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Abstract

Bioinformatics is an interdisciplinary field of
biology, computer science, and mathematics.
The advancement of high throughput geno-
mics and proteomics technologies has pro-
duced large volume of genomics and
proteomics data, which can be accessible
from open databases. Exploring this big data
could resolve many of the biological com-
plexity. In this chapter, we discussed the role
of bioinformatics in analyzing the genomics
and proteomics data of Moringa.

12.1 Introduction

Moringa oleifera is a miracle tree in the
ecosystem which is also called as drumstick
tree/ben oil tree/horse radish tree or simply
moringa. It serves as food (super food) with
enriched nutritional value, livestock hood, agri-
cultural applications, and possesses enormous
medicinal properties (Matic et al. 2018). As an
indigenous plant with Indian origin, it has been
used as traditional medicine over centuries

(Fahey 2005). All the plant parts like flower, leaf,
root, seed, and stem are edible, and its phyto-
chemicals and crude extract were proven to
have antioxidant, anticancer, anti-inflammatory,
antidiabetic, and antimicrobial activities against
more than 300 human diseases (Anwar et al.
2007; Goyal et al. 2007).

With the advancement of high throughput
omics technology, genomics and transcriptomics
data of Moringa oleifera are made available in
the public repositories. Bioinformatics studies of
gene prediction, annotation, and pathway analy-
sis provides insight on the biology of genes and
their interaction mechanism that are required to
understand the key biological and metabolic
functions in moringa. Orthology analysis has
shown its close evolutionary phylogenetic rela-
tion with Carica papaya, Theobroma cocoa,
Arabidopsis thaliana, and Vitis vinifera (Tian
et al. 2015; Pasha et al. 2020) compared to other
species in viridiplantae kingdom.

Comparative genomics and transcriptomics
studies provide massive knowledge on the simi-
larities and differences between different plant
species in the ecosystem. Moreover, biological
databases and software are the key players that
pave the scientists to explore new aspects in the
way of metabolic and genetic engineering of
moringa to produce value-added products in
huge volumes. Apart from the huge medicinal
value, it is also interesting to know the applica-
tion of moringa gum in calico printing.
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Moringa oleifera being a reservoir of medic-
inal and nutritional properties was not completely
characterized at the molecular and physiology
level. There exists a lot of space to explore the
mechanism of function and interaction that pre-
vails within the Moringa oleifera genome.

12.2 Bioinformatics tools
and databases

Bioinformatics is the interdisciplinary science in
which informatics is applied in any biological
data by means of computational tools and data-
bases that renders scientific community the ease
of data storage, access, interpretation, and anal-
ysis. High-throughput sequencing of any plant
genome produces huge volume of data. Genomic
databases like NCBI–Genome (Sayers et al.
2019), plant genomic database (http://www.
plantgdb.org), Gramene (http://www.gramene.
org/), Phytozome (Goodstein et al. 2012), and
Ensemble plants (https://plants.ensembl.org/
index.html) provides the genome sequence and
associated information of plants.

These databases also contain tools integrated
with their server, so that anyone can browse for
the information regarding genes, chromosomes,
markers, restriction sites, function, pathway, etc.,
without any restriction to access. Availability of
genomic resources is the key to acquire molec-
ular level genetic knowledge of an organism.
Some of the mostly used tools and database
information are provided in Table 12.1.

12.3 Pairwise Sequence Alignment

Most powerful tool that is being employed in
bioinformatics is the Basic Local Alignment
Search Tool (BLAST) (Johnson et al. 2008),
which is a biological sequence comparison pro-
gram based on the similarity. This tool compares
the user-given biological sequences (nucleotide
or protein sequences) to the sequences already
stored in the databases and calculates the statis-
tical significance of matches.

Match is found by pairwise aligning the user-
given sequences to the database sequences.
Information pertaining to function and evolution-
ary relationship could be retrieved by using this
tool. BLOSUM (Blocks Substitution Matrix),
PAM (Point AcceptedMutation)matrices are used
for scoring the similarity between the sequences.

