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Abstract. Users typically interact with a database by asking queries
and examining the results. We refer to the user examining the query
results and asking follow-up questions as query result exploration. Our
work builds on two decades of provenance research useful for query
result exploration. Three approaches for computing provenance have
been described in the literature: lazy, eager, and hybrid. We investigate
lazy and eager approaches that utilize constraints that we have identi-
fied in the context of query result exploration, as well as novel hybrid
approaches. For the TPC-H benchmark, these constraints are applica-
ble to 19 out of the 22 queries, and result in a better performance for
all queries that have a join. Furthermore, the performance benefits from
our approaches are significant, sometimes several orders of magnitude.

Keywords: Provenance · Query result exploration · Query
optimization · Constraints

1 Introduction

Consider a user interacting with a database. Figure 1 shows a typical interaction.
Here the database is first assembled from various data sources (some databases
might have a much simpler process, or a much more complex process). A user
asks an original query and gets results. Now the user wants to drill deeper into
the results and find out explanations for the results. We refer to this drilling
deeper into the results as query result exploration.

For query result exploration, the user selects one or more interesting rows
from the results obtained for the original user query, and asks questions such
as: why are these rows in the result. The system responds by showing the rows
in the tables that combined to produce those results the user is interested in.
Different provenance semantics as described in [7,13] can be used for query result
exploration. In this paper, we use the which-provenance semantics (also referred
to as lineage) as in [9] and richer semantics is not needed. See Sect. 6 for a
discussion of different provenance semantics.
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Fig. 1. User asks original query and gets results. Now the user explores these results.

Table 1. Running Example: Tables (simplified) from TPC-H schema and sample data

Customers

c key c name c address

c1 n1 a1

Orders

o key c key o date

o1 c1 d1

o2 c1 d2

Lineitem

o key linenum qty

o1 l1 200

o1 l2 150

o2 l1 100

o2 l2 160

Example 1. Consider three tables from TPC-H [1] simplified and with sample
data as shown in Table 1. Consider Q18 from TPC-H modified as in [15] and
simplified for our example. See that the query is defined in [15] in two steps:
first a view Q18 tmp is defined, which is then used to define the original query
as view R. The results of these two views are also shown.

(find total quantity for each order)
SQL: CREATE VIEW Q18 tmp AS

SELECT o key, sum(qty) as t sum qty
FROM Lineitem
GROUP BY o key

Q18 tmp
o key t sum qty
o1 350
o2 260

(for each order where total quantity is greater
than 300, return the customer and order
information, as well as the total quantity)
SQL: CREATE VIEW R AS

SELECT c name, c key, o key, o date,
sum(qty) as tot qty

FROM Customers NATURAL JOIN
Orders

NATURAL JOIN Lineitem
NATURAL JOIN Q18 tmp

WHERE t sum qty > 300
GROUP BY c name, c key, o key, o date

R
c name c key o key o date tot qty
n1 c1 o1 d1 350

�
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For this simplified example, there is one row in the result R. Suppose the user
picks that row and wants to explore that row further. Suppose the user wants
to find out what row(s) in the table Customers produced that row. We use R′

to denote the table consisting of the rows picked by the user for query result
exploration. We refer to the row(s) in the Customers table that produced the
row(s) in R′ as the provenance of R′ for the Customers table, and denote it
as PCustomers. In [9], the authors come up with a query for determining this
provenance shown below. Note that we sometimes use SQL syntax that is not
valid, but intuitive and easier.

SELECT Customers.*
FROM R′ NATURAL JOIN Customers

NATURAL JOIN Orders NATURAL JOIN
Lineitem NATURAL JOIN Q18 tmp

WHERE t sum qty > 300

PCustomers
c key c name c address
c1 n1 a1

However, if we observe closely, we can note the following. Given that the
row in R′ appeared in the result of the original query with the value for c key
column as c1, and given that the key for Customers is c key, the row from
Customers table that produced that row in R must have c key = c1. Therefore
the provenance retrieval query can be simplified as shown below. In this paper
(Sect. 3), we study such optimization of provenance retrieval queries formally.

SELECT Customers.* FROM R′ NATURAL JOIN Customers

As another example, consider the provenance of R′ in the inner LineItem
table (used for defining Q18 tmp). This is computed in two steps. First we need
to compute PQ18 tmp. Below, we show the PQ18 tmp query as in [9], and then
our optimized PQ18 tmp query (using the same reasoning as for PCustomers).

CREATE VIEW PQ18 tmp AS
SELECT Q18 tmp.*
FROM R′ NATURAL JOIN Customers

NATURAL JOIN Orders NATURAL JOIN
Lineitem NATURAL JOIN Q18 tmp

WHERE t sum qty > 300

PQ18 tmp
o key t sum qty
o1 350

CREATE VIEW PQ18 tmp AS
SELECT Q18 tmp.* FROM R′ NATURAL JOIN Q18 tmp

Now, the provenance of R′ in the inner LineItem table can be computed
using the following provenance retrieval query.

