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Abstract The stress–strain state in the zone of the corner cutout of the area boundary
is characterized by the singularity of the solution of the homogeneous boundary value
problem and the complexity of its analysis. This article focuses on the stress state
(SS) in the neighborhood of an irregular point of the area boundary on flat composite
modelswith different cutout angles of the polymermaterial end. Forced deformations
are created in one of the areas of the model, the forced deformations gap along the
area contact boundary extends to the top of the corner cutout on the boundary of
the model. The solution is obtained by means of experiments on optically sensitive
material models by photoelastic method using the free temperature deformation
defrosting property. A comparison of the SS obtained experimentally on the model
and the parent distribution of SS in the zone adjacent to the irregular point of the
area boundary is given. A conclusion is made on coincidence of the positions of the
pure shear line obtained experimentally on the model and the neutral axis for the
corresponding wedge under the action of a concentrated load. This paper is aimed
at analyzing SS in the zone of the corner cutout of the boundary of the region and
identifying the self-balanced SS corresponding to the solution of the homogeneous
boundary value problem in the area with an irregular boundary point.

Keywords Stress state · Corner cutout of the area boundary · Photoelastic
method · Singularity of the solution

1 Introduction

The stress–strain state (SSS) of composite structures is characterized by the concen-
tration of stresses at the junctions of elements with different design of the boundary:
special lines, points, such as the reentrant angle, etc. The complex SSS occurs in the
stress concentration area, which is due to the shape of the boundary or “geometric
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factor” and the finite discontinuity of the given forced strains, mechanical proper-
ties, going out to an irregular point of the area boundary. The complexity of the SSS
analysis in the corner cutout zone of the area boundary is due to the singularity of
the solution of the homogeneous boundary value problem of elasticity.

The solution of elliptic equations for areas with non-smooth boundaries is consid-
ered in papers of Williams, Kondratiev, Fufaev, Ufliand, Kalandiia, Cherepanov [1],
Bodzhi, Aksentian, Aleksandrova, Chobanian. In papers [1–7], the stress nature in
the corner zone of a plane wedge for different boundary conditions on its sides is
determined. In the neighborhood of irregular boundary points, the solution of the
elliptic boundary value problem is given in the form of asymptotic series and an
infinitely differentiable function. The components of these series contain solutions
of homogeneous boundary value problems for model areas: a cone or a wedge. These
solutions depend on local characteristics: the values of the solid and plane angle and
the type of boundary conditions [7–14]. The values of the solution expansion coef-
ficients in the neighborhood of the singular point are unknown and depend on the
problem as a whole.

The application of the well-known experimental photoelastic method [9, 15–20]
makes it possible to obtain a solution of the elasticity problem on the model with a
corner cutout of the boundary. The most developed and effective is the method for
solving plane problems of deformable body mechanics [9, 20].

Experimentally, the stress state in the neighborhood of an irregular point of
the boundary area is obtained by photoelastic method using the free temperature
deformation defrosting property [12, 15–20] on flat composite polymer models with
different cutout corners of the boundary. Forced deformations are created in one of
the areas of the model, the forced deformations gap along the area contact boundary
extends to the top of the corner cutout on the boundary of the model.

This paper is aimed at analyzingSS in the zone of the corner cutout of the boundary
of the region and identifying the self-balanced SS corresponding to the solution of
the homogeneous boundary value problem in the area with an irregular boundary
point.

2 Materials and Methods

2.1 Experimental Solution of the Boundary Corner Cutout
Problem on a Flat Model by Photoelastic Method

An experimental solution of a plane problem for an areawith a cutout at the boundary,
the geometry of which causes the occurrence of stress concentration, is considered.

The plane area consists of parts �1 and �2, with elasticity module E, Poisson’s
material ratio ν and linear expansion coefficient α. Temperature deformations αT δi j
are created in one of the areas—�2, the area�1 is not loaded. Along the area contact
line� = �1∩�2, there is a deformation jump�εi j = αT δi j , which goes to the body
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boundary S to the point O(0, 0)—the top of the corner cutout of the area boundary.
For different angles of the corner cutout solution of the boundary at its top, there is
a feature of the stress state, which is experimentally realized on the model made of
optically sensitive material as a stress raiser (see Fig. 1).

