �→ (0, 0)− 2(1, 0)− 3(0, 1) = (−2,−3),

with respect to the standard bases on Z
d=3 on Z

n=2 we see that B : Zd → Z
n is
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B =
[−2 1 0
−3 0 1

]
.

(This example leads to the weighted projective space P(1, 2, 3), cf. the complex
projective space P

2 = P(1, 1, 1) in Example 2.) ��
Let NC = (C∗)d−n act on C

d by its image under ρC : NC → T
d
C

, where the
action of the subtorus ρC(NC) ⊂ T

d
C

is inherited from the action of Td
C

. In other
words, this action is

NC × C
d → C

d

(λ, z) �→ λ · z := ρC(λ) · z (10)

where λ ∈ NC, z ∈ C
d , and ρC(λ) · z on the right hand side is given by component-

wise multiplication as in Eq. (2).
This NC-action on C

d is holomorphic and proper, but it is not free everywhere,
so simply taking the quotient Cd/NC will not give us a manifold structure. If U is a
subset of Cd on whichNC acts freely, then the quotientU/NC has a unique complex
structure such that the quotient map π : U → U/NC is holomorphic. Many
complex manifolds can be described in this way as a quotient, such as Example 2
for the complex projective space below.

Example 2 (Pn) Consider d = n + 1 and NC = (C∗)d−n=1 = C
∗. The image of

the embedding

ρC : NC = C
∗ → T

d
C

= (C∗)n+1, ρC(λ1) = (λ1, . . . , λ1) (11)

is a subtorus ρC(NC) ∼= C
∗ in T

d
C

, which gives the following NC = C
∗-action on

C
d=n+1

λ1 · (z1, . . . , zn+1) = (λ1z1, . . . , λ1zn+1).

Consider U = C
n+1 −{0}; then theNC action on U is free. We find that the quotient

U/NC

P
n = (Cn+1 − {0})/C∗, (12)

is the complex projective space consisting of complex lines through the origin in
C
n+1.
Note that so long as ρC is the one given above in Eq. (11), the resulting quotient

is Pn as in Eq. (12), no matter what βC is. The choice of βC is not unique for a given
ρC. For the ρC given by Eq. (11), the linear map (dρC)1 has the matrix form

Q = [ 1 · · · 1 ]T . (13)
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One choice of B such that BQ = 0 is

B =
⎡

⎢
⎣

−1

In

...

−1

⎤

⎥
⎦ , (14)

where In is the n× n identity matrix. This matrix B corresponds to

βC(̃t1, . . . , t̃n+1) = (̃t1̃t−1
n+1, . . . t̃ñt

−1
n+1). (15)

��

2.2 Symplectic Quotients

Let N = U(1)d−n be the maximal compact subgroup of NC. The NC-action on C
d

defined in Eq. (10) restricts to a Hamiltonian N -action on the symplectic manifold

(

C
d , ω0 = i

2

d∑

k=1

dzk ∧ dz̄k
)

. (16)

In this subsection, we first consider the symplectic quotient Cd//N of (Cd , ω0) with
respect to the action by N . The symplectic quotient provided in Theorem 1 is a
symplectic toric manifold. After that, we will state in Theorem 2 that this symplectic
quotient can be identified with a complex geometric quotient.

To describe the symplectic quotient Cd//N , we first need to obtain the moment
map of the N -action. Consider the maximal compact subgroup T

d = U(1)d of Td
C

.
Then the Td

C
-action on C

d defined in Eq. (2) restricts to a Hamiltonian T
d -action on

the symplectic manifold (Cd , ω0) given in Eq. (16) with a moment map (which is
unique up to addition of a constant vector in R

d that plays a role in Eq. (45))

μTd : Cd → R
d , μTd (z1, . . . , zd) = 1

2
(|z1|2, . . . , |zd |2). (17)

The image of N under ρC is a subtorus of Td , and one can equivalently think of
the N -action on C

d as an action of its image ρC(N), which inherits the action of
T
d . Hence, the moment map (which is unique up to addition of a constant vector in

R
d−n) of the Hamiltonian N -action is

μN := (dρC)∗1 ◦ μTd : Cd → R
d−n,

μN(z1, . . . , zd) = 1
2

(
d∑

k=1
Q1
k|zk|2, . . . ,

d∑

k=1
Qd−nk |zk|2

)
.

(18)
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Example 3 (Pn) In our running example P
n, the holomorphic NC = C

∗-action
on C

n+1 restricts to a Hamiltonian N = U(1)-action on the symplectic manifold
(Cn+1, ω0). Its moment map can be calculated from the linear map (dρC)1, which
in matrix form is given by Eq. (13), and μTd given in Eq. (17). Up to a constant, it
is

μN : Cn+1 → R,

μN(z1, . . . , zn+1) = (dρC)∗1 ◦ μTd (z1, . . . , zn+1) = 1
2

n+1∑

k=1
|zk|2. (19)

��
For a ∈ R

d−n, the following two statements are equivalent:

– a is a regular value of μN , meaning that dμN is surjective at each point in
μ−1
N (a), and hence μ−1

N (a) is a smooth manifold of the expected real dimension
2d − (d − n) = d + n.

– The N -action on μ−1
N (a) is locally free.

This is because the surjectivity of dμN is equivalent to the linear independence of
the Hamiltonian vector fields generated by the d − n components of μN .

For the rest of this paper, we will only be considering the cases where a is a
regular value of μN and that N acts freely on μ−1

N (a), not just locally free. When
the N doesn’t act freely, the quotient might be an orbifold. We are now ready to
describe the symplectic quotient Cd//N of Cd by the action of N .

Theorem 1 (Marsden-Weinstein [30] and Meyer [32] Symplectic Reduction)
Consider the Hamiltonian action on (Cd , ω0) by the compact group N with a
moment map μN : C

d → R
d−n, as described above. If a is a regular value of

μN and that N acts freely on μ−1
N (a), then the symplectic quotient

M := C
d//N = μ−1

N (a)/N

admits a unique structure of a smooth manifold of real dimension 2n such that the
projection πa : μ−1

N (a) → μ−1
N (a)/N is a submersion, and it carries a canonical

symplectic form ωa such that

π∗
a ωa = ι∗aω0,

where ιa : μ−1
N (a) ↪→ C

d is the inclusion.

In Sect. 3.1, we will discuss that M carries an effective Hamiltonian T
n-action,

which makes it a toric symplectic manifold. Since (Cd , ω0) is Kähler, compatible
with the standard complex structure, the symplectic reduction μ−1

N (a)/N also has
a natural Kähler structure. We will discuss the Kähler structure in more detail in
Sect. 4.
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This symplectic quotient M = μ−1
N (a)/N can also be described as a complex

geometric quotient by the following theorem.

Theorem 2 (Kempf-Ness [25], Kirwan [26], Audin [5], Guillemin [17]) There is
a Zariski open set Ua ⊂ C

d such that μ−1
N (a) ⊂ Ua , NC acts freely on Ua , and

M = μ−1
N (a)/N = Ua/NC.

The quotient M is a smooth manifold carrying the canonical symplectic structure
ωa as in Theorem 1 and it carries the unique complex structure such that π̃a : Ua →
Ua/NC is holomorphic.

Here we decided to simply use the notation M instead of Ma since whenever we
use M later on, it’s always for a fixed a, so there’s no confusion. The Kempf-
Ness theorem [25] is a deep and more general theorem describing the equivalence
between the geometric invariant theory (GIT) quotient of a smooth complex
projective variety X by the linear action of a complex reductive group Gc and the
symplectic quotient of X by the maximal compact subgroup G of Gc. We will not
describe the geometric invariant theory in this article. Audin [5, Proposition 3.1.1]
gave a proof of the above result in the specialized setting for toric manifolds that is
similar to Kirwan’s [26, Theorem 7.4] more general proof for quotients of Kähler
manifolds. Guillemin [17, Section A1.2] gave a more elementary proof in the case
of toric manifolds.

We do not explain the proof for Theorem 2 in this article; however, in Sec-
tion “Description ofUa and Complex Toric Coordinates” we will provide an explicit
description of Ua that can be found in [5, 17], corresponding to μ−1

N (a)/N , in this
setting of toric manifolds. This theorem is also illustrated in our Examples 4, 5,
and 7. Note that the proof of this theorem depends on the convexity property of the
moment map of the Tn-action on the symplectic toric manifold μ−1

N (a)/N , which is
guaranteed for compact toric manifolds by Theorem 4 but not guaranteed in general
for noncompact toric manifolds. However, for all of our noncompact examples, the
image of the moment map is convex.

Example 4 (Tot(O(−1)⊕ O(−1)→ P
1)) Consider NC = C

∗ acting on C
4 by

λ1 · (z1, z2, z3, z4) = (λ1z1, λ1z2, λ
−1
1 z3, λ

−1
1 z4).

It restricts to a Hamiltonian N = U(1)-action on (C4, ω0) with the moment map
μN : C4 → R given by μN(z1, z2, z3, z4) = 1

2 (|z1|2 + |z2|2 − |z3|2 − |z4|2). Then
a ∈ R is a regular value if and only if a = 0, and the level set is

μ−1
N (a) = {|z1|2 + |z2|2 − |z3|2 − |z4|2 = 2a} ⊂ C

4.

We can see that for z ∈ μ−1
N (a), if a > 0, then z1 and z2 cannot both be 0, and if

a < 0, z3 and z4 cannot both be 0. If we take Ua to be
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Ua =
{
(C2 − {0})× C

2, a > 0;
C

2 × (C2 − {0}), a < 0,

then μ−1
N (a) ⊂ Ua and

μ−1
N (a)/U(1) = Ua/C∗,

giving the total space of O(−1) ⊕ O(−1) → P
1. For a > 0, the zero section is

given by

{(z1, z2, 0, 0) | |z1|2 + |z2|2 = 2a}/U(1) = S3(
√

2a)/U(1) = S2(
√
a/2) ∼= P

1.

Similarly, for a < 0, the zero section is given by

{(0, 0, z3, z4) | −|z3|2 − |z4|2 = 2a}/U(1) = S3(
√−2a)/U(1) = S2(

√−a/2) ∼= P
1.

��
Given the identification of orbit spaces Ua/NC = μ−1

N (a)/N , for any z ∈ Ua , it
is in one of the NC-orbits, which corresponds to a unique N -orbit in μ−1

N (a) ⊂ Ua ,
so there exists λ̃a(z) ∈ NC such that ρC(̃λa(z)) · z is in that N -orbit. Furthermore,
because the NC-action is free, there is a unique λa(z) ∈ NC/N = (R>0)

d−n
such that ρC(λa(z)) · z ∈ μ−1

N (a). Therefore, we have the following deformation
retraction.

Definition 1 (Deformation Retraction Ra) For any z ∈ Ua , take the unique
λa(z) ∈ NC/N = (R>0)

d−n such that ρC(λa(z)) · z ∈ μ−1
N (a). This defines a

deformation retraction

Ra : Ua → μ−1
N (a) ⊆ C

d , z �→ λa(z) · z = ρC(λa(z)) · z. (20)

We will see in the example provided in Sect. 3.5 that computing this deformation
retraction is the main challenge one encounters when trying to express the moment
map of the T

n-action onM in terms of the homogeneous coordinates z ∈ C
d .

Example 5 (Pn) One can see from Eq. (19) that a ∈ R is a regular value of μN if
and only if a = 0, and the level sets are

μ−1
N (a) =

{
{z ∈ C

n+1 | ∑n+1
k=1 |zk|2 = 2a} = S2n−1(

√
2a), a > 0;

∅, a < 0.

So if z ∈ μ−1
N (a) ⊂ C

n+1 and a > 0, then z = 0. We see that if we take Ua =
C
n+1 − {0}, then
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μ−1
N (a)/U(1) = Ua/C∗ = (Cn+1 − {0})/C∗ = P

n,

where μ−1
N (a) inherits a symplectic structure while (Cn+1 − {0})/C∗ inherits a

complex structure.
For any z ∈ C

n+1 − {0}, by Eq. (19), the unique λa(z) ∈ C
∗/U(1) � R>0 such

that λa(z) · z ∈ μ−1
N (a) is λa(z1, . . . , zn+1) =

√
2a∑n+1

j=1 |zj |2 . Hence, with ρC given in

Eq. (11), the deformation retraction is given by

Ra : Cn+1 − {0} → μ−1
N (a), (z1, . . . , zn+1) �→

√
2a

∑n+1
j=1 |zj |2

(z1, . . . , zn+1).

(21)
��

2.3 Canonical Line Bundle KM of a Toric Manifold M

This is a noncompact example, though as mentioned in the introduction section, the
theory for compact toric manifolds carries over to this example. LetM be a compact
toric manifold obtained as a symplectic quotient of (Cd , ω0) with respect to the
action of N as in the previous Sect. 2.2. In this subsection, we give a description of
the total space of the canonical line bundleKM overM as a symplectic reduction of

(

C
d+1, ω+

0 = i

2

( d∑

k=1

dzk ∧ dz̄k + dp ∧ dp̄
))

, (22)

also with respect to an action ofN . SoKM is a toric manifold of complex dimension
n + 1, which is one complex dimension higher than M . We use (z1, . . . zd , p) to
denote the coordinates on C

d+1 = C
d × C, where z ∈ C

d are the homogeneous
coordinates on M as in the previous section, and p is the additional coordinate in
the fiber direction. Notation-wise in this subsection, we add a superscript + to maps
from the previous section to denote the extensions of those maps.

First we describe the complex geometric quotient. Let Td+1
C

= (C∗)d+1 act on
C
d+1 by

T
d+1
C

× (Cd × C) → C
d × C

(̃t+, z, p) �→ t̃+ · (z, p) := (̃t1z1, . . . , t̃dzd , t̃d+1p).

Again the T
d+1
C

-action on C
d+1 restricts to a Hamiltonian U(1)d+1-action on

the symplectic manifold (Cd+1, ω+
0 ) with a moment map (which is unique up to

addition of a constant vector in R
d+1)
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μTd+1 : Cd+1 → R
d+1, μTd+1(z1, . . . , zd , p) = 1

2
(|z1|2, . . . , |zd |2, |p|2).

The ρC chosen above forM in Eq. (3) determines that for KM , and the extended
map ρ+

C
: NC = (C∗)d−n −→ T

d+1
C

needs to be

ρ+
C
(λ1, . . . , λd−n) =

(
d−n∏

�=1

λ
Q�1
� , . . . ,

d−n∏

�=1

λ
Q�d
� ,

d−n∏

�=1

λ
−∑d

k=1Q
�
k

�

)

. (23)

In Sect. 3.4, we will provide the justification that this extension ρ+
C

determines a
N -action on C

d+1 such that the symplectic reduction C
d+1//N is KM , but for now

we take this fact for granted.
For this given ρ+

C
, the map β+

C
: Td+1

C
→ T

n+1
C

is of the form

β+
C
(̃t1, . . . , t̃d+1) =

(
d∏

k=1

t̃
vk1
k , . . . ,

d∏

k=1

t̃
vkn
k ,

d+1∏

k=1

t̃k

)

and the corresponding matricesQ+ and B+ are given by

Q+ =

⎡

⎢⎢⎢
⎣

Q1
1 · · · Qd−n1
...

...

Q1
d · · · Qd−nd

−∑d
k=1Q

1
k · · · −∑d

k=1Q
d−n
k

⎤

⎥⎥⎥
⎦
, B+ =

⎡

⎢⎢⎢
⎣

v1
1 · · · vd1 0
...

...

v1
n · · · vdn 0

1 · · · 1 1

⎤

⎥⎥⎥
⎦
. (24)

Again by exactness of the analogue of Eq. (4), 0 → nC
(dρ+

C
)1−→ t

d+1
C

(dβ+
C
)1−→ t

n+1
C

→ 0,
we know that B+Q+ = 0.

Example 6 (KP2) The Q and B for P2 from Example 2 extend to Q+ and B+ for
KP2 as

Q+ =

⎡

⎢⎢
⎣

1
1
1

−3

⎤

⎥⎥
⎦ , B+ =

⎡

⎣
1 0 −1 0
0 1 −1 0
1 1 1 1

⎤

⎦ ,

where the corresponding maps are

ρ+
C
(λ1) = (λ1, λ1, λ1, λ

−3
1 ), β+

C
(̃t1, t̃2, t̃3, t̃4) = (̃t1̃t−1

3 , t̃2̃t
−1
3 , t̃1̃t2̃t3̃t4).

��
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Now we describe the symplectic quotient. Let NC
∼= (C∗)d−n act on C

d+1 by
λ ·(z, p) = ρ+

C
(λ) ·(z, p), where λ ∈ NC, z ∈ C

d , and p ∈ C. The restriction of this
action to the maximal compact subgroup N = U(1)d−n is a Hamiltonian N -action
on the standard C

d+1 of Eq. (22) with a moment map (unique up to addition of a
constant vector in R

d−n) given by

μ+
N : Cd+1 → R

d−n

μ+
N(z1, . . . , zd , p) = 1

2

(
d∑

k=1

Q1
k(|zk|2 − |p|2), . . . ,

d∑

k=1

Qd−nk (|zk|2 − |p|2)
)

.

(25)

Let a = (a1, . . . , ad−n) ∈ R
d−n be a regular value of μ+

N . Then (μ+
N)

−1(a) is
a real submanifold of C

d+1 = R
2d+2 of dimension d + n + 2 preserved by the

N -action. The total spaceKM of the canonical line bundle overM is the symplectic
quotient

KM = (μ+
N)

−1(a)/N = (Ua × C)/NC. (26)

Note that U+
a = Ua × C because M sits in KM as the zero section as discussed

in Remark 1 below. Like Eq. (39), there is again a deformation retraction to go
from Ua × C to (μ+

N)
−1(a); for any (z, p) ∈ Ua × C, there is a unique λa(z, p) ∈

(R>0)
d−n ⊂ (C∗)d−n = NC such that

λa(z, p) · (z, p) ∈ (μ+
N)

−1(a),

from which we obtain the deformation retraction

R+
a : Ua × C → (μ+

N)
−1(a), (z, p) �→ λa(z, p) · (z, p).

Then KM carries a canonical symplectic form ω+
a satisfying (π+

a )
∗ω+
a = (ι+a )∗ω0,

where

ι+a : (μ+
N)

−1(a) ↪→ C
d+1

is the inclusion and

{
π+
a : (μ+

N)
−1(a)→ KM = (μ+

N)
−1(a)/N,

π̃+
a : Ua × C → KM = (Ua × C)/NC,

(27)

are natural projections to the quotient KM . We now illustrate with some examples.

Example 7 (KPn) ForM = P
n, from Example 6, we see that to get KPn , the NC =

C
∗ action is
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λ1 · (z1, . . . , zn+1, p) = (λ1z1, . . . , λ1zn+1, λ
−n−1
1 p) (28)

which restricts to a Hamiltonian U(1)-action with moment map

μ+
N(z1, . . . , zn+1, p) = 1

2

(
n+1∑

k=1

|zk|2 − (n+ 1)|p|2
)

, (29)

that is unique up to a constant. Then a ∈ R is a regular value of μ+
N if and only if

a = 0. From the description of the regular level sets

(μ+
N)

−1(a) =
{
n+1∑

k=1

|zk|2 − (n+ 1)|p|2 = 2a

}

, (30)

we see that if (z, p) ∈ (μ+
N)

−1(a) ⊂ C
n+2 and a > 0, then z = 0, and if a < 0,

then p = 0. Taking

U+
a =

{
(Cn+1 − {0})× C, a > 0;
C
n+1 × (C − {0}), a < 0,

(31)

we see that

(μ+
N)

−1(a)/U(1) =
{(
(Cn+1 − {0})× C

)
/C∗ = KPn , a > 0;

(
C
n+1 × (C − {0})) /C∗ = C

n+1/Zn+1, a < 0.
(32)

The justification for
(
(Cn+1 − {0})× C

)
/C∗ = KPn is provided in Sect. 3.4.

Indeed, for KPn , U+
a = Ua × C.

The deformation retraction R+
a : U+

a → (μ+
N)

−1(a) is given by

R+
a (z1, . . . , zn+1, p) = λa(z, p) · (z, p) = (λa(z, p)z, λa(z, p)−n−1p) (33)

Computing λa(z, p) will prove to be more challenging, which we explain in
Sect. 3.5. ��
Remark 1 (Connection Between M and KM ) In short, the connection is that the
p = 0 level set isM . In more detail, let a ∈ R

d−n be a regular value, and define

h : (μ+
N)

−1(a)→ C, h(z1, . . . , zd , p) = p.

Then from Eq. (25) for μ+
N and Eq. (18) for μN , we get
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h−1(p) =
{

(z1, . . . , zd , p) ∈ C
d × {p}

∣∣∣
d∑

k=1

Q�k|zk|2 = 2a� +
d∑

k=1

Q�k|p|2
}

∼= μ−1
N

(

a1 + 1

2

d∑

k=1

Q1
k|p|2, . . . , ad−n + 1

2

d∑

k=1

Qd−nk |p|2
)

.

When p = 0, we see that h−1(p) = μ−1
N (a). Between M and KM there exist

inclusion maps

μ−1
N (a)× {0} ⊂ (μ+

N)
−1(a), Ua × {0} ⊂ Ua × C.

which descend to the following inclusion as the zero section:

i0 : M = μ−1
N (a)/N = Ua/NC ↪→ KM = (μ+

N)
−1(a)/N = (Ua × C)/NC,

and i∗0ω+
a = ωa . ��

Example 8 (KPn) For the n-dimensional projective space,

h−1(p) = {
(z, p) ∈ C

n+1 × {p} | |z1|2 + · · · + |zn+1|2 = 2a + (n+ 1)|p|2}
∼= μ−1

N

(
a + (n+1)|p|2

2

)
= S2n−1

(√
2a + (n+ 1)|p|2

)

where μN is the moment map given by Eq. (19). In particular, we can see that the
level sets of h are compact spheres. ��

3 Toric Actions and Moment Maps

We now discuss the toric geometry of M . That is, the geometry arising from the
effective T

d
C
/NC

∼= T
n
C

-action onM .

3.1 Toric T
n-action on M and Its Moment Map

For clarity, we have broken this section into 4 smaller subsections. Example 9 on P
n

is provided towards the end to illustrate the theory discussed in this section. Since
T
n
C

= T
d
C
/NC is a quotient, we start by describing orbits of the T

d
C

-action on C
d .

Orbits of the T
d
C

-action on C
d There is a one-to-one correspondence between

orbits of Td
C

in C
d and multi-indices of the form

J = ∅ or J = (j1, . . . , jr ), 1 ≤ j1 < · · · < jr ≤ d. (34)
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This is because each orbit of Td
C

is of the form

C
d
J := {(z1, . . . , zd) | zj = 0 iff. j ∈ J }. (35)

which has complex dimension d − r . For z ∈ C
d
J , the stabilizer of z is the subtorus

(Td
C
)J := {(t̃1, . . . , t̃d ) ∈ T

d
C

| t̃j = 1 iff. j ∈ {1, . . . , d}\J }. (36)

And note Cd∅ = (C∗)d = T
d
C

is the only orbit whose elements have trivial stabilizer.
Later in this section we will see that for the symplectic toric manifold M =

Ua/NC, Ua is a union of CdJ for a certain collection of J .

Toric Tn-action onM In Sect. 2.2, we obtained the symplectic toric manifoldM =
μ−1
N (a)/N = Ua/NC. The holomorphic Td

C
-action is effective on Ua , so there is an

open embedding of Td
C

∼= (C∗)d in Ua , and it descends to an open embedding of
T
n
C

= T
d
C
/NC

∼= (C∗)n inM = Ua/NC. As shown in the diagram

(37)

this embedding of Tn
C
↪→ M = Ua/NC can be factored through T

d
C

if we choose a
group homomorphism

αC : Tn
C

→ T
d
C

(38)

that is the right inverse of the surjective group homomorphism βC : T
d
C

→ T
n
C

,
characterized by βC ◦ αC(t) = t for all t ∈ T

n
C

. In particular, αC is injective, as
the right split of the exact sequence 0 → NC → T

d
C

→ T
n
C

→ 0, and T
d
C

=
ρC(NC)⊕ αC(TnC).

More explicitly, αC is of the form

αC(t1, . . . , tn) =
(

n∏

m=1

t
sm1
m , . . . ,

n∏

m=1

t
smd
m

)

∈ T
d
C

(39)

where smk ∈ Z, 1 ≤ k ≤ d, 1 ≤ m ≤ n, and

d∑

k=1

vkms
m′
k = δm′

m , 1 ≤ m,m′ ≤ n. (40)

Taking the differential of αC at identity, we obtain an injective linear map
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tn
C

= C
n (dαC)1−→ td

C
= C

d

given by the matrix

A =
⎡

⎢
⎣

s1
1 · · · sn1
...

...

s1
d · · · snd

⎤

⎥
⎦ . (41)

Equation (40) is equivalent to BA = In, where In is the n × n identity matrix.
Applying Hom(−,C∗) to (38), we obtain a surjective map

α∗
Z

: Hom(Td
C
,C∗) ∼= Z

d → Hom(Tn
C
,C∗) ∼= Z

n. (42)

Tensoring (42) by R, we obtain a surjective linear map

α∗ : Rd → R
n.

Note that α∗ thus defined is the same as the map (dαC)∗1.
Given αC, there is a T

n
C

∼= αC(TnC)-action on Ua given by

T
n
C

× Ua → Ua

(t, z) �→ αC(t) · z,

where the action of αC(t) ∈ T
d
C

on Ua ⊂ C
d is the usual component-wise

multiplication. Because αC(TnC) = T
d
C
/ρC(NC), this T

n
C

-action on Ua descends
to a T

n
C

= T
d
C
/NC-action on M = Ua/NC. That is, for each z ∈ Ua , t ∈ T

n
C

sends π̃a(z) ∈ M to π̃a (αC(t) · z). This T
n
C

-action on M restricts to an effective
Hamiltonian T

n ∼= U(1)n-action on the symplectic manifold (M,ωa), and we
discuss its moment map below.

Moment Map of the T
n-action, Moment Polytope, and the Action-Angle

Coordinates By the above construction of the T
n
C

-action on M (as descending
from a composition of αC and the usual T

d
C

-action on C
d ), the moment map

μa : M → R
n for the Hamiltonian T

n-action onM , which is unique to the addition
of a constant vector in R

n, is given by

μa ◦ πa(z) = α∗ ◦ μTd (z), z ∈ μ−1
N (a), (43)

hence

μa ◦ π̃a(z) = α∗ ◦ μTd ◦ Ra(z), z ∈ Ua. (44)
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where Ra was the deformation retract defined in Definition 1. The theorem below
provides some important properties about the moment map μa .

Theorem 3 (Atiyah [4] and Guillemin-Sternberg [18] Convexity Theorem for
Compact Symplectic Toric Manifolds) If (M2n, ωa) is a compact symplectic toric
manifold carrying an effective Hamiltonian T

n-action as above, with the moment
map μa : M → Lie(Tn)∗ = R

n, then the level sets of μa are connected, and the
image := μa(M) is a convex polytope (known as the moment polytope ofM) that
is equal to the convex hull of the image under μa of the fixed points of the Tn-action.

Delzant further completes the description of the moment polytope  in the
following theorem.

Theorem 4 (Delzant [11] Classification Theorem for Compact Symplectic Toric
Manifolds) Compact toric symplectic manifolds (M2n, ωa) up to T

n-equivariant
symplectomorphism are in one-to-one correspondence with Delzant polytopes
 = μa(M

2n) ⊂ R
n up to translation. Delzant polytopes are convex polytopes

satisfying

– simple, i.e. each vertex has n edges,
– rational, i.e. the vectors normal to each facet are generated by a vector in Z

n,
and

– smooth, i.e. the n integral normal vectors, one for each of the n facets adjacent
to a vertex, form a basis of Zn.

In other words, the one-to-one correspondence in the above theorem says that if
(M1, ω1,T

n, μ1) and (M2, ω2,T
n, μ2) are equivariantly symplectomorphic toric

manifolds, then μ1(M1) and μ2(M2) differ by a translation. However, for the same
manifold, if we change the basis of Tn, then that is equivalent to a GL(n,Z)-action
on Lie(Tn)∗ ∼= R

n, which changes the shape of the polytope  ⊂ R
n; this is

discussed more in Section “Change of Basis of Tn
C

and the Embedding of Tn
C

in
Each C

n-chart” and Example 14.
We now explain Delzant’s observation that the primitive column vectors of B

(i.e. the matrix form of (dβC)1 given in Eq. (9)) are inward pointing normal vectors
to the facets of  . Let β : Rd → R

n be the restriction to R of (dβC)1 : Cd → C
n.

Applying Hom(−,R) to β gives us the dual linear map β∗ : R
n → R

d . From
Eq. (43) and the fact that αC is a right inverse of βC, we can obtain defining
equations of the moment polytope, as follows. As in Eq. (17), each (μTd )j =
1
2 |zj |2 +κj for some constant κj ∈ R. The relation between κ and a is (dρC)∗1(κ) =
−a, we take the 0 level set of (dρC)∗1μTd = (dρC)

∗
1

∑d
j=1(

1
2 |zj |2ej + κj ej ) =

(dρC)
∗
1(
∑d
j=1

1
2 |zj |2ej ) − a = 0 = μN − a where ej form the standard basis on

R
d . Let L : Rn → R

d be

L(ξ)j := β∗(ξ)j − κj = 〈vj , ξ 〉 − κj =
n∑

k=1

v
j
k ξk − κj , (45)
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where vj , j = 1, . . . d, are the column vectors of B and (ξ1, . . . , ξn) ∈  =
μa(M) ⊂ R

n are the moment map coordinates (μa,1, . . . μa,n).
Recall we have the short exact sequence

0 → R
n β∗

−→ R
d
(dρC)

∗
1−−−−→ n∗ → 0. (46)

So the kernel of (dρC)∗1 is precisely the image of β∗.
By the definition of symplectic reduction, the kernel can be identified isomorphi-

cally with the values 0(z) = 0(z1, . . . , zd) ∈ R
d
≥0 such that 1

20(zj )2 satisfy the
affine linear equation

0 = (dρC)∗1
(

1

2
0(z1)

2 + κ1, . . . ,
1

2
0(zn)2 + κn

)
= (dρC)∗1 ◦ μTd (0(z1), . . . ,0(zn)),

hence 0(z) ∈ μ−1
N (a). In other words, there is a one-to-one correspondence with

points ξ ∈ R
n:

β∗(ξ) = 1

2
0(z)2 + κ. (47)

Thus, for ξ ∈  we have that L(ξ)j = 1
2 |0(zj )|2 ≥ 0, which leads to the following

corollary. (A similar way to think about this is if we restrict the domain of βC to the
(C∗)n part of an affine coordinate chart such as those given in Eq. (67), then αC is
the inverse of βC on that chart. Then β∗(ξ) = β∗α∗μTd (z) = μTd (z).)

Corollary 1 The moment polytope  is given by

 =
{
ξ ∈ R

n | L(ξ)j = 〈vj , ξ 〉 − κj ≥ 0
}
, (48)

where vj , j = 1, . . . d, are the column vectors of B. So each of the d facets of  is
given by

Fj = {L(ξ)j = 〈vj , ξ 〉 − κj = 0} ∩ , (49)

with vj being a primitive inward pointing normal vector.

Remark 2 This is a result proven in [8, Equation (6)]. The proof here is based off
of [16, Theorem 3.3] where β = (dβC)1|Rd , Zεr = R

d+ � (er1 , . . . , erd ) where
erj = 0(zj ), ι = (dρC)1 and their αk = ι∗ek , sj = (erj )2/2, λj = κj though λ = a
and one considers the 0 level set, x ∈ R

n there is ξ here, and h = μTd .

As a consequence of Theorem 3, we have a fibrationμa : M2n →  whose fibers
are connected. For ξ in the boundary ∂ , if ξ belongs to a face of codimension
r , then μ−1

a (ξ) consists of fixed points of a r-dimensional subtorus of Tn. So the
fibers of μa above ∂ are degenerate smaller tori. Any point ξ in the interior of the
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polytope  ̊ is a regular value of μa , meaning that dμa is surjective and so the n
Hamiltonian vector fields generated by the components of μa are linearly indepen-
dent, so the fiber above ξ is Tn. Because Tn is abelian, these vector fields commute,
hence the components of μa Poisson commute, and so the T

n-orbit is isotropic of
dimension n. That means each fiber μ−1

a (ξ)
∼= T

n is a Lagrangian submanifold of
(M,ω). Hence we have the following symplectomorphism identifying μ−1

a ( ̊)with
the total space of a Lagrangian torus fibration

(
μ−1
a ( ̊), ωa

) ∼=
⎛

⎝ ̊× T
n,

n∑

j=1

dξj ∧ dθj
⎞

⎠ (50)

where (ξ, θ) is known as the angle-action coordinates, with ξ a coordinate on  ̊ and
θ a coordinate on the Lie algebra of Tn, so eiθ ∈ T

n. This will be discussed in more
detail in Sect. 4 on the Kähler potential.

Description of Ua and Complex Toric Coordinates In Sect. 2.1, below Theo-
rem 2, we mentioned Audin [5] and Guillemin [17] gave a description of Ua , which
we summarize here.

If f is a face of  of codimension r , then f is at the intersection of r facets
Fj1 ∩ · · · ∩ Fjr . So f corresponds to an ordered multi-index Jf = (j1, . . . , jr ) of
the form given in Eq. (34). Then Ua that satisfies the properties for Theorem 2 is
described by

Ua =
⋃

f

C
d
Jf
, (51)

for f a face of our moment polytope  = μa(M) and C
d
Jf

as defined in Eq. (35).

For each face f and z ∈ C
d
Jf

, the stabilizer of z is (Td
C
)Jf given in Eq. (36).

The open face that is the interior  ̊ of the polytope is of codimension 0, and
corresponding to that we have the T

d
C

-orbit Cd∅ = (C∗)d on which the T
d
C

-action is
free, and thus descends to a single T

n
C

-orbit on which T
n
C

-action is free. Hence we
have

μ−1
a ( ̊)

∼= T
n
C
. (52)

Definition 2 (Notation for Complex Toric Coordinates) Let (u1, . . . , un) be the
complex coordinates on the Lie algebra tn

C
∼= C

n of T
n
C

∼= (C∗)n. Also, denote
uj := xj + iθj , so θj is the coordinate on the Lie algebra of Tn. The exponential
map exp : tn

C
→ T

n
C

u = (u1, . . . , un) �→ t = (t1, . . . , tn) = (eu1 , . . . , eun).

gives the complex toric coordinates t . ��
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With this notation, the identification in Eq. (52) is given by

μa(t1, . . . , tn) = μa(ex1+iθ1 , . . . , exn+iθn) = (ξ1, . . . , ξn) ∈  ̊. (53)

This gives the exchange between the complex toric coordinates and the moment
map coordinates established by the combination of Eqs. (52) and (50),

T
n
C

∼= μ−1
a ( ̊)

∼=  ̊× T
n. (54)

Example 9 (Pn) We continue Examples 2, 3, and 5 on P
n. For the choice of B in

Eq. (14), which corresponds to the βC in Eq. (15), one possible right inverse A and
its corresponding map αC : Tn

C
→ T

d
C

are

A =
[

In

0 · · · 0

]
, αC(t1, . . . , tn) = (t1, . . . tn, 1). (55)

(We’ll discuss more about the different choices of A in Example 14.) Then t ∈ T
n
C

acts on Ua = C
n+1 − {0} via αC(t) ∈ T

d
C

, which acts on z ∈ Ua ⊂ C
n+1 by

component-wise multiplication

(t1, . . . , tn)·(z1, . . . , zn+1) = (t1, . . . tn, 1)·(z1, . . . , zn+1) = (t1z1, . . . , tnzn, zn+1).

This restricts to a Hamiltonian T
n = U(1)n-action on C

n+1 with the standard
symplectic form, and the moment map is

α∗ ◦ μTd : Cn+1 → R
n, (α∗ ◦ μTd )(z1, . . . , zn+1) = 1

2
(|z1|2, . . . , |zn|2),

up to addition of a constant vector in R
n. The above Tn

C
-action on Ua = C

n+1 −{0}
descends to a T

n
C

-action on P
n = Ua/NC = μ−1

N (a)/N , where NC = C
∗ and

N = U(1), as

(t1, . . . , tn) · [z1 : · · · : zn+1] = [t1z1 : · · · : tnzn : zn+1].

This Tn
C

-action restricts to a Hamiltonian T
n-action on (Pn, ωa) for any a > 0 and

with the moment map μa : Pn → R
n, which (up to a constant in R

n) written in
terms of the homogeneous coordinates is

μa([z1 : · · · : zn+1]) = (α∗ ◦ μTd ◦ Ra)(z1, . . . , zn+1)

= a(|z1|2,...,|zn|2)
|z1|2+···+|zn+1|2 = (ξ1, . . . , ξn), (56)

where recall that the formula for Ra is given by Eq. (21). The image of this moment
map is then the moment polytope



180 H. Azam et al.

 ̊ = {(ξ1, . . . , ξn) ∈ R
n : ξ1 > 0, . . . , ξn > 0, a − ξ1 − · · · − ξn > 0},

and one can see that the inward pointing primitive normal vectors to the facets are
indeed the column vectors of B. For n = 2, this moment polytope is shown in
Fig. 1a. ��

Example 10 (The Blowup P
2(3) of P

2 at the Three Torus Fixed Points) The
projective plane blown up at one point is isomorphic to P

1 × P
1, see [15, p 479–

480] or note that blow-up of a complex surface at a vertex of the polytope replaces
the point with P

1 hence the triangle for P
2 becomes a quadrilateral. Then we

can perform two toric blow-ups at the fixed points corresponding to two opposite
vertices of the rectangle which is the moment map of P1 × P

1, to obtain a hexagon.
(See [12, p 40–41] for the toric blow up and [31, Section 7] for the symplectic blow
up.) So in this case we know n = 2 and d = 6. Here is one choice of B, giving the
moment polytope in Fig. 1c.

B =
[

0 0 −1 1 1 −1
1 −1 0 0 −1 1

]
, Q =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

1 0 1 −1
1 0 0 0
0 1 0 0
0 1 −1 1
0 0 1 0
0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

,

βC(̃t1, . . . , t̃6) = (̃t−1
3 t̃4̃t5̃t

−1
6 , t̃1̃t

−1
2 t̃−1

5 t̃6),

ρC(λ1, . . . , λ4) = (λ1λ3λ
−1
4 , λ1, λ2, λ2λ

−1
3 λ4, λ3, λ4).

We can make the following choice for αC:

v2

v1
v3

(a)

v1
v3 v2

(b)

v1
v4

v6

v3
v2

v5

(c)

Fig. 1 In the three figures above, the labeling, vj , of the inward pointing normal vectors to the
facets matches with the ordering of the columns of B in Examples 9 (n = 2) and 14, B ′ in
Example 14, and B in Example 10, respectively. (a) Moment polytope for P2. (b) P2, different
T

2 basis. (c) Moment polytope for P2(3)
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A =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

0 1
0 0
0 0
1 0
0 0
0 0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

, αC(t1, t2) = (t2, 1, 1, t1, 1, 1).