SELECT LineItem.*
FROM LineItem NATURAL JOIN PQ18 tmp

PLineitem
o key linenum qty
o1 l1 200
o1 l2 150

It is possible to further improve the performance of the above provenance
retrieval query if we materialize some additional data. Let us materialize the
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rows in R, along with the corresponding key value(s) from the inner LineItem
table for each row in R. We denote this result table augmented with additional
keys and materialized as RK. This will be done as follows.

CREATE VIEW Q18 tmpK AS
SELECT Q18 tmp.*,
LineItem.linenum AS linenum2

FROM Q18 tmp NATURAL JOIN LineItem

Q18 tmpK
o key t sum qty linenum2
o1 350 l1
o1 350 l2
o2 260 l1
o2 260 l2

CREATE TABLE RK AS
SELECT R.*, linenum2
FROM R NATURAL JOIN
Q18 tmpK

RK
c name c key o key o date tot qty linenum2
n1 c1 o1 d1 350 l1
n1 c1 o1 d1 350 l2

For this example, only the linenum column needs to be added to the columns
in R as part of this materialization, because o key is already present in R
(renamed as linenum2 to prevent incorrect natural joins). Now the provenance
retrieval query for the inner LineItem table can be defined as follows.

CREATE VIEW RK ′ AS
SELECT *
FROM R′ NATURAL JOIN
RK

RK ′

c name c key o key o date tot qty linenum2
n1 c1 o1 d1 350 l1
n1 c1 o1 d1 350 l2

SELECT LineItem.* FROM RK ′ NATURAL JOIN LineItem

See that the provenance retrieval query for the LineItem table in the inner
block is now a join of 3 tables: R′, RK and LineItem. Without materializa-
tion, the provenance retrieval query involved three joins also: R′, Q18 tmp and
LineItem; however, Q18 tmp was a view. Our experimental studies confirm the
huge performance benefit from this materialization.

Our contributions in this paper include the following:

– We investigate constraints implied in our query result exploration scenario
(Sect. 2.3).

– We investigate optimization of provenance retrieval queries using the con-
straints. We present our results as a Theorem and we develop an Algorithm
based on our theorem (Sect. 3).

– We investigate materialization of select additional data, and investigate novel
hybrid approaches for computing provenance that utilize the constraints and
the materialized data (Sect. 4).

– We perform a detailed performance evaluation comparing our approaches
and existing approaches using TPC-H benchmark [1] and report the results
(Sect. 5).

2 Preliminaries

We use the following notations in this paper: a base table is in bold as Ti, a
materialized view is also in bold as Vi, a virtual view is in italics as Vi. The set



Efficient Computation of Provenance for Query Result Exploration 131

of attributes of table Ti/materialized view Vi/virtual view Vi is ATi
/AVi

/AVi
;

the key for table Ti is Ki. When the distinction between base table or vir-
tual/materialized view is not important, we use Xi to denote the table/view;
attributes of Xi are denoted AXi

; the key (if defined) is denoted as Ki.

2.1 Query Language

For our work, we consider SQL queries restricted to ASPJ queries and use set
semantics. We do not consider set operators, including union and negation, or
outer joins. We believe that extension to bag semantics should be fairly straight-
forward. However, the optimizations that we consider in this paper are not imme-
diately applicable to unions and outer joins. Extensions to bag semantics, and
these additional operators will be investigated in future work. For convenience,
we use a Datalog syntax (intuitively extended with group by similar to relational
algebra) for representing queries. We consider two types of rules (referred to as
SPJ Rule and ASPJ Rule that correspond to SPJ and ASPJ view definitions
in [9]) that can appear in the original query as shown in Table 2. A query can
consist of one or more rules. Every rule must be safe [20]. Note that Souffle1

extends datalog with group by. In Souffle, our ASPJ rule will be written as two
rules: an SPJ rule and a second rule with the group by. We chose our extension
of Datalog (that mimics relational algebra) in this paper for convenience.

Table 2. The two types of rules that can appear in original queries and their Datalog
representation. For the ASPJ rule, GL refers to the list of group by columns and AL
refers to the list of aggregations.

SPJ Rule: R(AR) :−X1(AX1), X2(AX2), . . . , Xn(AXn)

ASPJ Rule: R(GL,AL) :−X1(AX1), X2(AX2), . . . , Xn(AXn)

Example 2. Consider query Q18 from TPC-H (simplified) shown in Example 1
written in Datalog. See that the two rules in Q18 are ASPJ rules, where the
second ASPJ rule uses the Q18 temp view defined in the first ASPJ rule. The
second rule can be rewritten as an SPJ rule; however, we kept it as an ASPJ rule
as the ASPJ rule reflects the TPC-H query faithfully as is also provided in [15].

Q18 tmp(o key, sum(qty) as t sum qty) :−Lineitem.
R(c name, c key, o key, o date, sum(qty) as tot qty) :−Customers, Orders,

Lineitem, Q18 tmp, t sum qty > 300.

�

1 https://souffle-lang.github.io/.

https://souffle-lang.github.io/
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2.2 Provenance Definition

As said before, we use the which-provenance definition of [9]. In this section, we
provide a simple algorithmic definition for provenance based on our rules.