12.4 Multiple Sequence Alignment
and Phylogenetic Tree
Construction

To compare more than two sequences, unlike the
pairwise similarity program, tools like CLUS-
TALW (Higgins and Sharp 1988), MAFFT
(Katoh et al. 2019) are used. Multiple sequence
alignment forms the basis for understanding the
conserved and variable regions across the gene
families. Other informations like motif, domain,
signature, fingerprint, etc., are obtained by means
of performing multiple sequence alignment.

Moreover, phylogenetic tree construction
programs highly rely on the multiple sequence
alignment programs to infer evolutionary rela-
tionship between the set of sequences. Programs
like PHYLIP (Felsenstein 1993) and MEGA
(Kumar et al. 2018) are mostly used for the
phylogenetic tree construction.

Evolutionary information could be obtained in
the form of gene tree or species tree based on the
biological data available for study. Phylogenetic
tree in simple can be compared with that of real
tree which has branches, leaves, and root.
Sequences with similar characteristics are
grouped together in separate branches (internal
node) and with the edge as the terminal node.

The phylogenetic tree can be rooted or
unrooted depending on the ancestral sequence
information availability. If ancestor or the pri-
mary sequences are present, there exists a root
from which other sequences evolve by means of
duplication or deletion or insertion or mutation.
Methods such as clustering, Maximum likeli-
hood, Maximum Parsimony, genetic algorithm,
and Bayesian simulation are employed to con-
struct the phylogenetic tree.
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12.5 Genomics Tools

Genome/Transcriptome sequencing results in the
generation of raw reads of large volume. These
reads exist as an input data for the plethora of
bioinformatics tools to carry out the steps such as
alignment, annotation, and analysis. Quality
checking and trimming of reads are the primary
step before start of the alignment/assembly of
raw reads.

FastQC (FastQC 2015; Andrews 2010) is the
tool used for the quality checking of the raw
reads based on the parameters such as GC con-
tent, duplication level, length distribution, etc.
Trimming of raw reads is mainly performed to
remove adapter sequences that may occur by
chance in the sequencing procedure for which
software like Trimmomatic (Bolger et al. 2014)
is mostly used.

Next step is the assembly step which can
either be reference-based and de novo-based. If
reference genome is available, then the former
methodology is employed, otherwise the latter is
used. A number of assembly algorithms like
Trinity Grabherr (Grabherr et al. 2011), STAR
(Dobin et al. 2013), and SOAPdenovo (Luo et al.
2015) software are used for alignment/assembly
process.

After assembly, gene prediction programs like
AUGUSTUS (Stanke and Morgenstern 2005),
FGENESH (Salamov and Solovyev 2000),
GENSCAN (Burge and Karlin 1997) are used for
predicting the coding part of the genome.
Annotation is performed by similarity search
against sequences of closely related species using
BLAST, MAKER (Cantarel et al. 2008), Blas-
tKOALA, and GhostKOALA tools (Kanehisa
et al. 2016).

In this procedure, gene ontology terms such as
Molecular Function, Cellular component, and
Biological process are mapped based on their
similarity with the already annotated sequences.
This analysis provides the knowledge on its
function, pathway, and their interaction mecha-
nism. Other downstream analysis like orthology,
non-coding region annotation is performed in
order to understand gene duplication events,

divergence that has occurred during the evolu-
tionary period of time, and to decode the regu-
latory role of non-coding part of the genome.

System biology and synthetic biology studies
have joined hand with genomic studies (Jamil
et al. 2020) to engineer the biological system at
the metabolic level, genetic level, or protein level
mainly to increase the production of metabolites
of pharmaceutical and medicinal value.

Comparative genomics studies involve the
comparison of whole genomes of two or more
species to understand the intron–exon organiza-
tion, gene structure, and similarity/dissimilarity/
conservation observed among the distribution of
gene families. BLAST tool could be used for
comparison of genomes. Genome level align-
ment and comparison also provides information
on evolutionary events like speciation, duplica-
tion, and horizontal gene transfer events.

