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Preface

This volume contains the proceedings of the 8th and 9th International Provenance and
Annotation Workshop (IPAW), held as part of ProvenanceWeek in 2020 and 2021. Due
to the COVID-19 pandemic, ProvenanceWeek 2020 was held as a 1-day virtual event
with brief teaser talks on June 22, 2020. In 2021, ProvenanceWeek again co-located
the biennial IPAW workshop with the annual Workshop on the Theory and Practice of
Provenance (TaPP). Together, the two leading provenance workshops anchored a 4-day
event of provenance related activities that included a shared poster and demonstration
session, the first Workshop on Provenance for Transparent Research (T7), and the first
Workshop on Provenance and Visualization (ProvViz). The events were held virtually
during July 19–22 2021. At IPAW 2021, authors from both 2020 and 2021 presented
and discussed their work.

This collection constitutes the peer reviewed papers of IPAW 2020 and 2021. These
include eleven long papers which report in depth on the results of research around
provenance and twelve short papers that were presented as part of the joint IPAW/TaPP
poster and demonstration session. The final papers and short papers accompanied by
poster presentations and demonstrations were selected from a total of 31 submissions.
All full-length research papers received a minimum of three reviews.

The IPAWpapers provide a glimpse into state-of-the-art research and practice around
the capture, representation, querying, inference, and summarization of provenance.
Papers also address applications of provenance such as security, reliability, and trust-
worthiness. The papers discussing provenance capture focus on templates and explore
Artificial Intelligence scenarios, focusing on capturing provenance of Deep Neural Net-
works. Provenance representation papers include work on evidence graphs and a new
JSON serialization for PROV. Several papers focus on provenance queries and inference.
In particular, they explore provenance type inference, the use of provenance for query
result exploration, and provenance inference of computational notebooks.

Provenance itself is meaningless if not used for a concrete purpose. The proceedings
also cover papers reporting on real-world use cases of provenance. Application scenarios
explored in the papers include health care and, especially, COVID-19.

We would like to thank the members of the Program Committee (PC) for their
thoughtful and insightful reviews along with Dr. Thomas Moyer (local chair) and his
team for their excellent organization of both IPAW and ProvenanceWeek 2020/2021.
We also want to thank the authors and participants for making IPAW the stimulating and
successful event that it was.

July 2021 Vanessa Braganholo
David Koop
Boris Glavic
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Provenance Capture and Representation



A Delayed Instantiation Approach to
Template-Driven Provenance for

Electronic Health Record Phenotyping

Elliot Fairweather(B), Martin Chapman, and Vasa Curcin

King’s College London, London, UK
elliot.fairweather@kcl.ac.uk

Abstract. Provenance templates are an established methodology for
the capture of provenance data. Each template defines the provenance of
a domain-specific action in abstract form, which may then be instantiated
as required by a single call to a given service interface. This approach,
whilst simplifying the process of recording provenance for the user, intro-
duces computational and storage demands on the capture process, par-
ticularly when used by clients with write-intensive provenance require-
ments such as other service-based software. To address these issues, we
adopt a new approach based upon delayed instantiation and present
a revised, two-part paradigm for template-driven provenance, in which
we separate capture and query functionality to improve the overall effi-
ciency of the model. A dedicated capture service is first employed to
record template service requests in a relational database in the form of
a meta-level description detailing the construction of each document.
These low-overhead records are then accessed by an independent query
service to construct views of concrete provenance documents for specific
time frames as and when required by the user. These views may subse-
quently be analysed using query templates, a new technique defined here
whereby templates can also be used to search for any matching subgraphs
within a document and return the respective instantiating substitutions.
We evaluate the performance gains of our new system in the context of
Phenoflow, an electronic health record (EHR) phenotyping platform.

Keywords: Data provenance · Health informatics · EHR phenotyping

1 Introduction

Provenance templates are an established methodology for the capture of prove-
nance data [7]. Each template defines the provenance of a domain-specific action
in abstract form, which may then be instantiated as required by a single call to a
given service interface. This approach, whilst simplifying the process of recording
provenance for the user, introduces computational and storage demands on the
capture process, particularly when used by clients with write-intensive prove-
nance requirements such as other service-based software.
c© Springer Nature Switzerland AG 2021
B. Glavic et al. (Eds.): IPAW 2020/IPAW 2021, LNCS 12839, pp. 3–19, 2021.
https://doi.org/10.1007/978-3-030-80960-7_1
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4 E. Fairweather et al.

Up until now our implementation of that service interface has constructed
W3C PROV [17] provenance documents in real-time, instantiating and merg-
ing those concrete provenance fragments generated upon submission. However
in data provenance recording domains with write-intensive requirements, which
generate a high load of requests, the computational demands placed upon the
capture process by this solution can adversely impact performance. We there-
fore propose a new approach based upon delayed instantiation and a two-part
paradigm, where for efficiency, provenance data is captured as high-level meta-
provenance records of requested actions, which can then later be used to con-
struct the provenance document in question when required for analysis. We first
present a revised template model, which exhibits the properties required for such
an approach, and then use this model to develop separate capture and query ser-
vices. Rather than generating and storing concrete fragments, the capture service
records service requests in a simple relational schema. These records are then
accessed by the query service in order to construct documents upon request in
an offline manner. The proposed changes to the template model also facilitate
the query service in generating views of documents with respect to user-provided
constraints that restrict construction to a specific time frame, which may then
be queried using a new technique based upon existing template syntax.

Not only does the resulting separation of responsibilities eliminate most of
the computational demands placed upon capturing provenance, it also reduces
overall storage requirements, and simplifies the reproducibility of the provenance
recording process itself.

One write-intensive domain that benefits from this novel approach is elec-
tronic health record (EHR) phenotyping, which focuses on the problem of
autonomously identifying patient populations that share certain characteristics,
such as one or more medical conditions (phenotypes), from their EHR alone [6].
Phenotyping involves the development of phenotype definitions – sets of rules
that capture the logic for phenotype identification – that are evolved over time
by different authors. These definitions are then implemented as computable phe-
notypes, which can be executed against a dataset to identify a condition cohort.

Recording this evolution of a phenotype definition is important for a number
of reasons. For example, phenotype definitions have important applications in
epidemiological studies, clinical trials and in clinical decision support [19]. As
such, ascertaining the validity of a phenotype definition – that is, whether it
accurately captures the disease or condition being modelled – is key, and an
insight into how the definition was developed, and by whom, is an essential com-
ponent of this understanding. Similarly, understanding how a definition has been
developed contributes to its intelligibility and thus the accuracy with which it
can be implemented across various sites and datasets (often known as phenotype
reproducibility). While the importance of recording the evolution of a phenotype
definition is clear, standard tools, such as version control, are not best suited to
this task due to the richness of the data that needs to be collected, so a more
comprehensive approach, such a data provenance capture, is needed. However,
as authors often create or update phenotype definitions in bulk, by, for example,
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importing definitions into an online phenotype library, the domain exhibits the
aforementioned write-intensive requirements.

In what follows, the revised template model is described in Sect. 2, the capture
service in Sect. 3, and the query service in Sect. 4. Our prototype implementation
of the system is discussed in Sect. 5 and its evaluation in Sect. 6. We survey
related work in Sect. 7, and draw conclusions in Sect. 8.

2 The Revised Template Model

The proposed system requires some improvements to the existing template model
as stated in [7], from which we now briefly recall the key relevant definitions.

A template is a document that may contain identifier variables (under the
var namespace) in place of identifiers within the document, and value variables
(under vvar) in place of attribute values. A template is instantiated using a
substitution given as a set of bindings mapping each variable occurring within
the template to a concrete value. Below, we refer to this action as a simple
instantiation. The model also defines syntax such that templates may specify
subgraphs called zones, which may be iterated over in series or parallel fashion
by providing additional instantiating substitutions. Each instance generated is
then merged into a concrete provenance under construction. Any identifier that
already exists within the document is reused, and if not, created new.

In order to facilitate the new meta-level capture model and later construc-
tion of documents from these records, we now require instantiation actions on
templates to demonstrate two key properties. Firstly, instantiations must be
monotonic; each instantiation must preserve all existing nodes and edges within
the document. Secondly, they must be independent ; each instantiation must not
depend on information external to the instantiating substitution in order to
merge the instance within the document.

The original presentation of zones breaks these requirements in several key
ways. In that formulation, the instaniation of zones depends upon the context
of the current template, in order to determine the generation of edges between
iterations, and so requires that templates containing zones be constructed as
separate fragments before being merged into the document. The generation of
series zones in this manner also enforces an ordering on the instantiations used,
and so for the both these reasons instantiations are not independent.

Further to this, when instantiating a series zone that has child nodes, edges
are destroyed upon each iteration in order to insert the new subgraph instance
within the fragment being constructed, with the result that the process is not
monotonic. Zones with such child nodes are also of limited practical use when
used in prospective fashion, because the existing service workflow for zones
requires an initial simple instantiation of the template and thus values for these
child nodes must be known to the user from the outset.

In order to address these issues, we propose to generalise the concept of zones,
such that their semantics is the same as that for a simple instantiation, namely
that, after having been generated, each zone instantiation will now be merged
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directly into the document. Zones will no longer be of series or parallel type,
rather, their form will instead depend upon the identifiers in the substitution
provided, as is the case when merging a simple instantiation. Nodes belonging
to a zone must still be annotated with the zone:id attribute, but no further
annotations are now required. Figures 1 and 2 illustrate these differences when
defining a parallel and series zone respectively, in the context of a simple data
usage scenario.

Fig. 1. Original (left) and revised (right) style parallel zones

Fig. 2. Original (left) and revised (right) style series zones

Note that a zone in the revised model may need to be larger in order to
represent the same functionality as one defined in the original model. This means



A Delayed Instantiation Approach to Template-Driven Provenance 7

that some zones may now in fact be templates in their own right, and this likely
reflects the fact that, in our experience, many scenarios are best modelled using
a larger number of smaller templates, rather than vice-versa.

We now place conditions on zone instantiations in order to model the different
behaviour that was previously specified using zone types. A simple instantiation
of a zone’s parent template must still be made before additional instantiations
of a zone are performed. This corresponds to and replaces the action of fragment
initialisation in the original model.1

Call those nodes belonging to a zone for which there are incoming edges from
outside the zone, entry nodes, and those for which there are outgoing edges to
nodes outside the zone, exit nodes. To qualify as a parallel instantiation of a
zone, each entry and exit node of the zone within the substitution for the zone
must be bound to the identifier given to that node in the simple instantiation of
the parent template, and every other identifier given must be fresh, that is, not
exist in the document before merging. In the first series instantiation of a zone,
each exit node must be bound to the identifier given to that node in the simple
instantiation of the parent template. In each subsequent iteration, each exit node
must be given the identifier for a node of the same type that was instantiated
as fresh in the previous iteration. All other identifiers given must again be fresh.
As mentioned above, a zone which is to be interpreted as an original series zone,
may have no child nodes, and thus no entry nodes.

We also discard the notion of iteration bounds upon zone instantiations, a
feature which required that fragments each undergo a check before being merged.
Not only does this impact performance, but because zone instantiations are now
merged immediately, their possible future invalidation is not compatible with
the property of monotonicity or independence. The finalisation service action
associated with this check in the original model, which also used to be responsible
for merging fragments, is thus now redundant and so absent in the revised model.

The fact that the behaviour of zones is now decided by which identifiers
already exist within a document and which are to be newly created suggests a
further refinement to the model. In the existing model, when an instantiation
is merged into a document and an identifier is already present and so reused,
any attributes associated with that identifier in the new instance are merged
with those already present. This situation can be alleviated somewhat by careful
template design, but is often undesirable and occurs much more frequently under
the revised presentation, and thus we propose that value variables of a template
now be optional. That is, an instantiating substitution for a template or zone
may omit value variable bindings. Identifier variables remain mandatory. This
solution also provides additional flexibility within the template model.

1 Simultaneous instantiations, in which an initial instantiation, together with a number
of zone instantiations may be given together as one substitution, remain possible
within the revised model, but are not considered here further.
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3 The Capture Service

In our new two-part paradigm, provenance actions are captured as meta-
provenance records. Meta-provenance in this context was first introduced by
the authors in [9] as a model for capturing provenance in a fashion that can
be extended to exhibit non-repudiation of origin. In that work, provenance ser-
vice actions were themselves tracked in PROV documents as activities acting
upon entities representing documents within the system. Each action consti-
tuting part of the service workflow was described using a separate provenance
template. Instances of these templates were then appended with additional secu-
rity information to allow non-repudiation of origin for each step and thus each
document as a whole. We now look to use this approach to increase the flexibil-
ity and efficiency of provenance capture by recording meta-provenance using a
relational schema.

The actions associated with the construction of a provenance document using
the revised template model described above are illustrated in Fig. 3.

1. new template (one or more times) to upload templates to the server
2. (a) new document (once) to begin a new document

(b) add namespace (zero or more times) to add a namespace to the document
(c) register template (one or more times) to associate a template with the docu-

ment
(d) instantiate (one or more times) to use a substitution to instantiate a template,

and merge it into the document
i. instantiate zone (zero or more times) to use a substitution to instantiate

and merge a subsequent iteration of a zone within a template

Fig. 3. How to construct a document using the capture service

Each of the above actions is associated with a corresponding method of the
proposed capture service, and it is calls to these methods, which form the basis
of the meta-level records stored. An interface is provided in the form of both a
RESTful web service, and a message-queueing service; a summary of the details
of the former are presented in Table 1. The message-queueing service is struc-
tured similarly, but with each message containing an action type, together with
a dictionary of required parameters. Template data is accepted in PROV-JSON
format [12]. Substitutions are written as JSON objects mapping identifier and
value variable names to arrays of PROV-JSON values. For each call made to the
service interface, the type and parameters of the call are recorded, together with
the time the call was made, in a relational database. Call parameters containing
data representations of templates or substitutions submitted for instantiations
are recorded directly in JSON format, as the contents of this data may remain
opaque with respect to the capture process. The schema for this relational model
is given in Fig. 4.
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Table 1. Summary of the web-based interface for the capture service

Method Endpoint Body fields Action description

PUT /templates/[id] templateData New template

PUT /documents/[id] defaultNamespace New document

POST /documents/[id]/namespaces prefix namespace Add namespace

POST /documents/[id]/registrations templateIdentifier Register template

POST /documents/[id]/instantiations templateIdentifier substitutionData Instantiate template

POST /documents/[id]/instantiations/[zoneId] templateIdentifier substitutionData Instantiate zone

DELETE /templates/[id] Delete template

DELETE /documents/[id] Delete document

documents

identifier: varchar(255)
time: datetime(3)
default namespace: varchar(255)

templates

identifier: varchar(255)
time: datetime(3)
template data: text

namespaces

id: varchar(255)
time: datetime(3)
document identifier: varchar(255)
prefix: varchar(255)
namespace: varchar(255)

registrations

id: varchar(255)
time: datetime(3)
document identifier: varchar(255)
template identifier: varchar(255)

instantiations

id: varchar(255)
time: datetime(3)
document identifier: varchar(255)
template identifier: varchar(255)
substitution data: text

zone instantiations

id: varchar(255)
time: datetime(3)
document identifier: varchar(255)
template identifier: varchar(255)
zone identifier: varchar(255)
substitution data: text

Fig. 4. Relational database schema for the capture service data model

Recording service actions in this way, rather than instantiating and merg-
ing templates in real-time, not only significantly reduces the amount of com-
putational work needed at the time of capture, but also reduces the storage
requirements needed to represent the same provenance data. The capture inter-
face presented here could also be implemented in the form of a programming
library. Together with a light-weight relational database implementation such as
SQLite, this would be of particular value in a provenance capture scenario that
requires a small footprint, or where data must be recorded locally for reasons of
governance.
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4 The Query Service

We now describe the second of our two proposed services, the query service.
This service is used to manage the construction of documents from the meta-
level records persisted by the capture service as presented in Sect. 3, and allows
these documents to be queried using a new, intuitive template-based technique.

4.1 Document Views

A view of a document is a full or partial provenance document constructed from
the meta-level records held in the capture service database. A user may partially
construct a document for a specific time frame by providing constraints, which
will be used to decide which instantiations are selected and used when generat-
ing the view. Views of object-level documents are constructed and managed by
the query service and stored separately from the meta-level capture data, in a
database suitable for graph-based queries. The interface presented by the query
service is detailed in Table 2.

Table 2. Summary of the web-based interface for the query service

Method Endpoint Body fields Action description

PUT /views/[id] startTime endTime Construct view

GET /views/[id] templateData Query view

DELETE /views/[id] Delete view

The first step in constructing a document view is to import the templates
used by that document. This is done by querying the capture data and returning
the template definition data for all registration actions linked to the document
in question. Next the default namespace and other namespaces for the document
in question are extracted from the capture data and added to a new empty docu-
ment created for the view under a user-specified identifier. Instantiation actions
for that document are then retrieved with respect to any time constraints pro-
vided. The substitution data recorded for the instantiation is then used together
with the specified template to generate a document fragment which is imme-
diately merged into the stored view. The instantiation of templates follows the
algorithm given in [7]. Zone instantiations actions are then extracted, again with
respect to any given time constraints. The required zone within the specified tem-
plate is instantiated with the substitution provided within the action, and the
generated fragment is merged into the view. This is executed as for a simple
instantiation but restricted to those nodes and edges belonging to the zone in
question.

This approach is possible due to the properties of monotonicity and indepen-
dence of instantiations. Monotonicity ensures that all existing data is preserved
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by subsequent instantiations, and independence that each instantiation may be
generated and merged without requiring implicit knowledge from any previous
zone instantiation for that template.

Note however that whilst a partially constructed view will contain all nodes
and edges of a document that fall within the given time frame, together with
their identifiers and types, some nodes may lack all attributes. Attributes given
to nodes or edges as annotations in instantiations that fall outside of the time
constraints under consideration will not be included in the view document.

4.2 Query Templates

We now introduce the concept of query templates. Query templates are con-
structed using the same syntax as for standard templates. However, instead of
providing a substitution with which to instantiate variables within the template,
a query template is used as a pattern with which to search for matches within
a given concrete document. For each match found, a substitution is returned,
which maps each identifier and value variable used within the template to a con-
crete identifier or value respectively, within the document. All other non-variable
identifiers and values within the template must be equal to those in the matching
document fragment, as well as the types of the nodes and edges present in both.

For example, consider the concrete document shown in Fig. 5, which describes
the provenance of some data in the context of the same simple scenario as above.
Figures 6 and 7 show three possible query templates that could be used to analyse
the document. The first represents a query which will identify subgraphs in the
document where some data was exported to a file in CSV format, and then later
archived. The format of the file is fixed by annotating the export activity with a
concrete value for the data:format attribute. However, the name of the file as
defined by the data:filename attribute, is given as a variable value, which will
be later matched in order to extract the names of the relevant files. The output
for this query with respect to the example document is shown in Listing 1.1.

{ "substitutions" : [

{ "var:export" : [{"$" : "export -001", "type" : "prov:QUALIFIED_NAME"}],
"var:file" : [{"$" : "file -001", "type" : "prov:QUALIFIED_NAME"}],
"vvar:filename" : [{"$" : "record -2020. csv", "type" : "xsd:string"}],
"var:archive" : [{"$" : "archive -001", "type" : "prov:QUALIFIED_NAME"}]

},
{ "var:export" : [{"$" : "export -001", "type" : "prov:QUALIFIED_NAME"}],

"var:file" : [{"$" : "file -002", "type" : "prov:QUALIFIED_NAME"}],
"vvar:filename" : [{"$" : "record -2021. csv", "type" : "xsd:string"}],
"var:archive" : [{"$" : "archive -001", "type" : "prov:QUALIFIED_NAME"}]

}
]

}

Listing 1.1. Matching substitutions from the example document for the first query

template
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Fig. 5. Example concrete provenance document

The second query will match subgraphs corresponding to instances where a
user exports data in any format to a file. For each match found the name of
the user and the filename will be bound to the vvar:user and filename vari-
ables respectively. The final query matches subgraphs in which the user kclhi2
archives a file in zip format. In this case, each substitution produced will bind
the vvar:filename and vvar:zipname variables to the filenames used.

5 Implementation

We have written a prototype implementation of both the capture and query ser-
vices described above. The architecture of the new system is illustrated in Fig. 8.
The prototype uses MariaDB (https://mariadb.org) and Neo4j (https://neo4j.
com) as storage backends for the capture service and query service respectively.
We use RabbitMQ (https://www.rabbitmq.com) for the message queue, and the
Spring Framework (https://spring.io) to build each service, and to provide both
web interfaces and message queue integration.

The functionality of the query service is written using a revised and extended
version of the core library from the original template service implementation. We
realise query templates using the Neo4j Cypher query language and thus whilst

https://mariadb.org
https://neo4j.com
https://neo4j.com
https://www.rabbitmq.com
https://spring.io
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Fig. 6. Example query templates: all archived CSV files (left), and all files exported
by any user (right)

Fig. 7. Example query template: files archived in zip format by kclhi2

the template library supports persistence to other database types, the query
service currently only supports Neo4j as a backend.

The decision to provide a message queue interface was also aimed at improv-
ing the efficiency of the system. This approach not only reduces overhead in
contexts where the provenance recording service is local to the client service,
but was found in practice to be more suitable in scenarios where clients gener-
ate a high request load, such as EHR phenotyping, and thus the throughput of
the recording service is a priority. Note however that the use of a queue does
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Fig. 8. Architecture of the combined capture and query services

not negate the efficiency gains introduced in the new system; the content of the
queue must still be consumed efficiently by the capture service, in order to avoid
memory bloat and a slowdown of the overall system.

6 Evaluation

To determine whether our new paradigm enables provenance data to be effi-
ciently captured in write-intensive domains such as EHR phenotyping, we now
evaluate the performance of the new system in relation to that of the original
by analysing queue clearance rates.

We do so within Phenoflow, a Health Data Research UK phenotype library
that represents imported definitions under a workflow-based model [3]. For each
definition in a set imported by a user, the rules that comprise the definition are
grouped into individual steps, which are defined by attributes such as a cate-
gorisation and description of the encapsulated logic, and each step is associated
with a generated implementation unit (e.g. a Python script), allowing the defini-
tion to be downloaded as a computable phenotype. Subsequent imports by other
users that contain modifications to definitions already held in the library trigger
updates to the attributes of one or more steps within those definitions. In order
to capture this evolving sequence of revisions to these attributes, we add calls
to the provenance template client (Fig. 8) at different points within Phenoflow’s
import logic. An overview of the data captured is summarised by the template
shown (and given from the perspective of the new system) in Fig. 9.

To generate this data, we import a set of 278 phenotype definitions into Phe-
noflow, which represents the typical size of an import task faced by the library.
During the import, we record the exchange of messages between Phenoflow (the
producer) and the new capture service (a consumer), and between Phenoflow and
the service provided by the original real-time provenance document construction
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Fig. 9. Revised model template representing the import of a phenotype definition

system (a consumer), using a queue. Specifically, we monitor the length of time
that elapses between a message being delivered to each consumer, and that mes-
sage being acknowledged after processing. This gives us an understanding of
throughput. In total, we record the exchange of 1500 deliver/acknowledgement
pairs during the import of the definition set. Median acknowledgement times
are shown in Fig. 10 for the three key instantiating calls to the original ser-
vice: fragment initialisation (geninit), zone generation (genzone) and fragment
finalisation (genfinal). Recall from Sect. 3 that fragment initialisation is now
equivalent to a simple instantiation within the revised template model, and that
a zone generation within a fragment is now represented as a zone instantiation.
Fragment finalisation has no equivalent call when using the new service, and
thus its acknowledgement time is not recorded.

Of immediate note is the increased throughput offered by the new system. In
particular, the impact of the removal of the genfinal requirement is emphasised
when observing the high acknowledgement times associated with the call to the
original service. Across the other calls, the application of Mann-Whitney U-test,
under the null hypothesis that there is no difference between the distributions,
shows a significant difference in acknowledgement rates (p < 0.05).

The difference in throughput between the original and the new system is less
marked for zone instantiation, which does show some IQR overlap. This is most
likely due to the fact that in the original system, the generation of a zone already
has relatively low computational requirements, and in that system, instance
fragments are constructed in memory and then written directly as independent
graphs within the database, a relatively lightweight I/O operation, than a call
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Fig. 10. System acknowledgement times for instantiating service calls

to say, genfinal, which must merge a completed fragment within an often much
larger document at the database level.

Across different calls we also note overlap between the throughput of both
the instantiation and zone instantiation calls under the new implementation,
suggesting consistent performance. In contrast, a statistically significant differ-
ence is seen between the performance of the different calls to the original service.
In particular, geninit offers the lowest throughput rate, likely because these calls
require all variables within a template to be instantiated, and so are the most
computationally intensive. Moreover, the range of potential acknowledgement
rates is much larger under the original system. This suggests much less reliable
performance, and the potential for some significant reductions in throughput.

7 Related Work

Delaying the construction of provenance graphs to reduce capture overheads has
been explored in the context of provenance data recorded without the use of
templates. PASSv2 uses an asynchronous user space daemon to produce post
hoc graphs [18]. Similarly, SPADEv2 implements provenance collection threads
to extract, filter and commit operations to a provenance log [10]. Perhaps closest
to the approach employed here is Lipstick, which delays the construction until
a query response is required [1].

PROV-TEMPLATES are an alternative approach to capturing and gener-
ating provenance from templates and bindings presented in [16]. In this work,
bindings produced by clients are also later used to expand a predefined set
of templates. Whilst the syntax of both systems is broadly similar, the works
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differ as to how concrete provenance is generated; the method used by PROV-
TEMPLATES being more expressive yet also more complex than the process
of instantiation defined in [7]. The work does not include a concept compara-
ble to zones as presented here, and is not developed from the perspective of a
service-based architecture for the third-party construction and management of
provenance documents, as is the present work. Whilst the authors of PROV-
TEMPLATES do suggest that templates could be of value with regard to the
optimisation of queries using standard query languages, and that queries could
be performed over bindings rather than concrete documents, they do not con-
sider these issues further or present a solution based upon templates.

The authors of [11] present a rule based-system for extracting and recording
provenance from structured log files in order to avoid program instrumenta-
tion. This technique is in some ways similar to that provided by template-based
methodologies and also reflects the motivations of the present work with respect
to its low-overhead nature.

The querying of data modelled as W3C PROV is usually carried out directly
against the chosen data representation, using an appropriate query language, as
seen for example in [5]. In contrast, the analysis of provenance data in general
has been studied from many angles, including the development of bespoke query
languages, such as ProQL [13] for tuple-based provenance, the development of
new models such as TripleProv [20] that leverage the power of existing query
languages, and within specific domains such as data science (VQuel) [4] and
workflows (QLP) [2]. Of these, the structural relation constructs of QLP, whereby
nodes may be accessed using XPath expressions describing their parent-child
relationships and parameters, perhaps bear the greatest similarity to the query
template technique presented here.

In terms of EHR phenotyping, several existing phenotype libraries use ver-
sion control as a best-effort solution for communicating the evolution of a def-
inition. Examples include CALIBER [8] and the Concept Library (https://
conceptlibrary.saildatabank.com), both of which record iterations of their stored
definitions, attributing version IDs to each. To the best of our knowledge no phe-
notype libraries apply formal provenance techniques to capture the interactions
between users and definitions, however several tools exist to capture the prove-
nance of workflows, upon which Phenoflow’s model is based. Notable examples of
such tools are CWLProv [14] and YesWorkflow [15], albeit the latter operates on
an inferred workflow derived from markup placed in existing scripts. These tools
tend to focus on either the implicit provenance derived from the static state of a
workflow (prospective provenance), or the provenance derived from the execution
of a workflow (retrospective provenance). For example, CWLProv focuses on the
representation of workflow enactment (with prospective provenance considered
to be a product of sharing both a workflow and its visualisation), while YesWork-
flow uses prospective provenance to (further) infer enactment provenance data.
The provenance requirements for phenotyping fall somewhere in between, with
it being important to record the impact of different agents on the evolution of a
(workflow-based) phenotype definition.

https://conceptlibrary.saildatabank.com
https://conceptlibrary.saildatabank.com
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8 Conclusions and Future Work

We have presented a new approach to capturing and querying provenance using
templates, based upon delayed instantiation, which is both more flexible and
more efficient than our prior solution, which could suffer from performance issues
when presented with a high request load. The capture of provenance data has
been uncoupled from the process of querying that data, and turned into an inde-
pendent service based upon the recording of meta-level records describing the
construction of provenance documents. These records are then later accessed by
a separate query service, which can construct views of the documents described
upon request by a client. These views may be generated with reference to user-
specified time frames, and then analysed using query templates, a new and intu-
itive way to define queries over provenance data using templates. This system is
based upon a newly revised template model with regard to the instantiation of
iterable zones, that exhibits properties suitable for such a methodology.

We evaluated our solution in the context of Phenoflow, a library for the devel-
opment of workflow-based computable phenotypes. The results show a signifi-
cant improvement in the throughput for recording the data necessary to generate
and query the provenance data in question. Whilst we did not investigate the
performance of the construction of provenance documents from the captured
meta-level records, this is of lesser importance, because the process of query-
ing data is orthogonal to that of capture, and does not contribute to the high
request load sometimes observed. Despite that, our revised model is simpler than
before, and removes a number of rate limiting steps within the construction pro-
cess, and so we can safely conjecture that the process will be at least no slower
than previously, and thus the overall model is indeed more efficient.

Future work will integrate our work on non-repudiation of origin for meta-
level records [9] within the relational capture model presented here. We will also
connect additional phenotype libraries to instances of the capture service, in
order to further demonstrate the impact of our approach on EHR phenotyp-
ing. The techniques presented here are a good match for challenges of capturing
provenance of Trusted Research Environments (TREs), which also require effi-
cient and scalable solutions, and we shall explore the exact improvements in
time and space usage for generic TRE use cases. Other future work will focus on
the query service, improving the expressivity of the query template model, and
optimising the representation of constructed documents for such queries.
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Abstract. The duration of the life cycle in deep neural networks (DNN)
depends on the data configuration decisions that lead to success in
obtaining models. Analyzing hyperparameters along the evolution of
the network’s execution allows for adapting the data. Provenance data
derivation traces help the parameter fine-tuning by providing a global
data picture with clear dependencies. Provenance can also contribute to
the interpretation of models resulting from the DNN life cycle. However,
there are challenges in collecting hyperparameters and in modeling the
relationships between the data involved in the DNN life cycle to build
a provenance database. Current approaches adopt different notions of
provenance in their representation and require the execution of the DNN
under a specific software framework, which limits interoperability and
flexibility when choosing the DNN execution environment. This work
presents a provenance data-based approach to address these challenges,
proposing a collection mechanism with flexibility in the choice and rep-
resentation of data to be analyzed. Experiments of the approach, using a
convolutional neural network focused on image recognition, provide evi-
dence of the flexibility, the efficiency of data collection, the analysis and
the validation of network data.

Keywords: Provenance · Deep Learning · Workflow steering

1 Introduction

Provenance data [9,17,26] constitute a natural solution to assist users in the
registration of algorithms, the data derivation path, metadata and parameters
relevant to the data transformation steps [18]. Provenance data have already
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been successfully used in many scenarios and domains over the last decade (e.g.,
bioinformatics [3,29], health [5,7], visualization [8], etc.). Recently, its usage in
the Machine Learning (ML) life cycle has gained importance. Among the ML
methods, Deep Learning (DL) and Deep Neural Network (DNN) models have
gained much attention. Similar to large-scale scientific workflows, ML models
are also a result of an iterative process [44]. ML workflows commonly involve
several data transformations, users, algorithms, datasets, parameters, and add
the challenge of feedback loops [37]. According to Silva et al. [37] there is a
lack of capabilities for enabling ML workflow steering and dynamic workflow
execution. Associating provenance data with the results of an ML workflow can
support user steering to improve fine-tuning of parameters (or hyperparameters),
at runtime, which is desired by several users [18,45,46].

The ML life cycle can be seen as a data centric workflow, as it produces an
ML model based on input raw data through a data transformation flow. Figure 1
presents the data transformation flow in the ML life cycle using DNNs (steps 1
to 7 ). The process starts with the data preparation (step 1 ), where outliers
can be analyzed, missing values can be imputed and feature engineering may be
performed. Once the dataset is prepared, it is split into three subsets (step 2 ):
training set, test set, and validation set. The first two sets are used to gener-
ate an ML model (step 3 ), e.g., multi-class classification, regression, etc. These
models can be tuned (step 4 ), i.e., to set the values of the hyperparameters that
produce the most accurate model. ML models are sensitive to hyperparameters
[31], adjusting them in DNNs may be costly. Finally, the generated model is
evaluated using the validation set (step 5 ). There are several evaluation loops
where the user may fine-tune parameters. To fine-tune, the user needs to have
access to cause and effect data, like what filter was applied to the current model
when the dropout value was below a specific threshold. By analyzing the evalu-
ation (step 6 ), the user may decide to accept the generated model or to select
a new configuration (step 7 ) and retrain the model. In this paper, we focus on
the training phase where fine-tuning happens based on provenance data analysis
at runtime (dotted red rectangle in Fig. 1).

Fig. 1. Data transformation flow in the ML life cycle using DNNs (Color figure online)
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The advantages of capturing provenance data are well-known [9,17,18,21,26],
such as data quality, data interpretation, and reproducibility of the results.
According to Cheney et al. [4] it is important to consider the use and needs of
provenance at an early stage, before adopting a provenance capture approach.
Specifically, in DL-based workflows [15], provenance data have a lot to contribute
to data analysis at runtime for user steering. Provenance data along with meta-
data, when available during execution (i.e., at runtime), have great potential to
support the analysis made by humans regarding hyperparameter configurations
or even training data. The evaluation of the several hyperparameters requires
that the user is aware of the relationship between many types of metadata, e.g.,
the chosen hyperparameter values, performance data, environment configura-
tion, etc. This data analysis during the training process can support the user in
fine-tuning decisions, complementing auto-tuning solutions [43].

Adding provenance data to ML workflows is challenging. Despite the prove-
nance support of several workflow systems, using these systems to invoke pop-
ular ML libraries or platforms can result in several execution conflicts, particu-
larly in high-performance computing environments [37]. Basically, there are two
approaches to make ML workflows provenance aware. The first is provenance
provided for a specific ML platform [2,20,24,30,35,36,40,46] and the second is
the provenance systems that are independent of the domain [32]. In the first
approach, each ML platform provides provenance using its proprietary repre-
sentation, which is difficult to interpret and compare with execution between
different platforms. The provenance systems approach is often tightly coupled
to a script programming language, limiting the use of well-known ML plat-
forms or it is too generic requiring a lot of data modeling and instrumenting the
workflows.

In this paper, we present DNNProv and Keras-Prov, two provenance service
management approaches that are designed for supporting hyperparameter anal-
ysis in DNNs. DNNProv and Keras-Prov integrate both traditional retrospective
provenance data (r-prov) with domain-specific DL data. Both solutions provide
an API that allows for users to develop their ML-based workflows using different
DL frameworks (e.g., Tensorflow, Theano) while being able to share and analyze
captured provenance data using W3C PROV. The remainder of this paper is
structured as follows. Section 2 discusses related work, Sect. 3 details the pro-
posed approach. Section 4 presents the experimental evaluation and discussion
of results. Finally, Sect. 5 concludes the paper.

2 Related Work

With the recent interest in DL methods, several works propose provenance man-
agement approaches for data analysis during DNN training [11]. There are several
challenges in making ML workflows provenance aware like taking into account the
execution framework that may involve CPUs, GPUs, TPUs, and distributed envi-
ronments such as clusters and clouds as discussed in [14,36,42]. In this section,



Provenance Supporting Hyperparameter Analysis in Deep Neural Networks 23

we discuss related work for provenance data management, considering the inten-
tion of using provenance for runtime data analysis. We group these works in sec-
tions, with approaches that are either focused on the ML domain or that provide
domain-agnostic provenance systems. Our provenance services also provide data
capture modeled for DL characteristics and analyses, but unlike the approaches
that are focused on the DL domain, adopt best practices of provenance systems
that follow W3C PROV recommendations. Having preset classes that already
represent typical entities and activities from the DL domain improves prove-
nance data preparation for runtime analyses. The result is flexibility in defining
new domain data to the DL workflow and being able to execute with different
ML platforms with distributed environments having CPUs and GPUs.

2.1 Machine- and Deep Learning-Specific Approaches

The approaches in this category manage provenance for several purposes in ML
platforms [2,12,24,30,35,36,40,41,46]. They are all based on a proprietary rep-
resentation of provenance data, i.e., that does not follow recommendations like
W3C PROV. These proprietary representations of provenance data can make
interoperability and analysis difficult. If one user needs to compare the results of
multiple training processes performed in different frameworks, additional imple-
mentations will be required. Next, we discuss the approaches that are focused
on the use of provenance to interpret and tune hyperparameters and that are
closer to our solution. ModelDB [41] is a system that aims at addressing model
management. Its goal is to automatically track ML models in their native envi-
ronment, storing trained models and their results to allow for visual exploration
(or using SQL). Currently, ModelDB is customized for models generated using
scikit-learn and SparkML, and uses visualization only as a way to perform post-
mortem analysis of the ML pipeline, i.e., it does not support runtime provenance
analysis. Another solution focused on ML experiments is Runway [40]. Runway
manages ML and DL artifacts, such as models, data, or experiments, as well
as their provenance. In this sense, Runway allows for tracking the model and
data, easing reproducibility. However, in addition to being a proprietary solu-
tion, which means that the solution does not follow W3C PROV standard to
represent provenance data, Runway is restricted to the Python 3 programming
language.

ModelKB (Model Knowledge Base) [12] aims at automating the life cycle
management process for DL models with minimal user intervention. The contri-
butions of ModelKB are to automatically extract and store model metadata and
artifacts, in addition to viewing, consulting, comparing experiments, and repro-
ducing models. ModelKB itself is not a modeling tool, but a complementary
system that can automatically manage experiments in their native frameworks,
such as TensorFlow [1]. However, ModelKB does not make the captured data
available for analysis at runtime. Schelter et al. [35] provide an automated tool
to extract metadata from the model with an interactive view to query and com-
pare experiments. A declarative language is proposed for users to specify their
queries. Thus, this solution focuses on tracking metadata and the provenance
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of ML experiment data. However, this approach does not use the W3C PROV
standard, being an obstacle to foster interoperability.

2.2 Domain-Agnostic Approaches

There are several approaches for capturing provenance data [32] that can be
applied (with specializations) to the ML domain. Approaches for automatic cap-
turing provide very fine granularity, generating a significant execution overhead
in the process. Systems like noWorkflow [27], capture and store provenance data
from Python scripts in an automatic way. noWorkflow allows provenance data
capture without requiring any modifications in the original Python script. How-
ever, it is coupled to the Python language and does not execute in distributed
and parallel environments, which limits the use of parallelism of popular ML
libraries. Similar to noWorkflow, SPADE [10] automatically collects provenance
from a workflow script including distributed and parallel environments, but this
script has to be compiled using an LLVM compiler. In the automatic capture,
the user does not spend time defining what provenance data to capture. How-
ever, when it comes to analyzing this provenance, significant time and effort are
required to understand what and how data was modeled. In addition, due to
the fine granularity, the user has to filter and aggregate data before starting the
analysis. Having to do this during the training cycle may not be an option.

Different from the approaches based on automatic provenance capturing, the
approaches based on the participation of the user allow to pre-select relevant
data for analysis, having less impact on the execution and analysis time. When
the user identifies attributes and parameters in W3C PROV entities, activities
with their relationships, these chosen names become familiar for runtime analy-
sis. One of these tools is DfAnalyzer [39], which is a tool that allows users to set
the relevant data to be captured for runtime analysis in high-performance execu-
tion environments. One advantage of DfAnalyzer is that it captures provenance
throughout the training of a DNN, and does not interfere in the performance of
the training. Although DfAnalyzer is W3C PROV compliant and has been used
in different domains, it is not designed for supporting provenance capturing dur-
ing the ML life cycle. Therefore, repetitive work on designing and instrumenting
has to be done. Sumatra [6] captures provenance from the script execution based
on a series of annotations in the script. However, Sumatra only supports post-
mortem analysis, i.e., only after the ML model is generated. YesWorkflow [22]
is another example of a tool capable of analyzing provenance data. YesWorkflow
does not depend on a programming language, adopting a strategy of adding
annotations to the scripts to identify provenance data. However, its queries are
based on URIs and hyperparameter runtime analyses are not URI-based. Similar
to YesWorkflow, in [13] there is no runtime provenance capture. Instead, they
take advantage of applications that provide log files to extract provenance from
them. This could be adopted by systems like TensorFlow and Keras, which pro-
vide provenance logs. However, the queries are limited to the logged data and it
is a post-mortem analysis approach.
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UML2PROV [34] aims at making UML (Unified Modeling Language) based
applications provenance aware automatically. It is an approach that provides a
mapping strategy from UML class, State Machine, and Sequence diagrams to
define an automatic code generation technique that deploys artifacts for prove-
nance generation in an application. UML2PROV assumes the existence of these
diagrams or requires that they be designed or generated through reverse engi-
neering, which limits its use in most ML environments.

Therefore, capturing provenance for runtime analysis in DL domains using
domain-agnostic approaches may be complicated due to several reasons: (i) pro-
gramming language and compiler dependencies, (ii) lack of support for prove-
nance capturing in HPC and distributed environments, and (iii) lack of support
for runtime provenance analysis. The next section describes how DNNProv and
Keras-Prov address these limitations.

3 DNNProv and Keras-Prov

Due to the continuous increase in the use of ML and DL methods for developing
workflows in different domains, the use of provenance data to support analy-
sis has been gaining importance. The analytical potential of provenance data
contributes to the analysis of hyperparameter configurations (and their impact
on the accuracy of the generated model) and, consequently, supports the fine-
tuning [12,23,35]. As the training of DNNs can last for several hours or even
days (depending on the computational environment), and a large amount of data
is consumed and produced, the user needs to be able to evaluate the training to
make adjustments to hyperparameters. Therefore, hyperparameter analysis tools
should work during the training of the DNN and quickly provide the required
data and entity attributes for analysis without competing for computational
resources with the training process.

To capture, store and analyze provenance data from DNNs in an efficient
way, we propose two provenance service management approaches, one indepen-
dent from the DNN framework (named DNNProv) and the other coupled to a
DNN framework (named Keras-Prov). DNNProv and Keras-Prov extend DfAn-
alyzer [38,39], which allows monitoring, debugging, and analyzing provenance
during the execution of scientific workflows. One advantage of DfAnalyzer is
that it explores in-situ or asynchronous provenance data management, without
interfering with ML and DL workflow performance even in HPC environments.
Since DfAnalyzer is domain-agnostic, it is not designed for ML and DL domains
and targets mainly binary scientific data, this section presents the extensions to
DfAnalyzer for ML and DL domains.

DNNProv and Keras-Prov data representation follows the data model based
on the recommendations of the PROV-DM of the W3C PROV [26] which is an
initiative for the representation of different types of provenance data without
being specific to a domain. W3C PROV is based on Agent, Activity and Entity
concepts. An agent is something that bears some form of responsibility for an
activity, an entity, or for another agent’s activity. An activity is something that
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occurs over a period of time upon or with entities and an entity is a thing
with some fixed aspects. The diagram in Fig. 2, generated by Prov Python1

and Graphviz2, represents some activities of the neural network training process
with DNNProv and Keras-Prov, following the notation from [25]. The orange
pentagon represents the Agent concept, yellow ovals represent Entity and blue
rectangles represent Activity. The diagram shows what was used directly from
PROV-Df (with the tag dfanalyzer) and what was extended on our approach
(with the tag dnnprov).

Fig. 2. W3C PROV graph fragment of DNNProv and Keras-Prov

3.1 Provenance Model

The association of provenance data with domain data can assist DNN users
to perform rich analyses at runtime and allows the monitoring of the train-
ing process. Thereby, in this paper, we present a solution capable of tracking
activities that occur in the DL life cycle, providing efficient provenance data
capturing and analysis. The proposed approach considers the steps of the DL
life cycle as a dataflow. To represent specific data from the DL training process,
a specialization of the PROV-Df [39] model, named DNNProv-Df, is proposed
in this subsection. Based on this new model, the user is able to (i) track epochs,
learning rate, accuracy, loss function, execution time, etc., (ii) discover which
pre-processing methods were used before training the model, (iii) monitor the
training process and perform fine-tuning, (iv) discover which files were generated
in different execution steps, and (v) interpret the generated results.

Figure 3 presents the DNNProv-Df model represented as a UML class dia-
gram. The classes inside the dotted red area are classes related to the steps of the
1 https://prov.readthedocs.io/en/latest/prov.html.
2 http://www.graphviz.org/.

https://prov.readthedocs.io/en/latest/prov.html
http://www.graphviz.org/
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DL life cycle considered in this paper, with attributes that represent the data
related to training metrics and hyperparameters. In the DL life cycle, several
different hyperparameters have to be set, e.g., learning rate, batch size, number
of epochs, momentum and dropout. Choosing the best hyperparameter values is
far from trivial and many combinations are commonly explored. This process is
compute-intensive, usually performed in HPC environments, and, several models
are generated. Only one of these models is chosen as the best one and this choice
must be registered for a posteriori analysis. In addition, as the training process
takes a long time, it is necessary to steer it, e.g., by inspecting how the evalua-
tion metrics are evolving during the training so that one can change parameters
and start training again if needed.

Fig. 3. DNNProv-Df model

The classes related to the dataflow specification are inherited from the
PROV-Df model, which are dataflow, dataTransformation, dataset, dataDepen-
dency, program and attribute. These classes represent prospective provenance (p-
prov). The class dataflow is responsible for representing the different dataflows
whose content has been stored in the provenance database. This class contains
a name for each dataflow. The class dataTransformation represents the multi-
ple activities associated with a given dataflow. An activity is associated with a
program or a script that is executed. To represent retrospective provenance (r-
prov), DNNProv-Df contains the classes task and file. The class task represents
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the instances of activities that are executed, and the class file represents the
entity attributes that were eventually used and generated at runtime.

As described in [23], the hyperparameters are adjusted after or during each
iteration. To make decisions regarding the fine-tuning of these hyperparame-
ter values, the user needs to evaluate several data associated with the behav-
ior of the DNN with the hyperparameter configuration used in that iteration,
e.g., the training time for each epoch, and the loss associated with each epoch.
Thus DNNProv-Df contains the following classes to represent domain-specific
data regarding the DNN training process: i trainingModel, o trainingModel,
i adaptation, o adaptation and o testingModel.

The class i trainingModel contains the hyperparameters that have to be set
in the DNN before the training process (the prefix i refers to the input param-
eters of a task and the prefix o in the classes refers to the output parameter
values). Some of these hyperparameters are learning rate, number of epochs,
optimizer, momentum, and decay. Meanwhile, the class o trainingModel con-
tains performance metrics for the generated model by epoch. This class contains
attributes such as elapsed time and the date and time of the end of the epoch’s
execution. The elapsed time attribute defined in this class allows users to check
whether the execution of an epoch is taking longer than expected. Adaptations
are made during the training of a DNN. For example, an adaptation can generate
a new learning rate at the end of an epoch, using a function that significantly
decreases the value of the learning rate every n times by a m factor. Thus,
the activity Adaptation receives as input data the set produced by the previous
activity (activity Training) and a dataset with information such as the factor
m, the value of n and the initial learning rate. This dataset is represented by
the class i adaptation. The dataset produced by this activity, represented by the
class o adaptation, contains the new learning rate, epoch and the date and time
when the adaptation occurred, in addition to identification for the adaptation.
Finally, the class o testingModel is related to the activity Testing and provides
data about the evaluation of the model. Thus, similarly to the o trainingModel
class, o testingModel contains performance metrics, such as accuracy and loss
function values. It is worth mentioning that this model can be extended as new
hyperparameters and metrics are needed.

3.2 Architecture of DNNProv and Keras-Prov

We present two provenance service management solutions for hyperparameters
analysis. The architectures of DNNProv and Keras-Prov are presented in Fig. 4.
The main difference between DNNProv and Keras-Prov is where the Prove-
nance Extractor component is deployed. The architecture of both services is
composed of three layers, according to Fig. 4, which are: (i) Training Layer, (ii)
Data Layer, and (iii) Analysis Layer. The Training Layer is where the training
library executes and interacts with the Provenance Extractor, which accesses the
hyperparameter values at runtime and gets their values.
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For DNNProv, the Provenance Extractor is implemented and deployed out-
side the DNN library. This way, the user can choose any DNN library or frame-
work, and then instrument the code (adding calls to the provenance extractor
component) to define which data to capture. Using DNNProv we assume that
the programs in the DL life cycle are gray boxes, i.e., part of their source code
can be adapted, while the other part can invoke a private source code (black
box). In DNNProv, the user defines which domain data and hyperparameters
values will be captured and where they should be captured (step 1a ). With this
instrumentation, the Provenance Extractor can access the data during training
(step 2 ).

In the case of Keras-Prov, the Provenance Extractor is already implemented
within the Keras library, so the user does not need to instrument the code. The
user chooses, among the predefined provenance choices, domain data and hyper-
parameters to be captured (step 1b ). The Provenance Extractor automatically
extracts the values of the hyperparameters used in each training (step 2 ). In
both Keras-Prov and DNN-Prov, once captured, the provenance data is managed
asynchronously with the DL execution. After, the Provenance Extractor inter-
acts with the Data Layer to get the JSON file paths describing the DNN (step
3 ). These file paths, with hyperparameters values, metrics and, etc., are sent to
the provenance database (step 4 ). Then, the Provenance Exporter queries the
provenance database (step 5 ) and sends query results to the Provenance Viewer
(step 6 ), which generates a visual representation of the provenance graph as an
alternative to the user runtime analysis.

Fig. 4. Architecture of DNNProv and Keras-Prov

3.3 Using DNNProv and Keras-Prov

If the user chooses to use DNNProv, one important step is the code instrumen-
tation. In this step, the user defines which data to capture. The first step is to
define the dataflow structure in the source code of the DNN workflow (p-prov).
Let us assume that a user needs to capture the data defined in Fig. 3, thus one
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has to include in the source code the fragment shown in Fig. 5. In this frag-
ment, the user specifies an identifier for the dataflow (dataflow tag = “alexnet”)
and sets the automatic definition of activities to True. By setting the automatic
definition of p-prov, the DNNProv queries the provenance database and identi-
fies the registered activities. If the user chooses to set the automatic definition
of p-prov to False, one has to define which activities are part of this dataflow
manually.

Once the dataflow and its transformations are defined, the user needs to set
in the source code where a task starts (and finishes) and where DNNProv can
extract (at runtime) the values of the hyperparameters. Note that the dataflow
and data transformations specifications are p-prov, while the definition of tasks
is r-prov. When the user is defining a task in the source code, one can also define
the data dependencies among tasks, i.e., the user specifies in the source code
which tasks are responsible for the production and consumption of data in a
given dataflow. This step is also shown in Fig. 5 (dependency=t1 - this means
that task t2 only starts after task t1 produces data). Multiple dependencies are
modeled with binary relationships and queried with join predicates. Once set,
this provenance schema can be reused for further DNN analyses.

Fig. 5. A fragment of the source code instrumented for DNNProv

This instrumentation of the source code to capture the provenance data can
be a barrier to the adoption of provenance tools by many scientists that are not
computer science experts, given the effort that may be required from the user.
With this in mind, we proposed Keras-Prov, which is the second provenance ser-
vice management approach proposed in this paper. Keras-Prov is an extension
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of the DNN library Keras3 and its goal is to reduce the effort to adapt the code
to capture provenance data during the DNN training process by reducing the
need for instrumentation. In the implementation of Keras-Prov, modifications
were performed to the source code of Keras4 to embed the Provenance Extrac-
tor component, since Keras does not capture provenance data natively. A class
Provenance was created containing methods to deal with the creation of the
activities that follow the DL life cycle, following the representation presented
in Fig. 3. In addition to this data, Keras-Prov captures and stores information
about the layers of the DNN, that is, the name that identifies the layer (e.g.,
activation 1, dropout 1), the type of layer (e.g., activation, dropout) and the
value of this layer (e.g., for activation the value is relu, the value for dropout
is 0.4). Although Keras-Prov captures several hyperparameter values automat-
ically, it is worth noticing that the user can define new data to be captured.
For more information about defining new data to be captured using Keras-Prov
please visit https://github.com/dbpina/keras-prov.

In the Model class of Keras, a provenance method was created to capture
provenance data. This method receives a tag to identify the dataflow, if there
is an adaptation of the hyperparameters during training (e.g., an update of the
learning rate), that is, the use of methods such as LearningRateScheduler offered
by Keras, and the list of hyperparameters to be captured. The data received by
the provenance method are defined by the user in the source code of the DL
workflow following the example presented in Fig. 6. Different from DNNProv,
when using Keras-Prov the user needs only to set which hyperparameters to
capture, and no additional instrumentation is required. After setting True to
the hyperparameters of interest, the user adds a call to the method provenance.

Fig. 6. Setting the hyperparameters of interest in Keras-Prov

Considering that ML workflows follow the life cycle of Fig. 1, the inclusion of
DNNProv in popular ML systems like Keras, requires the identification, in the
source code, of the points at which such activities (network configuration, train-
ing, and testing) are performed and how the neural network data, hyperparam-
eters, and metrics (from the training and testing steps) are being manipulated.
This step allows to define PROV relationships between them and establishes
data extraction into the database for automatic provenance design and capture
in those systems.
3 https://keras.io/.
4 https://github.com/keras-team/keras.

https://github.com/dbpina/keras-prov
https://keras.io/
https://github.com/keras-team/keras
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4 Evaluation

In this section, we evaluate DNNProv and Keras-Prov. We discuss the results
obtained using both approaches for the analysis of hyperparameter configura-
tions during the training of DNNs using provenance data. In the experiments pre-
sented in this section, we trained AlexNet [19] in both DNNProv and Keras-Prov
in the cluster Lobo Carneiro (SGI cluster with 504 CPUs Intel Xeon E5-2670v3
(Haswell) - total of 6.048 processors) at COPPE/UFRJ using the Oxford Flower
[28] dataset, which consists of 17 species of flowers with 80 images for each class.
The flower categories in this dataset are deliberately chosen to have some ambi-
guity in each aspect. For example, some classes cannot be distinguished only in
colors, such as dandelions and buttercups, others cannot be distinguished only
in shapes, such as daffodils and wild windflowers. The images of the flowers
were retrieved from different websites and some images from the authors’ own
photographs [28].

The Alexnet dataflow is composed of the following activities: (i) Training,
(ii) Adaptation, and (iii) Testing. Training consumes (used) the following hyper-
parameters: the name of the optimizer, the learning rate, number of epochs, and
number of layers in the network, and produces (wasGeneratedBy) a set of metrics
that helps in the evaluation of results obtained during training, e.g., accuracy,
the value of the loss function, the elapsed time and the date and time of the
end of the execution of each epoch. Adaptation consumes (used) the dataset
produced by the previous activity (Training), a dataset with information for the
adaptation that has taken place and the output contains the values for the new
learning rate, the value of the epoch and the date and time when the adaptation
occurred, in addition to identification for the adaptation. Testing provides data
on the evaluation of the model according to the training dataset and outputs
the accuracy and loss function values.