The two types of rules in our program are both of the form: R(AR) :−RHS.
We will use ARHS to indicate the union of all the attributes in the relations in
RHS. For any rule, R(AR) :−RHS, the provenance for R′ ⊆ R in a table/view
Xi(AXi

) ∈ RHS (that is, the rows in Xi that contribute to the results R′)
is given by the program shown in Table 3. See that PV iew corresponds to the
relational representation of why-provenance in [11].

Table 3. Algorithmic definition of provenance

Algorithmic definition of provenance for rule: R(AR) :−RHS. The rows in table/view

Xi(AXi
) ∈ RHS that contribute to R′ ⊆ R are represented as PXi.

PV iew(AR ∪ ARHS) :−R(AR), RHS.

PXi(AXi
) :−PV iew, R′(AR).

Example 3. These examples are based on the schema and sample data in
Table 1, and the Q18 tmp and R views in Example 2.

Consider the definition of view Q18 tmp in Example 2; rows in the view
Q18 tmp = {(o1, 350), (o2, 260)}. Let rows selected to determine provenance
Q18 tmp′ = {(o2, 260)}.

First PV iew (o key,t sum qty, linenum, qty) is calculated as in Table 3. Here,
PV iew has four rows: { (o1, 350, l1, 200), (o1, 350, l2, 150), (o2, 260, l1, 100),
(o2, 260, l2, 160)}
Now PLineItem is calculated (according to Table 3) as:
PLineItem(o key, linenum, qty) :−PV iew,Q18 tmp′.
The resulting rows for PLineItem = { (o2, l1, 100), (o2, l2, 160)}

��

2.3 Dependencies

We will now examine some constraints for our query result exploration sce-
nario that help optimize provenance retrieval queries. As in Sect. 2.2, the orig-
inal query is of the form R(AR) :−RHS; and ARHS indicates the union of all
the attributes in the relations in RHS. Furthermore, R′ ⊆ R. We express the
constraints as tuple generating dependencies below. While these dependencies
are quite straightforward, they lead to significant optimization of provenance
computation as we will see in later sections.

Dependency 1. ∀AR, R′(AR) → R(AR)
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Dependency 1 is obvious as the rows for which we compute the provenance,
R′ is such that R′ ⊆ R. For the remaining dependencies, consider RHS as the
join of the tables X1(AX1),X2(AX2), . . . , Xn(AXn

), as shown in Table 2.

Dependency 2. ∀AR, R(AR) → ∃(ARHS − AR), X1(AX1),
X2(AX2), . . . , Xn(AXn

)

Dependency 2 applies to both the rule types shown in Table 2. As any row in
R is produced by the join of X1(AX1),X2(AX2), . . . , Xn(AXn

), Dependency 2 is
also obvious. From Dependencies 1 and 2, we can infer the following dependency.

Dependency 3. ∀AR, R′ (AR) → ∃(ARHS − AR), X1(AX1),
X2(AX2), . . . , Xn(AXn

)

3 Optimizing Provenance Queries Without
Materialization

Consider the query for computing provenance given in Table 3 after composition:
PXi(AXi

) :−R(AR), RHS, R′(AR). Using Dependency 1, one of the joins in the
query for computing provenance can immediately be removed. The program for
computing provenance of R′ ⊆ R in table/view Xi is given by the following
program. See that Xi can be a base table or a view.

Program 1. PXi(Ai) :−R′(AR), RHS.

Program 1 is used by [9] for computing provenance. However, we will optimize
Program 1 further using the dependencies in Sect. 2.3. Let P1 below indicate the
query in Program 1. Consider another query P2 (which has potentially fewer
joins than P1). Theorem 1 states when P1 is equivalent to P2. The proof uses
the dependencies in Sect. 2.3 and is omitted.

P1 : PXi(AXi
) :−R′(AR), X1(AX1),X2(AX2), . . . , Xn(AXn

).
P2 : PXi(AXi

) :−R′, Xj1(AXj1
),Xj2(AXj2

), . . . , Xjq (AXjq
).,

where {j1, j2, . . . , jq} ⊆ {1, 2, . . . , n}
Notation. For convenience, we introduce two notations below. A′

RHS = AXj1
∪

AXj2
∪ . . . ∪ AXjq

. Consider the tables that are present in the RHS of P1, but
not in the RHS of P2. A′′

RHS denotes all the attributes in these tables.

Theorem 1. Queries P1 and P2 are equivalent, if for every column C ∈ A′
RHS,

at least one of the following is true:

– AR → C (that is, AR functionally determines C) is true for the tables in P2

– C /∈ A′′
RHS

Based on Theorem 1, we can infer the following corollaries. Corollary 1 says
that if all the columns of Xi are present in the result, no join is needed to
compute the provenance of Xi. Corollary 2 says that if a key of Xi is present in
the result, then the provenance of Xi can be computed by joining R′ and Xi.

Corollary 1. If AXi
⊆ AR, then PXi(AXi

) :−R′(AR).

Corollary 2. If Ki ⊆ AR, then PXi(AXi
) :−R′(AR), Xi(AXi

).
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3.1 Provenence Query Optimization Algorithm

In this section, we will come with an algorithm based on Theorem 1 that starts
with the original provenance retrieval query and comes up with a new optimized
provenance retrieval query with fewer joins. Suppose the original user query is:
R(AR) :−X1(AX1), X2(AX2), . . ., Xn(AXn

). The user wants to determine the
rows in Xi that contributed to the results R′(AR) ⊆ R(AR). Note that Xi can
either be a base table or a view.