Again, the choice of αC is not unique. Here μN : C6 → R
4 is given by

μN(z1, . . . , z6)

= 1
2

(
|z1|2 + |z2|2, |z3|2 + |z4|2, |z1|2 − |z4|2 + |z5|2,−|z1|2 + |z4|2 + |z6|2

)
,

and we will not try finding Ra for this example here. It involves solving a third
degree polynomial. We will get a feel for the complexity of solving for Ra in
Sect. 3.5 below for KP1 ; the formula gets very complicated. ��

3.2 Canonical Bundle KM Continued

In Sect. 2.3, from M = Ua/NC = μ−1
N (a)/N , we constructed KM as quotients

KM = U+
a /NC = (μ+

N)
−1(a)/N , where U+

a = Ua × C. In this section, we
written down the general formulation for the moment map of the T

n+1-action on
KM . Extending the theory for the construction of the moment map from M to KM
is straightforward, the main difference is keeping track of the extra p coordinate
corresponding to the fiber direction. However, writing down the moment map
explicitly is a hard problem in general, as we’ll illustrate in Sect. 3.5.

Definition 3 We define α+
C

: Tn+1
C

→ T
d+1
C

by

α+
C
(t1, . . . , tn, tn+1) =

(
n∏

m=1

t
sm1
m , . . . ,

n∏

m=1

t
smd
m ,

n∏

m=1

t
−∑d

k=1 s
m
k

m · tn+1

)

. (57)

Then β+
C

◦ α+
C
(t) = t for all t ∈ T

n+1
C

, i.e. α+
C

is a right inverse of the surjective
group homomorphism β+

C
: T

d+1
C

→ T
n+1
C

. Taking the differential of α+
C

at the
identity, we obtain an injective linear map

t
n+1
C

= C
n+1 (dα

+
C
)1−→ t

d+1
C

= C
d+1 (58)

given by the matrix
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A+ =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

s1
1 · · · sn1 0
...

...

s1
d · · · snd 0

−
d∑

k=1

s1
k · · · −

d∑

k=1

snk 1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

.

Then B+A+ = In+1, where In+1 is the (n+ 1)× (n+ 1) identity matrix. Below we
write the matrix for a given choice of α+

C
for a couple of examples:

Example 11 (KPn )

B+ =

⎡

⎢⎢⎢
⎣

−1 0

In

...
...

−1 0
1 . . . 1 1 1

⎤

⎥⎥⎥
⎦
, A+ =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0

In

...

0
0 . . . 0 0

−1 . . . −1 1

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

This choice, with all 1’s in the last row of B+, is often used in the polytopes defining
SYZ mirrors in mirror symmetry (discussed in Sect. 5). We can make other choices
for B+, and we discuss one such choice in Example 15. ��
Example 12 (KP2(3)) Extending Example 10 on P

2(3), for KP2(3) we can take

B+ =
⎡

⎣
0 0 −1 1 1 −1 0
1 −1 0 0 −1 1 0
1 1 1 1 1 1 1

⎤

⎦ ,Q+ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 0 1 −1
1 0 0 0
0 1 0 0
0 1 −1 1
0 0 1 0
0 0 0 1

−2 −2 −1 −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, A+ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 1 0
0 0 0
0 0 0
1 0 0
0 0 0
0 0 0

−1 −1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

and the maps are expressed as follows

β+
C
(̃t1, t̃2, t̃3, t̃4, t̃5, t̃6, t̃7) = (̃t−1

3 t̃4̃t5̃t
−1
6 , t̃1̃t

−1
2 t̃−1

5 t̃6, t̃1̃t2̃t3̃t4̃t5̃t6̃t7),

ρ+
C
(λ1, λ2, λ3, λ4) = (λ1λ3λ

−1
4 , λ1, λ2, λ2λ

−1
3 λ4, λ3, λ4, λ

−2
1 λ

−2
2 λ

−1
3 λ

−1
4 ), and

α+
C

= (t2, 1, 1, t1, 1, 1, t−1
1 t−1

2 t3).

��
Furthermore, we have an analogue in the KM case of Eqs. (43) and (44) by the

same arguments. They are
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μ+
a ◦ π+

a (z) = (α+)∗ ◦ μTd+1(z), z ∈ (μ+
N)

−1(a), (59)

and

μ+
a ◦ π̃+

a (z) = (α+)∗ ◦ μTd+1 ◦ R+
a (z), z ∈ Ua × C. (60)

The image of μ+
a is again a convex polyhedron  +.

3.3 Holomorphic Coordinate Charts for M

In this section, we describe holomorphic coordinate charts for the complex manifold
M = Ua/NC. This will help us better understand both M and the T

n
C

-action.
Examples 13 and 14 are provided at the end for illustrating the content of this
section.

Open Covering ofM Any vertex v of the moment polytope is at the intersection
of n facets Fj1 ∩ · · · ∩ Fjn , where Jv = (j1, . . . , jn) is an ordered multi-index of
the form in Eq. (34) and each facet is given by Eq. (49). For any z ∈ C

d
Jv

, there is
an open neighborhood of z

ṼJv := {(z1, . . . , zd) ∈ C
d | zj = 0 if j /∈ Jv} ⊂ Ua, (61)

and this descends to an open set

VJv := {[z1 : . . . : zd ] ∈ M = Ua/NC | zj = 0 if j /∈ Jv} ⊂ M = Ua/NC.

(62)
Open sets of this kind, one for each vertex v of  , give an open covering of

M =
⋃

v

VJv . (63)

Holomorphic Charts and Inhomogeneous Coordinates For each VJv , we have a
biholomorphic map ϕJv : VJv → C

n. To describe ϕJv , let us assume, without loss
of generality by renumbering the facets, that Jv = (1, . . . , n).

Then

VJv = {[z1 : . . . : zd ] ∈ M = Ua/NC | zj = 0 if j ∈ {n+ 1, . . . , d}} .

Now, we would like to scale zn+1, . . . , zd to 1 using theNC-action and the notations
for it in Eq. (5). Pick λ1, . . . λd−n ∈ NC such that
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d−n∏

�=1

λ
Q�n+1
� = z−1

n+1, . . . ,

d−n∏

�=1

λ
Q�d
� = z−1

d . (64)

This is doable for the following reason. We know that the point (0, . . . , 0, 1, . . . , 1),
with the first n entries being 0 and the last d − n entries being 1, is a point in Ua .
The NC-action on this point is given by

(λ1, . . . , λd−n) · (0, . . . , 0, 1, . . . , 1) =
(

0, . . . , 0,
d−n∏

�=1

λ
Q�n+1
� , . . . ,

d−n∏

�=1

λ
Q�d
�

)

.

Because the NC-action is free, from the above equation we see that the following
map is an isomorphism

NC = (C∗)d−n → (C∗)d−n

(λ1, . . . , λd−n) �→
(
d−n∏

�=1
λ
Q�n+1
� , . . . ,

d−n∏

�=1
λ
Q�d
�

)
.

This shows that there is a choice of λ1, . . . , λd−n such that Eq. (64) holds. Then we
have

VJv =
{[

y
Jv
1 =

d−n∏

�=1

λ
Q�1
� z1 : . . . : yJvn =

d−n∏

�=1

λ
Q�n
� zn : 1 : · · · : 1

]}

⊂ M = Ua/NC.

(65)
So we get the map

ϕJv : VJv → C
n, [z1 : · · · : zd ] �→ yJv = (yJv1 , . . . , y

Jv
n ). (66)

The origin yJv = 0 of this Cn-chart corresponds to the preimage of the vertex v,

pJv = μ−1
a (v) = [0 : · · · : 0 : 1 : · · · : 1] ∈ VJv ,

which is a fixed point of the T
n
C

-action.

Equations (65) and (66) identify ϕJv (VJv ) = C[yJv1 , . . . , y
Jv
n ] with the affine

subspace

UJv := {(z1, . . . , zd) | zj = 1 if j /∈ Jv} ⊂ ṼJv ⊂ C
d , (67)

with yJvk = zjk for k = 1, . . . , n. Again, when using Jv = (1, . . . , n), we have

UJv = {(z1, . . . , zn, 1, . . . , 1)} ⊂ C
d , and its identification with C[yJv1 , . . . , y

Jv
n ] is

given by zk = yJvk , k = 1, . . . , n. Because of this identification, below in section we

will often conveniently write UJv = C[yJv1 , . . . , y
Jv
n ].
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To note the terminology, the coordinates z = (z1, . . . , zd) ∈ Ua ⊂ C
d is

called the homogeneous coordinates on M . For each vertex v, the coordinates
yJv = (y

Jv
1 , . . . , y

Jv
n ) on the C

n-chart associated to v, more precisely on the image
of the chart map ϕJv (VJv ), is called the inhomogeneous coordinates. Because of the
identification of (yJvk ) with the coordinates (zjk ) ∈ UJv on the affine subspace, yJv

are also called the affine coordinates in the literature.

Change of Basis of Tn
C

and the Embedding of Tn
C

in Each C
n-chart Our matrix

B is a linear transformation td
C

→ tn
C

, where tn
C

= Lie(Tn
C
), so changing the basis

of tn
C

is equivalent to performing a row operation on B to get a new matrix B̂.
Let us continue to assume that v is the vertex such that Jv = (1, . . . , n), so the

first n column vectors {v1, . . . , vn} of B are linearly independent. The remaining
column vectors vn+1, . . . , vd can then be expressed as linear combinations of
{v1, . . . , vn} as

vn+k =
n∑

j=1

cjkv
j , (68)

for k = 1, . . . , d − n. Now let us take

{v1, . . . , vn}

to be the new basis for tn
C

. We see that B in the old basis is now

B̂ = PB = [
In C

]
(69)

in the new basis, where P is the n × n change of basis matrix with P−1 being
the matrix whose columns are v1, . . . , vn, in that order, and C = (cjk) is a n ×
(d − n) matrix consisting of the constants (cjk) from Eq. (68) above. Note for the
moment polytope, since the first n columns of B are the vectors normal to the facets
meeting at the vertex v, this change of basis of tn

C
transforms those normal vectors

from {v1, . . . , vn} to the column vectors of In. In other words, it straightens out that
corner.

One choice of right inverse to B̂ is

ÂJv =
[
In

0

]
.

This is not the only choice of right inverse to B̂, but this is the choice that equips the
C
n-chart at this vertex v with the standard T

n
C

-action. Indeed, following the setup in

Eqs. (39) and (41), this ÂJv corresponds to α̂Jv
C

where

α̂
Jv
C
(t1, . . . , tn) = (t1, . . . , tn, 1, . . . , 1) ∈ UJv ⊂ Ua.
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The α̂Jv
C
(Tn

C
)-action on Ua descends to the following standard T

n
C

-action on
ϕJv (VJv ) = C

n

(t1, . . . , tn) ·
(
y
Jv
1 , . . . , y

Jv
n

)
=

(
t1y

Jv
1 , . . . , tny

Jv
n

)
.

The point yJv = 0 is the toric fixed point, which corresponds to the moment map
preimage pJv = μ−1

a (v) of the vertex v ∈  . This action is free on (C∗)n, i.e.
where yJvj = 0 for all j = 1, . . . , n, so this action embeds T

n
C

∼= (C∗)n via α̂Jv
C

in ϕJv (VJv ) = C
n. Combining this embedding with the identification of UJv with

C[yJv1 , . . . , y
Jv
n ] we discussed around Eq. (67), we have that α̂Jv

C
gives the following

isomorphism

α̂
Jv
C

: Tn
C

∼=−−→ UJv\{zk = 0}nk=1 = C[yJv1 , . . . , y
Jv
n ]\{yJvk = 0}nk=1

tk �→ tk = yJvk , for k = 1, . . . n.

The diagram below summarizes the change of basis we made on tn
C

= Lie(Tn
C
),

(70)

where ej is the j th standard basis vector. For the chosen ÂJv above, the correspond-
ing AJv in our original basis of tn

C
satisfies BAJv = B̂ÂJv = In, so

AJv = ÂJvP =
[
P

0

]
. (71)

Corresponding to this AJv , we get an αJv
C

. This is the choice of αJv
C

such that the

α
Jv
C
(Tn

C
)-action on Ua descends to the standard T

n
C

-action on the ϕJv (VJv ) = C
n-

chart. The point 0 ∈ C
n in this chart is the fixed point of this action and it

corresponds to the moment map preimage pJv = μ−1
a (v) of the vertex. This T

n
C

-
action is free on the (C∗)n part of the chart, which gives the isomorphism

α
Jv
C

: Tn
C

∼=−−→ UJv\{zk = 0}nk=1 = C[yJv1 , . . . , y
Jv
n ]\{yJvk = 0}nk=1

tk �→ α
Jv
C
(t)k = yJvk , for k = 1, . . . n.

(72)
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This relationship is very useful because it gives an identification of the inhomoge-
neous coordinates yJv on each of the C

n-chart with the complex toric coordinates
t ∈ T

n
C

.

Transition Functions Suppose v is a vertex at the intersection of
⋂n
�=1 Fj� and ṽ

is another vertex at the intersection of
⋂n
k=1 Fjk , so Jv = (j�)n�=1 and Jṽ = (jk)nk=1.

Then the overlap ϕJṽ (VJv ∩ VJṽ ) can be identified with

ϕJṽ (VJv ∩ VJṽ ) = UJṽ\{zj = 0}j /∈Jv = C[yJṽ1 , . . . , y
Jṽ
n ]\{yJṽ� = 0}j� /∈Jv .

Similarly, ϕJv (VJv ∩ VJṽ ) can be identified with

ϕJv (VJv ∩ VJṽ ) = UJv\{zj = 0}j /∈Jṽ = C[yJv1 , . . . , y
Jv
n ]\{yJvk = 0}jk /∈Jṽ .

Note that ϕJṽ (VJv ∩ VJṽ ) = (C∗)n if Jv ∩ Jṽ = ∅; otherwise, it contains (C∗)n as a
proper subset.

By Eq. (72), we see that αJv
C

and αJṽ
C

give the following isomorphisms,

T
n
C

α
Jṽ
C∼= UJṽ\{zj = 0}j∈Jṽ = C[yJṽ1 , . . . , y

Jṽ
n ]\{yJṽj = 0}nj=1 ⊂ ϕJṽ (VJv ∩ VJṽ ),

T
n
C

α
Jv
C∼= UJṽ\{zj = 0}j∈Jv = C[yJv1 , . . . , y

Jv
n ]\{yJvj = 0}nj=1 ⊂ ϕJv (VJv ∩ VJṽ ).

Note again that the “⊂” above is “=” if Jv ∩ Jṽ = ∅; otherwise, it is “�”.
So the transition function

ϕJv ◦ (ϕJṽ )−1 : ϕJṽ (VJv ∩ VJṽ ) −→ ϕJv (VJv ∩ VJṽ )

restricted to the (C∗)n ∼= T
n
C

part is exactly αJv
C

◦ (αJṽ
C
)−1.

Now let Jv = (1, . . . , n) and below we discuss more explicitly the relationship
between the inhomogeneous coordinates yJv and yJṽ in the overlap of the two
charts. Denote by ṽk := vjk , k = 1, . . . , n, the column vector of B that is the
normal vector to the facet Fjk . Then

ṽj =
n∑

k=1

djkv
k, (73)

where D = (djk) ∈ GL(n,Z). In fact, because det(DD−1) = det(D) det(D−1) =
1, and that det(D) and det(D−1) are both integers, we must have det(D) = ±1.
We can further assume that det(D) = 1, i.e. D ∈ SL(n,Z), since otherwise if
det(D) = −1, we can interchange ṽ1 and ṽ2 to make det(D) = 1.

Then the transition map for the inhomogeneous coordinates is given by
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y
Jv
k =

n∏

j=1

(y
Jṽ
j )

djk for k = 1, . . . , n. (74)

Summary To summarize: in [16] and [5], the starting point is a Delzant moment
polytope, from which the symplectic and complex geometry of M can be read
off. Let the inward normals to its facets F1, . . . ,Fd be v1, . . . , vd . Because the
space of normal vectors to each facet of  is generated by a vector in Z

n, we can
always choose each vj to be a primitive integral vector that is the inward pointing
normal vector to the facet. There is a standard open covering ofM , corresponding to
vertices of  , and transition functions, which are obtained by the following pieces
of information:

• Any subset J ⊆ {1, . . . , d} indexes orbits T
d
C

· (z1, . . . , zd) ⊂ C
d such that

zj = 0 when j ∈ J .
• Each vertex v of the moment polytope is the intersection Fj1 ∩ · · · ∩ Fjn of n

facets of the polytope  so corresponds to an index set Jv := (j1, . . . , jn) ⊂
{1, . . . , d}.

• Let pJv := μ−1
a (Fj1 ∩ . . .∩Fjn) be a toric fixed point of the residual Td

C
/NC

∼=
T
n
C

-action onM , obtained by quotienting Ua ⊂ T
d
C

by the action of NC.
• (C∗)n is the dense open T

n
C

-orbit corresponding to the J = ∅ orbit, modulo NC,
in the quotient Ua/NC = M .

• For the index set Jv , the primitive inward pointing normal vectors vjk , k =
1, . . . , n, give the jkth column of B for each k. Different choices of B correspond
to GL(n,Z) transformations of  .

• α
Jv
C

: Tn
C

→ T
d
C

passes to an embedding π̃a ◦ αJv
C

: Tn
C

α
Jv
C−−→ Ua

π̃a−→ M into an
open C

n set centered at pJv inM , which we may denote UJv ⊂ M:

– VJv consists of points [z1 : . . . : zd ] ∈ Ua/NC = M such that the components
of (zj1, . . . , zjn) ∈ C

n may go to 0 and the other homogeneous coordinates
are always nonzero,

VJv := {[z1 : . . . : zd ] ∈ Ua/NC = M | zj = 0 if j /∈ Jv},

– we can express transition functions in terms of the yJvk on the overlap of two
C
n charts; for example in P

2 in Fig. 1a corresponding to the vertex at the
right angle we have αC(t1, t2) = (t1, t2, 1) extends to C

2 and passing to the
quotient we obtain C

2 ↪→ {[t1 : t2 : 1] ∈ P
2 | (t1, t2) ∈ C

2} ⊂ P
2, where the

transition function is defined on C × C
∗ (for more details see Example 14),

– we choose the unique representative for each [z1 : . . . : zd ] ∈ VJv which has
been scaled to have 1’s in all the d − n strictly nonzero coordinates,

– the remaining scaled coordinates are the affine (inhomogeneous) coordinates
y
Jv
1 , . . . , y

Jv
n on UJv ,
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• the VJv with chartsUJv give a standard open cover ofM indexed by the toric fixed
points v, in bijection with vertices of the moment polytope at the intersection of
the Jvth facets, and

• transition functions on the dense open orbit of M are of the form αJv
C

◦ (αJṽ
C
)−1,

where T
n
C

embeds into each UJv under the corresponding αC and we may use

coordinates (yJv1 , . . . , y
Jv
n ) and (yJṽ1 , . . . , y

Jṽ
n ) to express the transition maps,

again see Example 14 for the case of P2.

Examples

Example 13 (Pn) We continue Example 9. Consider the vertex v of  given by
(ξ1, . . . , ξn) = (0, . . . , 0), i.e. v = F1 ∩ · · · ∩ Fn is the intersection of the first n
facets whose normal vectors are the first n column vectors of B in Eq. (14). The
C
n-chart corresponding to this vertex is then

VJv = {[z1 : · · · : zn+1] ∈ P
n | zn+1 = 0}

=
{[
y1 = z1

zn+1
: · · · : yn = zn

zn+1
: 1

]
∈ P

n
}
,

and ϕJv : VJv → C
n given by [z1 : · · · : zn+1] �→ (y1, . . . yn) is a biholomorphic

map, with y = 0 being a fixed point of the T
n
C

-action. The image ϕJv (VJv ) =
C[y1, . . . , yn] can be identified with the affine subspace

UJv = {(z1, . . . zn, 1)} ⊂ C
n+1

with yk = zk for k = 1, . . . , n.
Following the diagram in Eq. (37), we see that the map αC chosen in Eq. (55)

gives an embedding of Tn
C

in P
n by

T
n
C

αC
↪→ UJv → P

n, (t1, . . . , tn) �→ (t1, . . . , tn, 1) �→ [t1 : · · · : tn : 1].

We see that αC is an isomorphism onto UJv\{zk = 0}nk=1. This choice of αC,
along with the identification of UJv with C[y1, . . . , yn], gives the relation tk = yk
between the complex toric coordinates t and the inhomogeneous coordinates y,
which illustrates the identification stated in Eq. (72). This identification, along with
the notations given in Definition 2, tj = euj = exj+iθj , we can write Eq. (56) as

μa(y1, . . . , yn) = (ξ1, . . . , ξn) = a(|y1|2, . . . , |yn|2)
|y1|2 + · · · + |yn|2 + 1

= a(e2x1 , . . . , e2xn)

e2x1 + · · · + e2xn + 1
,

so

(x1, . . . , xn) = 1

2

(
log ξ1−log(a−ξ1−· · ·−ξn), . . . , log ξn−log(a−ξ1−· · ·−ξn)

)
.

��



190 H. Azam et al.

Example 14 (P2) We specialize the above example to P
2 to further demonstrate the

change of coordinates between charts. The last paragraph of this example illustrates
the change of basis of T2

C
. Using the matrix B we chose in Eq. (14), below we list

all possible matrices A such that BA = In and its corresponding map αC

B =
[

1 0 −1
0 1 −1

]
, A =

⎡

⎣
b c

b c

b c

⎤

⎦ +
⎡

⎣
1 0
0 1
0 0

⎤

⎦ , αC(t1, t2) = (tb+1
1 tc2 , t

b
1 t
c+1
2 , tb1 t

c
2 ),

where b, c ∈ Z.
Like we discussed in Example 9, the moment polytope is the same as pictured

in Fig. 1a. At each vertex v, there is a choice of b, c ∈ Z such that the above
formula gives αJv

C
, which gives rise to the standard T

2
C

-action on the C
2-chart at

that vertex. Below we compare the C
2-charts at the vertices indexed by {1, 2} and

{1, 3}, respectively.
The vertex {1, 2} is at the lower left corner of the of the triangle, corresponding

to the intersection of the two facets normal to columns 1 and 2 of B. The chart at
this vertex is the same as the one presented in Example 13. We have

ϕ{1,2} : V{1,2} = {[z1 : z2 : z3] ∈ P
2 | z3 = 0} −→ U{1,2} = {(z1, z2, 1) ∈ C

3},
ϕ{1,2}([z1 : z2 : z3]) =

(
y

{1,2}
1 , y

{1,2}
2

)
=

(
z1
z3
, z2
z3

)
,

α
{1,2}
C

: T2
C

∼=−−→ U{1,2}\{zj = 0}j=1,2 = C

[
y

{1,2}
1 , y

{1,2}
2

]
\
{
y

{1,2}
k = 0

}

k=1,2

α
{1,2}
C

(t1, t2) = (t1, t2, 1) )⇒
(
t1 = y{1,2}

1 , t2 = y{1,2}
2

)
.

For vertex {1, 3}, which is at the top of the triangle, we have

ϕ{1,3} : V{1,3} = {[z1 : z2 : z3] ∈ P
2 | z2 = 0} −→ U{1,3} = {(z1, 1, z3) ∈ C

3},
ϕ{1,3}([z1 : z2 : z3]) =

(
y

{1,3}
1 , y

{1,3}
2

)
=

(
z1
z2
,
z3
z2

)
,

α
{1,3}
C

: T2
C

∼=−−→ U{1,3}\{zj = 0}j=1,3 = C

[
y

{1,3}
1 , y

{1,3}
2

]
\
{
y

{1,3}
k = 0

}

k=1,2
,

α
{1,3}
C

(t1, t2) = (t1t−1
2 , 1, t−1

2 ) )⇒
(
t1t

−1
2 = y{1,3}

1 , t−1
2 = y{1,3}

2

)
.

Using the identification between the complex toric coordinates t with the inhomoge-
neous coordinates y on the two charts above, we can see that the coordinate change
between these two charts is given by

y
{1,2}
1 = y{1,3}

1

(
y

{1,3}
2

)−1
, y

{1,2}
2 =

(
y

{1,3}
2

)−1

on the overlap

ϕ{1,3} (V{1,2} ∩ V{1,3}
) = {(z1, 1, z3) | z3 = 0} = C

[
y

{1,3}
1 , y

{1,3}
2

]
\{y{1,3}

2 = 0}.
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The above transition map is precisely α{1,2}
C

◦
(
α

{1,3}
C

)−1
, except that

(
α

{1,3}
C

)−1
is

only defined on the (C∗)2, and the above overlap set is C × C
∗, which is slightly

bigger. So the transition map is a slight extension of the map defined using the αC’s.
In this paragraph, we illustrate the change of T2

C
-basis. Changing the basis of the

range of B, which is t2 = Lie(T2
C
), is equivalent to left multiplying B by an element

in GL(2,Z) with determinant ±1. For example, taking

[
1 0
1 1

]
∈ GL(2,Z), we get

a new B ′ =
[

1 0 −1
1 1 −2

]
. Then the corresponding moment polytope is a triangle that

is slanted, with inward normals given by columns of B ′, as in Fig. 1b. ��

3.4 Justification of Choices for KM

To determineB+ andQ+, we start by considering a vertex v of the moment polytope
 for M . As in Sect. 3.3, this corresponds to an index Jv of size n. After possible
renumbering, we may assume Jv = (1, . . . , n). In particular, we have a Z-basis

B := {v1, . . . , vn} ⊂ Z
n

for Z
n consisting of inward normals to the first n facets. Therefore each of the

remaining inward normals vn+1, . . . , vd can be expressed as a linear combination
of vectors in the basis B via an n× (d − n) matrix C = (cjk)1≤j≤n,1≤k≤d−n, where
the kth column expresses vn+k as a vector with respect to B, namely

vn+k =
n∑

j=1

cjkv
j . (75)

Now we would like to answer the question, what are the inward normals
to the polytope  + for KM? These make up the columns of B+. Recall the
correspondence onM between vertices of , multi-indices J , and coordinate charts
UJ , from Sect. 3.3. Let y1, . . . , yn denote coordinates on one coordinate chart
corresponding to J = Jv centered around toric fixed point q ∈ M ↪→ KM and
ỹ1, . . . , ỹn coordinates on another coordinate chart corresponding to choices with a
tilde. In KM , each chart has an additional coordinate yq and yq̃ . First let D denote
the n × n change of basis matrix between inward normals corresponding to each
chart ofM , namely between B and {ṽ1, . . . , ṽn} (the inward normals to the facets at
the intersection of the second vertex):

ṽj =
n∑

k=1

djkv
k. (76)
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where now the j th row expresses ṽj as a linear combination of the vectors vk . Note
that D = (djk) ∈ GL(n,Z) has determinant 1 or −1 for the same reason as in
Eq. (73). If it has determinant −1, interchange ṽ1 and ṽ2; this way we may assume
detD = +1. Under the identifications of Eq. (53), the transition functions turn the
coefficients into exponents so that in coordinates

yk =
n∏

j=1

ỹ
djk
j , k = 1, . . . , n. (77)

Note that if D is the change of basis on vectors, then (D−1)T is the change of
coordinates.

An element locally trivializing KM may be written yqdy1 ∧ · · · ∧ dyn. On the
overlap of two charts, we have two different sets of coordinates with which to
express a point:

yqdy1 ∧ · · · ∧ dyn = yq̃dỹ1 ∧ · · · ∧ dỹn. (78)

Taking the log of Eq. (77) and differentiating, we obtain

log yk =
n∑

j=1

djk log ỹj )⇒ dyk

yk
=

n∑

j=1

djk
dỹj

ỹj

)⇒ dy1

y1
∧ · · · ∧ dyn

yn
= dỹ1

ỹ1
∧ · · · ∧ dỹn

ỹn
,

(79)

where the last equality holds because detD = +1. We can now apply this to Eq. (78)
to determine yq̃ .

yqdy1 ∧ · · · ∧ dyn = yq̃dỹ1 ∧ · · · ∧ dỹn = yq̃dy1 ∧ · · · ∧ dyn ỹ1 · · · ỹn
y1 · · · yn

)⇒ yq = yq̃ ỹ1 · · · ỹn
y1 · · · yn = yq̃

n∏

j=1

ỹ
1−∑n

k=1 djk
j

(80)

by Eq. (77). We now have the information needed to write down B+, which we
prove below.

Lemma 1 Given a matrix B forM of the following form:

B = [
In C

]
, (81)

the following gives a choice of B+ for KM :
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B+
(n+1)×(d+1) =

[
In C 0
0 1 − ∑n

j=1 cj,1 . . . 1 − ∑n
j=1 cj,d−n 1

]

. (82)

Corollary 2 One choice of Q+ satisfying B+Q+ = 0, for the B+ in Lemma 1 for
KM , is

Q+
(d+1)×(d−n) :=

⎡

⎢
⎣

−C
Id−n(∑n

j=1 cj,1

)
− 1 . . .

(∑n
j=1 cj,d−n

)
− 1

⎤

⎥
⎦ (83)

and one choice of A+ satisfying B+A+ = In+1 is

A+
(d+1)×(n+1) :=

⎡

⎣
In 0
0 0
0 1

⎤

⎦ . (84)

Remark 3 Other choices of Q+ differ from this one via right multiplication by an
element in GL(d−n,Z), and they all satisfy the property that the sum of the entries
in each column must be 0, justifying the choice ofQ+ we presented in Eq. (24).

Remark 4 Note that the sum of the entries in a column of B+ equals 1. Namely,
the total weight of this NC action is 1. (We will see this play a role later on in the
mirror symmetry section in that the NC action preserves z1 . . . zdp, which is the
superpotential. It also preserves the Calabi-Yau condition of KM , in which case the
above-mentioned n-form is global.)

Proof of Lemma 1 In coordinates (y1, . . . , yn, yq) on KM , the Hamiltonian T
n+1-

action restricts to the T
n-action on M when yq = 0. In particular, this tells us that

for i0 : M → KM , we have i∗0μ+
a = μa and  + ∩ {ξn+1 = κd+1} =  (for κ

as defined in Eq. (49)). Thus to answer our question regarding the inward normals
of  +, we have that  + has d + 1 facets whose normals are denoted by vj,+, for
j = 1, . . . , d + 1. For j = 1, . . . , d, the first n coordinates of vj,+ are the same as
that of vj , i.e.

vj,+ = (vj , vj,+n+1), 1 ≤ j ≤ d, (85)

and below we will discuss how to determine the last coordinate, vj,+n+1 based on our
changed of coordinates calculation above. The last facet, which corresponds to j =
d+1, is in the ξn+1 = κd+1 plane, so its primitive inward normal vector is vd+1,+ :=
[0 . . . 0 1]T . This last facet intersects every vertex of  +. (See also Remark 1 and
Eq. (60) for discussions on relating M and KM .) This can be visualized in the case
of KP1 in Fig. 2.

At a vertex v+ of  + corresponding to v for , we hence have a basis of inward
normal vectors
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B+ := {v1,+, . . . , vn,+, vd+1,+}. (86)

With respect to this basis B+, by Eq. (75) and Eq. (85) we can write B+ as

B+ =
[
In C 0
0 vn+1,+

n+1 . . . v
d,+
n+1 1

]

,

since there is no change of basis in the last vector vd+1,+ according to Eq. (80). To
fill in the last row, it remains to write each vn+k,+, k = 1, . . . , d−n, in terms of the
basis vectors in B+. So for each k, we take vn+k,+, let ṽ1,+ = vn+k,+, and extend
it to a Z-basis {ṽ1,+, . . . , ṽn,+, vd+1,+} of Zn+1 corresponding to a vertex ṽ+. Let
ṽ = {ṽ1, . . . , ṽn} be the first n coordinates of {ṽ1,+, . . . , ṽn,+}, and we look at what
Eq. (80) say for this choice of ṽ. So, ṽ is related to v by Eq. (76). Furthermore,
because of the choice that ṽ1,+ = vn+k,+, by comparing Eq. (76) and Eq. (75), we
see that the first row [d11, . . . , d1n] of D is the same as the transpose of the k-th
column [c1k, . . . , cnk] of C, i.e. d1j = cjk for j = 1, . . . , n. Hence we obtain

vn+k,+ = ṽ1,+ =
n∑

j=1

d1j v
j,+ +

(
1 −

n∑

j=1

d1j

)
vd+1,+

=
n∑

j=1

cjkv
j,+ +

(
1 −

n∑

j=1

cjk

)
vd+1,+, k = 1, . . . , d − n,

(87)
where in the first line of the above calculation, the first term follows from Eq. (76)
and the second term follows from the coordinate change of yq in Eq. (80). This
proves the lemma. ��
Example 15 (KPn ) In Example 11, we presented one choice of B+. Following the
prescription given above in this section, we obtain another choice for B+ below,
which differs from the previous one by an invertible linear transformation over Z.
(These two different choices of B+ correspond to two different sets of Tn+1-basis,
so their moment polytopes look different; see Fig. 2b for the case of n = 1.) One
choice of A+ such that B+A+ = In+1 is given below

B+ =

⎡

⎢⎢⎢
⎣

−1 0

In

...
...

−1 0
0 . . . 0 n+ 1 1

⎤

⎥⎥⎥
⎦
, A+ :=

⎡

⎢⎢⎢⎢⎢⎢
⎣

0

In

...

0
0 . . . 0 0
0 . . . 0 1

⎤

⎥⎥⎥⎥⎥⎥
⎦

. (88)

��
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3.5 Moment Map for KPn in Homogeneous Coordinates

Recall in Example 7, we obtained KPn as the quotient

KPn = U+
a /C

∗ = (μ+
N)

−1(a)/U(1),

where U+
a = (Cn+1 − {0})× C and

(μ+
N)

−1
(a) = {(z1, . . . , zn+1, p) ∈ C

n+2 | |z1|2+· · ·+|zn+1|2−(n+1)|p|2 = 2a},

and note that we use a > 0 as this is the chamber that gives KPn . For any (z, p) ∈
U+
a , there is a unique λa(z, p) ∈ R>0 such that λa(z, p) · (z, p) ∈ (μ+

N)
−1(a)

under the action λa · (z, p) = (λaz, λ
−n−1
a p) defined by Eq. (28). This defines the

following deformation retraction (same as Eq. (33))

R+
a : (Cn+1 −{0})×C → (μ+

N)
−1
(a), R+

a (z, p) = (λa(z, p)z, λa(z, p)−n−1p).

The T
n+1-action on KPn and Its Moment Map Corresponding to the A+ in

Example 15, we have the map α+
C

: Tn+1
C

→ T
n+2
C

given by

α+
C
(t1, . . . , tn+1) = (t1, . . . tn, 1, tn+1),

and we get a T
n+1
C

-action on C
n+2 via α+

C
(Tn+1

C
) by

(t1, . . . , tn+1) · (z1, . . . , zn+1, p) = (t1z1, . . . , tnzn, zn+1, tn+1p).

As usual, this restricts to a Hamiltonian T
n+1-action on C

n+2 in coordinates z, p

with the standard symplectic form i
2

(∑n+1
k=1 dzk ∧ dz̄k + dp ∧ dp̄

)
and moment

map (up to a constant)

μ = (α+)∗ ◦ μTn+1 : Cn+2 → R
n+1, μ(z1, . . . , zn+1, p) = 1

2
(|z1|2, . . . , |zn|2, |p|2).

Because this T
n+1
C

-action on U+
a commutes with the C

∗-action on U+
a , we get

that Tn+1
C

acts on the quotient KPn = U+
a /C

∗ by

(t1, . . . , tn, tn+1) · [z1 : . . . : zn+1 : p] = [t1z1 : . . . : tnzn : zn+1 : tn+1p]. (89)

This restricts to a Hamiltonian T
n+1-action on (KPn , ωa). Using Eq. (44), we find

the moment map μa : KPn → R
n+1 is given by

μa([z1, . . . , zn+1, p]) = μ ◦ R+
a (z1, . . . , zn+1, p)

= 1
2 (λa(z, p)

2|z1|2, . . . , λa(z, p)2|zn|2, λa(z, p)−2(n+1)|p|2). (90)
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Computing λa(z, p)2 Now we try to compute λ2
a(z, p) in order to obtain a

more explicit formula for μa in terms of the homogeneous coordinates (z, p).
Let |z|2 = ∑n+1

k=1 |zk|2. By setting μ+
N(z1, . . . , zn+1, p) equal to a, we get that

x := λa(z, p)2|z|2 satisfies

xn+2 − 2axn+1 − (n+ 1)|z|2(n+1)|p|2 = 0.

So

|z|2(n+1)|p|2 = 1

n+ 1
(xn+2 − 2axn+1) =: f (x).

f ′(x) = n+ 2

n+ 1
xn+1 − 2axn

f ′(x) > 0 for x > 2(n+1)a
n+2 . So there is a smooth function

g :
(

− 2a

(n+ 1)(n+ 2)

(
2a(n+ 1)

n+ 2

)n+1

,∞
)

−→
(

2(n+ 1)a

n+ 2
,∞

)

which is the inverse of

f :
(

2(n+ 1)a

n+ 2
,∞

)
−→

(

− 2a

(n+ 1)(n+ 2)

(
2a(n+ 1)

n+ 2

)n+1

,∞
)

.

Furthermore, g′(t) > 0, and

g(0) = 2a, lim
t→+∞ g(t) = +∞.

Because g is the inverse of f , we get that x = g(|z|2(n+1)|p|2), and by definition

λa(z, p)
2 = x

|z|2 = g(|z|2(n+1)|p|2)
|z|2 .

Using the above formula for λa(z, p)2 and continuing Eq. (90) for the moment
map μa , we get

μa([z1, . . . , zn+1, p]) = μ ◦ R+
a (z1, . . . , zn+1, p)

=
(
g(|z|2(n+1)|p|2)

2
|z1|2
|z|2 , . . . ,

g(|z|2(n+1)|p|2)
2

|zn|2
|z|2 ,

1
2(n+1) (g(|z|2(n+1)|p|2)− 2a)

)
.

(91)
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Recall that g(0) = 2a, so

μa([z1, . . . , zn+1, 0]) = a

|z1|2 + · · · + |zn+1|2 (|z1|2, . . . , |zn|2, 0).

So when p = 0 we obtain the same moment map as above in Example 9 for Pn.

Explicit Formula for When n = 1 We next derive an explicit expression of the
inverse function g of f when n = 1. In this case, x = λ(z, p)2|z|2 > 0 satisfies

x3 − 2ax2 − 2|z|4|p|2 = 0. (92)

If p = 0, let y = x−1. Then y is the unique real root of the following depressed
cubic equation.

y3 + a

|z|4|p|2 y − 1

2|z|4|p|2 = 0.

By Cardano’s formula,

y = 3

√
1

4|z|4|p|2 +
√

1
16|z|8|p|4 + a3

27|z|12|p|6 + 3

√
1

4|z|4|p|2 −
√

1
16|z|8|p|4 + a3

27|z|12|p|6

=
√
a√

3|z|2|p|

(
3

√√
1 + 27|z|4|p|2

16a3 + 3
√

3|z|2|p|
4a

√
a

− 3

√√
1 + 27|z|4|p|2

16a3 − 3
√

3|z|2|p|
4a

√
a

)

= 1
2a × 3

(√
1+ρa(z,p)2+ρa(z,p)

) 2
3 +

(√
1+ρa(z,p)2−ρa(z,p)

) 2
3 +1

where

ρa(z, p) = 3
√

3|z|2|p|
4a

√
a

is invariant under the C
∗-action on (C2 − {0})× C, and ρa(z, 0) = 0.