Several training runs were performed for AlexNet, with variations in hyper-
parameters values, e.g., learning rate (0.0005, 0.001, 0.002), optimizer (Adam,
SGD) and dropout (0.4, 0.7). After a few training executions, the user decided
to apply a filter to convert the images (input dataset) to a gray-scale. Because
of that, the user needed to add a new activity called Filters, also wanting this
activity to be registered at the provenance database. Due to DNNProv’s flex-
ibility, a modification was made to the p-prov and this activity was included,
which means that in the next training executions, the data defined by the user
for this activity started to be captured. Likewise, other extensions can be done
to the relational schema showing the flexibility of the approaches.

Table 1 defines provenance queries based on the most frequent queries from
[12,24,35,40,41]. We categorize the set of possible provenance queries as illus-
trated in Table 2. Queries are classified according to the provenance data process-
ing needed to answer them. For instance, queries in class C1 get entity attributes
from a single provenance graph, while queries in class C2 access multiple prove-
nance graphs. Queries in class C3 require relating entity attributes and data
derivation path on one graph, while C4 queries multiple provenance graphs. ML
frameworks like Tensorflow or Keras mention their provenance support through
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logs. Despite the possibility of extracting provenance from logs [13], it is far
from trivial. It requires repetitive log post-processing for every trial, with no
flexibility on defining what to capture. Running aggregation queries through
epoch iterations from logs, like Q6 and Q8, is also time-consuming and demands
a significant effort from the user.

Table 1. Example of provenance queries.

# Queries Class

Q1 What is the loss value of epoch 10 of a specific training t’ of a specific
model m’?

C1

Q2 What are the layers of model m’? C1

Q3 Retrieve the time consumed and loss by each epoch in the training t’ of
model m’

C1

Q4 What is the initial value of the learning rate when the training for
model m’ was more accurate?

C2

Q5 Retrieve the combinations of hyperparameters where was obtained the
3 best accuracy values in previous training for model m’?

C2

Q6 Was there an adaptation of the learning rate in the training of the
model m’ that obtained the best accuracy? If so, at what epoch did it
occur and what technique was used for this adaptation? And what is
the new value?

C3

Q7 What filter was applied to model m’ when the dropout value was 0.4? C4

Q8 Which filter was applied in the training executions that showed the
best and the worst accuracy for model m’? What was the number of
epochs in these executions?

C4

Table 2. Classification of queries.

Class Entity attributes Derivation path Single graph Multiple graphs

C1 Yes No Yes No

C2 Yes No No Yes

C3 Yes Yes Yes No

C4 Yes Yes No Yes

Using the queries presented in Table 1, during the training of the DNN, the
user is able to monitor metrics by epoch and steer the training at runtime.
If, for instance, the loss value is not meeting the criteria defined by the user,
one may decide to stop training or modify the learning rate. In this case, these
adaptations are also saved (time and date when it happened) since they are
important for a posteriori analysis, even at the end of the training process. The
user may want to discover if the training with adaptation at runtime produced
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better results than the training that used the same value for the learning rate
without modifications at runtime. It is worth noticing that DNNProv and Keras-
Prov can also be connected to data visualization tools, as a setup option, such as
Kibana5, to create dashboards and other resources to support the user’s analysis.

To evaluate the potential of DNNProv and Keras-Prov, queries Q3, Q6, and
Q8 were submitted to the provenance database that was populated with the
different training data of AlexNet (from multiple training runs). The results
consider the number of epochs, if a gray-scale filter was applied to the input
dataset and the use of LearningRateScheduler (LRS) for adaptations in the
learning rate during training. These results are presented in Tables 3, 4 and 5.

From the result of Q3 (Table 3), it is possible to investigate, for example, if
any epoch is taking longer than usual. In addition, if the loss value attribute
is selected along with the identification of the epoch, the specialist can verify
whether the increase in the number of epochs no longer contributes to better
accuracy after a certain epoch. The result of Q6 (Table 4) shows the impact of
learning rate adaptations in model convergence. Though decreasing the learning
rate is a known technique, the registered values help the user trace the cause of
changes when analyzing different models. These data are also important if the
user is evaluating the impact of different learning rate adaptation techniques or
different parameters for decreasing learning rate functions, such as Step Decay.
From the result of Q8 (Table 5), we observed that the application of the filter
that converts the images to a gray-scale presented a worse accuracy in the test
set, 0.37, than the training without this filter, which presented an accuracy of
0.59.

Table 3. Results for the Query Q3

Epoch Time (seconds) Loss value

1 22.075 3.484

2 20.560 2.870

3 19.996 2.542

4 20.478 2.188

5 20.378 2.015

6 20.006 1.784

7 20.486 1.600

8 20.238 1.466

9 20.395 1.246

10 20.318 0.977

It is worth mentioning that for the results presented in this paper, AlexNet
was trained with a maximum of 100 epochs. AlexNet was also trained a few times
5 https://www.elastic.co/kibana.

https://www.elastic.co/kibana
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Table 4. Results for the Query Q6

Epoch Learning rate Technique

10 0.001 LRS

30 0.00025 LRS

Table 5. Results for the Query Q8

Filter Accuracy Epochs

None 0.59 100

Gray-scale 0.37 100

with a larger number of epochs, such as 500 and 1000, which took about three
and six hours, respectively. Due to this training time, we chose to train with
fewer epochs to show provenance helping in evaluating different variations of
hyperparameters. Furthermore, provenance queries like Q6 show that the high-
est accuracy reached by AlexNet with 500 epochs was around 65%, which is
consistent with the top accuracy of 68.68% presented for AlexNet in flower cat-
egorization [16].

Moreover, we observed the overhead introduced by the proposed approach.
The purpose of this measurement was to assess the impact of capturing prove-
nance on training time. We observed that the time overhead corresponds to an
increase of 2% in the worst case over the total workflow time. This overhead can
be considered negligible, especially in longer executions, considering that the
user will have the benefit of queries and visualizations to the captured prove-
nance data. In addition, the size of the provenance database was 5MB and with
such a size it is already possible to answer relevant questions.

5 Conclusions

The approach presented in this paper aims at supporting the analysis of hyper-
parameter configurations and adaptations in the training of DNNs by capturing
relevant provenance data. We present a provenance-based user steering approach
that allows for capturing and storing data to query during and after the train-
ing. This approach is implemented in two modes, independent and dependent
of the DNN library or framework. By adopting the W3C PROV recommenda-
tion, both modes aim at reducing the diversity of data representation and the
effort in modeling and querying DL training data related to PROV. The first,
DNNProv, is not specific to programming languages or libraries, and does not
require the use of a particular ML execution environment. However, DNNProv
requires the user to instrument the script code of the DNN workflow, which may
require some effort. To provide a solution that does not require instrumentation,
Keras-Prov adds DNNProv components into Keras to capture the provenance
data automatically. In addition, the approach is flexible since it allows for the
inclusion of new types of data to be captured, like the DL domain application
data. Experiments show the adequacy of the use of provenance in the analysis
throughout the training of DNNs, including extensions for capturing data related
to pre-processing. As future work, we plan to extend the approach to the domain
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of Physics Informed Neural Networks (PINN) [33]. PINNs define the neural net-
work loss function based on partial differential equations that inform physics.
Analyzing loss function data in PINNs increases the complexity of provenance
data management.
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2014. LNCS, vol. 8628, pp. 71–83. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-16462-5 6

28. Nilsback, M.E., Zisserman, A.: A visual vocabulary for flower classification. In: 2006
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2006), vol. 2, pp. 1447–1454. IEEE (2006)

29. Ocaña, K.A.C.S., Silva, V., de Oliveira, D., Mattoso, M.: Data analytics in bioin-
formatics: data science in practice for genomics analysis workflows. In: 11th
IEEE International Conference on e-Science, e-Science 2015, Munich, Germany, 31
August–4 September 2015. pp. 322–331. IEEE Computer Society (2015). https://
doi.org/10.1109/eScience.2015.50

30. Ormenisan, A.A., Ismail, M., Haridi, S., Dowling, J.: Implicit provenance for
machine learning artifacts. Proc. MLSys 20 (2020)

31. Orr, G.B., Müller, K.R.: Neural Networks: Tricks of the Trade. Springer (2003)
32. Pimentel, J.F., Freire, J., Murta, L., Braganholo, V.: A survey on collecting, manag-

ing, and analyzing provenance from scripts. ACM Comput. Surv. 52(3), 47:1–47:38
(2019). https://doi.org/10.1145/3311955

33. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed deep learning (part
I): data-driven solutions of nonlinear partial differential equations. arXiv preprint
arXiv:1711.10561 (2017)

http://arxiv.org/abs/1708.03763
https://doi.org/10.1007/978-3-319-16462-5_6
https://doi.org/10.1007/978-3-319-16462-5_6
https://doi.org/10.1109/eScience.2015.50
https://doi.org/10.1109/eScience.2015.50
https://doi.org/10.1145/3311955
http://arxiv.org/abs/1711.10561


38 D. Pina et al.
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Abstract. Introduction: Transparency of computation is a requirement for assess-
ing the validity of computed results and research claims based upon them; and
it is essential for access to, assessment, and reuse of computational components.
These components may be subject to methodological or other challenges over
time. While reference to archived software and/or data is increasingly common
in publications, a single machine-interpretable, integrative representation of how
results were derived, that supports defeasible reasoning, has been absent.

Methods: We developed the Evidence Graph Ontology, EVI, in OWL 2, with
a set of inference rules, to provide deep representations of supporting and chal-
lenging evidence for computations, services, software, data, and results, across
arbitrarily deep networks of computations, in connected or fully distinct processes.

EVI integrates FAIR practices on data and software, with important concepts
from provenance models, and argumentation theory. It extends PROV for addi-
tional expressiveness, with support for defeasible reasoning. EVI treats any com-
putational result or component of evidence as a defeasible assertion, supported by
a DAG of the computations, software, data, and agents that produced it.

Results: We have successfully deployed EVI for large-scale predictive analyt-
ics on clinical time-series data. Every result may reference its evidence graph as
metadata, which can be extended when subsequent computations are executed.

Discussion: Evidence graphs support transparency and defeasible reasoning
on results. They are first-class computational objects and reference the datasets and
software fromwhich they are derived. They support fully transparent computation,
with challenge and support propagation. The EVI approach may be extended to
include instruments, animal models, and critical experimental reagents.

Keywords: Provenance · Evidence graphs · Computation · FAIR

1 Introduction

1.1 Motivation

It is now increasingly understood that dramatically enhanced capabilities for generat-
ing and analyzing very large datasets, with increasingly sophisticated methods, require
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systematic referencing of archived datasets and software as persistent first-class objects,
with some machine-readable record of their provenance. There is now beginning to
be an additional, and necessary, focus on software citation, and provenance. Principles
and methods for achieving these goals have been defined and are in various stages of
transition to practice in the scientific communications ecosystem [1–11].

Incorporating these practices has been advocated to improve verifiability, replica-
bility, reproducibility, and reusability of computational results. The goal, which was
established as a requirement at the dawn of modern science [12–15], is to make the
process by which results and the claims they support are arrived at, transparent, and
to allow the methods involved to be inspected—at least virtually—for adequacy, and if
possible, reused, and improved upon in various applications.

We would like to do this for computations, using a clean, formal, and integrated
approach, that does not require “boiling the ocean”; and in which artifacts such as
provenance records, which may benefit a broad community of research, are generated
principally as side-effects of normal computational work. We do not want to place
unwanted burdens or requirements on researchers, with which they cannot realistically
be expected to comply. Any system or method that generates such artifacts ought to
have other attributes of significant value to researchers. In particular, we would like an
ontology providing these features to provide useful functionality in a digital commons
environment, where asynchronous reuse of results by various researchers occurs, and
not necessarily as coherent workflows.

Of course, all published scientific results (including mathematical proofs) [16–19],
are provisional. Results, methods, reasoning, computations, and interpretations may be
challenged by others in the community, and frequently are [20, 21]. A major reason for
methodological transparency is to support such reviews and challenges. Results in sci-
ence are reviewed “by a jury of peers”, similarly to adversarial proceedings in law: a case
is made, which may be argued for and against, based on evidence. Published “findings”
or claims, and indeed computational results, are not facts. They are defeasible assertions
[22], which rely upon a chain of evidence as warrants for belief. That makes them part
of a chain of argumentation. We, therefore, treat computations and their provenance as
defeasible arguments for provisional results.

1.2 Related Work

We previously undertook an analysis of the scientific communications life cycle to
develop the Micropublications Ontology (MP) [23], which introduced a focus on chains
of evidence and defeasible reasoning, and an emphasis on the nature of scientific claims
as embedded in arguments. This approach was inspired by argumentation theory and by
Greenberg’s detailed model of citation distortion [24, 25], which highlights empirical
issues with citation chains in the scientific literature. It was alsomotivated by a perceived
tendency amongst some computer scientists to take claims in the biomedical literature
as “facts”, without subjecting them to further scrutiny.

Argumentation frameworks [26–34] and abstract dialectical frameworks [35, 36] are
important sets of tools and concepts developed in the broader AI community, with an
extensive literature. Bipolar Argumentation Frameworks (BAFs) as developed byCayrol
and others [31, 37, 38], allow both supporting and challenging arguments to be asserted
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and reasoned over in formal models. We discuss the relationship of our work to formal
argumentation frameworks further in the Methods section.

The W3C PROV model [39–41] provides a well-thought-out and extensively tested
set of core classes and properties, which may be used to document almost any compu-
tational provenance, in arbitrarily fine detail, and can serve as the basis for useful exten-
sions. While PROV deals comprehensively and rigorously with core internal aspects
of provenance, it does not engage explicitly with the role that provenance may play as
evidence for computational results and interpretive claims. Nor does it conceptualize
provenance as part of an argument for the validity of results, which may be countered,
for example by later researchers finding bugs in code [42–45], flaws in datasets [46, 47],
statistical errors [20], or fallacies in mathematical arguments [18].

Ontologies or schemas directly engaging the topic of experiments and experimental
results include the Evidence and Claims Ontology (ECO) [48]; the Investigation, Study,
Assay (ISA) model [49]; and the Ontology of Biomedical Investigations (OBI) [50]. All
of these works are capable of representing machine-interpretable instances of scientific
experiments within their proposed models and of offering limited provenance informa-
tion. However, their focus is on characterizing individual experiments—principally in
the wet lab—sometimes in exquisite detail, with over 4000 classes in OBI, which make
it best suited to use by highly trained specialist annotators. None of these models directly
treat computational results, and none treat results as components of argumentation.

The ambitious Nanopublications model [51–54], was developed to standardize the
form of research claims by recasting them as RDF triples, and aggregating holotypic
claims with their paratypes, thus making the claims computable in some sense. What
the nanopublications model currently lacks, is the ability to show evidential support in
argumentation for the results it models.

Finally, there are related works that deal with computational results by packaging
them up with their provenance records and other materials for citation or reference
in metadata. These would include the Research Objects (RO) model [55–57] and its
companion,RO-Crate [58]. The initial ROpublication states as an explicit goal, replacing
the “static PDF” form of scientific publication, and as such RO provides an integration
framework across many related models involved in scientific specification, description,
and communication. RO-Crate is a lightweight packaging initiative, or implementation
realization, for RO and related material.

2 Methods

Cayrol and Lagasquie-Schiex’s work on BAFs supplied inspiration for our approach;
which has, however, somewhat different semantics from their model, regarding the
support relation, and the meaning of an argument.

In BAFs, arguments are opaque, and without internal structure. This extremely
abstract treatment derives from Dung’s original presentation [33], enhanced to provide
explicit bipolarity. In BAFs, if an argument A supports B, it agrees with B, similar to
having an ally in a dispute. Therefore, an attack of C upon A also attacks B.

Our model, in contrast, treats support as it occurs in the scientific literature, as
supporting evidence cited by the author of an argument. If C challenges A, a challenge
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by C on the supporting evidence for A cannot be inferred. However, as in Toulmin
argumentation, and the work of Verheij [59–61], a challenge to A’s supporting evidence
undercuts A—it reduces the warrant for belief in A.

Evidence graphs in our approach may be represented abstractly as:

EG = 〈A,R+,R−〉,where: (1)

A is a set of representations;
R+ ∈ A × A is the set of support relations;
R− ∈ A × A is the set of challenge relations; and
R + ∩R− = ∅

In our treatment, Representations are generalized forms of the various types of asser-
tions and evidence found in the scientific literature.AllRepresentations have provenance,
if only to the extent that they have authorship. A Representation may be a statement, or
a set of assertions, claims, or declarations, with provenance as its support.

The simplest form of provenance is the attribution of an assertion to an Agent. A
declarative sentence is an argument of this simple form,where a statement’s attribution is
its simplest supporting evidence.This corresponds toAristotle’s viewof argument as hav-
ing a significant measure of support from ήθoς (ethos), the character of the speaker [62];
and relates to our common experience of tending to give more credence to statements
from trusted, highly reputed sources. This notion can be extended to results produced
by computational agents whose operations are well-validated and transparent.

AMethod orMaterial representation in a publication, provided as provenance, con-
stitutes a set of assertions about what was done to get a result. Software source code is a
set of assertions of this form when used in a provenance description for a computation.

Source code has a dual nature, in that as a set of instructions, it is a collection of
performatives [63], not evaluable as strictly true or false. We distinguish here between
software as a set of instructions to a computer, which does something; and software
provided as a description of what was done by the computer, i.e. “it ran this code”.

We have adapted these notions to computational provenance representation.We base
our model on the following key ideas:

• All data, methods descriptions, and results are sets of defeasible assertions.
• The evidence for the correctness of any result is the record of its provenance.
• Subsequent research or discussion may challenge results, datasets, or methods.

The EVI ontology is a formal representation of the evidence for any result or claim
as an EvidenceGraph, which unifies existing models for both software and data citation
and supports machine-based defeasible reasoning.

We first introduced several of the concepts used in EVI in our previous work on
Micropublications. EVI simplifies, revises, and adapts many features of the micropubli-
cations model to a purely computational digital commons environment, where evidence
graphs may be generated by a computation service. The computation service we devel-
oped, described elsewhere [64], provides affordances to the user by greatly simplifying
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access to very large-scale data and underlying parallel computation and workflow ser-
vices. At the same time, it produces and extends evidence graphs transparently, as a side
effect.

3 Results

EVI is an extension ofW3CPROV, based on argumentation theory, which enables defea-
sible reasoning about computations, their results, data, and software. It can be extended
to incorporate non-computational evidence important to the results of a computation,
for example, the specific instrument (manufacturer and catalog number) used to obtain
a dataset or the reagent used in a binding assay.

Evidence Graphs are directed acyclic graphs, DAGs, produced by a service when a
computation is run. They are first-class digital objects and may have their own persistent
identifiers and be referenced as part of themetadata of any result. Theymay be arbitrarily
deep. We model these using an OWL 2 vocabulary and set of rules [65, 66] which pro-
vide for propagation of support and challenge relations, with direct supports/challenges
distinguished from indirect. A diagram of the classes and relations is provided in Fig. 1.

The classes within the dotted-line box in the figure are basic PROV classes: Entity,
Agent, and Activity. All relations in the box are subproperties of PROV relations.

The argumentation relations supports and challenges are introduced on the new
class, Representation, a subclass of prov:Entity. A Representation is a prov:Entity that
represents anotherEntity. All digital objects in EVI are considered to beRepresentations;
which may contain other Representations.

Supports and challenges are superproperties of directlySupports and directlyChal-
lenges (not shown in the Figure). Supports is transitive, directlySupports is not.Directly-
Supports is a superproperty of the relation usedBy (inverse of prov:used), and of the
property generates (inverse of generatedBy) so that if a recorded Activity D used a par-
ticular Representation C as input, and generates E as output, then C directlySupports D
and D directlySupports E.

This is shown in Example 1 below, illustrating how the property chain rule evaluates
distant support in the graph, where <s> stands for the supports property, and <dS>
stands for directlySupports.

(D 〈used〉C ∧ D 〈generates〉E) ⇒ (2)

(C 〈dS〉D ∧ D 〈dS〉E) ⇒

(C 〈s〉D ∧ D 〈s〉E) ⇒ C 〈s〉E
Supports and directlySupports properties are distinguished in this way because they

serve different purposes in the model. The directlySupports property gives us our DAG,
connecting the various Representations to form an evidence graph. It is simply a gener-
alization over several PROV properties. The supports property is transitive and allows
us to infer distant support relations. By analogy with genealogical trees, directlySup-
ports equates roughly to hasParent relations; supports equates roughly to has-Ancestor
relations.
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Fig. 1. Classes and relations in the Evidence Graph Ontology, EVI. https://w3id.org/EVI

Articles, Claims, Material (as used in a typical “Materials and Methods” section),
Methods (likewise), and EvidenceGraphs themselves, are Representations. A Method
describes an Activity that may referTo a Material. The class Material is iteratively sub-
classed into Instrument, Dataset, Image, Software, and Downloads. Downloads are par-
ticular distributions of a Dataset or Software, representing e.g. different formats of a
Dataset, in the same manner, this approach is used in the schema.org class DataD-
ownload. An Agent in EVI may be a SoftwareAgent, Person, orOrganization. A Service
usedBy aComputation is a kind of SoftwareAgent. AnActivitymay be aDataAcquisition
or a Computation.

Detailed formal definitions of all these terms, and equivalent schema.org [67] terms
where they exist, are provided in the ontology description page at https://w3id.org,
which has the latest updates. The OWL 2 vocabulary and its version history are on
GitHub, here: https://github.com/EvidenceGraph/EVI/blob/master/Ontology/versions/
v0.2/evi.owl, and the version we used for this article, is archived on Zenodo [68].

The diagram in Fig. 1 omits detail relevant to rules and supports/challenges propa-
gation, for pictorial clarity. The supports and challenges properties have subproperties
directlySupports, indirectlySupports, directlyChallenges, and indirectlyChallenges, not
shown in the figure. The supports property is propagated through the evidence graph via
transitivity on supports.

(A directlySupportsB ∧ B directlySupportsC) ⇒ A supportsC (3)

https://w3id.org/EVI
https://w3id.org
https://github.com/EvidenceGraph/EVI/blob/master/Ontology/versions/v0.2/evi.owl
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Challenges are propagated through a property chain on challenges and supports.

(A supportsB ∧ X challengesA) ⇒ X challengesB (4)

4 Discussion

In developing and validating our approach, we performed a very large-scale time series
analysis of 10 years of vital signs time series data from the Neonatal Intensive Care Unit
(NICU) at the University of Virginia Hospital, collected on 5957 infants. This extended
proof-of-concept was a significant research study in its own right, in which NICU time
series were analyzed using 80 different algorithms in 11 mathematical families from
diverse domains [69]. Computations were performed over a period of 15 months, in
various stages, using the FAIRSCAPE microservices framework [64], producing an
evidence graph of 17,996 nodes [70]. This evidence graph is queryable from a Star-
dog™ quad store via one of the microservices and is also deposited in the University
of Virginia’s Dataverse with a prov:wasDerivedFrom property associating it with the
underlying dataset, which is also in Dataverse [71].

Whether using our FAIRSCAPE framework or some other approach, EVI statements
are intended to be transparently generated by a computation service, similar to how
ordinary PROV statements are generated by workflow engines. Thus, evidence graphs
become side effects of doing useful computations. In our case, these computations are
run within a FAIR digital commons environment.

Figure 2 illustrates a section of this graph for one of the 5957 subjects in the NICU
analysis. In ourmicroservices framework the EvidenceGraph service stores and retrieves
the graphs in a Stardog™ RDF quad store, which also performs the inferencing. The
PATH query, an extension to SPARQL, generates an EvidenceGraph DAG from the
root object, using the directlySupportedBy abstraction (not shown here) to structure the
graph and the supports superproperty of its transitive inverse, supportedBy, to infer
distant evidential support.

As canbe seen in the example, everynode in the graphhas a persistent identifier, based
on the ARK system [72] in our implementation. This approach provides the important
unification of all available digital evidence for (and potentially, against) a result, by
supporting persistent resolution to the cited objects.

One could ask, in a practical sense, if a challenge is made to some leaf node deep
in the graph, should it always invalidate the root assertion? The answer to this is that
challenges do not invalidate, they present an opposing view. They ultimately require
human judgment as to their validity and strength. We do, however, wish to know about
them. This becomes important in digital commons environments, and in, for example,
meta-analyses reusing prior results. It can have a further impact if computational results
are properly referenced and tied to textual claims in citation networks, such as those
explored by Greenberg [24] and others.

We believe that EVI provides an important generalization of provenance as evidence
for correctness, which can be further extended beyond computation to include the other
types of evidence presented in scientific publications, for example by including identi-
fiers such as RRIDs [73] of important experimental reagents and animal models in the
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protocols from which the data was derived. Our end goal is to be able to provide, with
the metadata of any datasets we store in an archive, a link to the corresponding evi-
dence graph. With this practice, any result presented in a publication, with appropriate
data citation, ought to be resolvable to its entire evidence graph, and transitively closed
to its components. Future research directions include extended support for packaging
evidence graphs; support for extended descriptive metadata; service integration with
data and software archives; and continued alignment with other initiatives in this space.
As a component of the FAIRSCAPE digital commons framework, we plan for EVI to
continue its evolution with direct input from computational users.

Fig. 2. JSON-LD of a portion of the evidence graph for one of the 5997 infant subjects from
clustering step in comparative time-series analysis, adapted from [64].

Information Sharing Statement

• The EVI ontology OWL2 vocabulary is available at https://w3id.org/EVI# under MIT
license.
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Abstract. Provenance is information about entities, activities, and peo-
ple involved in producing a piece of data or a thing, which can be used
to form assessments about the data or the thing’s quality, reliability, or
trustworthiness. PROV-DM is the conceptual data model that forms the
basis for the W3C provenance (PROV) family of specifications. In this
paper, we propose a new serialization for PROV in JSON called PROV-
JSONLD. It provides a lightweight representation of PROV expressions
in JSON, which is suitable to be processed by Web applications, while
maintaining a natural encoding that is familiar with PROV practition-
ers. In addition, PROV-JSONLD exploits JSON-LD to define a seman-
tic mapping that conforms to the PROV-O specification and, hence, the
encoded PROV expressions can be readily processed as Linked Data.
Finally, we show that the serialization is also efficiently processable in
our evaluation. Overall, PROV-JSONLD is designed to be suitable for
interchanging provenance information in Web and Linked Data applica-
tions, to offer a natural encoding of provenance for its targeted audience,
and to allow for fast processing.

1 Introduction

Since their release in 2013, the PROV Recommendations [4] by the World Wide
Web Consortium (W3C) have started being adopted by flagship deployments
such as the Global Change Information System,1 the Gazette2 in the UK, and
other Linked Datasets. PROV, which is used as the data model to describe the
provenance of data, is made available in several different representations: PROV-
N [13], PROV-XML [6], or in an RDF serialization using the PROV Ontology
(PROV-O) [10]. The latter, arguably, is most suitable for Linked Data [5], given
that it can readily be consumed by existing Semantic Web tools and comes with

1 https://data.globalchange.gov.
2 https://www.thegazette.co.uk.
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the semantic grounding provided by PROV-O. Surprisingly, the PROV-JSON [7]
serialization has gained traction, despite simply being a member submission to
the W3C, and not having gone through the various stages of a standardization
activity. The primary reason for this, we conjecture, is that many Web applica-
tions are built to be lightweight, working mainly with simple data formats such
as JSON [2].

The very existence of all these serializations is a testament to the approach to
standardization taken by the Provenance Working Group, by which a conceptual
data model for PROV was defined, the PROV data model (PROV-DM) [12],
alongside its mapping to different technologies, to suit users and developers.
However, the family of PROV specifications lacks a serialization that is capable
of addressing all of the following requirements.

R1 A serialization must support lightweight Web applications.
R2 A serialization must look natural to its targeted community of users.
R3 A serialization must allow for semantic markup and integration with linked

data applications.
R4 A serialization must be processable in an efficient manner.

Surprisingly, none of the existing PROV serializations supports all these
requirements simultaneously. While PROV-JSON is the only serialization to
support lightweight Web applications, it does not have any semantic markup,
its internal structure does not exhibit the natural structure of the PROV data
structures, and its grouping of expressions per categories (e.g. all entities, all
activities,. . . ) is not conducive to incremental processing. The RDF serialization
compatible with PROV-O has been architected to be natural to the Semantic
Web community: all influence relations have been given the same directionality
with respect to their time ordering, but the decomposition of data structures
(essentially n-ary relations) into individual triples, which can occur anywhere in
the serialization, is not conducive to efficient parsing. It is reasonable to say that
the world has moved on from XML, while the PROV-N notation was aimed at
humans rather than efficient processing.

Against that background, JSON-LD [15] allows a semantic structure to be
overlaid over a JSON structure, thereby enabling the interpretation of JSON
serializations as Linked Data. This was exploited in an early version of this
work [8], which applied the JSON-LD approach to a JSON serialization of PROV.
The solution, however, did not lead to a natural encoding of the PROV data
structure, because a property occurring in different types of JSON objects had
to be named differently so that it could be uniquely mapped to the appropriate
RDF property; we observe here that what is natural in JSON is not necessarily
natural in RDF, and vice-versa. The ability to define scoped contextual mappings
was introduced in JSON-LD 1.1 [9] and is a key enabler of this work, allowing for
the same natural PROV property names to be used in different contexts while
still maintaining their correct mappings to the appropriate RDF properties.

Thus, this paper proposes PROV-JSONLD, a serialization of PROV that
is compatible with PROV-DM and that addresses all of our four key require-
ments above. It is first and foremost a JSON structure so it supports lightweight
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Web applications. It is structured in such a way that each PROV expression is
encoded as a self-contained JSON object and, therefore, is natural to JavaScript
programmers. Exploiting JSON-LD 1.1, we defined contextual semantic map-
pings, allowing a PROV-JSONLD document to be readily consumed as Linked
Data that is conforming to the PROV Ontology. Finally, PROV-JSONLD allows
for efficient processing since each JSON object can be readily mapped to a data
structure, without requiring unbounded lookaheads, or search within the data
structure.

In the remainder of this paper, we provide an illustration of PROV-JSONLD
in Sect. 2; we then define its structure by means of a JSON Schema [1] in Sect. 3
and its JSON-LD semantic mapping in Sect. 4. We outline the interoperability
testing we put in place to check its compatibility with the PROV data model
in Sect. 5 and evaluate the efficiency of PROV-JSONLD processing in Sect. 6.
Section 7 concludes the paper with an outline for future work.

2 Example

To illustrate the proposed PROV-JSONLD serialization, we consider a subset of
the example of PROV-PRIMER [3], depicted in Fig. 1. It can be paraphrased as
follows: agent Derek was responsible for composing an article based on a dataset.

Fig. 1. Provenance expressing that Derek was responsible for composing an article
based on a dataset.

The PROV-JSONLD representation of this example can be seen in Listing 1.
At the top level, a PROV-JSONLD document is a JSON object with two proper-
ties @context and @graph, as per JSON-LD. A context contains mappings of pre-
fixes to namespaces, and also an explicit reference to https://openprovenance.
org/prov-jsonld/context.json, the JSON-LD 1.1 context defining the semantic
mapping for PROV-JSONLD, which is described in Sect. 4. The @graph prop-
erty has an array of PROV expressions as value. Each PROV expression itself is a
JSON object with at least a @type property (for instance, prov:Entity, prov:Agent
or prov:Derivation). Each of these PROV expressions provides a description for

https://openprovenance.org/prov-jsonld/context.json
https://openprovenance.org/prov-jsonld/context.json
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Entity
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Agent
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Derivation
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1 {

2 "@context": [ {

3 "dcterms": "http://purl.org/dc/terms/",

4 "ex" : "http://example/",

5 "foaf" : "http://xmlns.com/foaf/0.1/"

6 }, "https://openprovenance.org/prov-jsonld/context.json" ],

7 "@graph" : [ {

8 "@type" : "prov:Entity",

9 "@id" : "ex:dataSet1"

10 }, {

11 "@type" : "prov:Entity",

12 "@id" : "ex:article1",

13 "dcterms:title": [

14 { "@value" : "Crime rises in cities", "@language" : "EN" }

15 ]

16 }, {

17 "@type" : "prov:Derivation",

18 "generatedEntity" : "ex:article1",

19 "usedEntity" : "ex:dataSet1"

20 }, {

21 "@type" : "prov:Agent",

22 "@id" : "ex:derek",

23 "foaf:mbox" : [ { "@value" : "<mailto:derek@example.org>" } ],

24 "prov:type" : [ "prov:Person" ],

25 "foaf:givenName" : [ { "@value" : "Derek" } ]

26 }, {

27 "@type" : "prov:Association",

28 "activity" : "ex:compose",

29 "agent" : "ex:derek"

30 }, {

31 "@type" : "prov:Activity",

32 "@id" : "ex:compose"

33 }, {

34 "@type" : "prov:Usage",

35 "activity" : "ex:compose",

36 "entity" : "ex:dataSet1"

37 }, {

38 "@type" : "prov:Generation",

39 "entity" : "ex:article1",

40 "activity" : "ex:compose"

41 } ]

42 }

Listing 1: The PROV-JSONLD representation of Fig. 1.

a resource, some of which are identified by the @id property (for instance,
ex:article1 or ex:derek). Some of the resources are anonymous and, therefore,
do not have a property @id, for instance, the prov:Derivation relation between the
dataset and the article (Line 17–19).

https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Derivation
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PROV expressions can be enriched with a variety of properties. Some of
which are “reserved” such as activity and agent in a prov:Association. Others
may be defined in a different namespace such as foaf:givenName, for which we
expect the prefix foaf to be declared in the @context property. Finally, further
PROV attributes are allowed, for instance, prov:type with an array of further
types, to better describe the resource.

The property @type is mandatory and is associated with a single value,
expected to be one of the predefined PROV expression types. From an efficiency
viewpoint, this property is critical in determining which internal data structure
a PROV expression should map to and, therefore, facilitates efficient process-
ing. On the contrary, prov:type is optional and can contain as many types as
required; their order is not significant.

3 PROV-JSONLD Schema

In this section, we provide an overview of the JSON schema [1] for PROV-
JSONLD; the full schema is available at https://openprovenance.org/prov-
jsonld/schema.json.

3.1 Preliminary Definitions

Some primitive types, namely DateTime and QualifiedName, occur in PROV seri-
alizations. We define their schema3 as follows.

{ "DateTime": {

"$id": "#/definitions/DateTime",

"type": "string",

"format": "date-time" },

"QualifiedName": {

"$id": "#/definitions/QualifiedName",

"type": "string", "default": "",

"pattern": "^[A-Za-z0-9_]+:(.*)$" },

}

In addition, we define typed values (typed value) as JSON objects with proper-
ties @value and @type and string values lang string as objects with properties
@value and @language.

{ "typed_value": {

"type": "object", "required": [ "@value", "@type" ],

"properties": {

"@value": { "type": "string" },

"@type": { "type": "string" }

},

3 The production rules for qualified names are more complex than the simple regular
expression outlined here. A post-processor will need to check that qualified names
comply with the definition in [13].

https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Association
http://www.w3.org/ns/prov#type
http://www.w3.org/ns/prov#type
https://openprovenance.org/prov-jsonld/schema.json
https://openprovenance.org/prov-jsonld/schema.json


56 L. Moreau and T. D. Huynh

"additionalProperties": false },

"lang_string": {

"type": "object", "required": [ "@value" ],

"properties": {

"@value": { "type": "string" },

"@language": { "type": "string" }

},

"additionalProperties": false }

}

We also define types for collections of property values, which can be arrays of
values (ArrayOfValues) or arrays of labels (ArrayOfLabelValues).

{ "ArrayOfValues": {

"$id": "#/definitions/ArrayOfValues", "type": "array",

"items": {

"anyOf": [

{ "$ref": "#/definitions/QualifiedName" },

{ "$ref": "#/definitions/typed_value" },

{ "$ref": "#/definitions/lang_string" } ]

}

},

"ArrayOfLabelValues": {

"$id": "#/definitions/ArrayOfLabelValues", "type": "array",

"items": { "$ref": "#/definitions/lang_string" }

}

}

With these preliminary definitions in place, we can now present the specifi-
cation of the core data structures of PROV-JSONLD.

3.2 Encoding a PROV Expression

Each PROV expression is serialized into a single JSON object in a @graph array.
For instance, Listing 2 shows the JSON schema for a prov:Entity expression in
PROV-JSONLD. All the constituents of an expression become properties of the
object as follows:

– The identifier (if present) becomes the identifier of the object (@id property).
For prov:Entity, prov:Activity, and prov:Agent expressions, the @id property is
required while it is optional for all other PROV expressions.

– The type of the PROV expression, e.g. prov:Activity, prov:Derivation, becomes
the only value for the object’s @type property, which is always required. Addi-
tional types, if any, are added to an array held by the prov:type property.

https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Entity
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Entity
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Activity
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-agent
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Activity
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Derivation
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1 {

2 "prov:Entity": {

3 "type": "object", "required": [ "@type", "@id" ],

4 "properties": {

5 "@type": { "pattern": "prov:Entity" },

6 "@id": { "$ref": "#/definitions/QualifiedName" },

7 "prov:type": { "$ref": "#/definitions/ArrayOfValues"},

8 "prov:location": { "$ref": "#/definitions/ArrayOfValues" },

9 "prov:label": { "$ref": "#/definitions/ArrayOfLabelValues"}

10 },

11 "patternProperties": {

12 "^[A-Za-z0-9_]+:(.*)$": { "$ref": "#/definitions/ArrayOfValues" }

13 },

14 "additionalProperties": false }

15 }

Listing 2: The JSON schema for prov:Entity.

– Other formal constituents of the PROV expression are encoded as properties
of the object using the same property name as defined in PROV-DM. All
those properties are optional. For example, the JSON object for a prov:Activity

may have the properties startTime and/or endTime, for which DateTime string
values are expected; while the object for a prov:Derivation expression may have
the properties activity, generation, usage, generatedEntity, and usedEntity,
for which QualifiedName string values are expected.

– The object may contain additional attributes which are encoded as the
object’s properties, such as a location (property prov:location), a label (prop-
erty prov:label), or any other properties with an explicit prefix.

3.3 Encoding a PROV Document and a PROV Bundle

A PROV document is encoded as a JSON object which must contain a property
@type with the value prov:Document, a JSON-LD context @context, and an array
of PROV expressions as the value of the property @graph. The names of the
properties @context and @graph are specified by JSON-LD [9].

A PROV bundle is encoded in the same way as a PROV document except
that the JSON object for the bundle must contain a property @type with the
value prov:Bundle and additionally an identifier (property @id). Listing 3 shows
the JSON schema of a prov:Bundle object in PROV-JSONLD. A bundle contains
a list of statements (see Listing 4, definition prov:Statement), which can be one of
the defined PROV expressions as per Sect. 3.2. Documents, however, can contain
statements and/or bundles (see Listing 4, definition prov:StatementOrBundle).

https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Activity
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Derivation
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-bundle
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1 { "prov:Bundle": {

2 "type": "object",

3 "required": [ "@type", "@id", "@graph", "@context" ],

4 "properties": {

5 "@type": { "pattern": "prov:Bundle" },

6 "@id": { "$ref": "#/definitions/QualifiedName" },

7 "@context": { "$ref": "#/definitions/Context" },

8 "@graph": {

9 "type": "array",

10 "items": { "$ref": "#/definitions/prov:Statement" } } },

11 "additionalProperties": false }

12 }

Listing 3: JSON schema for prov:Bundle.

1 { "prov:Statement": {

2 "oneOf": [

3 { "$ref": "#/definitions/prov:Entity" },

4 { "$ref": "#/definitions/prov:Activity" },

5 { "$ref": "..." },

6 { "$ref": "#/definitions/prov:Communication" }

7 ]

8 },

9 "prov:StatementOrBundle": {

10 "oneOf": [

11 { "$ref": "#/definitions/prov:Statement" },

12 { "$ref": "#/definitions/prov:Bundle" }

13 ] }

14 }

Listing 4: JSON schema for prov:Statement and prov:StatementOrBundle; 14
other statements are abbreviated in Line 5 to save space.

4 PROV-JSONLD Context

JSON-LD contexts define mappings between terms4 in a JSON document and
IRIs (Internationalized Resource Identifier) [9] and, thus, enable the JSON
document to be parsed as Linked Data. Using this mechanism, we define the
PROV-JSONLD context in order for terms in a PROV-JSONLD document to
be mapped to appropriate PROV properties and classes as defined by PROV-O
(when read by a JSON-LD-compliant consumer). Due to the limited space, we
present only some typical examples of term mappings in this section. The full
context is available at https://openprovenance.org/prov-jsonld/context.json.

4 A term is a short-hand string that expands to an IRI, a blank node identifier, or a
keyword [9].

https://openprovenance.org/prov-jsonld/context.json
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4.1 Default Context Elements

The following JSON properties have a default meaning unless they are rede-
fined in a specific context of a PROV-JSONLD document: entity, activity

and agent respectively map to the properties prov:entity, prov:activity, and
prov:agent. In addition, the JSON properties prov:role, prov:type, prov:label
and prov:location have the same meaning in all contexts of a PROV-JSONLD
document and respectively map to prov:hadRole, rdf:type, rdfs:label, and
prov:atLocation.

{ "entity": { "@type": "@id", "@id": "prov:entity" },

"activity": { "@type": "@id", "@id": "prov:activity" },

"agent": { "@type": "@id", "@id": "prov:agent" },

"prov:role": { "@type": "@id", "@id": "prov:hadRole" },

"prov:type": { "@type": "@id", "@id": "rdf:type" },

"prov:label": { "@id": "rdfs:label" },

"prov:location": { "@type": "@id", "@id": "prov:atLocation" }

}

4.2 Contexts for PROV Elements

JSON objects with types prov:Entity and prov:Agent can be mapped directly to
the corresponding classes defined by PROV-O without any extra specific map-
ping apart from the default above. JSON objects with type prov:Activity, how-
ever, can additionally have the JSON properties startTime and endTime, which
map to the RDF data properties prov:startedAtTime and prov:endedAtType,
respectively, and have a range of type xsd:dateTime.

{ "prov:Activity": {

"@id": "prov:Activity",

"@context" : {

"startTime":{"@type": "xsd:dateTime", "@id": "prov:startedAtTime"},

"endTime": {"@type": "xsd:dateTime", "@id": "prov:endedAtTime"} }

}

}

4.3 Contexts for PROV Relations

The ontology PROV-O [10] defines the Qualification Pattern, which restates
a binary property between two resources by using an intermediate class that
represents the influence between the two resources. This new instance, in turn,
can be annotated with additional descriptions of the influence that one resource
had upon another. Figure 2, for example, shows the Qualification Pattern defined
for class prov:Usage in PROV-O. For each PROV relation expression, we apply its
Qualification Pattern and encode the relation as a resource in PROV-JSONLD.
The mapping below supports the Qualification Pattern of Fig. 2. The JSON
properties activity and time map to the object property prov:qualifiedUsage

and the data property prov:atTime, respectively.

http://www.w3.org/ns/prov#entity
http://www.w3.org/ns/prov#activity
http://www.w3.org/ns/prov#agent
http://www.w3.org/ns/prov#hadRole
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/2000/01/rdf-schema#label
http://www.w3.org/ns/prov#atLocation
http://www.w3.org/ns/prov#startedAtTime
http://www.w3.org/ns/prov#endedAtType
http://www.w3.org/2001/XMLSchema#dateTime
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Usage
http://www.w3.org/ns/prov#qualifiedUsage
http://www.w3.org/ns/prov#atTime
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{ "prov:Usage": {

"@id": "prov:Usage",

"@context": {

"activity": { "@type": "@id", "@reverse": "prov:qualifiedUsage" },

"time": { "@type": "xsd:dateTime", "@id": "prov:atTime" } } }

}

prov:entity

prov:atTime

prov:qualifiedUsage

xsd:dateTime

Usage

prov:used
ActivityEntity

Fig. 2. The qualification pattern for class prov:Usage defined by PROV-O [10].

Note that the context above applies only to objects with the @type property
having the value prov:Usage thanks to the support for type-scoped contexts by
JSON-LD 1.1 [9]. For such objects, the above context for prov:Usage is in effect in
addition to the default context in Sect. 4.1 and overrides the default mapping for
the term activity, replacing it with a reverse mapping to prov:qualifiedUsage.
The default mapping for the term entity (mapping it to prov:entity), however,
still applies. Along with the additional definition for the term time, they complete
the JSON-LD context for prov:Usage (Fig. 2).

We follow the same convention for all the remaining PROV relations. Table 1
provides the mappings to the qualification properties for the reverse terms
defined in the type-scoped contexts. Note that while PROV-O does not define
a Qualification Pattern for Specialization, Alternate, and Membership relations, for
uniformity and usability reasons, we adopt similar mappings as other PROV rela-
tions, via a Qualification Pattern. However, the mappings are to new classes and
properties in the PROV extension namespace (denoted by the prefix provext).
See the following section for some interoperability considerations.

5 Interoperability Considerations

IC1 There are differences between PROV-DM and PROV-O in terms of the level
of requirements set on some expressions. For instance, PROV-DM mandates
the presence of an entity in a generation, whereas PROV-O defines an activity
as optional. Compliance requirements are not the same in PROV-O as one
could define a qualified generation with an activity but without an entity.
Experience shows that there may be good reasons why a generation may

https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Usage
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Usage
http://www.w3.org/ns/prov#qualifiedUsage
http://www.w3.org/ns/prov#entity
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Usage
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-specialization
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-alternate
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-membership
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Table 1. PROV-JSONLD reverse terms defined in type-scoped contexts and their
corresponding qualification properties.

PROV-O classes PROV-JSONLD terms Qualification properties

prov:Generation entity prov:qualifiedGeneration
prov:Derivation generatedEntity prov:qualifiedDerivation
prov:Invalidation entity prov:qualifiedInvalidation
prov:Attribution entity prov:qualifiedAttribution
prov:Usage activity prov:qualifiedUsage
prov:Start activity prov:qualifiedStart
prov:End activity prov:qualifiedEnd
prov:Association activity prov:qualifiedAssociation
prov:Communication informed prov:qualifiedCommunication
prov:Delegation delegate prov:qualifiedDelegation
prov:Influence influencee prov:qualifiedInfluence
provext:Specialization specificEntity provext:qualifiedSpecialization
provext:Alternate alternate1 provext:qualifiedAlternate
provext:Membership collection provext:qualifiedMembership

not refer to an entity; for instance, because the recorded provenance is not
“complete” yet, and further provenance expressions still need to be asserted,
received, or merged; in the meantime, we still want to be able to process such
provenance, despite being “incomplete”. Thus, in PROV-JSONLD, the pres-
ence of an entity and an activity in a generation expression is recommended,
while other properties are optional, and only its @type property is required.

IC2 In PROV-DM, all relations are n-ary except for specialization, alternate and
membership, which are binary, meaning that no identifier or extra properties
are allowed for these. In PROV-O, this design decision translates to the lack
of qualified relations for specialization, alternate and membership. In PROV-
JSONLD, in order to keep the regular structure of JSON objects and the
natural encoding of relations, but also to ensure the simplicity and efficiency
of parsers, these three relations are encoded using the same pattern as for
other relations. Therefore, their mapping to RDF via the JSON-LD context
relies on a PROV extension namespace (denoted by the prefix provext) in
which classes for Specialization, Alternate, and Membership are defined. The
PROV-JSONLD serialization also allows for identifier and properties to be
encoded for these relations.

IC3 The notion of a PROV document is not present in PROV-DM or PROV-O,
but is introduced in PROV-N as a housekeeping construct, and is defined in
PROV-XML as the root of a PROV-XML document. A document in PROV-
JSONLD is also a JSON object, allowing for a JSON-LD @context property
to be specified.

IC4 PROV-JSONLD does not introduce constructs for some PROV subtypes
(prov:Person, prov:Organization, prov:SoftwareAgent, and prov:Collection) and sub-
relations (prov:Quotation, prov:PrimarySource, and prov:Revision). Instead, the
example of Sect. 2 illustrates how they can be accommodated within the
existing structures. We copy below an agent expression of type prov:Person

https://www.w3.org/TR/2013/REC-prov-o-20130430/#Generation
http://www.w3.org/ns/prov#qualifiedGeneration
https://www.w3.org/TR/2013/REC-prov-o-20130430/#Derivation
http://www.w3.org/ns/prov#qualifiedDerivation
https://www.w3.org/TR/2013/REC-prov-o-20130430/#Invalidation
http://www.w3.org/ns/prov#qualifiedInvalidation
https://www.w3.org/TR/2013/REC-prov-o-20130430/#Attribution
http://www.w3.org/ns/prov#qualifiedAttribution
https://www.w3.org/TR/2013/REC-prov-o-20130430/#Usage
http://www.w3.org/ns/prov#qualifiedUsage
https://www.w3.org/TR/2013/REC-prov-o-20130430/#Start
http://www.w3.org/ns/prov#qualifiedStart
https://www.w3.org/TR/2013/REC-prov-o-20130430/#End
http://www.w3.org/ns/prov#qualifiedEnd
https://www.w3.org/TR/2013/REC-prov-o-20130430/#Association
http://www.w3.org/ns/prov#qualifiedAssociation
https://www.w3.org/TR/2013/REC-prov-o-20130430/#Communication
http://www.w3.org/ns/prov#qualifiedCommunication
https://www.w3.org/TR/2013/REC-prov-o-20130430/#Delegation
http://www.w3.org/ns/prov#qualifiedDelegation
https://www.w3.org/TR/2013/REC-prov-o-20130430/#Influence
http://www.w3.org/ns/prov#qualifiedInfluence
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-specialization
https:/openprovenance.org/ns/provext#qualifiedSpecialization
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-alternate
https:/openprovenance.org/ns/provext#qualifiedAlternate
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-membership
https:/openprovenance.org/ns/provext#qualifiedMembership
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Specialization
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Alternate
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Membership
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Person
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Organization
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-SoftwareAgent
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Collection
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Quotation
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-PrimarySource
https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Revision
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(Line 5) and a derivation of type prov:Revision (Line 11). These subtypes and
subrelations are specified inside the prov:type property. PROV-XML offers
a similar way of encoding such subtypes and subrelations, alongside special-
ized structures. We opted for this single approach to ensure the simplicity
and efficiency of parsers.

1 { "@graph" : [

2 { "@type" : "prov:Agent",

3 "@id" : "ex:derek",

4 "foaf:mbox" : [ { "@value" : "<mailto:derek@example.org>" } ],

5 "prov:type" : [ "prov:Person" ],

6 "foaf:givenName" : [ { "@value" : "Derek" } ]

7 },

8 { "@type" : "prov:Derivation",

9 "generatedEntity" : "ex:dataSet2",

10 "usedEntity" : "ex:dataSet1",

11 "prov:type" : [ "prov:Revision" ]

12 } ]

13 }

IC5 The interoperability of the PROV-JSONLD serialization can be tested in
different ways: In a roundtrip testing, consisting of the serialization of an
internal representation in some programming language to PROV-JSONLD,
followed by deserialization from PROV-JSONLD back to the same program-
ming language, the source and target representations are expected to be
equal. Likewise, in a roundtrip testing, consisting of the serialization of an
internal representation in some programming language to PROV-JSONLD,
followed by a conversion of PROV-JSONLD to another RDF representation
such as Turtle [14], followed by a reading of the Turtle representation back to
the same programming language, the source and target representations are
also expected to be equal. Both interoperability tests have been implemented
in the Java-based ProvToolbox, with:
– The first roundtrip testing is implemented in https://github.com/

lucmoreau/ProvToolbox/blob/master/modules-core/prov-jsonld/src/
test/java/org/openprovenance/prov/core/RoundTripFromJavaJSONLD
11Test.java

– The second roundtrip testing is implemented in https://github.com/
lucmoreau/ProvToolbox/blob/master/modules-legacy/roundtrip/src/
test/java/org/openprovenance/prov/core/roundtrip/RoundTrip
FromJavaJSONLD11LegacyTest.java.

6 Implementation and Evaluation

We have introduced PROV-JSONLD as a PROV serialization that is lightweight,
natural, semantic and efficient. So far, this paper has focused on the first three
characteristics. The purpose of this section is to discuss its performance.

http://www.w3.org/ns/prov#type
https://github.com/lucmoreau/ProvToolbox/blob/master/modules-core/prov-jsonld/src/test/java/org/openprovenance/prov/core/RoundTripFromJavaJSONLD11Test.java
https://github.com/lucmoreau/ProvToolbox/blob/master/modules-core/prov-jsonld/src/test/java/org/openprovenance/prov/core/RoundTripFromJavaJSONLD11Test.java
https://github.com/lucmoreau/ProvToolbox/blob/master/modules-core/prov-jsonld/src/test/java/org/openprovenance/prov/core/RoundTripFromJavaJSONLD11Test.java
https://github.com/lucmoreau/ProvToolbox/blob/master/modules-core/prov-jsonld/src/test/java/org/openprovenance/prov/core/RoundTripFromJavaJSONLD11Test.java
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The PROV-JSONLD serialization is implemented in ProvToolbox,5 a JVM-
based library for processing PROV standardized representations. The library can
build representations of the PROV data model in Java and can convert such data
structures to PROV-JSONLD, PROV-N, and PROV-JSON, and vice-versa.

From an implementation viewpoint, each PROV expression has an associated
class implementing it, which we refer to as java-prov. For instance, the java-
prov class for a PROV Generation has fields for an activity and an entity, and
further optional fields.

public class WasGeneratedBy implements

org.openprovenance.prov.model.WasGeneratedBy, HasAttributes {

QualifiedName activity;

QualifiedName entity;

Optional<QualifiedName> id=Optional.empty();

Optional<XMLGregorianCalendar> time=Optional.empty();

List<org.openprovenance.prov.model.LangString> labels=new LinkedList<>();

List<org.openprovenance.prov.model.Location> location=new LinkedList<>();

List<org.openprovenance.prov.model.Other> other = new LinkedList<>();

List<org.openprovenance.prov.model.Type> type = new LinkedList<>();

List<org.openprovenance.prov.model.Role> role = new LinkedList<>();

// constructors, accessors and mutators ...

}

Serialization/Deserialization to/from PROV-JSONLD is performed by the
library Jackson6, which can be configured by means of mix-ins: in the interface
below, the sister interface JLD WasGeneratedBy allows for configuration anno-
tation for Jackson to be mixed-in with the definition of the java-prov defini-
tion of WasGeneratedBy, while keeping the original java-prov code intact. For
instance, for each field, the mix-in has the opportunity to control specialized
methods for serialization or deserialization. It also specifies an order in which
the JSON properties are expected to be serialized.

@JsonPropertyOrder({ "@id", "entity", "activity", "atTime" })

@JsonInclude(JsonInclude.Include.NON_NULL)

public interface JLD_WasGeneratedBy extends JLD_Generic, HasRole {

@JsonDeserialize(using = CustomQualifiedNameDeserializer.class)

public QualifiedName getEntity();

@JsonDeserialize(using = CustomQualifiedNameDeserializer.class)

public QualifiedName getActivity();

XMLGregorianCalendar getTime();

}

5 https://lucmoreau.github.io/ProvToolbox/.
6 https://github.com/FasterXML/jackson.

https://lucmoreau.github.io/ProvToolbox/
https://github.com/FasterXML/jackson
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A PROV document consists of a sequence of statements or bundles. Given
that a java-prov statement is declared by an interface, the Jackson deserializer
is able to determine the necessary constructor to invoke by relying on the @type
property, automatically inserted at serialization time, by the declaration below.
It makes explicit, e.g., how prov:Usage class should be parsed when encountering
@type value "prov:Usage".