Algorithm 1. Efficient Provenance Retrieval Query
1: start with CurRHS = R′(AR)
2: if AXi ⊆ AR then return CurRHS

3: add Xi to CurRHS
4: let CurRHSTables = Xi; A

′
RHS =

⋃
AXj , where Xj ∈ CurRHSTables

5: let RemTables = {X1, X2, . . . , Xn} -Xi; A
′′
RHS =

⋃
AXj , where Xj ∈ RemTables

6: while there is a column C ∈ A′
RHS ∩ A′′

RHS , and there is no functional dependency
AR → C in CurRHSTables do

7: Add all tables in RemTables that have the column C to CurRHS, and to
CurRHSTables. Adjust A′

RHS , RemTables, A′′
RHS appropriately.

8: return CurRHS

Illustration of Algorithm 1
Consider the SPJA rule for R for Q18 in TPC-H from Example 2.
R(c name, c key, o key, o date, sum(qty) as total qty) :−

Customers, Orders, Lineitem, Q18 tmp, t sum qty > 300.
Algorithm 1 produces the provenance retrieval query for Customers as follows.
After line 3, CurRHS = R′, Customers. At line 6, A′

RHS ∩ A′′
RHS = {c key}.

As c key ∈ AR, and AR → c key, no more tables are added to CurRHS. Thus,
the final provenance retrieval query is: PCustomers :−R′, Customers.

4 Optimizing Provenance Queries with Materialization

In Sect. 3, we studied optimizing the provenance retrieval queries for the lazy
approach, where no additional data is materialized. Eager and hybrid approaches
materialize additional data. An eager approach could be to materialize PV iew
(defined in Table 3). However, PV iew could be a very large table with several
columns and rows of data. In this section, we investigate novel hybrid approaches
that materialize much less additional data, and perform comparable to (and
often times, even better than) the eager approach that materializes PV iew. The
constraints identified in Sect. 2.3 are still applicable, and are used to decrease
the joins in the provenance retrieval queries.

A user query can have multiple rules that form multiple steps (for instance,
Q18 in TPC-H has two steps). While our results apply for queries with any
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number of steps, for simplicity of illustration, we consider only queries with two
steps (the results extend in a straightforward manner to any number of steps).
A query with two steps is shown in Fig. 2. The Datalog program corresponding
to Fig. 2 is shown in Program 2. R is the result of the query. R is defined using
the base tables T1, T2, . . ., Tn, and the views V1, V2, . . ., Vm. Remember that
from Sect. 2, T1 has attributes AT1 and key attributes K1; T1n1 has attributes
AT1n1

and key attributes K1n1 ; V1 has attributes AV1 .

Fig. 2. Query with two steps

Program 2.
Vi(AVi

) :−Ti1, Ti2, . . . , Tini
. ∀ i ∈ 1, 2, ...,m

R(AR) :−T1, T2, . . . , Tn, V1, V2, . . . , Vm.

Given a query R as in Program 2, we materialize a view RK with columns
ARK . ARK consists of the columns AR in R and the keys of zero or more of the
base tables used in R (how ARK is determined is discussed later). RK is defined
using R, the base tables that define R and the V Ki views corresponding to each
of the Vi that define R. See Program 3. V Ki is a virtual view defined using Vi

and the tables that define Vi. If no keys are added to Vi to form V Ki (i.e., AV Ki

= AVi
), then V Ki can be optimized to be just Vi. Algorithm 1 can be used to

optimize V Ki and RK as well; details are omitted.

Program 3.

Vi(AVi
) :−Ti1, Ti2, . . . , Tini

. ∀ i ∈ 1, 2, ...,m
R(AR) :−T1, T2, . . . , Tn, V1, V2, . . . , Vm.

V Ki(AV Ki
) :−Vi, Ti1, Ti2, . . . , Tini

. ∀ i ∈ 1, 2, ...,m
RK(ARK) :−R, T1, T2, . . . , Tn, V K1, V K2, . . ., V Km.
OQ(AR) :−RK.

The original user query results (computed as R in Program 2) are computed
by OQ in Program 3. This is because we assume that RK is materialized during
the original user query execution and we expect that computing OQ from RK
will be faster than computing the results of R.
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For query result exploration, suppose that the user selects R′ ⊆ R and wants
to find the provenance of R′ in the table Ti. We will assume that Ti is a base
table that defines Vj . For this, we first define RK ′ ⊆ RK as shown below.
RK ′ :−R′,RK.

RK ′ denotes the rows in RK corresponding to the rows in R′. Now to com-
pute the provenance of R′ in the table Ti, we compute the provenance of RK ′

in the table Ti. There are two cases:

Program 4.
Case 1: Ki ⊆ ARK : PTi :−RK ′, Ti.
Case 2: Ki � ARK : PTi :−PVj , VjRHS.
(VjRHS is the RHS of the rule that defines Vj.)