12.6 Moringa Genomics

First draft genome sequence of Moringa oleifera
Lam. was first published in the year 2015 (Tian
et al. 2015) from Yunnan Agricultural Univer-
sity, China. 19,465 annotated protein-coding
genes were predicted from the 457� coverage
DNA sequencing data for the Moringa oleifera
sample. Based on the 17-mer frequency distri-
bution, the estimated genome size was 315 Mb.
Clustering analysis to understand the distribution
of gene families among other plant species such
as Vitis vinifera, Cajanus cajan, Carica papaya,
and Malus domestica showed that these five
different plant species possess similar numbers of
gene families, with a core set of 10,215 shared
genes. 198 single-copy gene families were found
among the 12, 298 gene families reported in
Moringa oleifera.

Second draft genome, as well as transcriptome
data, was published by Chang et al. (2019) using
Moringa oleifera sample grown at the World
AgroForestry Center campus in Kenya. Genome
size was observed to be 216.76 Mb. Transcrip-
tion factors such as bHLH, NAC, ERF, MYB-
related, C2H2, MYB, WRKY, bZIP, FAR1,
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C3H, B3, G2-like, Trihelix, LBD, GRAS, M-
type MADS, HDZIP, MIKC MADS, HSF, and
GATA were found in abundance in comparison
with other transcription factors.

Recently, RNA-sequencing enabled the anal-
ysis of gene expression samples from five different
tissues (leaf, root, stem, seed, and flower) of
Moringa oleifera plant (Bhagya variety) at the
University of Agricultural Sciences, GKVK,
Bangalore, India (Pasha et al. 2020). Pathway
analysis was performed to understand the
biosynthesis of secondary metabolites such as
quercetin, kaempferol, benzylamine, and
ursolic/oleanolic acid synthesized by Moringa
oleifera genes which have profound medicinal
values.

Being a drought-tolerant plant, stress-related
transcription factors and enzymes related to
production of metabolites of medicinal value
were mostly expressed in the Moringa oleifera
transcriptome leaf analysis. For example, path-
way analysis showed the involvement of seven
enzymes such as 4-Coumarate-CoA ligase
(4CL), Chalcone synthase (CHS), Chalcone fla-
vone isomerase (CHI), Flavonone 3-hydroxylase
(F3H), Flavonol synthase (FLS), Tricin synthase
(OMT), and Flavonoid 3′-monooxygenase
(F3’H) in biosynthesis of anti-cancerous com-
pound Quercetin.

Chloroplast genome of Moringa oleifera
reported 131 genes (Lin et al. 2019) and was
found to have a length of 160,600 bp with a large
single-copy (LSC) region of 88,577 bp, a small
single-copy (SSC) region of 18,883 bp, sepa-
rated by two inverted repeat (IR) regions of
26,570 bp each. Phylogenetic analysis of 71
protein-coding sequences of 13 plant plastomes
showed that Moringa oleifera is closest to Car-
ica papaya.

WRKY transcription factors are well known
for their role in plant development, signal trans-
duction, and stress responses (Zhang et al. 2019).
This gene family has been characterized in a
genomic scale in Moringa oleifera through

bioinformatics tools through the analysis of gene
structures, motif analysis, conserved motifs, and
phylogenetic tree construction. Fifty-four
WRKY genes were identified through HMM
profile search performed using WRKY domains.

Phylogenetic analysis showed its close rela-
tion with Arabidopsis thaliana. Also, analysis of
commonly occurring cis-acting elements in
WRKY promoter regions reported hormone
responsive elements (ABRE, CGTCA motif, and
TGACG motif), a drought stress responsive
element (MBS), a heat stress responsive element
(HSE), and four light responsive elements
(Sp1, Box 4, G box, and GT1 motif),
respectively.