@JsonPropertyOrder({ "@context", "@graph"})

public interface JLD_Document {

@JsonProperty("@context")

Namespace getNamespace();

@JsonTypeInfo(use=JsonTypeInfo.Id.NAME,

include=JsonTypeInfo.As.PROPERTY,

property="@type")

@JsonSubTypes({

@JsonSubTypes.Type(value = WasGeneratedBy.class,

name = "prov:Generation"),

@JsonSubTypes.Type(value = Used.class, name = "prov:Usage"),

@JsonSubTypes.Type(value = Activity.class, name = "prov:Activity"),

@JsonSubTypes.Type(value = Agent.class, name = "prov:Agent"),

@JsonSubTypes.Type(value = Entity.class, name = "prov:Entity"),

// all other statements and bundles ...

})

@JsonProperty("@graph")

List<StatementOrBundle> getStatementOrBundle();

}

Our investigation of the performance of PROV-JSONLD focuses on dese-
rialization, which consists of reading a PROV-JSONLD serialization and con-
structing the corresponding java-prov representation, using the kind of classes
described above. To compare the performance, we use an alternative set of mix-in
configurations also to allow (de)serialization for PROV-JSON. We also compare
with the PROV-N (de)serialization: the serialization is written by handcrafted
code, whereas the deserialization is implemented using the ANTLR grammar.
We are not interested in measuring the cost of inputs and outputs; therefore, our
benchmarks generate serializations in a memory buffer, and vice-versa, deserial-
ization operates on an input memory buffer.

Two further points of comparison were used for the evaluation. First, a native
JSON parser, without any customization code, generates native Java objects
(consisting of Java Maps for JSON objects and Java arrays for JSON sequences)
from a PROV-JSONLD serialization. Such internal representations based on
Java native objects are not as conducive to processing as the java-prov classes
above, since types are not made explicit, and therefore cannot exploit the Java
object-oriented style with its inheritance and static typing. Second, a copy pro-
cedure performs a deep copy of a java-prov data structure, which involves the
creation of the java-prov data structure and the necessary checks and initial-
izations, to make it ready for subsequent processing.

https://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Usage
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Serialisation/Deserialisation
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Fig. 3. (De)Serialization benchmark: r-provjsonld: reading time from PROV-
JSONLD to java-prov; w-provjsonld: writing time from java-prov to PROV-
JSONLD; r-json: reading time from PROV-JSONLD to native Java objects;
jdeepcopy: time for deep copy of java-prov; r-provjson: reading time from prov-
json to java-prov; w-provjson: writing time from java-prov to prov-json; r-provn:
reading time from prov-n to java-prov; w-provn: writing time from java-prov to
prov-n.

The results of the benchmarking operations are displayed in Fig. 3. We can
see that the efficiency of r-provjsonld (28.65µs) which is barely 45% over the
r-json + jdeepcopy (i.e. 19.84µs). This result is very good as there are addi-
tional operations included in r-provjsonld but not in r-json or jdeepcopy,
such as indexing and preparing prefix and namespace mappings.

The PROV-JSONLD reading time (r-provjsonld) significantly outperforms
prov-n reading time (r-provn), which is penalized by currently relying on an
intermediary abstract syntax tree before constructing java-prov.

We were surprised how the handcrafted PROV-N writer w-provn outper-
forms any of JSON serializations w-provjsonld and w-provjson. We have not
been able to ascertain the origin of this difference. We conjecture that the hand-
crafted technique of w-provn could be applied to PROV-JSONLD and give a
similar performance.
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Overall, the plot in Fig. 3 demonstrates a serialization/deserialization tech-
nique for PROV-JSONLD that is efficient.

7 Conclusion

In this paper, we have defined the PROV-JSONLD serialization, a JSON and
Linked Data representation for the PROV data model. It provides a lightweight
representation of PROV expressions in JSON, which is suitable to be processed
by Web applications, while maintaining a natural encoding that is familiar with
PROV practitioners. Using JSON-LD 1.1, we define a semantic mapping for
PROV-JSONLD such that the encoded PROV expressions can be readily pro-
cessed as Linked Data that conforms to the PROV-O specification. Finally, we
show that the serialization is processable in an efficient manner with our imple-
mentation in the open-source ProvToolbox library. With the combined advan-
tages of both JSON and Linked Data representations, we envisage that PROV-
JSONLD will gradually replace PROV-JSON and other PROV-compliant RDF
serializations. To that end, the PROV-JSONLD serialization reported in this
paper is being documented in a formal technical specification to be submitted
to World Wide Web Consortium [11].

As a JSON serialization, PROV-JSONLD can be readily exploited by exist-
ing JSON stores to provide storage for PROV documents. ProvToolbox, for
instance, is exploiting this opportunity by using MongoDB,7 a document-
oriented database for JSON documents, to persist PROV documents. While
JSON stores offer generic query capabilities for JSON documents, in the future, it
would be useful to define a query language that exploits the structure and seman-
tics of PROV-JSONLD. Likewise, learning from MongoDB and its BSON binary
encoding of JSON, an efficient, compact binary encoding of PROV-JSONLD
could be specified.

As illustrated by the different compliance requirements discussed in IC1
(Sect. 5), the various PROV serializations do not interoperate fully. At the
W3C, the Provenance Working group attempted to maintain an informal map-
ping between PROV-DM and its encoding in RDF (as per PROV-O). This was
a manual task without any tool support and, therefore, error-prone and hard
to maintain. The JSON-LD context used by PROV-JSONLD appears to be a
promising mechanism to systematically encode these mappings and to help iron
out outstanding interoperability issues.
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Abstract. Data provenance analysis has been used as an assistive mea-
sure for ensuring system integrity. However, such techniques are typi-
cally reactive approaches to identify the root cause of an attack in its
aftermath. This is in part due to the fact that the collection of prove-
nance metadata often results in a deluge of information that cannot
easily be queried and analyzed in real time. This paper presents an app-
roach for proactively reasoning about provenance metadata within the
Automatic Cryptographic Data Centric (ACDC) security architecture, a
new security infrastructure in which all data interactions are considered
at a coarse granularity, similar to the Function as a Service model. At
this scale, we have found that data interactions are manageable for the
proactive specification and evaluation of provenance policies—constraints
placed on provenance metadata to prevent the consumption of untrusted
data. This paper provides a model for proactively evaluating provenance
metadata in the ACDC paradigm as well as a case study of an elec-
tronic voting scheme to demonstrate the applicability of ACDC and the
provenance policies needed to ensure data integrity.

1 Introduction

Data provenance provides a comprehensive history of data and the manipulations
it has underwent from its inception to its latest state. Analysis of this history can
provide significant insight into a datum’s integrity and authenticity for forensic
analysts and security administrators. However, due to the mass of data being
produced in computing environments, manual analysis of provenance metadata
is a daunting task. Automated provenance analysis techniques exist but generally
provide a reactive evaluation in the aftermath of a security incident (e.g., [20]).

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlim-
ited.
This material is based upon work supported by the Under Secretary of Defense for
Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any opin-
ions, findings, conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the Under Secretary of Defense
for Research and Engineering.

c© Springer Nature Switzerland AG 2021
B. Glavic et al. (Eds.): IPAW 2020/IPAW 2021, LNCS 12839, pp. 71–87, 2021.
https://doi.org/10.1007/978-3-030-80960-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80960-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-80960-7_5


72 S. Engram et al.

This retrospective approach to data provenance analysis has proven valuable
in several security contexts (e.g., diagnosing an attacker’s point of entry to a
system). Nevertheless, given the ubiquity of online services, many of which oper-
ate in an outsourced distributed environment, there is a need for a proactive
approach to data provenance analysis. Proactively evaluating a datum’s prove-
nance record before consumption is especially applicable to operations within
cloud environments, where end users, who outsource their data to be processed
by cloud applications, should have some level of assurance about their data’s
integrity. Runtime analysis of whole-system provenance has recently gained
attention in the literature but does so at a fine-grained level, which does not
translate cleanly to a distributed system [24].

The ability to proactively specify properties of provenance metadata, to aid
in security enforcement decisions, can have a significant impact on a distributed
environment’s overall security posture. This paper presents an approach for
proactively reasoning about provenance metadata within the Automatic Cryp-
tographic Data Centric (ACDC) security architecture, a distributed architecture
that upends the current system-centric paradigm by taking a data-centric app-
roach to security. Rather than protecting systems that store data, ACDC puts
the focus directly on protecting data itself both at rest and in motion while simul-
taneously ensuring that data is used in only authorized and auditable ways. Data
protection goals include confidentiality, integrity, and availability throughout all
uses of the data, including not only storage and transmission but also sharing
and computation, on devices and networks that may be partially compromised.

ACDC allows application developers to proactively express policies over
provenance metadata to be enforced before data is consumed by an individ-
ual process. We call such policies provenance policies. ACDC can prevent the
consumption of untrusted data by providing the following capabilities: 1) secure
packaging of data with associated integrity and confidentiality policies at the
network’s edge, 2) enforcement of integrity and confidentiality policies through-
out the data’s entire lifespan, and 3) a thorough record of data provenance to
account for every manipulation. To the best of our knowledge, this paper presents
the first effort to provide a proactive approach for data provenance evaluation
within a data-centric security architecture.

Our core contributions are as follows:

1. We introduce the ACDC architecture for data-centric security (Sect. 2),
2. We describe a formal approach for reasoning about provenance policies proac-

tively based on a mathematical semantics of provenance metadata (Sect. 3),
and

3. We demonstrate the applicability of ACDC and proactive provenance pol-
icy evaluation by providing a case study of an end-to-end, coercion-resistant
voting system (Sect. 4).

Section 5 provides a summary of related work and Sect. 6 concludes and pro-
vides directions for future work.
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Fig. 1. ACDC core component architecture

2 The ACDC FaaS Paradigm

This section introduces the Automatic Cryptographic Data-Centric (ACDC)
security paradigm and describes each of the components that make up an ACDC
network. As shown in Fig. 1, ACDC puts all data into named, secure data cap-
sules, where each capsule is associated with an owner. These capsules contain
cryptographically enforced access-control policies that define who can access and
use the capsules’ associated data. Each capsule also contains its provenance as
captured within the ACDC system, allowing authorized parties to assess a cap-
sule’s integrity before acting upon it. ACDC provides flexibility to data owners
by allowing them to 1) cryptographically authorize functions to run on their data,
and 2) specify which secure computation techniques are allowed to process their
data (e.g., multiparty computation (MPC) or secure enclaves), which enables
data owners to consider the tradoffs between security, functionality, and per-
formance. These capabilities allow mutually distrusting data owners to securely
collaborate and share their data in a controlled environment. Lastly, ACDC uses
content-centric networking (CCN) [17] to route and transmit data capsules by
their name rather than by the systems storing such data, thus enabling capsules’
cryptographic mechanisms to protect data wherever capsules go on the network.

An instance of an ACDC network (closed or Internet-wide) consists of the
following components:

Nodes. ACDC nodes may be a set of dedicated servers each running ACDC
software. Each node may also have a set of supporting servers that provide
data for specific ACDC functionality using unspecified (back-end) protocols. In
general, all ACDC nodes use a common ACDC core library. The library itself
makes no distinction based on the node type, though the capabilities of an
individual node can dictate many different types.

Data Capsules. As previously mentioned, all data is stored in named, secure
capsules. All capsules are digitally signed for authenticity and integrity, and
the internal data of each capsule is encrypted for confidentiality. Each data
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capsule may contain an optional output confidentiality policy, which defines the
confidentiality restrictions imposed on any data derived from its data.

Capsule Storage. ACDC stores data capsules persistently, allowing nodes to
publish new capsules, fetch existing capsules, and delete capsules. All capsules
are named according to a CCN-compatible ACDC naming scheme.

Function as a Service. FaaS allows nodes to perform (or serve) one or more
functions in a query/response model. In general, FaaS is expected to use the
same naming schemes as capsule storage, such that any request can be static
(Capsule Storage) or dynamic (FaaS).

Secure Execution Environments. ACDC provides environments for secure
function execution (e.g., secure enclaves such as Intel SGX or MPC).

Keys. ACDC uses cryptographic keys for confidentiality, integrity, and authen-
ticity.

Policies. ACDC has two types of policies: 1) confidentiality policies, and 2)
integrity policies (i.e., provenance policies). The confidentiality policies are
attribute-based encryption policies [10] that define the attributes needed to
decrypt a data capsule and thus cryptographically enforce access control.
Attributes are terms that may refer to a principal’s characteristics (e.g., a role
or identity) or proof of taking an action (e.g., validating a capsule’s prove-
nance). Provenance policies define a capsule’s expected provenance and should
be checked before a capsule is used as input to a function (discussed at length
in Sect. 3).

Contracts. Contracts define functions and give restrictions, limiting nodes to
perform computations on data capsules under a given set of conditions. For
example, a contract may restrict who can perform computations, require prove-
nance checks via a provenance policy (detailed in following sections), or require
key revocation checks.

All contracts are expected to provide an output confidentiality policy, which
defines confidentiality restrictions to impose on the output data of the function.
However, each function argument may have its own output confidentiality pol-
icy, in which case the policies must be composed, thereby accumulating all the
restrictions from each policy (i.e., the contract and each function argument’s
output confidentiality policy).

3 ACDC Provenance Model

To reason about provenance within an ACDC architecture, we follow the W3C
PROV Data Model [6] in characterizing the elements of the model into 3 main
types: entities, activities, and agents. We further refine the model by extending
the entity type to contain 3 subtypes and the agent type to contain 2 subtypes.
An entity can be either a key entity, a contract entity, or a data entity and an
agent can be either an account agent or a node agent.
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Table 1. The effect of the additional subtypes on provenance relations introduced by
ACDC to the PROV data model.

Relation Source Destination Meaning

WasAttributedTo Entity (any subtype) Node agent The entity was created by execution

on the node agent

Account agent The entity was sealed under the

account agent’s key(s)

WasDerivedFrom Entity (any subtype) Contract entity The entity was created based on

rules specified in the contract

Data entity The entity is dependent on the data

entity

Key entity The key entity was needed to either

wrap the source entity or unwrap an

input entity

Used Activity Contract entity The contract entity defined the

activity’s execution

Data entity The data entity was input to the

activity

Key entity The activity performed some

cryptographic function using the key

entity

ActedOnBehalfOf Node agent Account agent The node agent performed a

computation on behalf of the

account agent

WasAssociatedWith Activity Node agent The activity describing the

computation was performed by the

node agent

Key entities represent cryptographic keys belonging to an agent, contract
entities represent ACDC contracts, and data entities represent all other types
of data. Account agents represent the users in a computing environment and
node agents represent a secure execution environment (e.g., an sgx enclave).
Activities represent a computation that uses, manipulates, or generates entities.
Node agents act on behalf of account agents; conversely, account agents can-
not act on behalf of node agents. Because node agents represent environments
where computations are performed, activities can only be associated with node
agents. Table 1 summarizes the valid types for provenance relations affected by
our additional subtypes.

To illustrate this new distinction between entity and agent subtypes, consider
the provenance of a scenario in which a user has introduced some data into the
ACDC ecosystem at the network’s edge, shown in Fig. 2. To introduce this data,
the data must be encapsulated because all data in ACDC is stored in secure
capsules. The sgx enclave is a node agent which acts on behalf of Bob who is an
account agent. The encapsulate computation is an activity associated with the
sgx enclave. The plaintext is a data entity, the encapsulate contract is a contract
entity specifying how the function should input and output entities, KeySGX is
a key entity attributed to the sgx enclave for secure computation, and KeyB is a
key entity attributed to account agent Bob. The secure capsule is a data entity
generated by the encapsulate activity, derived from the contract, key, and data
entities, and is attributed to account agent Bob.
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Fig. 2. A provenance graph of a user who has encapsulated some data

To reason about the provenance of a distributed ACDC environment, we
specify the environment at a high level of abstraction as a 6-tuple D =
(Ek, Ec, Ed, Gn, Ga,A), where Ek is a finite set of key entities ranged over by
metavariable εk, Ec is a finite set of contract entities ranged over by metavari-
able εc, Ed is a finite set of data entities ranged over by metavariable εd, Gn is
a finite set of node agents ranged over by metavriable gn, Ga is a finite set of
account agents ranged over by metavariable ga, and A is a finite set of activities
ranged over by metavariable a.

The set of all possible entities E = Ek ∪ Ec ∪ Ed is the union of all entity
subtypes, and the set of all possible agents G = Gn ∪ Ga is the union of all
agent subtypes. Because provenance is represented by a labeled, directed acyclic
graph, V = E ∪G∪A denotes the set of all possible vertices, E ⊂ V ×V denotes
the set of all possible edges, L denotes the set of all possible labels (relations)
and is the union of all relations, and LE denotes the set of all possible graph
labeling functions where l : E → L is a function that inputs an edge and outputs
the label corresponding to that edge, indicating the causal relationship between
the source and destination nodes.

The set of all provenance graphs of a distributed environment D
is denoted by 2V × 2E × LE . A provenance policy is a predicate
P : 2V × 2E × LE → {true, false}. ACDC provenance policies determine
whether a particular subgraph is contained in the provenance graph under con-
sideration. It is not always the case that the entire provenance record for a
distributed environment be evaluated against a policy. For example, a prove-
nance policy can be evaluated at runtime to ensure that data was generated via
the expected pathways before using the data as input for a computation. In this
case, a contract will specify a provenance policy to be evaluated over the func-
tion’s inputs; therefore, only the provenance associated with the input data is
relevant for policy evaluation, making it unnecessary and inefficient to evaluate
the policy on the entire provenance record. Consequently, for each distributed
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environment there is a one-to-many relationship between the distributed envi-
ronment and the number of provenance graphs it contains. In this paper, we
refer to an event as a provenance subgraph containing an activity with all of its
immediate input and output entities along with their attributions. In a larger
distributed environment, Fig. 2 would be considered the Encapsulate event.

Provenance policies are specified as boolean predicates so that large, complex
policies can be composed from simpler policies. For example, let’s consider a sce-
nario where Bob would like to use his secure capsule in a computation, but would
like to verify that his secure capsule was properly encapsulated (i.e., encapsu-
lated with only his data and key). A policy for this situation might ensure that:
(1) the encapsulate function used Bob’s data and key, (2) if the encapsulate
function used any data and cryptographic keys, then they can only be Bob’s
data and key or the node acting on Bob’s behalf key, (3) the secure capsule is
only derived from Bob’s key and plaintext data and no other account agent’s
key and data, and (4) the secure capsule was computed using the encapsulate
contract. To note the importance of precise policy specification, it may not be
easy to distinguish the difference between the informal specification of concern
(1) and concern (2). Concern (1) only ensures that the encapsulate function
used Bob’s data and key but does not preclude the function from using any one
else’s data and key. The second concern ensures that if the encapsulate function
used any data or cryptographic keys, then the data and keys can only belong
to Bob or the node acting on Bob’s behalf. Formally, given a provenance graph
(V ′, E′, l′) ∈ 2V × 2E × LE , Bob can specify the following policies:

P1(V
′, E′, l′) ⇐⇒ ∃εk ∈ V ′ : (Encapsulate, εk) ∈ E′ ∧ l′(Encapsulate, εk) = Used,

P2(V
′, E′, l′) ⇐⇒ ∃εd ∈ V ′ : (Encapsulate, εd) ∈ E′ ∧ l′(Encapsulate, εd) = Used,

P3(V
′, E′, l′) ⇐⇒ ∀εk ∈ V ′ : ((Encapsulate, εk) ∈ E′ ∧ l′(Encapsulate, εk) = Used)

⇒ (((εk, Bob) ∈ E′∧ l′(εk, Bob) = WasAttributedTo)
∨(∃gn ∈ V ′ : ((εk, gn) ∈ E′ ∧ l′(εk, gn) = WasAttributedTo)
∧((gn, Bob) ∈ E′ ∧ l′(gn, Bob) = ActedOnBehalfOf))),

P4(V
′, E′, l′) ⇐⇒ ∀εd ∈ V ′ : ((Encapsulate, εd) ∈ E′ ∧ l′(Encapsulate, εd) = Used)

⇒ ((εd, Bob) ∈ E′∧ l′(εd, Bob) = WasAttributedTo),

P5(V
′, E′, l′) ⇐⇒ ∃εd ∈ V ′ : (SecureCapsule, εd) ∈ E′

∧ l′(SecureCapsule, εd) = WasDerivedFrom,

P6(V
′, E′, l′) ⇐⇒ ∃εk ∈ V ′ : (SecureCapsule, εk) ∈ E′

∧ l′(SecureCapsule, εk) = WasDerivedFrom,

P7(V
′, E′, l′) ⇐⇒ ∀εk ∈ V ′ : ((SecureCapsule, εk) ∈ E′

∧ l′(SecureCapsule, εk) = WasDerivedFrom)
⇒ (((εk, Bob) ∈ E′ ∧ l′(εk, Bob) = WasAttributedTo)
∨(∃gn ∈ V ′ : ((εk, gn) ∈ E′ ∧ l′(εk, gn) = WasAttributedTo)
∧((gn, Bob) ∈ E′ ∧ l′(gn, Bob) = ActedOnBehalfOf))),

P8(V
′, E′, l′) ⇐⇒ ∀εd ∈ V ′ : ((SecureCapsule, εd) ∈ E′

∧ l′(SecureCapsule, εd) = WasDerivedFrom)
⇒ ((εd, Bob) ∈ E′ ∧ l′(εd, Bob) = WasAttributedTo),

P9(V
′, E′, l′) ⇐⇒ (SecureCapsule, EncapsulateContract) ∈ E′

∧ l′(SecureCapsule, EncapsulateContract)= WasDerivedFrom.



78 S. Engram et al.

The overall provenance policy can be composed as the conjunction of policies
P1 − P9. Specifying policies in this way allows analyst to reason about small,
simple policies. Logical connectives can then be used to compose these simple
policies into larger, more complex policies.

4 A Case Study on Detecting Voter Fraud in E-Voting

This section presents a case study of an e-voting scenario within an ACDC
architecture and provenance policies that may prevent illegal ballots from being
cast. As recent voting elections have been under scrutiny by both the media
and general public [9], we believe that ACDC equipped voting machines can
provide significant benefits and increase public confidence in the integrity of
voting elections.

Table 2. Entities in an ACDC E-voting environment

Table 3. Activities in an ACDC E-voting environment
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Table 4. Agents in an ACDC E-voting environment

4.1 ACDC E-Voting Scenario

Within an ACDC architecture all voting may take place electronically on ACDC
equipped voting machines. For illustration purposes, we assume these voting
machines can perform similarly to Direct Recording Electronic (DRE) voting
machines with a Voter-Verified Paper Audit Trail (VVPAT) [28]. However,
ACDC equipped voting machines perform all computations securely (e.g., in
a secure enclave) and the internal data of all capsules is encrypted. Tables 2, 3
and 4 describe the provenance objects in such an ACDC voting network.

In this scenario, a voter’s ballot is successfully cast after the following steps:
(1) a voter enters their unique VoterID into the ACDC equipped voting machine,
(2) the voting machine invokes a key generation function in which a crypto-
graphic key is generated that will be attributed to the corresponding voter,
(3) the voter will then be presented with an electronic ballot in which they can
manually enter their selections, (4) a paper ballot, containing a cryptographically
protected confirmation number, will then be generated and displayed through a
viewing glass for a limited amount of time, in which a user can verify whether
they approve the recorded selections, (5) after the user verifies that their vote
has been correctly recorded, the machine securely stores the paper ballot for a
VVPAT, (6) the machine then electronically counts the new result by including
the newly cast vote, and (7) the machine then provides a printed receipt to the
voter, which includes a cryptographically protected confirmation number that
matches the confirmation number of the paper ballot and exclaims that their
vote has been counted. The encrypted confirmation number on the receipt pro-
vided to the voter can be used at a later date by the voter to ensure that their
vote was correctly included in the election result [7].

To formalize, let V M = (Ek, Ec, Ed, Gn, Ga,A) be a distributed environment
of ACDC equipped electronic voting machines where,

– Ek is a finite set of key entities, where each key entity describes a key belonging
to either a voter or a voting machine,

– Ec is the finite set of contract entities where the possible contracts are Key-
GenContract, SelectContract, PrintContract, VerifyContract, CountContract,
PrintReceiptContract, and ExitContract,

– Ed is a finite set of data entities,
– Gn is a finite set of node agents, where each node is an ACDC equipped

voting machine,
– Ga is a finite set of account agents, where each account is a physical user of

an ACDC equipped voting machine, and



80 S. Engram et al.

– A is a finite set of activities, where the possible activities are KeyGen, Select,
Print, Verify, Count, PrintReceipt, and Exit.

This environment consists of a set of provenance graphs 2V ×2E ×LE where
V = Ek ∪Ec∪Ed∪Gn∪Ga∪A is the set of all possible vertices, E ⊂ V ×V is the
set of all possible edges, and LE is the set of all possible labeling functions. We
assume that in a scenario where a provenance-based enforcement mechanism is
tasked with enforcing a provenance policy at a function execution, the mechanism
is able to query the provenance record to obtain the relevant provenance graph
(V ′, E′, l′) ∈ 2V × 2E × LE . For this particular case study, a mechanism can
query the provenance record for all provenance associated with a particular voter.
Such an assumption is reasonable because an input-enabled mechanism will be
enabled to query the necessary provenance by a voter inputting their VoterID ;
this requirement can be specified by the contract for a specific function. In this
scenario, the provenance graph being evaluated will only contain one account
agent, namely the present voter.

4.2 Voter Fraud Scenarios

To demonstrate the applicability of ACDC provenance for reasoning about voter
fraud in an e-voting context, we consider 2 real scenarios in which voters have
committed fraud and present provenance policies that might be enforced by
ACDC voting machines to prevent such fraud. Additionally, we present a sce-
nario in which a user may try to manipulate the voting machine and how prove-
nance policies can aid in reasoning about such manipulation. These scenarios
include: 1) a voter attempting to cast multiple votes [1,27], 2) an ineligible voter
attempting to cast a vote [1,26], and 3) a voter attempting to cast multiple votes
by exiting the system just before a receipt is printed.

Duplicate Voting. Consider a scenario in which a user, say Alice, is legiti-
mately registered to vote in two states. Although it is not a crime for Alice to
be registered in two states, it is a crime, according to state law, for her to cast
more than one vote in the same election [2]. In this scenario, Alice has intentions
on participating in early voting in state 1 and voting on election day in state 2.
Because Alice has a legitimate VoterID for state 1, her vote will be counted and
will result in a provenance record showing that she has cast a legitimate vote.
When Alice attempts to vote on election day in state 2, based on her prove-
nance record, the voting machine should not allow her to cast another ballot.
The simplest check would be to determine whether Alice has already received a
receipt indicating that she has already cast a ballot. To do so, we can express
a provenance policy that defines the expected provenance of a printed receipt.
This policy can be checked at the execution of the KeyGen activity, as specified
by the KeyGenContract, when Alice attempts to cast a second ballot. Formally,
given a provenance graph (V ′, E′, l′) ∈ 2V × 2E × LE that corresponds to all
provenance metadata associated with Alice, we can determine whether Alice has
been attributed a printed receipt if the following policy P evaluates to true
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P (V ′, E′, l′) ⇐⇒ ∃ εd, a, ga ∈ V ′ : ((a, PrintReceiptContract) ∈ E′

∧ l′(a, PrintReceiptContract) = Used)

∧ ((εd, a) ∈ E′ ∧ l′(εd, a) = WasGeneratedBy)

∧ ((εd, P rintReceiptContract) ∈ E′

∧ l′(εd, P rintReceiptContract) = WasDerivedFrom)

∧ ((εd, ga) ∈ E′ ∧ l′(εd, ga) = WasAttributedTo)).

If the policy evaluates to true over the given provenance graph, then the
voting machine can take the necessary actions of preventing Alice from casting
a second ballot (e.g., exiting the system).

Ineligible Voting. In the US 2012 election a convicted felon successfully voted
in the election, in a state that prohibits convicted felons from voting, by providing
false information on the voter registration form [26]. Consider a scenario in which
Bob, who is a convicted felon, falsely indicates that he is not a convicted felon on
his voter’s registration form and is approved to vote and is provided a legitimate
VoterID. Because US convicted felon records are public record, this record can
be considered as a blacklist of account agents in an ACDC voting network.
Although a user may have a valid VoterID, voting machines can ensure that they
are not acting on behalf of blacklisted account agents. However, to make this
determination, Bob will first have to enter his VoterID into the voting machine,
thereby generating provenance of a voting machine acting on his behalf. When
the voting machine invokes the KeyGen function, the function will first use the
KeyGenContract to determine how it will process entities. The contract can
specify a provenance policy stating that the function should proceed iff the voting
machine for which it is associated with is not acting on behalf of a blacklisted
account agent. Formally, given Bob’s provenance graph (V ′, E′, l′) ∈ 2V ×2E×LE

we can determine if Bob is a convicted felon if

∃Gablacklist ⊆ Ga : P (V ′, E′, l′) ⇐⇒ ∃gablacklist ∈ Gablacklist :

∃gn ∈ V ′ : (gn, gablacklist) ∈ E′

∧ l′(gn, gablacklist) = ActedOnBehalfOf .

If this policy evaluates to true, then it will be known that the voting machine
is acting on behalf of a blacklisted user; therefore, this user should not be allowed
to cast a vote according to state law.

Manipulating an ACDC Voting Machine. Consider a scenario in which
a malicious voter, Mallory, is aware of the workflow of the voting machine and
attempts to manipulate a voting machine into allowing her to vote multiple times
by preventing the attribution of a receipt for her vote. In this scenario, Mallory
may be able to exit the voting process right after the Count function executes but
before the PrintReceipt function executes. When Mallory attempts to vote again
her provenance record will not indicate that she has been attributed a receipt for
voting. To detect this scenario, we can specify a policy to detect the execution
of each function to determine how far Mallory may have gotten in the voting
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process. Due to space limitations, we only show a policy to detect the execution
of the KeyGen function. The other policies can be found in the extended version
of this paper [11]. Formally, given a provenance graph (V ′, E′, l′) ∈ 2V ×2E ×LE

we can specify the following policy for the KeyGen function—the other policies
can be specified similarly:

Fig. 3. KeyGen provenance event. Fig. 4. Policy subgraph

P (V ′, E′, l′) ⇐⇒ ∃ εk, a, ga ∈ V ′ : ((a, KeyGenContract) ∈ E′

∧ l′(a, KeyGenContract) = Used)

∧ ((εk, a) ∈ E′ ∧ l′(εk, a) = WasGeneratedBy)

∧ ((εk, KeyGenContract) ∈ E′

∧ l′(εk, KeyGenContract) = WasDerivedFrom)

∧ ((εk, ga) ∈ E′ ∧ l′(εk, ga) = WasAttributedTo)

Informally, such policies can evaluate whether each of the possible contracts
were used by activities that generated entities, if so, the generated entities should
be derived from the specified contract and attributed to the account agent under
consideration. Figure’s 3 and 4 illustrate the KeyGen event and the subgraph
specified by the policy, respectively. These policies can be composed to form a sin-
gle policy to be evaluated at the KeyGen activity whenever a voter attempts to
begin the voting process. Because we employ a separation of concerns and specify
policies for each functional execution, the mechanism enforcing such policies can
determine how far Mallory may have gotten in the voting process by determining
which policies fail. In our scenario, since Mallory’s provenance record indicates
that she completed all steps except for the PrintReceipt function, if she attempts
to vote on the same machine as her originally counted vote, then the machine
can continue its process and print a receipt with a confirmation number based on
her VoterKey. If Mallory attempts to vote on another machine, then the machine
can simply exit, perhaps notifying Mallory to return to the original machine for
a receipt.

4.3 Challenges of Voting Provenance

Due to the increase of technology used in voting elections where the technology
can malfunction [12], is possibly vulnerable to attacks [3], and may be hacked [4],
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it is important to be able to verify the trustworthiness of results reported by vot-
ing machines. Data provenance collection is one viable solution to ensure trust-
worthy results. However, in a democratic election it is important to only reveal
the final result of the election while keeping individual votes secret. Auditing the
provenance record of a DRE voting machine in a traditional provenance archi-
tecture can reveal the results of individual ballots and can attribute ballots to
specific voters.

Prior work has examined protection mechanisms for provenance storage sys-
tems in which the leakage of the provenance record is potentially more sensitive
than the leakage of the data for which the provenance corresponds (e.g., [5,8]).
However, such solutions are system-centric, relying on protection mechanisms
of the storage system. If the system is breached by an unauthorized agent, the
provenance record may be exposed. Therefore, the security of the provenance
record relies on the strength of security placed on the physical storage system.

We argue that a data-centric approach is more suitable and may provide bet-
ter security guarantees in scenarios where both the data and provenance record
of such data can reveal sensitive information. Analyzing provenance records in
an ACDC e-voting network, where all data capsules contain encrypted data, does
not suffer from the drawbacks of analyzing provenance records in a traditional
system-centric architecture because an ACDC provenance record is a causal
record of named encrypted data rather than a causal record of named plaintext
data. Therefore, the only information that may be revealed by an ACDC voting
provenance record is that a specific user cast a vote but not what or who the
particular user voted for. We do not consider revealing that a particular user
cast a vote as a limitation of this architecture because this fact is inherent to
any voting system in practice.

5 Related Work

Several frameworks have been proposed for analyzing provenance metadata but
do so reactively and in retrospect, relying on either human analysis or the use of
automated tools that may rely on machine learning techniques to characterize
provenance graphs. Reactive security has benefits in areas such as identifying the
root cause of an attack [19] and security auditing to ensure compliance with com-
pany policies [25]. While useful, these security practices do not actively prevent
security mishaps. Proactive security practices should also be used in conjunction
with reactive security practices. However, because proactive security policies are
specified with the intent of being enforced, such policies must be based on precise
and unambiguous reasoning instead of human intuition. Relevant to this work is
proactive reasoning about data provenance, which has received little attention
in the literature.

Much work related to data provenance has focused in the areas of provenance
collection (e.g., [21]) and secure storage of provenance metadata (e.g., [22]). Both
of these areas are foundational to provenance-aware systems; however, in the
context of security, it is equally important to continually analyze provenance
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metadata at runtime to gain insight into and maintain a computing environ-
ment’s overall security posture.

Due to the large amounts of data that provenance collection systems can cap-
ture, relying on human analysis is impractical and error prone [15]. Automated
tools aim to simplify and make the analysis of provenance metadata more effi-
cient; however, many do so at a loss in precision. Huynh et al. [16] present
an automated analysis technique that relies on network analysis and machine
learning techniques, it is shown that their analysis technique is able to classify
provenance graphs into predetermined categories with high accuracy. FRAP-
puccino [14] is a provenance-based intrusion detection framework that aims to
distinguish benign from anomalous behavior using a machine learning approach.
Although machine learning techniques improve the efficiency with which prove-
nance graphs can be analyzed, in high security contexts, such techniques have at
least two drawbacks: (1) the classification categories do not provide well-defined
properties of the graphs, and (2) the classification categories cannot provide
formal guarantees about data due to the possibility of false positives and false
negatives.

CamQuery [24] is a framework for the runtime analysis of whole system prove-
nance. Because analysis takes place at runtime, the framework takes a proactive
approach to policy specification over provenance metadata by expressing policies
in a programmable graph processing framework inspired by GraphChi [18] and
GraphX [13]. Our approach differs from CamQuery in that we present a formal
approach for reasoning about provenance policies in a distributed environment,
which is based on a mathematical semantics of provenance graphs.

Lemay et al. [20] present a framework for automated analysis of provenance
by using graph grammars as a way to characterize provenance graphs. However,
because the class of graphs parseable by such grammar is restricted to regular
grammars, precision is lost and some graphs become parseable that the analyst
may not intend to be; therefore, this approach is not amenable to security policy
specification in which the policy must be precise and unambiguous.

Park et al. [23], present a model for provenance-based access control in which
policies are specified using propositional logic as an underlying formalism. This
approach can provide formal guarantees about data that conforms to the policy.
However, the approach presented in [23] is specific to the access-control domain.
In this paper, we have provided a more general and expressive framework for
reasoning about provenance policies in a distributed, data-centric environment
by using predicate logic as an underlying formalism.

6 Conclusion and Future Work

In summary, this paper presented a new data-centric paradigm that provides
capabilities for rigorous provenance analysis over distributed systems. A formal
approach for reasoning about, and the proactive specification of, provenance
policies was introduced. Additionally, we provided a case study that examined
the provenance policies necessary to ensure integrity of an ACDC-equipped elec-
tronic voting system without sacrificing capabilities for post-factum auditing
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that traditional provenance techniques provide. We believe that the migration
from the current server-centric security paradigm is key to not only enabling
the collection of coarsely-grained provenance that is suitable for proactive policy
evaluation, but also defends against catastrophic compromises of data records
within a given system. In this regard, there are two primary directions for future
work stemming from this initial policy design and evaluation. First, the expan-
sion of the ACDC framework. Securing data as a first-class citizen is an app-
roach that has a myriad of benefits that prevent many of the pitfalls that have
led to catastrophic data breaches in systems today. Second, there is independent
advancement of provenance policies in the Function as a Service (FaaS) execution
model. Such an expansion could enable clients of services such as AWS lambda
to untangle the currently inscrutable chain of custody for inputs and products
used in FaaS-style execution. This may entail the introduction of a distributed
truncation-resistant store and provenance hooks into FaaS job specifications, but
could be handled entirely on the clients’ end.
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Abstract. Software repositories contain information about source code,
software development processes, and team interactions. We combine the
provenance of development processes with code security analysis results to
provide fast feedback on the software’s design and security issues. Results
from queries of the provenance graph drives the security analysis, which
are conducted on certain events—such as commits or pull requests by
external contributors. We evaluate our method on Open Source projects
that are developed under time pressure and use Germany’s COVID-19
contact tracing app ‘Corona-Warn-App’ as a case study.
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1 Introduction

The COVID-19 pandemic raises challenges for scientists of many disciplines.
Information technology help to fight the pandemic with software systems, AI
models, and other technologies [12,19,20], which must be developed under time
pressure [3], with high quality, and with accepted concepts for data security and
privacy.

For example, apps for mobile devices that support contact tracing of infected
persons are useful to identify local COVID-19 hot-spots and find other persons,
who are potentially infected, too [4]. For contact tracing, several architectures
are possible and have been discussed—sometimes with significant controversy—
in many countries. Two favoured approaches are centralized and decentralized
architectures; both using Bluetooth Low Energy for contact identification. Apple
and Google developed an Exposure Notification API 1 as extension of their
1 https://www.apple.com/covid19/contacttracing/.
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operating systems iOS and Android, which developers of exposure notification
apps can use for privacy-preserving contact tracing.

Because exposure notification apps are an important contemporary topic with
serious real-life context, we use the German decentralized exposure notification
app Corona-Warn-App2 (CWA; see Sect. 2) for a case study towards continuous
evaluation with regards to security by automated analysis [17,33]. The CWA is
an Open Source software, which is by far not always the case for a governmen-
tal software. Its software repositories contain significant process information in
addition to the source code itself. Especially for Open Source projects, the team
composition and development process is transparent and traceable and can be
evaluated at any point of time.

We structure our contributions towards an automated, provenance-driven
security audit methodology and infrastructure for software projects as follows:

– Some insights into the development of the Corona-Warn-App, to give some
context (Sect. 2).

– Our method for querying the development process by using provenance
(Sect. 3).

– An overview of static code analysis, which we use for our purpose (Sect. 4).
– Our method for combining information from process provenance with static

code analysis for some specific revisions of the source code (Sect. 5).
– As as case study for demonstrating the methodology, some intentionally sim-

ple example queries to the CWA server repository (Sect. 6).

An in-depth analysis of the CWA is beyond the scope of this paper.

2 Development of the “Corona-Warn-App”

The development of the Corona-Warn-App gets special attention during the
COVID-19 pandemic; the development had to be done in a short time frame:
development started in April 2020 and the app was released on 16th June, 2020for
Android and iOS. CWA is developed by SAP and Telekom using a transparent
and open development process. CWA has a decentralized architecture, accompa-
nied by centrally-managed Java-based server applications to distribute findings
about infected users and store test results uploaded by the laboratories.

CWA development history is publicly available from 13 repositories (some of
them auxiliary), including data3 since 29th April, 2020, for source code changes
(15166 git commits; Fig. 1), issue tracking (2560 GitHub issues) and code review
(5780 GitHub pull requests)4. The human team participating in the development
is composed of 306 persons authoring code changes, working on the documen-
tation, filing issues, testing, etc. Taking into account the short time span, this
amounts to much effort, and suggests that most of the real activity is in these
public repositories.
2 https://github.com/corona-warn-app.
3 Data source: https://cauldron.io/project/3860.
4 All numbers are as of 10th March, 2021.

https://github.com/corona-warn-app
https://cauldron.io/project/3860
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Fig. 1. Code commits for the Corona-Warn-App repositories over time.

The analysis of the software development context for applications, by retriev-
ing metadata from software repositories, has been an active area of research since
the early 2000s [28,40]. During this time several tools have been developed to
get some metrics about the software development process and the team building
it. We use GrimoireLab5, a toolset for retrieving data from software devel-
opment repositories, storing it, and performing analytics (via its SaaS instance
Cauldron6), to produce statistics for the CWA. In this case, the context anal-
ysis ensures that the data analyzed for provenance is likely real (e.g., it is not
likely that the analyzed repositories are not “dump repositories,” where code is
copied from time to time, while the real activity happens elsewhere), and gives
an idea of the volume of activity caused by the project. In a more complete anal-
ysis, software development analytics may complement our provenance analysis
by providing insights about how the different actors behave in the project, and
how their contributions are related and processed.

3 Provenance of Repositories

Software development is a highly complex process involving a wide range of
responsibilities and people. In addition the complexity of the software itself grows
over time. To cope with this, different tools are used to support the development

5 GrimoireLab: http://chaoss.github.io/grimoirelab.
6 Cauldron: https://cauldron.io.

http://chaoss.github.io/grimoirelab
https://cauldron.io
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process. During the entire software development process, all these support tools
produce several types of data. These large amounts of data, which are generated
before, during, and after the development of a software, can be analyzed using
provenance [22].

Provenance analysis focusing on the development of open source software
projects provides insight into the interactions of people. These interactions can
fall into different categories. The most notable interactions in the development
of track and trace software for COVID-19 are those that scrutinize the nature
of the data collected and stored. These are hard to evaluate for automated
processing with respect to privacy and security concerns. This can be evident in
the provenance by the number of people collaborating outside of the development
team, the number of developers, and the issues reported. While these types
of measures cannot guarantee the ethics of the software, it does provide an
indication that it has been evaluated by humans.

3.1 Generating Retrospective Provenance for Git Repositories

To analyze the development process, we extract retrospective provenance [21]
from repositories and store it in a graph database for further analysis (Fig. 2) [29].
To extract provenance from git-based projects we use tools, which crawl the
git repositories and additional information, such as issues or pull requests
(Git2PROV [5,38] and GitHub2PROV [26]). The provenance is generated
as a file in PROV-JSON format and then stored in a Neo4j graph database.
While GitHub already provides visualizations for their hosted projects, the
GitHub2PROV model supports bespoke visualizations that benefit from com-
plex queries across the model’s graph structure, which are not achievable using
GitHub’s API.

Extract provenanceGitHub

Organization corona-warn-app

git 
Repository

cwa-
server

git 
Repository
cwa-app-

ios

git 
Repository
cwa-app-
android

git 
Repository

cwa-
website

git 
Repository

cwa-
documenta

tion

Graph 
Database
Neo4j

PROV
JSON / RDF

Git*2PROV

prov2neo

Contributors/
Team Query

CYPHER

request
(PyGithub)

Extract additional data

MERGE

Fig. 2. Extracting provenance from git repositories using GitHub2PROV and addi-
tional information using the GitHub API.
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3.2 Using and Analyzing Provenance—An Example

To analyze the provenance graph, many visual and analytical methods exist;
including graph visualization or semantic reasoning. We illustrate querying and
using the provenance graph for a simple query for the CWA Server repository:
“Which files have commits by team members as well as external contributors?”

After extracting the provenance, we generate a Cypher query, that adds
information about contributors roles. We retrieve member information via the
GitHub API and store it in Python lists of team members and external contribu-
tors, which we insert in a Cypher template. The following Python snippet adds
a new relationship between team members and the files where they contributed
during development:

This Cypher query creates new directed relations between persons and
files with an attribute “role” ∈ {“team”,“contributor”}; for example,
the relation for team members who made a change to any of the file’s revi-
sion is: .This addi-
tional relation within the graph database simplifies further queries regarding
impacts of team members vs. external contributors (Fig. 3).

Then we query for files, where team members and external contributors made
changes at any of the files revisions:

Instead of using the extra database relation CONTRIBUTES TO, it would also pos-
sible to create more complex Cypher queries with sub-queries for

The query result is exported, either for visualization (Fig. 4) or as input for
the static code analysis (Sects. 4, 5 and 6).
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edges indicate file changes by team members (•−→•). Blue edges indicate file changes
by external contributors (•−→•). (Color figure online)



94 A. Schreiber et al.

4 Code Audit with Static Analysis

Static code analysis is a proven method for program analysis and can be used as
an early indicator for identifying pre-release bugs and defects as well as vulnera-
bilities [23]. In security analysis, the discipline of using static analysis tools is also
known as Static Application Security Testing (SAST) [25]. Static code analysis
spans a wide spectrum of methods and tools, ranging from linters, which check
adherence of code to coding rules or absence of code smells on a textual and syn-
tactical level, to full-fledged verification tools, which formally prove specific prop-
erties of the code. Checked properties can cover multiple aspects of program code,
including unreachable code, smells like code duplication, null pointer/reference
errors, concurrency bugs, incorrect API usage, and taint-related problems like
data leaks and code injection vulnerabilities.

SAST tools for Java, Kotlin, and Android are included in our analysis, as
these are the dominant programming languages for CWA. Because a single tool
is not enough [9,25], more than one tool is used for each language. We include
simple linters like PMD as well as more advanced tools such as Infer and Xani-
tizer (Table 1). Except Xanitizer, all tools are open source and freely available.

Table 1. Used static analysis tools.

Static analysis tool Tool category Reference

Flowdroid Taint analysis https://blogs.uni-paderborn.de/sse/tools/

Xanitizer Taint analysis https://www.rigs-it.com/xanitizer/

Infer Formal verification https://fbinfer.com/

Spotbugs/FindSecBugs Coding rules https://spotbugs.github.io/

Detekt Coding rules https://detekt.github.io/detekt/

PMD Linter, code smells https://pmd.github.io/

The differences of the tools become also apparent when considering the num-
ber of reports per tool. We provide the number of warnings reported by the linter
PMD and by the more specialized SAST scanner Xanitizer for the cwa-server
repository over time (Fig. 5)7. The number of the linter’s reports simply increase
conjointly with the growth of the code base during the repository’s continuing
development. The picture for Xanitizer is more complex (Fig. 5b)—for example
a drop in the number of reported warnings when a SAST-supported pull request
review was installed in May 2020 (issues #13/14 in cwa-server).

SAST tools can be integrated at various points in the software development
lifecycle (e.g., while coding using IDE plugins, when committing to a developer
repository, either in batch mode or at diff-time, or when conducting designated
quality assurance). The utility of static analysis is known to be influenced by fac-
tors such as false-positive ratio, understandable and actionable analysis results,

7 Spikes in the graphs during 08/20–09/20 are due to parallel branch development.

https://blogs.uni-paderborn.de/sse/tools/
https://www.rigs-it.com/xanitizer/
https://fbinfer.com/
https://spotbugs.github.io/
https://detekt.github.io/detekt/
https://pmd.github.io/
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Fig. 5. PMD and Xanitizer analysis warnings for the cwa-server repository over time.

and integration with developer workflow [16,32]. Experiences in large-scale appli-
cation of static analysis shows, that integration with developer workflow and
reporting bugs as soon as possible is in particular important [6,14].

The CWA project employs standard best practices for (secure) software
development. As a part of that, SAST-supported code review for auditing the
quality and security of external contributions (i.e., pull requests), was configured.
For example, SonarCloud found a bug, which would have otherwise been intro-
duced into the code base of the repository cwa-app-android by pull request
#876 [33]. The bug was signaled by SonarScanner when reviewing the pull
request8.

5 Provenance-Driven Code Analysis

For conducting a security analysis of the CWA and its development process,
we integrate the extracted provenance (Sect. 3) with bugs or vulnerabilities as
reported by the selection of static analysis tools (Sect. 4). In our infrastructure,
we therefore consider individual commit snapshots in the history of the CWA
repositories [33]. According to the respective repository, we run certain static
analysis tools on a snapshot, track their reported findings and save them into a
database for later analysis.

Due to the various involved static analysis tools and their differing report
formatting and output granularity, the tools’ findings need to be consolidated
such that, for example, duplicated findings can be identified. The tools’ reports
are therefore parsed to extract the locations and types of found bugs or vul-
nerabilities; the latter is additionally normalized using the Common Weakness
Enumeration (CWE)9 and other bug ontologies. Interlinking the tools findings
with provenance information is done via the respective snapshot’s commit hash.

8 cf. https://github.com/corona-warn-app/cwa-app-android/pull/876.
9 https://cwe.mitre.org/.

https://github.com/corona-warn-app/cwa-app-android/pull/876
https://cwe.mitre.org/
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Using the combined information then allows us to answer various questions
about the CWA development process and how security has been addressed, such
as:

1. Classical hypotheses of empirical software engineering, such as the correlation
of repository metrics (e.g., code churn and the number of found vulnerabilities
or bugs) [24].

2. The usage of static analysis tools, answering questions such as how effective
certain tools—or combinations thereof—were in uncovering bugs or vulnera-
bilities [9] or how understandable and usable their reports were [16].

3. Characteristics of the vulnerability management can be analyzed quantita-
tively, using metrics such as mean time to fix [13], or qualitatively, using fault
tree analysis.

The general principle of our provenance-driven code analysis is to select rel-
evant or “interesting” activities (e.g., commits or releases) during the
development process by querying the provenance database and then to query
the SAST database on the provenance query results. In detail, we conduct the
following steps (Fig. 6):

Step 1: Query the (using Cypher for a distinct list of commits .
Step 2: Clean—and optionally filter—the query result to get a clean list of

commit hashes.
Step 3: Query the SAST database for each of the commit hashes from Step 2.
Step 4: Analyze the results from Step 3. For example, by summarizing, classi-

fying, or visualizing them.

Step 2

Step 4Step 3

Step 1

Graph 
Database
Neo4j

commit hashes
DataFrameQUERY

CYPHER

Filter and 
clean results

SAST
Database
SQLite

store

commit hashes

Analyze and 
plotQUERY

SQL Results
Diagrams, 
Reports, 

generate

Fig. 6. The four steps of the provenance-driven code analysis.
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In practice, we use Python to submit the Cypher query to Neo4j and store
the result in a Pandas DataFrame, on which we do Step 2. Then, we submit an
SQL query on the SAST database using Pandas’ read sql query method for
each of the commit hashes, which returns—for example—the number of warnings
reported for changed files during the related commits.

6 Case Study: Corona-Warn-App

In this section, we present examples for queries and results for the CWA Server
repository10, which is the implementation of the server for encryption keys for
the Corona-Warn-App (i.e., part of the backend infrastructure). The cwa-server
development started from the beginning of the whole CWA project11. The repos-
itory has 1042 commits (by team members and external contributors), 983
pull/merge requests (976 closed), and 251 issues (247 closed) with 1411 com-
ments. 99 authors (i.e., git users) contributed to the development.

As an example, we investigate the correlation between the role of a con-
tributor and the number of warnings that the code analysis tools reported
after a git commit. We extracted the provenance from the cwa-server using
GitHub2PROV, which led to a property graph with 49914 nodes and 110265
relations in Neo4j (see Packer et al. [26] for a description of the PROV model).

For Step 1, we use the Cypher query from Sect. 3.2, which already returns
files where both team members and external contributors made changes at
any of the files revisions, and extend it with a subquery (Cypher clause “CALL”)
to return the actual commits . Specifically, the following Cypher query gets
all commits for external contributions:

This query returns 34091 distinct file changes in total with contributions to
596 files by 50 external contributors in 407 unique commits.

10 https://github.com/corona-warn-app/cwa-server.
11 All numbers are as of 10th March, 2021.

https://github.com/corona-warn-app/cwa-server
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The following Python code does Steps 1–3, which include the SQL query
on the SAST database:

As a result, we show the distribution of the number of warnings per commit
actions as a histogram plot (Fig. 7). The plot shows the distribution of how many
commits with the given number of warnings were made by external contributors
and by team members. While for many commits the number of security warn-
ings is similar for both contributor roles, external contributors provoke clearly
visible more warnings per commit; around 45 more warnings compared to team
members.

The predominance of commits with more than 20 accumulated static analysis
warnings (Fig. 7) coincides with the development of SAST warnings over time
with PMD and Xanitizer (Fig. 5). This result is well explainable by the usual
ratio of false positive warnings for SAST tools, which is in particular high for
linters or lightweight tools [14,32], and shows the need for tool selection and
configuration.

Another example for a result that can be queried with an according SQL
query, is the difference in the number of warnings caused by commits—compared
to the previous revision (Fig. 8). The result visually shows: for most commits,
the number of warning does not change at all. For a few commits, the number
of warnings changes slightly between ±5. For some commits, the difference is
higher around ±15.
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Fig. 7. Distribution of number of all SAST warnings for commits.

Most commits do not significantly change the number of accumulated SAST
warnings, but stay in the range of adding or removing up to 5 warnings. This
is again in line with our expectations, as the CWA project introduced SAST
checking early in the development process, thus certainly preventing a number
of SAST warnings a priori, and a sampling of commits showed that for most
commits it is not very large. However, this could be further researched by ana-
lyzing the size of the commits’ code diffs in more detail. There are though some
outliers on both ends (Fig. 8). These are partially explainable by special effects
(e.g., the initial setup of the project) but certainly make up interesting ques-
tions for further investigation. For instance, whether or not issues12 calling for
community-effort in “brushing up” the code base can be associated to commits
showing a drop in the number of SAST warnings.

7 Related Work

While we consider the development process and security of the implementation
of the CWA, most of current research on the security of contact tracings apps
sheds light on their architectural design and discusses thereby implied attacks
and possible mitigations. Ahmed et al. [1] give a comprehensive overview on the
topic, also including contact tracing solutions other than CWA.

The initial development of the CWA took place as a controversial discus-
sion about centralized and decentralized architectures [2,8,36,37]. Originally,

12 For example, https://github.com/corona-warn-app/cwa-server/issues/269.

https://github.com/corona-warn-app/cwa-server/issues/269
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Fig. 8. Distribution of change in the number of SAST warnings caused by commits;
compared to previous revision (logarithmic scale). The chart shows results for change
by external contributors only.

the German contact tracing app was planned as centralized protocol in line with
the PEPP-PT 13 initiative. However, the CWA adopted its current decentralized
design based on DP-3T 14 and the Exposure Notification Framework from Apple
and Google.