Case 1 is similar to Corollary 2 except that R may not be defined using Ti

directly. For Case 2, Vj is defined using Ti directly. PVj is the provenance of
RK ′ in the view Vj , computed recursively using Program 4. Given PVj , the rule
for computing the provenance of PVj in the table Ti is given by Program 1.
Both the rules in Program 4 can be optimized using Algorithm 1.

Example 4. Consider Q18 from Example 2. There are 4 base tables used in
Q18 – Customers, Orders, Lineitem1 and Lineitem2. We distinguish the
two Lineitem tables; Lineitem2 denotes the table used in Q18 tmp definition.

The materialized RK view contains the columns in R and additionally the
key for Lineitem2 table. The key for the Lineitem2 table is (o key, linenum);
however o key is already present in R. Therefore only the linenum column from
Lineitem2 is added in ARK . The revised program (as in Program 3) that mate-
rializes RK and computes OQ is shown below. Note that optimizations as in
Algorithm 1 are applicable (for example, definition of RK); details are omitted.

Q18 tmp(o key, sum(qty) as t sum qty) :−Lineitem.
R(c name, c key, o key, o date, o totalprice, sum(qty) as total qty)

:−Customers, Orders, Lineitem, Q18 tmp, t sum qty > 300.

Q18 tmpK(o key, linenum as linenum2, t sum qty) :−Q18 tmp, Lineitem.
RK(c name, c key, o key, o date, o totalprice, linenum2, total qty)

:−R,Q18 tmpK.
OQ(c name, c key, o key, o date, o totalprice, total qty) :−RK.

Let R′ denote the selected rows in R whose provenance we want to explore.
To compute their provenance, we first need to determine which rows in RK
correspond to the rows in R′. This is done as:

RK ′(ARK) :−R′, RK.
Now, we need to compute the provenance of the rows in RK ′ from the different
tables, which is computed as follows. See that all the rules have been optimized
using Algorithm 1, and involve a join of RK ′ and one base table.
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PCustomers(c key, c name, c address) :−RK ′, Customers.
POrders(o key, c key, o date, o totalprice) :−RK ′, Orders.
PLineitem1(o key, linenum, qty) :−RK ′, Lineitem.
PLineitem2(o key, linenum, qty) :−RK ′ (c name, c key, o key,

o date, o totalprice, linenum2 as linenum, total qty), Lineitem.

��

4.1 Determining the Keys to Be Added to the Materialized View

When we materialize RK, computing the results of the original user query is
expected to take longer because we consider that materialization of RK is done
during original query execution, and because RK is expected to be larger than
the size of R: the number of rows (and the number of columns) in RK will not
be fewer than the number of rows (and the number of columns) in R. However,
materialization typically benefits result exploration because the number of joins
to compute the provenance for some of the base tables is expected to be smaller
(although it is possible that the size of RK might be large and this may slow
down the provenance computation).

For the materialized view RK, we consider adding keys of the different base
tables and compute the cost vs. benefit. The ratio of the estimated number of
rows of RK and the estimated number of rows in R forms the cost. The ratio
of the number of joins across all provenance computations of base tables with
and without materialization give the benefit. We use a simple cost model that
combines the cost and the benefit to determine the set of keys to be added to RK.
For the example query Q18, the provenance retrieval queries for Customers,
Orders and Lineitem tables in the outer block already involve only one join.
Therefore no keys need to be added to improve the performance of these three
provenance retrieval queries. However, we can improve the performance of the
provenance retrieval query for the Lineitem table in the inner block by adding
the keys for the inner Lineitem table to RK as shown in Example 4.

For RK, we currently consider adding the key for every base table as part of
the cost-benefit analysis. In other words, the number of different hybrid options
we consider is exponential in the number of tables in the original user query. For
each option, the cost vs. benefit is estimated and one of the options is selected.
As part of future work, we are investigating effective ways of searching this space.
Other factors may be included in our cost model to determine which keys to be
added to RK, including the workload of provenance queries.

5 Evaluation

For our evaluation, we used the TPC-H [1] benchmark. We generated data at
1GB scale. Our experiments were conducted on a PostgreSQL 10 database server
running on Windows 7 Enterprise operating system. The hardware included a
4-core Intel Xeon 2.5 GHz Processor with 128 GB of RAM. For our queries, we
again used the TPC-H benchmark. The queries provided in the benchmark were
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considered the original user queries. Actually, we considered the version of the
TPC-H queries provided by [15], which specifies values for the parameters for the
TPC-H benchmark and also rewrites nested queries. For the result exploration
part, we considered that the user would pick one row in the result of the original
query (our solutions apply even if multiple rows were picked) and ask for the
rows in the base tables that produce that resulting row.

We compare the following approaches:

– The approach in [9] that we refer to as: W (lazy approach). No additional
data is materialized; the materialization studied in [8] is not considered.

– The approach in [11] that we refer to as: G. Here we assume that the relational
representation of provenance is materialized while computing the original user
query (eager approach). Provenance computation is then translated into mere
look-ups in this materialized data.

– Algorithm 1 without materialization that we refer to as: O1 (lazy approach).
– Our approach with materialization from Sect. 4 that we refer to as: O2 (hybrid

approach).