Using the relations that x = g(|z|2(n+1)|p|2) (here n = 1) and x = y−1, we get
that

g(|z|4|p|2)
= 2a

3

((√
1 + ρa(z, p)2 + ρa(z, p)

) 2
3 +

(√
1 + ρa(z, p)2 − ρa(z, p)

) 2
3 + 1

)

= 2a + 2a
3

(
3

√√
1 + 27|z|4|p|2

16a3 + 3
√

3|z|2|p|
4a

√
a

− 3

√√
1 + 27|z|4|p|2

16a3 − 3
√

3|z|2|p|
4a

√
a

)2

.

We can then substitute this into Eq. (91) to get
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μa([z1, z2, p]) =
(
g(|z|4|p|2)

2

|z1|2
|z1|2 + |z2|2 ,

g(|z|4|p|2)− 2a

4

)
=

=
(
a|z1|2
|z|2 ×

(√
1 + ρa(z, p)2 + ρa(z, p)

) 2
3 +

(√
1 + ρa(z, p)2 − ρa(z, p)

) 2
3 + 1

3
,

a

2
×

(√
1 + ρa(z, p)2 + ρa(z, p)

) 2
3 +

(√
1 + ρa(z, p)2 − ρa(z, p)

) 2
3 − 2

3

)
.

The moment polytope, which is the image of this moment map μa is shown in
Fig. 2b.

So far in this section, the T
2-action on KP1 is given by Eq. (89), which arose

from the choice of B+ and A+ given in Example 15. If we change the basis of T2

and use the B+ and A+ given in Example 11, we get the T2-action onKP1 given by

(t1, t2) · [z1 : z2 : p] = [t1z1 : z2 : t−1
1 t2p],

then the moment map becomes

μ′
a([z1, z2, p]) =

(
g(|z|4|p|2)

2

|z1|2
|z1|2 + |z2|2 − g(|z|4|p|2)− 2a

4
,
g(|z|4|p|2)− 2a

4

)

(93)

and its image is shown in Fig. 2a. In particular, when p = 0,

μ′
a([z1, z2, 0]) =

(
a|z1|2

|z1|2 + |z2|2 , 0
)
.

Note that the first component is the moment map for P1, and indeed its image is the
line segment connecting (0, 0) and (a, 0) in Fig. 2a, b.

(0,0) (a, 0)

(a)

(0, 0) (a, 0)

(b)

Fig. 2 Two moment polytopes forKP1 . (a) Image of the moment map μ′
a : KP1 → R

2. (b) Image
of the moment map μa : KP1 → R

2
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4 Kähler Potential

There is a natural Kähler potential that toric varieties admit from toric geometry, as
follows. With the data of a moment polytope, they come equipped with an ample
line bundle defined by a sum of the toric divisors weighted according to the moment
polytope; hence they admit a Kähler potential induced from sections of that line
bundle, see [10, Proposition 4.3.3] and [21, Example 4.1.2(i)] for details. The Kähler
potential in this case is a function of the complex affine coordinates. However,
many calculations become simpler in the moment map coordinates. We saw above
the existence of a symplectic form ωa coming from symplectic reduction. We will
see in this section that the Legendre transform of the Kähler potential one obtains
from symplectic reduction is computable. Although the two symplectic forms are
different in general, they can have similar properties such as being in the same
Kähler class.

More specifically, the focus of this chapter is to find a Kähler potential F over  ̊
for ωa in terms of the affine toric coordinates, as well as its Legendre transform G
in terms of the action-angle coordinates, specifically the moment map coordinates.
First we recall some notation. The diagram below is a summary of the identifications
given by Eqs. (50), (52), and (53), and the notations introduced in Definition 2,

tn
C

exp−−→ T
n
C

∼= μ−1
a ( ̊)

∼=  ̊× T
n

∈ ∈ ∈
u = (uj = xj + iθj )nj=1 �→ (eu1 , . . . , eun) (ξ, eiθ ) = (ξj , eiθj )nj=1

=

(t1, . . . tn) �−→ μa(t) = ξ ∈  ̊

.

(94)
Note that since T

n embeds in T
n
C

as U(1)n, θ = (θ1, . . . , θn) is a coordinate on the
Lie algebra of Tn

C
. The above diagram identifies μ−1

a ( ̊) with T
n
C

and  ̊× T
n, and

hence endows μ−1
a ( ̊) with the complex toric coordinates t and the action-angle

coordinates (ξ, θ), respectively.

Kähler Potential F By Guillemin [16, Theorem 4.3], there exists a T
n-invariant

Kähler potential F on (C∗)n ⊂ M such that ωa|(C∗)n = 2i∂∂F . Contracting the
symplectic form with ∂/∂θ , using that F is not a function of θ since it is Tn-invariant
(that is, a function R

n → R on the norms of the affine toric coordinates of (C∗)n),
plugging into the left hand side of ι∂/∂θj ωa = −dμa,j , and integrating we see that
F : Rn → R satisfies

μa(t1, . . . , tn) = μa(ex1+iθ1 , . . . , exn+iθn) =
(
∂F

∂x1
(x), . . . ,

∂F

∂xn
(x)

)
. (95)

Therefore by Guillemin [16, Theorem 3.3] and the sentence following it, the map

x �→
(
∂F
∂x1
(x), . . . , ∂F

∂xn
(x)

)
is a diffeomorphism from R

n to the interior  ̊ of the
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moment polytope  . In particular, let ξj = ∂F
∂xj
. Then

∂ξj

∂xk
= ∂2F

∂xj ∂xk
. (96)

Legendre Transform G In the other direction, there is a function G :  ̊ → R

such that the inverse map of the diffeomorphism

R
n −→  ̊, (x1, . . . , xn) �→

(
∂F

∂x1
(x), . . . ,

∂F

∂xn
(x)

)
(97)

is

 ̊ −→ R
n, (ξ1, . . . , ξn) �→

(
∂G

∂ξ1
(ξ), . . . ,

∂G

∂ξn
(ξ)

)
= (x1, . . . , xn). (98)

Specifically, G is the Legendre transform of F , namely (up to a constant)

F(x)+G(ξ) = 〈x, ξ 〉 (99)

so that differentiating Eq. (99) with respect to ξ we see that ∂G
∂ξi

= xi . Furthermore

∂xj

∂ξk
= ∂2G

∂ξj ∂ξk
. (100)

From the relations in Eqs. (96) and (100), we see that the Hessian of G is the
inverse of the Hessian of F . Also from Eqs. (96) and (100), we see that the complex

structure in the (xj , θj ) coordinates is the standard

(
0 −In

In 0

)
, hence the complex

structure in the (ξj , θj ) coordinates is

(
0 −[∂j ∂kF ]

[∂j ∂kG] 0

)
. We now discuss the

Kähler form and metric.
Recall in Eq. (50),  ̊ × T

n with the symplectic form
∑n
j=1 dξj ∧ dθj is

symplectomorphic to μ−1
a ( ̊) with the symplectic form ωa . We explain why the

symplectic form is standard in the action-angle coordinates.

Lemma 2 The symplectic form for M can be written (over the interior of the
moment polytope) in the action-angle coordinates as

ωa =
n∑

j=1

dμa,j ∧ dθj .
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Proof We impose conditions on the coefficients of terms in ωa . There are three
conditions: ι∂/∂θj ωa = −dμa,j , fibers of the moment map are Lagrangian with
tangent space spanned by the ∂/∂θj , and ωa is Kähler so compatible with the almost
complex structure J induced from multiplication by i on the affine coordinates. The
first condition is the definition of the moment map, where ∂/∂θj is the infinitesimal
action of tj on M defined by taking the derivative at the identity as in Eqs. (41)
and (42), see also [39, Definition 22.1]. That is, θj=1,...n are the imaginary parts
of the complex coordinates on the Lie algebra of T

n
C

and μ, θ are the action-
angle coordinates. In particular, ∂/∂θj corresponds to rotating the j th affine toric
coordinate yj by tj , as described in the paragraph above Eq. (72).

As discussed in the paragraph following Corollary 1, the second condition is
true by the Arnold-Liouville theorem which is stated, for example, in [39, Theorem
18.12]. In more detail, Tn is abelian so has trivial Lie bracket and

ωa

(
∂

∂θi
,
∂

∂θj

)
=

[
∂

∂θi
,
∂

∂θj

]
= 0 = {μa,i, μa,j }

where {, } denotes the Poisson bracket. But the tangent space of a μa-fiber is
precisely the kernel of dμa , so by the first condition:

T μ−1
a (c) = ker(dμa) =

n⋂

j=1

ker(ι∂/∂θj ωa) ⊇ span{∂/∂θj }nj=1.

Since a fiber has dimension n, the last containment is equality. The fibers of the
moment map are then T

n-orbits of the T
n-action (eiθ1 , . . . , eiθn) · (y1, . . . , yn) =

(eiθ1y1, . . . , e
iθnyn), where (t1, . . . , tn) = (eiθ1 , . . . , eiθn), therefore as ωa is toric

invariant, ωa restricted to a fiber is 0. That is, the fibers are Lagrangian.
For the third condition, we saw that multiplication by i on x ∈ tn

C
induces, under

the Jacobian transformation between ξ and x, J =
(

0 −[∂j ∂kF ]
[∂j ∂kG] 0

)
in the

(ξj , θj ) coordinates, where [∂j ∂kF ] = [∂j ∂kG]−1 hence J 2 = −I2n.

Now we prove the statement of the lemma. Let ωa =
n∑

j,k=1
ajkdμa,j ∧ dθk +

n∑

j≤k,j,k=1
bjkdθj ∧ dθk + cjkdμa,j ∧ dμa,k. Then ωa|span{∂/∂θj }nj=1

≡ 0 )⇒

bjk = 0 and by the definition of the moment map, ι∂/∂θkωa =
n∑

j=1
−ajkdμa,j =

−dμa,k )⇒ akk = 1, ajk = 0 ∀j = k. Wrapping up, compatibility with J
means that J ∗ωa = ωa thus
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n∑

j=1

dμa,j ∧ dθj +
n∑

j,k=1
j≤k

c′jkdθj ∧ dθk =
n∑

j=1

dμa,j ∧ dθj +
n∑

j,k=1
j≤k

cjkdμa,j ∧ dμa,k

∴ cjk = 0 )⇒ ωa =
n∑

k=1

dμa,k ∧ dθk.

where c′jk is a function of [∂j ∂kG]. ��
Below we will use ωa to interchangeably denote the symplectic forms on T

n
C

and
 ̊ × T

n, which we view as ωa written in two different set of coordinates. For KM
the same holds true replacing n with n+ 1.

Corollary 3

ωa =
n∑

j=1

dξj ∧ dθj =
n∑

j,k=1

∂2F

∂xj ∂xk
dxj ∧ dθk = i

2

n∑

j,k=1

∂2F

∂xj ∂xk
duj ∧ dūk.

(101)

In the above, we have written ωa both in terms of the complex coordinates uj =
xj + iθj via the identification of μ−1( ̊) ∼= T

n
C

, and in terms of the action-angle
coordinates (ξj , θj ) via the identification of μ−1( ̊) ∼=  ̊× T

n.

Corollary 4 The Riemannian metric compatible with ωa and the complex structure
J is

ga =
n∑

j,k=1

∂2F

∂xj ∂xk
(dxj dxk + dθj dθk) =

n∑

j,k=1

∂2G

∂ξj ∂ξk
dξj dξk +

n∑

j,k=1

∂2F

∂xj ∂xk
dθj dθk, (102)

which we’ve also written both in terms of the complex coordinates and the action-
angle coordinates.

To recap, let ω be a T
n-invariant Kähler form on M . Then the action of Tn on

(M,ω) is Hamiltonian with a moment map μ : M → R
n which is unique up to

addition of a constant vector in the target Rn. The image ofμ is a convex polytope
known as the moment polytope, and the moment map determines smooth functions
F : Rn → R and G :  ̊ → R up to adding constants, as described above. Let g
be the Riemannian metric on M determined by the symplectic structure ω and the
complex structure onM . Then g is given by the right hand side of (102). When ω is
the symplectic structure coming from symplectic reduction,G(ξ) is given explicitly
in [16]. Below we summarize a way of deriving Guillemin’s formula for G(ξ) due
to Calderbank-David-Gauduchon [8].

Lemma 3 The Legendre transform G(ξ) of the potential function F(x) is

G(ξ) = 1

2

d∑

j=1

Lj (ξ) logLj (ξ).
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Proof The standard flat metric on C
d written in polar coordinates, zj = rj eiϕj , is

g =
d∑

j=1

dzjdz̄j =
d∑

j=1

dr2
j + r2

j dϕ
2
j =

d∑

j=1

dμ2
j

2μj
+ 2μjdϕ

2
j = g̃ +

d∑

j=1

2μjdϕ
2
j ,

(103)
where μj = 1

2 r
2
j = 1

2 |zj |2 is the j th component of the moment map μTd given
by Eq. (17). This metric is compatible with the standard symplectic form ω of
Eq. (16) and the standard complex structure on C

d . The first term in the sum above in
Eq. (103) in polar coordinates, denoted g̃, is the metric on the image of the moment
map, and the 2nd term is the metric on the torus fiber. Note that g̃ can be written in
terms of the Hessian of a potential function G̃ as follows

g̃ =
d∑

j=1

dμ2
j

2μj
=

d∑

j,k=1

∂2G̃

∂μj∂μk
dμjdμk, where G̃ =

d∑

j=1

μj logμj .

Recall that the metric ga in Eq. (102) is the canonical metric defined by symplectic
reduction from C

d with the flat metric g. The first term of ga on the right-most
expression of Eq. (102), which is

g̃a =
n∑

j,k=1

∂2G

∂ξj ∂ξk
dξj dξk,

is a Riemannian metric on  ̊ (the unique Riemannian metric such that μa :
(Tn

C
, ga) → ( ̊, g̃a) is a Riemannian submersion). By construction and because

L(ξ) defined in Eq. (45) satisfies L(ξ)j = 1
2 |zj |2 = μj , we have

g̃a = L∗g̃ =
d∑

j=1

dL2
j

2Lj
, G = L∗G̃ = 1

2

d∑

j=1

Lj logLj . (104)

��
Example 16 (Pn) Recall αC from Example 9 and μa from Eq. (56), leading to the
conclusion at the end of Example 13 that

(ξ1, . . . , ξn) = a(e2x1 , . . . , e2xn)

e2x1 + · · · + e2xn + 1

and

(x1, . . . , xn) = 1

2

(
log ξ1−log(a−ξ1−· · ·−ξn), . . . , log ξn−log(a−ξ1−· · ·−ξn)

)
.



204 H. Azam et al.

Thus, integrating, we find by Eqs. (95) and (98):

F(x1, . . . , xn) = a

2
log(e2x1 + · · · + e2xn + 1) = a

2
log(|t1|2 + · · · + |tn|2 + 1),

G(ξ1, . . . , ξn) = 1

2

(
ξ1 log ξ1+· · ·+ξn log ξn+(a−ξ1−· · ·−ξn) log(a−ξ1−· · ·−ξn)

)
.

��
These calculations apply for KM as well, replacing n with n+ 1 everywhere.

Note that if ω is the symplectic structure coming from symplectic reduction,
and if we know the moment polytope  to begin with, then according to Equa-
tions (104) and (45), we can readily write down the explicit formulasG(ξ) from the
combinatorics of the moment polytope  . Below we describe two perspectives for
writing down F(x). Both are less straightforward for the exact same reason, if not
impossible, compared to finding G(ξ).

1. If we could compute the moment map, μa , then we could find F(x) via Eq. (95).
However, as we saw in Sect. 3.5 (also mentioned in Example 10 for P

2(3)),
the moment map can be extremely complicated. In Example 15, our ability to
explicitly compute the moment map in the n = 1 case boils down to being able
to solve the cubic polynomial (Eq. (92)). For n > 2, it’s not possible to compute
explicitly, at least not using the method of Sect. 3.5.

2. Once we know G(ξ), we can find F(x) via Legendre transform, i.e. Eqs. (98)
and (99). However, in order to write down F(x) using Eq. (99), we need to write
ξ in terms of x, and ξ(x) is exactly the moment map, which is complicated as
we just discussed. One might also think to use Eq. (98), which is a system of n
nonlinear equations in (x1, . . . , xn) and (ξ1, . . . , ξn). Similarly, it’s complicated,
if not impossible, to use that to find ξ(x).

Remark 5 (Comparing with the Kähler Structure Defined by an Ample Line Bundle)
The toric manifolds from Delzant’s construction are projective, so there is another
natural Kähler form obtained from using sections of an ample line bundle. This
remark addresses the following question: is the Guillemin construction of a
symplectic form from symplectic reduction the same as the Kähler structure from
toric geometry given an ample line bundle? They are different in general as noted
in Remark 5, however they are in the same Kähler class by Guillemin [16, Equation
(1.7)]. We first consider the 1-dimensional case. The ample line bundles on P

1 are
OP1(k), where k is a positive integer, and the space of sections of OP1(k) can be
identified with the space of homogeneous polynomials in two variables z1, z2 of
degree k:

H 0(P1,OP1(k)) =
k⊕

m=0

Czm1 z
k−m
2 .
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Let C∗ act on z1 and z2 with weights 1 and 0 respectively. The moment map in
Section 4.2 of Fulton [12] is given by

μ̂k([z1 : z2]) =
∑k
m=0m|zm1 zk−m2 |2

∑k
m=0 |zm1 zk−m2 |2 .

The image of μ̂k is the closed interval [0, k] ⊂ R.
When [z1 : z2] are both non-zero, define x = log |z1/z2|. Then letting a = k in

μa from Example 9 we get,

μk([z1 : z2]) = dFk

dx
(x), μ̂k([z1 : z2]) = dF̂k

dx
(x),

where the hat denotes the potential obtained from sections of the ample line bundle
O(k) and without the hat means we are using symplectic reduction on S3(

√
2k)/S1:

Fk(x) = k

2
log(1 + e2x), F̂k(x) = 1

2
log

(
k∑

m=0

e2mx

)

.

In particular, F1(x) = F̂1(x) however they are different for larger k. Here the Kähler
potential Fk for the symplectic form ωk defining the moment map μk : P1 → R is
such that

ωk = dμk ∧ dθ = d2Fk

dx2 dx ∧ dθ

and similarly for the case without the hat. Therefore we see that ω̂1 = ω1 since the
Kähler potentials are equal. When k > 1 is an integer, ω̂k = ωk but they represent
the same class in H 2(P1,R) ∼= R. Also note that here k is an integer, so the images
of μ̂k , which is [0, k], does not gives all possible [0, a], where a ∈ R, that μa does.

More generally for higher dimensional projective spaces, let ω̂k be the symplectic
form on P

n determined by the ample line bundle OPn(k), where k > 0. Then ω̂k
is the pullback of ω1 on P(

k+n
k ) under the degree k embedding P

n ↪→ P(
k+n
k ). In

particular, ω̂1 = ω1. When k > 1, ω̂k = ωk but they represent the same class in
H 1,1(Pn;R) ∼= R.

Remark 6 (Properties of Pn) Of interest to symplectic geometers is the choice of
symplectic cohomology class, for example when considering global homological
mirror symmetry one considers the Kähler cone KM of all possible Kähler classes
on the symplectic manifold M . Information about KM can be obtained using the
Calabi-Yau theorem (stated for example in [21, Theorem 4.B.19]), that for compact
Kähler manifolds there is a bijection between KM and the set of Kähler forms ω
with ωn = λ× vol for some λ ∈ R>0. As an example, consider the Fano manifold
P
n. The symplectic area of a projective line P

1 ⊂ P
n is



206 H. Azam et al.

∫

P1
ωa = 2πa

and the cone of Kähler classes is one-dimensional corresponding to this parameter
a. When a = 1, we obtain an integral cohomology class.

Furthermore, if c1(M) = [α] is represented by a closed real (1, 1)-form α and
we’ve fixed a choice of Kähler class β on M , there is a unique Kähler structure g
on M so that α = Ric(g) and [α] = ωg the Kähler form determined by the metric
g. This is [21, Proposition 4.B.21]. Note that given any two of a metric, complex
structure, and symplectic form on M which are compatible, the third is uniquely
determined, see [21, p 29]. For example, the symplectic form ωa and the standard
complex structure on P

n determine a Kähler metric ga on P
n which satisfies the

Kähler-Einstein equation:

Ric(ga) = n+ 1

a
ωa.

5 Connection to Mirror Symmetry

We give some context for mirror symmetry in which the above calculations play a
role. We start with background.

5.1 Mirror Symmetry for Calabi-Yau Manifolds

Mirror symmetry relates the symplectic (resp. complex) geometry of a Calabi-Yau
manifold X to the complex (resp. symplectic) geometry of a mirror Calabi-Yau
manifold X̌ of the same dimension. Let (X, ω, J ) be a Calabi-Yau manifold, where
ω is the symplectic structure and J is the complex structure, and let (X̌, ω̌, J̌ ) be
the mirror Calabi-Yau manifold. Kontsevich’s [27] Homological Mirror Symmetry
(HMS) conjecture predicts the following equivalences of triangulated categories:

DπFuk(X,ω) ∼= DbCoh(X̌, J̌ ), (105)

DbCoh(X, J ) ∼= DπFuk(X̌, ω̌), (106)

where DπFuk is the split-closed derived Fukaya category (derived by taking the
homotopy category so one obtains a triangulated category) and DbCoh is the
bounded derived category of coherent sheaves.

In [38], N. Sheridan proved the equivalence (105) when X is a smooth Calabi-
Yau hypersurface in the projective space P

n. In this case, the mirror Calabi-Yau
manifold X̌ is (a crepant resolution of) a Calabi-Yau hypersurface in the orbifold
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P
n/G, where G = (Zn+1)

n. (The n = 2 case was first proved by Polishchuk-
Zaslow [34], and the n = 3 case was first proved by P. Seidel [37].)

More generally, let X be a smooth Calabi-Yau hypersurface in a toric Fano
manifold M . There is a one-to-one correspondence between projective Gorenstein
Fano toric varieties and isomorphism classes of reflexive lattice polytopes  (see
[10, Theorem 8.3.4], and in 2-dimensions, the 16 reflexive lattice polygons are listed
in [10, p. 382]). The Batyrev mirror X̌ is (a crepant resolution of) a Calabi-Yau
hypersurface in the Gorenstein toric Fano variety M̌ defined by the dual reflexive
polytope  ̌ [7]. When n > 3, H 1,1(X) = H 1,1(M) = H 2(M), and the Kähler
moduli of the compact Calabi-Yau (n − 1)-fold can be identified with the Kähler
moduli of the ambient compact toric Fano manifoldM .

5.2 Mirror Symmetry for Landau-Ginzburg Models

A smooth Calabi-Yau hypersurface X in a toric Fano manifold M can be identified
with the critical locus of a holomorphic function W on the total space KM of
the canonical line bundle of M as follows. When M is Fano, K∗

M is ample and
for a generic section s of K∗

M , the zero locus X := s−1(0) ⊂ M is a smooth
anti-canonical divisor hence a manifold. In particular X is a compact Calabi-
Yau manifold of complex dimension n − 1. By the adjunction formula, KX ∼=
(KM ⊗ OM(X))|X ∼= OX, which implies K∗

M |X ∼= OM(X)|X. For example, when
M = Ua/NC where Ua ⊂ C

d , let s(z1, . . . , zd) ∈ C[z1, . . . , zd ] be a polynomial in
z1, . . . , zd such that the rational function s(z1,...,zd )

z1···zd is invariant under the NC-action

on C
d . Then s(z1, . . . , zd) defines a section of the anti-canonical line bundle K∗

M .
Define the holomorphic function W : KM → C by W(z, p) = 〈p, s(z)〉, where

z ∈ M , p ∈ (KM)z (the fiber ofKM over z), and 〈−,−〉 is the pairing between dual
vector spaces. (For example, for the polynomial s in the example of the previous
paragraph, we see that ps(z1, · · · , zd) ∈ C[z1, . . . , zd , p] is invariant under theNC-
action on C

d+1 so descends to a well-defined holomorphic functionW : KM → C.)
The critical locus ofW is hence given by

Crit(W) = {[z1, . . . , zd , p] ∈ KM : dW(z1, . . . , zd , p) = 0}
= {[z1, . . . , zd , p] ∈ KM : p = s(z1, . . . , zd) = 0}.

Namely, the critical locus ofW is exactlyX ⊂ M ⊂ KM where the second inclusion
is by the zero section: Crit(W) = s−1(0) = X. The pair (KM,W) is an example of
a Landau-Ginzburg (LG) model andW is known as the superpotential.

Example 17 (Fermat Surface a the Critical Locus of a Superpotential on KPn) Let
s(z1, . . . , zn+1) ∈ C[z1, . . . , zn+1] be a homogeneous polynomial of degree n+ 1,
for example the Fermat polynomial in (n + 1)-variables

∑n+1
j=1 z

n+1
j . Then ps is

invariant under the C
∗-action on (Cn+1 − {0})× C and descends to a holomorphic
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function

W : KPn → C, [z1, . . . , zn, p] �→ ps(z1, . . . , zn+1)

which, in the case of the Fermat polynomial, has the following critical locus

Crit(W) = {[z1, . . . , zn+1, p] ∈ KPn : dW(z1, . . . , zn+1, p) = 0}

= {[z1, . . . , zn+1, p] ∈ KPn :
n+1∑

j=1

zn+1
j = p = 0} = s−1(0) ∼= Xn+1,

where Xn+1 = {[z1, . . . , zn+1] ∈ P
n : ∑n+1

j=1 z
n+1
j = 0} is the Fermat Calabi-Yau

hypersurface in P
n. ��

Similarly, the mirror X̌ can be identified with the critical locus of a holomorphic
function W̌ on the total space K

M̌
of the canonical line bundle of M̌ . The LG

model (K
M̌
, W̌ ) is mirror to the LG model (KM,W). A natural formulation

of the homological mirror symmetry conjecture in this setting is the following
equivalences of triangulated categories:

W(KM,W) ∼= MF(KM̌, W̌ ), (107)

MF(KM,W) ∼= W(K
M̌
, W̌ ), (108)

where wrapping in non-compact fibers leads one to take W(−,−) the fiber-wise
wrapped Fukaya category (being defined in [1], see also [22]) of the LG model, and
MF is the category of matrix factorizations.

The B-modelMF(KM,W = 〈p, s(z)〉) on the LG model is equivalent to the B-
model DbCoh(X) on the Calabi-Yau hypersurface X = s−1(0) = Crit(W) ⊂ M ,
as a consequence of Orlov’s generalized Knörrer periodicity theorem [33]. An
A-model version of this Knörrer periodicity theorem would be an equivalence
between W(KM,W) and DπFuk(X). Recently [22] has proven a version of
Knörrer periodicity for the A-model that uses the notion of a partially wrapped
Fukaya category. Also see [35, 41]. With these equivalences, Eqs. (107) and (108)
is equivalent to Eqs. (105) and (106) whenX = s−1(0) is a smooth CY hypersurface
inM that is the critical locus ofW = 〈p, s〉 on KM .

Now let us consider a different LG model of (KM,W = z1 · · · zdp), againMn =
C
d//N is a toric Fano manifold of dimension n obtained via symplectic reduction

from C
d and z ∈ C

d are the homogeneous coordinates. The critical locus of W in
this case is a singular CY hypersurface in M defined by z1 · · · zd = 0, and it is the
preimage μ−1(∂ ) of the boundary of the moment polytope forM . The LG model
(KM,W = z1 · · · zdp) captures the geometry of this singular Crit(W) via Knörrer
periodicity [22, 33], and (KM,W) turns out to be the generalized SYZ [40] mirror
(in the sense of [3]) of a smooth hypersurface $ in (C∗)n. For example, if M is a
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Fano surface defined by a reflexive polygon with n vertices then (KM,W) is the
generalized SYZ mirror of an n-punctured torus $ (such as the thrice punctured
torus $ = {1 + x + y + t/xy = 0} ⊂ (C∗)2, whose mirror is the LG model
(KP2 ,W = z1z2z3p)).

More generally, the canonical bundle KM is a special case of a toric Calabi-
Yau manifold Y = C

d+1//Td−n of dimension (n + 1). The function z1 · · · zdzd+1
on C

d+1 descends to a well-defined holomorphic function W : Y → C. It
was first proposed by Hori-Vafa [20] and then proven in the SYZ framework by
Abouzaid-Auroux-Katzarkov [3] that LG-models given by (Y,W) for Y a toric CY
manifold are generalized SYZ mirrors to hypersurfaces Σ in toric varieties. The
HMS prediction would be the equivalence of the following triangulated categories:

W(Y,W) ∼= DbCoh($) (109)

MF(Y,W) ∼= W($), (110)

where W($) is the wrapped Fukaya category of $, wrapped due to $ being a
noncompact Liouville manifold. To define the fiber-wise wrapped Fukaya category
W(Y,W) one would need to view W : Y → C as a symplectic fibration, which
requires a good understanding of the symplectic structure on Y . Equivalence (109)
is the subject of the work in preparation by Abouzaid-Auroux [1] when $ is an
algebraic hypersurface in (C∗)n and Y is a toric Calabi-Yau (n+1)-fold. In the other
direction, the third author [28] proved the equivalence (110) when n = 2 where
$ ⊂ (C∗)2 is a punctured Riemann surface via decomposition into pair-of-pants
(thrice punctured spheres) and applying the result of [2], which establishes (110)
when $ is a punctured sphere. Lekili-Polishchuk [29] proved the equivalence (110)
when $ ⊂ (C∗)n is a generalized higher dimensional pair-of-pants. A version of
the equivalence in Eq. (110) is proven from the microlocal perspective [13] using
localization results from [14].

Further generalizations are given in [3, Section 10], such as to the SYZ mirrors
for hypersurfaces Σ of abelian varieties per the speculation of Seidel [36]. In [9],
the second author proved a HMS result for genus-2 compact Riemann surfaces Σ2
that are hypersurfaces in an abelian variety V = (C∗)2/%B (%B ∼= Z

2) and its
generalized SYZ mirror (Y, v0). Here, she considers a LG model (Y, v0) where Y =
Ỹ /%B is the quotient of a toric Calabi-Yau threefold Ỹ of infinite type by the free
action of %B . The main result in [9] is a fully-faithful embedding

DbCoh($2) ↪→ H 0FS(Y, v0). (111)

where FS denotes the Fukaya-Seidel category with compact fibers that are abelian
varieties degenerating to the following critical locus; the non-compact Calabi-Yau
threefold Y contains a “banana” configuration of three 2-spheres C1 ∪ C2 ∪ C3
that intersect at two triple intersection points. The Kähler moduli of Y is three-
dimensional and the real Kähler parameters are given by the symplectic areas Ai of
Ci . The complex moduli M2 of$2 is a complex orbifold of dimension 3. In [9], the
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second author considers a one-parameter family of symplectic structures on Y with
A1 = A2 = A3, which corresponds to a one-parameter family of complex structures
on $2.

In [6], we extend the work [9] to any genus 2 curve in M2. To do that, we need
to construct more general symplectic structures on Y where the areas of the three
2-spheres may vary independently, which inspired us to do the exercises that are in
this paper. This is naturally done in the action-angle coordinates using Guillemin’s
Kähler potential. The canonical bundle KM is a local model for Ỹ , and in the
example below, we express the superpotential also in the angle-action coordinates.

Example 18 (The Superpotential W : KM → C in Action-Angle Coordinates)
Let s(z1, . . . , zd) = z1 · · · zd and W : KM → C[z1, . . . , zd , p] �→ pz1 · · · zd a
morphism between smooth toric varieties. We are interested in the A-model on the
Landau-Ginzburg model (KM,W), so we would like to view W as a symplectic
fibration. We write it in terms of the action-angle coordinates (ξ, θ) instead of
the complex homogeneous coordinates (z1, . . . , zd , p). In particular, since the
superpotential is defined on the symplectic quotient KM , it is independent of the
choice of representative in the homogeneous coordinates. We could write it in terms
of the affine coordinates corresponding to the J th chart where the complement of
the J th zi’s are scaled to 1, so it would still be the product of all the inhomogeneous
coordinates, or we could write it in terms of the coordinates on the T

n
C

which
parametrizes all those charts via choices of αC. In that case, it would just be
projection onto the last coordinate, tn+1.

More specifically, let v :  + × T
n+1 → C be the composition

v :  + × T
n+1 ∼=−→ T

n+1
C

αC−→ T
d+1
C

↪−→ Ua × C
π̃+
a−→ KM

W−→ C. (112)

where π̃+
a : Ua × C → KM is the projection map defined in Eq. (27). Namely we

compose the exponential map

(ξ1, . . . , ξn+1, e
iθ1 , · · · , eiθn+1) �→ (eξ1+iθ1 , . . . , eξn+iθn+1)

with αC(t1, . . . , tn+1) which, up to permutation is (yJ1 , . . . , y
J
n+1, 1, . . . , 1), and

then multiply everything together to obtain
∏n+1
k=1 y

J
k . Now recall Definition 3, which

defines the αC injection forKM , namely what the yJk are as functions of tk . Plugging
in for tk , we see that

v(ξ1, . . . , ξn+1, e
iθ1 , · · · , eiθn+1) = z1 . . . zdp = yJ1 . . . yJn+1

= tn+1 = exp

(
∂G+

∂ξn+1
(ξ)+ iθn+1

)
.

(113)

Namely the superpotential is projection onto the last coordinate in the parameters
(t1, . . . , tn+1) because that equals the product of the coordinates in αC(t1, . . . , tn+1).

��
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5.3 Monodromy in Mirror Symmetry

Landau-Ginzburg models, of which (KM,W) is a prototype example, are important
in physics and math, in particular in mirror symmetry. In particular, moment maps
are an example of the more general notion of a Lagrangian torus fibration which is
the input needed to obtain a mirror when using the prescription given by SYZ mirror
symmetry [40]. Thus in the case ofKM there are two interesting fibrations, one is the
Lagrangian torus fibration coming from the moment map we’ve described, and the
other is (KM,W) which is a singular symplectic fibration with e.g. the symplectic
form coming from symplectic reduction. For manifolds which are Fano or of general
type (c1 < 0), their mirrors are Landau-Ginzburg models [3, 19]. So it is crucial
to be able to understand the Fukaya category of a Landau-Ginzburg model, which
is the algebraic input for the symplectic side of homological mirror symmetry. To
do so, one may start by looking at the Floer theory of (KM,W) for noncompact
Lagrangians which interact well with W : KM → C. Two types of non-compact
Lagrangians are often used.

One type of non-compact Lagrangian considered consists of those in [35] which
are thimbles obtained by parallel transporting a Lagrangian in a fiber of W to the
singular locus over 0; this works when W is a Lefschetz fibration. However, for
more complicated singular fibers, this process could produce a singular Lagrangian
if the fiber Lagrangian degenerates to a submanifold which is of codimension more
than 1 from what it was in the generic fiber. In this case, Lagrangians which are
U-shaped may be used; they go around the critical value(s) of W , where often that
value is 0. Therefore, it is of interest to know the monodromy around the origin of
W : KM → C. This is what brought us to do the work in this paper, as we are
interested in the Fukaya category of a certain LG-model in forthcoming work [6].

Lastly, the theory of the symplectic quotient extends not only to noncompact
manifolds, but to toric varieties of infinite type. Specifically, one example is the
following: let Y be the example mentioned in the paragraph surrounding Eq. (111).
This is denoted X(1,1) in the SYZ mirror symmetry paper by Kanazawa and Lau
[23]. It can be equipped with the following symplectic form, which is a scaled
version of that from symplectic reduction, to account for the infinitely many facets.

Definition 4 (Definition of ω from [23]) There exists an open covering {Uv} of
the moment polyhedron  

Ỹ
, and non-negative bump functions ρv on R

3 which
are supported on Uv and identically 1 in a smaller neighborhood of the boundary
stratum, such that the following

G̃(y) := 1

2

∑

v∈$(1)
ρv(y)Lv(y) logLv(y) (114)

is a finite sum at each point y ∈  ̊
Ỹ

, and whose Legendre transform is %B equiv-
ariant and defines a Kähler potential for Y , (namely its second-order derivatives are
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positive). Here, as earlier, Lv ≥ 0 denotes the half spaces whose intersection defines
 
Ỹ

.

Computing monodromy in this case requires a bit more finesse and the compu-
tation is done by splitting into three regions: one is around a vertex of the polytope
which is modeled on an open neighborhood around 0 ∈ C

3, one is in a neighborhood

of the center of a hexagon modeled on tot
(
K

CP
2(3)

)
, and the third is the remaining

region between these two which is harder to compute directly but can be estimated
and computed up to Hamiltonian isotopy.

In conclusion, toric varieties provide a rich source of symplectic manifolds,
including compact, noncompact, and of infinite type, and this article describes how
to compute information about them of interest to symplectic geometers.

6 Notation

This is an index for notation appearing throughout the text, with some comparisons
to notation used in [16].