Vaudenay [36] investigates the decentralized protocol of the DP-3T solu-
tion and possible attack scenarios on the communication. He concludes, that
there are downsides in the design of decentralized protocols, and that, counter-
intuitively, a decentralized solution causes more threats compared to a well-
designed centralized protocol. Gvili [8] also showed several risks and attacks
for the initial proposal of the Exposure Notification Framework. Security and
privacy of centralized and decentralized architectures have since been discussed
(e.g., [36,37]). Baumgärtner et al. [2] categorized attacks on security and privacy
for contact tracing app solutions from a methodological point of view. They dis-
cussed the different architectures, conducted an experimental study on relay as
well as deanonymization attacks, and where able to create a movement profile
of a person in the real world.

Starting with Kuhn et al. [18], there have also been approaches to provide
formal foundations for the discussion of security of contact tracing apps. In
this vein, Kammüller and Lutz [15] provide a formal analysis of the CWA app
protocol and respective attacks using attack trees.

Similar to our work, Hatamian et al. [11] and Sun et al. [34] investigate
the security of contract tracing apps using dynamic and static analysis, among

13 https://github.com/PEPP-PT.
14 https://github.com/DP-3T.

https://github.com/PEPP-PT
https://github.com/DP-3T
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others. While both studies include a wide range of contact tracing apps, the
CWA app was not part in them. For static analysis, Sun et al. [34] analyzed
the apps’ Android APK binary packages using tools similar to us and were able
to find multiple vulnerabilities, e.g., the use of weak cryptographic algorithms,
leakage of sensitive information, or plain coding of passwords. They even found
trackers and malware in some of the apps. Hatamian et al. [11] provide an in-
depth analysis of the security and privacy of early-deployed contact tracing apps,
including a review of their privacy policy, conformance to GDPR, dynamic and
static analysis. They confirmed the results of Sun et al. [34]. In contrast to
our work, both studies do not consider the development process of the contact
tracing apps.

Comparable to our approach, Trautsch et al. [35] conduct a longitudinal
study of bugs, as identified by static analysis tools, and compared them to other
development artifacts (i.e., bug reports in an issue tracker). They consider 54
engineered software projects of the Apache Software Foundation over a course of
17 years in their respective commit history, though just PMD as a single static
analysis tool. In this way, their work considers a much more extended time frame
and many software projects, compared to the development of the CWA app in
our study.

Wang et al. [39] analyzed the activities of much-contributing developers to
open source projects in an empirical study and looked also on other repository
artifacts besides the code. They investigated the communication between devel-
opers and quality of software with increasing contribution.

Other works focus on runtime analysis of software systems for systems secu-
rity. For example, Pasquier et al. [27] provide a solution for inline, realtime prove-
nance analysis for applications such as data loss prevention, intrusion detection,
or regulatory compliance. Hassan et al. [10] incorporated data provenance into
endpoint detection and response tools to detect advanced persistent threats.

8 Conclusions and Future Work

We described our method for a provenance-driven security analysis of software
hosted on git hosting services: We extract provenance using GitHub2PROV,
query the provenance graph for “interesting” activities, and analyze the results
of static code analysis for these revision created during these “interesting” activ-
ities. We demonstrated the methodology on a contemporary relevant application,
the German Corona-Warn-App—we intentionally did not provide the detailed
analysis of the project.

Many functionalities for security checking and providing metrics on the devel-
opment process are part of GitHub already—for example, developers can setup
Code scanning alerts for projects by enabling GitHub Actions with pre-defined
workflows (e.g., for tools such as Xanitizer). However, we see more benefit
for provenance graphs, which contain actions, entities, and agents from pro-
cesses outside of GitHub; such as communication patterns between developers
on other platforms or results from online monitoring and observability sources
for deployed software.
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Using a provenance-based approach for the analysis of software development
processes and practices allows us therefore to conduct a holistic and integrated
analysis. In this way, the approach is in particular able to integrate code at
the core of GitHub with other artifacts, as well as with meta data. We have
exemplified the approach for contributor types and their respective commits, but
many more use cases are possible. For instance, correlating the numbers of defect
reports in an issue tracker with SAST warnings can be readily demonstrated in
our approach, thus contrasting code quality and usage of static analysis, and as
another example, analyzing the role of specific issues on the number of SAST
warnings and code quality in detail (Sect. 6).

In the future, we apply our method on various software projects where secu-
rity of the software product is essential. This includes developing tools and visu-
alizations for developers to investigate how software is developed, the processes
used, and the details around how security issues are identified and fixed.

Additionally to the analysis of open source projects on GitHub, we work on
the analysis of Inner Source projects hosted on instances of GitLab, which many
organization use for code hosting. For that, we develop GitLab2PROV [30] and
apply it to large aerospace software systems development.

A more holistic future work—especially during pandemics—is to combine
the results of security audits for apps and services that deal with personal data,
medical data, self-tracking (“Quantified Self”) data etc. with audits on data
privacy and transparency. That extends our previous work on provenance of
personal data [31].

Future work in code analysis is to capture code insertions and deletions of
individual commits by diff trees [7]. This would enable us to enrich the prove-
nance information; not just with the static code view, via the analysis of commit
snapshots, but also with a dynamic view. As a result, sources and fixes of vul-
nerabilities identified by static analysis could be better researched.
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Abstract. Computational notebooks allow users to persist code, results,
and explanations together, making them important artifacts in under-
standing research. However, these notebooks often do not record the
full provenance of results because steps can be repeated, reordered, or
removed. This can lead to inconsistencies between what the authors
found and recorded, and what others see when they attempt to examine
those results. However, these notebooks do offer some clues that help
us infer and understand what may have happened. This paper presents
techniques to unearth patterns and develop hypotheses about how the
original results were obtained. The work uses statistics from a large cor-
pora of notebooks to build the probable provenance of a notebook’s state.
Results show these techniques can help others understand notebooks that
may have been archived without proper preservation.

Keywords: Notebook · Provenance · Archaeology

1 Introduction

As computational notebooks replace paper scratchpads, there are similarities
to the type of work involved in understanding and utilizing these notes. While
some notetakers carefully order and prepare their notes, others archive very raw
notes with arrows indicating reordering, strikethroughs indicating deletions, and
extra pages inserted to provide added details. These may be rewritten, but this
takes time which may not be invested due to a low likelihood that the notes
will be consulted. Computational notebooks exhibit similar patterns with some
that are well-polished and designed for others to read and reuse, while others are
scratchwork that may never be revisited. However, when one needs to reexamine
past results (especially older results or those from others), these raw notes can
present a challenge.

One of the more difficult situations is when a notebook contains results from
multiple sessions, work from different time periods or from different contributors.
Akin to having pages from multiple investigations combined together, under-
standing often requires not only ordering but also separating the pieces accord-
ing to the different sessions. Unfortunately, there often is not a recorded history
c© Springer Nature Switzerland AG 2021
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of exactly when each action was taken. Sometimes, notebooks have dated entries
or pages with ordered numbering, but uncollated notebook pages crammed in
a folder are not uncommon. While the format of today’s computational note-
books is different, similar challenges remain. Computational notebooks can be
shared for collaboration, analyses may be split in different notebooks, and some
results may be outdated. The order of additions, changes, and executions, is
hinted at by cell execution counts, but using these counts to surmise events is
not straightforward.

Our goal of understanding the past is different from successfully executing the
notebook. This goal is also important for those wishing to reuse the notebook,
but we are curious about the provenance of the notebook–all the steps taken
in manipulating the notebook, including the executions of individual cells. In
many cases, a top-down execution strategy allows the notebook to successfully
execute, but it can conflict with the actual execution order indicated by cell’s
execution counts. In addition, a successful run may still lead to different results;
the results saved in a notebook may not match those generated even when the
execution is successful [20,27].

This paper uses collections of notebooks along with notebook session histo-
ries to build an understanding of common patterns in notebook use. From this
information, we construct an algorithm that fills in gaps of its execution prove-
nance using the breadcrumbs a notebook provides. For example, the common
practice, reinforced by the interface, of executing cells in consecutive order helps
us fill in gaps in the provenance indicated by the saved notebook cell positions
and execution counts. Our inferred provenance is necessarily more uniform that
the actual provenance because some operations cannot be derived from only
saved notebooks; we cannot determine if a cell was moved to a different loca-
tion. In addition, where cells have changed or been deleted, we must project the
provenance onto the current state of the notebook.

To infer provenance, we use a corpus of notebooks and a separate collection
of histories of executed code from notebooks. In addition to looking to model
user interactions with notebooks, we find some interesting results showing users
commonly revisit and reexecute notebooks across multiple sessions and some
differences between how users structure their code. To evaluate potential prove-
nance inference algorithms, we use static code analysis to highlight dependencies
that are or are not satisfied in the constructed provenance. The many difficulties
we found suggests notebooks would benefit from improved provenance tracking.
At the same time, the ability to produce plausible provenance from the lim-
ited information can be useful in better understanding the millions of already
published notebooks.

2 Related Work

A computational notebook is a sequence of code and text blocks called cells.
Generally, a user executes individual code cells one at a time, going back to edit
and re-execute cells as desired. This is in contrast to scripts where all code is
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executed at once. In addition, new cells may be later inserted between existing,
already-computed cells, so it possible that the semantics of a variable change.
There exist a variety of different computational notebook environments [1,2,
9,16,17,24,28], all of which use text and code cells with computational results
shown inline. Generally, these environments serve to mimic paper notebooks that
document a scientist’s work and include text, computations, and visualizations.
Notebooks persist input code, output results, and explanatory text, providing
a single record of an analysis and any discoveries. This contrasts with other
computing where source code, outputs, and explanation are stored in separate
documents.

Despite this encapsulation of research artifacts, the reproducibility of note-
book results has drawn considerable concern. Recent studies on the reproducibil-
ity of notebooks provide evidence that current practices fall short; even for those
notebooks where dependencies are specified and cell order is unambiguous, hid-
den dependencies and out-of-order execution can hinder reproducibility [20,27].
Work has also been done to help diagnose non-reproducible notebooks and recon-
struct execution schemes by examining the dependencies between code cells [27].
Other solutions seek to modify the execution semantics of notebooks in order to
improve reproducibility in the future. Nodebook [15] and Datalore [5] enforce in-
order execution semantics on notebooks, and reactivepy restricts cells to single
definitions to allow reactive execution [21]. Dataflow notebooks make dependen-
cies between cells clearer, allowing the system to reactively update dependent
cells as well as determine when cells are stale or up-to-date [13]. NBSafety uses
static analysis techniques to highlight cells that may be stale, helping users see
the effects of code changes without modifying the normal interaction or exe-
cution in notebooks [14]. Other research has shown that around 1 in 13 cells
are duplicated in notebooks [12]. While provenance may also aid in reproducing
results, our goal is different–to infer history from saved notebooks.

There has also been study of problems with the current modes of use in note-
books [4], and there has been work to improve usability. In particular, techniques
help users better understand navigation of the existing notebook structure, some-
thing which can aid in inferring provenance. For messy notebooks, techniques
have been developed to fold blocks of cells [22] or help users gather only those
cells germane to a particular artifact [7]. It can also be important for users to
understand how their actions affect the evolution of a notebook, and interfaces
that present such information augment users’ memories [10,11]. In real-time col-
laboration settings where users are working on a shared notebook, users tend to
require some level of coordination, and understanding other users’ contributions
is often complicated by the non-linear structure of notebook work [26].

There are a number of solutions for tracking provenance in scripts [19], and
some specific features and work to address provenance in notebooks. IPython
tracks the history of all code that was run in a session in a user-level SQLite
database [18]. This history is available in a notebook to document the provenance
of executed code, but it is not stored with the notebook. Jupyter [9] also creates
checkpoints that keep snapshots of a notebook through time, although these
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import pandas as pd

df = pd.read_csv('penguins_lter.csv')

df.columns

df['body_mass_g'].max()
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[6]: df.groupby('island')['body_mass_g'].median()
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(a) Notebook

1. import pandas as pd

2. df = pd.read_csv('penguins_size.csv')

3. df.columns

4. df['body_mass_g'].max()

5. df.groupby('island')['body_mass'].median()

6. df.groupby('island')['body_mass_g'].median()

(b) Session 1 History

1. import pandas as pd

2. df = pd.read_csv('penguins_size.csv')

3. df.columns

4. df = pd.read_csv('penguins_lter.csv')

5. df.columns

(c) Session 2 History

Fig. 1. The notebook records the final state, after edits to cells, while the session
histories record the code at each cell execution.

are generally overwritten. Other opportunities to improve the provenance of
notebooks includes storing the provenance directly with notebook results [25].

In many settings including with workflows, there has been work to infer
provenance, whether that be to improve its granularity [3] or its precision [6].
ProvenanceCurious infers data provenance from annotated scripts, using the
abstract syntax tree to build the provenance graph [8]. Our work deals with less
well-defined data in that we seek to infer likely provenance given limited infor-
mation, knowing much can be missing, about the final notebook state including
cell positions and execution counts.

3 Definitions

A computational notebook is a sequence of code and text blocks called cells (see
Fig. 1a). A code cell contains any number of lines of executable code, while
a markdown cell contains text that is often explanatory and rendered from
markdown syntax. Our work will focus on Jupyter notebooks [9] written in
IPython [18], but many of the concepts and ideas will translate to other sys-
tems. In Jupyter, cells are ordered by position which indicates their location in
the notebook; we can associate a numeric index to track this (one at the top,
increasing down the page). There are a number of ways a user can modify a note-
book; a user may add a new cell, delete cells, move cells to new position, edit a
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cell, or execute cells. Any operations involving multiple cells can be decomposed
into operations on a single cell. Other more complex operations like copy-and-
paste can similarly be decomposed into delete/add/edit operation chains. Note
that many of these operations modify the structure of a notebook in a way that
can cause headaches in inferring past provenance.

Jupyter uses a web-based front-end to facilitate editing and execution, but
the actual computation is done by a back-end kernel. Different kernels exist for
various programming languages, but we will concentrate on Python, the most
commonly used with Jupyter. When Jupyter creates a new connection between
the notebook and the kernel, a new session begins. Sessions are closely linked
to the kernel, tracking the code that is run and the outputs that are generated.
Each session has a global counter that is used to tag code, cells, and outputs,
upon a cell execution. The notebook records this number for the executed cell
as its execution count, and the session history separately records the code and
count in a database (see Fig. 1) This counter is reset to one each time a new
session begins, meaning the same execution count can appear for different cells
in the same notebook. In addition, a cell’s execution count is overwritten any
time it is executed, and can be deleted completely if the notebook’s outputs are
cleared. The execution count hints at a global execution order : provided each
session is assigned a monotonically increasing identifier, the session identifier
plus the execution count provides a global timestamp for all cells in a notebook.
Unfortunately, session identifiers are not recorded, leading to ambiguity of the
existing execution counts.

Then, an execution count k is missing when no cell has such an execution
count and there exists a cell with execution count � > k. A gap (also known as
a skip [20]) is a consecutive sequence of missing counts, and thus has a length
(see Fig. 1a). When two cells have been executed in order, the signed difference
between the positions of the first and second cells is the jump (see Fig. 1a). No
meaningful jump occurs when this value is 1, signifying the cells were executed
in a top-down manner without the user refocusing on a different cell. Putting
these together, we define a gap-jump when we have both a gap and a jump. More
precisely, given two cells with positions i and j and execution counts k and �,
respectively, such that there is no cell in the notebook with an execution count
m, k < m < �, the gap-jump measure is a tuple (� − k, j − i). In a top-down
execution, � = k + 1 and j = i + 1, leading to a gap-jump measure of (1, 1).
A gap-jump of (2, 1) often arises when a user executes the same cell twice, for
example, after fixing a typo. A gap-jump of (1, 2) might indicate a user skipping
the execution of a cell in a later session. Note that these quantities represent
differences so similar gap-jumps can occur in different times and locations for
different notebooks.

3.1 Provenance

The provenance of a notebook is the sequence of all cell actions–the ordered
steps that led to the notebook’s state. While there is more state information
that is stored with the notebook (which cells are collapsed, whether output
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exists, other cell metadata), we will ignore those because they do not affect
the order or execution of cells. In general, this provenance information is not
stored in the notebook, meaning for the majority of notebooks that do not use
some versioning scheme as an extension to Jupyter, we do not know what this
provenance is. The remainder of this paper seeks to present information that is
useful in analyzing notebooks and solutions that use this data to infer potential
provenance.

The execution provenance of a notebook is the chronological record of code
cell executions, that is each cell (including its code and position) that was exe-
cuted. Note that markdown cells and unexecuted code cells are omitted from
this provenance. This history matches what IPython records in its history.sqlite
database, but is not stored with the notebook in most cases. Specifically, when
a cell is executed twice but was edited in between executions, the execution
provenance records the cell code for each execution. Because the notebook only
stores the most recent edit to each cell, this full provenance is impossible to infer.
Instead, we will focus on the projected execution provenance which substitutes
the “closest” cell to stand-in for the state of the cell executed in the past. For a
cell that was edited, the closest cell remains that same cell, regardless of where
it was moved to. For a cell that was deleted, the closest cell could be any, either
one that fits well into the sequence or simply the cell that was executed after it.
Recall that only executed cells figure into this provenance. With the projected
provenance, we can re-execute the notebook in a manner that approximates the
original execution. With no reexecutions or deletes, the projected provenance is
the same as the original execution provenance. Given a saved, executed note-
book, our goal is to infer this projected execution provenance.

4 Data and Statistics

Because we are inferring the provenance, we need to make decisions about how
a notebook was likely executed based only on its final state. To do this, we
will lean on a corpus of notebooks as well as one of session history collected
from the GitHub online repository. With a diverse set of notebooks, we can gain
an understanding of the distribution of various notebook features like gaps and
jumps, and the session histories provide more detail on how cells are modified
and re-executed. This will allow us to derive some general patterns related to
notebook use, reuse, and editing. These will be used to inform an algorithm that
seeks to infer the projected provenance.

4.1 Notebooks

A number of studies have harvested notebooks from GitHub for research [20,23],
and these notebooks have shown significant diversity ranging from polished,
explanatory documents to single-use scratchwork; ranging from a handful of cells
to hundreds; and ranging from programming cheat sheets to in-depth machine
learning experiments. We have employed similar strategies to existing work,
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obtaining new notebooks by querying GitHub for the distinguishing .ipynb file
extension. From a corpus of millions of notebooks collected through February
2021, we randomly sampled 100,000 notebooks. To focus on IPython, and in
particular notebooks that use Python 3, we filtered notebooks based on that
metadata. Checking that notebooks that could be meaningfully loaded, we were
left with 65,119 notebooks, and of these, 58,276 have at least one executed cell.

Gaps and Jumps. The easy case for inferring provenance is when we have
no gaps or jumps in a notebook. In this case, the cells have been executed in
positional order–that is from the top to the bottom of the notebook. There were
17,587 notebooks (30.18%) that fell into this category, something achieved by
running all cells consecutively in a notebook. In the remaining notebooks, we
may have some that involve multiple sessions. We know we have a notebook
that has been used in multiple sessions when the same execution count appears
twice; this is sufficient but not necessary. For those notebooks assumed to be
single-session, we can count the number of gaps and jumps, and gap-jumps. The
standard execution of two cells in top-down order, a gap of 1 and jump of 1 is
by far the most common, occurring almost 80% of the time. Another 10% have
larger gaps but no jump, likely indicating repeated execution of the second cell.
About 3% of those pairs with a larger gap have actual jumps.

Sessions. An important issue in understanding how the execution counts relate
to the provenance of a notebook lies in how many sessions a notebook has been
used in. Recall that the execution count restarts at one in each new session so
we cannot estimate how many cells may have been executed in total without
first knowing how many sessions there were. We can conservatively estimate this
number by finding the maximum number of repeats of an execution count in a
notebook. Based on this cardinality, most (87.56%) of the notebooks have only
a single detectable session, 10.06% have at least two sessions, and 1.66% have
at least three. We can also compute a lower bound for the number of cells that
must have been executed by summing the maximum execution count for each
number of repeats. For example, consider a notebook with execution counts
[1, 6, 4, 5, 2, 4, 6, 1, 2, 3, 4]. Because we have three 4s, and two 6s, the notebook
had at least 4 + 6 + 6 = 16 executed cells; the last 6 is added because it is
the maximum execution count among those counts that appear at least once.
Calculating this lower bound for all notebooks, there is one notebook where at
least 10,916 cells were executed, but the median is 27. Note that this is usually
more than the number of cells in the notebook. To that end, we can examine
the ratio of executed cells in the notebook versus our lower bound of those
executed. Using the example data, this ratio is 11/16 0.69. Interestingly, the
interquartile range of this ratio is wide, from 0.15 to 0.89, indicating different
modes of interaction in notebooks. Low ratios indicate many reruns of cells while
higher ratios may indicate single executions or a session where the notebook was
reexecuted.
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[ ]: import pandas as pd

[ ]: df = pd.read_csv('penguins_size.csv')

[ ]: df = pd.read_csv('penguins_lter.csv')

[ ]: df['Island']

(a) Dependencies

[1]: df.groupby('island')['body_mass_g'].median().plot(kind='bar')

[2]: import pandas as pd

[3]: df = pd.read_csv('penguins_size.csv')

[4]: df.groupby('island')['body_mass_g'].median()

(b) Ordering Issues

Fig. 2. In (a), the last cell is dependent on an earlier cell that defines df. Because there
are two such cells, the dependency is ambiguous. In (b), suppose the cells are executed
in positional order. Then, the first cell has unbound symbols (df) that are later defined,
meaning the cell is out of order.

Static Code Dependencies. In addition to the cell positions and execution
counts, we have the code of each cell. While this work does not seek to execute the
cells, we can employ static code analysis to inform our understanding of relation-
ships between cells, similar to techniques used by Osiris [27] and NBSafety [14].
Because it is a dynamic language, it more difficult to statically analyze Python
code, but we can make some progress in investigating dependencies between cells.
Specifically, the language makes it possible to differentiate between definitions
and references of a particular identifier (or name). We care about those defini-
tions that are made in one cell and then referenced in a different cell because this
indicates a dependency between cells that can be used as a partial ordering. It
is not foolproof as there are many potential ways to influence the global names-
pace, but this should cover most common cases. This also allows us to determine
when cell references are potentially ambiguous–that is when two different cells
assign to or define a particular name. When a third cell references this name, it
is possible that reference is to either of the cells.

Function implementations, which do not access particular names until exe-
cuted present challenges because a name in a global namespace need not be
defined when the function is defined but must exist when the function is run.
Because of this, it is possible that another cell defines the global after the func-
tion, but this is still valid because the function is not executed until after that
definition.

We define four types of symbol dependencies which also lead to potential
relationships between cells. Specifically, any code cell that has a referenced sym-
bol that was not first defined in that cell has a likely dependency on another cell.
In this case, we call the symbol and cell dependent. When that referenced sym-
bol is defined/assigned in more than one cell, the symbol or cell is ambiguously
dependent (see Fig. 2a). These two definitions are unrelated to the order cells
were executed in. The dependency, ambiguous or otherwise, exists regardless of
any specified execution order. We found that most notebooks (94.76%) had at
least one dependency, although more than half (53.58%) had zero ambiguous
dependencies. Among those with ambiguous dependencies, the average ratio of
ambiguously dependent cells to total cells was about a quarter (25.49%). Again,
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this shows different variable definition patterns, hinting that some users may be
keenly aware of issues with defining a variable more than once.

The second pair of definitions are related to execution order, meaning we
can use these to evaluate inferred execution provenance. Given an ordering of
cells, when a cell references a symbol that has not been defined/assigned in a
cell earlier in the ordering, we have a unbound symbol. (We specifically exclude
builtin symbols in these calculations.) This may mean the symbol is later defined,
or it may mean the symbol is never defined. There also may be cases where the
symbol would be added to the namespace by a wildcard import or some other
code. The subset of those symbols that are later defined are the classified as out-
of-order (see Fig. 2b). The number of out-of-order cells will serve as a metric to
evaluating how well our provenance inference technique works.

(a) Sessions Until Repeat (b) Number of Repeated Sessions

Fig. 3. In the session history, we find evidence that users revisit notebooks. Usually,
this is soon after the previous session (a), and many notebooks are revisited many
times (b).

4.2 History

Inspired by Macke et al.’s use of IPython session history as a proxy for user
behavior [14], we take a similar approach to understand execution patterns.
Note that this assumes that the mode of interaction is via notebook, but it is
possible this history is recorded from console-based IPython interactions as well.
We will assume the code represents input from cells. Because the session history
contains all executed code, we have a more complete record of executed cells,
and can better see how often and when cells are re-executed. The patterns from
these histories will help us determine when to infer repeated executions in our
provenance reconstruction.

We downloaded all history .sqlite files from GitHub, and found 570 unique
files with 86,711 sessions, many of which were empty. We were able to extract
code from 43,529 sessions. We eliminated sessions with 10 or fewer lines (27,328)
and those with 100 or more (2,058), the latter due to the number of possible
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checks required. In the 14,143 sessions, we found 977,728 “cells”. (IPython calls
these lines despite many being composed of multiple lines, but cells of notebooks
become lines in the history database.)

Because we were not concerned about the actual execution of the cells, errors
or outdated code are fine. Our goal is to find all repeated executions. To do so, we
test all combinations of cells in the same session for similarity. Following Macke
et al., we classify two strings as similar if the Levenshtein distance between
them, normalized by dividing by the maximum length of the two strings, is less
than 0.2, that is roughly 80% of the code is the same [14]. Running this repeat
detection across all sessions, we found 222,202 likely repeated cells. Note that
this does not mean that all of these cells were (modified and) re-executed as
there may also be duplicate cells [12].

Importantly, this allows us to estimate the probability of a (1, 0) gap-jump,
that is a change in execution count of 1 (no real gap), and a jump of 0, staying
in the same place. Recall that we have no measure of this from the notebooks
because there could be no data about jumps of 0 as the re-execution would
overwrite the previous cell’s execution count. The next cell matches the pre-
vious cell in approximately 10% of all repeats (102,580 of 1,024,508). This is
out of 447,244 cells analyzed (for 23% of all executions); the number of repeats
exceeds the number of cells because we count all pairs of repeats. We will use this
probability of repeating cells to guide decisions about how to fill in the missing
gaps.

We can also look for repeats across sessions; this shows how often a note-
book was revisited in a later session. To accomplish this, we first de-duplicate
the individual sessions, leaving only one copy of each group of repeats. Then,
we compare earlier sessions with later ones. If the later session repeats at least
50% of the cells from the earlier session (repeats measured via the same Lev-
enshtein distance criteria), we classify it as a revisit of the notebook. If, at any
time after comparing ten lines from the first session, we have less than 10%
overlap, we quit checking for overlaps. We only searched for repeats within 50
sessions due to computational time, but found 5,163 sessions repeated, some
multiple times. The results show that most repeats occur quickly, often within
the first 10 sessions (see Fig. 3a). In addition, many sessions are repeated mul-
tiple times with a significant number of notebooks being revisited over 20 times
(see Fig. 3b).

5 Algorithm

Our goal is to infer projected execution provenance, the order in which we should
execute the notebook’s current cells to best emulate all of the past executions
of notebook cells. Again, we will use the position and execution counts to guide
decisions, but also the patterns and frequencies that were gathered from the
GitHub notebooks and session data. Because multiple sessions introduce added
complexity, we will be begin by examining the single-session case, and then
discuss how this can be extended for the multi-session case.
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Worst Case. Note that even with the best algorithm, it is possible to have wildly
different actual provenance than that inferred by this model. For example, each
cell could be executed repeatedly in a separate session, allowing any possible
execution count that has no relationship to the other cells in the notebook.
They may also be moved to reorder their positions. Given the history data, this
is likely an extremely rare occurrence, but it is possible, as with an archaeological
dig, that the most likely explanation given all evidence is not correct. Someone
trying to deliberately obfuscate the provenance of a notebook can very likely
succeed.

5.1 Base Algorithm

The base algorithm strictly follows the order implied by the execution counts.
We don’t know what happens with any gaps so we can fill them in with repeated
executions of the cell at the end of the gap. While this seems reasonable, and we
will see a nice extension to the multi-session case, the results (see Sect. 6) show
this to be a somewhat poor strategy, as many symbol definition-reference pairs
are out of order. The reason lies with the probability of repeated execution being
lower than that of the standard (1, 1) gap-jump. For example, if Fig. 1 showed
execution counts [1, 6, 7, 4, 5], it is most plausible that the user executed all
five cells in order and then went back to execute the second and third cell again.
The base algorithm would instead jump from the first cell to the second-to-last,
likely missing declarations or computations.

Fig. 4. Comparing the gap (≥2) between two adjoining cells in notebooks to the num-
ber of repeats of the same code in session history. A gap of n can be caused by n − 1
repeats of the second cell.
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Extension to Multiple Sessions. This base algorithm does, however, provide a
nice path to determine how to segment a multi-session notebook. Recall that
we can obtain a lower-bound on the number of sessions by finding the count
of the mode (the maximum number of repeats for an execution count). Given
this, we can start from an alignment of all the sessions at this mode, and use a
greedy approach to find the best next step in each session. Specifically, given the
next possible step, we look up the relative frequencies of the induced gap-jump,
picking the highest one. The step can be in either direction (to the next lower
or higher execution count) as the process is the same. Continuing this process
allows us to assign each cell to a session, at the same time building the projected
provenance. Note that the order of the sessions is difficult to ascertain because
there is nothing in this algorithm that considers when executed cells may have
been reexecuted–this is only implicitly captured in the gap-jump data.

5.2 Informed Algorithm

In the single session case where we assume the entire notebook state was gener-
ated in one session, any gaps mean that we have executed a cell twice or executed
a now-deleted cell. Since re-executing a cell often does not change state, we will
assume that all gaps are re-executions, rather than deleted cells. (Any code that
modifies a variable based on its current value may be problematic here; it may
be possible to flag such cells.) Then, the problem is finding the best path through
cells that have execution counts higher than the specified number. Here, we can
leverage the distribution of jumps, but we must also consider the endpoint of
the gap, the cell we must end at. In addition, the user may have jumped to the
final cell and re-executed it as many times as necessary.

From the data from the session history database, we know that both consec-
utive cell executions and immediate re-executions appear frequently. In addition,
if we see two cells that adjoin in position, and the cells are also consecutive by
execution count, the gap between those cells may often be caused by multiple
executions of the second cell. This may come about because of trial-and-error in
getting the code correctly by fixing typos, modifying parameters, etc. Figure 4
shows that the distribution of these gaps is similar to the distribution of sessions
where the same line is executed multiple times in succession. The single repeats
in sessions make up a greater proportion of repeats than (2, 1) gap-jumps in
notebooks, but then decline faster, meaning long length-m repeats are less com-
mon than (m − 1 � 2, 1) gap-jumps. This may be explained by the idea that
the gaps can also be caused by jumping to other parts of the notebook that are
later re-executed or removed, and it may also be more likely that cells tried once
or twice are later deleted.

Our goal is to come up with likely execution provenance to fill in the gaps.
From the notebook data, we know that a (1, 1) gap-jump is most likely. In
addition, the frequency of jumps of 1–that the next cell in execution count is also
the next cell positionally, is about 9 out of 10 (89.56%). Thus, we expect mostly
top-down order (and without other information are best to assume this), but this
must mesh with the notebook. A negative jump—executing a cell earlier in the
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Algorithm 1. Informed Provenance Algorithm
function FillProvenance(C)

order ← [] � initialize result
C ← {Cell(pos = 0, count = 0)} ∪ C � add dummy cell
sortByPosition(C) � ci is at position i
for ci, cj ∈ paired(sortedByCount(C)) do

gap ← count(cj) − count(ci)
if gap = 1 then

order.append(cj)
else

n = mins≥0{s | ∀k ∈ [s, j] count(ck) ≥ count(cj)}
m = maxt≤|C|{t | ∀� ∈ [i, t] count(c�) ≥ count(cj)}
if j > i then

posGap ← min(j − i − 1, gap − 1)
else

posGap ← gap − 1

numBefore ← min(posGap, j − n)
numAfter ← min(posGap − numBefore, m − i)
numRepeats ← posGap − numBefore − numAfter
for k ∈ i + 1, i + numAfter do

order.append(ck)

for k ∈ j − numBefore, j − 1 do
order.append(ck)

for � ∈ 1,numRepeats + 1 do � always do once so cj is added
order.append(cj)

return order

notebook, requires a negative jump at some point in the execution provenance
(since we are ignoring moves). We can maximize the number of consecutive
executions as cell numbering permits, but need to make at least one jump. Thus,
our best strategy may be to move forward as much as possible with a single jump.
Since this may still not cover the entire gap, we can repeat the final cell until
reaching the desired execution count.

More formally, we wish to determine the projected execution provenance for
the gap defined by cells ci and cj which have positions i and j and count(cj) −
count(ci) > 1. We will attempt to use all cells that come after ci or before cj
and have execution counts greater than cj ’s. Formally, we want cells {ck} with
count(ck) > count(cj) and either k < j or k > i. If the size of candidates, {ck},
is greater than the size of the gap, we use those positionally before cj first and
then those after ci (the jump happens earlier). If there are too few candidates, we
choose to repeat cj as many times as necessary, drawing on the session history
data showing repeats to be a common occurrence. In between those executions,
we will need to jump if the cells are positionally out-of-order, j < i, or if the
gap is smaller than the jump, j − i > count(cj) − count(ci). See Algorithm 1 for
details, and Fig. 5 for an example showing how a gap in the provenance is filled
by the algorithm.
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variables i m n j

pos · · · 3 4 5 6 7 8 9 10 11 · · ·
count · · · 13 22 23 24 7 8 21 19 20 · · ·

inferred · · · 13 14 15 16 7 8 17 18 20 · · ·
22 23 24 21 19

Fig. 5. Filling in the gap between c3 and c10. These cells are the third and tenth
in the notebook and have execution counts of 13 and 19, respectively. This means
gap = 19 − 13 = 6, and we need to decide which five cells were executed during steps
14 through 18. The algorithm assigns counts to cells with execution counts higher than
19 following c3 (numAfter = 3) and preceding c10 (numBefore = 1), and then assigns
c10 to repeat once (numRepeats = 1). The inferred execution order shows that some
cells (e.g. c4) are executed more than once.

Extension to Multiple Sessions. The extension to the multiple session case brings
the possibility of having a cell with a lower execution count being run in a previ-
ous session at a higher execution count. We can attack this by first assigning each
cell to a session, but then we have to find a way to order the sessions so that we
know which cells will eventually be re-run (and their execution count overwrit-
ten). One option here is to assume that later sessions will be more contiguous.
Assuming this can be solved, the algorithm continues as in the single session
case, allowing gaps to be filled by inferring executions of not only cells whose
execution counts are greater but also cells in later sessions. A second option is to
thread this with the cell-session assignments, as in the base algorithm. Here, we
will rank assignments of cells to sessions based on the provenance they induce.
For example, in Fig. 1, assigning the third and fourth cells to the same ses-
sion forces less frequent jumps than assigning the second and third to the same
session instead (as was the case).

6 Evaluation

We used the code dependency measures defined in Sect. 4 to evaluate how well
our provenance captures a realistic execution history without attempting to run
the code. Other work has attempted to reexecute entire notebooks, classifying
them as reproducible when the execution succeeds and the results match. This
work is subject to a number of variables including data availability, library and
package dependencies, and execution order [20,27]. Our work focuses on execu-
tion order in a way that is agnostic to the results of the code. We lean on the
static code analysis to find those identifiers that are defined out of order in order
to test our approach. Again, this analysis looks at the names that appear across
cells. Any name that is referenced before it is introduced would be out of order.

We choose to compare three different techniques using the code dependency
metrics. First, we take the top-down approach–simply execute all executed cells
in positional order. Second, we examine the base approach that goes not by posi-
tion but by the stored execution counts. Finally, we compare with the informed
algorithm that attempts to fill in gaps with other cell executions.
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There were 1,519,914 cells in the notebooks. The top-down approach has only
2,196 out-of-order cells, compared with 39,386 for the base algorithm, and 26,619
for the advanced algorithm. The top-down median number of out-of-order cells
per notebook was 1 compared with 2 for the other approaches. Perhaps surpris-
ingly, both algorithms do significantly worse as measured by out-of-order execu-
tions than top-down execution. Note, however, that the single-session advanced
algorithm does improve significantly on the base algorithm. Reflecting on this
further, the actual execution is often messier than the top-down order, and may
result in more similar results.

One notebook that has problems with out-of-order cells under the inferred
provenance has definitions (imports) as the first cell but an execution count
of 141, followed by a second cell with count 132, before cells with the count
sequence 2, 3, 4, 5. The algorithm assumes that the second cell was the first
execution (1), leaving the actual first cell until much later. Most likely, this
second cell was inserted later, something that would be difficult to determine
without other information. Around 100 notebooks have fewer out-of-order cells
using our algorithm than the top-down execution. One of these has a cell with a
plot as output that was executed last yet featured as the first cell. Again, the cell
may have been moved, but following the execution counts here provides what is
likely more accurate provenance.

7 Discussion

The data we have gathered helps shine a light on patterns of notebook interac-
tion, allowing us to infer the provenance of a particular notebook. However, there
are several limitations. First, because we cannot determine if a cell was removed
or a cell was added or moved, our inferred provenance necessarily lacks some
of the actions that a user might take. Second, we do not have data that links
session histories with notebooks. The session histories do not record notebook
locations or filenames, and it is unclear how to effectively link the session histo-
ries on GitHub to existing notebooks. The histories are maintained in a separate
area of the filesystem (a “dot” directory in a user’s home directory), and that
is generally not included in the same repository as published notebooks, if any
published notebooks exist.

Improving Evaluation. A true recording of the provenance would be beneficial in
better profiling notebooks. This would help better tie data from notebooks and
session histories together, as well. Extensions that version notebooks and their
cells are very useful for this purpose [11], but the vast majority of notebooks lack
this information. Another opportunity may be those who version their notebooks
using conventional tools like git. Even though these will lack the granularity of
a system that tracks all operations on a notebook, they would allow improved
inference of changes in the notebook as adds, moves, and deletions may be more
effectively estimated.
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Using All Cells. Notebooks contain more than code cells, but we have restricted
most of the discussion of provenance to code. Literate programming emphasizes
a combination of code with text, and this text is included in markdown cells in
Jupyter. While some notebooks have more text than others, for those that do,
we may be able to use information about the position of this text to determine
logical sections of a notebook which may aid is session partitioning. In addition,
the calculations of gaps and jumps ignore markdown cells, but having such cells
in between may affect the probability of a particular repeated execution or jump,
thus improving the algorithm.

Using Code Dependencies. Both Osiris and NBSafety look to static code depen-
dencies in order to derive more likely execution sequences and flag stale cells,
respectively. We instead use these code dependencies to evaluate provenance
reconstructed via statistical trends of gaps, jumps, and repeats. We expect that
code dependencies can be used to improve this provenance construction, but if
we optimize for that, we lose our ability to evaluate the proposed algorithm. A
possible solution is to use execution of the notebooks, comparing output values
directly. This is prone to the other issues mentioned earlier, including missing
data and dependency issues, but may provide enough results to judge the efficacy
of a hybrid solution.

Determining Sessions. Our method to determine sessions looks reasonable in
that it segments the notebook in meaningful pieces most of the time. However,
it induces more issues with out-of-order cells than top-down execution. This is
not totally unexpected, as we expect most users to execute cells in top-down
fashion so cell execution counts that are out of order are actually more likely
to have been reexecuted than simply executed in a random fashion. Thus, when
execution counts are missing, it is actually more likely that the cell was repeated
(or potentially moved) than it was executed in a haphazard fashion.

Localized Predictions. Our model for inferring provenance uses global distribu-
tions for guidance, but different users have different approaches to notebook
use [23]. Those with few but lengthy cells that function more like scripts will be
editing and re-editing single cells over and over while those with many shorter
cells will likely be executing cells in sequence more often. In addition, even among
the same users, notebooks used for exploration may be structured differently
than those used for explanation. It may be useful, then, to classify notebooks
or users according to particular styles in order to better infer provenance. We
also expect that in later sessions, many of the cells have fewer immediate re-
executions. Often, the first execution of a cell raises an exception due to a typo,
a missed import, or some flawed logic, leading a user to correct that problem.
Thus, some repeats may be less likely if we know the code was executed in a
previous session. Another opportunity for improving predictions is understand-
ing the content of the cell; cells importing dependencies may be executed and
updated more often and with a greater probability of a jump.
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8 Conclusion

We have presented methods to infer provenance from static notebooks based on
knowledge gained from examining the large corpora of notebooks and session
histories. These methods take a step forward in the very difficult problem of
meaningfully understanding how a user interacted with a notebook. A future
direction is to examine how well this computed provenance meshes with the
actual results.

While we present some evidence that provenance can be inferred, the frequent
ambiguities point to a need for improved provenance in notebooks. While it
has been shown that many notebooks have reproducibility issues, this paper
demonstrates that even with further analysis of partially-known steps rooted
in statistical analysis of notebook and session data, there is not enough data to
provide the type of provenance that would enable greater understanding of how a
user arrived at particular conclusions and where they may have changed course.
Since there are millions of notebooks that already exist, this work addresses the
challenges from the past while prompting action for the future.
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DOWN: improving provenance precision by combining workflow-and trace-level
information. In: 6th USENIX Workshop on the Theory and Practice of Provenance
(TaPP 2014) (2014)

7. Head, A., Hohman, F., Barik, T., Drucker, S.M., DeLine, R.: Managing messes in
computational notebooks. In: Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems, p. 270. ACM (2019)

8. Huq, M.R., Apers, P.M., Wombacher, A.: ProvenanceCurious: a tool to infer data
provenance from scripts. In: Proceedings of the 16th International Conference on
Extending Database Technology, pp. 765–768 (2013)

9. Jupyter. http://jupyter.org
10. Kery, M.B., Myers, B.A.: Interactions for untangling messy history in a compu-

tational notebook. In: 2018 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pp. 147–155 (October 2018). https://doi.org/10.
1109/VLHCC.2018.8506576

http://zeppelin.apache.org
http://beakernotebook.com
https://doi.org/10.1007/978-3-642-34222-6_7
https://datalore.jetbrains.com
http://jupyter.org
https://doi.org/10.1109/VLHCC.2018.8506576
https://doi.org/10.1109/VLHCC.2018.8506576


126 D. Koop

11. Kery, M.B., John, B.E., O’Flaherty, P., Horvath, A., Myers, B.A.: Towards effective
foraging by data scientists to find past analysis choices. In: Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems, CHI 2019, pp. 92:1–
92:13. ACM, New York (2019). https://doi.org/10.1145/3290605.3300322, http://
doi.acm.org/10.1145/3290605.3300322

12. Koenzen, A.P., Ernst, N.A., Storey, M.A.D.: Code duplication and reuse in Jupyter
notebooks. In: 2020 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pp. 1–9. IEEE (2020)

13. Koop, D., Patel, J.: Dataflow notebooks: encoding and tracking dependencies of
cells. In: 9th Workshop on the Theory and Practice of Provenance (TaPP 2017)
(2017)

14. Macke, S., Gong, H., Lee, D.J.L., Head, A., Xin, D., Parameswaran, A.: Fine-
grained lineage for safer notebook interactions. Proc. VLDB Endow. 14(6), 1093–
1101 (2021)

15. Nodebook. https://github.com/stitchfix/nodebook
16. North, S., Scheidegger, C., Urbanek, S., Woodhull, G.: Collaborative visual analysis

with rcloud. In: 2015 IEEE Conference on Visual Analytics Science and Technology
(VAST), pp. 25–32. IEEE (2015)

17. Observable. https://observablehq.com
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Abstract. Users typically interact with a database by asking queries
and examining the results. We refer to the user examining the query
results and asking follow-up questions as query result exploration. Our
work builds on two decades of provenance research useful for query
result exploration. Three approaches for computing provenance have
been described in the literature: lazy, eager, and hybrid. We investigate
lazy and eager approaches that utilize constraints that we have identi-
fied in the context of query result exploration, as well as novel hybrid
approaches. For the TPC-H benchmark, these constraints are applica-
ble to 19 out of the 22 queries, and result in a better performance for
all queries that have a join. Furthermore, the performance benefits from
our approaches are significant, sometimes several orders of magnitude.

Keywords: Provenance · Query result exploration · Query
optimization · Constraints

1 Introduction

Consider a user interacting with a database. Figure 1 shows a typical interaction.
Here the database is first assembled from various data sources (some databases
might have a much simpler process, or a much more complex process). A user
asks an original query and gets results. Now the user wants to drill deeper into
the results and find out explanations for the results. We refer to this drilling
deeper into the results as query result exploration.

For query result exploration, the user selects one or more interesting rows
from the results obtained for the original user query, and asks questions such
as: why are these rows in the result. The system responds by showing the rows
in the tables that combined to produce those results the user is interested in.
Different provenance semantics as described in [7,13] can be used for query result
exploration. In this paper, we use the which-provenance semantics (also referred
to as lineage) as in [9] and richer semantics is not needed. See Sect. 6 for a
discussion of different provenance semantics.
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Fig. 1. User asks original query and gets results. Now the user explores these results.

Table 1. Running Example: Tables (simplified) from TPC-H schema and sample data

Customers

c key c name c address

c1 n1 a1

Orders

o key c key o date

o1 c1 d1

o2 c1 d2

Lineitem

o key linenum qty

o1 l1 200

o1 l2 150

o2 l1 100

o2 l2 160

Example 1. Consider three tables from TPC-H [1] simplified and with sample
data as shown in Table 1. Consider Q18 from TPC-H modified as in [15] and
simplified for our example. See that the query is defined in [15] in two steps:
first a view Q18 tmp is defined, which is then used to define the original query
as view R. The results of these two views are also shown.

(find total quantity for each order)
SQL: CREATE VIEW Q18 tmp AS

SELECT o key, sum(qty) as t sum qty
FROM Lineitem
GROUP BY o key

Q18 tmp
o key t sum qty
o1 350
o2 260

(for each order where total quantity is greater
than 300, return the customer and order
information, as well as the total quantity)
SQL: CREATE VIEW R AS

SELECT c name, c key, o key, o date,
sum(qty) as tot qty

FROM Customers NATURAL JOIN
Orders

NATURAL JOIN Lineitem
NATURAL JOIN Q18 tmp

WHERE t sum qty > 300
GROUP BY c name, c key, o key, o date

R
c name c key o key o date tot qty
n1 c1 o1 d1 350

�
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For this simplified example, there is one row in the result R. Suppose the user
picks that row and wants to explore that row further. Suppose the user wants
to find out what row(s) in the table Customers produced that row. We use R′

to denote the table consisting of the rows picked by the user for query result
exploration. We refer to the row(s) in the Customers table that produced the
row(s) in R′ as the provenance of R′ for the Customers table, and denote it
as PCustomers. In [9], the authors come up with a query for determining this
provenance shown below. Note that we sometimes use SQL syntax that is not
valid, but intuitive and easier.

SELECT Customers.*
FROM R′ NATURAL JOIN Customers

NATURAL JOIN Orders NATURAL JOIN
Lineitem NATURAL JOIN Q18 tmp

WHERE t sum qty > 300

PCustomers
c key c name c address
c1 n1 a1

However, if we observe closely, we can note the following. Given that the
row in R′ appeared in the result of the original query with the value for c key
column as c1, and given that the key for Customers is c key, the row from
Customers table that produced that row in R must have c key = c1. Therefore
the provenance retrieval query can be simplified as shown below. In this paper
(Sect. 3), we study such optimization of provenance retrieval queries formally.

SELECT Customers.* FROM R′ NATURAL JOIN Customers

As another example, consider the provenance of R′ in the inner LineItem
table (used for defining Q18 tmp). This is computed in two steps. First we need
to compute PQ18 tmp. Below, we show the PQ18 tmp query as in [9], and then
our optimized PQ18 tmp query (using the same reasoning as for PCustomers).

CREATE VIEW PQ18 tmp AS
SELECT Q18 tmp.*
FROM R′ NATURAL JOIN Customers

NATURAL JOIN Orders NATURAL JOIN
Lineitem NATURAL JOIN Q18 tmp

WHERE t sum qty > 300

PQ18 tmp
o key t sum qty
o1 350

CREATE VIEW PQ18 tmp AS
SELECT Q18 tmp.* FROM R′ NATURAL JOIN Q18 tmp

Now, the provenance of R′ in the inner LineItem table can be computed
using the following provenance retrieval query.

SELECT LineItem.*
FROM LineItem NATURAL JOIN PQ18 tmp

PLineitem
o key linenum qty
o1 l1 200
o1 l2 150

It is possible to further improve the performance of the above provenance
retrieval query if we materialize some additional data. Let us materialize the
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rows in R, along with the corresponding key value(s) from the inner LineItem
table for each row in R. We denote this result table augmented with additional
keys and materialized as RK. This will be done as follows.

CREATE VIEW Q18 tmpK AS
SELECT Q18 tmp.*,
LineItem.linenum AS linenum2

FROM Q18 tmp NATURAL JOIN LineItem

Q18 tmpK
o key t sum qty linenum2
o1 350 l1
o1 350 l2
o2 260 l1
o2 260 l2

CREATE TABLE RK AS
SELECT R.*, linenum2
FROM R NATURAL JOIN
Q18 tmpK

RK
c name c key o key o date tot qty linenum2
n1 c1 o1 d1 350 l1
n1 c1 o1 d1 350 l2

For this example, only the linenum column needs to be added to the columns
in R as part of this materialization, because o key is already present in R
(renamed as linenum2 to prevent incorrect natural joins). Now the provenance
retrieval query for the inner LineItem table can be defined as follows.

CREATE VIEW RK ′ AS
SELECT *
FROM R′ NATURAL JOIN
RK

RK ′

c name c key o key o date tot qty linenum2
n1 c1 o1 d1 350 l1
n1 c1 o1 d1 350 l2

SELECT LineItem.* FROM RK ′ NATURAL JOIN LineItem

See that the provenance retrieval query for the LineItem table in the inner
block is now a join of 3 tables: R′, RK and LineItem. Without materializa-
tion, the provenance retrieval query involved three joins also: R′, Q18 tmp and
LineItem; however, Q18 tmp was a view. Our experimental studies confirm the
huge performance benefit from this materialization.

Our contributions in this paper include the following:

– We investigate constraints implied in our query result exploration scenario
(Sect. 2.3).

– We investigate optimization of provenance retrieval queries using the con-
straints. We present our results as a Theorem and we develop an Algorithm
based on our theorem (Sect. 3).

– We investigate materialization of select additional data, and investigate novel
hybrid approaches for computing provenance that utilize the constraints and
the materialized data (Sect. 4).

– We perform a detailed performance evaluation comparing our approaches
and existing approaches using TPC-H benchmark [1] and report the results
(Sect. 5).

2 Preliminaries

We use the following notations in this paper: a base table is in bold as Ti, a
materialized view is also in bold as Vi, a virtual view is in italics as Vi. The set
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of attributes of table Ti/materialized view Vi/virtual view Vi is ATi
/AVi

/AVi
;

the key for table Ti is Ki. When the distinction between base table or vir-
tual/materialized view is not important, we use Xi to denote the table/view;
attributes of Xi are denoted AXi

; the key (if defined) is denoted as Ki.

2.1 Query Language

For our work, we consider SQL queries restricted to ASPJ queries and use set
semantics. We do not consider set operators, including union and negation, or
outer joins. We believe that extension to bag semantics should be fairly straight-
forward. However, the optimizations that we consider in this paper are not imme-
diately applicable to unions and outer joins. Extensions to bag semantics, and
these additional operators will be investigated in future work. For convenience,
we use a Datalog syntax (intuitively extended with group by similar to relational
algebra) for representing queries. We consider two types of rules (referred to as
SPJ Rule and ASPJ Rule that correspond to SPJ and ASPJ view definitions
in [9]) that can appear in the original query as shown in Table 2. A query can
consist of one or more rules. Every rule must be safe [20]. Note that Souffle1

extends datalog with group by. In Souffle, our ASPJ rule will be written as two
rules: an SPJ rule and a second rule with the group by. We chose our extension
of Datalog (that mimics relational algebra) in this paper for convenience.

Table 2. The two types of rules that can appear in original queries and their Datalog
representation. For the ASPJ rule, GL refers to the list of group by columns and AL
refers to the list of aggregations.

SPJ Rule: R(AR) :−X1(AX1), X2(AX2), . . . , Xn(AXn)

ASPJ Rule: R(GL,AL) :−X1(AX1), X2(AX2), . . . , Xn(AXn)

Example 2. Consider query Q18 from TPC-H (simplified) shown in Example 1
written in Datalog. See that the two rules in Q18 are ASPJ rules, where the
second ASPJ rule uses the Q18 temp view defined in the first ASPJ rule. The
second rule can be rewritten as an SPJ rule; however, we kept it as an ASPJ rule
as the ASPJ rule reflects the TPC-H query faithfully as is also provided in [15].

Q18 tmp(o key, sum(qty) as t sum qty) :−Lineitem.
R(c name, c key, o key, o date, sum(qty) as tot qty) :−Customers, Orders,

Lineitem, Q18 tmp, t sum qty > 300.

�

1 https://souffle-lang.github.io/.

https://souffle-lang.github.io/
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2.2 Provenance Definition

As said before, we use the which-provenance definition of [9]. In this section, we
provide a simple algorithmic definition for provenance based on our rules.

The two types of rules in our program are both of the form: R(AR) :−RHS.
We will use ARHS to indicate the union of all the attributes in the relations in
RHS. For any rule, R(AR) :−RHS, the provenance for R′ ⊆ R in a table/view
Xi(AXi

) ∈ RHS (that is, the rows in Xi that contribute to the results R′)
is given by the program shown in Table 3. See that PV iew corresponds to the
relational representation of why-provenance in [11].

Table 3. Algorithmic definition of provenance

Algorithmic definition of provenance for rule: R(AR) :−RHS. The rows in table/view

Xi(AXi
) ∈ RHS that contribute to R′ ⊆ R are represented as PXi.

PV iew(AR ∪ ARHS) :−R(AR), RHS.

PXi(AXi
) :−PV iew, R′(AR).

Example 3. These examples are based on the schema and sample data in
Table 1, and the Q18 tmp and R views in Example 2.

Consider the definition of view Q18 tmp in Example 2; rows in the view
Q18 tmp = {(o1, 350), (o2, 260)}. Let rows selected to determine provenance
Q18 tmp′ = {(o2, 260)}.

First PV iew (o key,t sum qty, linenum, qty) is calculated as in Table 3. Here,
PV iew has four rows: { (o1, 350, l1, 200), (o1, 350, l2, 150), (o2, 260, l1, 100),
(o2, 260, l2, 160)}
Now PLineItem is calculated (according to Table 3) as:
PLineItem(o key, linenum, qty) :−PV iew,Q18 tmp′.
The resulting rows for PLineItem = { (o2, l1, 100), (o2, l2, 160)}

��

2.3 Dependencies

We will now examine some constraints for our query result exploration sce-
nario that help optimize provenance retrieval queries. As in Sect. 2.2, the orig-
inal query is of the form R(AR) :−RHS; and ARHS indicates the union of all
the attributes in the relations in RHS. Furthermore, R′ ⊆ R. We express the
constraints as tuple generating dependencies below. While these dependencies
are quite straightforward, they lead to significant optimization of provenance
computation as we will see in later sections.