5.1 Usefulness of Our Optimization Rules

Algorithm 1 results in queries with much fewer joins. We tested the provenance
retrieval queries for Q18 from TPC-H as given in [15] (for our experiments, the
schema and the queries were not simplified as in our running example). The
times observed are listed in Table 4. See that the provenance retrieval queries
generated by Algorithm 1 (O1) run much faster than the ones used in [9] (W).

Table 4. O1 compared to W for Q18 in [15]. All times are reported in milliseconds.

PCustomers POrders PLineItem

O1 0.07 0.06 0.30

W 1522.44 1533.88 1532.74

We considered all the TPC-H queries as given in [15] except for the ones
with outer joins (as we do not consider outer joins in this paper). Of the 22
TPC-H queries, the queries with outer joins are Q13, Q21, Q22, and these were
not considered. Q19 has or in its predicate, which can be rewritten as a union.
However, we considered the or predicate as a single predicate without breaking
it into a union of multiple rules. For 7 out of these 19 queries, O1 results in
provenance retrieval queries with fewer joins than the ones in W. They were Q2,
Q3, Q7, Q10, Q11, Q15 and Q18. In other words, Algorithm 1 was useful for
around 36.84% of the TPC-H queries.
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5.2 Usefulness of Materialization

For Q18 [15], we compared the time to compute the original query results
(OQ) and the time to compute the provenance of the four tables for the four
approaches: O1, W, G and O2. The materialized view RK in O2 included the
key for the LineItem table in the inner block. The results are shown in Table 5.

Table 5. Performance Benefits of materialization proposed in Sect. 4 for Q18 in [15].
All times are reported in milliseconds.

O1 W G O2

OQ 5095.67 5095.67 5735446.19 13794.26

PCustomers 0.07 1522.44 3.86 0.96

POrders 0.06 1533.88 3.73 0.43

PLineItem1 0.30 1532.74 5.77 0.59

PLineItem2 1641.52 1535.22 6.16 0.43

There are several points worth observing in Table 5. We typically expect O2
to outperform G in computing the results of the original user query. This is
because G maintains all the columns of every base table in the materialized
view, whereas O2 maintains only some key columns in the materialized view -
in this case, the materialized view consists of the columns in R and only one
addition column linenum2. The performance impact of this is significant as G
takes about 420 times the time taken by O2 to compute the results of the original
user query. Actually the time taken by G is about 5700 s, which is likely to be
unacceptable. On the other hand, O2 takes about 2.7 times the time taken by
O1 for computing the results of the original user query. Drilling down further,
we found that computing the results from the materialized view RK took about
0.39 ms for O2 and about 3.07 ms for G (Table 6(b)).

Table 6. (a) Comparing the size of the tables: R (result of the original user query),
RK G (materialized view RK used by G) and RK O2 (materialized view RK used by
O2). (b) Comparing time for computing materialized view RK and time for computing
original query results from RK for Q18 [15]. All times are reported in milliseconds.

R RK G RK O2

# Columns 6 51 7

# Rows 57 2793 399

G O2

Computing RK 5735443.12 13793.88

Computing OQ from RK 3.07 0.39

(a) (b)

We expect G to outperform O2 in computing the provenance. This is because
the provenance retrieval in G requires a join of R′ with RK. O2 requires a join of
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3 tables (if the key is included in RK). For Q18, the provenance retrieval query
for LineItem2 requires a join of R′ with RK to produce RK ′, which is then
joined with LineItem table. However the larger size of RK in G (Table 6(a))
results in O2 outperforming G for provenance retrieval (Table 5).

In practice, O2 will never perform worse than O1 for provenance retrieval.
This is because for any table, the provenance retrieval query for O1 (that does not
use RK ′, but instead uses R′) may be used instead of the provenance retrieval
query for O2 (that uses RK ′ as in Program 4) if we expect the performance
of the provenance retrieval query for O1 to be better. However, we have not
considered this optimization in this paper.

Other things to note are that computing the results of the original query for
O1 and W is done exactly the same way. Moreover, for Q18, O1 outperforms all
approaches even in provenance retrieval except for PLineItem2. This is because
Algorithm 1 is able to optimize the provenance retrieval queries significantly
for PCustomers, POrders, PLineItem1. However, for PLineItem2, the prove-
nance retrieval required computing PQ18 tmp and then using it to compute
PLineItem2, which needed more joins. Usually, we expect every provenance
retrieval query from O1 to outperform W, but in this case W did outperform
O1 for PLineItem2 (by a small amount); we believe the reason for this is the
extra joins in W ended up being helpful for performance (which is not typical).

We report on the 19 TPC-H queries without outer joins in Table 7. In this
table, OQ refers to the time taken for computing the results of the original user
query, AP (average provenance) refers to the time taken to compute the prove-
nance averaged over all the base tables used in the query, and MP (minimum
provenance) refers to the minimum time to compute provenance over all the base
tables used in the query. For W, we typically expect AP and MP to be almost the
same (unless for nested queries); this is because in W, every provenance retrieval
query (for non-nested original user queries) performs the same joins. Similarly
for G, we typically expect AP and MP to be almost the same (because every
provenance computation is just a look-up in the materialized data), except for
the difference in the size of the results. For O1 and O2, MP might be signifi-
cantly smaller than AP because some provenance computation might have been
optimized extensively (example: Q2, Q10, Q11, Q15, Q18).