Section 2: Toric Manifolds as Symplectic Quotients
• X in Guillemin [16] is calledM or KM here
• · denotes a group action as specified in the context
• Ik denotes the k × k identity matrix
• T

k
C

is the complex algebraic torus (C∗)k of dimension k
• T

k is the real torus of dimension k obtained as the maximal compact subgroup
U(1)k of Tk

C
by restricting to norm 1 coordinates

• n = dimCM , n+ 1 = dimCKM
• Maps involved in symplectic reduction:

– ρC : NC → T
d
C

is an embedding and Q = (Qlk)k,l is the matrix representing
its linearization

– βC : Td
C

→ T
d
C
/NC

∼= T
n
C

is the quotient map and B = (vkm)m,k is the matrix
representing its linearization

– superscripts denote the column, subscripts denote the row

• μTd is the moment map for the standard Hamiltonian T
d -action on C

d

• μN is the moment map for the Hamiltonian N -action on C
d

• Ua ⊂ C
d is the open set where NC acts freely and which contains μ−1

N (a)

• U+
a = Ua × C

• Ra : Ua → μ−1
N (a) retracts Ua onto μ−1

N (a) via a choice of λa(z) ∈ NC for each
z ∈ Ua

• symbols with a + refer to the KM case

• Z in [16] is a level set, here called μ−1
N (a) forM or μ+

N

−1
(a) for KM

• z1, . . . , zd are the homogeneous coordinates on C
d (with additional coordinate

p in the case of KM )
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• r1, . . . , rd , ϕ1, . . . , ϕd are the polar coordinates of the homogeneous coordinates
•  denotes the moment polytope (when bounded, for compact M) and  +

denotes the moment polyhedron (when unbounded, for noncompact KM )
• Projection maps:

{
πa : (μN)−1(a)→ M = (μN)−1(a)/N,

π̃a : Ua → M = Ua/NC,

defined in Theorems 1 and 2, and

{
π+
a : (μ+

N)
−1(a)→ KM = (μ+

N)
−1(a)/N,

π̃+
a : Ua × C → KM = (Ua × C)/NC,

defined in Eq. (27)

Section 3: Toric Actions and Moment Maps
• J = (j1, . . . , jr ) denotes a multi-index where jl ∈ {1, . . . , d} are strictly

increasing (and will index a choice of r facets)
• C

d
J = orb

T
d
C

(z) ∼= C
d−r denotes the orbit under the standard T

d
C

-action of any
point (z1, . . . , zd) with zj = 0 ⇐⇒ j ∈ J

• (Td
C
)J = stab

T
d
C

(z) ∼= (C∗)r , for any fixed choice z ∈ C
d
J

• αC : T
n
C

→ T
d
C

is a right inverse to βC and A = (smk )k,m is the matrix
representing its linearization

• μa is the moment map of the Hamiltonian T
n-action on μ−1(a)/N

• (dρC)
∗
1(κ) = −a

• li in [16] is called Li here, which denotes the affine linear defining equation of
the ith facet of polyhedron  

• Fj denotes the j th facet of the moment polytope
• Jf = (j1, . . . , jr ) indexes the facets which intersect with polytope  in a face
f , e.g. r = n when f = v a vertex

• t1, . . . , tn are the inhomogeneous coordinates on the dense (C∗)n = T
n
C

•  ̊ denotes the interior of the polytope
• uj = log tj are coordinates on the Lie algebra Lie T

n
C

= tn
C

• x1, . . . , xn and θ1, . . . , θn are the polar coordinates of the inhomogeneous
coordinates (t1, . . . , tn) ∈ (C∗)n

• ξ1, . . . , ξn are the moment map coordinates
• ξi, θi are the action-angle coordinates
• Notation for Sect. 3.3: Holomorphic coordinate charts forM

– v is a vertex of the polytope  
– For vertex v and corresponding indexing set Jv ,

ṼJv = {(z1, . . . , zd) ∈ C
d | zj = 0 if j /∈ Jv} ∼= (C∗)d−n × C

n ⊂ Ua
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– VJv = ṼJv /NC
∼= C

n ⊂ M is the open chart ofM corresponding to vertex v,
the union of which coverM

– y
Jv
1 , . . . , y

Jv
n (defined in Eq. (65)) denote affine coordinates on the chart VJv

– ϕJv : VJv → C
n is the chart map defined by (yJv1 , . . . , y

Jv
n )

– pJv = μ−1
a (v) is a T

n
C

toric fixed point corresponding to vertex v, and it’s the
center of the chart ϕJv

– UJv = {(z1, . . . , zd) ∈ C
d | zj = 1 if j /∈ Jv} ⊂ ṼJv ⊂ C

d is the slice of the
NC action given by the representatives in Eq. (65), where the letter U is used
because it is a subset of Ua

– B̂, ÂJv denote choices of bases for matrices B,A so that the corresponding
α
Jv
C

gives the standard T
n
C

action, as described in the paragraph of Sec-
tion “Change of Basis of Tn

C
and the Embedding of Tn

C
in Each C

n-chart”

Section 4: Kähler Potential
• F is the Kähler potential and is a function of the xj
• G is the Legendre transform of F and is a function of the ξj
• the j th coordinate function of μa(t1, . . . , tn) is ξj and equals ∂F/∂xj

Section 5: Connection to Mirror Symmetry
• W : KM → C denotes the superpotential
• s ∈ %(M,K∗

M) is a generic section
• X = Crit(W) is the critical locus of the superpotential
• $ ⊂ (C∗)n is a hypersurface whose generalized SYZ mirror is a LG model
(KM,W)

• $2 is the genus 2 curve
• (Y, v0) is the SYZ mirror of (Bl$×{0}V × C, y), both LG models
• Ỹ is the universal cover of Y , a toric variety of infinite type
• v isW written as a function of the moment map coordinates ξj
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1 Introduction

A key way to study closed symplectic manifolds is to break them down into two
more easily understood parts: a neighborhood of a divisor and a complementary
Weinstein domain. A divisor is a symplectic submanifold of co-dimension 2. One
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can allow this submanifold to have certain controlled singularities, such as normal
crossing singularities or more general singularities modeled on complex hyper-
surfaces. Donaldson proved that every symplectic manifold has a divisor [8] and
Giroux proved that this divisor can be chosen such that the complement of a regular
neighborhood admits the structure of a Weinstein domain [17, 18]. A Weinstein
domain is a symplectic manifold with convex contact type boundary which can be
broken down into symplectic handles modeled and glued as described by Weinstein
[24]. The symplectic topology of a Weinstein manifold is encoded in the attaching
spheres of the handles. The attaching spheres can be represented by isotropic and
Legendrian knots in the front projection. This Weinstein handlebody diagram gives
a combinatorial/diagrammatic method to encode a symplectic manifold. There is
a calculus of moves which relates different diagrams for equivalent Weinstein
manifolds [7, 19].

Recently, there has been increased study of symplectic divisors in symplectic
manifolds, particularly in the case when the complement is Weinstein. Some of the
motivation comes from homological mirror symmetry, where generalizing the link
between coherent sheaves and Fukaya categories to larger classes of manifolds has
required one to consider a mirror pair that includes not only a space, but also a
divisor [3]. One way to associate a Fukaya category for a divisor pair, is to look
at the wrapped Fukaya category of the complement of the divisor. The Weinstein
handle decomposition is key to understanding the wrapped Fukaya category, due
to recent results that the co-cores of the handles generate the category [5, 20, 21].
The Floer homology of these co-cores is intrinsically tied to the Legendrian DGA
of the Weinstein handlebody diagram [4, 9, 10] which is combinatorially calculated
by Ekholm-Ng [12].

An important class of symplectic manifolds are toric manifolds. These have been
studied extensively as they form a large class of examples of integrable systems
because of the symmetry provided by the Hamiltonian action of a torus on such
manifolds. According to the famous Delzant classification, all compact symplectic
toric 2n-manifolds are uniquely (up to equivariant symplectomorphism) determined
by convex n-dimensional polytopes, which correspond to the orbit space of the
action. Much of the symplectic information can be encoded in the combinatorics
of these polytopes known as Delzant polytopes. Moreover, toric manifolds have
their origin in algebraic geometry, and they come by definition with a fibration by
tori given by the action, so that they have been among the first cases of interest for
homological mirror symmetry, especially in view of the SYZ philosophy (see for
instance [1]). Every compact toric symplectic manifold is naturally equipped with
a toric divisor. This is precisely the set of all points with non trivial stabilizer and
the fixed points of the toric action are normal crossing singularities of the divisor.
This can also be understood in terms of the moment map image polytope: the toric
divisor is the preimage of the faces of the polytope under the moment map. The
complement of a neighborhood of the divisor is symplectomorphic to a Weinstein
domain whose completion is T ∗T n. (The complement of the divisor is the preimage
of the interior of the polytope under the moment map, which is T n × P where P
is a convex open subset of Rn.) Hypersurfaces with normal crossing singularities
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can naturally be deformed to become less singular at the expense of increasing the
topological complexity of the divisor and its complement. A toric manifold, together
with its toric divisor or any smoothing of the divisor is a log Calabi-Yau pair which is
a convenient setting for studying mirror symmetry of a space with a divisor [16, 22].

A manifold of dimension 4 will have symplectic surface divisors. Normal
crossing singularities in this dimension are just positive transverse intersections of
two smooth branches, or nodes. A deformation of this node smooths out the surface,
trading the node for an annular tube which thus joins two different components
or increases the genus of the surface. For a toric 4-manifold, the complement of
the (fully singular) toric divisor looks like T ∗T 2, which has a natural Weinstein
structure described by a diagram discovered by Gompf [19].

The toric divisor is the preimage of the facets of the Delzant polytope  , and
the nodes are the preimages of the vertices of  . Since there is a one to one
correspondence between the nodes and vertices, we will use the same notation to
denote both a node and its moment map image vertex. Each vertex V ∈  , has a
corresponding ray r based at V defined as the sum of the primitive edge vectors of
 adjacent to V and pointing outward from V .

Definition 1 A toric manifold with a chosen subset {V1, . . . , Vn} of the nodes
is {V1, . . . , Vn}-centered, if the corresponding rays r1, . . . , rn all intersect at a
common single point in the interior of its Delzant polytope.

We show in [2, Theorem 4.1] that if a toric 4-manifold is {V1, . . . , Vn}-centered,
then the complement of the toric divisor smoothed at the nodes {V1, . . . , Vn} has a
Weinstein structure which we can explicitly describe.

In this article, we explain an algorithm to produce a Weinstein handlebody
diagram for the complement of any divisor obtained by smoothing the {V1, . . . , Vn}-
nodes of a toric divisor in a {V1, . . . , Vn}-centered toric 4-manifold. We prove the
Weinstein handlebody produced by this algorithm is Weinstein homotopic to the
complement of the smoothed toric divisor in our later paper [2]. That article also
explains how toric moment data determines the input to our algorithm, provides a
detailed exploration of the centered hypothesis, and includes many more examples.
This article focuses on the most accessible example, as well as showcasing one fun
case.

1.1 Main Results

There exists an algorithm to produce a Weinstein handlebody diagram for the
complement of a toric divisor smoothed at the subset of nodes {V1, . . . , Vn} in a
{V1, . . . , Vn}-centered toric 4-manifold.

1. Applying this algorithm to CP
2 smoothed in one node yields the self-plumbing

of T ∗S2 as illustrated in Fig. 1. Moreover, the same output is obtained for the
complement of a toric divisor in any toric 4-manifold smoothed in one node.
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Algorithm

Fig. 1 The input and output diagrams corresponding to the smoothing at one node of the toric
divisor in the standard toric CP

2

Algorithm

Fig. 2 The input and output diagrams corresponding to the smoothing at six nodes of the toric

divisor in a monotone toric CP
2#3CP

2

2. Applying the algorithm to a monotone CP
2#3CP2 smoothed at all six nodes

yields a Weinstein manifold constructed by attaching 2-handles to the 4-ball
along a 5-component Legendrian link as in Fig. 2.

We would like to note that the handlebody diagram in the first example above has
already been observed by Casals-Murphy in [6], viewed as a Weinstein handlebody
for the complement of an affine smooth conic in C

2 (which is the same as the
complement of a smooth conic together with a generic line in CP

2, which is the once
smoothed toric divisor in CP

2). We obtain this diagram from a completely different
method and provide a systematic recipe which applies much more generally. This
first example provides an accessible way to explain the steps of our more general
algorithm.

This paper is organized as follows. In Sect. 2, we give definitions and discuss the
relevant preliminary background on Weinstein Kirby calculus. In Sect. 3, we provide
a picture into how to see the main structure of the handle attachment needed to
obtain the complement of the smoothed divisor by describing the core and co-core
of the handle in the smoothing local model. The remainder of the paper demonstrates
the algorithm for producing the desired handlebody diagrams. In Sect. 4, we produce
a Weinstein handlebody diagram for the complement of a toric divisor smoothed in
one node and apply sequences of Kirby calculus moves to simplify the diagrams. In
Sect. 5, we present a more complicated example, coming from CP

2#3CP2, with the
toric divisor smoothed at all six nodes, to showcase the scope of applications and
the corresponding Weinstein Kirby diagrams.
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2 Weinstein Handlebodies and Kirby Calculus

2.1 Weinstein Handle Structure

A Liouville vector field Z for a symplectic manifold (W,ω) is a vector field
satisfying LZω = ω. By Cartan’s formula for the Lie derivative and the fact that the
symplectic form is closed, this is equivalent to saying d(ιZω) = ω (here ι denotes
the interior product where ιZω(·) = ω(V, ·)). In particular, when there exists a
Liouville vector field, the symplectic structure is exact. The 1-form λ = ιZω which
satisfies dλ = ω is called the Liouville form. For an introduction to these ideas,
see [23]. The primary use of Liouville vector fields is to glue symplectic manifolds
along contact type boundaries. When the Liouville vector field is transverse to the
boundary, it defines a contact structure on the boundary and can be used to identify
a collared neighborhood of the boundary with a piece of the symplectization of that
contact boundary.

When Weinstein defined a model of a handle decomposition for symplectic
manifolds [24], he equipped the handle with a Liouville vector field so that the
gluing of the handle attachment could be performed using only contact information
on the boundary. More specifically, the handle attachment is completely specified by
a Legendrian attaching sphere, or an isotropic attaching sphere together with data
on its normal bundle. The limitation is that the index of the handle is required to
be less than or equal to n in a 2n dimensional manifold. In particular, Weinstein
4-manifolds must be built entirely from handles of index 0, 1, and 2.

The model Weinstein handle of index k in dimension 2n for k ≤ n is a subset
of R2n with coordinates (x1, y1, · · · , xn, yn), with the standard symplectic structure
ω = ∑

j dxj ∧ dyj and Liouville vector field (Fig. 3)

Zk =
k∑

j=1

(−xj ∂xj + 2yj ∂yj
) +

n∑

j=k+1

(
1

2
xj ∂xj + 1

2
yj ∂yj

)
.

As with smooth handle theory, the handles are in one to one correspondence
with the critical points of a Morse function. The Liouville vector field agrees with
the gradient of such a Morse function (for some choice of metric), in other words,
the Liouville vector field is gradient-like. In the model index k handle, the Liouville
vector field is the gradient (with the standard Euclidean metric) of the function

φk =
k∑

j=1

(
−1

2
x2
j + y2

j

)
+

n∑

j=k+1

(
1

4
x2
j + 1

4
y2
j

)
.

The handle can be considered to be the subset of R
2n given by Dk × D2n−k

where the first factor corresponds to the coordinates (x1, · · · , xk) and the second
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Fig. 3 A sketch of the model for the Weinstein handle of index k, with the associated gradient-like
Liouville vector field Zk

corresponds to the remaining coordinates (xk+1, · · · , xn, y1, · · · , yn). The key
terminology for important parts of the handle is as follows.

• The core of the handle isDk×{0} where xk+1 = · · · = xn = y1 = · · · = yn = 0.
This is the stable manifold of flow-lines of Zk which limit positively towards the
zero at the origin.

• The co-core of the handle is {0} ×D2n−k where x1 = · · · = xk = 0. This is the
unstable manifold of flow-lines of Zk which limit negatively towards the zero at
the origin.

• The attaching sphere is the boundary of the core, Sk−1 × {0}. This will be
identified with an isotropic sphere in the boundary of the existing manifold to
which the handle is attached.

• The attaching region is a neighborhood of the attaching sphere Sk−1 × D2n−k .
This is the entire part of the handle which will be glued on to a piece of the
boundary of the existing manifold when the handle is attached. Therefore the
Liouville vector field Zk points inward into the handle along this part of the
boundary (it is concave).

• The belt sphere is the boundary of the co-core {0} × S2n−k−1. It is a co-isotropic
sphere in the boundary of the manifold obtained after attaching the handle.

In general we can piece together the Liouville vector fields on the handles, and
put together adjusted versions of the locally defined Morse functions to get a global
Morse function on the manifold. A Weinstein structure is often encoded analytically
as a quadruple (W,ω,Z, φ) where W is a smooth manifold, ω is a symplectic
structure onW , Z is a Liouville vector field for ω onW , and φ is a Morse function
such that Z is the gradient-like for φ.
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Remark 2 When a manifold with a Weinstein structure has contact type boundary,
it is called a Weinstein domain. Such a domain can be extended by a cylindrical end
to make the Liouville vector field complete to give a non-compact infinite volume
Weinstein manifold.

2.2 Weinstein Kirby Calculus

The data needed to encode the Weinstein domain are the attaching maps. In
dimension 4, the attaching map of a handle is completely determined by the
Legendrian or isotropic attaching sphere. The attaching sphere of a 1-handle is a
pair of points. Diagramatically we draw a pair of 3-balls implicitly identified by a
reflection, representing the attaching region S0 × D3. The attaching sphere of a 2-
handle is a Legendrian embedded circle (a Legendrian knot). The 4-dimensional
2-handle attachment is determined by the knot together with a framing, but in
the Weinstein case, the framing is determined by the contact structure. More
specifically, the contact planes along a Legendrian knot determine a framing by
taking a vector field transverse to the contact planes. The contactomorphism gluing
the attaching region of the 2-handle to the neighborhood of the Legendrian identifies
the product framing in the 2-handle with the tb − 1 framing. Here tb denotes the
contact framing (Thurston-Bennequin number), which is identified with an integer
by looking at the difference between the contact framing and the Seifert framing
(this must be appropriately interpreted when the diagram contains 1-handles–see
[19]).

The diagram we draw should specify the Legendrian attaching knots in S3 along
with the pairs of 3-balls indicating the attachments of the 1-handles. By removing
a point away from these attachments, we reduce the picture in S3 to a picture
in R

3. After a contactomorphism, the contact structure on R
3 is ker(dz − ydx)

in coordinates (x, y, z). The front projection is the map π : R
3 → R

2 with
π(x, y, z) = (x, z). A Legendrian curve in this contact structure is tangent to the
contact planes, which happens precisely when the y-coordinate is equal to the slope
dz
dx

of the front projection. Therefore, Legendrian knots can be recovered from their
front projections with the requirement that the diagram has no vertical tangencies
(instead it will have cusp singularities where the knot is tangent to the fibers of
the projection) and the crossings are always resolved so that the over-strand is the
strand with the more negative slope (we orient the y-axis into the page to maintain
the standard orientation convention for R3 so the over-strand is the strand with a
more negative y-coordinate). In these front projections, the contact framing tb can
be computed combinatorially in terms of the oriented crossings and cusps of the
diagram when the diagram is placed in a standard form where the pairs of 3-balls
giving the attaching regions of 1-handles are related by a reflection across a vertical
axis. Namely, tb of a Legendrian knot is the difference of the writhe of the knot
and half the number of cusps in the front projection. For a thorough introduction to
Legendrian knots, see [15].
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Fig. 4 The Legendrian Reidemeister moves, up to 180◦ rotation about each axis, where the
top, middle, and bottom moves are called Reidemeister I, Reidemeister II, and Reidemeister III,
respectively

The set of moves that relate Weinstein handlebody diagrams in Gompf standard
form for equivalent Weinstein domains includes Legendrian Reidemeister moves
(including how they interact with the 1-handles) listed in [19], see Figs. 4 and 5, as
well as handle slides, and handle pair cancellations and additions, shown in [7].
Given two k-handles, h1 and h2, a handle slide of h1 over h2 is given by isotoping
the attaching sphere of h1, and pushing it through the belt sphere of h2. We depict
a 1-handle slide (along with intermediate Reidemeister and Gompf moves) in Fig. 6
and a 2-handle slide in Fig. 7. A 1-handle h1 and a 2-handle h2 can be cancelled,
provided that the attaching sphere of h2 intersects the belt sphere of h1 transversely
in a single point. We call this a handle cancellation and the pair of handles a
cancelling pair. Likewise a cancelling pair can be added to a Weinstein handlebody
diagram, as depicted in Fig. 8. When multiple 2-handles intersect a single 1-handle,
the simplification in Fig. 9 can be performed to reduce the overall complexity of a
Weinstein diagram.

Before approaching our goal of presenting an algorithm to construct Weinstein–
Kirby diagrams for complements of smoothed toric divisors, we will start with
the unsmoothed case, where the complement has a Liouville completion, T ∗T 2.
The Legendrian handlebody we present, was originally found by Gompf [19]. It
follows from that article that this handlebody gives a Stein/Weinstein structure on
the smooth manifold D∗T 2 (which is the trivial bundle D2 × T 2). More generally,
Stein handlebody diagrams are given on the smooth manifoldsD∗$ for any surface
in [19]. In [2, Theorem 7.1], we show that the Weinstein structures induced on these
diagrams are Weinstein homotopic to the canonical co-tangent Weinstein structure
on D∗$.
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Fig. 5 Gompf’s three additional isotopic moves, up to 180◦ rotation about each axis. The top,
middle, and bottom moves are called Gompf move 4, Gompf move 5, and Gompf move 6,
respectively

(1) (2)

(3)

(4) (5)

Fig. 6 An example of a 1-handle slide on T ∗T 2 consisting of the following sequence of isotopies:
(1) Reidemeister 2, (2) Gompf move 4, (3) Gompf move 5, (4) Gompf move 4, (5) Reidemeister 2

Fig. 7 An example of a
2-handle slide of the black
unknot over the red unknot

Fig. 8 An example of a
1-handle cancelling with a
2-handle

For T ∗T 2 specifically, it is known that there is a unique Weinstein fillable contact
structure on the boundary T 3 and one can then deduce that the Gompf handlebody
agrees with the canonical symplectic structure by Wendl’s result that S∗T 2 has
a unique Stein/Weinstein filling up to deformation [25]. To see that the diagram
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Fig. 9 An example of handle slides and cancellations when multiple 2-handles pass through a 1-
handle. Red and blue 2-handles are slid over the central green 2-handle. The green 2-handle is then
cancelled with the 1-handle

in Fig. 11 represents D∗T 2 ∼= D2 × T 2 smoothly, we can start with a handle
decomposition for T 2 with one 0-handle, two 1-handles and a single 2-handle.
Thickening this diagram to a 4-dimensional handlebody yields a disk bundle over
T 2 with Euler number e, agreeing with the framing coefficient of the 2-handle
attachment. One then needs to put the diagram into Gompf standard form as seen in
Fig. 10 by sliding the uppermost attaching ball below the attaching ball on the right
so that both 1-handles are related by a reflection across the same vertical axis. Then
we must realize the knot as a Legendrian knot by replacing vertical tangencies by
cusps and making sure the crossings always have the over-strand corresponding to
the more negative slope. The most obvious way to do this yields a Legendrian knot
whose Thurston-Bennequin framing is 0 (see the diagram on the right of Fig. 10), so
this would correspond to aD2 bundle over T 2 with Euler number −1. By wrapping
one strand around the lower left attaching ball as in Fig. 11, we obtain a smoothly
isotopic picture where the new Legendrian has tb = 1, so the Euler number is
1 − 1 = 0 as needed for D∗T 2. Since this is one Weinstein filling of S∗T 2, and
we know that such fillings are unique up to deformation, it must agree with the
canonical co-tangent symplectic structure on D∗T 2.
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Fig. 10 Diagram depicting how to move the usual picture of T ∗T 2 into standard form after
inserting the necessary Legendrian data, i.e. replacing vertical tangencies by cusps

Fig. 11 Stein structure on
D2 bundle over T 2 with
framing coefficient
e(T ∗T 2) ≤ 0

3 The Local Model for Our Handle Attachment

In this section we study the local model for the smoothing of a normal crossing
singularity of a symplectic divisor in dimension 4 and describe the local handle
attachment information (core and co-core) for the 2-handle attachment needed to
describe the complement of the smoothing of a node. Here we give the intuitive
picture behind the following theorem.

Theorem 3 (Theorem 4.1 [2]) Let (M,ω) be a toric 4-manifold corresponding
to Delzant polytope  which is {V1, . . . , Vn}-centered. Let D denote the divisor
obtained by smoothing the toric divisor at the nodes V1, . . . , Vn. Then there exist
arbitrarily small neighborhoods N of D such that M \ N admits the structure of a
Weinstein domain.

Furthermore, M \ N is Weinstein homotopic to the Weinstein domain obtained
by attaching Weinstein 2-handles to the unit disk cotangent bundle of the torus
D∗T 2, along the Legendrian co-normal lifts of co-oriented curves of slope
s(V1), . . . , s(Vn). Here s(Vi) is equal to the difference of the inward normal vectors
of the edges adjacent to Vi in  .

A local model in a 4-dimensional manifold M for the normal crossing inter-
section of two symplectic divisors can be given by a Darboux chart (C2, ωstd )

at the intersection point, where the two divisors are mapped to the two axes
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$1 = {
(z1, z2) ∈ C

2 | z2 = 0
}

and $2 = {
(z1, z2) ∈ C

2 | z1 = 0
}
. Smoothing this

normal crossing means that locally one substitutes the union of these divisors by the
smooth surface

$ =
{
(z1, z2) ∈ C

2 | z1 · z2 = ε2
}

for some ε > 0. Topologically, the complement of the smoothed surface differs
from the complement of the normal crossing divisors by one 2-handle attachment
for each smoothed normal crossing intersection. Under the centered hypothesis
(Definition 1), Theorem 3 says that when considering the symplectic and Liouville
structures, the difference between the complements also corresponds to a collection
of Weinstein 2-handle attachments.

In order to encode this handle attachment in the Weinstein Kirby diagram, we
need to identify the corresponding Legendrian attaching sphere. We find natural
Lagrangian representatives of the co-core and core of the handle in the complement
of the smoothed divisor. From there, the attaching sphere is the boundary of the
core.

A co-core of a Weinstein 2-handle is characterized (uniquely up to Lagrangian
isotopy [14]) as a Lagrangian disk contained in the smooth 2-handle with unknotted
Legendrian boundary lying in the boundary of the handle (not the attaching
region). In our model, the boundary of the handle is in the boundary of the small
neighborhood of the smoothed hypersurface $. One can consider, for 0 < ε′ < ε,
the disk D1 defined as the image of the map

φ : [0, 1] × [0, 2π ] → C
2

(r, θ) �→
(
rε′eiθ
rε′e−iθ

)

The size of ε′ is determined by the size of the neighborhood of the smoothed divisor
which is deleted. As ε′ → ε, the open disk of radius ε provides the analog of the
co-core in the non-compact complement of the divisor itself.

This disk is Lagrangian as for r = 0, the derivative of φ

d(r,θ)φ =
(
ε′eiθ irε′eiθ
ε′e−iθ −irε′e−iθ

)

is an isomorphism so that the tangent space to D1 at the point φ(r, θ) is spanned by
the vectors

u1 =
(
ε′eiθ
ε′e−iθ

)
and u2 =

(
irε′eiθ

−irε′e−iθ
)

and one can check that
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ωstd(u1, u2) = 4m(〈u1, u2〉) = 0

where 〈·, ·〉 is the standard Hermitian product in C
2 (equivalently one can check

that φ∗( i2 (dz1 ∧ dz̄1 + dz2 ∧ dz̄2)) = 0). The point for r = 0 corresponds to the
origin of C2. At this point, the two following curves c1 and c2 in D1 parametrized
for t ∈ (−1, 1) by:

c1(t) =
(
tε′
tε′

)
and c2(t) =

(
itε′

−itε′
)

give the two independent vectors in the tangent space at the origin of the disk D1:

u1 =
(
ε′
ε′
)

and u2 =
(
iε′

−iε′
)

One can note that we have again ωstd(u1, u2) = 0.
The boundary of this disk is the image by φ of {1} × [0, 2π ], that is, the circle

B =
{(

ε′eiθ
ε′e−iθ

)∣∣∣∣ θ ∈ [0, 2π ]
}
.

One can choose ε′ < ε such that the circle B lies on the boundary of the small
neighborhood of the smoothed $ (since z1z2 = ε′eiθ ε′e−iθ = ε′2 goes to ε2 if ε′
approaches ε). It limits to the origin when ε′ goes to 0, so that B is the belt sphere
of the handle and D1 is indeed its co-core.

The core is characterized (uniquely up to Lagrangian isotopy) as a Lagrangian
disk with unknotted boundary in the smooth 2-handle which intersects the co-core
transversally at one point and which avoids the boundary of the Weinstein manifold,
so in our model, it should avoid the smoothed $.

Let D2 be the disk defined as the image of the map

ψ : [0, 1] × [0, 2π ] → C
2

(r, θ) �→
(

rεeiθ

rεe−i(θ+π)
)

=
(
rεeiθ

−rεe−iθ
)

This disk is also Lagrangian as, similarly as before, the tangent space to D2 at
the point ψ(r, θ) for r = 0 is spanned by the vectors

u3 =
(

εeiθ

−εe−iθ
)

and u4 =
(
irεeiθ

irεe−iθ
)

and one can check that

ωstd(u3, u4) = 4m(〈u3, u4〉) = 0.
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Similarly, at the origin, the two following curves c3 and c4 in D2 parametrized
for t ∈ (−1, 1) by

c3(t) =
(
tε

−tε
)

and c4(t) =
(
itε

itε

)

give the two independent vectors in the tangent space at the origin of the disk D2:

u3 =
(
ε

−ε
)

and u4 =
(
iε

iε

)

Note again that ωstd(u3, u4) = 0. This disk does not intersect the smoothed $ as

z1z2 = rεeiθ (−rεe−iθ ) = −r2ε2 = ε2.

Moreover, D1 and D2 intersect at the origin and this intersection is transverse as
one can check that the family (u1, u2, u3, u4) spans C2 as a real vector space. This
shows that D2 is the core of the handle and the attaching sphere is the image by ψ
of {1} × [0, 2π ], that is,

A =
{(

εeiθ

εe−i(θ+π)
)∣∣∣∣ θ ∈ [0, 2π ]

}
.

Identifying these transverse Lagrangian disks with the core and co-core in
Weinstein’s model for a 4-dimensional 2-handle, allows us to place a Weinstein
structure (a Liouville vector field and corresponding Morse function) on this new
piece which lies in the complement of the regular neighborhood of the smoothing.
If the polytope is centered with respect to all the nodes we are smoothing, the
Weinstein structures on these pieces glue together consistently with a Weinstein
structure on the complement of the unsmoothed toric divisor (a Weinstein domain
which completes to T ∗T 2). It is shown in [2, Section 4.5] how these fit together to
give an explicit global Weinstein structure.

In the toric description of the toric manifolds and divisors we consider, the
Hamiltonian torus action in the local Darboux model corresponds to the torus
action on C

2 given in coordinates: (eiθ1 , eiθ2) ∗ (z1, z2) = (eiθ1z1, e
iθ2z2). In

particular, through the symplectomorphism between the complement of the normal
crossing divisor we consider and T ∗T 2, the orbit of a point corresponds to the
torus T 2 and the quotient space under the Hamiltonian action corresponds to a
cotangent fiber. The attaching sphere in the model corresponds in this symplectic
identification to a lift of a circle of slope (1,−1) in the base T 2 to the cotangent
bundle T ∗T 2 (lift corresponding to the point (ε2, ε2) in the quotient space (R>0)

2).
The standard model neighborhood corresponds to the standard cone R≥0 × R≥0,
and the corresponding attaching slope is (1,−1) = (1, 0) − (0, 1), the difference
of the inward normal vectors. In general, relating any node to the standard model
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via an SL(2,Z) transformation, the attaching sphere for the 2-handle corresponding
to the smoothing of a normal crossing singularity at a chosen vertex V will be the
co-normal lift of a circle of slope s(V ), where s(V ) is the difference of the inward
normal vectors of the edges adjacent to V , (see [2, Lemma 4.2]).

4 The Algorithm Through an Example

Here we will show how to obtain a Weinstein handle diagram for the complement of
a toric divisor with exactly one node smoothed. Note that for any Delzant polytope,
and any single vertex V , the polytope is vacuously {V }-centered. To fix a specific
example, we could start with the toric 4-manifold CP

2 whose toric divisor is a
collection of three CP

1’s intersecting at three points, and smooth this divisor at one
of the intersection points. More explicitly in homogeneous coordinates [z0 : z1 : z2]
on CP

2, the toric divisor is given by the union of the three lines L0 = {z0 = 0},
L1 = {z1 = 0} and L2 = {z2 = 0}. Let us smooth the intersection of L1 with L2 at
[1 : 0 : 0]. In the affine coordinate chart where z0 = 1, with coordinates (z1, z2), this
aligns exactly with our local model in Sect. 3. After smoothing, the lines L1 and L2
are joined to form a conic Q, which intersects the remaining line L0 at two points.
By Theorem 3, the complement of this smoothed divisor is obtained by attaching a
single 2-handle toD∗T 2 along the Legendrian lift of a curve in T 2 of slope (1,−1).

In order to translate Legendrian attaching circles in S∗T 2 described as the co-
normal lift of a curve in T 2 into Legendrian curves drawn in the Gompf diagram
(Fig. 11), we need to understand how these two pictures get identified. As mentioned
in Sect. 2.2, the Gompf handle diagram is obtained by starting with a smooth
handle decomposition of T 2 with a single 0-handle, two 1-handles, and one 2-
handle. This diagram is thickened by two dimensions to obtain T 2 × D2, and
then the attaching curve of the 2-handle is isotoped around until it agrees with a
Legendrian front diagram with induced framing tb − 1 = 0. On the other hand,
the co-normal lift construction is more compatible with the canonical (Morse-
Bott) Weinstein structure on D∗T 2 which has critical locus along the 0-section.
In [2, Theorem 7.1], we prove that these two structures are Weinstein homotopic
and identify the image of the Lagrangian torus giving the zero-section of D∗T 2

in the Gompf diagram. The handle decomposition on the 4-manifold induces the
corresponding handle decomposition on the Lagrangian torus by intersection. In
particular, we see a Legendrian (un)knot K in the boundary of the 4-dimensional
0-handle, which partially coincides with the attaching sphere of the 2-handle, and
partially corresponds with attaching arcs for the 1-handles of the Legendrian torus.
See Fig. 12.

Now consider the Legendrian co-normal lift to S∗T 2 of the circle in T 2 which is
the boundary of the 2-dimensional 0-handle, with the inward co-orientation. This is
a Legendrian push-off of K in ∂B4 = ∂D∗D2, because a small positive Reeb flow
applied to K = ∂D2 yields the co-normal lift of a concentric circle close to ∂D2.
We will perform an isotopy to the curves in our torus corresponding to attaching
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0-h

1

1

1 1

2

2

2

Fig. 12 Left: The Legendrian unknot K in the boundary of the 4-dimensional 0-handle of the
Gompf diagram, indicating the intersection of this boundary with the Lagrangian torus (0-section
of D∗T 2). The black portions coincide with segments of the attaching circle of the 2-handle, and
the blue portions give the attaching arcs of the 2-dimensional 1-handles of the torus. Right: The
corresponding decomposition of the Lagrangian torus

Fig. 13 The circle with (1, 0)-slope on T 2 with the dotted arrow indicating the co-orientation of
the curve, and an isotoped version which runs parallel to the boundary of the 0-handle of T 2 except
where it passes through a 1-handle

Fig. 14 The curve in J 1(S1) which is identified with the curve (1, 0) on T 2 as in Fig. 13

spheres of the additional 2-handles so that these curves agree with parallel copies of
such circles except where they enter the 1-handles. Circles which are further inward
will be pushed off more in the positive Reeb direction. Note that every Legendrian
circle has a standard neighborhood which is contactomorphic to a neighborhood of
the zero section in J 1(S1) with the contact form dz−ydx where x is the coordinate
on S1. We will translate the diagram on the torus to a front projection diagram of
J 1(S1), where we think of the S1 as the Legendrian boundary of the 0-handle of
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(a) (b) 

(c) 

Fig. 15 Transferring curves from T 2 to J 1(S1) and then to the Gompf diagram. (a) The
neighborhoodU of the co-normal lift of a curve γ ⊂ T 2. (b) Identification ofU with neighborhood
of the zero section of J 1(S1). (c) The front projection of U in the Gompf diagram for D∗T 2

the T 2 0-section. Since the Reeb direction is the positive ∂z direction in J 1(S1),
circles which are further inwards in the torus (pushed further by the Reeb flow) will
correspond to curves which are pushed upwards more in the J 1(S1) diagram. See
an example of this procedure in Figs. 13 and 14. Finally, once we have our diagram
in the 1-jet space, we can satellite the diagram onto the image of S1 in the Gompf
diagram. The images of the co-normal lifts of curves contained in a neighborhood
U of the curve γ that coincides with the attaching circle of the 2-handle and the
attaching arcs of the 2 dimensional 1 handles of the torus are illustrated in Fig. 15.
As indicated by the shading gradient, curves which lie further inward towards the
center of the square correspond to curves at greater z-height values in the jet-space.
In turn, curves at a higher z-height in the jet space will correspond to higher Reeb
pushoffs of the complicated looking Legendrian unknot of Fig. 15c.

Initially, let us apply this procedure in the simple example where we are attaching
a 2-handle along the co-normal lift of a circle in the torus with slope (1, 0). The
cotangent projection of this model is presented on the left in Fig. 13. Push the curve
(1, 0) to the upper side of the square, so it lies close to the boundary, and then cut the
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Fig. 16 The Legendrian
handle diagram of the
complement of the toric
divisor smoothed in one node.
That is, T ∗T 2 ∪'(1,0)

Fig. 17 Mapping the red, blue and purple curves from J 1(S1) to T ∗T 2. The relative heights of
these curves with respect to the black curve are preserved. The purple curve follows a Reeb push
off of the cusping curve in the 1-handle’s attaching region (see Fig. 12) while the red and blue
curves pass through the 1-handle

rectangle at the bottom left vertex to map to J 1(S1), obtaining Fig. 14. Satelliting
this onto the Legendrian unknot in Fig. 12, we obtain Fig. 16.

In general, when satelliting, we need to be somewhat careful with the behavior
of the curves near the 1-handle. If the curves pass above the attaching region of a
1-handle without entering the 1-handle, they will follow an upward Reeb push-off
of the cusps that appear inside the 1-handle attaching balls in Fig. 12. Note that
we will typically push these cusps out of the attaching regions of the 1-handles
by a Legendrian isotopy. If the curves pass through the 1-handle in the torus, they
will pass through the corresponding 1-handle in the 4-dimensional handlebody. See
Fig. 17 for the conventions in a more complicated example.

Although our initial explicit example asked us to attach a handle along a curve of
slope (1,−1), we can see that in fact the resulting Weinstein manifold is equivalent
to using the (1, 0) slope. Figure 18 shows the series of 1 handle slides, Reidemeister
and Gompf moves that take the Legendrian lift of the resulting diagram obtained by
attaching along a (1,−1) curve to the diagram corresponding to attaching along a
(1, 0) curve.
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Fig. 18 In columns from left to right, a series of Reidemeister and Gompf moves and 1-handle
slides that take the Legendrian lift of a (1,−1) curve to the Legendrian lift of a (1, 0) curve. (1)
Reidemeister III, (2) Reidemeister II and I, (3) Reidemeister II, (4) Reidemeister II, (5) slide green
1-handle over orange 1-handle, (6) Gompf move 5, (7) Gompf move 4, and (8) Reidemeister II

Proposition 4 For any toric 4-manifold, let $ be the result of smoothing the toric
divisor at a single node. Then the complement of a small regular neighborhood of
$ is a Weinstein domain which is Weinstein homotopic to the domain represented
by the handle diagram of Fig. 16.

Proof First note that for a single node, the centered hypothesis is automatically
satisfied. By Theorem 3 such a complement is a Weinstein domain obtained by
attaching a single 2-handle to D∗T 2 along the Legendrian curve given by a co-
oriented co-normal lift of a curve of slope (a, b) in the torus. We verify that the
resulting Weinstein domain does not depend on the choice of the slope up to
Weinstein homotopy. We can see that T ∗T 2 ∪ '(a,b) is Weinstein homotopic to
T ∗T 2 ∪'(1,0), by performing 1-handle slides on T ∗T 2 ∪'(a,b) similar to Fig. 18,
to take a '(a,b) curve to '(a,b±a) or to '(a±b,b). Using the Euclidean algorithm,
with an appropriate choice of 1-handle slides, one can start with T ∗T 2 ∪'(a,b), for
any pair a, b ∈ Z that are relatively prime, and end with T ∗T 2 ∪ '(1,0). That the
Weinstein domains are symplectomorphic can also be proved using toric arguments
(see [2, Proposition 5.5]). ��

The diagram where we attach along the (1, 0) curve is preferable to the one
where we attach along slope (1,−1) (or a more complicated (a, b) curve) because
it is easier to simplify. Starting with Fig. 16, we can perform Reidemeister moves,
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(1)

(2)

(3)

(4)))))

(5)

(6)

(7)

(8)

(9)

Fig. 19 A series of Reidemeister moves and handle slides simplifying the Weinstein handle
diagram of the complement of the toric divisor smoothed in one node. (1) Reidemeister III,
(2) Reidemeister II and I, (3) 2-handle slide, (4) Handle cancellation, (5) Reidemeister III, (6)
Reidemeister I and II, (7) Reidemeister III, I and II, (8) Gompf move 6, (9) Reidemeister II
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Fig. 20 The diagram of the complement of the toric divisor smoothed in one node after
simplifications, in particular after applying a single Reidemeister I to the last diagram in Fig. 19

Fig. 21 The Delzant
polytope of monotone
CP

2#3CP2

Gompf moves, handle cancellations and handle slides. We choose such a simplifying
sequence in Fig. 19 to obtain the diagram illustrated in Fig. 20.