Dependency 1. ∀AR, R′(AR) → R(AR)
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Dependency 1 is obvious as the rows for which we compute the provenance,
R′ is such that R′ ⊆ R. For the remaining dependencies, consider RHS as the
join of the tables X1(AX1),X2(AX2), . . . , Xn(AXn

), as shown in Table 2.

Dependency 2. ∀AR, R(AR) → ∃(ARHS − AR), X1(AX1),
X2(AX2), . . . , Xn(AXn

)

Dependency 2 applies to both the rule types shown in Table 2. As any row in
R is produced by the join of X1(AX1),X2(AX2), . . . , Xn(AXn

), Dependency 2 is
also obvious. From Dependencies 1 and 2, we can infer the following dependency.

Dependency 3. ∀AR, R′ (AR) → ∃(ARHS − AR), X1(AX1),
X2(AX2), . . . , Xn(AXn

)

3 Optimizing Provenance Queries Without
Materialization

Consider the query for computing provenance given in Table 3 after composition:
PXi(AXi

) :−R(AR), RHS, R′(AR). Using Dependency 1, one of the joins in the
query for computing provenance can immediately be removed. The program for
computing provenance of R′ ⊆ R in table/view Xi is given by the following
program. See that Xi can be a base table or a view.

Program 1. PXi(Ai) :−R′(AR), RHS.

Program 1 is used by [9] for computing provenance. However, we will optimize
Program 1 further using the dependencies in Sect. 2.3. Let P1 below indicate the
query in Program 1. Consider another query P2 (which has potentially fewer
joins than P1). Theorem 1 states when P1 is equivalent to P2. The proof uses
the dependencies in Sect. 2.3 and is omitted.

P1 : PXi(AXi
) :−R′(AR), X1(AX1),X2(AX2), . . . , Xn(AXn

).
P2 : PXi(AXi

) :−R′, Xj1(AXj1
),Xj2(AXj2

), . . . , Xjq (AXjq
).,

where {j1, j2, . . . , jq} ⊆ {1, 2, . . . , n}
Notation. For convenience, we introduce two notations below. A′

RHS = AXj1
∪

AXj2
∪ . . . ∪ AXjq

. Consider the tables that are present in the RHS of P1, but
not in the RHS of P2. A′′

RHS denotes all the attributes in these tables.

Theorem 1. Queries P1 and P2 are equivalent, if for every column C ∈ A′
RHS,

at least one of the following is true:

– AR → C (that is, AR functionally determines C) is true for the tables in P2

– C /∈ A′′
RHS

Based on Theorem 1, we can infer the following corollaries. Corollary 1 says
that if all the columns of Xi are present in the result, no join is needed to
compute the provenance of Xi. Corollary 2 says that if a key of Xi is present in
the result, then the provenance of Xi can be computed by joining R′ and Xi.

Corollary 1. If AXi
⊆ AR, then PXi(AXi

) :−R′(AR).

Corollary 2. If Ki ⊆ AR, then PXi(AXi
) :−R′(AR), Xi(AXi

).
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3.1 Provenence Query Optimization Algorithm

In this section, we will come with an algorithm based on Theorem 1 that starts
with the original provenance retrieval query and comes up with a new optimized
provenance retrieval query with fewer joins. Suppose the original user query is:
R(AR) :−X1(AX1), X2(AX2), . . ., Xn(AXn

). The user wants to determine the
rows in Xi that contributed to the results R′(AR) ⊆ R(AR). Note that Xi can
either be a base table or a view.

Algorithm 1. Efficient Provenance Retrieval Query
1: start with CurRHS = R′(AR)
2: if AXi ⊆ AR then return CurRHS

3: add Xi to CurRHS
4: let CurRHSTables = Xi; A

′
RHS =

⋃
AXj , where Xj ∈ CurRHSTables

5: let RemTables = {X1, X2, . . . , Xn} -Xi; A
′′
RHS =

⋃
AXj , where Xj ∈ RemTables

6: while there is a column C ∈ A′
RHS ∩ A′′

RHS , and there is no functional dependency
AR → C in CurRHSTables do

7: Add all tables in RemTables that have the column C to CurRHS, and to
CurRHSTables. Adjust A′

RHS , RemTables, A′′
RHS appropriately.

8: return CurRHS

Illustration of Algorithm 1
Consider the SPJA rule for R for Q18 in TPC-H from Example 2.
R(c name, c key, o key, o date, sum(qty) as total qty) :−

Customers, Orders, Lineitem, Q18 tmp, t sum qty > 300.
Algorithm 1 produces the provenance retrieval query for Customers as follows.
After line 3, CurRHS = R′, Customers. At line 6, A′

RHS ∩ A′′
RHS = {c key}.

As c key ∈ AR, and AR → c key, no more tables are added to CurRHS. Thus,
the final provenance retrieval query is: PCustomers :−R′, Customers.

4 Optimizing Provenance Queries with Materialization

In Sect. 3, we studied optimizing the provenance retrieval queries for the lazy
approach, where no additional data is materialized. Eager and hybrid approaches
materialize additional data. An eager approach could be to materialize PV iew
(defined in Table 3). However, PV iew could be a very large table with several
columns and rows of data. In this section, we investigate novel hybrid approaches
that materialize much less additional data, and perform comparable to (and
often times, even better than) the eager approach that materializes PV iew. The
constraints identified in Sect. 2.3 are still applicable, and are used to decrease
the joins in the provenance retrieval queries.

A user query can have multiple rules that form multiple steps (for instance,
Q18 in TPC-H has two steps). While our results apply for queries with any
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number of steps, for simplicity of illustration, we consider only queries with two
steps (the results extend in a straightforward manner to any number of steps).
A query with two steps is shown in Fig. 2. The Datalog program corresponding
to Fig. 2 is shown in Program 2. R is the result of the query. R is defined using
the base tables T1, T2, . . ., Tn, and the views V1, V2, . . ., Vm. Remember that
from Sect. 2, T1 has attributes AT1 and key attributes K1; T1n1 has attributes
AT1n1

and key attributes K1n1 ; V1 has attributes AV1 .

Fig. 2. Query with two steps

Program 2.
Vi(AVi

) :−Ti1, Ti2, . . . , Tini
. ∀ i ∈ 1, 2, ...,m

R(AR) :−T1, T2, . . . , Tn, V1, V2, . . . , Vm.

Given a query R as in Program 2, we materialize a view RK with columns
ARK . ARK consists of the columns AR in R and the keys of zero or more of the
base tables used in R (how ARK is determined is discussed later). RK is defined
using R, the base tables that define R and the V Ki views corresponding to each
of the Vi that define R. See Program 3. V Ki is a virtual view defined using Vi

and the tables that define Vi. If no keys are added to Vi to form V Ki (i.e., AV Ki

= AVi
), then V Ki can be optimized to be just Vi. Algorithm 1 can be used to

optimize V Ki and RK as well; details are omitted.

Program 3.

Vi(AVi
) :−Ti1, Ti2, . . . , Tini

. ∀ i ∈ 1, 2, ...,m
R(AR) :−T1, T2, . . . , Tn, V1, V2, . . . , Vm.

V Ki(AV Ki
) :−Vi, Ti1, Ti2, . . . , Tini

. ∀ i ∈ 1, 2, ...,m
RK(ARK) :−R, T1, T2, . . . , Tn, V K1, V K2, . . ., V Km.
OQ(AR) :−RK.

The original user query results (computed as R in Program 2) are computed
by OQ in Program 3. This is because we assume that RK is materialized during
the original user query execution and we expect that computing OQ from RK
will be faster than computing the results of R.
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For query result exploration, suppose that the user selects R′ ⊆ R and wants
to find the provenance of R′ in the table Ti. We will assume that Ti is a base
table that defines Vj . For this, we first define RK ′ ⊆ RK as shown below.
RK ′ :−R′,RK.

RK ′ denotes the rows in RK corresponding to the rows in R′. Now to com-
pute the provenance of R′ in the table Ti, we compute the provenance of RK ′

in the table Ti. There are two cases:

Program 4.
Case 1: Ki ⊆ ARK : PTi :−RK ′, Ti.
Case 2: Ki � ARK : PTi :−PVj , VjRHS.
(VjRHS is the RHS of the rule that defines Vj.)

Case 1 is similar to Corollary 2 except that R may not be defined using Ti

directly. For Case 2, Vj is defined using Ti directly. PVj is the provenance of
RK ′ in the view Vj , computed recursively using Program 4. Given PVj , the rule
for computing the provenance of PVj in the table Ti is given by Program 1.
Both the rules in Program 4 can be optimized using Algorithm 1.

Example 4. Consider Q18 from Example 2. There are 4 base tables used in
Q18 – Customers, Orders, Lineitem1 and Lineitem2. We distinguish the
two Lineitem tables; Lineitem2 denotes the table used in Q18 tmp definition.

The materialized RK view contains the columns in R and additionally the
key for Lineitem2 table. The key for the Lineitem2 table is (o key, linenum);
however o key is already present in R. Therefore only the linenum column from
Lineitem2 is added in ARK . The revised program (as in Program 3) that mate-
rializes RK and computes OQ is shown below. Note that optimizations as in
Algorithm 1 are applicable (for example, definition of RK); details are omitted.

Q18 tmp(o key, sum(qty) as t sum qty) :−Lineitem.
R(c name, c key, o key, o date, o totalprice, sum(qty) as total qty)

:−Customers, Orders, Lineitem, Q18 tmp, t sum qty > 300.

Q18 tmpK(o key, linenum as linenum2, t sum qty) :−Q18 tmp, Lineitem.
RK(c name, c key, o key, o date, o totalprice, linenum2, total qty)

:−R,Q18 tmpK.
OQ(c name, c key, o key, o date, o totalprice, total qty) :−RK.

Let R′ denote the selected rows in R whose provenance we want to explore.
To compute their provenance, we first need to determine which rows in RK
correspond to the rows in R′. This is done as:

RK ′(ARK) :−R′, RK.
Now, we need to compute the provenance of the rows in RK ′ from the different
tables, which is computed as follows. See that all the rules have been optimized
using Algorithm 1, and involve a join of RK ′ and one base table.
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PCustomers(c key, c name, c address) :−RK ′, Customers.
POrders(o key, c key, o date, o totalprice) :−RK ′, Orders.
PLineitem1(o key, linenum, qty) :−RK ′, Lineitem.
PLineitem2(o key, linenum, qty) :−RK ′ (c name, c key, o key,

o date, o totalprice, linenum2 as linenum, total qty), Lineitem.

��

4.1 Determining the Keys to Be Added to the Materialized View

When we materialize RK, computing the results of the original user query is
expected to take longer because we consider that materialization of RK is done
during original query execution, and because RK is expected to be larger than
the size of R: the number of rows (and the number of columns) in RK will not
be fewer than the number of rows (and the number of columns) in R. However,
materialization typically benefits result exploration because the number of joins
to compute the provenance for some of the base tables is expected to be smaller
(although it is possible that the size of RK might be large and this may slow
down the provenance computation).

For the materialized view RK, we consider adding keys of the different base
tables and compute the cost vs. benefit. The ratio of the estimated number of
rows of RK and the estimated number of rows in R forms the cost. The ratio
of the number of joins across all provenance computations of base tables with
and without materialization give the benefit. We use a simple cost model that
combines the cost and the benefit to determine the set of keys to be added to RK.
For the example query Q18, the provenance retrieval queries for Customers,
Orders and Lineitem tables in the outer block already involve only one join.
Therefore no keys need to be added to improve the performance of these three
provenance retrieval queries. However, we can improve the performance of the
provenance retrieval query for the Lineitem table in the inner block by adding
the keys for the inner Lineitem table to RK as shown in Example 4.

For RK, we currently consider adding the key for every base table as part of
the cost-benefit analysis. In other words, the number of different hybrid options
we consider is exponential in the number of tables in the original user query. For
each option, the cost vs. benefit is estimated and one of the options is selected.
As part of future work, we are investigating effective ways of searching this space.
Other factors may be included in our cost model to determine which keys to be
added to RK, including the workload of provenance queries.

5 Evaluation

For our evaluation, we used the TPC-H [1] benchmark. We generated data at
1GB scale. Our experiments were conducted on a PostgreSQL 10 database server
running on Windows 7 Enterprise operating system. The hardware included a
4-core Intel Xeon 2.5 GHz Processor with 128 GB of RAM. For our queries, we
again used the TPC-H benchmark. The queries provided in the benchmark were
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considered the original user queries. Actually, we considered the version of the
TPC-H queries provided by [15], which specifies values for the parameters for the
TPC-H benchmark and also rewrites nested queries. For the result exploration
part, we considered that the user would pick one row in the result of the original
query (our solutions apply even if multiple rows were picked) and ask for the
rows in the base tables that produce that resulting row.

We compare the following approaches:

– The approach in [9] that we refer to as: W (lazy approach). No additional
data is materialized; the materialization studied in [8] is not considered.

– The approach in [11] that we refer to as: G. Here we assume that the relational
representation of provenance is materialized while computing the original user
query (eager approach). Provenance computation is then translated into mere
look-ups in this materialized data.

– Algorithm 1 without materialization that we refer to as: O1 (lazy approach).
– Our approach with materialization from Sect. 4 that we refer to as: O2 (hybrid

approach).

5.1 Usefulness of Our Optimization Rules

Algorithm 1 results in queries with much fewer joins. We tested the provenance
retrieval queries for Q18 from TPC-H as given in [15] (for our experiments, the
schema and the queries were not simplified as in our running example). The
times observed are listed in Table 4. See that the provenance retrieval queries
generated by Algorithm 1 (O1) run much faster than the ones used in [9] (W).

Table 4. O1 compared to W for Q18 in [15]. All times are reported in milliseconds.

PCustomers POrders PLineItem

O1 0.07 0.06 0.30

W 1522.44 1533.88 1532.74

We considered all the TPC-H queries as given in [15] except for the ones
with outer joins (as we do not consider outer joins in this paper). Of the 22
TPC-H queries, the queries with outer joins are Q13, Q21, Q22, and these were
not considered. Q19 has or in its predicate, which can be rewritten as a union.
However, we considered the or predicate as a single predicate without breaking
it into a union of multiple rules. For 7 out of these 19 queries, O1 results in
provenance retrieval queries with fewer joins than the ones in W. They were Q2,
Q3, Q7, Q10, Q11, Q15 and Q18. In other words, Algorithm 1 was useful for
around 36.84% of the TPC-H queries.
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5.2 Usefulness of Materialization

For Q18 [15], we compared the time to compute the original query results
(OQ) and the time to compute the provenance of the four tables for the four
approaches: O1, W, G and O2. The materialized view RK in O2 included the
key for the LineItem table in the inner block. The results are shown in Table 5.

Table 5. Performance Benefits of materialization proposed in Sect. 4 for Q18 in [15].
All times are reported in milliseconds.

O1 W G O2

OQ 5095.67 5095.67 5735446.19 13794.26

PCustomers 0.07 1522.44 3.86 0.96

POrders 0.06 1533.88 3.73 0.43

PLineItem1 0.30 1532.74 5.77 0.59

PLineItem2 1641.52 1535.22 6.16 0.43

There are several points worth observing in Table 5. We typically expect O2
to outperform G in computing the results of the original user query. This is
because G maintains all the columns of every base table in the materialized
view, whereas O2 maintains only some key columns in the materialized view -
in this case, the materialized view consists of the columns in R and only one
addition column linenum2. The performance impact of this is significant as G
takes about 420 times the time taken by O2 to compute the results of the original
user query. Actually the time taken by G is about 5700 s, which is likely to be
unacceptable. On the other hand, O2 takes about 2.7 times the time taken by
O1 for computing the results of the original user query. Drilling down further,
we found that computing the results from the materialized view RK took about
0.39 ms for O2 and about 3.07 ms for G (Table 6(b)).

Table 6. (a) Comparing the size of the tables: R (result of the original user query),
RK G (materialized view RK used by G) and RK O2 (materialized view RK used by
O2). (b) Comparing time for computing materialized view RK and time for computing
original query results from RK for Q18 [15]. All times are reported in milliseconds.

R RK G RK O2

# Columns 6 51 7

# Rows 57 2793 399

G O2

Computing RK 5735443.12 13793.88

Computing OQ from RK 3.07 0.39

(a) (b)

We expect G to outperform O2 in computing the provenance. This is because
the provenance retrieval in G requires a join of R′ with RK. O2 requires a join of
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3 tables (if the key is included in RK). For Q18, the provenance retrieval query
for LineItem2 requires a join of R′ with RK to produce RK ′, which is then
joined with LineItem table. However the larger size of RK in G (Table 6(a))
results in O2 outperforming G for provenance retrieval (Table 5).

In practice, O2 will never perform worse than O1 for provenance retrieval.
This is because for any table, the provenance retrieval query for O1 (that does not
use RK ′, but instead uses R′) may be used instead of the provenance retrieval
query for O2 (that uses RK ′ as in Program 4) if we expect the performance
of the provenance retrieval query for O1 to be better. However, we have not
considered this optimization in this paper.

Other things to note are that computing the results of the original query for
O1 and W is done exactly the same way. Moreover, for Q18, O1 outperforms all
approaches even in provenance retrieval except for PLineItem2. This is because
Algorithm 1 is able to optimize the provenance retrieval queries significantly
for PCustomers, POrders, PLineItem1. However, for PLineItem2, the prove-
nance retrieval required computing PQ18 tmp and then using it to compute
PLineItem2, which needed more joins. Usually, we expect every provenance
retrieval query from O1 to outperform W, but in this case W did outperform
O1 for PLineItem2 (by a small amount); we believe the reason for this is the
extra joins in W ended up being helpful for performance (which is not typical).

We report on the 19 TPC-H queries without outer joins in Table 7. In this
table, OQ refers to the time taken for computing the results of the original user
query, AP (average provenance) refers to the time taken to compute the prove-
nance averaged over all the base tables used in the query, and MP (minimum
provenance) refers to the minimum time to compute provenance over all the base
tables used in the query. For W, we typically expect AP and MP to be almost the
same (unless for nested queries); this is because in W, every provenance retrieval
query (for non-nested original user queries) performs the same joins. Similarly
for G, we typically expect AP and MP to be almost the same (because every
provenance computation is just a look-up in the materialized data), except for
the difference in the size of the results. For O1 and O2, MP might be signifi-
cantly smaller than AP because some provenance computation might have been
optimized extensively (example: Q2, Q10, Q11, Q15, Q18).

We find that except for one single table query Q1, where W performs same
as O1, our approaches improve performance for provenance computation, and
hence for result exploration. Furthermore, the eager materialization approach
(G) could result in prohibitively high times for original result computation.

6 Related Work

Different provenance semantics as described in [7,13] can be used for query
result exploration. Lineage, or which-provenance [9] specifies which rows from
the different input tables produced the selected rows in the result. why-
provenance [5] provides more detailed explanation than which-provenance and
collects the input tuples separately for different derivations of an output tuple.
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Table 7. Summary of experiments. The times are reported in milliseconds to two
decimal places accuracy. However, considering the width of the table, if the time is 100
ms or greater, we report in scientific notation with two significant numbers.

O1 W G O2

OQ AP MP OQ AP MP OQ AP MP OQ AP MP

Q1 3.4e3 3.2e3 3.2e3 3.4e3 3.2e3 3.2e3 1.5e5 3.7e4 3.7e4 1.1e5 2.7e4 2.7e4

Q2 55.88 37.41 0.21 55.88 55.59 43.03 1.3e4 1.25 0.98 7.7e3 0.61 0.52

Q3 8.7e2 0.06 0.04 8.7e2 0.09 0.08 2.9e3 45.57 43.11 2.5e3 4.28 3.47

Q4 4.1e3 5.3e3 4.3e3 4.1e3 5.3e3 4.3e3 3.3e4 1.6e2 1.4e2 7.7e3 4.5e2 3.5e2

Q5 6.3e2 6.7e2 6.5e2 6.3e2 6.7e2 6.5e2 2.9e3 13.01 10.71 2.5e3 11.45 4.73

Q6 6.2e2 6.7e2 6.7e2 6.3e2 6.7e2 6.7e2 3.2e3 90.28 90.28 2.9e3 9.0e2 9.0e2

Q7 8.7e2 6.7e2 6.6e2 8.7e2 6.7e2 6.6e2 4.9e3 13.22 11.12 4.5e3 12.26 6.88

Q8 8.3e2 1.7e3 1.6e3 8.3e2 1.7e3 1.6e3 4.1e3 5.05 2.17 3.3e3 7.92 3.74

Q9 3.7e3 2.3e6 2.2e6 3.7e3 2.3e6 2.2e6 2.2e5 1.7e2 1.7e2 1.9e5 7.2e2 1.0e2

Q10 1.5e3 99.69 0.06 1.5e3 1.3e2 1.3e2 9.6e6 1.1e2 1.1e2 3.1e3 1.0e2 30.27

Q11 4.3e2 2.6e2 4.06 4.3e2 6.0e2 3.9e2 1.9e6 8.2e4 7.4e4 1.3e3 3.1e2 0.58

Q12 8.9e2 7.9e2 7.8e2 8.9e2 7.9e2 7.8e2 4.0e3 9.15 8.60 3.9e3 30.00 21.31

Q14 7.7e2 9.8e2 9.2e2 7.7e2 9.8e2 9.2e2 4.3e3 1.8e2 1.7e2 3.3e3 5.8e2 2.8e2

Q15 1.43e3 1.0e3 4.62 1.4e3 2.2e3 1.4e3 2.0e5 6.0e4 3.0e4 1.7e5 9.7e4 5.5e4

Q16 1.2e3 1.3e2 1.1e2 1.2e3 1.3e2 1.1e2 4.9e3 55.37 54.03 2.6e3 2.2e2 2.2e2

Q17 4.2e3 5.9e3 4.3e3 4.2e3 5.9e3 4.3e3 2.2e4 41.79 37.96 2.2e4 4.3e3 4.3e3

Q18 5.1e3 4.1e2 0.06 5.1e3 1.5e3 1.5e3 5.7e6 4.88 3.73 1.4e4 0.60 0.43

Q19 2.4e3 2.4e3 2.4e3 2.4e3 2.4e3 2.4e3 1.3e4 13.35 12.62 1.3e4 86.23 83.44

Q20 2.0e3 2.3e3 1.9e3 2.0e3 2.3e3 1.9e3 6.9e4 0.34 0.28 4.0e3 5.6e2 0.21

how-provenance [7,12,13] provides even more detailed information than why-
provenance and specifies how the different input table rows combined to pro-
duce the result rows. Trio [3] provides a provenance semantics similar to how-
provenance as studied in [7]. Deriving different provenance semantics from other
provenance semantics is studied in [7,13]: how-provenance provides the most
general semantics and can be used to compute other provenance semantics [7].
A hierarchy of provenance semirings that shows how to compute different prove-
nance semantics is explained in [13]. Another provenance semantics in literature
is where-provenance [5], which only says where the result data is copied from.
Provenance of non-answers studies why expected rows are not present in the
result and is studied in [6,14,16]. Explaining results using properties of the data
are studied in [18,19].

For our work, we choose which-provenance even though it provides less
details than why and how provenance because: (a) which-provenance is defined
for queries with aggregate and group by operators [13] that we study in this
paper, (b) which-provenance is complete [7], in that all the other provenance
semantics provide explanations that only include the input table rows selected
by which-provenance. As part of our future work, we are investigating comput-
ing other provenance semantics starting from which-provenance and the original
user query, (c) which-provenance is invariant under equivalent queries (provided
tables in self-joins have different and “consistent” names), thus supporting cor-
related queries (d) results of which-provenance is a set of tables that can be
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represented in the relational model without using additional features as needed
by how-provenance, or a large number of rows as needed by why-provenance.

When we materialize data for query result exploration, the size of the mate-
rialized data can be an issue as identified by [13]. Eager approaches record
annotations (materialized data) which are propagated as part of provenance
computation [4]. A hybrid approach that uses materialized data for computing
provenance in data warehouse scenario as in [9] is studied in [8]. In our work, we
materialize the results of some of the intermediate steps (views). While materi-
alizing the results of an intermediate step, we augment the result with the keys
of some of the base tables used in that step. Note that the non-key columns are
not stored, and the keys for all the tables may not need to be stored; instead, we
selectively choose the base tables whose keys are stored based on the expected
benefit and cost, and based on other factors such as workload.

Other scenarios have been considered. For instance, provenance of non-
answers are considered in [6,14]. In [16], the authors study a unified approach
for provenance of answers and non-answers. However, as noted in [13], research
on negation in provenance has so far resulted in divergent approaches. Another
scenario considered is explaining results using properties of the data [18,19].

Optimizing queries in the presence of constraints has long been studied in
database literature, including chase algorithm for minimizing joins [2]. Join min-
imization in SQL systems has typically considered key-foreign key joins [10].
Optimization specific to provenance queries is studied in [17]. Here the authors
study heuristic and cost based optimization for provenance computation. The
constraints we study in this paper are tuple generating dependencies as will
occur in scenario of query result exploration; these are more general than key-
foreign key constraints. We develop practical polynomial time algorithms for join
minimization in the presence of these constraints.

7 Conclusions and Future Work

In this paper, we studied dependencies that are applicable to query result explo-
ration. These dependencies can be used to optimize query performance during
query result exploration. For the TPC-H benchmark, we could optimize the per-
formance of 36.84% (7 out of 19) of the queries that we considered. Furthermore,
we investigated how additional data can be materialized and then be used for
optimizing the performance during query result exploration. Such materializa-
tion of data can optimize the performance of query result exploration for almost
all the queries.

One of the main avenues worth exploring is extensions to the query language
that we considered. The dependencies we considered can be used when the body
of a rule is a conjunction of predicates. We did not consider union queries, nega-
tion or outer joins. These will be interesting to explore as the dependencies do
not extend in a straightforward manner. Another interesting future direction is
studying effective ways of navigating the search space of possible materializa-
tions. Also, it will be worthwhile investigating how to start from provenance
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tables and define other provenance semantics (such as how-provenance) in terms
of the provenance tables.
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Abstract. Long-running applications nowadays are increasingly instru-
mented to continuously log provenance. In that context, we observe an
emerging need for processing fragments of provenance continuously pro-
duced by applications. Thus, there is an increasing requirement for pro-
cessing of provenance incrementally, while the application is still running,
to replace batch processing of a complete provenance dataset available
only after the application has completed. A type of processing of particu-
lar interest is summarising provenance graphs, which has been proposed
as an effective way of extracting key features of provenance and storing
them in an efficient manner. To that goal, summarisation makes use of
provenance types, which, in loose terms, are an encoding of the neigh-
bourhood of nodes.

This paper shows that the process of creating provenance summaries
of continuously provided data can benefit from a mode of incremen-
tal processing of provenance types. We also introduce the concept of a
library of types to reduce the need for storing copies of the same string
representations for types multiple times. Further, we show that the com-
putational complexity associated with the task of inferring types is, in
most common cases, the best possible: only new nodes have to be pro-
cessed. We also identify and analyse the exception scenarios. Finally,
although our library of types, in theory, can be exponentially large, we
present empirical results that show it is quite compact in practice.

Keywords: Provenance summaries · Provenance types · Incremental
processing of provenance

1 Introduction

Let us imagine an application continuously monitoring a system that records
all sorts of hospital data. Patient flows, chains of procedures, and staff rotation
are examples of such data. The application monitoring this system aims to help
identify issues, such as bottlenecks, helping hospital administration to channel
resources where needed the most. For that, however, this application needs to
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process and present the data in a meaningful way, given its potentially very large
size and complexity. That is a domain in which provenance can offer analysing
tools and techniques, thanks to its capability of recording what influenced the
generation of data or information. In particular, summarisation of provenance
graphs can then be of use to extract information from large quantities of data.

More specifically, the World Wide Web Consortium (W3C) has defined prove-
nance as “the record about entities, activities, and people involved in producing
a piece of data or thing, which can be used to form assessments about its quality,
reliability or trustworthiness” [7]. It has been widely adopted in various domains,
including climate science [10], computational reproducibility [1], and emergency
responses [15].

Like in our hospital data example, increasingly, applications are generating
provenance information continuously [8], and there is an emerging need for pro-
cessing incoming data in a similar fashion, i.e., without having to wait for the
application to terminate for data to be processed altogether. The need for repro-
cessing data is costly, as well as the need to store large quantities of provenance
information [12].

A type of processing of particular interest is summarising provenance graphs
[13]. It has been proposed as a way to extract features of the original graphs and
store them efficiently. Summaries can be easily compared to one another, and
be used to identify common patterns or find outliers. The process of provenance
summarisation makes use of provenance types, which can be described as an
abstraction of the shapes of the neighbourhood of nodes. The idea is that nodes
that have similar neighbourhoods will be given the same type and thus will be
treated similarly when a summary is created. More specifically, we consider a
summary as a graph in which nodes represent the collection of nodes in the
original graph that are assigned the same provenance type. Similarly, edges in
a summary graph connecting two types represent that there is at least one edge
connecting nodes of such provenance types in the original graph.

Provenance summaries, therefore, could be an important tool to analyse data
from a domain such as the hospital scenario described above. For example, we
might want to investigate ‘how do patient flows compare week after week?’,
or ‘what are the differences and similarities of hospital procedures day after
day?’. For these particular examples, we need to compare summaries generated
over dynamic sliding windows over time. The existing summarisation techniques
(e.g. [13]), however, are currently not designed to process data incrementally.
In this paper, we will propose an efficient way to infer provenance types, the
main ingredients for the creation of provenance summaries. We are interested in
addressing the following questions:

Q1 Considering our goal of inferring provenance types over continuously pro-
vided provenance, is it necessary to store all provenance information from
the beginning of our application?

Q2 Is there a need to reprocess the provenance types of any previously seen
provenance expressions with the addition of new provenance data?
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Q3 How can we optimise the need for storage space in case multiple copies of
the same provenance types appear as the application runs?

With regards to Questions Q1 and Q2, we show that in the most common
cases, there is no need to store all provenance information, nor to reprocess
previously seen nodes. We then identify the exception conditions and provide an
algorithm to address these scenarios. Regarding Question Q3, we propose the
creation of a library of types that enumerate all provenance types encountered
from the start and that can be updated, if needed, with the incoming of new
data. Finally, we will provide empirical results that support the claim that the
use of such a library can indeed optimise storage space.

2 Background and Definitions

We will consider G = (V,E, T, L) a provenance graph in which G(V ), or
simply V , corresponds to the set of nodes of G, E(G), or E, its set of its edges,
and T and L correspond, respectively, to the sets of labels of nodes and edges
in G. An edge e ∈ E is a triplet e = (v, u, l), where v ∈ V is its starting
point, u ∈ V is its ending point, and l ∈ L, also denoted lab(e), is the edge’s
label. Each node v ∈ V can have more than one label, and thus lab(v) ∈ P(S),
where P(S) denotes the power-set of S, i.e., the set of subsets of S.1 Note that
provenance graphs are finite, directed, and multi-graphs (as more than one
edge can exist between the same pair of nodes). We do not make the assumption
that provenance graphs are acyclic.

In provenance, we typically have T = {ag, act, ent, . . . }, where ‘ag’ denotes
an agent, ‘act’ denotes an activity, and ‘ent’ denotes an entity. There are also
application specific labels (e.g. ‘hospital:Nurse’ to denote a specific label for
agents in our hospital example) that also belong to set T . On the other hand,
typically L = {abo, used, waw,wro, . . . }, where the edge (v, u, abo), for exam-
ple, indicates that agent v acted on behalf of agent u. We assume sets T and
L are totally ordered, which implies that for any two elements l1, l2 ∈ L,
either l1 < l2, l2 < l1, or l1 = l2 (analogously for T ). In this paper, we
will choose the alphabetical ordering for node and edge labels. Finally, we
denote G = (V, E ,S,L) as a (finite) family of graphs, where V, E , T , and
L, are the union of the sets of, respectively, nodes, edges, node labels, and
edge labels of graphs in G. For a node v ∈ V, we will refer to the forward-
neighbourhood of v as v+, where v+ = {u | (v, u, l) ∈ E}. Analogously, the
backward-neighbourhood of v is denote by v− = {u | (u, v, l) ∈ E}. We
say a node u is distant from v by x if there is a sequence of x concate-
nated edges (repetitions allowed) starting at v and ending at u. Finally, we
extend the notion of forward-neighbourhood (resp. backward-neighbourhood)
for sets of nodes W ⊂ V, i.e., W+ = {u | u ∈ v+ for some v ∈ W} (resp.
W− = {u | u ∈ v− for some v ∈ W}).

1 Note that when application types are included, a provenance expression may have
more than one label, for e.g. lab(v) = {ag, Prov:Operator}. When lab(v) is a singleton
set, we will abuse notation and omit the set-brackets.



148 D. Kohan Marzagão et al.

1

2

3

4

5

e1

e2

e3 e4

e3

11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222

3

4

5

6

7

e1

ee2

e3

e5

e6

e7

e8

e4

e9

at time t1: at time t2 > t1 :

Fig. 1. An abstract graph (left) processed before window slides (right). Formally,
μV = {1, 2}, μE = {e1, e2, e3, e5}, δV = {6, 7}, δE = {e6, e7, e8, e9}, λV = {3, 4}.

When there is the addition of unprocessed (new) data to a database of already
processed provenance information, we define δV as the set of new nodes, i.e.,
that have not been processed yet, and δE the set of new edges. We now
introduce the notation for removal of provenance information. This will be par-
ticularly necessary to study provenance types over dynamic sliding windows over
time. When there is removal of already processed provenance, we define μV as the
set of removed nodes, μE as the set of removed edges.2 Finally, we define λV
as the set of previously processed (and non removed) nodes v that either
received a new edge starting at v or had an edge starting at v removed,
i.e., λV = {v | v /∈ μV ∪ δV and ∃e ∈ μE ∪ δE s.t. e = (v, u, l) for some u and l}.
Figure 1 shows an abstract example with λV highlighted in red and δV in blue.

3 Provenance Types

In this section, we will first present a similar definition of provenance types
to the one introduced in [13]. Subsequently, we will provide an algorithm that
infers provenance types for nodes in a family of graphs. As we will demonstrate,
this alternative definition allows us to improve the computational complexity
of inferring nodes’ types from an exponential to a polynomial function on the
number of edges in our family of graphs. Lastly, we define the notion of a library
of types, that records all different provenance types seen up to a given point in
time, as well as allowing a more efficient way to store types of all nodes in a
family of graphs.

As a motivation for the main definition presented in this section, consider
the provenance graph in Fig. 2 extracted from [3]. It depicts a scenario in which
a blogger is analysing the provenance of an online newspaper article, including
a chart produced from a government agency dataset. The blogger, the newspa-
per, the chart generator company, and the government agency are the different
sources from which the provenance information was obtained.

Consider nodes composer1 and illustrate1. We can say that they share some
similarity as both represent activities in this provenance graph. Further, we can
say that they share even more similarities as they related to entities (via the
used relation) and to some agent (via the waw edge label). Note that here we
are ignoring the number of times a given pattern appears, since composer1 used

2 Note that removing a node automatically removes all edges connected to it.
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Fig. 2. Example of provenance graph from [3]

two entity nodes, whereas illustrate1, only one. Going one step further, however,
these nodes no longer have the same ‘history’: illustrate1 used an entity that
was generated by some other activity, whereas composer1 did not. Later, we
formally define these patterns that we denote the provenance types of a node.

We will be looking into a variant of the provenance types defined in [13]. In
loose terms, a provenance type of depth k describes the neighbourhood of a node
v up to distance k from v. Another way of viewing such structures is to think of
a subtree rooted at v, in which all branches have exactly depth k and no branch
is repeated. A more precise (recursive) definition of k-types is given as follows.

Definition 1 (Provenance k-type of a node). Let G be a provenance graph
and v ∈ V a node. Firstly we define, according to definition in Sect. 2,

0-type(v) = lab(v) (1)

Further, we define k-type(v) recursively. Consider v+, the forward-neighbourhood
of v. We will make use of pairs that combine the label of an edge e starting at v
with the (k − 1)-type of the destination node of e. We define

k-type(v) = {(l, (k-1)-type(u)) | e = (v, u, l) ∈ E and (k-1)-type(u) �= ∅} (2)

Example 1. We will now formally present what we discussed at the begining of
this section. Consider nodes composer1 and illustrate1 in Fig. 2 and note that
they have the same k-type: for k = 0 and k = 1:

0-type(composer1) = 0-type(illustrate1) = {act}
1-type(composer1) = 1-type(illustrate1) = {(used, {ent}), (waw, {ag})}

However, they differ with regards to their 2-type:

2-type(composer1) = {(waw, {(abo, {ag})})}
2-type(illustrate1) = {(used, {(wgb, {act})}), (waw, {(abo, {ag})})}

In this case, this difference is a result of the fact that the nodes regionlist and
dataSet1, part of the out-neighbourhood of composer1, have an empty 1-type.
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Algorithm 1.1: Non Incremental Inferring of types(V, E , k)

1 i n i t i a l i s e for a l l v ∈ V and for a l l i ≤ k
2 i-type(v) ← ∅
3 for v ∈ V
4 0-type(v) ← lab(v)
5 for 1 ≤ i ≤ k
6 for each edge e = (v, u, l) ∈ E such that (i − 1)-type(u) �= ∅
7 add (l, (i − 1)-type(u)) to s e t i-type(v)
8 return i-type(v) for a l l v ∈ V and 0 ≤ i ≤ k

Note that if v is a leaf node in a provenance graph, then k-type(v) = ∅ for
all k ≥ 1. Also, note that nodes might coincide with regards to i-types but differ
with regards to j-types, for some j < i. Clearly, they can also differ for some
j > i. The parameter k may be referred to as the depth of a provenance type.

The choice of looking into edge labels comes from the fact that, in the context
of provenance, a sequence of edges culminating at a given node provides a good
description of the transformation that occurred to this particular node, or the
information that it contained. And thus the k-type of a node v provides the set
of transformations acting on different provenance elements of the graph leading
to the existence of v.

Note that in the definition of a k-type, repetitions of pairs (l, (k-1)-type(u))
are discarded. For example, both composer1 and illustrate1, in Fig. 2, have the
same 1-type, regardless of the fact that composer1 is related to two entities (in
the same way). The intuition behind that is that the nature of the transforma-
tions that generated v are more important than the number of occurrences of a
particular transformation.

Algorithm 1.1 infers types according to Definition 1. It takes as input a set of
nodes V, a set of edges E , and a parameter k. It infers all i-type(v), for all v ∈ V
and 0 ≤ i ≤ k. This is a non-incremental algorithm, as it is batch-processing
all nodes in V. We first initialise our sets i-type(v) = ∅ for all nodes. Lines 3-4
infer the 0-types according to Definition 1. The loop starting at line 5, for each
i, visits all the edges (v, u, l) that terminate at a node u which has been assigned
a non-empty (i-1)-type(u) and add the pair (l, (i-1)-type(u)) to i-type(v). Note
that this is a sequential loop, and thus cannot be run in parallel. This restriction
comes from the recursive definition of types. It is, however, possible to run this
loop (or the entire algorithm) in parallel for different graphs G of G.

3.1 Library of Types

In the previous section, we have shown how to infer k-types of nodes in a graph or
family of graphs. Note, however, that for large sizes of G, we expect a significant
recurrence rate with respect to nodes’ types. With that in mind, we propose the
creation of library that records all types seen up to a given point, as well as a
function that maps each node to the library index of its type.
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Table 1. Libraries of types generated from graph in Fig. 2
T0 T1 T2 T3

10 → (ag) 11 → ((used, 30), (waw, 10)) 12 → ((wgb, 11)) 13 → ((wgb, 32))

20 → (act) 21 → ((wgb, 20)) 22 → ((used, 21), (waw, 51)) 23 → ((used, 12))

30 → (ent) 31 → ((wat, 10), (wgb, 20)) 32 → ((waw, 51)) 33 → ((wgb, 22))

41 → ((wro, 30)) 42 → ((wro, 31)) 43 → ((wro, 52))

51 → ((abo, 10)) 52 → ((wat, 51), (wgb, 11))

Example 2. Consider once more graph G in Fig. 2. Table 1 presents four library
of types of nodes in G. Note that elements from list Tk will make reference
to elements in map T(k−1).3 Also, although libraries may not be sorted in any
particular way, each entry is. The reason is that we need to be able to uniquely
identify each type. In this particular example, the ordering of edge-labels is the
alphabetical one. As before, if more than one pair has the same edge label, the
second coordinate is compared.

Note for example that none of the 3-types have two branches. That is a result
of node derek having an empty 2-type.

Like in Example 2, libraries make use of the recursive definition of types to
further simplify their representation. A key characteristic is that entries in our
libraries in Table 1 are not exactly provenance k-types, but a compact represen-
tation of them. For example, entry 22 → ((used, 21), (waw, 51)) corresponds to
the k-type defined by {(used, {(wgb, {act})}), (waw, {(abo, {ag})})}. The defini-
tions of library of types and compact types are somehow intertwined. We now
formally define a library of types that would give us the table above.

Definition 2 (Library of Types and Compact Types). Given a family
of graphs G = (V, E ,S,L), and given k ≥ 0, we create k + 1 libraries Ti, 0 ≤
i ≤ k, which are one-to-one mappings from integers to compact type expressions
encountered in nodes of G. We provide the definition recursively.

Regarding the compact representation of 0-types, note that there is nothing
to further simplify, so the set of compact 0-types is defined by C0 = P(S), i.e.,
set of possible values for lab(v).4 For i = 0, T0 : N0 → C0 is a mapping from
integers (N0 ⊂ N) to compact 0-types.

For 1 ≤ i ≤ k, Ti : Ni → Ci, where Ci is the set of compact type-expressions
of depth i, i.e. ti ∈ Ci if ti is an ordered sequence of the form

ti =
((

l1, T −1
i−1(t

1
i−1)

)
, . . . ,

(
lx, T −1

i−1(t
x
i−1)

))
(3)

where l1 ≤ · · · ≤ lx ∈ L, and t1i−1, . . . , t
x
i−1 ∈ Ci−1. Also, T −1 denotes the inverse

mapping that takes a compact type to its index. If lj = lj′ for two different pairs
in ti, their order is defined by their respective library index.
3 For readability, we index elements of map Tk with k.
4 Recall that nodes may have more than one label.
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Remark 1. Note that in order to transform a compact k-type into its full form, a
serialiser would need to make use of libraries T0, . . . , Tk−1. The total number of
calls to libraries is bounded by O(Δk), where Δ is the maximum forward-degree
of nodes in V.

Note that, although a library is created from actual data (as opposed to including
all possible theoretical k-types), its definition does not include any mapping from
nodes to their types. It is useful, therefore, to create and maintain such a mapping
from nodes to the indexes of their types in Ti.

Definition 3. Let G be a family of graphs and Tk a library of types that cover
types in G. For each v ∈ V, tk(v) ∈ Ck the compact representation of its k-type.
We define θk : V → N the function that takes a node v and outputs the library
index associated with its k-type, i.e., for all v ∈ V,

Tk(θk(v)) = tk(v) (4)

When considering node increments δV , we denote θV,k as the function associated
with the set of previously processed nodes only, whereas θδV ,k is the function
related to new nodes only.

Example 3. Consider once more the provenance graph in Fig. 2 and the library
in Example 2. We have t2(illustrate1) = ((used, 21), (waw, 51)), we have
θ2(illustrate1) = 22, and, finally,

T2(θ2(illustrate1)) = T2(22) = ((used, 21), (waw, 51)) = t2(illustrate1) (5)

The definition of a library partially addresses Question Q3. In the the following
section, we show how to construct such a library, and in Sect. 4 how to maintain
it in the context of an incremental mode of processing provenance types.

3.2 Creating a Provenance Types Library

In this section we will present an efficient algorithm for creating libraries of
types as defined Sect. 3.1, as well as maintaining functions θk that map nodes
to the library index associated with their (compact) k-type. We use an auxiliary
Algorithm 1.2 receiving a set of nodes V and edges E as input, as well as the
depth i. This algorithm first infers the compact representations of v, ti(v), for
v ∈ V, and then check if this type is already part of the current library Ti. If
yes, mapping θi is updated for v. If not, a new entry is added to the library and
θi is also updated accordingly.

With that, we are able to present Algorithm 1.3, that creates all libraries of
types up to k from V and E . It calls our auxiliary Algorithm 1.2 k + 1 times,
creating overall libraries T0, . . . , Tk and functions that assign a node’s (compact)
type-index θ0, . . . , θk.
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Algorithm 1.2: Type Library (V, E , i, θi−1, Ti, θi)

1 i f i == 0
2 for a l l v ∈ V
3 t0(v) ← lab(v)
4 else
5 for each edge e = (v, u, l) ∈ E such that θi−1(u) �= 0
6 add (l, θi−1(u)) to ordered sequence ti(v)
7 for a l l v ∈ V
8 i f ti(v) == Ti(x) for some x
9 add (v → x) to θi

10 else
11 add (y → ti(v)) to Ti for new index y
12 add (v → y) to θi

13 return Ti, θi

Algorithm 1.3: Creating Libraries and Mappings(V, E , k)

1 i n i t i a l i s e for a l l v ∈ V and for a l l i ≤ k
2 ti(v) ← ∅
3 Ti ← ∅
4 θi ← ∅
5 for 0 ≤ i ≤ k
6 Type Library (V, E , i, θi−1, Ti, θi)
7 return T0, . . . , Tk, θ0, . . . , θk

Running Time of Algorithm 1.3. We are now showing that we need O(k |E|)
operations (amortised time) to create all k +1 libraries and functions θ0, . . . , θk,
i.e., to infer all (compact) i-types for all v ∈ V, and all 0 ≤ i ≤ k. Note that we
can infer the i-types on each graph in parallel.

The first iteration (i = 0) of auxiliary Algorithm 1.2 can be run in O(|V|)
amortised time. Lines 2-3 take O(|V|). In loop starting at line 7, for each node, we
can check whether its type has been recorded in the library (line 8) in amortised
constant time using a suitable hash map. Lines 9-12 run in constant time, so
overall complexity is amortised (V) as we enter the loop |V| times. The other k
iterations (1 ≤ i ≤ k) of auxiliary Algorithm 1.2 takes (amortised) O(|E|) time.
It visits each edge at most once (line 5). To order each set ti(v) for all v ∈ V,
we execute bucket sorting twice (i.e., a version of radix sort) in all lists at the
same time, recording from which vertex each pair (l, θi−1(u)) came from. We
perform the first bucket sort in which buckets represent values θi−1(u) for some
u ∈ V (takes O(|E|)). Note that the size of each library, and therefore the image
of θi−1 is bounded by the number of nodes |V|. The second iteration of this
sort orders the partially ordered set into buckets representing the edge-labels
l ∈ L (again takes O(|E|)). Recall that we record the vertex from which each
pair comes from. Then, as in its first iteration, looking up whether a compact
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type is already part of the library (line 8) takes amortised constant time. Then,
iterations for 1 ≤ i ≤ k, Algorithm 1.2 runs on average in O(|E|).

Finally, assuming V = O(|E|), Algorithm 1.3 can then be run in amortised
O(k |E|), because auxiliary Algorithm 1.2 is called k times for i > 0.

4 Incremental Inference of Provenance Types

In this section, we look into the main motivation of this paper: how to process
provenance types incrementally. We have proposed three research avenues: The
need for storing all provenance data from the beginning (Q1), the need for
reprocessing previously seen nodes (Q2), and how to efficiently deal with the
possibly multiple occurrence of provenance types among all nodes (Q3).

At this point, we need to clarify what we define as increments of provenance
data. We can have either a stream of provenance graphs, or a stream of nodes and
edges of a provenance graph. We will show that the main difference, however,
is whether previously seen nodes have any deleted edges or added edges that
start at v (recall definition of λV from Sect. 2). We thus propose the study of the
following cases:

Monotonically Increasing Stream (case λV = ∅)): As there is new prove-
nance being received, there are no new edges starting at a previously processed
node. There is also no deletion of previously seen edges.

Non-monotonically Increasing Stream (case λV �= ∅): As new provenance
is received, there is at least one new edge starting at a previously processed
node, or at least one edge removed that started at a previously processed
node.

In the next sections, we will show that the answer to Question Q1 is negative
for monotonically increasing streams. For, non-monotonically increasing ones,
however, we might need to revisit all previously processed provenance. Similarly,
we will show that Question Q2 is negative for monotonically increasing streams,
as there no need to reprocess previously seen nodes. However, when λV �= ∅,
there might be the need to reprocess nodes.

4.1 Monotonically Increasing Streams

In this section, we are studying the cases in which we have monotonically increas-
ing streams of provenance data. This includes the introduction of entirely new
provenance graphs, but also the addition of new nodes to existing graphs as long
as λV = ∅. This definition is broad and includes situations in which a single node
(or edge) is added, or situations in which entire new graphs together with nodes
in previously seen graphs are added. We first show that, when λV = ∅, there is
no need to reprocess previously seen nodes.
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Algorithm 1.4: Incremental Inference Under Monot. Case(V, E , δV , δE , k)

1 i n i t i a l i s e for a l l v ∈ δV and for a l l i ≤ k
2 ti(v) ← ∅
3 for 0 ≤ i ≤ k
4 de f i n e Ti = Ti(V) and θi = θ(V,i)

5 Type Library (δV , δE , i, θi−1, Ti, θi)
6 return T0, . . . , Tk, θ0, . . . , θk

Lemma 1 (Addressing Q2). No previously processed node will have their k-
types altered in a monotonically increasing increment. Thus, they do not need to
be reprocessed.

Proof. We prove by induction on k. For k = 0, the result follows since all nodes’
provenance types remain the same. Assume the result holds for k = i, we shall
prove it also holds for i + 1. From the recursiveness of the definition of k-types
(Definition 1), for any v, (i + 1)-type(v) rely only on (1) the label on edges
starting at v, and (2) the i-type(u), for u ∈ v+. Since there is no new edge
starting on v, all u ∈ v+ have all previously processed. That fact, together with
the induction hypothesis (i-type(u) unchanged) we conclude that (i+1)-type(u)
will not been altered. The result follows by induction. �
Lemma 1 suggests that not much information needs to be stored to deal
with incremental processing of monotonically increasing streams. The following
lemma formalises this idea.

Lemma 2 (Addressing Q1). In order to infer i-types, 0 ≤ i ≤ k, of newly
added nodes (equivalent to constructing θδV ,i) there is no need to store previously
seen edges, but only the set of maps θV,i, 0 ≤ i ≤ k.

Proof. From Lemma 1, no previously processed node needs reprocessing, there-
fore no edge starting at them will be visited. Therefore there is no need to store
previously seen edges. �

Algorithm for Incremental Inference of Types and Libraries. Given the
results of the lemmas above, the algorithm for incrementally referring types of
monotonically increasing streams is simple if we have maintained libraries of
types (and mapping functions) from the already processed data.

Consider Algorithm 1.4. It takes as input the set of already processed nodes
V and edges E , as well as the new ones (δV and δE). It also takes depth k as input.
We consider Ti(V), library over nodes in V, and θ(V,i), mapping from nodes of
V to library indexes, as global variables, for all 0 ≤ i ≤ k. The algorithm calls
auxiliary Algorithm 1.2 only with the new sets of nodes and edges as inputs. Note
that the algorithm deals with the introduction of new node labels by updating
T0 and θ0 accordingly.

Complexity of Algorithm 1.4. As expected from the lemmas above, the com-
plexity of inferring types of incoming data (and updating libraries and mappings,
when needed) is given by O(k |δE |) amortised time.
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Remark 2. Note that the only entries of θi that will be accessed in Algorithm 1.4
are the ones for nodes in set δ+V . Therefore, further storage optimisations can be
achieved when there is previous knowledge with regards to δV .

4.2 Non-monotonically Increasing Streams

In this section, we analyse the case of non-monotonically increasing increments,
i.e., λV �= ∅. A particular example of such a scenario is the consideration of
dynamic sliding windows of time, in which ‘old’ provenance is deleted as new
provenance is added. We will then show that the answer for Question Q2, in
this case, is positive: we might need to revisit (in the worst case, all) provenance
expressions and possibly update their types. This implies that, because previ-
ously seen nodes may need reprocessing, it is required that all provenance data,
including edges, is kept accessible (Question Q1).

Under non-monotonically increasing streams, Algorithm 1.5 infers the prove-
nance types of new nodes as well as reprocess previously seen provenance expres-
sions that may have had their types altered. In line 4, it infers all 0-types of
newly added nodes. Line 5 flags such nodes since all nodes in their backward-
neighbourhood will need their 1-type to be (re)processed. The loop in line 6
start by marking all nodes in the backward-neighbourhood of previously marked
nodes, making sure to add all provenance expressions from set λV . That last part
is needed because such nodes need reprocessing regardless of the types of their
forward-neighbours. Notation in line 11 refers to whether the updated value θ′

i(v)
has changed or not compared to its value before the auxiliary function in line
9. If is has not changed, then it will not contribute for a change in (i + 1)-types
of nodes in its backwards neighbourhood. Although nothing prevents the same
node v to be added back to M in line 7 of the next iteration of the loop.

Correctness of Algorithm 1.5. We show that the algorithm will correctly
reprocess the k-types of all nodes that were directly or indirectly affected by
the addition or removal of edges. The bottom line of the algorithm is to take in
account that not only nodes that were immediately affected will need to have
their k-types updated, but that the effect may cascade down along the graph to
a distance up to k.

We first consider v ∈ λV . Even though we may have no change in, for example,
1-type(v), that does not imply that 2-type(v) will be also unchanged (the added
or removed edge might connect or have connected v to different branches), and
thus we need to reprocess this node for all 0 ≤ i ≤ k. Line 7 guarantees that by
adding λV to all Mi. Now consider all other nodes, including the ones previously
processed. We are going to show, by induction, that Algorithm 1.5 correctly
identifies the need for reprocessing. For i = 0, all new nodes (and only those)
need 0-type(v) inferred (line 4). Note that, for i > 1, a node v’s k-type(v) needs
to be reprocessed if and only if at least one of its forward-neighbours u ∈ v+ had
their (k − 1)-type(u) updated, i.e., reprocessed and changed. For i > 1, assume
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Algorithm 1.5: Incremental Inference Under Non-Monot. Case(V, E, δV , δE , k)

1 i n i t i a l i s e for a l l v ∈ δV and for a l l 0 ≤ i ≤ k
2 ti(v) ← ∅
3 de f i n e Ti = Ti(V) and θi = θ(V,i) , for 0 ≤ i ≤ k
4 Type Library (δV , δE , 0, ∅, T0, θ0)
5 de f i n e s e t M0 = δV [these are marked nodes]
6 for i = 1 until k
7 de f i n e Mi = M−

i−1 ∪ λV
8 de f i n e Li s e t o f edges s t a r t i n g at nodes in Mi

9 Type Library (Mi, Li, i, θi−1, Ti, θi)
10 for v ∈ Mi [compare types for v before and after line 9]
11 i f (θ′

i(v) == θi(v))
12 remove v from Mi

13 return T0, . . . , Tk, θ0, . . . , θk

that all nodes that required processing were reprocessed. We show that this is
also true for i + 1. Indeed, no node that had their i-type modified was removed
from Mi (lines 11-12), and thus, v will be in set Mi+1 if and only if at least one
of its neighbours was not removed from Mi (or, of course, if v ∈ λV).