We find that except for one single table query Q1, where W performs same
as O1, our approaches improve performance for provenance computation, and
hence for result exploration. Furthermore, the eager materialization approach
(G) could result in prohibitively high times for original result computation.

6 Related Work

Different provenance semantics as described in [7,13] can be used for query
result exploration. Lineage, or which-provenance [9] specifies which rows from
the different input tables produced the selected rows in the result. why-
provenance [5] provides more detailed explanation than which-provenance and
collects the input tuples separately for different derivations of an output tuple.
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Table 7. Summary of experiments. The times are reported in milliseconds to two
decimal places accuracy. However, considering the width of the table, if the time is 100
ms or greater, we report in scientific notation with two significant numbers.

O1 W G O2

OQ AP MP OQ AP MP OQ AP MP OQ AP MP

Q1 3.4e3 3.2e3 3.2e3 3.4e3 3.2e3 3.2e3 1.5e5 3.7e4 3.7e4 1.1e5 2.7e4 2.7e4

Q2 55.88 37.41 0.21 55.88 55.59 43.03 1.3e4 1.25 0.98 7.7e3 0.61 0.52

Q3 8.7e2 0.06 0.04 8.7e2 0.09 0.08 2.9e3 45.57 43.11 2.5e3 4.28 3.47

Q4 4.1e3 5.3e3 4.3e3 4.1e3 5.3e3 4.3e3 3.3e4 1.6e2 1.4e2 7.7e3 4.5e2 3.5e2

Q5 6.3e2 6.7e2 6.5e2 6.3e2 6.7e2 6.5e2 2.9e3 13.01 10.71 2.5e3 11.45 4.73

Q6 6.2e2 6.7e2 6.7e2 6.3e2 6.7e2 6.7e2 3.2e3 90.28 90.28 2.9e3 9.0e2 9.0e2

Q7 8.7e2 6.7e2 6.6e2 8.7e2 6.7e2 6.6e2 4.9e3 13.22 11.12 4.5e3 12.26 6.88

Q8 8.3e2 1.7e3 1.6e3 8.3e2 1.7e3 1.6e3 4.1e3 5.05 2.17 3.3e3 7.92 3.74

Q9 3.7e3 2.3e6 2.2e6 3.7e3 2.3e6 2.2e6 2.2e5 1.7e2 1.7e2 1.9e5 7.2e2 1.0e2

Q10 1.5e3 99.69 0.06 1.5e3 1.3e2 1.3e2 9.6e6 1.1e2 1.1e2 3.1e3 1.0e2 30.27

Q11 4.3e2 2.6e2 4.06 4.3e2 6.0e2 3.9e2 1.9e6 8.2e4 7.4e4 1.3e3 3.1e2 0.58

Q12 8.9e2 7.9e2 7.8e2 8.9e2 7.9e2 7.8e2 4.0e3 9.15 8.60 3.9e3 30.00 21.31

Q14 7.7e2 9.8e2 9.2e2 7.7e2 9.8e2 9.2e2 4.3e3 1.8e2 1.7e2 3.3e3 5.8e2 2.8e2

Q15 1.43e3 1.0e3 4.62 1.4e3 2.2e3 1.4e3 2.0e5 6.0e4 3.0e4 1.7e5 9.7e4 5.5e4

Q16 1.2e3 1.3e2 1.1e2 1.2e3 1.3e2 1.1e2 4.9e3 55.37 54.03 2.6e3 2.2e2 2.2e2

Q17 4.2e3 5.9e3 4.3e3 4.2e3 5.9e3 4.3e3 2.2e4 41.79 37.96 2.2e4 4.3e3 4.3e3

Q18 5.1e3 4.1e2 0.06 5.1e3 1.5e3 1.5e3 5.7e6 4.88 3.73 1.4e4 0.60 0.43

Q19 2.4e3 2.4e3 2.4e3 2.4e3 2.4e3 2.4e3 1.3e4 13.35 12.62 1.3e4 86.23 83.44

Q20 2.0e3 2.3e3 1.9e3 2.0e3 2.3e3 1.9e3 6.9e4 0.34 0.28 4.0e3 5.6e2 0.21

how-provenance [7,12,13] provides even more detailed information than why-
provenance and specifies how the different input table rows combined to pro-
duce the result rows. Trio [3] provides a provenance semantics similar to how-
provenance as studied in [7]. Deriving different provenance semantics from other
provenance semantics is studied in [7,13]: how-provenance provides the most
general semantics and can be used to compute other provenance semantics [7].
A hierarchy of provenance semirings that shows how to compute different prove-
nance semantics is explained in [13]. Another provenance semantics in literature
is where-provenance [5], which only says where the result data is copied from.
Provenance of non-answers studies why expected rows are not present in the
result and is studied in [6,14,16]. Explaining results using properties of the data
are studied in [18,19].