5 A More Complicated Example: Smoothing a Toric Divisor
in CP

2#3CP2

Consider CP
2 blown up three times with the same size of the blow ups. The

corresponding Delzant polytope is a hexagon illustrated in Fig. 21. Observe that the
sizes of the blow-ups have been chosen precisely to make the polytope centered
with respect to all of its vertices. The inward normals of the six corners are:
(1, 0), (0,−1), (−1,−1), (−1, 0), (0, 1), (1, 1). By Theorem 3, if we smooth all
six singularities that map under the moment map to the vertices of the hexagon
polytope, the complement of the smoothed divisor is T ∗T 2 with 2-handles attached
along

'(1,0), '(0,−1), '(−1,−1), '(−1,0), '(0,1), '(1,1)

as shown in Fig. 22.
Figure 22 shows the curves % = (1, 0), (0,−1), (−1,−1), (−1, 0), (0, 1), (1, 1)

on T 2. As in the previous section, we isotope the curves giving a Legendrian isotopy



238 B. Acu et al.

Fig. 22 The curves (1, 0), (0,−1), (−1,−1), (−1, 0), (0, 1), (1, 1) on T 2 before and after iso-
toping them to agree with concentric circles co-oriented inward (except where they pass through
the 1-handles)

Fig. 23 The curves in J 1(S1) corresponding to the curves
(1, 0), (0,−1), (−1,−1), (−1, 0), (0, 1), (1, 1)

of their co-normal lifts, in order to have them run parallel to the boundary of the 0-
handle in T 2 except possibly at 1-handles. This allows us to identify them in J 1(S1).
We isotope each curve so that at the end, the co-orientation points inward. Since
there are multiple curves, we choose an isotopy which minimizes the number of
crossings.

Once these curves agree (except where they enter the 1-handles) with parallel
copies of suitable concentric circles which are positive Reeb push-offs of boundary
of the 0-handle of the T 2 0-section, we identify a neighborhood of boundary of the
square (containing all our isotoped curves) with a neighborhood of the zero-section
of J 1(S1). This identifies all our curves in T 2 with curves in J 1(S1) as in Fig. 23.
We then satellite the image of the curves in J 1(S1) onto the image of S1 in the
Gompf diagram of T ∗T 2, using the conventions described in the previous section
and illustrated in Figs. 15 and 17 to maintain the relative positions of the curves. The
result is Fig. 24.

Performing a sequence of handle slides and Legendrian isotopy yields a simpler
Weinstein handle diagram shown in Fig. 25. The Weinstein handle diagram allows
us to easily compute the homology of CP2#3CP2\ν($̃1), where $̃1 is the smoothed
toric divisor and ν($̃1) is the neighborhood of $̃1. The handle structure determines
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Fig. 24 A Legendrian handle diagram obtained by simplifying the Legendrian handlbody diagram
of the complement of the toric divisor of CP2#3CP2 smoothed in six nodes

Fig. 25 A Legendrian link obtained by simplifying the Legendrian handle diagram of the
complement of the toric divisor of CP2#3CP2 smoothed in six nodes

the cellular/Morse homology chain complex, which allows us to determine the
homology groups. A presentation for the fundamental group can also be computed
from the handle decomposition where the 1-handles correspond to generators and
2-handles provide relations.

In this example we obtain:

π1(CP
2#3CP2 \ ν($̃1);Z) = 0,

H0(CP
2#3CP2 \ ν($̃1);Z) = Z,

H1(CP
2#3CP2 \ ν($̃1);Z) = 0,
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H2(CP
2#3CP2 \ ν($̃1);Z) = Z

⊕5 with intersection form

⎡

⎢⎢⎢⎢⎢
⎣

0 −2 1 0 0
−2 −4 −1 1 1
1 −1 −2 1 0
0 1 1 −2 −1
0 1 0 −1 −3

⎤

⎥⎥⎥⎥⎥
⎦
,

Hi(CP
2#3CP2 \ ν($̃1);Z) = 0 for i = 3, 4.

Using the same toric diagram, instead of smoothing all six nodes, we can choose
to smooth only a subset of them. The symplectic topology of the corresponding
complement will differ (with fewer handles attached). We consider here an example
yielding a Weinstein manifold of interest. Let us smooth three alternating nodes in
CP

2#3CP2. The complement of the smoothed divisor given by T ∗T 2 with 2-handles
attached along'(1,0), '(−1,−1), '(0,1) is pictured in Fig. 26. Performing a sequence
of handle slides and Legendrian isotopy on Fig. 26 yields a simpler Weinstein handle
diagram shown in Fig. 27 consisting of a Legendrian (2,4) torus knot.

In this picture we can see two Lagrangian spheres in distinct homology classes
in the complement of this smoothed divisor. Again, the homology of CP2#3CP2 \
ν($̃2), where $̃2 is the smoothed toric divisor and ν($̃2) is the neighborhood of $̃2
can be computed from the Weinstein handle diagram. In particular,

Fig. 26 A Legendrian handle diagram obtained by simplifying the Legendrian handlbody diagram
of the complement of the toric divisor of CP2#3CP2 smoothed in three nodes

Fig. 27 A Legendrian
(2,4)-torus link obtained from
Fig. 26 by a sequence of
handleslides and Legendrian
isotopy
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π1(CP
2#3CP2 \ ν($̃2);Z) = 0,

H0(CP
2#3CP2 \ ν($̃2);Z) = Z,

H1(CP
2#3CP2 \ ν($̃2);Z) = 0,

H2(CP
2#3CP2 \ ν($̃2);Z) = Z ⊕ Z with intersection form

[−2 2
2 −2

]
,

Hi(CP
2#3CP2 \ ν($̃2);Z) = 0 for i = 3, 4.

The Weinstein diagram allows us to also compute the DGA of ' ∈ S3, A(')
(see [13] for a good survey on how to calculate the Legendrian DGA). In this case is
generated by a, b, x, y, z,w and marked points t1 and t2, as shown in Fig. 28. The
generators have gradings

|a| = |b| = 1, |x| = |y| = |z| = |w| = 0

with differential

∂x = ∂y = ∂z = ∂w = 0

∂a = xyzw + xw + xy + zw + 1 + t−1
1

∂ab = wzyx + yx + wz+ wx + 1 + t2.

The DGA of ' is an interesting invariant to consider because the Wrapped
Fukaya chain complex of CP2#3CP2 \ ν($̃2) is A∞-quasi isomorphic to the DGA
A(') [4, 9, 10]. Note that A(') has no negatively graded Reeb chords and therefore
the degree-0 Legendrian contact homology of A('), denoted by LCH0('), is
finitely generated. Furthermore, it is expected that LCH0(') is Morita equivalent
to a commutative ring R such that X̂ = Spec(R) where X̂ is the mirror of
CP

2#3CP2 \ ν($̃2). See [6, 11] for other examples of such a phenomenon.

Fig. 28 A diagram of the
complement of the toric
divisor of CP2#3CP2

smoothed in three nodes in
the Lagrangian projection
with labelled Reeb chords and
marked points generating the
Chekanov-Eliashberg DGA

x y z w

a

b

•

•

t1

t2
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Constructions of Lagrangian Cobordisms
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1 Introduction

A contact manifold is an odd-dimensional manifold Y 2n+1 together with a maxi-
mally non-integrable hyperplane distribution ξ . In a contact manifold, Legendrian
submanifolds play a central role. These are the maximal integral submanifolds of
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ξ : Λn such that TpΛ ⊂ ξ , for all p ∈ Λ. In general, Legendrian submanifolds
are plentiful and easy to construct. In this article we will restrict our attention
to the contact manifold IR3 with its standard contact structure ξ = kerα, where
α = dz − ydx. In this setting, every smooth knot or link has an infinite number of
non-equivalent Legendrian representatives. More background on Legendrian knots
is given in Sect. 2.

The even-dimensional siblings of contact manifolds are symplectic manifolds.
These are even-dimensional manifoldsM2n equipped with a closed, non-degenerate
2-form ω. In symplectic manifolds, Lagrangian submanifolds play a central role.
Lagrangian submanifolds are the maximal dimensional submanifolds where ω
vanishes on the tangent spaces: Ln such that ω|L = 0. When the symplectic
manifold is exact, ω = dλ, it is important to understand the more restrictive
subset of exact Lagrangians: these are submanifolds where λ|L is an exact 1-
form. Geometrically, L exact means that for any closed curve γ ⊂ L,

∫
γ
λ = 0.

In this article, we will restrict our attention to a symplectic manifold that is
symplectomorphic to IR4 with its standard symplectic structure ω0 = ∑

dxi ∧ dyi .
In contrast to Legendrians, Lagrangians are scarce. For example, in IR4 with its
standard symplectic structure, the torus is the only closed surface that will admit a
Lagrangian embedding into IR4. A famous theorem of Gromov [37] states that there
are no closed, exact Lagrangian submanifolds of IR4.

There has been a great deal of recent interest in a certain class of non-
closed, exact Lagrangian submanifolds, known as Lagrangian cobordisms. These
Lagrangian submanifolds live in the symplectization of a contact manifold and have
cylindrical ends over Legendrians. In this article, we will focus on exact, orientable
Lagrangian cobordisms from the Legendrian Λ− to the Legendrian Λ+ that live in
the symplectization of IR3; this symplectization is IR× IR3 equipped with the exact
symplectic form ω = d(etα), where t is the coordinate on IR and α = dz − ydx is
the standard contact form on IR3. See Fig. 5 for a schematic picture of a Lagrangian
cobordism and Definition 1 for a formal definition. Such Lagrangian cobordisms
were first introduced in Symplectic Field Theory (SFT) [25]: in relative SFT, we
get a category whose objects are Legendrians and whose morphisms are Lagrangian
cobordisms. Lagrangian fillings occur when Λ− = ∅ and are key objects in the
Fukaya category, which is an important invariant of symplectic four-manifolds. A
Lagrangian cap occurs when Λ+ = ∅.

A basic question tied to understanding the general existence and behavior of
Lagrangian submanifolds is to understand the existence of Lagrangian cobordisms:
Given two Legendrians Λ±, when does there exist a Lagrangian cobordism from
Λ− to Λ+? There are known to be a number of obstructions to this relation on
Legendrian submanifolds coming from both classical and non-classical invariants
of the Legendrians Λ±. Some of these obstructions are described in Sect. 2.3. To
complement the obstructions, there are some known constructions. For example,
it is well known [7, 23, 26] that there exists a Lagrangian cobordism between
Legendrians Λ± that differ by Legendrian isotopy. In addition, by Ekholm et al.
[23], Chantraine [8], it is known that there exists a Lagrangian cobordism from Λ−
toΛ+ ifΛ− can be obtained fromΛ+ by a “pinch” move or ifΛ+ = Λ−∪U , where
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(A) (B)

Λ+

Λ−

Λ+

Fig. 1 (a) The pinch move on Λ+ produces a Lagrangian saddle; (b)Λ+ obtained by introducing
an unknotted component to Λ− corresponds to the Lagrangian cobordism having a local min

U denotes a Legendrian unknot with maximal Thurston-Bennequin number of −1
that is contained in the complement of a ball containingΛ−. Topologically, between
these slices, the cobordism changes by a saddle move (1-handle) and the addition of
a local minimum (0-handle); see Fig. 1. It is important to notice that there is not an
elementary move corresponding to a local maximum (2-handle) move. By stacking
these individual cobordisms obtained from isotopy, saddles, and minimums, one
obtains what is commonly referred to as a decomposable Lagrangian cobordism.
Through these moves, it is easy to construct Lagrangian cobordisms and fillings;
see an example in Fig. 7.

Towards understanding the existence of Lagrangians, it is natural to ask: Does
there exist a Lagrangian cobordism from Λ− to Λ+ if and only if there exists a
decomposable Lagrangian cobordism from Λ− to Λ+? We know the answer to this
question is “No”: by studying the “movies” of the not necessarily Legendrian slices
of a Lagrangian, Sauvaget, Murphy, and Lin [42, 59] have shown that there exists
a genus two Lagrangian cap of the Legendrian unknot with Thurston-Bennequin
number equal to −3 and rotation number 0. The Lagrangian diagram moves used
by Lin [42] to construct a Lagrangian cap are described in Sect. 3.3. The necessity
of a local maximum when Λ+ = ∅ is not currently understood.

To formulate some precise motivating questions, we will use ribbon cobordism to
denote a 2n-dimensional manifold that can be built from k-handles with k ≤ n. This
idea of restricting the handle index is well known in symplectic topology: Eliashberg
[15, 51] has shown that any 2n-dimensional Stein manifold admits a handle
decomposition with handles of dimension at most n, and thus any 2n-dimensional
Stein cobordism between closed, (2n − 1)-dimensional contact manifolds must be
ribbon. Working in the relative setting with submanifolds and using the handle
decomposition from the “height” function given by the IR coordinate on IR × IR3,
we see that all decomposable 2-dimensional Lagrangian cobordisms between 1-
dimensional Legendrian submanifolds are ribbon cobordisms. We are led to the
following natural questions.
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Motivating Questions 1 Suppose Λ+ = ∅ and there exists a connected Lagrangian
cobordism L from Λ− to Λ+. Then:

1. Does there exist a decomposable Lagrangian cobordism from Λ− to Λ+?
2. Does there exist a ribbon Lagrangian cobordism from Λ− to Λ+?
3. Is L Lagrangian isotopic to a ribbon and/or decomposable Lagrangian cobor-

dism?

There are some results known about Motivating Question 3 for the special
case of the simplest Legendrian unknot. If U denotes the Legendrian unknot
with Thurston-Bennequin number −1, it is known that every (exact) Lagrangian
filling is orientable [55], and there is a unique (exact, orientable) Lagrangian
filling of U up to compactly supported Hamiltonian isotopy [27]. Moreover, any
Lagrangian cobordism from U to U is Lagrangian isotopic, via a compactly
supported Hamiltonian isotopy, to one in a countable collection given by the trace
of a Legendrian isotopy induced by a rotation [11].

Motivating Questions (1) and (2) are closely related and have deep ties to
important questions in topology. Observe that a “yes” answer to (1) implies a
“yes” to (2): if the existence of a Lagrangian cobordism implies the existence of a
decomposable Lagrangian cobordism, then we also know the existence of a ribbon
cobordism. Also note that when Λ+ is topologically a slice knot and Λ− = ∅,
(2) is a symplectic version of the topological Slice-Ribbon conjecture: is every
Lagrangian slice disk a ribbon disk? Cornwell, Ng, and Sivek conjecture that the
answer to Motivating Question (1) and (3) is “No”: using the theory of satellites, we
know that there is a Lagrangian concordance between Λ± shown in Fig. 2, and in
[17, Conjecture 3.3] it is conjectured that the concordance between the pair is not
decomposable.

Fig. 2 There is a Lagrangian
concordance between these
Legendrian knots that is
conjectured to be
non-decomposable. Here Λ−
is a Legendrian trefoil and
Λ+ is a Legendrian
Whitehead double of m(946)

Λ+

Λ−
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Very recently, Roberta Guadagni has discovered additional combinatorial moves
that can be used to construct a “movie,” meaning a sequence of slice pictures, of
a Lagrangian cobordism; Fig. 9 illustrates one of these tangle moves. With one of
Guadagni’s moves, it is possible to construct a movie of a Lagrangian cobordism
between the Legendrians pictured in Fig. 2; see Fig. 10. Guadagni’s moves are
“geometric”: they are developed through proofs similar to those used in the satellite
procedure, and thus the handle attachments involved in the cobordism are not
obvious. In particular, at this point it is not known if Guadagni’s tangle moves are
independent from the decomposable moves.

This survey article is organized as follows. In Sect. 2, we provide some back-
ground on Legendrians and Lagrangians, formally define Lagrangian cobordisms,
and summarize known obstructions to the existence of Lagrangian cobordisms. In
Sect. 3, we describe three “combinatorial” ways to construct Lagrangian cobor-
disms, and in Sect. 4, we describe more abstract “geometric” ways to construct
Lagrangian concordances and cobordisms through satellites. Then in Sect. 5, we
describe some potential pathways—through the theory of rulings, Heegaard-Floer
homology, and contact surgery—to potentially show the existence of Legendrians
that are Lagrangian cobordant but are not related by a decomposable Lagrangian
cobordism.

2 Background

2.1 Legendrian Knots and Links

In this section, we give a very brief introduction to Legendrian submanifolds in IR3

and their invariants. More details can be found, for example, in the survey paper
[28].

In IR3, the standard contact structure ξ is a 2-dimensional plane field given
by the kernel of the 1-form α = dz − ydx. In (IR3, ξ = kerα), a Legendrian
knot is a knot in IR3 that is tangent to ξ everywhere. A useful way to visualize a
Legendrian knot is to project it from IR3 to IR2. There are two useful projections:
the Lagrangian projection

πL : IR3 → IR2

(x, y, z) �→ (x, y),

as well as the front projection

πF : IR3 → IR2

(x, y, z) �→ (x, z).

An example of a Legendrian trefoil is shown in Fig. 3.



250 S. Blackwell et al.

x

z

x

y

Fig. 3 The front projection (left) and the Lagrangian projection (right) of a Legendrian trefoil

Fig. 4 Two ways to stabilize a Legendrian knot in the front projection

Legendrian submanifolds are equivalent if they can be connected by a 1-
parameter family of Legendrian submanifolds. In fact, for each topological knot
type there are infinitely many different Legendrian knots. Indeed, we can stabilize
a Legendrian knot (as shown in Fig. 4) to get another Legendrian knot of the same
topological knot type. We can see that these are not Legendrian equivalent using
Legendrian invariants.

Two useful classical invariants of Legendrian knots Λ are the Thurston-
Bennequin number tb(Λ) and the rotation number r(Λ). They can be computed
easily from front projections. Given the front projection of a Legendrian knot or
link Λ, the Thurston-Bennequin number is

tb(Λ) = writhe(πF (Λ))− #(right cusps),

where the writhe is the number of crossings counted with sign. Once the Legendrian
knot is equipped with an orientation, the rotation number is

r(Λ) = 1

2

(
#(down cusps)− #(up cusps)

)
.

One can use these two invariants to see that stabilizations change the Legendrian
knot type.

In future sections, we will not assume that our Legendrians Λ± come equipped
with an orientation. In our Motivating Questions described in Sect. 1, our
Lagrangian cobordisms are always orientable, so the existence of a Lagrangian
cobordism from Λ− to Λ+ will induce orientations on Λ±.

There are many powerful non-classical invariants that can be assigned to a
Legendrian knot. Although this will not be a focus of this paper, we will give a
brief description of some of these invariants. One important invariant stems from
normal rulings, defined independently by Chekanov and Pushkar [54] and Fuchs
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[30]. A count of normal rulings leads to ruling polynomials [54]; more details
will be discussed in Sect. 5.1. Through the closely related theory of generating
families, one can also associate invariant polynomials that record the dimensions of
generating family homology groups [32, 40, 58, 61]. In addition, through the theory
of pseudo-holomorphic curves, one can associate to a Legendrian Λ a differential
graded algebra (DGA), A(Λ) [13, 24]. An augmentation is a DGA map from A(Λ)
to a field. The count of augmentations is closely related to the count of ruling
polynomials [30, 47, 50]. Augmentations can be used to construct finite-dimensional
linearized contact homology groups [13], which are often known to be isomorphic
to the generating family homology groups [32]. In addition, there are invariants for
Legendrian knots coming from Heegaard Floer Homology [43, 52].

2.2 Lagrangian Cobordisms

Lagrangian cobordisms between Legendrian submanifolds always have “cylindrical
ends” over the Legendrians, but other conditions vary: sometimes it is specified that
the Lagrangian is exact, is embedded (or immersed), is orientable, or has a fixed
Maslov class. In this paper, a Lagrangian cobordism is always exact, embedded,
and orientable.

Definition 1 Let Λ± be two Legendrian knots or links in (IR3, ξ = kerα). A
Lagrangian cobordism L from Λ− to Λ+ is an embedded, orientable Lagrangian
surface in the symplectization (IR × IR3, d(etα)) such that for some N > 0,

1. L ∩ ([−N,N ] × IR3) is compact,
2. L ∩ ((N,∞)× IR3) = (N,∞)×Λ+,
3. L ∩ ((−∞,−N)× IR3) = (−∞,−N)×Λ−, and
4. there exists a function f : L→ IR and constant numbers c± such that etα|T L =
df , where f |(−∞,−N)×Λ− = c−, and f |(N,∞)×Λ+ = c+.

A Lagrangian filling of Λ+ is a Lagrangian cobordism with Λ− = ∅; a
Lagrangian cap of Λ− is a Lagrangian cobordism with Λ+ = ∅. A Lagrangian
concordance occurs when Λ± are knots and L has genus 0.

Figure 5 is a schematic representation of a Lagrangian cobordism.

Remark 1 In condition (4) of Definition 1, the fact that Λ± are Legendrian will
guarantee that f± will be locally constant. Using this, it follows that any genus zero
Lagrangian surface that is cylindrical over Legendrian knots will be exact. When
Λ± have multiple components, one needs to check that the constant does not vary:
this condition guarantees the exactness of the Lagrangian cobordism obtained by
“gluing” together Lagrangian cobordisms [10].
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Fig. 5 A Lagrangian
cobordism from Λ− to Λ+ t

N

Λ+

Λ−

L

−N

Remark 2 In contrast to topological cobordisms, Lagrangian cobordisms form a
non-symmetric relationship on Legendrian knots [9]. In this article we will always
denote the direction of increasing IRt coordinate by an arrow.

2.3 Obstructions to Lagrangian Cobordisms

The focus of this paper is on constructing Lagrangian cobordisms between two
given Legendrians Λ±. In the smooth world, any two knots are related by a smooth
cobordism, but in this more restrictive Lagrangian world, there are a number of
obstructions that are important to keep in mind when trying to explicitly construct
Lagrangian cobordisms. Here we mention a few that come from classical and non-
classical invariants of the Legendrians Λ±.

Obstructions
1. If there exists a Lagrangian cobordism of genus g between Λ− and Λ+, then

there must exist a smooth cobordism of genus g between the smooth knot types
of Λ− and Λ+. Thus any obstruction of a smooth genus g cobordism between
Λ− and Λ+ would obstruct a Lagrangian genus g cobordism.

2. Since there are no closed, exact Lagrangian surfaces [37], if there exists a
Lagrangian cap (respectively, filling) for Λ, then there cannot exist a Lagrangian
filling (respectively, cap) of Λ.

3. As shown in [7], if there exists a Lagrangian cobordism L from Λ− to Λ+, then

r(Λ−) = r(Λ+) and tb(Λ+)− tb(Λ−) = −χ(L).

In particular, if a Legendrian knot Λ admits a Lagrangian filling or cap, then
r(Λ) = 0. Also, combining this equality on tb and the slice-Bennequin
inequality [56], we see that, when Λ is a single component knot, if there exists a
Lagrangian cap L of Λ, then tb(Λ) ≤ −1 and g(L) ≥ 1.
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4. If there exists a Maslov 0 ([21]) Lagrangian cobordism Σ from Λ− to Λ+, and
Λ− has an augmentation, then

(a) #Aug(Λ+; IF2) ≥ #Aug(Λ−; IF2), where IF2 is the finite field of two
elements, and #Aug(Λ; IF2) denotes the number of augmentations of Λ to
IF2 up to DGA homotopy [6, 53], and

(b) the ruling polynomials RΛ±(z) (see Sect. 5.1 for definitions) satisfy

RΛ−(q
1/2 − q−1/2) ≤ q−χ(Σ)/2RΛ+(q

1/2 − q−1/2),

for any q that is a power of a prime number [53].

5. If Λ admits a Maslov 0 Lagrangian filling L, and if εL denotes the augmentation
ofΛ induced byL, thenLCHkεL(Λ)

∼= Hn−k(L), which is known as the Ekholm-
Seidel isomorphism [20], and whose proof was completed by Dimitroglou Rizell
in [19]. More generally, if there is a cobordism fromΛ− toΛ+, and ifΛ− admits
an augmentation, then [12] provides several long exact sequences relating the
homology of the cobordism and the Legendrian contact (co)homologies of its
Legendrian ends. A version of this isomorphism and these long exact sequences
using generating families are given in [58].

6. If Λ admits an augmentation, Λ does not admit a Lagrangian cap, as the
augmentation implies the non-acyclicity of the DGA A(Λ) [22, Theorem 5.5],
and from [18, Corollary 1.9] if a Legendrian admits a Lagrangian cap then its
DGA A(Λ) (with IF2 coefficients) is acyclic.

There are additional obstructions, obtained through Heegaard Floer Theory, that
can be used to obstruct Lagrangian concordances and cobordisms [1, 3, 35]. Some
of these will be discussed more in Sect. 5.3.

Remark 3 Observe that the Obstructions 4 and 6 assume that the bottom Λ− has
an augmentation, and stabilized knots will never have an augmentation. It would be
nice to have more obstructions whenΛ− is a stabilized knot. This might be possible
using the theory of “satellites” described in Sect. 4.1: it is possible for the satellite of
a stabilized Legendrian to admit an augmentation. See Sect. 4.3 for more discussions
in this direction.

3 Combinatorial Constructions of Lagrangian Cobordisms

A convenient way of visualizing topological cobordisms is through “movies”:
a sequence of pictures that represent slices of the Lagrangian. In this section,
we describe three known combinatorial ways to construct Lagrangian cobordisms
through such an approach.
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3.1 Decomposable Moves

It is well known that if Λ− and Λ+ are Legendrian isotopic, then there exists
a Lagrangian cobordism from Λ− to Λ+; see, for example, [7, 23, 26]. Isotopy,
together with two types of handle moves, form the basis for decomposable
Lagrangian cobordisms.

Theorem 1 ([5, 23]) If the front diagrams of two Legendrian links Λ− and Λ+ are
related by any of the following moves, there is a Lagrangian cobordism L from Λ−
to Λ+.

Isotopy There is a Legendrian isotopy between Λ− and Λ+; see Fig. 6a–c for
Reidemeister Moves I–III.

1-handle The front diagram ofΛ− can be obtained from the front diagram ofΛ+
by “pinching” two oppositely-oriented strands; see Fig. 6d. We will also refer to
this move as a “Pinch Move.”

0-handle The front diagram ofΛ− can be obtained from the front diagram ofΛ+
by deleting a component ofΛ+ that is the front diagram of a standard Legendrian
unknot U with maximal Thurston-Bennequin number of −1 as long as there exist
disjoint disks DU,DUc ⊂ IR2

xz containing the xz-projection of U and the other
components of Λ+, respectively. Such an “unknot filling” can be seen in Fig. 6e.

Definition 2 A Lagrangian cobordism L from Λ− to Λ+ is called elementary if it
arises from isotopy, a single 0-handle, or a single 1-handle. A Lagrangian cobordism
L from Λ− to Λ+ is decomposable if it is obtained by stacking elementary
Lagrangian cobordisms.

(a) (b) (c) (d) (e)

∅

Fig. 6 Decomposable moves in terms of front projections. Arrows indicate the direction of
increasing IRt coordinate in the symplectization. The move in (b) only shows the Reidemeister
II move in the left cusp case, but there is an analogous move for the right cusp case
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Observe that there is not an elementary move corresponding to a 2-handle
(maximum). Also note that the elementary 1-handle (saddle) move can be used to
connect two components or to split one component into two.

Decomposable cobordisms are particularly convenient as they are easy to
describe in a combinatorial fashion, through a list of embedded Legendrian curves,

Λ− = Λ0 → Λ1 → · · · → Λn = Λ+,

where the front projection of the LegendrianΛi+1 is related to that ofΛi by isotopy
or one of the 0-handle or 1-handle moves.

Example 1 One can construct a Lagrangian filling of a positive Legendrian trefoil
with maximal Thurston-Bennequin number using the series of moves shown in
Fig. 7: a 0-handle, followed by three Reidemeister I moves, followed by two 1-
handles (or pinch moves). This gives a genus 1 (orientable, exact) Lagrangian filling
of this Legendrian trefoil. Since we are assuming that Lagrangian fillings and caps
are always exact, this implies that this trefoil cannot admit a Lagrangian cap; see
Sect. 2.3 Obstruction 2.

Example 2 Using elementary moves, one can also construct a Lagrangian concor-
dance from the unknot with tb = −1 to a Legendrian representative of the knot
m(946), as shown on Fig. 8.

Fig. 7 A decomposable Lagrangian filling of a Legendrian trefoil

Fig. 8 A decomposable Lagrangian cobordism from a Legendrian unknot to a Legendrianm(946)
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3.2 Guadagni Moves

Very recently, Roberta Guadagni has discovered a new “tangle” move; see Fig. 9.
This is not a local move: there are some global requirements. In particular, this
move cannot be applied if all components of the tangle are contained in the same
component of Λ−: the component of Λ− containing the blue strand must be
different than the components containing the other strands of the tangle.

Example 3 With Guadagni’s tangle move, it is possible to construct a Lagrangian
cobordism between the Legendrians pictured in Fig. 2; see Fig. 10. However, at this
point it is not known if Guadagni’s tangle move is independent of the decomposable
moves.

Fig. 9 Under some global
conditions, there exists a
Lagrangian cobordism
between these tangles

Fig. 10 A movie, using a Guadagni move, of an (orientable, exact) Lagrangian cobordism from
the trefoil to the Whitehead double of m(946) in Fig. 2
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Fig. 11 The Lagrangian diagram moves. The labels in the R0 move represent the change of area
through the move, while other labels 0, ε, δ, η, a indicate the area of the corresponding regions;
here 0 represents a positive area that is smaller than either the area ε, the area δ or the area η

3.3 Lagrangian Diagram Moves

As shown in Sect. 3.1, decomposable cobordisms are constructed from 0-handles
and some 1-handles (saddles) but no 2-handles (caps). Based on the work of
Sauvaget [59], Lin [42] constructs a genus two cap of a twice stabilized unknot, and
thus gives the first explicit example of a non-decomposable Lagrangian cobordism.
The construction describes time-slices of a Lagrangian cobordism through a list of
moves on “decorated Lagrangian diagrams.”

A decorated Lagrangian diagram is a curve in the xy-plane with the compact
regions decorated by a positive number, which is the area of the region. Figure 11
shows some examples: in the illustration of the F move, U is a Lagrangian
projection of the Legendrian unknot with maximal Thurston-Bennequin number;
in the illustration of the C move, Um is a decorated Lagrangian diagram, but is not
the Lagrangian projection of a Legendrian knot.

Theorem 2 ([42]) Let Λ± be Legendrian links and D± be their corresponding
decorated Lagrangian projections. If one can create a sequence of decorated
Lagrangian diagrams
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D− = D0 → D1 → · · · → Dn = D+

such that each diagram Di+1 can be obtained from Di by the following combina-
torial moves, then there is a compact Lagrangian submanifold in IR × IR3 with
boundary Λ− ∪Λ+, where Λ± ⊂ {±N} × IR3, for some N > 0.

1. R0: a planar isotopy that changes areas by the amount ±A, for A > 0. This
operation can only be done in the direction specified.

2. R2: a Reidemeister II move. One can either introduce or eliminate two crossings
assuming some area conditions are satisfied: it is possible to introduce or remove
two crossings as long as the area of the inner region, denoted by 0 in the diagram,
is less than either the area δ or the area η. One can also do this move with the
lower strand passing under the upper strand.

3. R3: a Reidemeister III move. One can perform a Reidemeister III move as long
as the area of the inner region, denoted by 0 in the diagram, is less than either
the area ε, the area δ or the area η. The fixed center crossing can be reversed.
Additionally, the moving strand can also occur as an overstrand.

4. H+: a handle attachment that creates a positive crossing in the diagram.
5. H−: a handle attachment that removes a negative crossing in the diagram.
6. F : a filling that creates the diagram U , which is the Lagrangian projection of an

unknot with maximal Thurston-Bennequin number.
7. C: a cap that eliminates the diagram Um, which is the topological mirror of U .

These moves are called Lagrangian diagram moves. Moreover, the constructed
Lagrangian will be exact if, in addition,

(E1) Each move results in a diagram with all components having a total signed
area equal to 0. The signed area of a region is determined by the sum of the
signed heights of its Reeb chords.

(E2) If a handle attachment merges two components of a link, the components being
merged must be vertically split, meaning that the images of the xy-projections
of these components are contained in disjoint disks.

Remark 4

1. For condition (E2), the H− can never be applied to merge components, and H+
can only be applied if the components being merged are vertically split.

2. A main distinction between the Lagrangian diagram moves and the decom-
posable moves is that each diagram Di in the middle of the sequence is not
necessarily the Lagrangian projection of a Legendrian link. They are just the xy-
projection of some time ti-slice of the cobordism. Thus the Lagrangian diagram
moves are more flexible than the decomposable moves. However, keeping track
of the areas is an added complication.

Example 4 Figure 12 illustrates the construction of a Lagrangian torus using the
Lagrangian diagram moves. This torus fails to be exact since condition (E1) is
violated. Figure 13 gives another construction of a Lagrangian torus. This time,
all components have signed area 0, but now condition (E2) is violated.
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Fig. 12 A (non-exact)
Lagrangian torus constructed
using the Lagrangian diagram
moves. The middle figure
violates (E1)
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Fig. 13 A (non-exact) Lagrangian torus constructed using the Lagrangian diagram moves. These
figures satisfy (E1) but (E2) is violated in the step labelled by a red arrow

4 Geometrical Constructions of Lagrangian Cobordisms

An important general way to know of the existence of Lagrangian cobordisms
without using the constructions described in Sect. 3 comes through the satellite
operation. In this section, we review the satellite construction and then state results
from [17, 38] about the existence of a Lagrangian concordance/cobordism from
Λ− toΛ+ implying the existence of a Lagrangian concordance/cobordism between
corresponding satellites.

4.1 The Legendrian Satellite Construction

We begin by reviewing the construction of a Legendrian satellite; see also [48,
Appendix] and [17, Sect. 2.2]. To construct a Legendrian satellite, begin by
identifying the open solid torus S1 × IR2 with the 1-jet space of the circle, J 1S1 ∼=
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Fig. 14 An example of a
Legendrian satellite

Λ

P

S(Λ, P)

T ∗S1 × IR, equipped with the contact form α = dz − ydx, where x, y are the
coordinates in T ∗S1 and z is the coordinate in IR. Similar to the situation for
IR3 ∼= J 1IR, we can recover a Legendrian knot in J 1S1 from its front projection
in S1

x × IRz, which is typically drawn by representing S1 as an interval with its
endpoints identified.

Given an oriented Legendrian companion knot Λ ⊂ IR3 and a oriented
Legendrian pattern knot P ⊂ J 1(S1), the Legendrian neighborhood theorem says
that Λ has a standard neighborhood N(Λ) such that there is a contactomorphism
κ : J 1(S1) → N(Λ). The Legendrian satellite, S(Λ,P ), is then the image κ(P ).
The front projection of S(Λ,P ) is as shown in Fig. 14. In particular, suppose that
the front projection of the pattern P intersects the vertical line at the boundary of
the S1 interval n times. We then make an n-copy of Λ by using n-disjoint copies of
Λ that all differ by small translations in the z-direction. Take a point on the front
projection of Λ that is oriented from left to right, cut the front of the n-copy open
along the n-copy at that point, and insert the front diagram of P . The orientation on
the satellite S(Λ,P ) is induced by the orientation on P .

Remark 5 The satellite operation often makes Legendrian knots “nicer”; for exam-
ple, in Fig. 14, the companion Λ is stabilized and does not admit an augmentation
or a normal ruling. However, the satellite S(Λ,P ) does admit a normal ruling and
an augmentation.

4.2 Lagrangian Cobordisms for Satellites

In [17, Theorem 2.4], Cornwell, Ng, and Sivek, show that Lagrangian concordance
is preserved by the Legendrian satellite operation.

Theorem 3 ([17]) Suppose P ⊂ J 1S1 is a Legendrian knot. If there exists a
Lagrangian concordance L from a Legendrian knot Λ− to a Legendrian knot Λ+,
then there exists a Lagrangian concordance LP from S(Λ−, P ) to S(Λ+, P ).

In particular, as shown in Fig. 8, there is a Lagrangian concordance from Λ−,
which is the Legendrian unknot with tb = −1, to Λ+, which is the Legendrian
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Fig. 15 For an n-stranded
tangle, repeating this basic
tangle n times produces a full
twist

.

.

.

m(946) with maximal tb = −1. Using the Legendrian “clasp” tangle P as shown
in Fig. 14—which produces the Legendrian Whitehead double—we can conclude
that there exists a Lagrangian concordance from S(Λ−, P ) to S(Λ+, P ). In fact,
S(Λ−, P ) is the positive trefoil with tb = 1. Thus Theorem 3 implies that there
exists a Lagrangian concordance between the Legendrian knots in Fig. 2.

Conjecture 1 ([17, Conjecture 3.3]) The Lagrangian concordance from S(Λ−, P )
to S(Λ+, P ) built through the satellite construction is not decomposable.

Theorem 3 has been extended to higher genus cobordisms by Guadagni, Sabloff,
and Yacavone in [38]. To state their theorem, we need to first introduce the notion
of “twisting” and then closing a tangle T ⊂ J 1[0, 1]. Given a Legendrian tangle
T ⊂ J 1[0, 1], ΔT is the tangle obtained by adding the tangle T and the full twist
tangle Δ, which is illustrated in Fig. 15; the tangle ΔtT can be thought of as T
followed by t full twists. Given a Legendrian tangle T ⊂ J 1[0, 1], T ⊂ J 1(S1) will
denote the associated closure to a Legendrian link.

Theorem 4 ([38]) Suppose T ⊂ J 1[0, 1] is a Legendrian tangle whose closure
T ⊂ J 1(S1) is a Legendrian knot. If there exists a Lagrangian cobordism L from
Λ− to Λ+ of genus g(L), then there exists a Lagrangian cobordism LT from
S(Λ−,Δ2g(L)+1T ) to S(Λ+,ΔT ).

In fact, Theorem 4 can be generalized to use the closure of different tangles T−
and T+ that are Lagrangian cobordant; for details, see [38].