Complexity of Algorithm 1.5. In the worst case, this algorithm may need
to reprocess all nodes that have been previously seen. Line 4 takes O(|δV |)
operations on average. Let Li be the set of edges starting at nodes in Mi, i.e.,
|Li| =

∑
v∈Mi

deg+(v). Then, each iteration of the loop starting in line 6 takes
O(|Li|), similarly to Algorithm 1.3. Finally, denoting |L| =

∑k
i=1 |Li|, we con-

clude that Algorithm 1.5’s running time complexity is O(|δV | + |L|) amortised
time. Note that visiting all nodes in Mi (line 10) does not increase the complexity
as |Li| > |Mi|.

In Sect. 4, we investigated the different modes of incremental processing
of provenance types, showing that, in the context of monotonically increasing
streams, provenance types of new nodes can be inferred fast and without the
need to reprocess previously seen nodes or access all past provenance data. In
non-monotonically increasing streams, however, reprocessing of old nodes might
be necessary, as well as access to edges of previously seen graphs.

5 Empirical Evaluation

In this section, we show that the size of a library is indeed much smaller than |V|.
We present empirical results of the processing of more than 36, 000 graphs, that
show that the number of distinct i-types, for each i ≤ 5, is approximately 5, 000.
The challenge of choosing i to best analyse and compare summary graphs left
for future work. We analysed datasets from 3 different domains. CollabMap [14]
(CM) is a database of provenance graphs for evacuation planning generated in a
crowd-sourcing platform. We separate CollabMap graphs into buildings, routes,
and route sets. MIMIC [9] is a database of information of patients in critical
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Table 2. Number of graphs in each dataset, as well as the number of nodes with
a non-empty i-type for each i = 0, . . . , 5

Datasets Number of graphs Nodes with non-empty i-type for i =

0 1 2 3 4 5

CM-buidings 5175 94k 89k 71k 58k 51k 38k

CM-routes 4997 105k 100k 90k 70k 44k 40k

CM-Routeset: 4710 101k 97k 76k 49k 45k 37k

MIMIC: 21892 1208k 865k 843k 821k 788k 753k

PG: 80 18k 14k 14k 14k 14k 14k

Total 36854 1526k 1165k 1094k 1012k 943k 883k

hospital care. Finally, our last dataset of graphs describes actions of players on
Pokemón Go (PG) simulations.

We first provide an overview of the size of our datasets in Table 2. We have a
total of 36, 854 different provenance graphs, with an average of 41.4 nodes each.
Note that, although all nodes have a non-empty 0-type associated with them, the
same is not valid for deeper types. For example, leaf nodes have an empty 1-type
(and thus an empty i-type for i ≥ 1). The quantity of nodes with a non-empty
i-type for each i = 0, . . . , 5 is given rounded up to the nearest thousand. Observe,
for example, that of the nodes in graphs of the MIMIC dataset, approximately
343, 000 (≈ 28%) are leaf nodes, as they have an empty 1-type.

Table 3 shows the sizes of libraries of types Ti, for 0 ≤ i ≤ 5, for each dataset
separately, as well as them combined, using one common library of types. In these
experiments, we ignore application-specific labels of provenance expressions, and
thus T0 = {ag, act, ent} for the combined dataset, although there are no agents
in neither CollabMap nor PokemonGo datasets. The 6th row gives us the size of
libraries generated from all datasets, which implies that if the same type appears
in more than one dataset, it will be counted only once in our joint library.

Table 3. Number of entries in libraries of types for different datasets, as well as
for a common one.

Datasets |T0| |T1| |T2| |T3| |T4| |T5|
CM-buidings 2 3 3 5 14 102

CM-routes 2 4 10 35 155 577

CM-Routeset: 2 4 8 23 58 262

MIMIC: 3 5 11 39 405 4328

PG: 2 3 5 10 23 54

Sum of individual library sizes 11 19 37 112 655 5323

Sizes of common libraries for all domains 3 9 23 84 601 5197
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In contrast, the last row gives the sum of sizes of the 5 individual libraries. We
can see that, especially for low-depth types, there is a significant overlap of types
across datasets.

This experiment shows that maintaining a library of types is an efficient way
of avoiding the need to store multiple copies of the same types. As the depth
increases, so does the number of different patterns to be stored and, although this
is expected due to increased complexity of neighbourhoods of greater radius, the
final library sizes continue to be much more compact than the size of original
data. Note also that there is a significant overlap of types between different
domains, which indicates that keeping a library of types across different domains
can contribute to further storage optimisation. The full library of types for each
of the datasets can be found at https://openprovenance.org/typelibrary/.

6 Related Work

To the best of our knowledge, this is the first work that proposes the study of
incremental processing of provenance types, which contributes to the study of
incremental provenance sumaries. There is, however, literature on dynamic anal-
ysis of provenance, such as [8], which proposes the analysis of dynamic sliding
windows to identify behaviour anomalies. Also, MaMaDroid [11] builds a Markov
chain over continuously provided data for malware detection. Provenance data
streams without the focus on data incremental processes for constructing sum-
maries were also studied in [4] and [18].

Beyond the domain of provenance, there is also work on incremental infer-
ences of summaries. In particular, a DataGuide [5] provides summaries of
databases, in both incremental and non-incremental modes, although their model
may take exponential time and space complexity on the number of nodes and
edges of input graphs. Also, [2] studies pattern matching in incremental scenar-
ios. The main difference with our work is that they focus on finding a specific
pattern within a large (and changing) graph, rather than inferring each node’s
type. On a similar domain, [6] proposes the incremental processing of a sum-
mary graph in which nodes are associated to a hash value, although they do not
consider edge labels in their work. Song and Ge [17], on the other hand, do con-
sider edge labels and construct graph sketches over sliding windows. The main
difference compared to provenance types is that they do not consider patterns
within graphs, but only information encoded in edges such as their label and
endpoints. In the context of machine learning and Weisfeiler-Lehman graph ker-
nels, [20] provides graph classification with continuously provided data. Unlike
in our work, they discard nodes with less discriminatory power to facilitate the
classification process.

The concept of provenance types was introduced in [13] as the main step to
construct summary graphs, which are, in turn, a way to extract the essence of
provenance graphs. Based on their definition of provenance types, however, the
algorithm presented in [13] to infer types has an exponential time complexity in
function of the parameter k. This drawback comes from the fact that all walks

https://openprovenance.org/typelibrary/
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of lengh k from a given node may need to be inspected. In this paper, we offer
similar but recursive definition of provenance types which allows us infer them
in polynomial time. This recursive definition is similar to the one used in the
context of Weisfeiler-Lehman Graph Kernels [16], with the differences that our
sets θk(v) consist of pairs instead of single values, and that we discard repetitions
in such sets. Another difference, also explored in [19], is that we work on graphs
with labelled edges, thus edge labels are taken into account when processing
nodes’ types.

7 Conclusions and Future Work

In this paper, we studied incremental processing of provenance in the context of
summarisation of provenance graphs. Our contribution focused on the inference
of provenance types, as we leave incremental computation of summary graphs
for future work.

First, we suggested an alternative definition of provenance types (Defi-
nition 1), which, in loose terms, consist of an abstraction of the forward-
neighbourhood of nodes in a provenance graph. This definition allows prove-
nance types to be inferred in polynomial time taking into account the size of
the input data (Algorithm 1.3). To avoid storing the same provenance types
multiple times, we suggest the creation of a library of types for each parameter
k (Definition 2). Such libraries record all seen (compact) provenance types. We
also define, for each parameter k, a function that maps each node to the library
entry associated with the node’s compact type (Definition 3).

In order to study the different modes of data increments, we considered
two broad scenarios: when previously processed edges are removed from - or
when new edges start at - previously seen nodes (non-monotonically increasing
streams), and when that is not the case (monotonically increasing streams). For
the former case, we provide Algorithm 1.5 that reprocess nodes when needed.
The latter scenario, on the other hand, was shown to allow the processing of
incoming data without the need to reprocessing previous provenance informa-
tion (Question Q2). In that case, there is also no need to keep stored previously
seen provenance relations (Question Q1).

Subsequently, we presented an analysis of more than 36.000 provenance files
and showed that the size of libraries of types is small compared to the size of
our datasets (Question Q3).

As future work, it would be useful to develop an empirical analysis of the time
it takes to run Algorithm 1.5 in practice, i.e., to understand what proportion of
the graph needs to be reprocessed. Another important further step is to extend
the incremental inference to constructing summary graphs over continuously
provided provenance.
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Abstract. Provenance templates are now a recognised methodology for
the construction of data provenance records. Each template defines the
provenance of a domain-specific action in abstract form, which may then
be instantiated as required by a single call to the provenance template
service. As data reliability and trustworthiness becomes a critical issue
in an increasing number of domains, there is a corresponding need to
ensure that the provenance of that data is non-repudiable. In this paper
we contribute two new, complementary modules to our template model
and implementation to produce non-repudiable data provenance. The
first, a module that traces the operation of the provenance template
service itself, and records a provenance trace of the construction of an
object-level document, at the level of individual service calls. The second,
a non-repudiation module that generates evidence for the data recorded
about each call, annotates the service trace accordingly, and submits
a representation of that evidence to a provider-agnostic notary service.
We evaluate the applicability of our approach in the context of a clini-
cal decision support system. We first define a policy to ensure the non-
repudiation of evidence with respect to a security threat analysis in order
to demonstrate the suitability of our solution. We then select three use
cases from within a particular system, Consult, with contrasting data
provenance recording requirements and analyse the subsequent perfor-
mance of our prototype implementation against three different notary
providers.
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1 Introduction

The provenance of a data resource describes the entities, activities and agents
that have influenced it over time [21]. Provenance templates are a methodology
for the construction of data provenance records. A template is an abstract prove-
nance document which may be later instantiated, as many times as required,
usually in the context of a larger document, to produce a concrete provenance
document [5]. Each template is designed to represent a discrete, domain-specific
action which can be recorded as a single call to a provenance template service [6].
Provenance tools are now being used widely in scientific domains, where trust
in the provenance records constructed is essential [19]. A lack of transparency,
which implies a lack of trust, is considered one of the main reasons for the poor
uptake of clinical decision support systems (DSS) [22]. In response to this issue,
there has been a recent movement towards secure provenance, for example [16].

One key security objective is non-repudiation, which is defined as preventing
the denial of previous commitments or actions [17]. In this paper, we focus
specifically on non-repudiation of origin – preventing an author from falsely
denying the act of creating content or sending a message – referred to simply as
non-repudiation in the remainder of the text.

Whilst the correctness of the operations commonly used to achieve non-
repudiation at the cryptographic level can be formally proven, at the practical
level, the broader context needs to be taken into account, such as international
regulations related to digital signatures and communications, or current threats
relevant to specific systems, which evolve over time. For example, applying a
digital signature to a message, which is a common way to ensure its authenticity,
means only that a cryptographic operation was performed by a piece of hardware
or software on behalf of a person. In a real-world scenario, we might then presume
that person is the real author of a message, because we have assumed that the
corresponding private key is known only to them. However, this might not hold
true; there is always a chance that confidentiality of a private key can be violated
(for example, by malware) and there is no guaranteed mechanism to prevent such
an event.

To address this challenge, we first perform a threat analysis for the non-
repudiation of recommendations made by a DSS, and define a non-repudiation
policy which can be later used during an adjudication process. We then use
this policy to guide the design of a provenance-based model for the represen-
tation of the evidence required for non-repudiation, and implement this as an
optional feature within our provenance template service. We then evaluate our
solution using three different evidence storage solutions that satisfy our policy
requirements, in the context of a DSS, Consult.

2 Related Work

Authenticity, commonly defined as corroboration of a claimant’s identity, has
long been considered distinct from non-repudiation [17,23]. The former is con-
sidered a simpler security requirement than the latter, which is typically a more
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complex, protocol-based security service [9] and is also defined as one of nine
security principles in [2]. The current ISO standard for non-repudiation [12]
explicitly states that non-repudiation can only be provided within the context
of a clearly defined security policy for a particular application and legal envi-
ronment. Detailed discussion about why non-repudiation and related evidence
management must be designed in advance can be found in the thesis of Roe [25].

To our knowledge, secure provenance and related challenges were discussed
for the first time in 2007 [10] and were focused on its integrity, availability and
confidentiality. Another paper [3] discussed related challenges in a more detailed
way and explained that existing security models do not fit to graph structures,
which is the standardized representation of provenance information.

The use of a notary service within a system to ensure the integrity and
non-repudiation of biomedical knowledge retrieval requests and responses from
a database has already been implemented [14] but differs from our solution by
employing a so-called in-line notary. This work does not however include an
analysis of possible threats or define tactics for their mitigation, which is crucial
in the context of achieving non-repudiation. The authors also mention that to
the best of their knowledge there currently exists no other work using blockchain-
based technology to manage biomedical evidence integrity and non-repudiation.
This is supported by a scoping review [11] which references the former as the
only paper within the domain of healthcare or health sciences to address the
property of non-repudiation.

Another survey paper [27] describes and compares existing methods to ensure
integrity, authenticity, non-repudiation and proof of existence in the long-term.
The authors make no distinction between the terms authenticity and non-
repudiation, which would have dramatic consequences in a real-world use case.
The same is true for the proposed secure provenance schemes in [1] and [13]
that claim that non-repudiation can be ensured by applying digital signatures,
but any further discussion about what aspects of non-repudiation are achieved
is omitted.

3 A Non-repudiation Policy for Decision Support

A clinical decision support system (DSS) is a software tool that evaluates a set
of health data inputs and makes recommendations to support clinical decision
making. These recommendations range from treatment suggestions to establish-
ing a diagnosis, and are provided to a patient, among other users. Because the
recommendation generation process should be transparent [5], information about
that process (evidence) is often provided to a patient together with a recommen-
dation, so they can check, for example, whether valid data about their diagnosis
and health condition was used (a form of Explainable AI (XAI) [18]). In other
words, a patient can, either themselves or via an authorised entity, check the
provenance of a recommendation generation process, given that the evidence
provided describes the creation and evolution of a particular recommendation.
Evidence is particularly useful if harm is caused to a patient as the result of a
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particular recommendation, perhaps due to an error in the DSS’s implementa-
tion or design, when it may, for example, be required in a legal context. In order
for evidence to be used in this way, it must be irrefutable at the practical level,
meaning that it is sufficiently convincing; it is clear that it really came from
the system and it was not later changed by anyone to subvert the adjudication
process.

We refer to these concerns as threats, and identify them within a DSS by
examining the following general requirements for irrefutable evidence [17]:

1. The authenticity and integrity of the provided evidence need to be estab-
lished, such that the alleged author of the evidence cannot later deny that
authenticity.

2. Responsibilities and rules related to evidence generation, storage and verifi-
cation must be defined in order to enable all participating parties to behave
responsibly, in accordance with these rules. Violating these rules can lead to
decreased trust in the system.

3. Authenticity and integrity verification information must be available dur-
ing a pre-defined period of time, according to a time period for which non-
repudiation should be achieved (achieving non-repudiation for an unlimited
period, if feasible, is likely to be expensive). The evidence verifier must be
able to verify the evidence.

4. If a dispute related to the origin of evidence occurs, trusted timestamps are
required to reconstruct past events.

When applying these requirements to a DSS we observe, for example, that a
DSS is generally motivated to maintain evidence in order to demonstrate that the
decision generation process is compliant with standards and clinical practice. On
the other hand, if harm were to be caused to a patient, a DSS creator or owner
then has a motive to falsify, modify or destroy generated incriminating evidence
– such as timestamps, in order to discredit the reconstruction of past events –
to protect themselves, particularly if a corresponding authority, responsible for
maintaining said standards and practice, is involved. There are also external
entities with a motive to disrupt evidence, such as insurance companies, who
may wish to avoid making a payment to an injured patient or a DSS provider.

To address these threats, we define a non-repudiation policy, given as a set of
mandatory requirements for the evidence generation process, in order to ensure
that the evidence produced by a DSS both engenders trust, and can also be later
used by a patient during an adjudication process in case of a future dispute.
These requirements are presented along with brief rationale:

1. A DSS is the only party able to generate valid evidence, thus all of evidence
needs to be digitally signed. Authenticity and integrity of the evidence is
achieved by this rule.

2. Cryptographic operations performed by the DSS are realised using a special
piece of hardware, which provides additional protection against private key
disclosure. The reason for applying this rule is that protection of the key
needs to be established.
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3. Despite additional protection of private keys, there is always a chance that
the confidentiality of a particular private key is compromised. For that rea-
son, a private key owner should define a certain amount of time to report a
confidentiality violation of the private key used for creating digital signatures
(this time period is called the clearance period [17]). If the clearance period
expires, all digital signatures created before are considered valid. Since this
is a processional part of the non-repudiation and it is not important from
architecture point of view, we will not address it in our solution.

4. A timestamp describing the token generation must be generated by a trusted
third party. Integrity and authenticity of the timestamp need to be ensured.
Due to the importance of the timestamp, we propose this measure in order
to build additional trust in reconstructed events, especially if a signing key
had been revoked or expired before a dispute arose.

5. Because a DSS could have a motive to disrupt or destroy existing evidence,
it cannot be the only party responsible for storing and maintaining it.

6. The evidence used should be held in storage that is able to prevent the
modification of stored content. The reason for applying this rule is to raise
the level of trust concerning evidence integrity.

7. All information needed for integrity and authenticity of the evidence veri-
fication should be sealed as part of the evidence. This rule is intended to
simplify additional evidence management.

8. After a decision is made and particular provenance is generated, the patient
can verify its meaningfulness, authenticity and integrity, and can store it for
prospective future claims. The assumption here is that the non-repudiation
of the provenance is in the best interest of the patient, since their health con-
dition is affected by particular decision. This reflects a current movement in
healthcare whereby patients are custodians of their own data [8] and reduces
trust assumptions about a third party, which would otherwise have to verify
it instead of the patient.

9. The generated evidence must contain an identifier for the particular patient.
By applying this rule, the patient may be certain that a generated decision
and its evidence was not intended for a different person.

10. The evidence generated during a decision generation contains additional
information about time when the request from user and when other inputs
for the decision generation were obtained.

This policy is used in the following sections to define a secure process for evi-
dence generation, storage and verification within a DSS. In the following section,
we show how some of these requirements can be addressed as a provenance-based
model.

4 A Provenance-Based Model for Non-repudiable
Evidence

The granularity of the provenance template methodology fits the design of an
architecture for non-repudiable evidence perfectly. The fact that each template
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represent a single, yet complete, domain-specific action within the client system
allows evidence to be generated and presented at a meaningful, yet manageable
scale. However the direct use of provenance data generated from templates as
evidence is insufficient, because it provides no information regarding its use
within the construction of the parent document. Thus in order to achieve non-
repudiation within a client domain, we have first added the facility to record a
provenance trace of the workflow of the provenance template service itself; we
call this data meta-provenance.

The meta-provenance trace generated for a document constitutes a wholly
reproducible record of the construction of that document and is described
in detail in Subsect. 4.1. This data, later appended with records of the non-
repudiable evidence generated at each point in the workflow as formalised in
Subsect. 4.2, also allows us to present clients with a comprehensive survey of
provenance actions carried out on their behalf and to later validate their authen-
ticity.

4.1 Templates for Meta-provenance

Each call to the provenance template service, besides some necessary adminis-
trative functionality, represents an action to be executed in the life-cycle of a
provenance document under construction. We begin, therefore, by recalling the
typical workflow for the construction of a document using the service in Fig. 1.

1. newTemplate (one or more times) to upload templates to the server
2. (a) newDocument (once) to begin a new document

(b) addNamespace (zero or more times) to add a namespace to the document
(c) registerTemplate (one or more times) to associate a template with the docu-

ment
(d) generate (one or more times) to use a substitution to instantiate a template,

and merge it into the document
(e) i. generateInitialise (once) to use a subsitution to instantiate a template

with zones as a fragment
ii. generateZone (zero or more times) to use a substiution to instantiate a

subsequent iteration of a zone within the fragment
iii. generateFinalise (once) to check and merge the fragment into the docu-

ment

Fig. 1. How to construct a document using the provenance template service

We now describe how to formalise instances of this workflow and other impor-
tant meta-data relating to the operation of the service, by recording provenance
traces of the execution of the actions contributing to the life-cycle of a docu-
ment. Recording the life-cycle of documents not only produces valuable meta-
data regarding the construction of a document, but is a necessary prerequisite
to enabling the non-repudiation and later verification of the data generated.
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These traces are recorded in meta-level history documents, one for each stan-
dard or object-level document under construction. History documents are valid
provenance documents created and maintained by the new meta-provenance
module, and stored within the server providing the service. Following the cre-
ation of new object-level document by the document management module, the
meta-provenance module will create a new history document. Each service call
has a corresponding provenance template defined within the meta-provenance
module. When the web service receives a request, following a successful execu-
tion of the request at the object-level by the document management module, the
request data is sent to the meta-provenance module, which builds a substitution
for the respective template. This is then instantiated within the corresponding
separate history document. The templates for the newDocument and addNames-
pace service calls are shown by way of example in Fig. 2.

Fig. 2. newDocument (left) and addNamespace (right) templates

The meta-provenance templates use annotations in the meta namespace. The
object document being tracked is represented as an entity of type meta:Document
and each action executed upon that document as an activity of meta:Action
type. Each action is annotated with its name (meta:actionName) and given a
numeric value (meta:actionNumber), corresponding to its order in the trace. The
time that the execution of the action was completed is also recorded as the end
time of the activity.1 Templates are recorded as entities of type meta:Template
and fragments as entities of meta:Fragment. Object documents, templates and
fragments are all annotated with the meta:identifier attribute which contains
their unique document identifier within the server.

1 The provenance template model adds three special attributes (start, end, time) to
the prov namespace in order to allow the start and end times of activities, and the
times of influences to be instantiated as template value variables. These attributes
are translated in the document model into the respective PROV timings. This is
necessary because the PROV data model only allows these timings to be of type
xsd:dateTime and so cannot be replaced by a variable name directly.
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Fig. 3. registerTemplate (left) and generate (right) templates

Substitutions given as input to generation actions, that is, generate, (see
Fig. 3) generateInit, or generateZone are now also persisted as meta-level prove-
nance documents called substitution documents. A history document together
with its associated substitution documents together form the complete, repro-
ducible meta-procenance record of the construction of an object document. The
translation of standard substitutions into substitution documents is carried out
by the meta-provenance module again by use of templates, given in Fig. 4. A
substitution is created using the newSubstitution template, and then each bind-
ing added using addBinding. These operations instantiations are executed in-
memory by the server, and the final document is persisted by the server, under
a system-generated identifier. The substitutions documents thus created during
the recording of generation actions are referenced in the meta-provenance tem-
plates as entities of type meta:Substitution and again, being valid documents,
annotated by their identifier. The fine granularity of these operations anticipates
future improvements to the provenance template service, whereby substitutions
may be submitted to the service over time down to the level of a single variable
binding.

Any remaining data provided as part of an action, document, is stored
as annotations upon the action activity, given in the meta namespace. The
meta:defaultUrl attribute in the newDocument template shown in Fig. 2 is
one such example.

A meta-provenance record is sufficient to reconstruct an object-level prove-
nance document in its entirety. In order to reproduce the construction of a
particular document, its history document is first exported, and the chain of
recorded actions then replicated with reference to the necessary substitution
documents. This facility allows object documents to be recorded by the server
at the meta-level alone, to be expanded at a later date. After the fact document
reconstruction from meta-provenance offers the possibility of reducing storage
requirements for object documents. Partial reconstruction of documents between
specific time points would also reduce the computational requirements for the
analysis of object documents.
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Fig. 4. newSubstitution (left) and addBinding (right) templates

4.2 A Template for Non-repudiable Evidence

An important requirement of our solution is the capture of the evidence required
to achieve the non-repudiation of the provenance data being recorded. The meta-
provenance data recorded by each template instantiation within a history docu-
ment as described in Subsect. 4.1 forms the core of this evidence. However, extra
data concerning the security and cryptographic operations later carried out upon
each addition to the meta-provenance record must also be stored in order for the
evidence to provide a guarantee of non-repudiation. We record this extra data
using the template shown in Fig. 5.

The var:action activity represents the document management action
described in Sect. 4.1 and is instantiated with the same identifier as used for
the instantiation of the activity element of the meta-provenance template cor-
responding to that action. It thus serves as the graft point in the history doc-
ument between the meta-provenance data recorded about the action and its
evidentiary form and required security attributes, as given by the evidence tem-
plate. The var:serviceCall entity represents the service call that requested
the document management action, and holds information about the client appli-
cation and user that made the request. The var:tokenHeader entity represents
the meta-data required for achieving non-repudiation of the service call and
the consequent management action. The token header contains a trusted times-
tamp, which is generated by a trusted timestamping authority. The header is
identified by a unique system-generated identifier. The var:tokenContent entity
holds a representation of the associated management action, corresponding to the
provenance data generated by the meta-provenance module. The var:signature
entity represents the digital signature of the required evidence, generated by the
var:signToken activity. The certificate needed to verify the signature is given
as the value of meta:certificate.

5 A Non-repudiation Architecture for Decision Support

The goal of the proposed solution is to provide a patient with irrefutable evidence
that a recommendation made by the DSS and the provenance data recording
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Fig. 5. Template for capturing evidence required for non-repudiation

the generation of that recommendation originated from the DSS. There are four
actors present in our solution:

1. A patient using the DSS during their treatment process and acting on diag-
nostic recommendations generated by the system.

2. A decision support system consisting of client and server applications, and an
instance of the provenance template service, provided by and referred to below
as the provenance server. A patient will use the client application to request
recommendations from the server-side, which in turn may request one or more
provenance template actions to be carried out by the provenance server, for
which it will generate non-repudiable evidence that is later returned to the
patient together with the recommendation.

3. A trusted timestamping authority service which provides signed timestamps.
These timestamps are included within the required evidence generated to
confirm its existence from a specific instant in time.

4. A trusted notary service which stores the required evidence. If a dispute about
the origin of the provenance data later arises, the notary may be queried to
either support or contradict a particular claim.

In the remainder of this section we describe how we use the provenance evi-
dence model given in Sect. 4 to design an extended DSS architecture that meets
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the policy requirements outlined in Sect. 3 and thus ensures non-repudiation of
the recommendation-making process.

5.1 Non-repudiable Evidence Generation and Recording Process

The proposed architecture is illustrated in Fig. 6. The process begins with a
request from a DSS client to the DSS service (1) that initiates the generation
of a recommendation by the system (2). The recommendation-making process
will then in turn request one or more provenance actions to be performed by the
provenance server (3). The provenance server first executes the requested action
upon the object-level document as usual (4). In the standard architecture this
is the point at which the DSS would simply return the recommendation to the
user. In the extended architecture however it then records the action as part of
the meta-provenance record for the document (5.1) as described in Subsect. 4.1.

The provenance server then constructs a non-repudiation token (5.3.1). The
token is made up of two parts, the token header and the token payload. The
header contains a system-generated identifier for the token, an identifier for
the patient who made the request, an identifier for the DSS service, a signed
timestamp requested by the server from a trusted timestamping authority (5.2.1),
an identifier for that timestamping authority, an identifier for the trusted notary
that the evidence is to be later sent to for storage, and the digital certificates
required to verify all signatures within the token. The payload consists of data
representing the meta-provenance recorded for a provenance action within the
recommendation generation process. In the case of a registerTemplate action,
this data includes a hash of a normalised and ordered representation of the
template used. Similarly, in the case of generation actions, the data includes
a hash of an ordered representation of the substitution data used. The token
contains all the information required to resolve potential disputes and addresses
policy requirements 7, 9 and 10. The use of a trusted timestamping authority
addresses policy requirement 4.

The token is then signed using a private key belonging to the server (5.3.2).
This addresses policy requirement 1. The signed token is now stored as an
instance of the non-repudiable evidence template shown in Fig. 5, within the
appropriate meta-provenance record for the requested provenance action (5.4).
The signed copy of the token will later be provided to a patient as the irrefutable
evidence of the recommendation generation process. Since the provenance data
used as evidence contains sensitive information about a patient’s health and this
information should thus not be provided directly to the notary, we store a signed
hash of the signed token only. The server therefore now generates a hash of the
signed token (5.5.1) and signs that hash with a second private key (5.5.2). This
second signature is important for preventing the generation of false hashes. The
signed hash is then sent to the trusted notary (5.6) where it is stored (6).

A copy of the signed token for the provenance action is now returned to the
DSS (7). The service then returns the generated recommendation along with
all signed tokens created during recommendation process to the client (8). The
identifier of each signed token is generated by the DSS and is included in the



176 E. Fairweather et al.

token header, so that a patient can access the stored signed token from the meta-
provenance record whenever they desire. This reflects the current movement in
healthcare whereby patients are custodians of their own data [8] and addresses
policy requirements 5 and 8.

Fig. 6. The non-repudiable DSS recommendation process

5.2 Non-repudiable Evidence Verification Process

Once evidence is presented to a patient, according to our policy, its validity
must then be checked. The patient or an authorised agent acting on their behalf,
must verify both the integrity and authenticity of the evidence, which consists
of the token and its signature. First, they must verify the content of the token.
In particular, they need to ensure that the token payload contains the correct
information relating to their medical condition, that the timestamps included
in the token are valid, and that there is a link in the token payload to their
identity; that is, that they are the correct recipient of the evidence. They must
then retrieve the token identifier from the token and look up the corresponding
record in the trusted notary. They need to check whether the digital signature
of the stored hash was created by the DSS, that it is valid, and that the stored
hash is the same for the token that was received from the DSS. Checking the
validity of the signatures involves not only verifying the correct computation of
the signatures, but also checking the revocation and expiration information of the
keys, the size of the keys and the algorithms used to make sure that the signatures
are secure. If these checks succeed, the patient has complete certainty that the
provenance data is authentic and that there is a witness (the notary) confirming
that fact. If any inconsistency is detected, or one of the digital signatures is
invalid, this fact must be reported to the DSS and the patient must not follow
the recommendation provided alongside the evidence.
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6 Implementation

We have implemented a prototype version of the non-repudiation architecture
described in Sect. 5. This involved the development of two new modules for the
provenance server. The first, a meta-provenance module, carries out the con-
struction of meta-provenance records as detailed in Subsect. 4.1. The second,
a non-repudiation module, performs the necessary security and cryptographic
operations upon each addition to a meta-provenance record, generates the nec-
essary non-repudiable evidence, and appends it to the stored trace. The func-
tionality of both modules is controlled by the web service during the handling
of relevant incoming requests to the server. The use of both modules is optional,
however, note that whilst meta-provenance may be generated without the addi-
tion of non-repudiable evidence, the opposite is not true. Hashing and signing
operations are performed using reference implementations of algorithms compli-
ant with the PKCS 11 API standard [7], addressing policy requirement 2. The
prototype does not currently make use of a trusted timestamping authority, and
instead generates timestamps locally. This will however be implemented in the
near future, following the RFC 3161 standard [28]. The overall architecture of
the server in the context of this paper is shown in Fig. 7. The remainder of the
components are described briefly below.

Fig. 7. The architecture of the provenance server

The document model is graph-based and supports both the OPM [20] and
PROV [24] provenance specifications. The document persistence module defines
an interface for storing documents, and provides a number of backends. The
model was designed with graph databases in mind, and our core storage back-
end is Neo4j (https://neo4j.com), but we also support those that follow the

https://neo4j.com
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Tinkerpop (https://tinkerpop.apache.org) standard, and provide a baseline rela-
tional implementation. The construction of documents is controlled through the
document management module, which is accessed as a web service.

As shown in Fig. 7, our prototype system provides three trusted notary
implementations, each of which exhibits the required properties of data
immutability and data auditability, and meets policy requirement 6. Our cho-
sen implementations are a distributed ledger, with hashed blocks and a pub-
lic ledger (Hyperledger Fabric, https://www.hyperledger.org/projects/fabric); a
single store object service, with single-write functionality and object access
(MinIO, https://min.io); and a file secured by an append-only access control
policy (SELinux, http://www.selinuxproject.org). Our notaries are accessed as
a web service, providing calls to add, and validate the presence of, data within
each notary2.

7 Evaluation

We hypothesise that each notary implementation is likely to affect the perfor-
mance of the provenance server differently, depending on the domain within
which the server is deployed. Therefore, by providing multiple implementations,
our aim is to allow a user to select the notary that works best with the server
within a given domain. In order to produce a set of heuristics for notary selection,
we now examine the performance of the server when attached to each notary
in three use cases with distinct characteristics for the construction of prove-
nance information. These use cases exist within the Consult architecture, a
DSS designed to support stroke patients in self-managing their treatments [4].

a ( provenance ( source ( giveRecommendation ) , r e l a t i o n s h i p ( wasAssociatedWith ) , t a r g e t ( Pat ient ) ) ) :−
a ( aspt ( [ goa l (G) , a c t i on (A) , promotes (A,G) ] , a c t i on (A) ) ) , pa t i en t ( Pat ient ) .

a ( provenance ( source ( giveRecommendation ) , r e l a t i o n s h i p ( used ) , t a r g e t (S ) ) ) :−
s u f f e r s f r om ( Patient , S ) .

Fig. 8. Sample of rules used to capture provenance data in the recommendation service

At the core of the Consult system is an argumentation-based recommen-
dation service, which takes facts about a patient and their preferences, and,
using a computational form of clinical guidelines, determines a treatment path
for them [15]. This first use case is characterised by a high computation time.
In this instance, provenance data provides the aforementioned insight into the
recommendations provided by this service. To extract this data, we augment
the service’s rule-base with an additional set of rules, which are satisfied when
the system makes particular decisions, and thus output the required provenance
data. We structure these rules in the style of [26], and an example is given in
Fig. 8.
2 https://github.com/kclhi/nr.

https://tinkerpop.apache.org
https://www.hyperledger.org/projects/fabric
https://min.io
http://www.selinuxproject.org
https://github.com/kclhi/nr
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Table 1. Average response time of provenance server (seconds) using different notaries
in different Consult use cases, and associated (maximum) p-values (other notaries;
other use cases).

Recommendation Sensor Chatbot

Ledger 7.04 (.05,.05; .05,.05) 6.25 (.05,.05; .05,.05) 3.02 (.05,.05; .05,.05)

Object 0.56 (.05,.05; .6,.4) 0.56 (.05,.05; .6,.6) 0.55 (.05,.05; .4,.6)

File 1.17 (.05,.05; .05,.05) 1.36 (.05,.05; .05,.05) 0.82 (.05,.05; .05,.05)

The facts used by the recommendation service are based upon sensor data
(and a patient’s EHR), which the Consult system gathers from wearable
devices. This second use case is characterised by high volumes of data. Here,
provenance data is useful for auditing purposes, for example to aggregate sensor
data and identify erroneous readings, before subsequently tracking them back
to the device from which they originate. To extract this data, we examine the
sensor readings that arrives at a central service in the Consult system.

To interface with the Consult system, users engage with a chatbot. This
chatbot is able to provide the patient with healthcare information, which includes
the information provided by the recommendation service, although we do not
consider this interaction as a part of this third use case. This aspect of the
system is characterised by its non-determinism, as we cannot know, prior to
the execution of the chatbot, which answers a user will provide. Much like the
recommendation service, in this situation provenance data provides insight into
the decisions made by the chatbot, and various parts of the Consult chatbot
logic are augmented to extract this data.

The output from each of these use cases is used as the basis for constructing
substitutions for a set of templates designed for the Consult DSS. These tem-
plates capture the key agents (e.g. a patient), entities (e.g. a sensor reading or a
clinical guideline) and activities (e.g. the generation of a recommendation), in the
DSS. In the case of the chatbot, each substitution is constructed and submitted
incrementally as zones, as the interaction with the chatbot progresses.

7.1 Experiments and Results

We now examine the performance of the provenance server when attached to each
notary, within each of these use cases. To do so, we further augment the Consult
system in order to simulate patients interacting with each use case. The results of
these simulations are shown in Table 1, which reflects the average response time,
and related statistical tests, of each call to the server from Consult, over 1000
simulations (N = 1000). Note that these experiments were performed before the
completion of the prototype but still offer a relative comparison of performance.

Examining first the performance of different notaries against one another, we
note that the introduction of a ledger-based notary results in the most significant
overhead in terms of response time, which is to be expected, given that speed
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is a common criticism of the technology. While this may make a ledger appear
to be the least attractive option, it may still be a consideration when deploying
the provenance server, as the use of a ledger brings additional benefits, such
as decentralisation, which may outweigh the impact of an increased response
time. Of the remaining two notaries, the use of single-write object store offers
the best performance, over an append-only file, which is interesting given the
low-level nature of the latter, and suggests that, when linked to our server, a
notary technology optimised for the storage of client data is more efficient.

In terms of the performance of the same notary across different deployment
domains, we note that, in addition to offering the best performance, the use of
a single-write object store also guarantees consistent performance when operat-
ing in domains with differing provenance data collection properties. This may
make the object store an attractive option in domains with uncertain proper-
ties. In contrast, while responding broadly consistently to the high throughput
of data found in the sensor use case, and when working with the complexity of
the rule-based recommendation service, both the ledger and file offer improved
performance in the chatbot use case. While, in general, this is to be expected,
given that a number of smaller submissions are made to the server during the
incremental construction of resources, rather than a single larger submission,
it is interesting to note that this style of resource construction has the most
significant impact on the performance of these two notaries.

8 Conclusions and Future Work

We have identified the importance of the role of provenance data within a DSS,
as evidence designed to be used in the resolution of potential disputes about
the actions of the system. We have shown that a DSS – the evidence generator
– has a motive to disrupt this evidence in order to protect its interests, and
thus the authenticity and integrity of the evidence must be established. That is,
provenance data used as evidence must exhibit non-repudiation of origin. In order
to achieve this goal, we have defined a security policy for non-repudiable evidence
in the context of a DSS, developed a fully general provenance-based model to
represent such evidence, and then proposed an extended DSS architecture that
meets the requirements of our policy.

Our solution allows us to present to the user a comprehensive survey of all
provenance actions taken by the system on their behalf and to retrieve and
validate the authenticity of that data at any point thereafter.

We have developed a prototype implementation of our architecture, by
extending our provenance template service with the functionality described in
our evidence model, and creating a web service interface for trusted notary appli-
cations. We evaluated the performance of the prototype using three contrasting
provenance generation use cases arising within the Consult DSS.

Following further improvements to our prototype, we now intend to investi-
gate how our model may be extended to work within a distributed environment,
in which provenance data is being generated by multiple systems working in
multiple domains.
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Abstract. Data cleaning is an essential component of data preparation
in machine learning and other data science workflows, and is widely rec-
ognized as the most time-consuming and error-prone part when working
with real-world data. How data was prepared and cleaned has a signifi-
cant impact on the reliability and trustworthiness of results of any sub-
sequent analysis. Transparent data cleaning not only requires that prove-
nance (i.e., operation history and value changes) be captured, but also
that those changes are easy to explore and evaluate: The data scientists
who prepare the data, as well as others who want to reuse the cleaned
data for their studies, need to be able to easily explore and query its
data cleaning history. We have developed a domain-specific provenance
model for data cleaning that supports the kind of provenance questions
that data scientists need to answer when inspecting and debugging data
preparation histories. The design of the model was driven by the need
(i) to answer relevant, user-oriented provenance questions, and (ii) to do
so in an effective and efficient manner. The model is a refinement of an
earlier provenance model and has been implemented as a companion tool
to OpenRefine, a popular, open source tool for data cleaning.

Keywords: Domain-specific provenance models · Data cleaning ·
Workflows · Provenance queries

1 Introduction

Data cleaning and data preparation are critically important, labor-intensive, and
error-prone stages in data science pipelines and machine learning workflows.
Far from being an incidental detail, how data was prepared and cleaned can
make all the difference between analysis results and predictive models that are
reliable, trustworthy, and explainable on one side, or unreliable, erroneous, and
incomprehensible on the other.1 The way data is treated during preparation often
significantly affects subsequent machine learning steps and analysis results.

1 The old adage of “garbage in, garbage out” comes to mind.
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For example, consider an employee table with null values in some of the address
fields. Suppose we want to use address information to find correlations between
residence areas of employees and their punctuality. During data preparation,
many different actions can be taken when encountering incomplete data: e.g.,
one could remove rows with missing values; leave any null values as they are;
replace them with a default value; or infer suitable values, just to name a few
options. Clearly, one size doesn’t fit all. Instead, the assumptions and analysis
goals should inform which route to take to obtain a dataset of adequate quality.2

In machine learning, making any data cleaning performed on training and input
datasets completely transparent is critical to ensuring that the algorithm and
predictions have the expected dependencies on the intended signals in the data.

Transparent data cleaning entails both: that all potentially relevant data
changes are captured and that those changes are easy to evaluate and assess
by those who are tasked with inspecting the curated dataset, or with auditing
and validating the data cleaning process itself. Transparency has been achieved
when a set of key questions about data preparation and cleaning can be answered
practically and robustly. To this end, fine-grained provenance information has to
be captured during data cleaning and made available in a form that allows users
to formulate and execute the desired questions as custom provenance queries.

The main contributions of this paper are as follows: We have developed DCM
(Data Cleaning Model), a domain-specific provenance model for describing the
history of data cleaning workflows in a way that is conducive to user-driven, goal-
oriented queries. Conventional history models view the evolution of a dataset
as a sequence of snapshots D0�D1� · · ·�Dn, transforming an initial, “dirty”
dataset D0 via a series of steps S1, . . . , Sn into a “clean” version Dn. Our model
can answer targeted user-queries about the processing history (which operations
were executed and on what data), and about the value history (what values were
changed and how), and do so at multiple levels of granularity (e.g., column-level,
row-level, and cell-level), all while avoiding to materialize the intermediate snap-
shots affected. As a result, goal-oriented provenance queries are executed much
more efficiently. Queries can be high-level (referring to workflow operations) and
fine-grained (to inspect individual value changes). DCM can thus be seen as a
hybrid provenance model, and like other such models it combines prospective
elements (at the workflow level) with retrospective provenance. However, in con-
trast to existing models (e.g., see [3,10,13]), DCM also includes domain-specific
elements for data cleaning. Generic, domain-independent provenance relations,
such as those from W3C PROV [1], can then simply be obtained as views.

DCM has been prototypically implemented in an open-source tool ORPE
(OpenRefine Provenance Explorer [17]), as a companion tool to OpenRefine [15]:
Users of OpenRefine perform their interactive data cleaning workflows exactly
as before. The provenance harvester of ORPE then extracts latent provenance
information from internal OpenRefine project files, transforms it, and loads it
into a relational database implementing DCM. Ad-hoc user queries and customiz-
able, predefined provenance reports can be specified in the form of SQLite queries

2 Roughly speaking, data is of good quality if it is fit for purpose [19].
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and/or as Datalog queries. A set of system demonstrations that illustrate the use
of ORPE is under development and scheduled for release in the near future.

2 Modeling Interactive Data Cleaning Workflows

Consider a researcher or data curator who is using a tool such as OpenRefine for
interactive, exploratory data cleaning. The history H at any point in the data
cleaning process can be described using a sequence of steps (or data cleaning
operations) S1, . . . , Sn executed thus far, and the resulting sequence of dataset
snapshots Di obtained that way, starting from the original state D0, and ending
in the current database state Dn:

D0
S1� D1

S2� D2
S3� · · · Sn� Dn . (1)

This view of the data cleaning history highlights both the snapshots Di and
the (intensional) operations Si that led to them. A complementary view is to
describe the database evolution using a sequence of deltas Δi that capture the
(extensional) data differences between snapshots:

D0
Δ1� D1

Δ2� D2
Δ3� · · · Δn� Dn. (2)

During an interactive, exploratory data cleaning session it is not uncommon
that a user pauses and considers backtracking to an earlier state, i.e., when a
sequence of recent operations turns out to be ineffective. To this end, OpenRefine
implements an undo/redo stack: The user can jump back and forth between
different states Di to consider the effect of the workflow up to any step Si. This
way of inspecting the data cleaning history is analogous to the classic Video
Cassette Recorder (VCR)3 model with functions for rewind/review (´) and
fast-forward/cue (¹). OpenRefine maintains symmetric deltas, i.e., which can
be used both as forward and reverse deltas. In this way, rewinding the history
(undo) from Dn to Di, and further to Dj , can be achieved in reverse delta mode,
and the same deltas can be used in forward mode (redo) as well to return to the
current state Dn:

Dn
Δn� Dn−1

Δn−1� · · · Δi+1� Di
Δi� · · · Δj+1� Dj (3)

While this VCR rewind model is clearly useful during interactive, exploratory
data cleaning, it is not a practical model for inspecting, auditing, or validating
workflow histories to ensure transparency (this shouldn’t come as a surprise as
OpenRefine was not specifically designed for such uses). For example, if a user
wants to know which steps have affected a given column4, or what values a given
cell has assumed over time and what steps have caused which changes, a model
that requires the user to “eyeball” these changes across a number of snapshots
is not feasible. Using our data cleaning model DCM, however, such user-driven
and goal-oriented queries can be easily specified and efficiently executed.
3 en.wikipedia.org/wiki/Videocassette recorder.
4 In ML and statistics, columns and rows often represent features (or variables) and
observations, respectively.

https://en.wikipedia.org/wiki/Videocassette_recorder
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Fig. 1. OpenRefine “State Rewind” vs. Goal-Oriented Provenance Queries:
OpenRefine’s internal history model supports an undo/redo stack allowing the user to
backtrack from the current state Dn to any earlier snapshot Di (left). OpenRefine then
recreates all intermediate states Dn−1, Dn−2, . . . , Di through reverse deltas. If a user
is looking for a particular change of cell x , she has to “eyeball” all of the intermediate
states in the UI. In contrast, using our provenance model for data cleaning (right), the
user asks a specific question about cell x and the system retrieves only the relevant
part of the history, without recreating the intermediate states.

Figure 1 depicts an example where the user wants to understand how the
value of cell “x” has changed during a data cleaning project. In the VCR rewind
model, the user needs to focus on the row of interest, and within that row on a
particular cell (corresponding to an attribute/column) of interest to find which
operations and steps have affected the cell. To complicate matters further, a user
must take into account any schema changes, e.g., addition, removal, or renaming
of columns caused by schema-changing operations. In the worst-case scenario,
our user has to go back all the way from the current step Sn to the initial step
step S1 to understand the complete history of a cell.

To address this problem, we have developed DCM, a domain-specific prove-
nance model for data cleaning that keeps track of changes at all levels, i.e., at the
workflow (operation) level, and at all data levels (snapshots, columns, rows, and
cells). As can be seen from the illustration in Fig. 1, our model enables the user
to answer provenance questions using direct, goal-oriented queries that employ
the relevant entities from the model. Rather than “single-stepping” through the
history as in the VCR model, in our DCM model a user is given “random” access
by addressing operations, rows, columns, and cells of interest directly, without
going first through intermediate snapshots.

2.1 DCM: A Data Cleaning Model for OpenRefine Provenance

Starting from an earlier data cleaning model proposed by McPhillips et al. [9],
we customize and extend this model for use with OpenRefine [15]. One such
extension, e.g., is the addition of column dependencies to capture provenance
at the workflow level, i.e., which columns were input and output of a step Si.
Figure 2 depicts DCM as a conceptual model. An Array is (a part of) a dataset.
Array can also be useful to capture multiple representations of tables on a single
dataset. Array in this model is a way to capture multiple representations of tables
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Fig. 2. Core conceptual model of DCM (Data Cleaning Model): It contains key entities
(Row, Column, Cell, State, . . . ) and the necessary relations between them (replacedBy ,
precededBy , updatedAt, . . . ) to support user-driven, goal-oriented provenance queries.
Generic provenance (e.g., W3C PROV relations) can be obtained through multiple
views at different levels of granularity and abstraction (workflow, table, column, . . . ).

on a single dataset. For example, a transformation function that can change
the table schema such as in group by operation. This operation aggregates the
preceding input table and constructs a table with a new schema. Thus need to
be recorded as a new Array in the DCM. A Cell is part of a Row and of a Column,
which in turn are part of an Array. To keep track of changes, all values, cells,
rows, and columns have unique identifiers. A Value can be updated at a State,
and each State (with the exception of the initial state) is precededBy another
State. Other elements of the model capture changes in Row Position, Column
Position, and in Column Schema. Keeping track of the order of rows and columns
is important, as user interactions may depend on what the UI shows to the user
at any given moment during data cleaning.

The Row Position and Column Position record the logical order of rows and
columns, respectively at a given state, and correspond to the “XY -coordinates”
of rows, columns, and cells in the UI. The separation of Value, Column Schema,
and Row Position allow us to keep track of them independently, and data trans-
formations that affect the schema (rearranging columns, renaming columns) or
the row order, will not affect the capability of querying value provenance. As
can be seen from the relations in Fig. 2, several entities (State, Column, Value,
etc.) have dependencies on themselves, which provides an efficient mechanism
to represent reverse deltas of these entities at a given state. This representation
resembles a linked list that links prior data whenever new data is introduced.
As a result, in our model, instead of storing full data in the table, we only store
the changes of the entities affected by the data transformation. Listing 1 depicts
further details of DCM using a Datalog-like syntax.

By design, DCM supports multiple views for generating provenance and there
is no single, fixed mapping to W3C PROV [1] (or, as an example for a hybrid
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% An Array (i.e., a part of a dataset) has an ID:

Array(array_ID).

% A Row is partOf an Array:

Row(row_ID,array_id).

% A Column is partOf an Array:

Column(col_ID,array_id).

% A Cell is partOf a Row and partOf a Column:

Cell(cell_ID, row_id, col_id).

% A State (transition) is associated with an Array and a predecessor:

State(state_ID,array_id,prv_state_id).

% In a State (transition) there are input-output column dependencies:

In_Out_Columns(state_id,input_col_id,output_col_id).

% A Cell Value has content and a previous Value:

Value(value_ID,cell_id,state_id,content,prv_value_id).

% Row Positions can change:

Row_Pos(row_pos_ID,row_id,state_id,prv_row_id,prv_row_pos_id).

% Column Positions and Schema can change:

Col_Pos_Sch(sch_ID,col_id,state_id,col_type,col_name,prv_col_id,prv_sch_id).

Listing 1: Logical schema of the data cleaning provenance model DCM (cf. Fig. 2):
The suffix “ ID” (“ id”) indicates a primary (foreign) key, respectively. The
prefix “prv” denotes a link to a previous entity of the same type (e.g., state).

provenance model: ProvONE [3]). Instead, different views give rise to different
mappings into the target provenance model. For example, in the workflow view
(1), a data cleaning process is seen as a sequence of steps S1, . . . , Sn that induce
a sequence of database snapshots D0, . . . , Dn. In the complementary delta views
(2) and (3), the same data cleaning process is described via deltas, i.e., where
each extensional change Δi describes the updates between states as a result of
applying the (intensional) operation Si. Many other views can be derived from
our model, e.g., column views describe the change history from the perspective
of one or more columns (which in turn can involve operations at the workflow
level or deltas at the value level). A cell view, on the other hand, allows a user
to inspect “the life of a cell”, e.g., in terms of value changes, position changes,
or operations that have affected the cell values.

2.2 The ORPE Provenance Harvester for OpenRefine

OpenRefine captures multiple operations from the UI and records the changes
of values in internal log files in order to implement the undo/redo features.
Different UI operations may have their own data structure to implement the
necessary (symmetric) deltas. Figure 4 depicts the many-to-one mapping from
UI operations to internal log entries, and to concepts currently implemented in
our DCM model. For example, a MassCellChange entry is created for different UI
operations such as clustering, to-uppercase, to-lowercase, to-number, etc. Since
this information is only partially preserved as a JSON-formatted text recipe
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Fig. 3. ORPE Provenance Harvester: A user cleans a dataset using OpenRefine as
usual. The harvester then automatically extracts, transforms, and loads internal prove-
nance data (“buried” in internal project files) into our domain-specific data cleaning
provenance model (DCM). Using our system the user can then automatically generate
data cleaning reports for auditing purposes, and she can inspect or debug details of
data cleaning operations, cell changes, etc. by performing ad-hoc queries.

in the log files, we record additional recipe information, including execution
timestamps, as a JSON blob in a state detail table.

The current provenance harvester does not extract information about some of
OpenRefine’s more specialized interactive features, e.g., row flagging (RowFlag-
Change), row starring (RowStarChange), transpose (MassRowColumnChange),
reconciliation (ReconChange, MassReconChange), etc.

Another limitation is due to OpenRefine not capturing certain provenance
information in its project files. Among the potentially useful elements currently
missing are various parameters of operations. For clustering operations, e.g.,
OpenRefine does not capture clustering parameters such as cluster type or num-
ber of neighbors (for k-nearest neighbors clustering). OpenRefine also does not
record the user-IDs of individuals who have worked on a project, and so we
assume that a single user has performed all data transformations in our pro-
totype. Last not least, there is currently no mechanism for a user to adorn a
workflow with user-annotations, e.g., to describe the intent or goal of a workflow
step. Figure 3 depicts the use of the ORPE provenance harvester as a compan-
ion tool to OpenRefine: The harvester is used to extract, transform, and load
information from internal project files into a database that implements DCM.
The user can then run powerful ad-hoc queries or predefined (and customizable)
provenance reports for any previously executed data cleaning workflow.

2.3 The ORPE Provenance Querying and Reporting Module

After the OpenRefine provenance harvester has loaded the data into the DCM
schema, the user can ask meaningful, targeted queries about a data cleaning
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OpenRefine UI Operation Internal Log-File Entry Provenance Model (DCM)

Single cell edit CellChange value

Clustering, Upper/Lower case MassCellChange value
Change datatype, . . .
Add new column ColumnAdditionChange column, column schema

Split column ColumnSplitChange column, column schema

Remove column ColumnRemovalChange column schema

Rename column ColumnRenameChange column schema

Move column operation ColumnMoveChange column position

Remove row RowRemovalChange row, row position

Permanent row ordering RowReorderChange row position

Fig. 4. Mapping between OpenRefine operations in the UI, corresponding identifiers
in internal logs (changes file), and elements of DCM: the subset of operations in the
changes file that can be mapped to the respective provenance entities on our proposed
provenance model. This mapping can also help a user to scope and filter related entities
for answering the provenance of a particular transformation from the UI.

workflow history, e.g., how many values have changed for each data transforma-
tion; which columns have been renamed ; which rows have been removed, etc.

The ORPE prototype supports queries expressed in Datalog (implemented
via an answer set reasoner [2,5]) and in SQL (implemented using SQLite [6,20]).
The structure of the underlying DCM schema is conducive to expressing very
powerful and complex provenance queries natively, i.e., using only pure Datalog
(or basic SQL), without resorting to “detours” through a programming language
or by applying external methods through Embedded SQL.