For our work, we choose which-provenance even though it provides less
details than why and how provenance because: (a) which-provenance is defined
for queries with aggregate and group by operators [13] that we study in this
paper, (b) which-provenance is complete [7], in that all the other provenance
semantics provide explanations that only include the input table rows selected
by which-provenance. As part of our future work, we are investigating comput-
ing other provenance semantics starting from which-provenance and the original
user query, (c) which-provenance is invariant under equivalent queries (provided
tables in self-joins have different and “consistent” names), thus supporting cor-
related queries (d) results of which-provenance is a set of tables that can be
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represented in the relational model without using additional features as needed
by how-provenance, or a large number of rows as needed by why-provenance.

When we materialize data for query result exploration, the size of the mate-
rialized data can be an issue as identified by [13]. Eager approaches record
annotations (materialized data) which are propagated as part of provenance
computation [4]. A hybrid approach that uses materialized data for computing
provenance in data warehouse scenario as in [9] is studied in [8]. In our work, we
materialize the results of some of the intermediate steps (views). While materi-
alizing the results of an intermediate step, we augment the result with the keys
of some of the base tables used in that step. Note that the non-key columns are
not stored, and the keys for all the tables may not need to be stored; instead, we
selectively choose the base tables whose keys are stored based on the expected
benefit and cost, and based on other factors such as workload.

Other scenarios have been considered. For instance, provenance of non-
answers are considered in [6,14]. In [16], the authors study a unified approach
for provenance of answers and non-answers. However, as noted in [13], research
on negation in provenance has so far resulted in divergent approaches. Another
scenario considered is explaining results using properties of the data [18,19].

Optimizing queries in the presence of constraints has long been studied in
database literature, including chase algorithm for minimizing joins [2]. Join min-
imization in SQL systems has typically considered key-foreign key joins [10].
Optimization specific to provenance queries is studied in [17]. Here the authors
study heuristic and cost based optimization for provenance computation. The
constraints we study in this paper are tuple generating dependencies as will
occur in scenario of query result exploration; these are more general than key-
foreign key constraints. We develop practical polynomial time algorithms for join
minimization in the presence of these constraints.

7 Conclusions and Future Work

In this paper, we studied dependencies that are applicable to query result explo-
ration. These dependencies can be used to optimize query performance during
query result exploration. For the TPC-H benchmark, we could optimize the per-
formance of 36.84% (7 out of 19) of the queries that we considered. Furthermore,
we investigated how additional data can be materialized and then be used for
optimizing the performance during query result exploration. Such materializa-
tion of data can optimize the performance of query result exploration for almost
all the queries.

One of the main avenues worth exploring is extensions to the query language
that we considered. The dependencies we considered can be used when the body
of a rule is a conjunction of predicates. We did not consider union queries, nega-
tion or outer joins. These will be interesting to explore as the dependencies do
not extend in a straightforward manner. Another interesting future direction is
studying effective ways of navigating the search space of possible materializa-
tions. Also, it will be worthwhile investigating how to start from provenance
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tables and define other provenance semantics (such as how-provenance) in terms
of the provenance tables.
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16. Lee, S., Ludäscher, B., Glavic, B.: PUG: a framework and practical implementation
for why and why-not provenance. VLDB J. 28(1), 47–71 (2019)

17. Niu, X., Kapoor, R., Glavic, B., Gawlick, D., Liu, Z.H., Krishnaswamy, V., Rad-
hakrishnan, V.: Heuristic and cost-based optimization for diverse provenance tasks.
CoRR abs/1804.07156 (2018). http://arxiv.org/abs/1804.07156

18. Roy, S., Orr, L., Suciu, D.: Explaining query answers with explanation-
ready databases. PVLDB 9(4), 348–359 (2015). https://doi.org/10.14778/2856318.
2856329. http://www.vldb.org/pvldb/vol9/p348-roy.pdf

19. Wu, E., Madden, S.: Scorpion: explaining away outliers in aggregate queries.
PVLDB 6(8), 553–564 (2013). https://doi.org/10.14778/2536354.2536356. http://
www.vldb.org/pvldb/vol6/p553-wu.pdf

20. Zaniolo, C., Ceri, S., Faloutsos, C., Snodgrass, R.T., Subrahmanian, V.S., Zicari,
R.: Advanced Database Systems. Morgan Kaufmann, Burlington (1997)

http://arxiv.org/abs/1804.07156
https://doi.org/10.14778/2856318.2856329
https://doi.org/10.14778/2856318.2856329
http://www.vldb.org/pvldb/vol9/p348-roy.pdf
https://doi.org/10.14778/2536354.2536356
http://www.vldb.org/pvldb/vol6/p553-wu.pdf
http://www.vldb.org/pvldb/vol6/p553-wu.pdf

	Efficient Computation of Provenance for Query Result Exploration
	1 Introduction
	2 Preliminaries
	2.1 Query Language
	2.2 Provenance Definition
	2.3 Dependencies

	3 Optimizing Provenance Queries Without Materialization
	3.1 Provenence Query Optimization Algorithm

	4 Optimizing Provenance Queries with Materialization
	4.1 Determining the Keys to Be Added to the Materialized View

	5 Evaluation
	5.1 Usefulness of Our Optimization Rules
	5.2 Usefulness of Materialization

	6 Related Work
	7 Conclusions and Future Work
	References