Further expression profiling of WRKY genes
reported its significance in various abiotic stress
conditions such as under drought, salt, cold, and
heat stresses. In a similar study of genome-wide
analysis of trehalose-6-phosphate synthase
(TPS) family, Group II Moringa oleifera
TPS genes have evolved under relaxed purifying
selection or positive selection. Further, group
I TPS genes closely relate to reproductive
development, and Group II TPS genes closely
relate to high temperature resistance in leaves,
stem, stem tip, and roots. Expression pattern of
WRKY genes and TPS genes is experimentally
validated using reverse transcription polymerase
chain reaction (RT-PCR) and quantitative RT-
PCR (qRT-PCR) experiments under different
stress conditions.

12.7 Computational Identification
of Moringa oleifera miRNA

Highly enriched nutritive and medicinal value of
miracle tree is the repository of bioactive phy-
tochemicals which has the potential to improve
the health conditions of prevailing malnutrition
observed among children from poorer section of
the society and also pregnant women. Under-
standing the regulatory role of plant is very
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important to acquire the knowledge on the pro-
duction of various phytochemicals under differ-
ent stress conditions. MicroRNA (miRNA) is a
small non-coding RNA of length about 22
nucleotides having an important role in regulat-
ing the gene expression at both post-
transcriptional and translational level.

Moringa leaves and cold stressed callus (Pirrò
et al. 2016) are characterized for the presence of
conserved and novel microRNA families through
RNA sequencing technology. Analysis using
miRBase database and miRDeep2 tool pre-
dicted 431 conserved and 392 novel microRNAs,
and it was confirmed using qRT-PCR analysis.
Among the reported microRNAs, microRNA159
was majorly observed in leaf and callus,
respectively. These miRNAs majorly targets the
transcription factor that controls the plant
growth, reproduction, and stress response.

Furthermore, plant microvesicles (MVs) pos-
sess similar features with that of mammalian
exosomes, which are involved in cell–cell com-
munication and miRNA transporters.

Moringa oleifera has shown enormous
medicinal and pharmaceutical properties in a
number of human diseases. In this context,
ingestion of plant miRNA has shown regulation
of gene activity in human which makes it a
remarkable bioactive constituent for treating a
number of human diseases. High-throughput
sequencing of moringa seeds has reported miR-
NAs that has the potential to regulate the human
gene expression at the post-transcriptional level
(Pirrò et al. 2016). This regulation has the impact
on exerting medicinal activity in a number of
human diseases.

In silico analysis of miRNAs of moringa
seeds for their contribution to medicinal value
using MirCompare and combinatorial miRNA
target prediction (COMIR) web tool identified
Moringa oleifera–miR168a as a potential candi-
date for regulation of human genes. These genes
are majorly involved in the cell–cycle regulation
and p53 pathway. It is interesting that SIRT1
(Sirtuin) gene was positively regulated by
miR168a which was confirmed by transfection
experiment.

12.8 Computational Screening
of Potential Bioactive
Compounds from Moringa
oleifera

Computational screening of potential bioactive
compounds against various biological protein
targets for different diseases are gaining impor-
tance as complement to traditional drug design
and discovery process nowadays. Success of this
method depends on the identification of valid
protein targets from the genomic region of the
organism.

Complete genome sequence of the Moringa
oleifera (Tian et al. 2018) gives the possibility of
exploring various biological targets for drug
design and discovery to treat various diseases.
The minimum requirement of inputs for compu-
tational screening of chemical compounds is
availability of three-dimensional structure of the
target protein. This structure could be retrieved
from protein structure database called Protein
Data Bank (PDB) (www.rcsb.org), which con-
tains experimentally determined three-
dimensional structures of the proteins.

Comparative homology modeling approach
could help us to model the three-dimensional
structure of the protein in the case of non-
availability of experimental structures. Similarly,
structure of phytochemicals can be retrieved
from PubChem (https://pubchem.ncbi.nlm.nih.
gov) database, which is an open database of
chemical compounds maintained by National
Institute of Health.

In recent years, many of the phytochemicals
of Moringa oleifera have been virtually screened
against various disease targets such as Diabetes
Mellitus, different cancers, hypertension,
COVID-19, antimicrobial activity, antioxidant
defense systems, and HIV.