In addition to the native query module, we have also developed a library that
integrates SQLite queries with the Python APIs for a user who wants to query
the DCM programmatically. Using the library in an interactive Jupyter notebook
environment yields a user-friendly, interactive Provenance Explorer tool. The
library also includes a feature that can reconstruct dataset snapshots as pandas
data frames [16], and that can be used to implement a snapshot “time machine”,
or to produce custom data cleaning provenance reports. We are making the data,
tools, rules, queries, and scripts developed for this research available in a Github
repository [17], in order to make our methods and research transparent and more
easily accessible and reproducible for the provenance research community.

3 Example Provenance Queries

We have prepared two OpenRefine datasets to illustrate a number of basic data
cleaning provenance queries. Additional queries for provenance analysis are being
added over time. The first dataset is a small, controlled sample proposed by
McPhillips et al. [9]. The dataset uses the columns Book Title, Date, and Author.
We have applied a few basic data cleaning transformation scenarios for this
demo-dataset as shown in Fig. 5.
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Fig. 5. Data cleaning steps and related query results over DCM: A sequence
of data transformations and associated snapshots for a small example are shown (top).
Below, the results of SQLite queries against the DCM instance are shown, illustrating
that questions about cells, columns, rows, etc. can be answered easily and efficiently.

In the following we list and elaborate on a number of queries for the example
workflow depicted in Fig. 5. Additional SQL query outputs are available in the
appendix. We have also applied our tool to a real-world dataset (“What’s on the
menu?” [12]) with 17,000 rows and 20 columns, obtained from the New York
Public Library. This dataset was also subjected to a more complex data cleaning
workflow and we have made the results available in an online repository [17].

The following queries are (predominantly) expressed in Datalog, but the
repository also includes the SQL versions.

Across all operations, how many cells were affected in each column?
We start with a simple SQL query that joins key relations from DCM and applies
an aggregation to count the number of cell changes per state and column:

select StateId,ColumnId, count(1) as Cell_count

from States natural join Value natural join Cell

group by StateId,ColumnId order by StateId desc;

At the heart of this query (i.e., if we ignore the aggregation) is a simple conjunc-
tive query, whose query pattern is nicely exhibited when we use the logic-based
Datalog syntax:

changed_values(StateId,ColumnId,ValueId):-

state(StateId,_,_),

value(ValueId,CellId,StateId,_,_),

cell(CellId,_,_ColumnId).
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What are the names of columns in each state? We can reconstruct column
names for each state by excluding identifiers of column schema entities from the
latest state to the state of interest with the prev column schema id:

column_at_state(StateId,ColumnId,ColumnSchemaId,ColumnName,PrevColumnId) :-

col_pos_sch(ColumnSchemaId,ColumnId,AssignStateId,_,ColumnName,

PrevColumnId,_).

AssignStateId =< StateId,

not changed_column(StateId,ColumnSchemaId).

This query requires an auxiliary rule to compute the columns that changed:

changed_column(StateId,PrevColumnSchemaId):-

col_pos_sch(_,_,NextStateId,_,_,_,PrevColumnSchemaId),

NextStateId =< StateId.

Which rows have been removed in which state? We encode a newly
created row using a previous row position of “−1” (i.e., a special null value).
The initial row is flagged with state id. When combined we can identify deleted
rows:

value_removed(StateIdRowRemoved,StateId,CellId,ValueId,Value):-

cell(CellId,RowId,_),

value(ValueId,CellId,StateId,Value,_),

row_removed(StateIdRowRemoved,RowId).

We use an auxiliary rule to compute the IDs of rows that have been removed:

row_removed(StateId,RowId):-

% newly defined row

row_pos(_,RowId,StateId,_,-1),

% which is not the row in the latest state

not row_pos(_,RowId,-1,_,_).

What is the history of a cell? This query reconstructs cell values at each
state using a “frame rule” that propagates values if they have not changed.5

value_at_state(StateId,ValueId,CellId,Value):-

value(ValueId,CellId,AssignStateId,Value,_).

AssignStateId =< StateId,

not changed_value(StateId,ValueId).

We use an auxiliary rule to identify values that have changed:

changed_value(StateId,PrevValueId):-

value(_,_,NextStateId,_,PrevValueId),

NextStateId =< StateId.

5 This query can also be reused to reconstruct dataset snapshots if needed.
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Show the names of columns and their order for each state: In addition to
supporting queries at the cell/value level, our model can also provide information
about the history of the schema: To provide a column’s current position name,
we can reuse the column at state rule. However, because we store the data using
a graph-based model in which order is not explicitly defined, we use the directed
edges between PrevColumnId and ColumnId to infer the order. Thus, additional
rules are needed to chain previous columns to the current column. The following
Datalog rule constructs the column order at a state represented by the Level
attribute in the column order rule:

column_order(StateId,ColumnId,ColumnName,0,-1):-

column_at_state(StateId,ColumnId,_,ColumnName,-1).

column_order(StateId,ColumnId,ColumnName,Level+1,PrevColumnId):-

column_order(StateId,PrevColumnId,_,Level,_),

column_at_state(StateId,ColumnId,_,ColumnName,PrevColumnId).

Which operations are dependent (or independent) on what opera-
tions? This is a key workflow-level provenance question that allows users to
understand how operations depend on each other across states. Since OpenRe-
fine operations primarily function at the column level, the dependency of a state
in our model is determined by the input columns used, and the output columns
produced by an operation. If an operation requires input from a column that a
prior another operation has modified, then the two operations are dependent. A
recursive query computes the desired lineage information:

state_lineage(StateId,AncestorStateId) :-

state_parent(StateId,AncestorStateId).

state_lineage(StateId,CommonAncestor) :-

state_parent(StateId,AncestorStateId),

state_lineage(AncestorStateId,CommonAncestor).

The base case uses the in out columns signature of operations:

state_parent(StateId,ParentStateId):-

in_out_columns(StateId,ChildColumn,CurrentColumn),

in_out_columns(ParentStateId,CurrentColumn,ParentColumn).

4 Relation to Other Provenance Models and Prior Work

DCM is a domain-specific provenance model for describing histories of data
cleaning workflows. As a custom provenance model it contains different levels of
abstraction: workflow-level information corresponds to prospective provenance,
while individual cell changes can be understood as retrospective provenance.
Even more importantly, changes happen simultaneously at different levels of
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granularity, ranging from the most fine-grained level of value changes of individ-
ual cells, via changes at the row - and column-level, all the way to transaction-
level changes of dataset snapshots. At the core of the W3C PROV model [1] are
the provenance relations wasDerivedFrom, used , and wasGeneratedBy . Using this
standard vocabulary, we can describe a state transition D

S� D′ at the snapshot

level in the obvious way, e.g., D
wdf��� D′, where wdf stands for wasDerivedFrom.

Similar PROV statements can be made for used and wasGeneratedBy relations
to describe the input and output dependencies of a step S relative to D and D′,
respectively. It should be clear, however, that there is no obvious single mapping
from DCM to PROV: depending on the user-perspective and level of abstraction
desired to describe the changes in a data cleaning workflow, several mappings
are possible, corresponding to the different “accounts” of the processing history,
according to the preferred perspectives and levels of granularity. One attempt
to combine these different perspectives would be to specialize the W3C PROV
vocabulary and introduce different “flavors” of dependency relations and differ-
ent subclasses of entities in the PROV model to create a rich, multi-perspective
extension of PROV.

It is well-known that the practical expressive power of a generic, domain-
independent provenance model such as W3C PROV can be significantly
increased by extending it with domain-specific concepts. For example by adding
prospective provenance that describes workflow-level information, the resulting
hybrid provenance models support queries that could not be answered using
retrospective provenance alone [3,4,18]. As shown in this paper, DCM extends
hybrid provenance models further by adding other domain-specific elements nec-
essary to describe data cleaning workflows, e.g., row-, column-, and cell-changes.

Other Data Cleaning Provenance Models
In prior work, McPhillips et al. [9] proposed a data cleaning model for OpenRe-
fine histories by representing columns, rows, cells, and values for each trans-
formation step using logic facts. This model allows users to ask meaningful
retrospective provenance questions about the data and schema changes of a
data cleaning workflow, or to reproduce the data snapshots associated with each
transformation step. Another prior work [8] shows how retrospective provenance
can be reconstructed via prospective provenance, combined with the harvesting
of existing information. This approach is somewhat similar to how we harvest
available OpenRefine information from internal project files. The present work
extends the earlier approaches by adding prospective provenance information
from the OpenRefine operation history, including the column and data depen-
dencies at each state to represent the overall data transformation workflow. This
additional information can be used to exhibit parallel workflow structures and to
explain the history of a cell by providing detailed accounts of cell value changes.
Another benefit of our current approach is that it has been implemented as a
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companion tool to OpenRefine which can automatically extract, transform and
load OpenRefine project artifacts into the DCM. Although we use OpenRefine
as our main example, our model can also be applied, mutatis mutandis, to other
data cleaning tools.

The work by Gibbins et al. [14] captures provenance from the OpenRefine UI
and uses this information to populate an OPM model [11]. This early work has
shown that dataset states and activities performed in OpenRefine can be queried
once they are represented in an OPM schema. In contrast to their work, we have
focused on automatically harvesting the information-rich existing OpenRefine
project files and load them into our custom provenance model DCM. Our tool is
an independent companion tool to OpenRefine and, unlike [14] does not depend
on, or interact with, the OpenRefine UI.

In [7] Lan et al. proposed a tool that can visualize OpenRefine operation his-
tories as workflows that show snapshot-level dependencies. Their work focuses on
workflow-level, prospective provenance, while we focus on multi-level retrospec-
tive provenance, enriched with workflow-level information to obtain a complete
data cleaning history, suitable for detailed provenance analysis.

5 Conclusions and Future Work

We have developed DCM, a data cleaning model for describing the processing
history and changes occurring in data cleaning workflows at multiple levels of
detail and abstraction. DCM has been implemented as part of the ORPE toolkit
and includes (1) a provenance harvester that can automatically extract, trans-
form, and load information from internal OpenRefine project files, and (2) a
provenance query module for specifying powerful ad-hoc queries (in Datalog or
SQL) and customizable provenance reports. The schema of DCM makes it easy
for users to express complex, hybrid provenance queries suitable for inspecting,
auditing, and validating histories from data cleaning workflows.

There are several improvements that we plan to consider in future work. For
example, we would like to leverage our data cleaning model for other data clean-
ing tools, e.g., specialized data preparation and cleaning workflows implemented
in (subsets of) Python and R. We are also considering to develop an API with a
graphical user interface that allows users to debug their data cleaning workflows
interactively. Finally, the rich structure of DCM seems to allow many, yet unex-
plored provenance queries and even more sophisticated provenance analytics. For
example, a system may recommend data cleaning steps based on a repository
of data cleaning workflows, or could highlight ineffective operations from the
current provenance data.
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Appendix A Sample Provenance Query Output

The following is a log of outputs for a set of SQLite demo-queries:

What is the name of the archive dataset ?

source_url = ipaw_2021_demo.tar.gz

source_format = OpenRefine Project File

How many data transformation steps are there in the dataset?

source_url = ipaw_2021_demo.tar.gz

num_steps = 10

How many cells affected for each transformation step with detail recipe for each operation?

state operation col_id cell_changes detail

---------- ---------- ---------- ------------ --------------------------------------

2 CellChange 1 1 {"id": 1616260511775, "description": "Edit s..."

3 MassCellCh 2 4 {"id": 1616260337198, "description": "Text t..."

6 RowRemoval 0 1 {"id": 1616261155430, "description": "Remove..."

6 RowRemoval 1 1 {"id": 1616261155430, "description": "Remove..."

6 RowRemoval 2 1 {"id": 1616261155430, "description": "Remove..."

Show the column schema changes from the step 7 to the step 8 (split column)!

state col_name

---------- ----------

7 Title

7 Date

7 Author

8 Title

8 Date

8 Author

8 Author 1

8 Author 2

Which columns are being renamed?

state = 1

col_id = 0

prev_col_name = Book Title

new_col_name = Title

state = 9

col_id = 3

prev_col_name = Author 1

new_col_name = Last Name

Which rows are being removed?

state row_id col_id col_name value_text

---------- ---------- ---------- ---------- ---------------------

6 3 0 Title Theory of Information

6 3 1 Author

6 3 2 Date 1992

Show dependency of step 4 or step 8!

state command dep_state dep_command

---------- ---------------- ---------- --------------

4 RowReorderChange 3 MassCellChange

8 ColumnSplitChang 2 CellChange

8 ColumnSplitChang 7 ColumnMoveChan
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Abstract. Computational notebooks have gained widespread adoption
among researchers from academia and industry as they support repro-
ducible science. These notebooks allow users to combine code, text, and
visualizations for easy sharing of experiments and results. They are
widely shared in GitHub, which currently has more than 100 million
repositories, making it the world’s largest host of source code. Recent
reproducibility studies have indicated that there exist good and bad
practices in writing these notebooks, which can affect their overall repro-
ducibility. We present ReproduceMeGit, a visualization tool for analyz-
ing the reproducibility of Jupyter Notebooks. This will help repository
users and owners to reproduce and directly analyze and assess the repro-
ducibility of any GitHub repository containing Jupyter Notebooks. The
tool provides information on the number of notebooks that were success-
fully reproducible, those that resulted in exceptions, those with different
results from the original notebooks, etc. Each notebook in the reposi-
tory, along with the provenance information of its execution, can also be
exported in RDF with the integration of the ProvBook tool.

Keywords: Jupyter notebooks · Reproducibility · GitHub ·
Visualization · Provenance · RDF

1 Introduction

Several large studies have emerged to analyze different aspects of Jupyter Note-
books, particularly from GitHub [1–3]. Rule et al. [1] analyzed over 1 million
publicly available notebooks from GitHub. The focus of their study was on the
exploration of the usage and structure of Jupyter notebooks, especially analyz-
ing the use of code, text, and comments inside the notebooks. Another recent
study by Pimental et al. [2] analyzed 1.4 million Jupyter notebooks from the
GitHub repositories created between January 1st, 2013 and April 16th, 2018.
They presented a detailed analysis of the quality and reproducibility of these
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notebooks. Their focus was not only on the structure of notebooks but also
on their execution and replication. Inspired by these works, we present Repro-
duceMeGit. With this online tool, users can examine any GitHub repository
and obtain an extensive analysis of different aspects of notebooks, including
their structure and reproducibility features. This tool provides a dashboard that
shows the statistics of the notebooks in a selected repository. It will execute the
notebooks and provide provenance information from the run, including modules
used and errors that occur during runs. This tool also provides direct access
to Binder [4] and ProvBook [5]. Binder is an open-source web service provided
by Project Jupyter to create shareable reproducible environments for Jupyter
Notebooks in the cloud. It captures the code repository with its technical envi-
ronment by creating containers and generates user sessions to run the notebooks
in those containers. ProvBook, an extension of Jupyter Notebooks, captures and
visualizes the provenance of the execution of the notebooks. By using ProvBook
in ReproduceMeGit, users can download the notebooks’ execution provenance
information in RDF.

2 ReproduceMeGit: An Overview

We present ReproduceMeGit, a visualization tool for analyzing different aspects
of Jupyter Notebooks, including their structure and reproducibility. The goal
of this tool is to provide an overview of the reproducibility of notebooks in a
selected repository by providing information on the number of notebooks that
were successfully reproducible, errors that occurred during runs, the difference
in the results from the original notebooks, provenance history of runs, etc. This
would help repository users and owners to better understand the different aspects
that impact the reproducibility of Jupyter Notebooks. With the help of metrics
and the provenance information collected from ReproduceMeGit, users would
be able to adopt good practices in writing Jupyter notebooks in the context of
reproducibility [6].

ReproduceMeGit is built on top of the work from [2]. ReproduceMeGit pro-
vides a user interface where users can provide a repository URL and reproduce
Jupyter Notebooks using a Reproduce button. The tool fetches the repository’s
content using the GitHub API, processes the repository, and scans it for Jupyter
Notebooks. It then loads the notebooks and extracts information on their struc-
ture, cells, modules, etc. In the next step, to execute these notebooks, the require-
ments for the environment setup are collected. The dependencies for the execu-
tion of these notebooks are commonly defined in the repositories using files like
requirements.txt, setup.py or pipfile. All the dependencies are installed using the
setup environment files collected from the repository. Conda, an open-source
package manager, and environment management system environment, is used to
install and manage the dependencies of Python packages. If the repository does
not provide any setup information, the tool installs all Anaconda1 dependen-
cies. Anaconda comes with more than 250 packages automatically installed, and
1 https://www.anaconda.com.

https://www.anaconda.com
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additional open-source packages can be installed from PyPI, Conda package, or
virtual environment manager. After setting up the environment, the notebooks
are executed using the Python version of the original notebook. Supported by
ProvBook, ReproduceMeGit stores the provenance information of the execution.
This information includes the start and end time of the cell execution, total exe-
cution time, and the source and result of each cell execution. The provenance
difference module in ProvBook helps users to compare their previous results with
the current ones. In [2], direct string matching is used to calculate the difference
between the execution of the original notebook from the repository and their
execution. In contrast, we use the nbdime [7] tool provided by Project Jupyter
to calculate the difference between the two executions. This is because nbdime
provides diffing of notebooks based on the content, especially for image-diffs.

Fig. 1. Visualizations of the analysis of reproducibility of Jupyter notebooks in Repro-
duceMeGit

Figure 1 depicts the GUI of the ReproduceMeGit tool. The tool shows the
highlights of the reproducibility study in the top panel and the respective
detailed analysis in the bottom panel. It displays the respective count of note-
books (un-)successfully finishing the executions. Out of the successfully executed
notebooks, it provides information on the number of notebooks that had the
same or different results compared to the original. For notebooks that failed
to execute, the tool shows the exceptions that occurred in their executions.
These exceptions include ImportError, ModuleNotFoundError, FileNotFoundEr-
ror, IOError, SyntaxError, etc. It also displays the information of the notebooks,
which provide output and execution count in their code cells. The execution
count is the cell identifier that denotes the count of the execution of the cell [8].
It also provides more analysis on the structure of the notebooks. It shows the
number of valid notebooks based on their nbformat, kernel specification, and
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language version. The distribution of the most common programming languages
and their version used in these notebooks are also shown in the tool.

The second panel provides detailed information on the repository, notebooks,
cells, modules, and executions. It displays the list of Python modules used in each
notebook to help users see which modules are commonly used in a repository.
In the Execution Overview tab, it provides information on which cell in the
notebook resulted in the difference in outputs. In case of failure in the execution
of a notebook, it shows the detailed message on the reason for the occurring
exception. ReproduceMeGit provides an export feature supported by ProvBook
to capture the prospective and retrospective provenance in RDF described by
the REPRODUCE-ME ontology [9]. The notebook data in RDF can be used
in combination with the experiments that used them and help to get a track of
the complete path of the scientific experiments. In our future work, we plan to
post the provenance information collected from ReproduceMeGit to the GitHub
repository to allow users to compare provenance between the original run and
later runs. In the User Interaction Overview tab, users can select the notebooks
and check how the cells in the notebooks are executed. Figure 2 shows how the
code cells are executed in a selected notebook in the repository. Users have the
option to select the code or other cells and check the execution order of code
cells.

Fig. 2. Visualization of how the code cells are executed in a selected notebook of the
repository
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3 Demonstration

In our demonstration, users will be able to provide the URL of any GitHub
repository containing Jupyter Notebooks and reproduce them. They will be able
to explore the results of ReproduceMeGit, including the overview of

– the GitHub repository and the Jupyter Notebooks available in it
– the reproducibility study
– the notebooks which had the same or different results
– the provenance of the execution of each notebook
– the modules used by each notebook
– the feature to export each notebook along with its provenance in RDF
– the provenance history and provenance difference using ProvBook
– the execution order of cells in each notebook in a repository

The source code and a demo video [10] of ReproduceMeGit with an example are
available online2.
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Abstract. We propose a novel method of assessing OpenStreetMap data using
the concept of Data Maturity. Based on research into data quality and trust in
user generated content, this is a set of measurements that can be derived from
provenance data extracted from OpenStreetMap edit history.

Keywords: VGI · OpenStreetMap ·Wikipedia

1 Introduction

The production of geographic data has traditionally been the purview of government
regulated institutions such as the Ordnance Survey and the US Geological Survey. The
World Wide Web has since given rise to Volunteered Geographic Information and now
the world’s most extensive geographic dataset is OpenStreetMap, also part of the user
generated content (UGC) phenomenon.

Geographic data has traditionally been used in science and academia, but the free
and open nature of OpenStreetMap has generated novel and often mission-critical use
cases among people with little understanding of or interest in ISO data standards. This
shift away from authoritative data sources and traditional paradigms of quality assurance
raises problems for geospatial data consumerswhomustmake informed trust judgements
in an ever-wider range of use cases. The move away from institutional accreditation
demands new forms of quality labelling to facilitate these decisions.

2 Maturity

Maturity is a stable stage in the lifecycle of some data when it no longer requires editing
except to reflect real world change. It has been studied in both Wikipedia [1–7] and
OpenStreetMap [8–15], and we draw on this research to propose provenance-based
metrics which are indicators of maturity.

2.1 Linus’s Law Maturity

A measure of how many people have “seen” a feature. It is characterised by the open
source maxim, “many eyes make bugs shallow” [16].

© Springer Nature Switzerland AG 2021
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• Edit Count:Number of versions of anOSMdata primitivewithin a grid cell normalised
by the number of primitives.

• Editor Count: The number of editors who influenced data within the cell.
• Average editors per feature: the number of agents who have edited any version of the
feature or any child features of that feature divided by the number of features in the
cell.

• Average edits per feature: the number of feature versions divided by the number of
features.

2.2 Currency

A measure of how recently editing activity has taken place, and how “up to date” data
is.

• Days since last update: The difference between the timestamp of the most recent
version of a data primitive within the cell, and now.

• Average days since Last Update: The average difference between the timestamp of
the most recent version of all primitives within the cell.

• New Edits: The number of edit versions within a cell with timestamps within one
months of the download date High values indicate high maturity.

2.3 Life-Cycle Maturity

Changes in edit frequency over the lifecycle of data have been studied in Wikipedia
and OSM, where the most mature data has a stable phase after a period of more intense
activity.

• Life-Cycle Edits: The number of edits that occurred in the last 20% of an artefact’s
lifetime divided by the total edits.

2.4 Volatility

Ameasure of the rate at which edits are retained. It is calculated by counting the number
of tags which are changed and then reverted to their previous state. A tag revert is defined
as a tag (a feature attribute) is edited and then returned to its previous state in a subsequent
edit.

• Tag Revert Count: The number of tag reverts in a cell.
• Revert Rate: The average number of tag reverts per feature.
• Transient Edit ratio derived from the number of edits to tags reverted to their previous
state within one month.
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2.5 Maintenance Edit Ratio

Amaintenance edit is defined as any edit to data that occurs after its creation, i.e. resulting
in a version number greater than 1.

• Maintenance ratio: the number of Maintenance Edits in a cell divided by the number
of Creation Edits in that cell.

3 Conclusions and Future Work

Using provenance data, we provide different measurements for each of these matu-
rity metrics to provide useful automated quality labelling of OpenStreetMap data. We
have developed a data analysis pipeline which discovers provenance graphs from Open-
StreetMap XML history data, using the PROV-DM, and stores this data as RDF triples.
Using research into user generated content. We have derived measurements of our matu-
rity metrics from this provenance data. In our preliminary work, we have extracted
OpenStreetMap provenance data using a hexagonal polygon grid and noted interesting
spatial clusters.

Fig. 1. Maps of the study area using hexagonal grid cells, showing the distribution ofmaintenance
ratio (left), and currency as days since last update (right)

We intend to build on this work using UK 2011 census output area polygons to
extract the data, which will enable investigation of potential geodemographic drivers for
the variations in our measurements.
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Abstract. Data preparation modules are ubiquitous and are used to
perform, amongst other things, operations such as record retrieval, for-
mat transformation, data combination to name a few. To assist scien-
tists in the task of discovering suitable modules, semantic annotations
can be leveraged. Experience suggests, however, that while such annota-
tions are useful in describing the inputs and outputs of a module, they
fail in crisply describing the functionality performed by the module. To
overcome this issue, we outline in this poster paper a solution that uti-
lizes semantic annotations describing the inputs and outputs of mod-
ules together with data examples that characterize modules’ behavior as
ingredients for querying data preparation modules. Data examples are
constructed using retrospective provenance of module executions. The
discovery strategy that we devised is iterative in that it allows scientists
to explore existing modules by providing feedback on data examples.

1 Introduction

Data preparation is a long-standing issue that has been the focus of considerable
body of work in industry and academia, and has gained recently momentum
with the rise of data-driven analyses and experiments in the Big Data era. It is
estimated that in average 80% of the tasks that compose a data-driven analysis
are dedicated to data preparation

Despite the impressive body of work in data management on data prepa-
ration tasks, it is recognized that there is not a single generic one-shop-stop
solution that can be utilized by the scientists to prepare their data prior their
analysis. Instead, data preparation tasks are numerous, can be difficult to gen-
eralize (e.g., data cleansing, data integration), and tends to vary depending on
the processing tasks at hand, but also on the semantic domains and the format
of the data subject to processing. As a result, scientists tend to develop their
own program/script using their favorite language, e.g., Python, R or Perl, to pre-
pare their data. This operation is time-consuming and recurrent since sometimes
the scientist has to redevelop data preparation scripts that s/he has previously
performed on the same or similar data.

c© Springer Nature Switzerland AG 2021
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To overcome the above problem, a number of researchers have been calling
for the creation of repositories dedicated to data preparation modules with the
view to save the time scientists spend on data preparation to allow them to focus
their effort on the analysis tasks. Examples of such repositories are BigGorilla1,
an open-source ecosystem for data preparation and integration, Bio.Tools2, a
catalogue which provides access to, amongst other things, services for the prepa-
ration of bioinformatics data, and Galaxy tools3.

In this poster, we set out to examine the problem of querying data prepara-
tion modules. Specifically, the objective is to locate a module that can be perform
a data preparation task at hand, if such a module exists. Semantic annotations
can be used to reach this objective [5]. A module is semantically annotated by
associating it to concepts from ontologies. Different facets of the module can
be described using semantic annotations, e.g., input and output parameters,
task and quality of service (QoS). In practice, however, we observe that most
of semantic annotations that are available are confined to the description of
the domain of input and output parameters of modules. Annotations specify-
ing the behavior of the module, as to the task it performs, are rarely specified.
Indeed, the number of modules that are semantically described with concepts
that describe the behavior of the module lags well behind the number of modules
that are semantically annotated in terms of the domains of the input and output
parameters, e.g., in BioTools. Even when they are available, annotations that
describe the behavior of the module tend to give a general idea of the task that
the module implements, and fall short in describing the specifics of its behavior.
For example, the modules in BioTools, which is a registry that provides informa-
tion about data preparation modules, are described using terms such as merging
and retrieving. While such terms provide a rough idea of what a module does,
they do not provide the user with sufficient information to determine if a it is
suitable for the data preparation at hand. The failure in crisply describing the
behavior of scientific modules should not be attributed to the designers of task
ontologies. Indeed, designing an ontology that captures precisely the behavior of
modules, without increasing the difficulty that the human annotators who use
such ontologies may face thereby compromising the usability of the ontology, is
challenging.

To overcome this issue, we outline in this poster a solution that utilizes
semantic annotations describing the inputs and outputs of modules together with
data examples that characterize modules’ behavior as ingredients for the discov-
ery of data preparation modules. Given a module m, a data example provides
concrete values of inputs that are consumed by m as well as the corresponding
output values that are delivered as a result. Data examples are constructed by
harvesting the retrospective provenance of modules’ executions. They provide an
intuitive means for users to understand the module behavior: the user does not
need to examine the source code of the module, which is often not available, or

1
https://www.biggorilla.org.

2
https://bio.tools.

3
https://galaxyproject.org/tools.

https://www.biggorilla.org
https://bio.tools
https://galaxyproject.org/tools
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Fig. 1. Data example.

the semantic annotations, which require the user to be familiar with the domain
ontology used for annotation. Moreover, they are amenable to describing the
behavior of a module in a precise, yet concise, manner. It has been shown in [2]
that data examples are an effective means for characterizing and understanding
the behavior of modules. We explore in this poster that data examples can also
be used to effectively and efficiently discover modules that are able to perform
a data preparation task of interest.

2 Data Model

A data-prepration module can be defined by the pair: m = 〈id, name〉, where
id is the module identifier and name its name. A module m is associated with
two ordered sets inputs(m) and outputs(m), representing its input and output
parameters, respectively. A parameter p of a module m is characterized by a
structural type, str(i), and a semantic type, sem(i). The former specifies the
structural data type of the parameter, e.g., String or Integer, whereas the lat-
ter specifies the semantic domain of the parameter using a concept, e.g., Protein,
that belongs to a domain ontology [3].

A data example δ that is used to describe the behavior a module m can be
defined by a pair: δ = 〈I, O〉, where: I = {〈i, insi〉} and O = {〈o, inso〉}. i (resp.
o) is an input (resp. output) parameter of m, and insi and inso are parameter
values. δ specifies that the invocation of the module m using the instances in I
to feed its input parameters, produces the output values in O. We use in what
follows Δ(m) to denote the set of data examples that are used to describe the
behavior of a module m.

Example 1. To illustrate how data examples can be used to understand a mod-
ule behavior, consider the module GetRecord, which has one input and one out-
put. Figure 1 illustrates an input instance that is consumed by GetRecord and
the corresponding value obtained as a result of the module invocation. By exam-
ining such a data example, a domain expert will be able to understand that the
GetRecord module retrieves the protein record that corresponds to the accession
number given as input.
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3 Generation of Data Examples

Enumerating all possible data examples that can be used to describe a given
module may be expensive or impossible since the domains of input and output
parameters can be large or infinite. A solution that can be used is to create data
examples that cover the classes of behavior of the module in question, and then
construct data examples that cover the classes identified. When the modules
are white boxes, then their specification can be utilized to specify the classes of
behavior and generate the data examples that cover each class (see e.g., [1]). If,
on the other hand, the modules are black boxes and their specification is not
accessible, then a heuristic such as the one described in [2] can be utilized.

Using the solution proposed in [2], to construct data examples that char-
acterize the behavior of a module m, the domain of its input i is divided into
partitions, p1, p2, . . . , pn. The partitioning is performed in a way to cover all
classes of behavior of m. For each partition pi, a data example δ is constructed
such that the value of the input parameter in δ belongs to the partition pi. A
source of information that is used for partitioning is the semantic annotations
used to describe module parameters. Indeed, the input and output parameters
of many scientific modules are annotated using concepts from domain ontologies
[4] (Fig. 2).

Fig. 2. Fragment of the myGrid ontology.

To generate data examples that characterize the behavior of a module m, m
is probed using input instances from a pool, the instances of which cover the
concepts of the ontology used for annotations. The retrospective provenance
obtained as a result of the module’ executions are then used to construct data
examples. In doing so, only module executions that terminates without issues
(that is without raising any exception) are utilized to construct data examples
for m. For more details on this operation, the reader is referred to [2].

It is worth stressing that while the domain ontologies used for describing
module behavior provides terms that vaguely describe the data transformation
carried out by the module, the domain ontologies used for describing module
parameters are much more elaborated. They often provide terms that capture
the domain of legal values of a module parameter in a precise manner. Examples
of such ontologies are the Gene Ontology4, the Microarray Gene Expression Data
Ontology5 and the Open Biomedical Ontologies6.
4 http://www.geneontology.org/.
5 http://mged.sourceforge.net/ontologies/MGEDontology.php.
6 http://obo.sourceforge.net/.

http://www.geneontology.org/
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4 Querying Modules

To discover a module, a user can provide data examples that characterize the
module s/he had in mind. However, specifying data examples that characterize
the desired module can be time-consuming, since the user needs to construct the
data examples by hand. We present in this section a method that allows users to
discover modules by simply providing feedback on a list of data examples they
are presented with.

4.1 Feedback-Based Discovery of Scientific Modules

To identify the modules that meet his/her needs, the user starts by specifying
the semantic domains and the structural types of the inputs and outputs of the
modules s/he wishes to locate. The modules with inputs and outputs that are
compatible with the specified semantic domains and structural types are then
located. Consider, for example, that the user is interested in locating a module
that consumes input values that belong to the semantic domain ci and structural
type ti, and produces output values that belong to the semantic domain co and
structural type to. A module m meets such a query if it has an input (resp.
output) with a semantic domain and structural type that are equivalent to or
subsumed by ci and ti (resp. co and to). Specifically, the set of modules that
meet those criteria can be specified by the following set comprehension (Fig. 3):

Fig. 3. Data examples and user feedback.

{m s.t. (∃ i ∈ inputs(m), (sem(i) � ci) ∧ (str(i) � ti))
∧ (∃ o ∈ outputs(m), (sem(o) � co) ∧ (str(o) � to))}

It is likely that not all the modules retrieved based on the semantic domain
of input and output parameters perform the task that is expected by the user.
Because of this, we refer to such modules using the term candidate modules.

To identify the candidate module(s) that perform the task expected by the
user, the data examples characterizing candidate modules are displayed to the
user. The user then examines the data examples and specifies the ones that meet
the expectations, and the ones that do not. To do so, the user provides feedback
instances. A feedback instance uf is used to annotate a data example, and can
be defined by the following pair uf = 〈δ, expected〉, where δ denotes the data
example annotated by the feedback instance uf, and expected is a boolean that
is true if δ is expected, i.e., compatible with the requirements of the user who
supplied uf, and false, if it is unexpected.
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4.2 Incremental Ranking of Candidate Modules

The discovery strategy we have just described can be effective when the number
of candidate modules and the number of data examples characterizing each can-
didate are small. If the number of candidate modules to be annotated and/or
the number of data examples used for their characterization are large, then the
user may need to provide a large amount of feedback before locating the desired
module among the candidates. Moreover, there is no guarantee that the set of
candidates is complete in the sense that it contains a module that implements
the behavior that meets user requirements. Therefore, the user may have to
annotate a (possibly) large number of data examples only to find out that none
of the candidates meet the requirements. Because of the above limitations, we
set out to develop a second discovery strategy with the following properties:

1. Ranking candidate modules: Instead of simply labeling candidate modules
as suitable or not to user requirements, they are ranked based on metrics
that are estimated given the feedback supplied by the user, to measure their
fitness to requirements. In the absence of candidates that meet the exact
requirements of users, ranking allows the user to identify the modules that
best meet the requirements among the candidate modules.

2. Incrementality: The user does not have to provide feedback annotating
every data example characterizing the candidate modules before being pre-
sented with the modules that best meet the requirements. Instead, given
feedback supplied by the user to annotate a subset of the data examples, the
candidate modules are ranked and the obtained list of candidates is shown to
the user. The list of candidates is incrementally revisited as more feedback
instances are supplied by the user.

3. Learning feedback: To reduce the cost in terms of the amount of feed-
back that the user needs to provide to locate suitable modules, new feed-
back instances annotating data examples that the user did not examine are
inferred based on existing feedback that the user supplied to annotate other
data examples.

5 Conclusions

We have outlined, in this poster paper, a solution for discovering data prepara-
tion modules. This is to our knowledge one of the few attempts in the state of
the art that investigates the use of data examples that have been harvested from
retrospective provenance of modules’ execution for improving module discovery.
We have shown how feedback provided by the user can be utilized to efficiently
navigate the space of candidate modules.
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4. Kuropka, D., Tröger, P., Staab, S., Weske, M. (eds.) Semantic Service Provisioning.

Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78617-7
5. Studer, R., Grimm, S., Abecker, A. (eds.): Semantic Web Services, Concepts, Tech-

nologies, and Applications. Springer, Heidelberg (2007). https://doi.org/10.1007/3-
540-70894-4

https://doi.org/10.1007/978-3-540-78617-7
https://doi.org/10.1007/3-540-70894-4
https://doi.org/10.1007/3-540-70894-4


Privacy Aspects of Provenance Queries

Tanja Auge(B), Nic Scharlau, and Andreas Heuer

University of Rostock, 18051 Rostock, Germany
{tanja.auge,nic.scharlau,andreas.heuer}@uni-rostock.de

Abstract. Given a query result of a big database, why -provenance can
be used to calculate the necessary part of this database, consisting of so-
called witnesses. If this database consists of personal data, privacy pro-
tection has to prevent the publication of these witnesses. This implies a
natural conflict of interest between publishing original data (provenance)
and protecting these data (privacy).

In this paper, privacy goes beyond the concept of personal data pro-
tection. The paper gives an extended definition of privacy as intellectual
property protection. If the provenance information is not sufficient to
reconstruct a query result, additional data such as witnesses or prove-
nance polynomials have to be published to guarantee traceability. Nev-
ertheless, publishing this provenance information might be a problem
if (significantly) more tuples than necessary can be derived from the
original database. At this point, it is already possible to violate privacy
policies, provided that quasi identifiers are included in this provenance
information. With this poster, we point out fundamental problems and
discuss first proposals for solutions.

Keywords: Provenance · Privacy

1 Privacy vs. Provenance

For us, the term privacy goes beyond the concept of (mostly personal) data
protection. Rather, we mean the protection of data in general. Reasons for the
protection of data can be economic ones (intellectual properties), since generat-
ing such data is often very time-consuming and expensive. The identification of
personal or internal company information should also be strictly prevented.

Since queries that occur in the context of projects can become arbitrar-
ily complex – simple selections and projections, even joins and aggregations –
the inversion of these queries is often not 100% possible or necessary. However,
using provenance enables us to perform this inversion as accurately as possible
[1]. This implies a natural conflict of interest between publishing original data
(provenance) and protecting these data (privacy), and it may be possible to
reconstruct parts of the source instance that contradict the privacy concepts
(see Fig. 1).
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Data 
Provenance

Query

Fig. 1. Motivation

Privacy refers to the protection of (personal) data against unauthorized
collection, storage, and publication. This becomes difficult if even the combi-
nation of apparently harmless attributes (quasi-identifiers) can lead to a clear
identification.

Data Provenance is concerned with the origin of a data analysis. This
analysis may be a database query using aggregation or selection. We distinguish
three provenance-questions answered by using the names of the source relations
(where), witness bases (why , [2]), or provenance polynomials (how , [5]), as
well as additional information which are sometimes necessary for reconstructing
concrete lost attribute values.

Privacy and Provenance conflicts have already been discussed in various
papers. For example, a formalization of security properties such as disclosure and
obfuscation is shown in [3]. Besides Data Provenance, there also exist other types
of provenance we need to face. At the workflow level, privacy and provenance
have already been investigated by [4].

2 Problems Using where, why and how

Data provenance can have different characteristics, generating different prove-
nance information and therefore different privacy problems.

Let us imagine a data set with personal data such as a university database.
It contains data about its students and staff, equipment and buildings, and
much more. A sensitive attribute w.r.t. privacy aspects is the Grade attribute in
the Grades relation storing the results of the exams. Instead of extracting the
exact grade for every exam, a query calculating the average grade per student
should be allowed to be performed by the university administration. Different
sub-databases can now be calculated depending on the choice of stored prove-
nance. Figure 2 shows the result tables extended to the original schema using
where-provenance (left), the extension to the exact number of tuples when
using why -provenance (center), or the representation of all individual grades
per student in the case of how -provenance (right). In all situations the Module
attribute can not be reconstructed. Hence, modules are reconstructed introduc-
ing null values (highlighted in gray).

These data can be reconstructed by where-, why - and how -provenance
with the techniques described in [1]. We will now consider the privacy aspects of
these results of the provenance queries: (1) Using where , there is generally not
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enough data worth protecting and reproducibility of the data is not guaranteed.
Data protection aspects are therefore negligible. If we interpret where as tuple
names and we save not only the scheme but the tuple itself, this can lead to
major privacy problems. However, this second where approach is subject of our
current work. (2) In the case of why -provenance, we may encounter privacy
problems, if the variance of the distribution of attribute values is equal to zero.
However, this only applies for special cases not known to the user interpreting the
results of the provenance queries. (3) How often calculates too much recoverable
information, so that privacy aspects are likely to be a major problem with this
technology.

Fig. 2. Possible provenance-based database reconstructions (red) including generaliza-
tion (blue) as solution approach (Color figure online)

3 Possible Solutions to the Privacy Problem

For solving the problems generated by the different provenance queries, we exam-
ined different approaches such as generalization and suppression, differential pri-
vacy, permutation of attribute values, and intensional (instead of extensional)
answers to provenance queries [6].

Intensional provenance answers represent one solution approach to combine
data provenance and privacy. It can be realized, e.g., by the generalization of
attribute values. The idea of generalization is shown in Fig. 2 by generalizing
the grade from a concrete number like 1.0 or 1.3 to a grade area of A (high-
lighted in blue). This results in a (hopefully acceptable) loss of information, while
approaching a solution to the privacy problem of protecting sensitive attribute
values.

Acknowledgments. We thank Goetz Graefe and Tom Ettrich for their support and
comments during the development of this work.
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Abstract. Exchange of research data and samples in biomedical
research has become a common phenomenon, demanding for their effec-
tive quality assessment. At the same time, several reports address repro-
ducibility of research, where history of biological samples (acquisition,
processing, transportation, storage, and retrieval) and data history (data
generation and processing) define their fitness for purpose, and hence
their quality. This project aims to develop a comprehensive W3C PROV
based provenance information standard intended for the biomedical
research domain. The standard is being developed by the working group
5 (“data processing and integration”) of the ISO (International Stan-
dardisation Organisation) technical committee 276 “biotechnology”. The
outcome of the project will be published in parts as international stan-
dards or technical specifications. The poster informs about the goals of
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the standardisation activity, presents the proposed structure of the stan-
dards, briefly describes its current state and outlines its future develop-
ment and open issues.

Keywords: Provenance · Biotechnology · Standardization

1 Introduction

Research in life sciences has undergone significant changes during recent years,
evolving away from individual projects confined to small research groups to
transnational consortia covering a wide range of techniques and expertise. At
the same time, several reports addressing the quality of research papers in life
sciences have uncovered an alarming number of ill-founded claims. The reasons
for the deficiencies are diverse, with insufficient quality and documentation of
the biological material used being the major issue [1–3]. Hence there is urgent
need for standardized and comprehensive documentation of the whole workflow
from the collection, generation, processing and analysis of the biological material
to data analysis and integration.

The PROV[4] family of documents serves as a current standard for prove-
nance information used to describe the history of an object. On the other hand,
as discussed in the results from EHR4CR and TRANSFoRm projects [5,6], its
implementation for the biotechnology domain and the field of biomedical research
in particular is still a pending issue. To address this, the International Standard-
isation Organisation (ISO) initiated the development of a Provenance Informa-
tion Model for Biological Specimen and Data standard defining the requirements
for interoperable, machine-actionable documentation intended to describe the
complete process chain from the source of biological material through its pro-
cessing, analysis, and all steps of data generation and data processing to final
data analysis.

The standard is intended for implementers and suppliers of HW/SW tools
used in biomedical research (e.g. lab automation devices or analytical devices
used for research purposes) and also for organisations adopting generated prove-
nance (e.g. to require or use standardised tools).

2 Goals of the Standard and Its Structure

The main goals of the standard are to (a) enable effective assessment of quality
and fitness for purpose of the objects provided, such as biological material and
data; (b) support reproducible research by exacting the capture of all relevant
information; (c) track error propagation within scientific results; (d) track the
source of biological material in order to prevent fabrication of data and enabling
notification of subjects in case of relevant incidental findings; (e) propagate with-
drawal of or changes to an informed consent along the process chain.

The proposed structure of the standard reflects the intention to interconnect
and integrate distributed provenance information furnished by all kinds of organ-
isations involved in biotechnology research. Examples of such organisations are
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hospitals, biobanks, research centers, universities, data centers or pharmaceuti-
cal companies, where each of them is participating in research, thus generating
provenance information describing particular activities or contributions.

In its current the standard is composed of the following 6 parts:

– Part 1 stipulates common requirements for provenance information manage-
ment in biotechnology to effectuate compatibility of provenance management
at all stages of research and defines the design concept of this standard;

– Part 2 defines a common provenance model which will serve as an over-
arching principle interconnecting provenance parts generated by all kinds
of contributing organisations and enable access to provenance information in
a distributed environment;

– Parts 3, 4 and 5 are meant to complement the horizontal standards (1)
and (2) as vertical standards defining domain specific provenance models
describing diverse stages or areas of research in biotechnology (e.g. sample
acquisition and handling, analytical techniques, data management, cleansing
and processing; database validation);

– Part 6 will contain optional data security extensions especially to address
non-repudiation of provenance.

The proposed structure is also depicted in Fig. 1. Parts indicated by red
boxes are considered as horizontal standards, i.e. providing a common basis
for provenance information at all stages of research. The blue boxes indicate
domain specific vertical standards build on top of the horizontal standards.

Sample
Acquisition,
Processing,

Transport, and
Storage

Provenance
(Part 3)

Data Generation
Provenance

(NGS, mass spec,
OME, . . . )
(Part 4)

Data Storage and
Processing
Provenance
(CWL, . . . )
(Part 5)

Provenance Information Management Requirements
(Part 1)

Common Provenance Model
(Part 2)

Security Extensions
(Part 6)

Fig. 1. Overall structure of the standard (Color figure online)

3 Current Status and Future Development

The standard is currently at an early stage of development. The PROV model
has been already used to define new types of provenance structures, called con-
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nectors, that are used to interconnect provenance generated by different orga-
nizations. The concept of the connectors and a common mechanism for bun-
dles versioning has been published as an EOSC-Life project provenance deliver-
able [7]. A publication describing use of the connectors at a specific use case is
under development at the moment and its pre-print will be published in summer
2021. Continuously, the model will be enriched by new types of structures (e.g.
relations, entities, etc.) to capture common objects. These structures will be
subsequently used to design provenance templates1 to define a common repre-
sentation of usual scenarios in life sciences. Further aspects will be also targeted.
The major focus areas are: opaque provenance components; privacy preserva-
tion and non-repudiation of provenance information; full syntactic and semantic
interoperability of provenance information captured; rigorous formal verification
process of provenance instance validity (provable compliance with the proposed
model).

Another publication describing the standardization process in a more detailed
way is under development. The publication will contain more detailed explana-
tion of our motivation and the standardization activity itself, more detailed
description of the standard structure, and finally, an important discussion on
openness of the standard and related issues.
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Abstract. Machine learning (ML) is an increasingly important scientific
tool supporting decision making and knowledge generation in numerous
fields. With this, it also becomes more and more important that the
results of ML experiments are reproducible. Unfortunately, that often
is not the case. Rather, ML, similar to many other disciplines, faces
a reproducibility crisis. In this paper, we describe our goals and ini-
tial steps in supporting the end-to-end reproducibility of ML pipelines.
We investigate which factors beyond the availability of source code and
datasets influence reproducibility of ML experiments. We propose ways
to apply FAIR data practices to ML workflows. We present our prelim-
inary results on the role of our tool, ProvBook, in capturing and com-
paring provenance of ML experiments and their reproducibility using
Jupyter Notebooks. We also present the ReproduceMeGit tool to ana-
lyze the reproducibility of ML pipelines described in Jupyter Notebooks.

Keywords: Machine Learning · Reproducibility · Provenance ·
FAIR · ReproduceMe-ML

1 Introduction

Over the last few years, advances in artificial intelligence and machine learn-
ing (ML) have led to their use in numerous applications. With more and more
decision making and knowledge generation being based on ML, it becomes
increasingly important, that ML experiments are reproducible. Only repro-
ducible results are trustworthy and a suitable basis for future work. Unfortu-
nately, similar to other disciplines, ML faces a “reproducibility crisis” [1–3]. In
this paper, we investigate which factors contribute to this crisis and propose first
solutions to address some of them. We have conducted an initial study among
domain experts for a better understanding of the requirements for reproducibility
of ML experiments. Based on the results from the study and the current scenario
in the field of ML, we propose the application of FAIR data practices [4] in end-
to-end ML pipelines. We use the ontologies to achieve interoperability of scientific
c© Springer Nature Switzerland AG 2021
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experiments. We demonstrate the use of ProvBook to capture and compare the
provenance of executions of ML pipelines through Jupyter Notebooks. Tracking
the provenance of the ML workflow is needed for other scientists to understand
how the results are derived. Along with the provenance, the version for each
provenance item needs to be maintained for the end-to-end reproducibility of an
ML pipeline. We also demonstrate the use of ReproduceMeGit to analyse the
factors that impact reproducibility of ML pipelines.

2 The Situation: Characteristics of Machine Learning
Experiments and Their Reproducibility

An ML pipeline consists of a series of ordered steps used to automate the ML
workflow. Even though the general workflow is the same for most ML experi-
ments, there are many activities, tweaks, and parameters that are involved which
require proper documentation. Pineau et al. [5] present Machine Learning Repro-
ducibility checklist as part of improving reproducibility in ML research. We con-
ducted an internal study among 15 domain experts to understand what is needed
to achieve reproducibility of ML experiments. We asked questions regarding the
reproducibility of results, the challenges in reproducing published results and
the factors required for describing experiments for reproducibility in the field of
ML. We present here some relevant challenges and problems faced by scientists in
reproducing published results of others: (1) Unavailability, incomplete, outdated
or missing parts of source code (2) Unavailability of datasets used for training
and evaluation (3) Unavailability of a reference implementation (4) Missing or
insufficient description of hyperparameters that need to be set or tuned to obtain
the exact results (5) Missing information on the selection of the training, test
and evaluation data (6) Missing information of the required packages and their
version (7) Tweaks performed in the code not mentioned in the paper (8) Missing
information in methods and the techniques used, e.g., batch norm or regulariza-
tion techniques (9) Lack of documentation of preprocessing steps including data
preparation and cleaning (10) Difficulty in reproducing training of large neural
networks due to hardware requirements. All the participants mentioned that if
ML experiments are properly described with all the entities of the experiments
and their relationships between each other, it will benefit them not only in the
reproducibility of results but also for comparison to other competing methods
(baseline). The results of this survey are available online1.

3 Towards a Solution: Applying FAIR Data Principles
to ML

The FAIR data principles not only apply to research data but also to the tools,
algorithms, and workflows that lead to the results. This aids to enhance trans-
parency, reproducibility, and reuse of the research pipeline. In the context of the
1 https://github.com/Sheeba-Samuel/MLSurvey.

https://github.com/Sheeba-Samuel/MLSurvey
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current reproducibility crisis in ML, there is a definite need to explore how the
FAIR data principles and practices can be applied in this field. In this paper,
we focus on two of the four principles, namely Interoperability and Reusability
which we equate with reproducibility. To implement FAIR principles regarding
interoperability, it is important that there is a common terminology to describe,
find and share the research process and datasets. Describing ML workflows using
ontologies could, therefore, help to query and answer competency questions like:
(1) Which hyperparameters were used in one particular run of the model? (2)
Which libraries and their versions are used in validating the model? (3) What
is the execution environment of the ML pipeline? (4) How many training runs
were performed in the ML pipeline? (5) What is the allocation of samples for
training, testing and validating the model? (6) What are the defined error bars?
(7) Which are the measures used for evaluating the model? (8) Which are the
predictions made by the model?

In previous work, we have developed the REPRODUCE-ME ontology which
is extended from PROV-O and P-Plan [6]. REPRODUCE-ME introduces the
notions of Data, Agent, Activity, Plan, Step, Setting, Instrument, and Materials,
and thus models the general elements of scientific experiments required for their
reproducibility. We extend this ontology to develop ReproduceMe-ML to include
ML concepts which scientists consider important according to our survey. We
also aim to be compliant with existing ontologies like ML-Schema [7] and MEX
vocabulary [8]. With ReproduceMe-ML ontology, the ML pipeline developed
through Jupyter Notebooks can be described in an interoperable manner.

4 Achieving Reproducibility Using ProvBook

Building an ML pipeline requires constant tweaks in the algorithms and models
and parameter tuning. Training of the ML model is conducted through trial and
error. The role of randomness in ML experiments is big and its use is common in
steps like data collection, algorithm, sampling, etc. Several runs of the model with
the same data can generate different results. Thus, repeating and reproducing
results and reusing pipelines is difficult.

The use of Jupyter Notebooks is rapidly increasing as they allow scientists to
perform many computational activities including statistical modeling, machine
learning, etc. They support computational reproducibility by allowing users to
share code along with documentation and results. However, the surveys [9] on
Jupyter Notebooks point out the need of provenance information of the execution
of these notebooks. To overcome this problem, we developed ProvBook [10].
With ProvBook, users can capture, store, describe and compare the provenance
of different executions of Jupyter notebooks. This allows users to compare the
results from the original author with their own results from different executions.
ProvBook provides the difference in the result of the ML pipeline from the
original author of the Jupyter notebook in GitHub with the result from our
execution using ProvBook. Even though the code and data remain the same in
both the executions, there is a subtle difference in the result. In ML experiments,
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users need to figure out the reason behind different results due to modification
in data or models or because of a random sample. Therefore, it is important
to describe the data being used, the code and parameters of the model, the
execution environment to know how the results have been derived. ProvBook
helps in achieving this reproducibility level by providing the provenance of each
run of the model along with the execution environment.

5 Analysing Reproducibility Using ReproduceMeGit

Jupyter Notebooks play an important role in data science and machine learning
research with the development and wide adoption of libraries like Scikit-Learn,
Pandas, Tensorflow, and PyTorch in recent years. They provide an ideal environ-
ment for exploratory data analysis and ML Engineering. These notebooks which
are used as tutorials or for sharing results to the scientific community are widely
saved in repositories like GitHub2, Zenodo3, etc. Recent studies have pointed
out the good and bad practices in writing Jupyter Notebooks that can impact
reproducibility [9]. To help users analyze the reproducibility of ML pipelines
shared using Jupyter Notebooks in GitHub, we present ReproduceMeGit [11]. It
is a visual analytic tool for analyzing the reproducibility of Jupyter Notebooks.
With this tool, we aim to help repository users and owners to reproduce and
directly analyze and assess the reproducibility of any GitHub repository contain-
ing Jupyter Notebooks. It provide provenance information on different aspects
that impact reproducibility. This information includes the number of notebooks
that were successfully reproducible, those that resulted in exceptions, those with
different results from the original notebooks, the different libraries and modules
used in the ML pipeline, etc. With this tool, the users can see which errors are
caused, for example, ImportError, ModuleNotFoundError, FileNotFoundError,
IOError, SyntaxError, etc., and which cell caused the difference from the original
result. Each notebook in the repository along with the provenance information
of its execution can also be exported in RDF described using the REPRODUCE-
ME ontology with the integration of ProvBook.

Acknowledgments. The authors thank the Carl Zeiss Foundation for the financial
support of the project “A Virtual Werkstatt for Digitization in the Sciences (K3)”
within the scope of the program-line “Breakthroughs: Exploring Intelligent Systems”
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Abstract. This proposed demonstration introduces ProvViz [9], an
intuitive in-browser PROV editor and visualiser that targets both users
familiar and unfamiliar with the syntax of PROV documents. The layout
of the editor is composed of a text-editor and an interactive visualiser
which is also released as a standalone UI component on the Node Package
Manager (NPM) registry (https://npmjs.org/provviz).
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1 Introduction

PROV [7] was standardised in 2013 and since then can demonstrate some high-
profile and impactful deployments, as discussed in [4]. However, adoption still
requires significant effort, in terms of creating provenance, storing provenance
or analysing provenance. Thus, any tool that lowers the adoption threshold is
welcomed. Our focus in this demonstration is on an editing and visualization
tool, ProvViz, which does not require any software to be pre-installed by the
user, and allows PROV documents to be constructed and explored in any of the
serializations it supports.