Remark 6 It is natural to wonder if, along the lines of Conjecture 1, this higher
genus satellite procedure can create additional candidates for Legendrians that can
be connected by a Lagrangian cobordism but not by a decomposable Lagrangian
cobordism. In [38, Theorem 1.5], it is shown that if the cobordism L fromΛ− toΛ+
is decomposable and the handles in the decomposition satisfy conditions known as
“Property A”, then the corresponding satellites S(Λ−,Δ2g(L)+1P) and S(Λ+,ΔP )
will also be connected by a decomposable Lagrangian cobordism. In particular, if
there exists a decomposable cobordism L that does not satisfy Property A and is
not isotopic to a cobordism that satisfies Property A, then the satellite construction
would lead to a higher genus candidate that generalizes Conjecture 1.
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4.3 Obstructions to Cobordisms Through Satellites

In Sect. 2.3, some known obstructions to the existence of a Lagrangian cobordism
were mentioned. As mentioned in Remark 3, a number of these obstructions require
Λ− to admit an augmentation, and thus in particular Λ− must be non-stabilized.
However, as mentioned in Remark 5, it is possible for the satellite of a Legendrian
Λ to admit an augmentation even ifΛ does not. So the contrapositive of Theorem 3
provides a potential strategy for further obstructions to the existence of a Lagrangian
cobordism when Λ− does not admit an augmentation. For example, motivated
by Obstruction 4 in Sect. 2.3, one can ask: Can a count of augmentations give
an obstruction to the existence of a Lagrangian concordance from S(Λ−, P ) to
S(Λ+, P ) and thereby obstruct the existence of a Lagrangian concordance fromΛ−
toΛ+? In fact, this augmentation count will not likely provide a further obstruction:
a simple computation shows that when Λ is stabilized enough, the number of
augmentations of S(Λ,P ) only depends on the Legendrian pattern P . If trying to
pursue this path to obtain further obstructions to Lagrangian cobordisms, it is useful
to keep in mind the following result of Ng that shows the DGA of the satellite of a
Legendrian Λ might only remember the underlying knot type of Λ.

Theorem 5 ([49]) Suppose Λ1 and Λ2 are stabilized Legendrian knots that are of
the same topological knot type and have the same Thurston-Bennequin and rotation
numbers. For a Legendrian pattern P whose front intersects a vertical line by two
points, the DGAs of S(Λ1, P ) and S(Λ2, P ) are equivalent.

5 Candidates for Non-decomposable Lagrangian
Cobordisms

Now that we have developed some ways to construct a Lagrangian cobordism
through combinatorial moves and satellites, we state some theorems that show if
a Lagrangian cobordism does exist, then it cannot be decomposable: this addresses
Motivating Question 1. While we discuss these theorems, it is useful to keep in mind
the known obstructions to Lagrangian cobordisms that were mentioned in Sect. 2.3.

5.1 Candidates for Non-decomposable Lagrangian
Cobordisms from Normal Rulings

One simple way to show that two Legendrians Λ± cannot be connected by
a decomposable Lagrangian cobordism comes from a count of “combinatorial”
rulings. Roughly, a normal ruling of a Legendrian Λ is a “decomposition” of the
front projection into pairs of paths from left cusps to right cusps such that
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Fig. 16 Normal rulings near a switch

Fig. 17 All normal rulings of this max tb positive Legendrian trefoil

1. each pair of paths starts from a common left cusp and ends at a common
right cusp, has no further intersections, and bounds a topological disk whose
boundary is smooth everywhere other than at the cusps and certain crossings
called switches, and

2. near a switch, the pair of paths must be arranged as in one of the diagrams in
Fig. 16; observe that near the switch, vertical slices of the associated disks are
either disjoint or the slices of one are contained in the slices of the other.

Formal definitions of normal rulings can be found in, for example, [54] and [30].
As an illustration, all normal rulings of a particular Legendrian trefoil are shown

in Fig. 17.
For each normal ruling R, let s(R) and d(R) be the number of switches

and number of disks, respectively. By Pushkar and Chekanov [54], the ruling
polynomial

RΛ(z) =
∑

R

zs(R)−d(R),

where the sum is over all the normal rulings, is an invariant of Λ under Legendrian
isotopy. Normal rulings and augmentations are closely related even though they are
defined in very different ways [30, 31, 50, 57].

We have the following obstruction to decomposable cobordisms in terms of
normal rulings.

Theorem 6 IfΛ− hasm normal rulings andΛ+ has n normal rulings withm > n,
then there is no decomposable Lagrangian cobordism from Λ− to Λ+.

Proof One can compare the number of normal rulings of the two ends for the
decomposable moves, as shown in Fig. 18. Thus any normal ruling of Λ− induces a
normal ruling ofΛ+. Different normal rulings ofΛ− induce different normal rulings
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Fig. 18 Comparison of
normal rulings for
decomposable moves

of Λ+. Therefore the number of normal rulings of Λ+ is bigger than or equal to the
number of normal rulings of Λ−. ��

Here is a strategy to show the existence of Legendrians that can be connected by
a Lagrangian cobordism but not by one that is decomposable.

Strategy 1 Choose Legendrians Λ± such that:

1. Λ+ has fewer graded normal rulings than Λ−, and
2. it is possible to construct, via a combination of the combinatorial constructions

from Sect. 3 or the satellite construction from Sect. 4, a Lagrangian cobordism
from Λ− to Λ+.

Remark 7 If Λ± admit normal rulings, they will admit augmentations [31, 57].
From Sect. 2.3 Obstruction 4(b), we then know that if there is a Lagrangian
cobordism from Λ− to Λ+, their ruling polynomials satisfy

RΛ−(q
1/2 − q−1/2) ≤ q−χ(Σ)/2RΛ+(q

1/2 − q−1/2),

for any q that is a power of a prime number. Satisfying condition (1) in Strategy 1
means that the polynomial on the right side of the inequality has fewer terms than
the polynomial on the left side of the inequality. If following this approach, it may
be helpful to start by first finding a pair of positive integer coefficient polynomials
that satisfy this inequality and condition (1) at the same time. One can start with
checking the ruling polynomials of small crossing number Legendrian knots in [14].

5.2 Candidates for Non-decomposable Lagrangian
Concordances from Topology

Observe that any decomposable Lagrangian concordance will be a smooth ribbon
concordance. Thus it is potentially possible to use known obstructions to ribbon
concordances to find examples of smooth knots whose Legendrian representatives
cannot be connected by a decomposable Lagrangian concordance: constructing
a Lagrangian concordance between very stabilized Legendrian representatives of
these knot types, via the combinatorial techniques of Sect. 3 or geometric techniques
of Sect. 4, will give an example of an exact Lagrangian concordance between knots
that cannot be connected by a decomposable Lagrangian concordance.
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For example, it is known [36, 41, 62] that the only knot that admits a ribbon
concordance to the unknot is the unknot itself. This has as a corollary the following
obstruction to a decomposable Lagrangian concordance.

Theorem 7 ([17, Theorem 3.2]) If Λ− is topologically non-trivial and Λ+ is
topologically an unknot, then there is no decomposable Lagrangian concordance
from Λ− to Λ+.

Example 5 To illustrate this theorem, here is a possible low crossing number
Legendrian knot to examine as Λ−. Consider the topological knot 61 which is
slice and ribbon. Its maximum tb Legendrian representative Λ61 (see Fig. 19) has
tb = −5 and r = 0. The DGA of this Legendrian A(Λ61) admits an augmentation,
and thusΛ61 does not admit a Lagrangian cap; see Obstruction 6. in Sect. 2.3. Since
we are trying to construct a Legendrian Λ− that could be Lagrangian concordant
to a stabilized unknot, which might have a Lagrangian cap, we will add some
stabilizations that will prevent augmentations and thereby allow the possibility of
a Lagrangian cap. If we now add a positive and a negative stabilization to Λ61 , we
get a knot Λ±

61
with tb = −7 and r = 0, which has no augmentation and is still

topologically the knot 61. If, by a sequence of moves in Sect. 3, one can construct
a concordance from Λ±

61
to the tb = −7 stabilized unknot, then by Theorem 7

this Lagrangian concordance will not be decomposable; see Fig. 20. In fact, one can
stabilize Λ61 as many times as we wish resulting in tb(Λ−) = t and r(Λ−) = r

and try, using the combinatorial constructions of Sect. 3, to construct a Lagrangian
concordance to Λ+, where Λ+ is a Legendrian unknot with tb(Λ+) = t and
r(Λ+) = r . If possible, such a construction would prove the existence of a non-
decomposable Lagrangian concordance.

Fig. 19 Front diagram of
Λ61

Fig. 20 Any Lagrangian concordance from the doubly stabilized Λ61 to the tb = −7, r = 0
Legendrian unknot would necessarily be non-decomposable
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There are additional results from topology that give obstructions to the existence
of ribbon concordances. For example, as shown by Gilmer [34] and generalized
by Friedl and Powell [29], if K− is ribbon concordant to K+, then the Alexander
polynomial of K− divides the Alexander polynomial of K+. We can invoke
these results in a strategy to show the existence of non-decomposable Lagrangian
concordances.

Strategy 2

1. Use results from smooth topology to find examples of smooth knots K± such that
K− is not ribbon concordant to K+.

2. For any pair of Legendrian representatives Λ± of the knot type K±, even highly
stabilized, use a combination of the combinatorial moves described in Sect. 3 to
construct a Lagrangian concordance from Λ− to Λ+.

The example with the knot 61 given above is a concrete example to try to apply this
strategy with K− = 61 and K+ being an unknot. A possible example when K+ is
non-trivial is the following.

Example 6 Let K− be the connect sum of the right- and left-handed trefoils, K− =
Tr#Tl , and let K+ be the connect sum of the figure-8 knot, F8, with itself, K+ =
F8#F8. These knots are concordant but there is no ribbon concordance from K−
to K+, as first shown by Gordon [36]. Choose Legendrian representatives Λ± of
K± such that tb(Λ−) = tb(Λ+) and r(Λ−) = r(Λ+); note that Λ± can be very
stabilized. If we can construct a Lagrangian concordance from Λ− to Λ+, via the
combinatorial moves of Sect. 3, then we will have shown the existence of a pair of
Legendrians that are (exactly, orientablility) Lagrangian concordant but cannot be
connected by a decomposable Lagrangian concordance.

Remark 8 Some known obstructions to ribbon concordance are, in fact, obstruc-
tions to generalizations of ribbon concordance, namely strong homotopy ribbon
concordance and homotopy ribbon concordance. A strong homotopy ribbon
concordance is one whose complement is ribbon, i.e., can be built with only 1-
handles and 2-handles. A homotopy ribbon concordance from K− to K+ is a
concordance where the induced map on π1 of the complement of K− (resp. K+)
injects (resp. surjects) into π1 of the complement of the concordance. Gordon [36]
showed that

ribbon concordant )⇒ strong homotopy ribbon concordant

)⇒ homotopy ribbon concordant.

There have been a number of recent results obstructing (homotopy or strong
homotopy) ribbon concordances from Heegaard-Floer and Khovanov homology
[39, 41, 45, 62]; these results play an important role in Strategy 2.
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5.3 Candidates for Non-decomposable Lagrangian
Cobordisms from GRID Invariants

Some candidates for non-decomposable Lagrangian cobordisms of higher genus
come from knot Floer homology. Using the grid formulation of knot Floer homology
[52], Ozsváth, Szabó, and Thurston defined Legendrian invariants of a Legendrian
link Λ ⊂ IR3, called GRID invariants, which are elements in the hat flavor of knot
Floer homology of Λ ⊂ −S3:

λ̂+(Λ), λ̂−(Λ) ∈ ĤFK(−S3,Λ).

For more background, see [44, 52].
Baldwin et al. [1] have shown that these GRID invariants can be used to obstruct

the existence of decomposable Lagrangian cobordisms.

Theorem 8 ([1, Theorem 1.2] ) Suppose thatΛ± are Legendrian links in IR3 such
that either

1. λ̂+(Λ+) = 0 and λ̂+(Λ−) = 0, or
2. λ̂−(Λ+) = 0 and λ̂−(Λ−) = 0.

Then there is no decomposable Lagrangian cobordism from Λ− to Λ+.

Remark 9 By Baldwin et al. [4], in the standard contact manifold IR3, the GRID
invariants agree with the LOSS invariant [43]. The LOSS invariant is functorial
on Lagrangian concordances by Baldwin and Sivek [2, 3]. Thus Theorem 8 would
also obstruct the existence of general Lagrangian concordances and not only the
decomposable ones. To find non-decomposable cobordisms using obstructions from
[1], we should focus on non-zero genus cobordisms.

Using the facts that the GRID invariants are non-zero for the tb = −1 Legendrian
unknot and that λ̂+(Λ+) (resp. λ̂−(Λ+)) vanish for positively (negatively) stabilized
Legendrian links, Theorem 8 gives the following corollary.

Corollary 1 ([1, Corollaries 1.3, 1.4])

1. If Λ ⊂ IR3 is a Legendrian link such that λ̂+(Λ) = 0 or λ̂−(Λ) = 0, then there
is no decomposable Lagrangian filling of Λ.

2. Suppose Λ± are Legendrian links such that either

(a) λ̂+(Λ−) = 0 and Λ+ is the positive stabilization of a Legendrian link, or
(b) λ̂−(Λ−) = 0 and Λ+ is the negative stabilization of a Legendrian link.

Then there is no decomposable Lagrangian cobordism from Λ− to Λ+.

This provides another strategy to show the existence of Legendrians Λ± that
are Lagrangian conbordant but cannot be connected by a decomposable Lagrangian
cobordism.



268 S. Blackwell et al.

Strategy 3

1. Find Legendrians Λ± satisfying the GRID invariants conditions of Corollary 1
and Theorem 8 such that there are no known obstructions, as described in
Sect. 2.3, to the existence of a Lagrangian cobordism from Λ− to Λ+.

2. Use a combination of the combinatorial moves described in Sect. 3 to construct
a Lagrangian cobordism from Λ− to Λ+.

Example 7 Concrete examples mentioned in [1, Sect. 4.1] can be used for Strat-
egy 3. Let Λ0,Λ1 be the Legendrian m(10132) knots and Legendrian m(12n200)

knots shown in [46, Figs. 2 and 3]. Modify them with a pattern shown in [1, Fig. 13]
to getΛ′

0 andΛ′
1, which are of knot type m(12n199) and m(14n5047) (or its mirror),

respectively. For i, j = 0, 1 we have tb(Λ′
i ) = tb(Λi) + 2 and r(Λ′

i ) = r(Λi).
There is no decomposable Lagrangian cobordism from

1. Λ0 to Λ′
1, or

2. Λ1 to Λ′
0.

If we can construct, using the combinatorial techniques of Sect. 3, a Lagrangian
cobordism (necessarily of genus 1) from Λ0 to Λ′

1 or from Λ1 to Λ′
0, then we will

have found a non-decomposable Lagrangian cobordism.

Example 8 In [1, Sect. 4.3], the authors provide an infinite family of pairs of
Legendrian knots where there does not exist a decomposable Lagrangian cobordism
between them.

Remark 10 In Strategies 2 and 3, we emphasized the construction of Lagrangian
cobordisms using the combinatorial techniques of Sect. 3. It would be interesting
to know if the geometric constructions of Sect. 4 could also be used to show
the existence of a Lagrangian concordance/cobordism from the theory of normal
rulings, topology, or grid invariants, that are known to not be decomposable.

5.4 Non-decomposable Candidates Through Surgery

An additional strategy to show the existence of a non-decomposable Lagrangian
filling comes from understanding properties of the contact manifold that is obtained
from surgery on the Legendrian knot. In particular, Conway, Etnyre, and Tosun
[16] have detected a relationship between Lagrangian fillings of a Legendrian and
symplectic fillings of the contact manifold obtained by performing a particular type
of surgery on the Legendrian.

Theorem 9 ([16, Theorem 1.1]) There is a Lagrangian disk filling of Λ+ if and
only if the contact +1-surgery onΛ+ ⊂ IR3 ⊂ S3 produces a contact manifold that
is strongly symplectically fillable. If Λ+ has a decomposable Lagrangian filling,
then the filling can be taken to be Stein.
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In fact, [16] also shows that a filling will be a Stein filling if and only if Λ+
bounds a regular Lagrangian disk: a Lagrangian disk is regular if there is a Liouville
vector field that is tangent to the disk. Any decomposable Lagrangian filling is
regular.

We now see another strategy to construct a non-decomposable Lagrangian filling.

Strategy 4 Find a LegendrianΛ such that the +1-surgery onΛ produces a contact
manifold that is strongly symplectically fillable but does not admit a Stein filling.

An issue with this approach is a lack of examples: there are very few manifolds
which carry strongly fillable but not Stein fillable contact structures. The main
examples are the 1/n surgeries on the positive and negative trefoils; see works
by Ghiggini [33] and Tosun [60]. However it is not obvious whether any of these
contact structures are a contact +1-surgery on a Legendrian knot in S3.

6 Conclusion

The desire to understand the flexibility and rigidity of Lagrangian submanifolds
has led to a great deal of interesting research in symplectic topology. Similarly,
trying to understand constructions of and obstructions to Lagrangian cobordisms has
led to many interesting results. At this point, we have few concrete answers to the
Motivating Questions stated in our Introduction. In particular, regarding Motivating
Question (1), there are presently many candidates for Legendrians Λ± that can
be connected by a Lagrangian cobordism but not by a decomposable Lagrangian
cobordism: by understanding all the obstructions to Lagrangian cobordisms, one
can come up with some good candidates. When trying and failing to construct a
Lagrangian cobordism between a given pair, one may gain intuition for additional
obstructions to Lagrangian cobordisms that are waiting to be discovered.
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these quantum invariants have yielded powerful new link invariants, in the form of
homology theories, through categorification. In this article, we focus on the impact
of the most influential homology theory arising from quantum invariants: Khovanov
homology [22]. Our goal is to sample some recent applications of Khovanov-type
theories to smooth low-dimensional topology. By bringing together the various ideas
and constructions, we hope to facilitate new applications.

In Sect. 2, we curate a survey of recent developments in knot concordance, muta-
tion detection, unknotting, and the categorification of knot polynomials. Note that
our overview will focus on Lee’s spectral sequence, Rasmussen’s s-invariant, and
generalizations of these constructions. We will exclude results linking Khovanov
homology to knot Floer homology or Heegaard Floer homology, for which the
readers may consult the resources [3, 37, 45]. We also exclude applications toward
low-dimensional contact and symplectic geometry.

Following the survey, we give two new applications. In Sect. 3, we extend
Levine-Zemke’s [30] ribbon concordance obstruction from Khovanov homology
to sl(n) foam homology for n ≥ 4, as well as to universal sl(2) and sl(3) foam
homology theories. More generally, we show that a ribbon concordance between
links induces injective maps on link homologies defined via webs and foams
modulo relations. Kang provides a different approach in [19, Theorem 1], where
it is shown that a ribbon concordance induces injective maps on link homology
theories that are multiplicative link TQFTs and which are either associative or
Khovanov-like. Our proof relies mainly on the fact that all of the homology theories
considered in Sect. 3 satisfy certain cutting neck and sphere relations in the category
of dotted cobordisms, without the need to provide new definitions or develop special
techniques.

In Sect. 4, we use spectral sequences coming from Khovanov homology to bound
the alternation number, as well as the Turaev genus of a knot in S3.

We hope that this article provides a convenient reference to those entering this
area of research and sparks interest in the subject.

2 A Survey of Applications of Khovanov Homology

2.1 Rasmussen’s s-Invariant

Possibly the most well-known application of the original Khovanov homology [22]
lies in Rasmussen’s [47] concordance invariant s, which comes from a spectral
sequence arising from a filtration on the Lee complex. The Lee spectral sequence is
a key ingredient of the proof that the Khovanov homology of an alternating knot is
thin [29, Theorem 1.2]. Rasmussen shows that s induces a homomorphism from the
concordance group to the integers. Therefore, it provides a slice obstruction. In fact,
s gives lower bounds on the slice genus of a knot. As an example of an application,
he uses this to give a strikingly short proof of the Milnor conjecture [47, Corollary
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1], which was previously proven by Kronheimer and Mrowka using gauge theory
[28, Corollary 1.2].

Many others have since modeled the algebraic construction of Rasmussen’s
invariant to produce more concordance invariants, many of which are generaliza-
tions of the s-invariant to sl(n) Khovanov-Rozansky homology [31, 34, 35, 56] or
to the universal sl(2) homology [10].

In 2012, Lipshitz and Sarkar introduced a stable homotopy type for Khovanov
homology [32]. They define a refinement of s for each stable cohomology operation,
and show that the refinement corresponding to Sq2 is stronger than s in [33, Section
5], using Cotton Seed’s computations (see also [50]).

2.2 Mutants

Mutant knots are notoriously difficult to distinguish using knot invariants. It has
been shown that for a knot, mutation preserves the signature, the Alexander
polynomial, the volume (if the mutants in question are hyperbolic), and the Jones
polynomials [13, Corollary 6, 7, and 8], [44, Theorem 2], [48, Corollary 1.4].
It is an open question whether Khovanov homology is invariant under mutation
on knots. While there exist mutant links with distinct Khovanov homologies (see
[54, Theorem 3]), it has been shown that odd Khovanov homology and Khovanov
homology with F2 coefficients are invariant under mutation; for details, we refer the
reader to [8, Theorem 1] and [55, Theorem 1.1], respectively.

There has been some recent indication that Khovanov-type theories may be used
to distinguish mutants. For example, a prominent open problem was resolved when
Piccirillo showed that the Conway knot is not slice [46, Theorem 1.1], using the
s-invariant defined by Rasmussen from the Lee spectral sequence. Lobb-Watson’s
[36] filtered invariant is able to detect mutants in the presence of an involution. In
a different direction, one may also consider generalized mutations along genus 2
surfaces from which (Conway) mutation may be recovered [16, Section 2.6]. It has
been shown that Khovanov homology distinguishes a pair of generalized mutants,
while the signature, HOMFLY-PT polynomial, Jones polynomials, and Kauffman
polynomial are the same [16, Proposition 1.6].

2.3 Ribbon Concordance

Motivated by Gordon’s conjecture [17, Conjecture 1.1] that ribbon concordance
gives a partial ordering on knots in S3, there has been great interest in studying
the behavior of knot invariants under ribbon concordance. Notably, in 2019,
Zemke [57, Theorem 1.1] showed that knot Floer homology obstructs ribbon
concordance. This led to an exciting series of papers extending this result to various
homology-type invariants for knots. Within the realm of Khovanov-type invariants,
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Levine-Zemke [30, Theorem 1] extended the result to the original Khovanov
homology, Kang [19, Theorem 1] extended the result to a setup that includes
Khovanov-Rozansky homologies [26], knot Floer homologies and other theories,
and Sarkar [49] defined the notion of ribbon distance [49, Section 3] and derived
bounds on this from Khovanov-Lee homology [49, Theorem 1.1, Corollary 1.2].

2.4 Unknotting and Unlinking via Spectral Sequences

Besides the s-invariant and its relationship to the slice genus, one can also relate
spectral sequences from Khovanov homology to other link invariants. Alishahi and
Dowlin [2] proved that the page at which the Lee spectral sequence collapses can
be used to give a lower bound on the unknotting number of the knot [2, Theorem
1.2]. A consequence of this bound is that the Knight Move conjecture holds for all
knots with unknotting number at most two [2, Corollary 1.4]. Alishahi also proved
a similar lower bound for the unknotting number using the Bar-Natan spectral
sequence coming from the characteristic two Khovanov homology [1, Theorem 1.2].
In another direction, Batson and Seed [6] constructed a spectral sequence starting
with the Khovanov homology of a link and converging to the Khovanov homology
of the disjoint union of its components. The page at which this spectral sequence
collapses yields a lower bound on the link splitting number of the link.

2.5 sl(n) Homology and HOMFLY-PT Homology

For each n, the sl(n) link invariant is a certain one-variable specialization of the
HOMFLY-PT polynomial. In [26], Khovanov and Rozansky gave a categorifica-
tion of the sl(n) polynomial using matrix factorizations. Moreover, using matrix
factorizations with a different potential, Khovanov and Rozansky [27] constructed
a categorification of the HOMFLY-PT polynomial. For the sl(3) link invariant,
Khovanov [23] constructed another categorification using trivalent webs and foams
between such webs. This was later generalized to the universal sl(3) homology
by Mackaay and Vaz [40]. An approach to the universal sl(2) homology theory
was constructed by Caprau [9], using a combination of ideas from [4] and [23].
In [39], Mackaay, Stošić, and Vaz gave a topological categorification of the sl(n)

polynomial, for all n ≥ 4, via webs and a special type of foams. For specific details
on the versions of sl(n) homologies that are used in this paper, we refer the reader to
Sect. 3. A potential topological application of sl(n) and HOMFLY-PT homologies
is that they would be better able to distinguish mutant knots, due in part to the fact
that the corresponding decategorifications can detect mutants (see [42, Theorem 3],
[43, Section 1.3]).
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3 Link Homologies and Ribbon Concordance

Let K0 and K1 be knots in S3. A concordance C ⊂ S3 × [0, 1] from K0 to K1
is a smooth embedding of the annulus f : S1 × [0, 1] → S3 × [0, 1] such that
f (S1 × {0}) = L0 × {0} and f (S1 × {1}) = L1 × {1}. In this case, we say that the
knots K0 and K1 are concordant. For k-component links L0 and L1, a concordance
is a disjoint union of k knot concordances between the components of L0 and the
components of L1.

By a small isotopy of S3 × [0, 1], the concordance C may be adjusted so that
the restriction to C of the projection S3 × [0, 1] → [0, 1] is a Morse function. If
this Morse function has only critical points of index 0 (local minima) and 1 (saddle
points) (that is, if it has no critical points of index 2, i.e. local maxima), then C is
called a ribbon concordance. In this case, we say that L0 is ribbon concordant to
L1.

Denote by C the mirror image of C and regard it as a concordance from L1 to L0.
Then C ◦C is the concordance from L0 to itself obtained by concatenating C and C.
Zemke [57] proved that the concordance C◦C can be obtained by taking the identity
concordance L0 × [0, 1] and “tubing in” unknotted, unlinked 2-spheres S1, . . . , Sn
using “tubes” T1, . . . , Tn. The tubes are annuli embedded in S3×[0, 1], joiningL0×
[0, 1] with the spheres S1, . . . , Sn. Specifically, Zemke [57, Section 3] explained
that the concordance C ◦ C can be described, up to isotopy, by the following movie
presentation:

– n births of disjoint unknots U1, . . . , Un, each of which being disjoint from the
link L0;

– n saddles represented by bands B1, . . . , Bn, such that Bi connects Ui with L0;
– n saddles represented by bands B1, . . . , Bn, where each Bi is respectively the

mirror image (dual) of Bi ;
– n deaths, deleting U1, . . . , Un.

The embedded annuli Ti are obtained by concatenating the second and third movie
frames above, by joining the bands Bi together with their respective dual bands, Bi .
The births and deaths of the unknots U1, . . . , Un determine n unknotted, unlinked
2-spheres S1, . . . , Sn. The annuli Ti are the boundaries of some three-dimensional
1-handles hi , and each handle hi intersects the surface L0 ×[0, 1] and the sphere Si
in some disksDi andD′

i , respectively. Then, the concordance C ◦C can be thought
of as the following union:

C◦C = (
(L0×[0, 1])�(D1∪· · ·∪Dn)

)∪(T1∪· · ·∪Tn)∪
(
(S1�D

′
1)∪· · ·∪(Sn�D′

n)
)
.

The goal of this section is to use the above result by Zemke [57] to show
that a ribbon concordance between two links induces an injective map on the
sl(n) link homology theories using foams, for all n ≥ 2. That is, we want to
show that the main result proved by Levine and Zemke in [30, Theorem 1] can
be generalized to universal Khovanov homology, as well as to higher rank link
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homologies. The proofs of the following statements are similar in nature to the
proofs of the analogous statements provided in [30].

Here we are considering sl(n) foam homologies, which we will denote by Hn.
For n = 2 and n = 3, we are working with the corresponding universal theories
(see Remark 1). The universal theory categorifying the sl(2) link polynomial
corresponds to a Frobenius system of rank two associated to the ring A2 =
Z[X, h, t]/(X2 − hX − t), where h and t are formal parameters. The homology
of the unknot is the ring A2, and the homology of the empty link is the ground ring
Z[X, h, t]. To obtain a homology theory that is purely functorial with respect to link
cobordisms, Caprau [9] worked with singular cobordisms and with the ground ring
Z[i][X, h, t], where i2 = −1. In this paper, we work with the universal sl(2) theory
developed in [9]. Similarly, the universal sl(3) foam theory, introduced by Mackaay
and Vaz in [40], corresponds to a Frobenius system of rank three associated to the
ring A3 = Z[X, a, b, c]/(X3 − aX2 − bX − c), where a, b, and c are formal
parameters. For n ≥ 4, we consider the homology theory introduced by Mackaay,
Stošić, and Vaz in [39], which corresponds to the ring An = Q[X]/(Xn). The foams
in [39] are more complicated than those for the cases of n = 2 and 3, as these
foams have additional types of singularities and their evaluation makes use of the
Kapustin-Li formula [20].

Remark 1 These foam theories are termed ‘universal’ (see [24]) in contrast to the
‘ordinary’ sl(2) (resp. sl(3)) homology, for which h = t = 0 (resp. a = b =
c = 0). These specializations were constructed first by Mackaay and Vaz [40],
generalizing Khovanov’s construction of sl(3) foam homology in [23]. For more
recent developments in foam theories related to sl(2) homology, see [25]. Note
that prior to the construction of these foam theories, Khovanov and Rozansky
developed sl(n) homologies via matrix factorizations [26, 27]; as this method is
not immediately compatible with Zemke’s topological arguments, we focus solely
on the available foam theories.

These homology theories use foams modulo local relations, as pioneered by Bar-
Natan [4] in his approach to local Khovanov homology for tangles. In each case
of the sl(n) homology theory considered here for a fixed value of n ≥ 2, one
associates to a link diagram a formal chain complex in a certain abelian category
Kom(Foamn), whose objects are column vectors of closed 1-manifolds in the plane,
and whose morphisms are matrices of dotted foams in R

2 × [0, 1], which are
considered up to boundary-preserving isotopies, and modulo local relations.

For our purposes, for each sl(n) foam homology theory for n ≥ 2, we will only
need the local relations involving smooth, oriented surfaces and (1+1)-cobordisms
in R

2 × [0, 1] marked with dots. Specifically, we will employ the sphere relations
(Sn) and the cutting neck relation (CNn), for fixed n ≥ 2. Figure 1 shows these
relations for the foam homology theory for n ≥ 4, and the paragraph after the figure
describes the relations for n = 2, 3. In this figure, a letter i on a surface means
that the surface is marked with i dots. Recall that in terms of the 2-dimensional
TQFT associated with the corresponding Frobenius extension and the resulting sl(n)

homology theory for links, a dot on a surface corresponds to the endomorphism of
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i
=

{
1, i = n − 1
0, otherwise

(Sn)
=

n−1∑
i=0

n−1−i

i

(CNn)

Fig. 1 The local relations (Sn) and (CNn) for n ≥ 4. The label ‘i’ (resp. ‘n− 1 − i’) on a surface
indicates the presence of i (resp. n− 1 − i) dots on that surface

the ring An that is multiplication by X. The sphere relations (Sn) are the geometric
counterparts of the evaluations of the counit map ε : An → R on the generators
1, X, . . . , Xn−1, where R is the ground ring. Moreover, the cutting neck relation
(CNn), for each n ≥ 2, is the geometric representation of the formula for Δ(1),
where Δ : An → An ⊗R An is the comultiplication map corresponding to the
Frobenius system defining the 2-dimensional TQFT. Specifically, for n ≥ 4, the dot
relations (Sn) correspond to ε(1) = ε(X) = · · · = ε(Xn−2) = 0 and ε(Xn−1) = 1,
while the cutting neck relation (CNn) corresponds to Δ(1) = ∑n−1

i=0 X
i ⊗Xn−i−1.

For the universal sl(2) foam theory [9], the dot relations (S2) correspond to
ε(1) = 0, ε(X) = 1, and the cutting neck relation (CN2) is the geometric
representation for Δ(1) = 1 ⊗ X + X ⊗ 1 − h 1 ⊗ 1. Moreover, for the universal
sl(3) foam theory (as constructed in [40]), the dot relations (S3) are the geometric
representations of the evaluations ε(1) = ε(X) = 0, ε(X2) = −1, and the cutting
neck relation (CN3) corresponds to

−Δ(1) = 1 ⊗X2 +X ⊗X +X2 ⊗ 1 − a(1 ⊗X +X ⊗ 1)− b 1 ⊗ 1.

We denote by Tn, for n ≥ 2, the tautological functors in the above homology
theories (see Remark 2). Recall that these functors are multiplicative with respect to
disjoint unions of objects, as well as with respect to disjoint unions of morphisms,
in the geometric categories Foamn, for n ≥ 2. It was proved in [9, Theorem 2]
that the universal sl(2) homology theory satisfies the functoriality property with
respect to smooth, oriented link (and tangle) cobordisms without sign ambiguity.
These cobordisms are equivalent up to boundary-preserving isotopy. Clark [12,
Theorem 1.3] also proved that Khovanov’s sl(3) homology theory is properly
functorial. Moreover, it was explained in [40, Sections 2.1–2.3] that the universal
sl(3) homology theory is functorial at least up to a minus sign (that is, up to
multiplication by a unit in Z). Finally, recall that the sl(n) homology theory, for
n ≥ 4, is functorial (at least) up to multiplication by a non-zero rational number,
as shown in [39, Proposition 8.5]. Note that for the purpose of this paper, it suffices
that a certain sl(n) foam homology theory is functorial up to multiplication by a unit
in the ground ring.

Remark 2 For details on tautological functors and the universal construction, see
[7]. Friendly examples can be found in [4, Section 9] and [23].
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For the remainder of this section, embedded link cobordisms in R
3 × [0, 1] may

possibly be decorated with dots.

Lemma 1 Let F ⊂ R
3 × [0, 1] be an embedded cobordism from a link L0 to a link

L1. Let S be an unknotted 2-sphere in R3 × [0, 1] and unlinked from F , and denote
by S(k) the sphere S marked with k dots. Then,

(a) H2(F ∪ S) = 0 and H2(F ∪ S(1)) = H2(F ).
(b) H3(F ∪ S) = 0 = H3(F ∪ S(1)) and H3(F ∪ S(2)) = −H3(F ).
(c) Hn(F ∪ S) = Hn(F ∪ S(1)) = · · · = Hn(F ∪ S(n−2)) = 0, and

Hn(F ∪ S(n−1)) = Hn(F ), where n ≥ 4.

Proof If necessary, we may perform an ambient isotopy of R3 × [0, 1] so that the
unknotted 2-sphere S lies in a slice R

3 × {t}, for some t ∈ [0, 1], and that the
intersection of F with R

3 × {t} is a (1 + 1)-cobordism. Then, the result in part
(a) follows from the sphere relations (S2) and the properties of the functors T2 and
H2. Remember that by relations (S2), a sphere with no dot evaluates to zero, while a
sphere with one dot evaluates to 1. Similarly, the sphere relations (S3) and separately
(Sn), for n ≥ 4, together with the application of the functors T3 and Tn, for n ≥ 4,
(along with the fact that H3 and Hn are functors) yield the equalities in parts (b)
and (c). We note that the negative sign in part (b) arises due to the convention for
the relations (S3), in which a sphere with two dots evaluates to −1.

Lemma 2 Let F ⊂ R
3 × [0, 1] be an embedded cobordism from a link L0 ⊂

R
3 × {0} to a link L1 ⊂ R

3 × {1}. Let γ : [0, 1] → R
3 × [0, 1] be a smoothly

embedded arc with endpoints on F and otherwise disjoint from F , and let T be the
boundary of an embedded tubular neighborhood of γ (that is, T is an annulus). Let
F ′ be the result of removing the disk neighborhoods of ∂γ from F and attaching T .
Denote by F (i,j) the cobordism obtained from F ′ by surgery along a compressing
disk of T , so that there are i dots on the disk in F ′ bounded by the circle where T
was attached to F around γ (0), and there are j dots on the disk bounded by the
circle where T was attached to F around γ (1).

Then,

(a) H2(F
′) = H2(F

(1,0))+ H2(F
(0,1))− hH2(F ).

(b) −H3(F
′) = H3(F

(2,0))+ H3(F
(1,1))+ H3(F

(0,2))

−a[H3(F
(1,0))+ H3(F

(0,1))] − bH3(F ).

(c) Hn(F
′) =

n−1∑

i=0

Hn(F
(i,n−1−i)), where n ≥ 4.

Proof The proof is similar to that of Lemma 1, only that now we make use of
the cutting neck relations. We also encourage the reader to compare the equalities
in parts (a), (b) and (c) with the evaluations for Δ(1) for the universal sl(2) foam
theory, the universal sl(3) foam theory, and respectively, the sl(n) (for n ≥ 4) foam
homology theory. We perform first an isotopy of R3 ×[0, 1] so that T lies in a small
ball contained in a slice R

3 × {t}, for some t ∈ [0, 1], and the intersections of F ′
and F (i,j) with the ball can be identified with the pictures depicted in the cutting
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neck relations. The cutting neck relations imply that the morphisms in Foamn

corresponding to the cobordisms in the statement of the lemma (where n = 2 in
part (a), n = 3 in part (b), and n ≥ 4 in part (c)) satisfy the skein relations in the
statement. Then, the claimed identities on the homology groups follow at once from
these, and from the properties of the tautological functors Tn, and since Hn is a
functor, for each n ≥ 2.

Proposition 1 Let D ⊂ R
3 × [0, 1] be an embedded cobordism from a link L0 ⊂

R
3 ×{0} to a link L1 ⊂ R

3 ×{1}. Suppose S is an unknotted 2-sphere in R3 ×[0, 1]
and unlinked from D. Let γ be a smoothly embedded arc with one endpoint on D
and the other on S, and otherwise disjoint from D ∪ S, and let T be the boundary
of an embedded tubular neighborhood of γ (that is, T is an annulus). Let D′ be the
result of removing the neighborhood of ∂γ from D ∪ S and attaching T .

Then Hn(D
′) = Hn(D), for all n ≥ 2.

Proof The proof follows from Lemmas 1 and 2. We apply first Lemma 2 to the
cobordism F := D ∪ S, with F ′ := D′. Then note that F (i,j) = D(i) ∪ S(j), where
D(i) is the cobordismD marked with i dots, and S(j) is the 2-sphere S marked with
j dots. So, we have

H2(D
′) = H2(D

(1) ∪ S)+ H2(D ∪ S(1))− hH2(D ∪ S)
= 0 + H2(D)− h · 0

= H2(D),

where the second equality holds due to part (a) in Lemma 1. Similarly, using part
(b) from Lemma 2, we get,

−H3(D
′) = H3(D

(2) ∪ S)+ H3(D
(1) ∪ S(1))+ H3(D ∪ S(2))

−a[H3(D
(1) ∪ S)+ H3(D ∪ S(1))] − bH3(D ∪ S).

Using part (b) from Lemma 1, we see that only the third term above, H3(D ∪ S(2)),
survives and equals to −H3(D). Hence, H3(D

′) = H3(D), as desired.
Moreover, the following equalities follow from parts (c) of the previous two

lemmas:

Hn(D
′) =

n−1∑

i=0

Hn(D
(i) ∪ S(n−1−i)) = Hn(D ∪ S(n−1))+ 0 = Hn(D).

Hence, the statement holds for every n ≥ 2.