12.8.1 Diabetes Mellitus

Phytochemicals of Moringa oleifera such as
anthraquinone, 2-phenylchromenylium (Antho-
cyanins), hemlock tannin, sitogluside (glycoside),
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and A-phenolic steroid were reported as potential
therapeutic agents against mutated insulin recep-
tor using molecular docking approach (Zainab
et al. 2020).

The strategy of toxicity screening, checking
for Lipinski rule violation, and pharmacophore
generation has been carried out along with
docking study for the phytochemicals of Mor-
inga oleifera in their study. Similarly, Yang et al.
(2014) have performed virtual screening, dock-
ing, ADME prediction, and in-vitro analysis for
the phytochemicals of Moringa oleifera to
identify potential compounds for diabetics.

A total of 111 phytochemicals were screened
in their analysis against Potential Dipeptidyl
Peptidase (DPP)-IV, and it was reported O-
Ethyl-4-[(a-L-rhamnosyloxy)-benzyl] carbamate
has the activity with half-maximal inhibitory
concentration [IC50] = 798 nM.

12.8.2 Carcinoma

Crude ethanolic extract (HF-CEE) of Moringa
oleifera seeds reported for their inhibitory action
on MCF7 breast cancer cell growth (Mansour
et al. 2019). Methylelaidate, a phytochemical of
Moringa oleifera, was tested for their binding
efficiency with Bax and MDM2 apoptotic pro-
teins using AutoDock. This showed a stable
interaction with the target proteins and also has
the potential of drug-like properties according to
the Lipinski’s rule of 5 Adebayo (Adebayo et al.
2018).

Another phytochemical, quinicacid, was
reported for their better pharmacokinetic prop-
erties and suitable for further drug discovery and
development cycle to control prostate cancer cell
growth (Inbathamizh and Padmini 2013).

12.8.3 Hypertension

Some of the phytochemicals of Moringa oleifera
such as Niazicin-A, Niazimin-A, and
Niaziminin-B were tested for their binding effi-
ciency with Angiotensin-converting enzyme
(ACE) using AutoDockVina and for

pharmacokinetics activity using ADME-Toxicity
prediction. The above compounds showed good
binding energy compared to the reference drug
molecules such as Captopril and Enalapril (Khan
et al. 2019; Aktar et al. 2019). They have
reported that leaves methanolic extract
(MOLME) of Moringa oleifera showed inhibi-
tory activity against Angiotensin-converting
enzyme using spectrophotometric method. It is
also reported that substrate hippuryl-L-histidyl-
L-leucine (HHL) inhibits ACE with an IC50
value of 226.37 lg/ml, in comparison to refer-
ence compound, captropril, which shows IC50
value of 0.0289 lM.

12.8.4 COVID-19

Currently, there is no potential drug or vaccine
developed to target SARS-CoV-2 virus. It is
mandatory to identify a drug to handle the pan-
demic situation prevailing worldwide. The mul-
tiple protein targets of SARS-CoV-2 could be
accessible from publicly available genomic and
proteomic databases. Phytochemical compounds
of Moringa oleifera were virtually screened
using AutoDockVinato to discover novel lead
compounds against main protease (Mpro) and
RNA-dependent RNA polymerase (RdRp) to
treat COVID-19.

The compounds were also screened for drug-
likeness properties using Swiss ADME. The
scientists have reported that the compounds
kaempferol, pterygospermin, morphine, and
quercetin made a stable interaction with Mpro
and RdRp target proteins. These compounds
could be taken as potential lead molecules for
further evaluation to treat COVID-19 (Shaji
2020).

12.9 Future Prospects
and Applications

In the present scenario of increase in the pan-
demic and life threating diseases, every human is
in need of super food like Moringa oleifera
which eradicates malnutrition as well as increase
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immunity and longevity of life. It is very
important to understand the molecular mecha-
nism of biomolecules and their pathways to have
future success stories on metabolomic and
genetic engineering which will help in the pro-
duction of value-added products in the pharma-
ceutical research. Enormous research studies are
required to completely link the genes, proteins,
metabolites, non-coding genes, and their inter-
action mechanisms in a concurrent way.
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