This document outlines the related work and proposed demonstration, and
concludes by discussing the significance and applications of the ProvViz system.
A thorough report of the ProvViz design and implementation can be found in [9].

2 Background and Related Work

A variety of related work exists which aims to visualise data provenance.
Provenance Explorer [1] is a standalone Java-based desktop application that

visualises RDF provenance data, with an emphasis on security features that pro-
duce a variety of views based on a user’s access privileges. It focuses exclusively
on provenance events associated with laboratories or manufacturing.
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Prov Viewer [3] is also a standalone Java-based desktop application, with
the aim of enabling visual exploration of PROV documents. The application
facilitates filtering nodes and edges, zooming and panning to navigate the graph,
basic visualisation editing functionality, and merging multiple provenance graphs
into a single visualisation. The GUI of the application presumes prior knowledge
of the PROV ontology, and no modification functionality is implemented.

AVOCADO [8] is another visualisation tool which generates provenance visu-
alisations based on data flows with the goal of assisting the reproducibility of
bioinformatic workflows by allowing the user to introspect the provenance visu-
ally. It supports very large provenance graphs through clustering methods.

More general-purpose tools such as the ProvToolBox Java library [5] and
the prov Python library [2] also implement provenance visualisation generation
functionality, producing an SVG image for a corresponding PROV document.

In general, existing provenance visualisation tools focus on scientists as their
target users because of the important role provenance plays in the scientific
discovery process as a means of reproducing and peer-reviewing experimental
procedures. None of the applications are directed towards beginners who may
simply want to interact with existing PROV documents to learn more about
the standard and how it can be used. Some of the applications are targeted
towards specific domains (Provenance Explorer and AVOCADO), and most
require downloading and installing software packages on a desktop computer
before they can be used. The applications that support the PROV data model
focus on provenance visualisation, and do not facilitate intuitive editing func-
tionality relying on the user to manually modify the underlying PROV document
if they wish to do so, hence requiring familiarity with PROV document syntax.

Table 1. Comparison between ProvViz and existing provenance visualisation systems

System Requires Software
Installation

Domain-Free Intuitive Editing
Functionality

Provenance
Explorer [1]

Yes No No

Prov Viewer [3] Yes Yes No

AVOCADO [8] No No No

ProvViz No Yes Yes

As illustrated by Table 1, what sets the ProvViz application apart from the
related work is its aim to be an introductory tool for the PROV data model,
providing an easy-to-use user interface that enables intuitive PROV editing and
visualisation functionality without requiring the user to modify the PROV doc-
ument directly. In addition usage of the ProvViz application does not require
downloading or installing any software, and can be used for free at https://
provviz.com.

https://provviz.com
https://provviz.com
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3 Demonstration

The proposed demonstration serves as a walk-through of the primary function-
ality provided by the ProvViz application. The following sections outline the
topics covered by the demonstration in order.

3.1 Loading a PROV Document

First the primary methods of loading a PROV document into the editor will be
demonstrated. This includes loading a previous or example document, uploading
a document, or creating a new empty document. Supported PROV document
formats include PROV-N, PROV-JSON, TriG, PROV-XML and Turtle. When
a PROV document is loaded, it is displayed in the ProvViz editor view, which
is pictured in Fig. 1.

Fig. 1. ProvViz editor view of an example PROV document

3.2 Modifying a PROV Document

The majority of the demonstration will consist of demonstrating the PROV edit-
ing functionality made available in the editor view of the ProvViz application
(Fig. 1). The layout of the editor view is comprised of a text-editor and a visu-
aliser component. The PROV document can be modified directly by interacting
with the text-editor. The visualiser component can be used to interact with the
visualisation (by panning, zooming, or selecting visualisation items), and make
PROV document modifications intuitively. Supported intuitive PROV editing
functionality includes:
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– creating or removing Entities, Activities, Agents, Bundles and relationships,
– editing the global and Bundle specific namespace declarations,
– editing the identifier of an Entity, Activity, Agent or Bundle,
– editing the PROV attributes of an Entity, Activity, Agent or Bundle,
– moving Entities, Activities and Agents from one Bundle to another, and more.

The majority of editing functionality can be accessed by selecting an Entity,
Activity, Agent, Bundle or relationship, which opens a tabbed inspector compo-
nent that provides information and editing functionality related to the selected
item. Figure 2 illustrates an example inspector tab of a selected Entity, where
its identifier, attributes and outgoing relationships can be intuitively modified.

3.3 Visualising a PROV Document

Next the visualisation editing functionality will be demonstrated, which includes:

– modifying the colour and shape of Entities, Activities and Agents,
– displaying a specific provenance view (Responsibility, Data Flow or Process
Flow View), and

– filtering the Entities, Activities, Agents, Bundles, relationships and names-
paces displayed in the visualisation.

Fig. 2. ProvViz visualiser inspector tab for an Entity
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3.4 Exporting the PROV Document and Visualisation

Finally, the functionality available for exporting the modified PROV document
and visualisation will be demonstrated.

4 Discussion

The ProvViz application has the potential to fulfil a significant role in the PROV
tooling ecosystem. It provides intuitive PROV editing and visualisation func-
tionality well-suited for those already familiar with the PROV ontology as well
as beginners, in a free-to-use browser-based application. Making PROV models
more accessible in this way would not only promote the PROV data modelling
standard, but data provenance as a whole.

The source code for the ProvViz web application is available in the GitHub
repository https://github.com/benwerner01/provviz-web and is deployed as a
live service at https://provviz.com. The source code for the visualiser UI com-
ponent is available at https://github.com/benwerner01/provviz, where its latest
release is published as an NPM package at https://npmjs.com/package/provviz.
We welcome forks and contributions to this project.

There are opportunities to expand the functionality of ProvViz as follows.
Edits of the layout could be allowed and saved as part of PROV documents,
themselves. ProvViz could be extended to support the editing of provenance
templates [6], with dedicated functionality related to templates, such as template
variables and template control parameters. Cloud storage providers could be
integrated into ProvViz as a further method of uploading and saving PROV
documents.
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Abstract. Curated scientific databases play an important role in the
scientific endeavour and support is needed for the significant effort that
goes into their creation and maintenance. This demonstration and case
study illustrate how curation support has been developed in the Links
cross-tier programming language, a functional, strongly typed language
with language-integrated query and support for temporal databases. The
chosen case study uses weekly released Covid-19 fatality figures from the
Scottish government which exhibit updates to previously released data.
This data allows the capture and query of update provenance in our
prototype. This demonstration will highlight the potential for language-
integrated support for curation to simplify and streamline prototyping
of web-applications in support of scientific databases.

1 Introduction

Curated scientific databases take significant human effort to develop and then to
maintain [2]. These databases are crucial in providing knowledge bases for science
to proceed and users of the data need to be able to trust in their contents. One
way to support this trust is for users to be able to review provenance information.

We consider update provenance [2] as a specific use case, based on the
fact that regularly released datasets can include updates to previously released
datasets, and our case study is based on data that has been released weekly by
the Scottish government on Covid-19 deaths [8].

We are developing a prototype curation interface using Links1, a cross-tier
programming language with language-integrated query that is being extended
with experimental temporal database features [3].

Both the prototype and Links’s temporal features are works-in-progress, and
as we develop the interface, we are considering the more general issues that
would apply to any curated scientific databases where update provenance is to
be captured using temporal databases.

2 Links

Links is a cross-tier programming language developed at the University of Edin-
burgh [3]. It is cross-tier in the sense that it allows a developer to write a single
1 https://links-lang.org/.
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type-checked program which that can then be executed efficiently on multi-tier
Web architectures. Typically, a web application consists of three distinct appli-
cations coded in different languages: HTML and JavaScript for the browser, a
different language for the application logic and SQL for the database queries,
leading to complex coordinating issues. Links provides a single language in which
to implement these three aspects, thus simplifying the development process. For
our curation interface, the built-in translation to JavaScript completely abstracts
away the details and there is no JavaScript code in the source Links program.

Furthermore, Links supports language-integrated query whereby database
queries can be written in Links itself resulting in safe and efficient queries. In
particular when writing database-related code, the support provided by type
inference for row types in Links makes referring to the fields of interest in a
table while abstracting from the others straightforward. This leads to compact
and readable programming style. Links requires the types of the database tables
to be declared explicitly in the program, which enables checking of language-
integrated queries and supports the temporal query transformations. This adds
some work at the beginning and if there is schema evolution, work is needed re-
synchronize these declarations. Support for schema evolution in Links is a future
area of research. Links currently supports PostgreSQL, MySQL 5.x and SQLite
3. Links covers a wide range of SQL but some aspects are ongoing research such
as support for set and bag semantics [9].

In terms of use for curated scientific databases, IUPHAR/BPS Guide to
PHARMACOLOGY (GtoPdb) [1] has been reimplemented in Links as a case
study to demonstrate that Links is suitable for this task both in terms of func-
tional correctness and performance [4]. However, because of its size and complex-
ity, GtoPdb is not a good candidate for exploring the strengths and weaknesses of
Links’s new temporal support; instead in this demonstration we present the cur-
rent Covid-19 curation prototype, which is the next step in developing curation
functionality for this type of database in Links. We consider both the interface
as the end product, and how the development of the interface is supporting by
the features of Links.

3 Temporal Databases

Temporal databases provide the ability to record when a row in a table is valid,
either with respect to the database itself using a transaction time period, or
with respect to the real world using a valid time period [5]. We can use this
functionality to track the validity of the data items that are updated. Figure 1
illustrates how an update differs between a standard database on the left, and
a temporal database on the right. In the former, the data is replaced and the
previous values are lost. However, in the temporal case, additional columns to
record the start and end of the time period of validity form part of the key
and allow previous values to be recorded. The interpretation of the validity is
dependent on the particular application.

Although temporal extensions to SQL have been standardized [6], many cur-
rent popular relational database implementations have no built-in support for
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Fig. 1. Standard database update (left) compared with temporal database update
(right)

temporality, although it is possible to implement temporal tables by the use
of explicit additional fields and complex hand-generated SQL queries [10]. In
comparison, Links now provides support for transaction-time tables and valid-
time tables, allowing both sequenced (taking time period into account) and non-
sequenced queries over these tables. This is achieved by interacting with a stan-
dard relational database such as PostgreSQL, using the approach currently pro-
vided by Links for generating standard queries and translating temporal queries
into standard queries as described above [10], thereby avoided the need for the
application developer to generate these complex SQL statements. An example
is given in the next section.

4 Curation Functionality

To investigate how to develop curation functionality in Links, we choose a dataset
that raised questions of interest around updating of data. To set the context for
discussion of the type of queries that can be considered, we first provide more
information about the data we used in implementing the prototype.

4.1 The Case Study

We identified data that was released weekly by the Scottish Government through
the National Records of Scotland website [8], as suitable and interesting for
the prototype exploration. Each week, since early in the pandemic a spread-
sheet (as a CSV file and Excel document) has been released (amongst other
data) with counts of Covid-19 fatalities for individual weeks and data categories
including sex, age, health board, local authority, and location. An example of
a data category is “Location of death” and its subcategories are “Care Home”,
“Home/Non-institution”, “Hospital” and “Other institution”. Our application
supports upload of this CSV data and its transformation into a temporal table
as illustrated in Fig. 2.

4.2 Provenance-Based Queries

One of the aims of this research is to identify the queries that are interesting for
update provenance. An obvious query is how an individual data item has changed
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Fig. 2. Uploading new data

over time, but other potential queries include finding out whether one category
of data has changed more often than another. Dependency is also relevant: are
the changes of a data item associated or correlated with changes in other data.

Examples of queries that the interface can support (or will support in the
future):

1. What was the number of female fatalities in the week of 20 April 2020 when
that data was first uploaded

2. What is the current number of female fatalities in the week of 20 April 2020?
3. What is the range of female fatalities in the week of 20 April 2020 over all

uploads?
4. Which updates to female fatalities were rejected and when?
5. Have there been more updates to female fatalities or male fatalities consider-

ing all weeks?
6. Which health board has seen most updates in the first six months of the

pandemic?
7. How are updates for the Lothian health board figures correlated with those

for the local authority of Edinburgh?

4.3 The Prototype Curation Interface

The interface has been developed using the Bootstrap HTML, CSS and
JavaScript library. We present two screenshots illustrating the functionality of
the prototype interface in Fig. 3. The left-hand figure shows updates for a specific
week that have arisen in a subsequent week. By grouping them together, a user
is able to assess the consistency of this update2. These updates can be accepted
or rejected together, or each can be considered individually in the context of
other updates to that data item.

2 The dataset has the feature that it contains counts for categories that subsume other
categories. We decided to capture all categories rather than just the minimal ones
to support checking for inconsistencies.
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Fig. 3. Screenshots: decision making (left) and provenance (right)

The following shows the Links code which updates the main table of fatalities
from a table of accepted updates for counts relating to the Lothian health board.

for (x <-- AcceptedUpdates)

[update sequenced (y <-v- CovidDeaths)

between (valid_from_date ,forever ())

where (x.week==y.week && x.category =="Lothian")

set (count = x.new_value , file_id=x.new_id)]);

The double arrows, <-- and <-v-, indicate iteration over the rows of the
named tables, with <-v- indicated that the table is a temporal table. The keyword
sequenced indicates that this update should result in the modification of one
record and the insertion of a new record as illustrated in Fig. 1. To write this
query in SQL for a non-temporal database would be more complex, requiring
explicit updates and insertions.

The right-hand screenshot in Fig. 3 shows a provenance query on a single
data item. For the updates on this data item, it is possible to see the updates in
the context of other updates that occurred in the same week. Other provenance
queries can be done on data categories (such as queries 5, 6 and 7 above), and a
similar approach can be applied to weeks. The final menu item allows for queries
such as query 4.

The prototype has taken around 120 h to develop to date, approximately 1
person month of effort by the first author, who was not previously familiar with
Links. It consists of around 1800 lines of Links code, as well as supporting CSS
and JavaScript code. Reuse of existing code will make the implementation of
additional queries less time-consuming.

5 Conclusion

We have developed a prototype curation interface in Links to demonstrate and
investigate curation functionality for a selected dataset with interesting features
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relating to data update. Links, as a cross-tier programming language, has pro-
vided a typed and functional language for implementing all of the appearance
of the web interface (using the Bootstrap library), the logic of the interface and
querying of the database.

By using Links, we have avoided the need to code temporal features in SQL
for databases without temporal features, to transition to a database such as
MariaDB [7] which has temporality, or to deal with the integration errors that
occur during conventional web development using SQL.

Another option would be to use a temporal middleware/stratum translator
that maps temporal SQL queries to plain ones [11]. This requires the same kind
of information about the database schema that Links requires, but does not
provide the advantages of language integration and type checking that we get
from Links.

We have successfully created an interface that supports a number of queries
and further work involves determining how to support the generation of a cura-
tion interface with an arbitrary database schema where selected tables have
temporal features.
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(grant number 682315) and by an ISCF Metrology Fellowship grant provided by the
UK government’s Department for Business, Energy and Industrial Strategy (BEIS).
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1 Laboratoire Univers et Théories, Observatoire de Paris, Université PSL, CNRS,
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Abstract. We present here a provenance management system adapted
to astronomical projects needs. We collected use cases from various astron-
omy projects and defined a data model in the ecosystem developed by the
IVOA (International Virtual Observatory Alliance). From those use cases,
we observed that some projects already have data collections generated
and archived, from which the provenance has to be extracted (provenance
“on top”), and some projects are building complex pipelines that automat-
ically capture provenance information during the data processing (capture
“inside”). Different tools and prototypes have been developed and tested
to capture, store, access and visualize the provenance information, which
participate to the shaping of a full provenance management system able
to handle detailed provenance information.

Keywords: Astronomy · Provenance · Virtual observatory

1 Context

Astronomical observatories and data providers are increasingly involved in the
development of Open Science. The process of making data FAIR1 (Findable,
Accessible, Interoperable and Reusable) often has to be integrated early in the
development of astronomical projects. Since more than 20 years, the IVOA2

(International Virtual Observatory Alliance) provides various standards to foster
interoperability and enable the production of FAIR data.

The Reusable principle is more subjective and requires rich metadata to
demonstrate the quality, reliability and trustworthiness of the data. Detailed
1 https://www.go-fair.org/fair-principles.
2 https://www.ivoa.net.
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provenance is thus a key information to provide along with the astronomical data.
The IVOA validated in April 2020 a Provenance Data Model [9] to structure
this information. It is based on the W3C PROV concepts of Entity, Activity and
Agent [4] with a dedicated set of classes for activity description (e.g. method,
algorithm, software) and activity configuration (e.g. parameters).

2 Requirements and Current Perception of Provenance

Several use cases have been discussed within the IVOA and the European
ESCAPE project [8]. Astronomical projects that produce data generally develop
structured pipelines, scripts and specific methodologies to prepare data products
for the end-user from raw data (acquired from observations or generated by sim-
ulation).

Key information on what processes were applied and how they were per-
formed is thus relevant to the end-user and could be captured directly during
the process (capture “inside”). For older or other projects, a posteriori metadata
extraction from data/metadata/logs (provenance “on top”) can also provide sim-
ilar information, with the risk of missing details and links. We often realize too
late that there are missing elements or links in the provenance, this is why the
capture of the provenance should be as detailed as possible and as naive as possi-
ble (simply record what happens). In any case, the granularity of the provenance
has to be adapted from one project to another.

2.1 Basic Handling of Provenance

Fig. 1. Basic handling of provenance information.

In general, the perception in the community is that provenance information is
easily stored with the data, as a set of keywords recorded in the header of a
data product file. This is represented in Fig. 1. This perception is particularly
strong in astronomy with the large adoption of the FITS (Flexible Image Trans-
port System) file format [10], that provides a human readable header based on
keywords.
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2.2 Last-Step Provenance

The complex modeling of provenance information makes it improper to be stored
as a flat list of keywords, as provenance is better represented by a graph, based
on chains of activities and entities that are used and generated. We thus define
the full provenance as this graph, up to the raw data, and the last-step mini-
mum provenance as an embedded list of keywords [8]. The last-step provenance
contains information on: the entity itself, one contact agent, the last activity
that generated this entity. It also contains identifiers of other used and gen-
erated entities. All this information is compatible with the IVOA Provenance
data model. Such a last-step provenance can thus be stored in a file header, and
should moreover enable the reconstruction of the full provenance through the
recursive exploration of used entities.

3 A Provenance Management System

If a basic handling of provenance information may be sufficient for some projects,
it is necessary to build a more advanced provenance management system that
stores this information separately, as files or in a database. Such a system is
composed of the following parts:

1/ Capture “inside”: provenance information is recorded during the execution
of a pipeline that runs various processing steps, generates intermediate data
files...

2/ Ingestion: the captured information is transported in a structured format
that can be parsed and managed.

3/ Storage: the ingested information is then safely stored in a database that
preserves its logic.

4/ Visualization and exploration: the full provenance can be queried and
visualized.

3.1 Tools, Prototypes and Protocols

Several tools have been developed in relation with the IVOA Provenance data
model. They are the bricks to build a full provenance management system able
to handle detailed provenance information:

– voprov3: This Python package extends the W3C PROV compatible prov
package to implement the IVOA Provenance data model. It provides a way
to create a ProvDocument object and exchange it as an XML, JSON or
graphical file.

– logprov4: This Python package captures provenance events when running
Python functions or methods that are specifically decorated and defined.
Those events are recorded through the logging system as structured dictio-
naries, and can then be transformed using voprov. This package was initially
developed with the high level interface of the gammapy package [3].

3 https://github.com/sanguillon/voprov.
4 https://github.com/mservillat/logprov.

https://github.com/sanguillon/voprov
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– ProvSAP: a Simple Access Protocol that returns a W3C PROV file from
a regular GET query on an HTTP endpoint. Arguments can be passed,
such as: ID, DEPTH (ALL/1...), DIRECTION (FORWARD/BACKWARD),
RESPONSEFORMAT (PROV-SVG/PROV-JSON...), MODEL (IVOA/
W3C), AGENTS (0/1), CONFIGURATION (0/1), DESCRIPTIONS
(0/1/2), ATTRIBUTES (0/1). This system if for example implemented in
the OPUS job manager5 [7] and in other tools [5].

– ProvTAP: IVOA Table Access Protocol using ADQL for queries and a TAP
Schema, itself based on the IVOA Provenance data model [1]. It’s a reverse
mechanism to locate data through queries on its provenance. Every feature
of the model instantiated in the TAP service can then be explored. This
approach enables queries to test the data quality, based on the analysis of
parameters of some key activities. It is also possible to recompute datasets
whose progenitors have been found erroneous.

3.2 Description of the System

Fig. 2. Provenance management system.

As shown in Fig. 2, the IVOA Provenance Data Model (ProvDM) is implemented
as a relational database and connected to an access service based on the IVOA
Table Access Protocol (ProvTAP) [1]. A Simple Access Protocol (ProvSAP) is
also being specified within the IVOA to provide directly W3C PROV files, using
the voprov package.

In the system, provenance information is exchanged via structured logs, W3C
PROV files (XML, JSON) or graphs (SVG, PNG). The voprov and logprov

5 https://voparis-uws-test.obspm.fr/provsap?ID=a9b7e2.

https://voparis-uws-test.obspm.fr/provsap?ID=a9b7e2
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packages are being developed to propose a generic solution to the implementa-
tion of the system, along with project-specific capture tools (e.g. ctapipe6 or
CTADIRAC7 in the context of the Cherenkov Telescope Array [6]). The Visual-
ization & Exploration subsystem is based on standards to foster interoperability
and the reuse of existing tools.

Different implementations based on this schema are possible to adapt the
provenance management to the needs and size of the project.

3.3 Extraction “On Top”

A last block in Fig. 2 (labelled 5/) indicates the use case of already existing
data from which provenance can be extracted and ingested in the system. In
many astronomy projects, some provenance information can be extracted from
file headers, or from log files. Such an extraction would be more efficient if
embedded provenance information were stored in a standard list of keywords
such as the last-step provenance list (see Sect. 2.2).

4 Software and Reproducibility

Depending on the project, the workflow executed to produce science ready data
(the final products) can be extracted from the provenance system designed fol-
lowing the IVOA strategy. For each activity execution, the input and output
entities and the configuration parameters are recorded, as well as a representa-
tion of the ActivityDescription class, where the software name, version, docu-
mentation, etc., are traced. To be fully reproducible, we envisage to access such
coding blocks through the ActivityDescription class by pointing to a code repos-
itory. This can be set up as a dictionary of codes within a specific project, as
in the CTA pipeline or other under development projects such as Euclid, LSST,
etc.

Software can also be shared within the community and curated in code reg-
istries, such as the Software Heritage [2], or the astronomy dedicated software
published in ASCL8 (Astrophysics Source Code Library), or for multi-messenger
astronomy, the future ESCAPE OSSR project9.

Many astronomical projects deal with large amounts of data and require
increasing computation power. This has pushed forward the development of
science platforms that implement the code-to-the-data strategy. In this new
computing and distributing architecture, rich metadata profiles to describe the
provenance of datasets and the code applied to process them, is a key for repro-
ducibility and interoperability.

6 https://cta-observatory.github.io/ctapipe.
7 https://gitlab.cta-observatory.org/cta-computing/dpps/CTADIRAC.
8 http://ascl.net.
9 https://wiki.escape2020.de/index.php/WP3 - OSSR.

https://cta-observatory.github.io/ctapipe
https://gitlab.cta-observatory.org/cta-computing/dpps/CTADIRAC
http://ascl.net
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Abstract. Industrial Internet of Things (IoT) systems are becoming
increasingly complex with interconnected field devices. To cope with the
complexity and to facilitate further interoperability between heteroge-
neous field devices, it is necessary to have a holistic understanding of
different types of provenance information about field devices and asso-
ciated processes. In this paper, we investigate the potential integration
of such provenance with the W3C Web of Things and current industrial
standards to realize more explainable, efficient, and safer industrial IoT
systems.

Keywords: Web of Things · Industrial IoT · OPC UA · Thing
description · Semantic web · Provenance

1 Introduction

The Internet of Things (IoT) is a key enabler for the integration of control and
automation processes in a wide variety of industrial sectors adding flexibility,
robustness, and responsiveness to industrial automation systems [7]. A principle
called “separation of concerns” draws the boundary between the information
technology (IT) and the operational technology (OT) allowing functional mod-
ularity by isolating responsibility. However, with increased connectivity among
heterogeneous field devices and software components in complex (industrial) IoT
systems, convergence of IT and OT is required to orchestrate the whole automa-
tion execution. For instance, to examine to what extent a particular manufactur-
ing process increases the degradation of a field device and its maintenance cost, a
factory manager would need the following provenance information: Where is the
yield report for the process located? ; What control logic was used? ; Which field
devices are involved? ; and What is the context of these devices, and how do they
relate to one another on the shop floor?. Since these questions stretch across dif-
ferent levels of abstraction and also conflate IT and OT concerns, it is necessary
to have a holistic understanding of industrial IoT systems, which, importantly,
includes different types of provenance information about field devices and asso-
ciated processes in the automation system.
c© Springer Nature Switzerland AG 2021
B. Glavic et al. (Eds.): IPAW 2020/IPAW 2021, LNCS 12839, pp. 250–255, 2021.
https://doi.org/10.1007/978-3-030-80960-7_21
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Fig. 1. Relationship between the types of provenance proposed in [3] with the layers
of the automation pyramid.

In Fig. 1, we show the well-known ISA-95 automation pyramid [1] for indus-
trial automation systems, where the upper three layers are dominated by IT
concerns and the lower two are dominated by OT concerns. We observe that
different types of provenance are generated on different layers of the automa-
tion pyramid, and propose a mapping of these layers to the provenance types
proposed by [3]. Based on this observation, we propose to integrate provenance
information across the automation pyramid by linking it to current research
and standardization efforts in the Web of Things (WoT) domain. Concretely,
we claim that the W3C WoT Architecture [6] is useful to overcome this separa-
tion with its platform-neutral environment to integrate cross-vendor and cross-
domain IoT applications. In the W3C WoT Architecture, descriptive metadata
for IoT devices and services is serialized into machine-understandable Thing
Descriptions (TDs) [5] that allow clients to interact with heterogeneous thing-
provided services by providing metadata about interactions, including protocol
bindings, based on a vocabulary.

2 Provenance and Field Devices

In the following, we address four types of provenance information that are defined
in [3] and adapt these for field devices based on the W3C WoT Architecture:
(i.) provenance metadata (metadata describing an arbitrary derivation process
for provenance information), (ii.) information system provenance (information
pipeline that enables capturing and dissemination of information in the IT lay-
ers), (iii.) workflow provenance (provenance about the workflow in the OT lay-
ers), and (iv.) data provenance (provenance information of events to/from field
devices).
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2.1 Provenance Metadata

Provenance metadata is the most general type of information that encompasses
the derivation process for any possible provenance information related to a field
device. To describe an arbitrary provenance information derivation process for
a field device, Interaction Affordances of TD can be utilized. The Interaction
Affordances suggests a WoT client how it can interact with event, function, and
state of the thing with three sub-types: EventAffordance, ActionAffordance,
and PropertyAffordance, respectively. The TD context can be extended with
semantic annotations with vocabularies defined in industrial knowledge bases,
and a rich set of Semantic Web tooling allows to adapt an arbitrary data model
for provenance data. In particular, a knowledge base such as the SOSA ontol-
ogy [4] can be used to align the data provenance from field devices with other
ontologies (e.g., W3C PROV-O), and to elicit implicitly hidden domain knowl-
edge on the provenance information derived from field devices, which can then
be shared among industrial IoT applications at different layers. Meanwhile, com-
puting such provenance in a real-time context requires a seamless information
exchange between field devices and applications.

2.2 Information System Provenance

Information system provenance refers to metadata about information-
disseminating processes within an information system, and such provenance
usually belongs to the IT layer. As described in Fig. 1, such information-
disseminating processes can be observed between different levels in industrial
automation systems. For example, a Supervisory Control and Data Acquisition
(SCADA) system at the supervision level monitors and aggregates the infor-
mation collected from the control level underneath. The SCADA system then
exchanges the information with a Manufacturing Execution System (MES) at
the management level to provision the underlying automation systems and also
to coordinate the manufacturing process with the business planning, such as an
alignment with the demanded Key Performance Indicator (KPI). To facilitate
the information exchange in industrial IoT systems, the Open Platform Commu-
nications (OPC) foundation defines the OPC Unified Architecture (OPC UA)
specification [8] as a communication framework for automation components.

OPC UA is used for an information system to aggregate complex information
as Objects in an address space which can be accessed with defined OPC UA
Services [9] . The interactions between the OPC UA Services could be exploited
for constructing the information system provenance by collecting inputs, outputs,
and configurations of the services. However, the OPC UA Service definitions are
abstract descriptions and do not represent a specification for implementation.
This opaqueness of the OPC UA Services makes it difficult to investigate internal
information processing, which may degrade the quality of the information system
provenance. In other words, the information system provenance can be observed
within the OPC UA silo, but transitive provenance discovery into the OPC UA
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Services may be blocked. Consequently, this would decrease the transparency
during the information disseminating process capturing.

To improve the transparency, we need to describe and expose the internal
logic of the OPC UA Services for external IoT applications, such as a WoT
client. Nevertheless, whether or not this can be achieved depends on how the
service is actually implemented, i.e., in what programming language, in what
framework, and on what platform. Hence, the investigation of the OPC UA
Service implementation is required while further specification may be desirable.

2.3 Workflow Provenance

Whereas the information system provenance resides mostly in the IT layers,
workflow provenance predominantly involves information in the OT layers. For
the development, operation, and maintenance of an automation system, field
devices are usually first configured “offline” and the logical configurations will
be validated against their physical representative in a real deployment, such as
their form factors and (spatial) locations. These properties are individual to each
instance of field devices and are essential for the field-level elucidation in tracing
the physical source of data, e.g., where and how a device is installed includ-
ing the physical wiring topology and spatial constraints. Such descriptions are
referred to as offline engineering information, and they are often represented in
various data formats, e.g., Computer-aided Design (CAD) models, electrical and
mechanical planning, Programmable Logic Controller (PLC) programming, and
models of the human-machine interface. These formats and information models
are defined and maintained by a number of vendors and domain standardization
groups1, and the OPC UA Companion Standards extend the OPC UA Device
Information Model (DI) [10] for enhanced interoperability among different indus-
trial domains.

Once the offline engineering is completed, field devices establish communica-
tions with other automation components in the system. The OPC Field Level
Communication (FLC) initiative2 has been recently established to standard-
ize the semantics and behaviors of field devices and controllers from different
manufacturers. The OPC FLC is planning to extend the existing DI model for
the management of different types of communication modes (e.g., Client/Server,
PubSub) conforming within the required QoS. However, since it is extending
the DI model, that information also needs to be accessed through the OPC UA
Services. To semantify the field level communications for workflow provenance,
the TD can also be extended to the future FLC specification. In the WoT archi-
tecture, Protocol Bindings define the mapping between affordance and concrete
protocol message. Although, only an HTTP binding is currently standardized [5],
further development is expected to support field level industrial protocols such
as OPC UA and NETCONF for Time-Sensitive Networking (TSN) [13].

1 https://opcfoundation.org/markets-collaboration/.
2 https://opcfoundation.org/flc/.

https://opcfoundation.org/markets-collaboration/
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For example, the control logic (e.g., machining of a metal rod by a turn-
ing machine) is written as a program inside the PLC, and can be described in
Automation Markup Language3 with the companion specification for the OPC
UA object model , and an OPC client application is able to query the control
logic as workflow provenance. The engineering of the control logic can also be
translated into a formalism (e.g., a UML state machine). This formalism then can
be represented by Semantic Web technology, such as Web Ontology Language
(OWL), and reasoning on the ontology realizes automated formal verification of
the control logic for safety and reliability of the system [12]. In the verification
process, the TD for field devices can be treated as an entity in the OWL ontol-
ogy. Therefore, integration of the OPC DI model and the TD would enhance the
interoperability between field level automation components (i.e., field devices)
in the OT layers and the industrial IoT applications in the IT layers.

2.4 Data Provenance

In order to complete a specific task, a controller may provide commands and set
point information to a field device, which then reports feedback after completion,
or even coordinates further activities with other devices. Current industry trends
expect more and more field devices to provide a rich set of information, and IT
layer applications to extract and derive meaning from the data directly, without
needing to go through the controllers.

From the viewpoint of the shop floor, every field device is a functional entity
that consumes input data and produces output data. Instances of such data
inputs and outputs are handled as events in industrial IoT systems. These events
to/from field devices represent specific transient occurrences, such as device con-
figuration changes, operational instructions, or individual sensor readings. They
can also be instantiated as Object instances in OPC UA with the OPC UA
DI model. A separate specification called Historical Data Access provides access
to the historical values in Object instances, and allows the user to query the
data within a specified time range. However, in a practical scenario, it is more
convenient to store and access these data in a well-known storage, but this also
requires translation of (tabular) data from databases into meaningful object-
property forms in OPC UA [2].

To facilitate access to such events to/from field devices for the industrial IoT
applications (including those non-compliant with OPC UA), we propose that
EventAffordances of the W3C WoT TD could be utilized to capture the events
in the OPC UA systems, and to allow WoT clients to directly interact with data
stores that are external to the OPC UA. The TD would also allow subscription
to events and retrieval of data for Web-based IoT applications while maintaining
compatibility with the DI model, using a formal mapping between OPC UA and
the Semantic Web [11], for example.

3 https://www.automationml.org/.

https://www.automationml.org/
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3 Conclusion and Outlook

Concepts from research on the Web of Things and from current standardization
efforts within the W3C Web of Things have the potential to support the integra-
tion of provenance information across different layers of industrial IoT systems.
Such integration would promote the convergence of IT and OT so that we can
create more intelligent industrial IoT applications, which are not restricted by
the IT/OT boundary. We believe that an important step is the semantic inter-
operability for existing technologies and standards in the industrial IoT. With
respect to the integration of provenance information, this has the potential to
make complex industrial IoT systems more explainable, efficient, and also safer.

References

1. ANSI: ANSI/ISA 95.00.01-2010 (IEC 62264–1 Mod). Standard, ANSI, May 2010
2. El Kaed, C., Ponnouradjane, A.: A model driven approach accelerating ontology-

based IoT applications development. In: SEMANTICS Workshops (2017)
3. Herschel, M., Diestelkämper, R., Ben Lahmar, H.: A survey on provenance: what

for? what form? what from? VLDB J. 26(6), 881–906 (2017). https://doi.org/10.
1007/s00778-017-0486-1

4. Janowicz, K., Haller, A., Cox, S.J., Le Phuoc, D., Lefrançois, M.: SOSA: a
lightweight ontology for sensors, observations, samples, and actuators. J. Web
Semant. 56, 1–10 (2019). https://doi.org/10.1016/j.websem.2018.06.003
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Abstract. Whilst the need to record and understand the evolution
of data, together with the processes and users associated with those
changes, is now widely appreciated, the uptake of solutions to these issues
remains slow. Data provenance techniques have the potential to provide
such an understanding, but their use is often considered a specialist activ-
ity, requiring detailed knowledge of standards such as W3C PROV. In
this work, we introduce ProvIt, a suite of tools designed to lower the
barriers to entry for the use of provenance technology. We demonstrate
the utility of ProvIt by using it to add provenance capabilities to the
Jupyter IDE, in order to provide insight into the tools used by a group
of researchers analysing a COVID-19 dataset.

Keywords: Software toolkit · COVID-19 · Data analytics

1 Introduction

It is often desirable to record the impact of user interactions on the data in
a system for future analysis. However, traditional logging tools, which typically
operate at a conceptually low level, are not well suited to capturing this informa-
tion. Instead, data provenance, which is able to capture richer information, must
often be looked to. Despite its utility, the use of data provenance is often consid-
ered a specialist task, which includes formalising the underlying representation
(such as a provenance template [1]), extracting relevant provenance information
from a system in order to populate these representations, and querying the data
collected to understand prior actions.

To make the use of data provenance more intuitive, we introduce ProvIt, a
set of tools that allow provenance capabilities to be added to an existing software
system, without requiring developers to have prior experience of the field. ProvIt
consists of the following components: a graphical authoring tool for the visual
construction of provenance templates; a set of client libraries to support the
extraction and storage of relevant provenance data; and a server-based query
template system allowing for questions to be asked of the stored provenance
data in an intuitive, high-level way.

c© Springer Nature Switzerland AG 2021
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2 ProvIt

To introduce and demonstrate the utility of ProvIt, in the following sections we
detail how it can be used to add provenance capabilities to Jupyter. Jupyter is a
web-based IDE, where code, and associated plaintext, is organised into individual
notebooks, and further segmented into a number of different cells, each of which
can be executed in a REPL-like manner, using one of a number of underlying
kernels (e.g. Python)1. JupyterHub is a version of the IDE with multi-user access.
Jupyter(Hub) is often used by groups of researchers to work with data science
tools in order to derive results for publication. Therefore, in order for individual
research methodologies to be reproducible, the use of these tools must be suitably
recorded. As such, Jupyter is a common test bed for different provenance tools
(e.g. [5]). Once provenance capabilities are added to Jupyter, we validate ProvIt
by showing how it enables the tools used by a set of researchers analysing a
COVID-19 patient dataset to be effectively captured.

2.1 Provenance Authoring Webapp

To specify which provenance data is to be captured from within Jupyter, we
construct a set of provenance templates using the first component of ProvIt, a
graphical provenance authoring webapp (PAW).

Fig. 1. Import template constructed with PAW

1 https://jupyter.org.

https://jupyter.org


258 M. Chapman et al.

Fig. 2. Completed import template

PAW allows users to draw provenance documents as graphs, by dragging
and dropping elements and relations, and then entering annotations. It has a
mode that presents the attributes commonly used when defining templates, and
supports multiple output formats. The user interface of the webapp is written
in JavaScript, using the JointJS framework. The backend is written in Java
and uses ProvToolbox to provide format interoperability. PAW does not require
knowledge of a particular PROV syntax, and lets users define templates as they
would with pen and paper, allowing more complex designs to be expressed more
quickly, more easily and with fewer mistakes. The ability to prototype and itera-
tively develop templates in this fashion is a core feature of ProvIt, as it provides
a way for the non-specialist to generate formal descriptions of domain-specific
actions of interest to be recorded, and so enhance the usefulness of the prove-
nance trace produced. Figure 1 shows one of our templates under construction
that represents a user importing a software library into their notebook. The
completed template is shown in Fig. 2.

2.2 Template Service Clients

To extract provenance data from Jupyter, we use the second component of
ProvIt, a template service client. ProvIt provides clients spanning a number of
different languages, and in this instance we select the Python client. The client
allows users to associate each variable in a template with one or more regular
expressions, each of which is used by the client to derive identifier and data values
from system outputs – in this case the content of a Jupyter notebook whenever
it is saved or one of its cells is executed. Each expression is associated with an
action and a parameter, which define how the client should derive the required
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values once the expression is matched. For example, to extract the name of a
library imported into a notebook for the import template (vvar:libraryName,
Fig. 2), we supply the first two expressions shown in Table 1 to process Python
and R notebooks, respectively. Each of these expressions is associated with an
extract action, indicating to the client that once the expression is matched, it
should extract the value present in the numbered capture group identified by the
stored parameter (3 and 2, respectively) in order to identify the library name.
Similarly, to identify the language used by a given notebook for the import
template (vvar:language, Fig. 2), we supply the second two expressions shown
in Table 1. This time, each of these expressions is associated with a text action,
indicating to the client that once the expression is matched, the library language
is the stored parameter itself (Python and R, respectively).

Table 1. Regular expressions used to determine values for template substitutions

Variable Expression Action Parameter

LibraryName (from\s(\S)\s)?import\s([ ˆ\s#\\,]+)+ Extract 3

LibraryName library\((’|")?([ ˆ\s,’"\)]+) Extract 2

Language (from\s(\S)\s)?import\s([ ˆ\s#\\,]+)+ Text Python

Language library\((’|")?([ ˆ\s,’"\)]+) Text R

Once each variable is associated with a value, the client automatically creates
a substitution from these values, by inferring information from the template to
which they relate, such as whether an element relates to an identifier or a value
variable, and whether a variable appears within an iterable template zone. For
each substitution that is constructed, the client creates a git commit in a local
repository containing the system output it received (the notebook content). This
is then referenced in the substitution, in a fashion akin to [2].

2.3 Query Templates

Once a substitution is constructed, it is forwarded by the client to the template
service application (TSA) originally described in [3]. The application stores both
provenance templates, and the provenance documents generated from submit-
ted substitutions, in one of several interchangeable persistence backends (e.g.
Neo4j2). The TSA exposes a message-queueing interface which, using a message
broker (RabbitMQ3), ensures that the collection of provenance data does not
impact the runtime of the target system, in this case Jupyter, even under high
request load.

The TSA is presented as a part of ProvIt with the addition of query tem-
plate support, which allows users to express queries using the same syntax as
2 https://neo4j.com.
3 https://www.rabbitmq.com.

https://neo4j.com
https://www.rabbitmq.com
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Fig. 3. Example query template

a standard, capture template. Query templates are used to find matching sub-
graphs within provenance documents and return the corresponding instantiating
substitutions for identifiers and values of interest. Figure 3 shows such a tem-
plate, which expresses a query that returns the names of users who imported
the Python pandas library, together with the name of the notebook containing
that import. This approach allows users to analyse the captured provenance data
without requiring knowledge of the underlying storage backend.

3 COVID-19 Analytics

To confirm that ProvIt enables provenance data to be effectively captured, we
used the provenance-enabled Jupyter IDE4 to capture data relating to the note-
books produced by a team of 10 researchers analysing a COVID-19 dataset
between April 2020 and February 2021 at King’s College London. The dataset
consisted of 1468 patients who tested positive at Guy’s and St. Thomas’ NHS
Foundation Trust (GSTT). In total, 923 substitutions were constructed based on
changes in notebook state, with an example capturing library import information
shown in Fig. 4.

Figure 4 shows the state of two separate Jupyter notebooks, InitialExplo-
ration and DescriptionStatistics. Each of these notebooks is associated with a
save activity, connecting the notebook with an author (Author1 and Author2,
respectively) and a commit, as well as an import activity, which identifies the
libraries imported by each notebook within this snapshot. Here, we can see
several examples of key (queryable) reproducibility information captured. For
example, we can see the software tools imported, who they were imported by

4 https://github.com/kclhi/jupyter.

https://github.com/kclhi/jupyter
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Fig. 4. Tools used by researchers against the COVID dataset

and, when this substitution is combined with others, the order in which they were
imported. We can also see common libraries (numpy and pandas), connecting
the actions of different authors.

4 Conclusion

In this work we introduce ProvIt, a set of tools that enable provenance capabili-
ties to be added to a system by non-specialists. To demonstrate ProvIt, we use it
to add provenance capabilities to the Jupyter IDE. Using our provenance author-
ing webapp (PAW), we graphically construct a set of templates that represent
data of interest in Jupyter. We then supply a set of regular expressions to our
template service client, to enable it to extract values from Jupyter’s outputs and
construct substitutions for each template. These substitutions are then stored
in our template service application (TSA), which facilitates intuitive queries via
the use of query templates. To validate the provenance capabilities added to
Jupyter by Provit, we use it to capture key reproducibility information relating
to the actions of a group of researchers analysing a COVID-19 dataset.

Future work will further validate ProvIt by using it to add provenance capa-
bilities to different systems. In particular, we will focus on those scenarios (such
as the use of clinical decision support systems) where trust in the provenance
trace produced is key, and consider how ProvIt might play a role in establishing
this trust. For example, ProvIt might support the creation of non-repudiable
evidence stores [4].
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1 Introduction

A growing number of journal publishers verify computational artifacts as part
of the peer-review process [9]. Although the problems of defining and achieving
computational reproducibility have proved troublesome generally [2], the partic-
ular issues publishers aim to detect in this context are well defined. Questions
that representative publishers answer via verification workflows include:

• Is the description in the text and supplementary materials sufficient to enable
others to repeat the reported computations?

• Does repeating the computations yield the reported results?

Platforms such as Binder [4] and Whole Tale [1] provide environments
for assessing reproducibility of computational artifacts by these standards via
approaches analogous to black-box testing of the reported computational work-
flow. A verifier (i.e. a person carrying out the verification workflow) uses informa-
tion provided in the paper to (1) set up the required computational environment;
(2) stage input data; (3) trigger a sequence of automated computations; and (4)
allow these computations to run to completion. The verifier then confirms that
the products of the computations match the description in the paper.

Whole Tale further aims to enable verifiers to observe aspects of how auto-
mated computational workflows produce intermediate and final artifacts. Ulti-
mately this will allow publishers to ask a third general question:

• Is the authors’ description of the roles played by various software components
consistent with the observed flow of data through those components?

This will provide verifiers with capabilities analogous to white-box testing
of the computations reported in a paper. Specifically, it will enable a verifier to
detect cases where the sequence of computational steps and flow of data between
these steps does not conform to the description given in the paper. Here we
demonstrate the tools Whole Tale is using or developing for this purpose.

Work supported by NSF Award OAC-1541450.
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2 The CPR Toolkit

The Comprehensible Provenance Record (CPR) Toolkit is a suite of tools for
recording, storing, querying, and visualizing the provenance of artifacts produced
by a run of a computational workflow. As the name suggests, a key objective of
the toolkit is to make provenance easily comprehensible, not to systems program-
mers, but to practitioners of a research domain seeking to understand how the
computational artifacts associated with a study in that domain were obtained.

While the primary purpose of CPR at present is to automate the monitoring
and management of provenance-relevant events and records associated with a
Whole Tale recorded run, the toolkit can be deployed in any Linux-based com-
puting environment and used to capture, query, and reason about provenance of
computational artifacts produced in that environment.

CPR employs ReproZip [7] to observe system calls invoked as part of the
recorded run and to record metadata about (1) the operating-system level pro-
cesses comprising the overall computation; (2) the files accessed by these pro-
cesses; and (3) the access mode for file accesses, i.e. whether processes opened
files for reading, writing, or both. ReproZip captures and records all of this infor-
mation in a SQLite database with a schema specific to ReproZip.

Once a recorded run is complete, the cpr command-line utility extracts these
OS-level records from the ReproZip trace, transforms them into RDF triples, and
loads the triples into an RDF dataset in an instance of Blazegraph1. The triples
are expressed using a vocabulary developed to represent provenance information
in the context of Whole Tale recorded runs (Fig. 1).

provone:Execution

prov:Activity

rdfs:subClassOf

wt:TaleRun

rdfs:subClassOf

os:Process

 rdfs:subClassOf 

os:childProcessOf

 wt:runProcess 

os:Directory

os:hadWorkingDirectory

os:ProgramFile

os:executionOf

os:File

rdfs:subClassOf rdfs:subClassOf

os:DataFile

 rdfs:subClassOf 

prov:Entity

provone:Data

rdfs:subClassOf

 rdfs:subClassOf 
rdfs:subClassOf

 os:read 
 os:wrote 

 prov:used 

 prov:generated 

provone:Program

rdfs:subClassOf

wt:TaleRunScript  wt:runScript 

provone:Workflow

rdfs:subClassOf

prov:Plan

rdfs:subClassOf

prov:Association

prov:qualifiedAssociationprov:hadPlan

os:Path os:hasPath 

provone:wasPartOf

rdfs:subPropertyOf

provone:wasPartOf

Fig. 1. Relationship of key elements of the CPR vocabulary to classes and properties
defined by the PROV and ProvONE vocabularies.

1 https://github.com/blazegraph/database.

https://github.com/blazegraph/database


A Comprehensible Provenance Record for Verification Workflows 265

The CPR vocabulary extends PROV2 and ProvONE [3] with subclasses spe-
cific to Whole Tale to unambiguously represent run-time provenance records
captured from multiple recorded runs and distinct versions of a particular Tale.
CPR can represent this vocabulary either as Datalog facts or as RDF triples.
Because Blazegraph provides an eager reasoner, all triples implied by the sub-
class relationships are generated automatically when loading a CPR trace into
Blazegraph. Consequently, a CPR trace, asserted using the CPR vocabulary, can
be queried in terms of the PROV and ProvONE vocabularies without using a
reasoner at query time.

The CPR toolkit and vocabulary recognize the distinct roles played by partic-
ular files during a run. A simple YAML file is used to declare a run profile that
associates roles with individual files, particular directories, or entire directory
trees. Using these declarations while converting a ReproZip trace to the CPR
vocabulary, the toolkit is able to distinguish data files of scientific significance
from, e.g., shared libraries associated with the operating system or provided by
software dependencies, and automatically mask these (often numerous) files in
queries and visualizations by default.

Finally, the Geist3 report-templating tool is used to pose SPARQL queries
against the Blazegraph instance, to format the query results as reports, and
to create visualizations of query results using Graphviz. Geist queries, reports,
and visualizations may be parameterized. In Whole Tale we plan to create a
predefined set of reports and visualizations following each recorded run.

3 Demonstration

The CPR demo is provided as a Git repository4 and associated Docker image
that enable the examples to be run on Linux, macOS, and Windows-based sys-
tems that have Git, Docker, and GNU Make installed. Each example uses the
CPR toolkit to record OS-level provenance information from a run of a different
computational workflow, to load a Blazegraph instance with the resulting CPR
trace, and to produce a set of reports and visualizations via SPARQL queries.

A Makefile in the top directory of the demo repository provides targets for
pulling the Docker image from Dockerhub (pull-image), building the Docker
image locally (build-image), for running the examples (run-examples), and
for deleting all of the reports, visualizations, and other artifacts generated for
each example (clean-examples). Because the expected results are included in
the repository, successful reproduction of the example products is demonstrated
by issuing the commands make clean-examples and make run-examples and
confirming that git diff reports no differences.

Query results and visualizations for each example provide answers to stan-
dard questions including:

2 https://www.w3.org/TR/prov-dm/.
3 https://github.com/CIRSS/geist.
4 https://github.com/CIRSS/cpr-demo-2021.

https://www.w3.org/TR/prov-dm/
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1. What programs and script invocations occurred as part of the run?
2. What files represent inputs and outputs of the run as a whole?
3. What are the input and output data files for each process in the run?
4. Which files input to a run are used to produce a particular output file?
5. Which run output artifacts are affected by a particular input file?
6. What programs contribute to the production of a particular output artifact?

#!/bin/bash

cat inputs/i1.txt inputs/i2.txt > temp/t12.txt

cat inputs/i1.txt inputs/i2.txt inputs/i3.txt > temp/t123.txt

cat inputs/i4.txt > temp/t4.txt

cat temp/t12.txt > outputs/o12.txt

cat temp/t123.txt temp/t4.txt > outputs/o1234.txt

cat temp/t4.txt > outputs/o4.txt

Fig. 2. Workflow script.

The example computations range from trivial and domain-independent, to
relatively complex and domain-specific. An example of minimal complexity that
still demonstrates key capabilities of CPR is illustrated in Figs. 2 and 3. A simple
bash script (Fig. 2) invokes the cat command six times on different combinations
of three input files to produce three intermediate files and three final output
files. The run profile (Fig. 3a) allows CPR to identify data files and to ignore
system files that are needed to run the script but are otherwise irrelevant to the
questions a verifier typically asks. The visualizations satisfying queries 2 and 3
are included for a run of this script (Fig. 3b and Fig. 3c) and depict the answers
as dataflow graphs. We expect the visualization answering query 3 to be the
main CPR artifact a verifier will use to compare the record of execution with
the description of the computation in a paper. Visualizations answering queries
4 and 5 can be considered subgraphs of the visualization for query 3 limited to
nodes and edges relevant to a single output or input file.

4 Observations

The computations and queries demonstrated here highlight a key challenge in
making provenance useful to domain researchers and verifiers: revealing the small
subset of recorded events that are of direct relevance to the scientific purpose of
an overall computational workflow. At a low level, execution of even a one-line
Python 3 script that prints “Hello World” can involve reading tens of different
files from disk in addition to the single-line Python file that the user supplied.
CPR minimizes such provenance “noise” using SPARQL queries that select files
and processes with particular relationships to other files and processes, optionally
informed further by a user-provided run profile that assigns distinct roles to files
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Fig. 3. The run profile (a) indicates that files in the ./temp directory should be hidden
in the “black-box” view (b), but displayed in the “white-box” view (c).

loaded from particular locations on the system. For example, it can be useful to
hide processes that do not themselves read or write data files; a bash script that
serves only to invoke other programs that do process data files can be masked
even in the absence of a profile. The bash script listed in Fig. 2 is not depicted
graphically in Fig. 3b and Fig. 3c because these queries filter out processes that
do not perform I/O on data files.

A second key challenge to making provenance useful to domain specialists is
providing vocabularies that convey the significance of particular processes and
data artifacts in domain-specific terms. PROV and ProvONE provide essen-
tial abstract base classes from which more meaningful provenance vocabularies
can be derived. Domain researchers–and the verifiers of computations reported
in their papers–likely will find views of provenance employing such specialized
vocabularies the most useful. Nevertheless, the base classes are essential for per-
forming general queries that must succeed on traces captured from any domain,
e.g. to answer the question, What are all the files–data files, scripts, executables,
shared libraries, etc.–that must be archived and restored later to repeat the com-
putation? By describing computations in terms of files used to store data and
processes executed on real computers, the CPR vocabulary provides a set of con-
cepts intermediate to the more general ones comprising PROV and ProvONE,
and the more specific concepts of domain-specific vocabularies.
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Moreover, deriving the CPR vocabulary from existing standard vocabular-
ies provides multiple options when depositing data and its provenance in public
repositories such as DataONE. Because Blazegraph eagerly infers triples implied
by RDF schema declarations, exporting provenance simply as PROV, or as
ProvONE, or as a combination of PROV, ProvONE, and the CPR vocabularies,
is as simple as performing a trivial CONSTRUCT query that extracts triples
that already exist in the RDF dataset. Finally, much as common base classes
in object-oriented programming languages make it convenient to work with col-
lections of objects that are instances of more specialized classes, we expect that
access to the PROV, ProvONE, and CPR vocabularies when querying prove-
nance expressed in more specialized vocabularies will in many cases simplify
those queries and make them more transparent and reusable.

5 Conclusion

The CPR toolkit aims to make the provenance of computed artifacts compre-
hensible to domain researchers. By highlighting entities these researchers actu-
ally think about when planning and describing computations—data files, pro-
grams, executions, data flows—CPR makes computational traces transparent
and enables others to judge whether computations were performed appropri-
ately.

CPR complements existing tools for recording provenance at the OS level
including ReproZip and SciUnit [8] which employ execution tracing to identify
files that must be packaged to make the computation repeatable on a different
system; and the CamFlow [5] system which captures whole-system provenance
for the purpose of system audit. These tools in turn complement provenance-
recording and management tools that target specific programming languages and
environments, including noWorkflow [6] (for Python), and the Matlab DataONE
Toolbox5. By observing computational steps that occur within processes, these
latter tools provide views of computational provenance that system-level prove-
nance recorders cannot. Making provenance records not just comprehensible but
also comprehensive ultimately will require integrating provenance recording tools
and vocabularies at multiple levels of abstraction and granularity.
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