We are now ready to prove the main result of this section.

Theorem 1 Let C be a ribbon concordance from a link L0 to a link L1. Then the
induced maps on sl(n) homologies
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Hn(C) : Hn(L0)→ Hn(L1)

are injective, for all n ≥ 2.

Proof Let C be a ribbon concordance from L0 to L1, and let C be the mirror image
of C (that is, C is the reverse concordance from L1 to L0). LetD := C ◦C. ThenD
is a concordance from L0 to itself. Since for each n ≥ 2, the foam homology theory
Hn is a functor, we have that:

Hn(D) = Hn(C) ◦ Hn(C), for each n ≥ 2.

By the discussion at the beginning of this section, we know that the concordance
D can be obtained by taking the identity concordance L0 × [0, 1] and “tubing in”
unknotted, unlinked 2-spheres S1, . . . , Sn using embedded annuli T1, . . . , Tn. These
annuli are the boundaries of embedded 3-dimensional 1-handles h1, . . . , hi in R

3 ×
[0, 1], where each hi connects L0 ×[0, 1] with Si and is disjoint from Sj , for j = i.
Then, by Proposition 1 and the functoriality properties of the corresponding foam
homology theories, we get:

H2(D) = H2(L0 × [0, 1]) = idH2(L0),

H3(D) = ±H3(L0 × [0, 1]) = ±idH3(L0), and

Hn(D) = qHn(L0 × [0, 1]) = q idHn(L0), for all n ≥ 4,

where q ∈ Q
∗. Therefore,

H2(C) ◦ H2(C) = idH2(L0), H3(C) ◦ H3(C) = ±idH3(L0), and

Hn(C) ◦ Hn(C) = q idHn(L0), for some q ∈ Q
∗.

In all of the above cases, the composition Hn(C) ◦ Hn(C) is a bijective function,
for each n ≥ 2. Hence for each n ≥ 2, Hn(C) is an injective map and Hn(C) is
surjective.

Remark 3 To our knowledge, it is not known whether the sl(n) foam homology
theory for n ≥ 4 is purely functorial with respect to link cobordisms. But it is known
that it is functorial up to multiplication by a non-zero rational number (see [39,
Proposition 8.5]). This is the reason for using a q ∈ Q

∗ in the above proof, for the
case of n ≥ 4. Similarly, the universal sl(3) link homology is known to be functorial
at least up to a unit in Z (see [40, Proposition 2.8]), therefore the ± sign in the above
proof for the case of n = 3.

As a consequence of Theorem 1, we obtain that the homology theories Hn, for
all n ≥ 2, give obstructions to ribbon concordance. For any concordance C between
links and any n ≥ 2, the map Hn(C) preserves both the quantum and homological
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grading. Then the proof of the theorem implies that for any bigrading (i, j) and
n ≥ 2, Hi,jn (L0) embeds in H

i,j
n (L1) as a direct summand.

4 Gordian Distance and Spectral Sequences in Khovanov
Homology

Lee [29, Section 4] defined an endomorphism of the Khovanov homology of a
knot with coefficients in Q, and Rasmussen [47, Theorem 2.1] showed that Lee’s
endomorphism gives rise to a spectral sequence, called the Lee spectral sequence,
whoseE1 page is isomorphic to the Khovanov homology of the knot. Shumakovitch
[51, Theorem 4.1.A] defined a version of Lee’s spectral sequence with coefficients
in the finite field Fp of order p, for an odd prime p. We refer to the above spectral
sequences as the Lee spectral sequence with R coefficients, where R is either Q or
Fp for an odd prime p. A spectral sequence collapses at the kth page if Ek−1 = Ek
and Ek = Em for all m ≥ k. When R = Q or Fp, define pgLee(K;R) to be the
page at which the Lee spectral sequence with R coefficients collapses. Similarly,
Bar-Natan [4, Subsection 9.3] defined a variant of Khovanov homology with F2
coefficients. Turner [53, Theorem 3.2] showed that Bar-Natan’s variant gives rise to
a spectral sequence similar in spirit to the Lee spectral sequence. Define pgBN(K)

to be the page at which the Bar-Natan spectral sequence collapses.
The Gordian distance d(K1,K2) between two knots K1 and K2 is the minimum

number of crossing changes necessary to transform K1 into K2. The most famous
Gordian distance is the unknotting number u(K) of a knot K , which is the Gordian
distance betweenK and the unknot. Kawauchi [21, Definition 1.2] similarly defined
the alternation number alt(K) of a knot K to be the minimum Gordian distance
betweenK and the set of alternating knots. The Khovanov homologyKh(K;R) of a
knot over R is homologically thin if there is an integer s such thatKhi,j (K;R) = 0,
for j−2i = s±1; that is,Kh(K;R) is homologically thin ifKh(K;R) is supported
entirely in two adjacent diagonals j − 2i = s ± 1. Define dthin(K;R) to be the
minimum Gordian distance betweenK and the set of knots that have thin Khovanov
homology over R. Because every alternating link has thin Khovanov homology over
R, for all rings R that we consider, it follows that dthin(K;R) ≤ alt(K).

This section is organized as follows: the results in Sect. 4.1 are followed by
examples in Sect. 4.2, which illuminate the proofs provided in Sect. 4.3.

4.1 Results

For any real number x, define ,x- to be the ceiling of x; that is, ,x- is the least
integer that is greater than or equal to x. The next two results relate dthin(K;R)
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and alt(K) with the pages pgLee(K;R), pgBN(K) at which the Lee and Bar-Natan
spectral sequences collapse.

Theorem 2 Let K be a knot, and let R be Q or Fp, where p is an odd prime. Then

pgLee(K;R) ≤
⌈
dthin(K;R)+ 3

2

⌉
≤

⌈
alt(K)+ 3

2

⌉
. (1)

Theorem 3 Let K be a knot. Then

pgBN(K) ≤ dthin(K;F2)+ 2 ≤ alt(K)+ 2. (2)

The Turaev genus of a knot is an invariant that measures how far a knot is from
being alternating in a different way than the alternation number, and it is defined

as follows. Each crossing in a knot diagram D has an A-resolution . and a

B-resolution . The all-A Kauffman state of D is the collection of simple closed
curves obtained by choosing an A-resolution for each crossing, and similarly the
all-B Kauffman state of D is the collection of simple closed curves obtained by
choosing a B-resolution for each crossing.

The knot diagram D has a Turaev surface of genus

gT (D) = 1

2
(2 + c(D)− sA(D)− sB(D)),

where c(D) is the number of crossings in D, and sA(D) and sB(D) are the number
of components in the all-A and, respectively, all-B Kauffman states of D. The
Turaev genus gT (K) of a knot K is defined as follows:

gT (K) = min{gT (D) | D is a diagram of K}.

It is known that a knot is alternating if and only if its Turaev genus is zero [52,
Lemma 2]. The next result is a version of Theorems 2 and 3.

Theorem 4 Let R = Q or Fp for an odd prime p. For any knot K ,

2 pgLee(K;R) ≤ gT (K)+ 4 and pgBN(K) ≤ gT (K)+ 2.

There are knots with arbitrarily large Turaev genus and alternation number one [38,
Proposition 4.2]. Also, there are knots with Turaev genus one that are conjectured
to have arbitrarily large alternation number, and the existence of such knots would
show that Theorem 4 does not immediately follow from Theorems 2 and 3.

We first give examples of how Theorems 2 and 3 can be used, and then we prove
each result.
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4.2 Examples

Either side of the inequalities in Theorems 2 and 3 can provide insight into the
other. Example 1 gives a family of knots all of whose alternation numbers are one,
but whose Khovanov homology becomes more and more complicated in terms of
width. Despite having complicated Khovanov homology, Theorem 2 implies that
the Lee spectral sequence for this family of knots collapses at or before the second
page, and Theorem 3 implies that the Bar-Natan spectral sequence collapses at or
before the third page.

We remark that Alishahi and Dowlin [2, Theorem 1.3] proved that if the
unknotting number of a (nontrivial) knot is one or two, then the Lee spectral
sequence collapses at the second page. However, many knots in Example 1 have
unknotting number greater than two, and thus the results from [2] cannot be used
for those knots.

Examples 2, 3, and 4 describe knots where the page at which the relevant spectral
sequence collapses gives a nontrivial lower bound on the alternation number of the
knot.

Before describing the examples in detail, we remind the reader of some of
the properties of the Lee and Bar-Natan spectral sequences. The map on the
Er page of the Lee spectral sequence increases the homological grading by one
and the polynomial grading by 4r . Similarly, the map on the Er page of the
Bar-Natan spectral sequence increases the homological grading by one and the
polynomial grading by 2r . Khovanov homology with F2 coefficients splits as a
direct sum of two copies of the reduced Khovanov homology with F2 coefficients;

that is,Khi,j (K;F2) ∼= K̃hi,j−1
(K;F2)⊕K̃hi,j+1

(K;F2). The Bar-Natan spectral
sequence has this same behavior of splitting into two copies; see [53, Subsection 3.3]
for details.

Example 1 For any pair of positive integers m and n, de los Angeles Hernandez
[15, Section 3] constructed the hyperbolic knot K(m, n) whose diagram is depicted
in Fig. 2 and whose alternation number is one. Therefore, Theorem 2 implies that
the Lee spectral sequence of K(m, n) collapses at or before the second page, and
Theorem 3 implies that the Bar-Natan spectral sequence of K(m, n) collapses at or
before the third page.

Moreover, the width of the Khovanov homology of K(m, n), that is the fewest
number of adjacent j −2i diagonals supportingKh(K(m, n)), is n+2 [15, Lemma
3.2].

Recall that if the unknotting number of a (nontrivial) knot is one or two, then the
Lee spectral sequence collapses at the second page [2, Theorem 1.3]. If n+ 2 < m,
then one can see that K(m, n) has unknotting number greater than two, as follows.
Dasbach and Lowrance [14, Proposition 5.3] proved that the signature of a knot K
with diagram D satisfies the inequality

sA(D)− c+(D)− 1 ≤ σ(K) ≤ −sB(D)+ c−(D)+ 1,
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2m+1

2n

Fig. 2 A diagram of the knot K(m, n)

Fig. 3 The knot on the left has a positive full twist in the rectangle labeled +1. A portion of its
Khovanov homology with Q coefficients is on the right. The highlighted yellow generator survives
to the third page of the spectral sequence but not to the E∞ page

where sA(D) and sB(D) are the number of components in the all-A and all-B
Kauffman states, respectively, and c+(D) and c−(D) are the number of positive and
negative crossings inD. Applying this inequality to the diagram ofK(m, n), we see
that −2m−2n ≤ σ(K) ≤ −2m+2n. Because |σ(K)| ≤ 2u(K), if n+2 < m, then
u(K(m, n)) > 2. Hence, Theorem 1.3 from [2] cannot be used for knots K(m, n)
with n+ 2 < m.

In Examples 2, 3, and 4, we show the Khovanov homology of certain knots.
The number in the (i, j) entry of the table in Fig. 3 is the rank of Khi,j (K;R).
All Khovanov homology computations for these examples are obtained using the
program JavaKh-v2 available on the Knot Atlas [5].

Example 2 Manolescu and Marengon [41, Theorem 2.1] gave an example of a
knot K whose Lee spectral sequence over Q does not collapse at the second page.
This knot K and a portion of its Khovanov homology Kh(K,Q) appear in Fig. 3.
Because Kh1,1(K;Q) is nontrivial, while Kh0,−3(K;Q) and Kh2,5(K;Q) are
trivial, it follows that pgLee(K;Q) > 2. Changing the two crossings of K circled
in Fig. 3 transforms the knot into the figure-eight knot, and thus alt(K) ≤ 2. Using
now Theorem 2, it follows that alt(K) = 2.
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Table 1 The Khovanov homology of T5,6 with F3 coefficients. The highlighted yellow generator
survives to the third page of the spectral sequence, but not to the E∞ page

Example 3 The Lee spectral sequence for the (5, 6)-torus knot T5,6 with Q

coefficients collapses at the second page; however, this is not the case when
the coefficients are F3. Table 1 shows the Khovanov homology of T5,6 with F3
coefficients. Because Kh13,43(T5,6;F3) is nontrivial while Kh12,39(T5,6;F3) and
Kh14,47(T5,6;F3) are trivial, it follows that pgLee(T5,6;F3) > 2. Theorem 2 implies
that 2 ≤ dthin(T5,6;F3) ≤ alt(T5,6).

Example 4 The Khovanov homology of T7,8 with F2 coefficients is shown in
Table 2. Since i = 26 is the maximum homological grading where Khi,j (T7,8;F2)

is nontrivial, the summandsKh26,79(T7,8;F2) andKh26,81(T7,8;F2)must be paired
with the summands Kh25,75(T7,8;F2) and Kh25,77(T7,8;F2) on the third page
of Bar-Natan spectral sequence. Consequently, the summands Kh25,79(T7,8;F2)

and Kh25,81(T7,8;F2) must be paired with the summands Kh24,71(T7,8;F2) and
Kh24,73(T7,8;F2) on the fourth page of the Bar-Natan spectral sequence. Therefore
pgBN(T7,8) ≥ 4, and thus Theorem 3 implies that 2 ≤ dthin(T7,8;F2) ≤ alt(T7,8).
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Table 2 The Khovanov homology Kh(T7,8;F2) of T7,8. The highlighted yellow generators
survive to the E3 page, and the highlighted red generators survive to the E4 page of the Bar-Natan
spectral sequence

4.3 Proofs

The Lee and Bar-Natan spectral sequences both arise as spectral sequences of
filtered complexes. The filtration comes from adding the Khovanov differential
to different boundary maps that increase the polynomial/quantum grading. The
Lee and Bar-Natan spectral sequences arise from maps dLee : CKhi,j (D;R) →
CKhi+1,j+4(D;R) and dBN : CKhi,j (D;F2) → CKhi+1,j+2(D;F2), respec-
tively. For any knot diagram D, the homology of (CKh(D;R), d + dLee) is
isomorphic to R ⊕ R situated in homological grading zero, and similarly, the
homology of (CKh(D;F2), d + dBN) is isomorphic to F2 ⊕ F2 situated in
homological grading zero.

Bar-Natan [4, Subsection 9.3] constructed a deformation of Khovanov homology
using coefficients in F2[h] for a formal variable h instead of F2 and using
the differential d + hdBN instead of the usual Khovanov differential d. Turner
later viewed the Bar-Natan construction through the lens of spectral sequences
as described above. Alishahi and Dowlin [2, Subsection 2.2] similarly encapsu-
lated the Lee endomorphism as part of a deformed complex with coefficients in
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Q[X, t]/(X2 = t), where the differential in this complex is d + tdLee. Just as with
Lee’s endomorphism, one can replace Q with Fp, for any odd p, and all of the
results of [2] hold without changing their proofs.

An element α in the homology of Bar-Natan’s complex is h-torsion of order n if
hnα = 0 but hn−1α = 0. Let uh(K) be the maximum order of any torsion element
in the homology of Bar-Natan’s complex. Then uh(K)+ 1 = pgBN(K) [1, Lemma
3.2].

Similarly, an element α in the deformed Lee homology over R = Q or Fp, for an
odd prime p, is X-torsion of order n (respectively t-torsion of order m) if Xnα = 0
butXn−1α = 0 (respectively tmα = 0 but tm−1α = 0). Alishahi and Dowlin proved
the following facts about uX(K;Q) and ut (K;Q). We observed that the proofs of
these facts when R = Q also apply when using Fp coefficients. As such, we state
the following for R = Q or Fp, where p is an odd prime.

1. If Kh(K;R) is homologically thin, then uX(K;R) = 1;
2. |uX(K+;R) − uX(K−;R)| ≤ 1, where K+ and K− are knots differing by a

single crossing change;
3. ,uX(K;R)/2- = ut (K;R), and
4. ut (K)+ 1 = pgLee(K;R).

We are now in a position to prove Theorems 2, 3, and 4.

Proof of Theorem 2 Let dthin(K;R) = d. Hence, there is a sequence of knotsK =
K0,K1, . . . , Kd such that Ki+1 is obtained from Ki via a crossing change for all
i = 0, . . . , d − 1, and Kh(Kd;R) is homologically thin. Item (1) above implies
that uX(Kd;R) = 1, and item (2) implies that uX(K;R) ≤ d + 1. Then item

(3) implies that ut (K;R) =
⌈
uX(K;R)

2

⌉
≤

⌈
d+1

2

⌉
. Finally, item (4) implies that

pgLee(K;R) = ut (K;R) + 1 ≤
⌈
d+3

2

⌉
, as desired. The second inequality in the

theorem follows at once from the fact that dthin(K;R) ≤ alt(K), as seen in the
beginning of this section.

Proof of Theorem 3 Let dthin(K;F2) = d. Hence there is a sequence of knots
K = K0,K1, . . . , Kd such that Ki+1 is obtained from Ki via a crossing change
for i = 0, . . . , d − 1, and Kh(Kd;F2) is homologically thin. By Alishahi [1,
Corollary 3.3], since Ki and Ki+1 differ by a crossing change, it follows that
|uh(Ki) − uh(Ki+1)| ≤ 1, and thus uh(K) ≤ d + uh(Kd). Since Kh(Kd;F2)

is homologically thin, pgBN(Kd) ≤ 2. But pgBN(Kd) = uh(Kd) + 1, and thus
uh(Kd) ≤ 1. It follows that uh(K) ≤ d + 1, and therefore pgBN(K) ≤ d + 2, as
desired.

Proof of Theorem 4 The width w(Kh(K;R)) of the Khovanov homology over a
ring R is defined as

w(Kh(K;R)) = 1 + 1

2

(
max{j − 2i | Khi,j (K;R) = 0} − min{j − 2i | Khi,j (K;R) = 0}

)
.
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Champanerkar, Kofman, and Stoltzfus [11, Corollary 3.1] proved that
w(Kh(K;R)) ≤ gT (K)+2. Since the Lee differential on the Er page increases the
homological grading i by one and the polynomial grading j by 4r , if pgLee(K;R) =
n, then w(Kh(K;R)) ≥ 2n − 2. Therefore 2 pgLee(K;R) ≤ gT (K) + 4, as
desired. Similarly, since the Bar-Natan differential on the Er page increases the
homological grading by one and the polynomial grading by 2r , if pgBN(K) = n,
then w(Kh(K;F2)) ≥ n. Therefore, pgBN(K) ≤ gT (K)+ 2.
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1 Introduction

In this article, we will discuss a number of results, observations and questions
concerning the relation between topological properties of knots and certain surface
diffeomorphisms associated to these knots. The relevant surface diffeomorphisms
arise in two ways.
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1. For a fibered knot K ⊂ S3, we consider the fibration of the knot complement
S3\K over S1. The fiber surface and the monodromy of this fibration are uniquely
determined by K (see [12, p.34], [57, Corollary 8.3]).

2. An arbitrary knot in S3 can be (non-uniquely) represented as a braid closure,
and we can study the corresponding braid monodromy. Recall that Artin’s braid
group Bn on n-strands [4] is the mapping class group of an n-punctured discDn.

Working from these different perspectives, we will explore how the fiber
monodromy or braid monodromy is related to invariants of the underlying knot,
such as the Seifert genus g3(K) and the slice genus g4(K). As usual, g3(K) is the
smallest genus of a Seifert surface the knot K bounds in the 3-sphere, and g4(K) is
the smallest genus of a smooth oriented embedded surface that the knot K bounds
in the 4-ball.

Intuitively, the more full twists that a braid β contains, the more complicated its
closure β̂ = K is. Let Δ2 = (σ1 . . . σn−1)

n denote a full twist on n strands. We
expect the braid closure’s genus g3(K) and slice genus g4(K) to grow larger as
more full twists are added to the braid. This idea is made precise in the following
proposition.

Proposition 1 Let β ∈ Bm be a braid, and letKn be the closure of the braid βΔ2n.
When n becomes large, g3(Kn) = g4(Kn) and this value grows roughly as 1

2nm
2.

Proposition 1 gives us an asymptotic understanding of the behavior of the genus
and slice genus as full twists are added. As for non-asymptotic behavior, for braids
of three or more strands, we use Sato’s work [56] to show concatenating full twists
to a braid will change the concordance class of its closure.

Proposition 2 Let β ∈ Bm be a braid, m ≥ 3, and βk = βΔ2k , k ∈ Z, k > 0. Then
all braid closures β̂, β̂k , k > 0 lie in pairwise distinct concordance classes.

We now focus on the boundary twisting of the monodromies. The amount of
boundary twisting is quantified by the fractional Dehn twist coefficient, defined in
Sect. 2.2. The idea of the fractional Dehn twist coefficient, or FDTC, first appeared
in [19] in the context of essential laminations. In the context of open books and
contact topology, it was developed and applied in [22, 23], and explored further by
many authors, [7, 24, 30, 35]. For classical braids, a similar notion (via a somewhat
different approach) was studied in [42]. The fractional Dehn twist coefficient was
also studied from the braid- and knot-theoretic perspective in [13, 16, 52] among
others. A generalization of the fractional Dehn twist coefficient to the case of braids
in arbitrary open books, and a detailed proof that different definitions are equivalent,
is given in [31].

Notation We will use notation FT (K) for the fractional Dehn twist coefficient of
the fibered monodromy for a fibered knot K in S3. We use BT (β) for the fractional
Dehn twist coefficient of a braid monodromy.

We will explore how the fractional Dehn twist coefficient of the braid mon-
odromy is related to invariants of the underlying knot, such as the Seifert genus



Braids and Concordance 295

g3(K) and the slice genus g4(K). Given a braid representative β whose closure is a
knot K = β̂, we seek lower bounds for the genus g3(K) and the slice genus g4(K)

in terms of the fractional Dehn twist coefficient BT (β).
In [32] Ito used braid foliations to give a bound for the genus of a knot K in

terms of the fractional Dehn twist coefficient BT (β) of its braid representative β.
See Theorem 8 for a more precise statement. Ito’s theorem serves as motivation for
our work.

Theorem 1 ([32]) Let β be a braid whose closure is isotopic to a knot K ⊂ S3.
Then

|BT (β)| ≤ g3(K)+ 2.

For quasipositive braids, we provide a new upper bound on BT (β) in terms of
the slice genus in the following theorem.

Theorem 2 Let n ≥ 3. Let β ∈ Bn be a quasipositive n-braid whose braid closure
β̂ is a knot then

BT (β) ≤ 2g4(β̂)+ (n− 2).

The upper bound on BT (β) is sharp by Corollary 2, which constructs slice knots
(g4(K) = 0) represented by quasipositive n-braids β with BT (β) = n− 2.

The analogue of Ito’s Theorem 1 with genus g3(K) replaced by slice genus
g4(K) does not hold by Corollary 2 and Proposition 10. Notably, the non-
quasipositive knots of Proposition 10 satisfy the same inequality as Theorem 2,
leading us to ask whether such a bound holds in general.

Question 1 For any n-strand β representing a knot K , is it always true that

|BT (β)| ≤ 2g4(K)+ n− 2?

If not, is there a bound of the order

|BT (β)| ≤ C(n)g4(K)+D(n),

where C(n),D(n) are constant for each fixed n?

As evidence towards a positive answer to Question 1, for 3-braids representing
knots of finite order in the concordance group, we provide an upper bound onBT (β)
in the following theorem.

Theorem 3 LetK be a knot that can be represented as the closure of a braid in B3.
Suppose further that K is slice, or more generally, that K has a finite order in the
concordance group. Then any 3-braid representative β of K satisfies |BT (β)| ≤ 1.
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The proof of Theorem 3 relies on Murasugi’s classification of three-braids [45]
and work of Baldwin [5] and is given in Sect. 6. Section 6 concludes with a
discussion on computational evidence for the bounds in Question 1.

One might hope to use the Ozsváth-Szabo τ -invariant [47] or the Rasmussen s-
invariant [54] to construct an upper bound on the fractional Dehn twist coefficient
BT of a braid. We show that this idea fails in Proposition 3, by constructing a family
of braids with small τ -invariant and small s-invariant but large BT .

Proposition 3 Let β = (Δ2)kσ−1
1 σ

−(6k−1)
2 in B3. Then β̂ is a knot, BT (β) ≥ k−1,

|τ(β̂)| ≤ 1 and |s(β̂)| ≤ 2.

It is important to note that BT (β) is very sensitive to braid stabilizations. Recall
that the positive braid stabilization of β ∈ Bn is the braid β+ = βσn ∈ Bn+1, and
the negative stabilization is the braid β− = βσ−1

n ∈ Bn+1. The braid closures of β,
β+ and β− are all isotopic to the same link. Proposition 9 shows that stabilized braid
representatives have fractional Dehn twist coefficient BT (β+) and BT (β−) that are
bounded between −1 and 1. Thus, a stabilized braid representative for a knotK will
not provide a useful lower bound for the genus g3(K) or slice genus g4(K). To our
knowledge it is an open question how to determine which braid representative has
largest possible fractional Dehn twist coefficient.

Finally, we explore the relationship between the fractional Dehn twist coefficient
FT (K) of a fibered knotK and other topological invariants ofK , including its knot
Floer stable equivalence class in Sect. 7 and slice genus in Sect. 8.

2 Background on Fractional Dehn Twist Coefficient and
Braids

We begin with background on the braid group and the fractional Dehn twist
coefficient and collect some previous results that inspired our work.

2.1 The Braid Group

Recall that Artin’s braid group Bn on n-strands [4] is the mapping class group of an
n-punctured disc Dn. It admits the presentation

Bn =
〈
σ1, . . . , σn−1

∣∣∣∣
σiσj = σjσi : |i − j | ≥ 2
σiσi+1σi = σi+1σiσi+1 : 1 ≤ i ≤ n− 2

〉
.

The σi’s are usually referred to as the standard or Artin generators of Bn. A n-braid
β is an element of Bn. The braid β can be considered as a proper embedding of
n strands in D2 × I , so that each generator σi corresponds to a positive half-twist
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between the i-th and (i + 1)-th strands. When D2 × {0} is glued to D2 × {1} by the
identity map, we obtain a link in D2 × S1 ⊂ S3 called the closure of β, denoted
β̂. A classical theorem of Alexander [3] allows to reverse this process (although not
uniquely): every knot or link in S3 can be represented as a closed braid. The braid
index of a link is the minimum number n such that there exists an n-braid β whose
closure represents the given link.

Thus, a classical braid can be considered from several viewpoints: (1) a braid is a
“word” in standard generators σi of the braid groupBn; (2) the braid closure is a knot
or link that can be studied by means of classical knot theory and by modern knot-
homological invariants (such as knot Floer homology and Khovanov homology);
(3) the braid monodromy action shows how the braid twists, and is related to ideas
from geometry and dynamics of surface diffeomorphisms. There are many excellent
resources for learning more about braids; for instance, see [6, 10], and [13].

2.2 Fractional Dehn Twist Coefficient

The amount of boundary twisting of a surface diffeomorphism is quantified by the
fractional Dehn twist coefficient (FDTC), defined geometrically as follows. Let S
be a compact oriented surface with connected boundary and χ(S) < 0, and φ :
S → S a homeomorphism fixing the boundary ∂S pointwise. Using the Nielsen-
Thurston classification, we can find a free isotopy Φ : S × [0, 1] → S connecting
φ to its Nielsen-Thurston representative, so that Φ0 = φ and Φ1 is either periodic,
reducible, or pseudo-Anosov. (Note that Φ1 no longer fixes the boundary of S.) The
fractional Dehn twist coefficient FT (φ) is defined as the winding number of the
arc Φ(p × [0, 1]) for a chosen basepoint p ∈ ∂S. It can be shown that FT (φ)
depends only on the isotopy class of φ rel boundary, and is independent of the
choice of basepoint p and isotopyΦ. Moreover, FT (φ) is always a rational number.
Although we primarily focus on knots in S3, one could also consider the FDTC for
fibered knots in an arbitrary closed oriented 3-manifold Y (and for corresponding
open books on Y ).

The FDTC of a braid is defined by considering the braid monodromy as a
boundary-fixing homeomorphism of the punctured disk, and taking the FDTC at the
boundary of the disk. For surfaces with multiple boundary components, the FDTC
can be defined for each component (the corresponding number measures twisting
around the given component).

For a fibered knot K in S3, there are different monodromies to consider: the
monodromy of the fibration S3 \ K → S1 as well as the monodromy of a braid
representative β of K . These monodromies live on different surfaces and have
very different fractional Dehn twist coefficients. In particular, the FDTC of the
fibration is fixed, while the FDTC of the braid monodromy depends on the choice
of the braid representative. As in Notation 1 we will use notation FT (K) for
the FDTC of the fibration monodromy and BT (β) for the FDTC of the braid
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monodromy. An example of how these two values can be different comes from the
torus knots Tp,q . Since these are fibered in S3, by work of Gabai and Kazez-Roberts,
|FT (Tp,q)| ≤ 1

2 (see Theorem 5 below). However, a braid representative of Tp,q is
the word βp,q = (σ1 · · · σp−1)

q in Bp, and |BT (βp,q)| = q
p

, which may be a large
quantity. In general, the quantity BT (β) can also be defined more algebraically,
using braid orderings and Dehornoy’s floor function, see Sect. 2.3.

We collect a few useful properties of the FDTC in the next proposition.

Proposition 4 ([30, 42]) Let t∂ denote the positive Dehn twist about a boundary-
parallel curve. Then for any two boundary-fixing homeomorphisms φ,ψ of S, we
have

(a) (Quasimorphism) |FT (φψ)− FT (φ)− FT (ψ)| ≤ 1.
(b) (Homogeneity) FT (φn) = nFT (φ).
(c) (Behaviour under full twists) FT (t∂φ) = FT (φ)+ 1.
(d) (Conjugacy invariant) FT (φ) = FT (ψφψ−1).

All of the above properties also hold for braids and their fractional Dehn twist
coeficients BT . Additionally, if β ∈ Bn is an n-braid, we have BT (β) ∈ {p

q
, where

p, q ∈ Z, 1 ≤ q ≤ n }.
A related notion is that of a right-veering surface homeomorphism. As above,

let S be a compact oriented surface with connected boundary, and φ : S → S

a homeomorphism fixing the boundary ∂S pointwise. Let α, β : [0, 1] → S be
arbitrary properly embedded oriented arcs with α(0) = β(0) = x ∈ ∂S. Isotope
α and β so that they intersect transversely with the fewest possible number of
intersections. We say that β is to the right of α if either (β̇(0), α̇(0)) define the
orientation of S at x or β = α. We now can define right-veering: we say φ is right-
veering if for any choice of base point x ∈ ∂S and properly embedded oriented arc
α starting at x, φ(α) is to the right of α. In a similar way, one defines left-veering
maps. The maps that do not satisfy the corresponding properties are called non-
right-veering resp. non-left-veering. Note that the identity map is both right-veering
and left-veering (and this is the only isotopy class with both properties.)

Very roughly, one can think of the fractional Dehn twist coefficient as being a
measurement of “how right-veering” a surface homeomorphism is. Indeed, when φ
is irreducible, the FDTC of φ is greater than zero if and only if φ is right-veering:
see [22, 35]. This gives a way to estimate the FDTCs:

Proposition 5 ([35, Corollary 2.6])

(1) If α is a properly embedded oriented arc starting on ∂S, then φ(α) to the right
of α implies FT (φ) ≥ 0, and φ(α) to the left of α implies FT (φ) ≤ 0.

(2) If β is a braid with a braid word where a generator σi enters with positive
exponents only, then BT (β) ≥ 0. If there is a braid word for β where a
generator σj enters with negative exponents only, then BT (β) ≤ 0.

Part 2 of Proposition 5 follows by finding corresponding arcs: after a conjugacy,
we can assume that σ1 enters with positive exponents only; then the obvious arc
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connecting the boundary of the disk to the first puncture is moved strictly to the
right of itself. See also [42, Corollary 5.5, Proposition 13.1] for related statements
and alternate proofs for braids.

Proposition 5 gives an easy way to show that FT (φ) = 0 by finding two arcs,
one moved to the right by φ and the other moved to the left. Similarly, BT (β) = 0
if we can find a braid word for β where one generator enters with positive exponents
only, and the other with negative exponents only.

The right-veering property plays an important role in 3-dimensional contact
topology: a contact structure is tight if and only if the monodromy of each
compatible open book is right-veering [22]. Moreover, a contact structure supported
by an open book with connected boundary and pseudo-Anosov monodromy with
FT ≥ 1 is isotopic to a perturbation of a taut foliation, and therefore is weakly
symplectically fillable and has non-vanishing Heegaard Floer contact invariant
(with twisted coefficients) [23]. For planar open books, the condition FT > 1
for every boundary component implies tightness of the supported contact structure
[29]. In a similar vein, transverse braids in the standard contact S3 must be right-
veering if their Floer- or Khovanov-homological transverse invariants are non-zero
[8, 9, 51, 52], and braids with BT > 1 have non-vanishing transverse hat-invariant
in knot Floer homology [52].

A number of existing results connect the FDTC to knot invariants and topology
of 3-manifolds. Gabai proved the following result concerning the genus of fibered
knots with pseudo-Anosov monodromy:

Theorem 4 ([17]) Let K ⊂ S3 be a fibered knot. Suppose that its monodromy is
either pseudo-Anosov or reducible with pseudo-Anosov near the boundary. Then
either FT (K) = 0 or FT (K) = 1/r , where 2 ≤ |r| ≤ 4(g3(K))− 2.

Kazez and Roberts in Corollary 4.3 of [35] determined the possible FT values
for the periodic case and reducible case with the monodromy periodic near the
boundary. Putting together Theorem 4 with their work yields a very strict bound
on the values of FT for fibered knots in S3:

Theorem 5 ([17, 35, Theorem 4.5]) LetK ⊂ S3 be a fibered knot. Then FT (K) =
0 or FT (K) = 1/n, where n is an integer, |n| ≥ 2. In particular, − 1

2 ≤ FT (K) ≤
1
2 .

In a different direction, Hedden and Mark [24] found an priori bound on the value
of FT for any fibered knot in a fixed 3-manifold Y in terms of the dimension of the
Heegaard Floer homology with F = Z/2 coefficients and the size of the torsion in
singular first homology. As a corollary, they get a bound for the FDTC of classical
braids, via open books on the branched double cover.

Theorem 6 ([24]) Let Y be a closed oriented 3-manifold. Then for any fibered knot
K in Y with monodromy φ, the FDTC satisfies

|FT (φ)| ≤ 1

2
(dimF ĤF (Y )− |TorH1(Y ;Z)|)+ 1.
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Corollary 1 ([24]) Let β be an odd-strand braid representative of K ⊂ S3, and let
Σ(K) denote the double-branched cover of K . Then

|BT (β)| ≤ dimF ĤF (Σ(K))− |H1(Σ(K))| + 2.

Further, Hedden and Mark use the relation between the Khovanov homology of
a link and the Heegaard Floer homology of its branched double cover to prove a
bound on BT in terms of the rank of reduced Khovanov homology K̃h:

Theorem 7 ([24]) Let L be a link in S3, and let β c L with an odd number of
strands. Then

BT (β) ≤ dimF K̃h(−L)− | det(L)| + 2.

2.3 Dehornoy’s Braid Ordering

We will now describe another, more algebraic, approach to the fractional Dehn
coefficient for braids, based on Dehornoy’s braid ordering. The braid group Bm
is known to be orderable, namely, there exists a left-invariant linear order on Bm,
so that if β2 5 β1, then γβ2 5 γβ1 for any γ ∈ Bm. An ordering can be defined
by considering the action of the braid monodromy β ∈ Map(D,Q) on the on the
“standard” punctured disk D, with the set of punctures Q on the y-axis, labeled
Q = {p1, p2, . . . pm} from bottom to top. (See Fig. 1 in Sect. 4.) Roughly, β2 5 β1
iff β2 twists the y-axis more to the right than β1. These ideas can be traced back
to W. Thurston and can be extended to obtain many different orderings (known as
Nielsen–Thurston orderings).

Dehornoy [11] defined an ordering on Bm from an algebraic perspective. The
algebraic definition is equivalent to the geometric one described above. We say that
β 5 1 iff the braid β admits a braid word that contains the generator σi but no
σ−1
i and no σj for j < i. (A word of this form is called σi-positive, which has the

following geometric interpretation. Suppose we apply a σi-positive word β to the
punctured disk and pull the image of the y-axis taut while fixing the punctures. Then
the image of the y-axis under β will first diverge from y-axis at a point between the
(i − 1)’st and i’th punctures and at this point, the image will go to the right of
the y-axis.) Then, for β, β ′ ∈ Bm we define β 5 β ′ if (β ′)−1β 5 1. From the
algebraic perspective, checking the basic properties of the ordering is highly non-
trivial; from the geometric perspective, it is not hard to see that we get a well-defined
linear order, [15]. The algebraic approach becomes useful if one wants to study
combinatorial braid invariants. For example, it follows from [15] that a non-right-
veering braid is conjugate to a braid with a braid word where a generator σi enters
with negative exponents only (compare with Proposition 5). The specific property
of the braid word allows to relate geometry and combinatorics; this approach was
used in [8, 52].
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Let Δ = (σ1σ2 . . . σn−1)(σ1σ2 . . . σn−2) . . . (σ1σ2)(σ1) ∈ Bn be the Garside
fundamental braid. Observe that Δ2 = (σ1 . . . σn−1)

n is a full twist on n strands.
Using orderings, one defines the Dehornoy’s floor [β]D = n of a braid β ∈ Bm

as an integer n such that Δ2n+2 5 β 5 Δ2n. The Dehornoy floor is related to the
FDTC as follows [42]:

[β]D + 1 ≥ BT (β) ≥ [β]D and BT (β) = lim
n→∞

[βn]D
n

. (1)

In other words, the FDTC can be thought of as “homogenization” of the Dehornoy
floor, where one averages over large iterates of the braid. It is important to note that
while BT is an invariant of the conjugacy class of the braid, the Dehornoy floor is
not.

The following theorem of Ito [32] serves as motivation for our work.

Theorem 8 ([32]) If K is represented by an n-strand braid β, then

|[β]D| < 4g3(K)− 2

n+ 2
+ 3

2
≤ g3(K)+ 1.

Note that Ito uses a slightly different definition of the Dehornoy floor, so that
his formulas in [32] do not have the absolute value. Ito’s proof uses braid foliation
techniques. It would be interesting to establish a similar bound via knot homologies.

3 Concordance Invariants and Genus Bounds

In the last two decades, a number of knot-homological invariants were introduced to
study knot concordance and give bounds for the slice genus. It would be interesting
to find relations between these invariants and the FDTC of fibered knots or braids.
We briefly review the invariants that we need.

A number of invariants come from knot Floer homology, introduced indepen-
dently by Ozsváth and Szabó in [47] and by Rasmussen in [53]. See also [43]
for a survey. For the simplest version, they associate a Z-filtered chain complex
ĈFK(K) to a knotK . This chain complex is a powerful knot invariant; in particular,
it detects the Seifert genus g3(K) [48] and fiberedness [18, 46]. Total homology
of this chain complex is of rank 1. The minimum filtration level in which the
homology is supported yields an integer τ , which is a concordance invariant, [47]. A
concordance invariant s(K) with similar properties was found by Rasmussen [54]
using Khovanov homology [33]. For a link L ⊂ S3, the Khovanov homology is
a link invariant Kh(L), defined as the cohomology of a bigraded chain complex
(CKh(DL), d) associated to a diagram DL of the link. The invariant s(K) comes
from Lee’s deformation [36] of the Khovanov differential and the resulting spectral
sequence. The invariants s(K) and 2τ(K) share a number of properties, given in
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the next proposition, and coincide for many small knots but are known to differ in
general [25].

Proposition 6 ([47, 54]) The maps τ : C → Z and s : C → Z are surjective
homomorphisms on the knot concordance group C. They satisfy the following
properties:

1. The absolute values of τ(K) and s(K)
2 give lower bounds on the slice genus

g4(K),

|τ(K)| ≤ g4(K), |s(K)| ≤ 2g4(K).

2. If β is a positive n-braid of length k whose closure β̂ is a knot, then s(β̂) =
2τ(β̂) = k − n + 1. In particular, for the (p, q)-torus knot Tp,q , p, q ≥ 1, we
have

s(Tp,q) = 2τ(Tp,q) = (p − 1)(q − 1) = 2g(Tp,q).

3. τ(−K) = −τ(K) and s(−K) = −s(K) where −K denotes the concordance
inverse of K . (In fact this follows directly from the fact that τ and s

2 are
homomorphisms.)

4. Let K+ be a knot, and K− the new knot obtained by changing one positive
crossing in K+ to a negative crossing. Then

τ(K+)− 1 ≤ τ(K−) ≤ τ(K+)

and

s(K+)− 2 ≤ s(K−) ≤ s(K+).

Remark 1 It is worth remarking that any concordance homomorphism satisfying
(1)–(3) will also satisfy a crossing change formula analogous to the one given in
(4). Specifically, the argument given in Corollary 3 of [38] uses only the formal
properties (1)–(3).

The bound on the slice genus is shown to be sharp for the classes of positive,
quasipositive, and strongly quasipositive knots, [38, 47, 50]. In general, we have the
following estimate for τ and s:

Lemma 1 Let β be an n-braid with k positive crossings and � negative crossings.
If the closure of β is a knot β̂ then

1

2
(k − �− n+ 1) ≤ τ(β̂) ≤ 1

2
(k − �+ n− 1)

and
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k − �− n+ 1 ≤ s(β̂) ≤ k − �+ n− 1.

Proof Let β+ denote the braid obtained from β by changing all of the negative
crossings to positive and β− the braid obtained by changing all of the positive
crossings to negative. Then by part (3) of Proposition 6, we have τ(β̂+)− � ≤ τ(β̂)
and τ(β̂) ≤ τ(β̂−)+ k. Now parts (2) and (4) imply that

τ(β̂+) = 1

2
(k + �− n+ 1)

since β̂+ is a positive braid, and

τ(β̂−) = −1

2
(k + �− n+ 1)

since β̂− = −β̂+.
Putting this information together, we see that

1

2
(k − �− n+ 1) = τ(β̂+)− � ≤ τ(β̂) ≤ τ(β̂−)+ k = 1

2
(k − �+ n− 1).

Similarly, for s we have

s(β̂+) = k + �− n+ 1

and

s(β̂−) = −s(β̂+) = −k − �+ n− 1.

The crossing change formula now gives the same inequality we had for τ , except is
it multiplied by the necessary factor of two,

s(β̂+)− 2� ≤ s(β̂) ≤ s(β̂−)+ 2k

Thus,

k − �− n+ 1 ≤ s(β̂) ≤ k − �+ n− 1.

Remark 2 The lower bound for τ(β̂) above appears in [38, Corollary 11]. The lower
bound for s(β̂) appears in [51, Proposition 4] and [58, Lemma 1.C]. Each of these
bounds immediately implies the slice-Bennequin inequality due to Rudolph. The
upper bound for s(β̂) above is no stronger than the bounds from [40, Theorem 1.10]
and additionally can be obtained from [44, Theorem 3.5].

The full knot Floer complex yields further concordance invariants, such as
ν+ [28]. We will discuss their connection to monodromies as well. Since these
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invariants give lower bounds for the slice genus, we can ask about their relation
to the FDTC.

Using properties of τ and s, we can easily prove that if one starts with a fixed
knot and adds many full positive twists, then indeed the genus, slice genus, τ and s
invariants all grow. IfΔ is the Garside element, the braid βΔ2n is the concatenation
of β with n positive full twists. Note that BT (βΔ2n) = BT (β)+n by Proposition 4.
We prove Proposition 1 from the Introduction:

Proposition 1 Let β ∈ Bm be a braid, and letKn be the closure of the braid βΔ2n.
When n becomes large, g3(Kn) = g4(Kn) and this value grows roughly as 1

2nm
2.

Proof Suppose that β has k positive crossings and l negative crossings. We first
show that if n ≥ l then the braid βΔ2n is a positive braid. Using the braid group
relations it is not hard to show thatΔ2σ−1

i is a positive braid for each 1 ≤ i ≤ m−1.
Since Δ2 is central, each negative crossing can be removed by a single full-twist.

Thus, when n ≥ l, since Kn is the closure of a positive braid, g3(Kn) = g4(Kn)

[34]. In fact, we have g3(Kn) = g4(Kn) = τ(Kn) since τ is equal to the slice-genus
for positive braids [50]. By Proposition 6(2), τ(Kn) is a simple function of length
of the positive braid βΔ2n and the number of strands:

g3(Kn) = g4(Kn) = τ(Kn) = 1

2
(k + (m− 1)mn− l −m+ 1).

Since m, l and k are constant, we achieve the desired asymptotics.

The above proposition tells us that the FDTC, the 3-genus, and the slice genus
have similar asymptotics when we add more and more full twists to a given braid,
but unlike Ito’s bound, it gives no information about the relation between the FDTC
and genus of the original braid, before the twists are added. Note that Ito’s bound is
weaker if we add a large number of positive twists to a fixed braid: it only says that
the genus will grow as 1

4nm.
Adding a single full twist to a braid increases the FDTC by one. A natural

question to ask is whether this move also necessarily changes the slice genus,
or whether it changes the concordance class of the knot. Certainly the above
proposition shows that this is true asymptotically, but we show in the following
proposition that Theorem 1.6 of Sato’s work in [56] implies that this is also true for
any fixed number of full twists for braids with three or more strands.

Proposition 2 Let β ∈ Bm be a braid, m ≥ 3, and βk = βΔ2k , k ∈ Z, k > 0. Then
all braid closures β̂, β̂k , k > 0 lie in pairwise distinct concordance classes.

Proof Hom and Wu in [28] define a refinement of the τ -invariant called ν+ arising
from the knot Floer complex. This invariant is a knot concordance invariant. In
Proposition 1.5 of [56], Sato defines a partial order <ν+ on the concordance group
mod ν+-equivalence. Let β1 be the braid obtained by adding a single positive full-
twist to β, that is, β1 = βΔ2. Theorem 1.6 (2) of [56] implies that [β̂] <ν+ [β̂1].
In particular, β̂ and β̂1 are not concordant. As we add more full twists, we see that
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[β̂] <ν+ [β̂1] <ν+ [β̂2] <ν+ · · · <ν+ [β̂k]. So all of these knots live in different
ν+-equivalence classes and none of them can be concordant to each other.

We note that for braids with two strands, Proposition 2 is false, as the braids σ−1
1

and σ1 differ from each other by a single full twist inB2 but both close to the unknot.
We prove Proposition 3 from the Introduction. The argument is based on the

formal properties shared by τ and s.

Proposition 3 Let β = (Δ2)kσ−1
1 σ

−(6k−1)
2 in B3. Then β̂ is a knot, BT (β) ≥ k−1,

|τ(β̂)| ≤ 1 and |s(β̂)| ≤ 2.

Proof Observe that if Δ2β ′ is any braid with β̂ ′ a knot then Δ̂2β ′ is also a knot.
Now one can check that β ′ = σ−1

1 σ
−(6k−1)
2 is a knot.

Lemma 1 implies

−1 = 1

2
(6k − (6k − 1)− 1 − 2) ≤ τ(β̂) ≤ 1

2
(6k − (6k − 1)− 1 + 2) = 1.

Thus |τ(β̂)| ≤ 1. Similarly Lemma 1 implies that |s(β̂)| ≤ 2. To show that
FDTC(β) ≥ k − 1, first note that using braid relations we can rewrite

β = (Δ2)k−1σ1σ2σ
2
1 σ

−6k+2
2

For brevity let us write σ1σ2σ
2
1 σ

−6k+2
2 = α. Note also that by property (c)

of Proposition 4, FDTC(β) = k − 1 + FDTC(α). Finally, by Proposition 5,
BT (α) ≥ 0 since it contains copies of σ1 but no copies of σ−1

1 .

Thus any bound relating the fractional Dehn twist coefficientBT (β) and the slice
genus will have to resort to different proof methods than directly using the τ or the
s-invariant.

4 Quasipositive Braids and the FDTC Bounds

A naive question would be to ask whether Theorem 8 holds as stated if we
replace the three-genus by the slice genus. For instance, slice genus and three-
genus are equal for closures of positive braids [34], and so the slice genus version of
Theorem 8 immediately holds for positive braid closures. The next natural class of
braids to consider are quasipositive braids: braids that can be written as a product of
conjugates of the positive Artin generators. For quasipositive braids, we will prove
the Ito-like bound stated in Theorem 2. In this section we assume the braid index
n ≥ 3.

Definition 1 We say that an n-braid β ∈ Bn is quasipositive if it is represented by
a braid word of the form
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Fig. 1 Punctured disk Dn.
Arcs a, point p• and γ1 := ρ1
are used in the proof of
Proposition 8

(w1σi1w
−1
1 ) (w2σi2w

−1
2 ) · · · (wmσimw−1

m )

where σi1 , . . . , σim ∈ {σ1, . . . , σn−1} and wi are some braid words in
{σ±

1 , . . . , σ
±
n−1}. We say that the braid word has quasi-positive-length (qp-length)

m.

Let us identify Dn with the unit disk in R
2 equipped with (x, y) coordinates.

Place n punctures on the y-axis and call them p1, . . . , pn so that the y-coordinate
of pi is less than that of pi+1 (see Fig. 1). Let ρi be the subarc of the y-axis joining
pi and pi+1.

For a properly embedded arc γ in Dn joining two puncture points, let Hγ ∈
MCG(Dn) denote the positive half twist along the arc γ . The braid group Bn is
isomorphic to the mapping class group MCG(Dn). With this isomorphism φ :
Bn → MCG(Dn), a braid word w ∈ Bn is identified with the mapping class φ(w)
denoted by φw := φ(w) ∈ MCG(Dn). Let

γwσiw−1 := φw(ρi)

be a properly embedded arc inDn that joins two distinct points of p1, . . . , pn. Then
the braid word wσiw−1 ∈ Bn is identified with the positive half twist along the arc
γwσiw−1 , thus,

Hγ
wσiw

−1 = φwσiw−1 .

For more on this construction, see for instance [13] Example 3.5 or [20] Lemma 2.4.

Proposition 7 Let β be a quasipositive n-braid. Let m ≥ 1. The braid β has qp-
length m if and only if there exist properly embedded arcs γ1, . . . , γm joining the
punctures in Dn as above, such that φβ = Hγm ◦ · · · ◦Hγ1 .
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With Proposition 7 we may identify the braid β ∈ Bn and the mapping class
φβ = Hγm ◦ · · · ◦Hγ1 ∈ MCG(Dn) and we have

BT (β) = FT (Hγm ◦ · · · ◦Hγ1).

Here, we recall a useful lemma. The lemma applies for the FDTC with respect
to any fixed boundary component C of a surface S (S may have one or several
boundary components).

Lemma 2 ([30]) Let φ ∈ MCG(S). Fix a boundary component C of the surface
S and let FT (φ) stand for the FDTC with respect to C. Let TC denote the positive
Dehn twist about C.

If there exists an essential arc γ ⊂ S that starts on C and satisfies T mC (γ ) 6
φ(γ ) 6 T MC (γ ) for some m,M ∈ Z then

m ≤ FT (φ) ≤ M.

In the above lemma, the symbol ≺ represents an ordering on the set of properly
embedded arcs, see [31, Definition 3.2]. We write α ≺ β if arcs α and β start at the
same boundary point, realize the geometric intersection number, and β lies on the
right side of α in a small neighborhood of the starting point. (The notion “β to the
right of α” was already discussed in Sect. 2.2. Here, we write 6 to allow for the case
α = β.)

Lemma 3 Let the braid index n ≥ 3. Let m ≥ 1. Let γ1, . . . , γm be properly
embedded arcs in Dn connecting two distinct punctures. Then we have FT (Hγ1) =
0 and

0 ≤ FT (Hγm ◦ · · · ◦Hγ1) ≤ m− 1.

Proof Since n ≥ 3 there exists some essential arc that is fixed by the half twistHγ1 .
By Lemma 2 this means that FT (Hγ1) = 0. (Note that if n = 2 then FT (Hγ1) = 1

2 .)
By the quasimorphism property of the FDTC in Proposition 4 and induction on m,
we obtain 0 ≤ FT (Hγm ◦ · · · ◦Hγ1) ≤ m− 1.

LetK be a link in S3 = ∂B4. Let χ4(K) denote the maximal Euler characteristic
of an oriented surface that is smoothly embedded in the 4-ball B4 and bounded by
K .

Lemma 4 ([55]) Assume that β ∈ Bn is a quasipositive braid of qp-lengthm. Then
χ4(β̂) = n−m.

With the above two lemmas, we prove the following theorem.

Theorem 9 (Cf. Theorem 2) Let β ∈ Bn be a quasipositive n-braid of qp-length
m. Then
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BT (β) ≤ m− 1 = n− χ4(β̂)− 1.

In particular, when the braid closure β̂ is a knot then

BT (β) ≤ 2g4(β̂)+ (n− 2).

Proof By Lemma 3, we have BT (β) ≤ m − 1. By Lemma 4, we have m − 1 =
n− χ4(β̂)− 1.

The next proposition shows that the upper bound of m− 1 for BT (β) is the best
possible, as it guarantees the existence of a quasipositive braid β of quasi-positive
length m with BT = m− 1.

Proposition 8 For every m = 2, 3, 4, · · · there exist properly embedded arcs
γ1, · · · , γm in Dn joining distinct puncture points such that

FT (Hγm ◦ · · · ◦Hγ1) = m− 1.

In the proof of Proposition 8 we use oriented train tracks. A train track is a graph.
The edges are oriented and weighted. Each vertex has valence 3 or 4 where incoming
edges and outgoing edges tangentially meet. As shown in the left picture in Fig. 2,
at the vertex two outgoing edges (with weights b and c) are tangent to the incoming
edge (with weight a) and the weights satisfy the equation a = b + c. (The same
rule applies for a valence 4 vertex.) Replacing each edge of weight a with a parallel
edges we obtain arcs. The right picture of Fig. 2 shows arcs carried by the train track
with weights a = 6, b = 4 and c = 2. Orientations of the edges in the train track
induce orientations of the carried arcs.

Proof of Proposition 8 Let p1, · · · , pn be the punctures of the disk Dn. Let C =
∂Dn denote the boundary of the disk. Let a be an arc connecting p1 to C as in Fig. 1.
Let γ1 := ρ1, the line segment of the y-axis joining p1 and p2. We orient γ1 upward
(from p1 to p2).

To define a sequence of arcs {γm|m = 2, 3, · · · } we use two oriented train track
templates T1st(m) and T2nd(m) depicted in Fig. 3.

In the train track T1st(m), the orientation of edges near punctures are all
outward. The bottom edge has weight 1 and ends at a point p• on the y-axis between
p0 and p1. Labels jm ∈ N and αm,0, αm,1,. . . ,αm,2n−5 ∈ {0, 1} denote the weights
of the edges. The edges αm,i are labeled clockwise and αm,0 starts from the puncture

Fig. 2 An example of an
oriented train track and its
corresponding arcs
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Fig. 3 Train tracks T1st(m) and T2nd(m) for γm, and a train track carrying the arc Hγm ◦ · · · ◦
Hγ1 (a)

p3. (The same rule applies for the edges βm,i mentioned below.) For simplicity, the
subscript m will be omitted in the following and αi = αm,i . We require only one of
α0,. . . ,α2n−5 is 1 and the rest of them are all 0. The weights of the unlabeled edges
can be easily computed.

The edges of T2nd(m) are oriented and at each puncture the orientation points
into the puncture. The weights β0, · · · , β2n−5 are either 0 or 1 and only one of them
is 1. The starting point of the bottom edge is p•.

Let m = 2. The arc γ2 is defined to be an arc carried by the train track T1st(2)
first, and then T2nd(2), where j2 = 1 and α1 = β2 = 1. We see that γ2 starts at p2
and ends at p3 as in Fig. 4.

The image of the arc a under the diffeomorphism Hγ2 ◦Hγ1(a) is depicted in the
bottom right picture in Fig. 4, which shows that

TC(a) ≺ Hγ2 ◦Hγ1(a),

thus

FT (Hγ2 ◦Hγ1) ≥ 1.

For a general m, suppose that m − 1 = k(2n − 4) + r where k ∈ Z≥0 and
r ∈ {0, 1, . . . , 2n − 5} the remainder. The arc γm is defined to be an arc that is
carried by T1st(m) first and then T2nd(m) with αr = βr+1 = 1 (here, the subscript
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Fig. 4 (m = 2). The arcs γ2 and Hγ2 ◦Hγ1 (a) and their train tracks

r + 1 is considered modulo 2n− 4) and

jm =
⌈
m− 1

2n− 4

⌉
(= k or k + 1).

For example, when m = 3 the arcs γ3 and Hγ3 ◦ Hγ2 ◦ Hγ1(a) are illustrated in
Fig. 5.

See Fig. 3 again. We observe two things: (1) Since αr = βr+1 = 1 the templates
T1st(m + 1) and T2nd(m) are exactly the same except that they are oppositely
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Fig. 5 (m = 3). Arcs γ3 and Hγ3 ◦Hγ2 ◦Hγ1 (a) and their train tracks
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oriented and T1st(m + 1) goes to the left side of p1 whereas T2nd(m) goes to the
right side of p1. (2) Observe that T2nd(m) is embedded in Hγm ◦ · · · ◦Hγ1(a).

With these observations in mind, applying the half-twist Hγm+1 to the arc Hγm ◦
· · · ◦Hγ1(a), the embedded part T2nd(m) is erased by T1st(m+1) (which is the 1st
part of γm+1) and then T2nd(m+ 1) (which is the 2nd part of γm+1) overwrites the
erased part of Hγm ◦ · · · ◦Hγ1(a). The resulting arc is exactly Hγm+1 ◦ · · · ◦Hγ1(a).

Therefore, by induction on m we see that the image Hγm ◦ · · · ◦Hγ1(a) is carried
by the train track in the right sketch in Fig. 3.

The outer circle in the right picture in Fig. 3 is weightedm−1, which means that

T m−1
C (a) ≺ Hγm ◦ · · · ◦Hγ1(a).

By Theorem 9 and Lemma 2 we obtain FT (Hγm ◦ · · · ◦Hγ1) = m− 1.

Corollary 2 There exist slice knots represented by quasipositive n-braids with
BT = n− 2.

Proof For m = n − 1, the construction of Proposition 8 produces a quasipositive
braid β with BT = n − 2. If we show that β is connected, then we get a slice
knot, since by Lemma 4 we have χ4(β) = 1. To see connectedness, observe that the
monodromy of β is the product of positive half-twists about the arcs γ1, γ2, . . . γn−1
constructed in Proposition 8. The arc γk connects the k-th puncture to the (k +
1)-st puncture, so the corresponding half-twist acts on the set of punctures by a
transposition interchanging the k-th and (k + 1)-st punctures. It follows that the
composition of the half-twists about γ1, γ2, . . . γn−1 gives a cyclic permutation of
all the punctures: n �→ n − 1, . . . , 3 �→ 2, 2 �→ 1, 1 �→ n. So the resulting braid is
connected.

In general, knots and links can be represented by a braid word of the form

(w1σi1w
−1
1 )

ε1 (w2σi2w
−1
2 )

ε2 · · · (wmσimw−1
m )

εm (2)

where the exponents ε1, . . . , εm ∈ {1,−1}. When εj = 1 the word wjσij w
−1
j is

called a positive syllable and when εj = −1 the word (wjσij w
−1
j )

−1 is called a
negative syllable. Let p+ ≥ 0 be the number of positive syllables and p− ≥ 0 be the
number of negative syllables in the above braid representative (2). Thus p+ +p− =
m. Note that when p+ = m and p− = 0 the braid is quasipositive. Theorem 9 has
another corollary.

Corollary 3 Let β ∈ Bn be the closure of an n-braid

(w1σi1w
−1
1 )

ε1 (w2σi2w
−1
2 )

ε2 · · · (wmσimw−1
m )

εm

that does not admit destabilizations and satisfies χ4(β) = n−m. Let p+ (resp. p−)
be the number of positive (resp. negative) syllables. Then the FDTC of β has the
following upper and lower bounds:
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min{−p− + 1, 0} ≤ BT (β) ≤ max{p+ − 1, 0}

Proof Given a braid word (w1σi1w
−1
1 )

ε1 (w2σi2w
−1
2 )

ε2 · · · (wmσimw−1
m )

εm we
define a quasipositive braid word as follows. For j = 1, . . . , m let

δj =
{

1 if εj = 1,
0 if εj = −1.

Let

βP = (w1σi1w
−1
1 )

δ1 (w2σi2w
−1
2 )

δ2 · · · (wmσimw−1
m )

δm.

Note that βP is a quasipositive (possibly trivial) braid of qp-length p+. For every
properly embedded arc γ in the n-punctured disk Dn the images under β and βP
satisfy

β(γ ) 6 βP (γ )

thus, by Theorem 9 BT (β) ≤ BT (βP ) ≤ max{p+ − 1, 0}.
The lower bound can be obtained similarly.

Even though Proposition 8 claims sharpness, the estimates of the FDTC in both
Theorem 9 and Corollary 3 are in general very rough for most braids as the next
Proposition 9 implies.

Proposition 9 Let β ∈ Bn. If β̂ admits a positive (resp. negative) braid destabiliza-
tion then 0 ≤ BT (β) ≤ 1 (resp. −1 ≤ BT (β) ≤ 0).

Proof Let β̂ be a closed n-braid that admits a positive destabilization. Since the
FDTC is invariant under conjugation, we may assume that β is represented by a
braid word wσn−1 where w ∈ Bn−1. Define arcs δ and γn−1 as in Fig. 6. We
may identify the braids σn−1 and w with the mapping classes Hγn−1 and φw ∈
MCG(Dn). Since w ∈ Bn−1 we get φw(δ) = δ. By Lemma 2 we get BT (φw) = 0.
Likewise, we get BT (Hγn−1) = 0 because we can find some properly embedded arc
that is fixed by the half twist Hγn−1 . By Proposition 4 we get |BT (β)| ≤ 1.

Since T 0
C(δ) = δ ≺ φβ(δ) = Hγn−1(δ), Lemma 2 implies that 0 ≤ BT (β). Thus

we get 0 ≤ BT (β) ≤ 1.

5 An Interesting Example

The examples in the last section show that the statement of Ito’s Theorem 8
does not hold when we replace the genus with the slice genus, since Corollary 2
produces slice knots that are the closures of n-braids with BT equal to n − 2.
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Fig. 6 Definition of the arcs
δ and γn−1

Fig. 7 Km,k is the closure of the braid β = (σ2σ1)
3m+1σ−2k

2

In this section we give additional examples, fundamentally different from those
in Corollary 2, that also show that Theorem 8 does not hold for the slice genus.
Notice that for quasipositive 3-braids β whose closures are slice, Theorem 9 implies
that |BT (β)| ≤ 1. In Proposition 10, we produce examples of 3-braids that have
arbitrarily large |BT |:
Proposition 10 For each even m > 0, there exists a knot Km and its 3-braid
representative βm such that g4(Km) ≤ m/2 + 1 while [βm]D = m.

We now describe the examples necessary to prove Proposition 10. Consider the
braid word β = (σ2σ1)

3m+1σ−2k
2 and let Km,k = β̂, see Fig. 7. Note that using the

braid relations we can write β = Δ2mσ2σ1σ
−2k
2 where Δ = σ1σ2σ1 is the Garside

element for braids of 3 strands.

Proposition 11 Let β = (σ2σ1)
3m+1σ−2k

2 . Then we have [β]D = m.
Proof To show this, it is enough to show that Δ2m ≤D β <D Δ2m+2. To check
that β <D Δ2m+2 we must show that β−1Δ2m+2 is σi−positive for i = 1 or 2.
Simplifying, we have



Braids and Concordance 315

Fig. 8 Km,k after two band
moves have been performed,
with a decomposing sphere

β−1Δ2m+2 = σ 2k
2 σ

−1
1 σ−1

2 Δ−2mΔ2m+2

= σ 2k
2 σ

−1
1 σ−1

2 Δ2

= σ 2k
2 σ

−1
1 σ−1

2 (σ2σ1)
3

= σ 2k
2 (σ2σ1)

2,

which is in fact a σ1-positive word. On the other hand

(Δ2m)−1β = Δ−2mΔ2mσ2σ1σ
−2k
2

= σ2σ1σ
−2k
2 ,

which is also a σ1-positive word. The proposition follows.

We are now ready to prove Proposition 10.

Proof of Proposition 10 For any knot in the familyKm,k there is a sequence of two
band moves on K that yields the connected sum of torus knots K ′ = T3,3m+1# −
T2,2k+1, see Fig. 8.

By Feller [14, Corollary 3], we have

g4(K
′) = max{|τ(T3,3m+1)− τ(T2,2k+1)|, |v(T3,3m+1)− v(T2,2k+1)|}

where v(K) := ΥK(1) is the Upsilon invariant evaluated at t = 1.
The values of τ and v can be explicitly calculated for some torus knots. Let p

and q be positive integers, then by Ozsváth and Szabó[47]

τ(Tp,q) = (p − 1)(q − 1)

2
.

For v we have that
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v(T2,2k+1) = −k and v(T3,3m+1) = −2m

as computed by Feller [14].
Now for each even integer m, let Km denote the closure of the braid βm =

(σ2σ1)
3m+1σ−5m

2 . Let K ′
m = T3,3m+1# − T2,5m+1 which is obtained from Km from

the two band moves illustrated in Fig. 8. Then

|τ(T3,3m+1)− τ(T2,5m+1)| = |3m− 5m/2| = m/2

and

|v(T3,3m+1)− v(T2,5m+1)| = | − 2m+ 5m/2| = m/2.

Thus, g4(K
′
m) = m/2. SinceKm andK ′

m are related by two band moves, g4(Km)

and g4(K
′
m) differ by at most 1 and we obtain g4(Km) ≤ m/2 + 1. Together with

Proposition 11, this concludes the proof.

6 Potential Bounds on Slice Genus from the Braid
Perspective

It is possible that the examples in Propositions 8 and 10 represent a worst-case
scenario. Inspired by these examples and Theorem 2, in this section we further probe
the following question.

Question 1 For any n-strand β representing a knot K , is it always true that

|BT (β)| ≤ 2g4(K)+ n− 2?

If not, is there a bound of the order

|BT (β)| ≤ C(n)g4(K)+D(n),

where C(n),D(n) are constant for each fixed n?

Equivalently, similar questions can be asked about the Dehornoy’s floor [β]D ,
since [β]D and the fractional Dehn twist coefficient BT (β) are related by (1).

One of the crucial observations necessary for the examples in Proposition 10
is that there exist cobordisms of controlled genus between stacked braids and
connected sums of closed braids. We observe here that with a positive answer to
Question 1 (or any similar bounds), this could produce an application: one could
find bounds on the slice genus of connected sums of large torus knots. The slice
genus of sums and differences of torus knots has been studied in several papers, see
for instance [1, 2, 14, 37, 41].
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In addition to the quasipositive braids studied in Sect. 4, we are able to answer
Question 1 for certain slice knots. In fact, under some additional hypotheses, slice
knots satisfy stronger bounds. First, note that if β closes to the unknot, then
|BT (β)| ≤ 1 by Theorem 8. (It is easy to find examples showing that even for
the unknot, BT does not have to be zero.)

Further, recall that taking the connected sum of a knot and its mirror is a useful
method for constructing slice knots: for any K , K# −K is a slice knot.

Proposition 12 (Follows Directly from [42]) Choose an arbitrary oriented knot
K in S3. For any braid β that closes to β̂ = K# −K , we have that |BT (β)| ≤ 1.

Proof Theorem 15.3 of [42] states that for any braid α such that |BT (α)| > 1 and
α̂ is a knot, α̂ is prime—that is, it cannot be expressed as a connected sum. The
proposition directly follows by the contrapositive.

We provide evidence for a positive answer to Question 1 for special classes of
three-braids in Theorem 3.

Theorem 3 LetK be a knot that can be represented as the closure of a braid in B3.
Suppose further that K is slice, or more generally, that K has a finite order in the
concordance group. Then any 3-braid representative β of K satisfies |BT (β)| ≤ 1.

A powerful tool at our disposal is a classification up to conjugation due to
Murasugi. Before proving the theorem, we state the classification of 3-braids and
note some properties of slice 3-braids.

Theorem 10 ([45]) Let w be a braid word in B3. Then w is conjugate to one of the
following:

1. Δ2dσ1σ
−a1
2 · · · σ1σ

−an
2 , where the ai ≥ 0 with at least one ai = 0

2. Δ2dσm2 for m ∈ Z

3. Δ2dσm1 σ
−1
2 where m ∈ {−1,−2,−3}.

We will say a braid word in B3 is in Murasugi normal form if it takes one of
the above three forms. Baldwin classifies which closures of 3-braids are quasi-
alternating in the following theorem.

Theorem 11 (Theorem 8.6 in [5]) Suppose L is link with braid index at most 3
and is the closure of a braid β represented by w ∈ B3 which is in Murasugi normal
form. Then L is quasi-alternating if and only if one of the following holds:

1. w is in the first class and d ∈ {−1, 0, 1};
2. w is in the second class and either d = 1 andm ∈ {−1,−2,−3} or d = −1 and
m ∈ {1, 2, 3};

3. w is in the third class and d ∈ {0, 1}.
Baldwin also obtains a result on 3-braids with finite concordance order.

Proposition 13 (Proposition 1.6 in [5]) If K is a knot with braid index at most 3
and K has finite concordance order, then K can be represented as the closure of a



318 D. Hubbard et. al.

braid of the form Δ2dσ1σ
−a1
2 · · · σ1σ

−an
2 where the ai ≥ 0 with at least one aj = 0,

d ∈ {−1, 0, 1}, and the ai satisfy some further conditions.

This implies the following immediate corollary.

Corollary 4 A knot K with braid index at most 3 which has finite concordance
order is quasi-alternating.

Proposition 14 Let w ∈ B3 be a braid word in Murasugi normal form. Then

1. BT (w) = d if w is in class (1).
2. BT (w) = d if w is in class (2).
3. BT (w) = d − 1/3, BT (w) = d − 1/2 or BT (w) = d − 2/3 if m is −1, −2 or

−3 respectively, and w is in class (3).

Proof If w is in class (1) then BT (w) = d + BT (σ1σ
−a1
2 · · · σ1σ

−an
2 ). If w is in

class (2) then BT (w) = d + BT (σm2 ) = d. It follows from Proposition 5 that the
second summand in each case is zero, so we obtain that BT (β) = BT (w) = d for
w in class (1) or (2).

If w is in class (3), then BT (w) = d + BT (σm1 σ
−1
2 ). Now BT (σm1 σ

−1
2 ) is

not zero. There are three cases to consider since m ∈ {−1,−2,−3}. We compute
the following using the Artin relations, and properties of the FDTC enumerated in
Proposition 4.

(a) BT (σ−1
1 σ−1

2 ) = (1/3)BT ((σ−1
1 σ−1

2 )3) = (1/3)BT (Δ−2) = −1/3
(b) BT (σ−2

1 σ−1
2 ) = (1/2)BT ((σ−2

1 σ−1
2 )2) = (1/2)BT (Δ−2) = −1/2

(c) BT (σ−3
1 σ−1

2 ) = (1/3)BT ((σ−3
1 σ−1

2 )3) = (1/3)BT (Δ−4) = −2/3

Thus for w in class (3) we have that BT (w) = d − 1/3, BT (w) = d − 1/2 or
BT (w) = d − 2/3 if m is −1, −2 or −3 respectively.

Proof of Theorem 3 Corollary 4 shows that β closes to a quasi-alternating knot.
We know that β is conjugate to a braid word w in one of the three classes of
Theorem 10. To close to a quasi-alternating knot, w must satisfy the conditions
on d in Theorem 11.

If w is in class (1) or (2) this means that −1 ≤ BT (w) ≤ 1 by Proposition 14. If
w is in class (3) then −2/3 ≤ BT (w) ≤ 1. The theorem follows from the fact that
BT is a conjugacy invariant.

We conclude the section with some computational evidence toward an affirmative
answer to the first bound given in Question 1. We use the Hedden-Mark bound
of Corollary 1. The quantity dimF ĤF (Σ(K)) can be obtained from computations
done in [60]. We set aside slice knots with 3-braids representatives, as for these
Question 1 is already answered by Theorem 3. For all other knots with 12 crossings
or fewer, we calculate that the inequality

dimF ĤF (Σ(K))− |H1(Σ(K))| + 2 ≤ 2g4(K)+ n− 2. (3)

holds with 120 exceptions. As before, n stands for the braid index.
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This means that the bound |BT (β)| ≤ 2g4(K) + n − 2 is valid for odd-strand
braid representatives all but possibly 120 knots with 12 crossings or fewer, i.e. for
at least 96% of such knots. (According to KnotInfo, there are 2977 knots with 12
crossings or fewer.)

Similarly, we can check that odd-strand braid representatives of all but 5 quasi-
positive knots of 12 crossings or fewer satisfy inequality (3), and thus they satisfy
the first inequality in Question 1. (For these knots, this experimental statement is
stronger than Theorem 9, as it also applies to non-quasipositive braid representatives
of quasipositive knots.)

7 Fibered Knots and Knot Floer Stable Equivalence

In Sects. 7 and 8, we collect some observations about the relationship between the
fractional Dehn twist coefficient of fibered knots and their topological properties.

We say that two knots are knot Floer stably equivalent if their knot Floer
complexes are isomorphic after possibly adding acyclic summands. Hom [26]
shows that if two knots in S3 are concordant, then they are knot Floer stably
equivalent. Moreover, if two knots are knot Floer stably equivalent, then many
invariants derived from knot Floer homology will coincide for the two knots. For
example, the Ozsváth-Stipsicz-Szabó concordance invariant ΥK(t) [49] will satisfy
ΥK1(t) = ΥK2(t) if K1 and K2 are stably equivalent.

He, Hubbard, and Truong showed in [21] that the ΥK(t) invariant can detect
right-veeringness. More precisely:

Theorem 12 ([21, Theorem 1.3]) Suppose K is a fibered knot in S3. Then
associated to K is an open book decomposition (Σ, φ) of S3. If Υ ′

K(t) = −g for
some t ∈ [0, 1), where g is the genus of the fibered surface Σ , then φ : Σ → Σ is
right-veering.

We note that Theorem 1.3 in [21] is slightly more general, as it is stated for null-
homologous knots in rational homology three-spheres. Due to this theorem we are
motivated to ask whether the knot Floer stable equivalence class of a fibered knot
also can detect right-veeringness. However, it is easy to see that the answer is no.

Lemma 5 The right-veering property and the FDTC are not invariants of knot
Floer stable equivalence of a fibered knot.

Proof Let K be the (2, 1)-cable of the figure-eight knot, which has positive FDTC
by Kazez and Roberts [35] so it is right veering. Since K#P# − P is concordant to
K for any fibered knot P , the connected sum K#P# − P is stably equivalent to K .
The monodromy of K#P# − P sends some arcs to the right and some to the left.
Thus, K#P# − P is not right-veering, and the fractional Dehn twist coefficient of
K#P# − P is zero. (See Proposition 5 and the discussion that follows it.)
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(a) (b) (c) 

(d) (e)

Fig. 9 Fibered slice knots with vanishing fractional Dehn twist coefficient. Each figure shows a
pair of arcs x (in red) and y (in blue) such that φ(x) (in orange) is to the right of x and φ(y) (in
purple) is to the left of y. The monodromies are presented using the conventions of Knot Info [39];
see Fig. 10. A lowercase letter means a right-handed Dehn twist and an uppercase letter means
a left-handed Dehn twist. A word is read from right to left; thus, aB means first perform a left-
handed twist around b then perform a right-handed twist around a. (a) The monodromy φ for 89 is
abcDEF . (b) The monodromy φ for 927 is abCDEf . (c) The monodromy φ for 10137 is abCdF .
(d) The monodromy φ for 10140 is abbCDf . (e) The monodromy φ for 11a96 is aBcDEf

In the next section, we will study the fractional Dehn twist coefficient of a special
class of fibered knots.

8 Fractional Dehn Twist Coefficient of Fibered Slice Knots

Many simple examples of fibered slice knots have monodromies with the fractional
Dehn twist coefficient zero. For example, given any fibered knot K , the slice knot
K# − m(K) has the FDTC zero. One way to see this is that we can assume there
is some arc that the monodromy of K sends to the right, then the corresponding arc
is sent to the left by the monodromy for −m(K) and so K# − m(K) sends arcs to
both the right and the left.

There are many more examples of fibered slice knots with fractional Dehn
twist coefficient zero. For instance, the knot 820 is slice and fibered, and has
monodromy with fractional Dehn twist coefficient zero [35, Example 2.8]. Figure 9
gives several more examples of fibered slice knots with vanishing fractional Dehn
twist coefficient FT = 0. For the monodromies the conventions of Knot Info are
followed [39]; see Fig. 10.



Braids and Concordance 321

Fig. 10 This figure shows the curves whose Dehn twists are generators of the mapping class group
of a fiber surface of genus two and three with one boundary component

Despite the numerous examples of fibered slice knots with vanishing fractional
Dehn twist coefficient, the next proposition shows there exist many non-vanishing
examples.

Proposition 15 For every integer |p| ≥ 2, there exist fibered, slice knots with
fractional Dehn twist coefficient 1

p
.

Proof Our examples are (p, 1)-cables of fibered, slice knots. Indeed, any cable of a
fibered knotK is well-known to be fibered. This follows from [59] or from explicitly
building a fibration from the fibration of the companion knot K and the fibration of
the pattern torus knot. If K and K ′ are concordant, then their (p, q)-cables are also
concordant (see, for example, [27]). Thus, if K is a slice knot, then the (p, 1)-cable
of K is also slice. The fractional Dehn twist coefficient of the (p, 1)-cable of K is
1/p = 0 by Kazez and Roberts [35, Proposition 4.2].

The examples in Proposition 15 are cable knots and thus they correspond to
reducible monodromies. Restricting to fibered slice knots with pseudo-Anosov
monodromies leads to the following question.

Question 2 IfK is a fibered slice knot with pseudo-Anosov monodromy, then is the
fractional Dehn twist coefficient zero?

Recall that a result of Gabai (see Theorem 4 stated in the Introduction) establishes
a relation between the 3-genus of a fibered knot and the FDTC of the fibration. A
positive answer to Question 2 would signify a connection between the fractional
Dehn twist coefficient and the 4-ball genus.
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