The elastic problem under the action of temperature deformations is solved by
the photoelastic method using the property of “defrosting” of free temperature
deformations [12, 16, 20]. A model of homogeneous epoxy material with given
dimensions l = 180 mm, h = 25(23) mm is glued from two elements. The �2

area element is cut from a plate obtained from the longitudinal shear of a hollow
cylinder frozen under the action of a longitudinal uniformly distributed compres-
sion load. The height of the cylinder before “freezing” is H = 309 mm, the outer
diameter is D = 180 mm, the inner diameter is 150 mm. The ends of the cylinder
are cut off after freezing and only the middle part of the cylinder, which is in a
flat deformed state, is considered. The compression of the cylinder after applying
the load and freezing is �H = 9 mm, relative elongation along the longitudinal
axis OZ of the cylinder is εz = �H

H = 9
300 ≈ 0.03. Compression stress is

Fig. 1 Patterns of strips in models t = 3 mm thick for different cases of the model end solution:
(1) 2α = 180◦; (2) α + β = 180◦, α = 105◦, β = 75◦; (3) 2α = 270◦; (4) 2α = 330◦; (5)
2α = 360◦—narrow cutout—gap; (6) 2α = 90◦
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σz = − P
F = −Eεz = −200 · 0.03 = −6 kg/cm2, σz = σ 1.0m

t ⇒ m = σz ·t
σ 1.0 ,

where t is a shear thickness; σ 1.0 is a price of the model strip material; σ 1.0 = 0.341.
According to these data, in the shear t = 0.3 cm thick, the number of strips is
m = 5.3.

The area �1 is cut from free unloaded material. The areas �1 and �2 are glued
together, then the model is “defrosted”. The model generates SSS due to the action
in the �2 area of temperature deformations. ε0 = −εz = −αT δi j .

The pattern of the strips corresponding to the stress–strain state from the action of
temperature deformations for different shapes of the model end boundary is shown
in Fig. 1. Model thickness (1)…(6) is the same and equals to t = 3 mm. In case (6),
stress concentration at the top of point O(0, 0) is not observed and stresses at the
very top O(0, 0) are zero.

2.2 Analysis of the Stress State Obtained Experimentally
on the Photoelastic Method Model

The solution obtained experimentally on the composite model in the area of the
corner cutout of the boundary under the action of discontinuous forced deformations
is analyzed. An irregular point of the area boundary is considered as a top of the
cutout of the end of the flat model lying on the contact boundary of the model parts.

We consider the neighborhood of an irregular point of the boundary adjacent to the
singular point fromwhich the irregular point is removed. Experimentally, the singular
area on the model is defined as the neighborhood of the top of the corner cutout of
the boundary, in which the interference fringes are blurred and the isochrome picture
is not readable at any magnification of the neighborhood fragment.

The stress state in the neighborhood of the irregular point of the model boundary
can be represented as Areas I, II, III according to Fig. 2a, where, due to the oblique
symmetry of the stress diagrams, one of the areas �2 is given.

Area I is an area adjacent to the symmetry axis of the model �: y = 0, where the
main compressive stresses σ2 considerably exceed the modulus of the main tensile
stresses σ1. As the point moves away from the top of the cutout in area I, the σ1

stresses nature may change from tensile to compressive.
The main vector on the radial sites at the points of the area I (see Fig. 1a) has a

normal component σi = σr considerably superior in modulo to the tangential one σθ ,
which agrees with the ratio of the values of the principal stresses: |σ2| � σ1; σ1 → 0
at (x, y) → (x, 0); σ1|� = 0; �: y = 0.

Area III is the area adjacent to the model cutout boundary, where the tensile
principal stresses σ1 considerably exceed the modulus of compressive stresses
σ2: σ1 � |σ2|; σ2 → 0 at (x, y) → S; S—model boundary; S: y = ax , a = tgα,
2α—angle of the model end opening; σ2|S = 0.

Area II is a transitional area in which sharp angles, isochrome and significant
gradients of the isocline parameter forming loops are observed. The largest isocline
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Fig. 2 SS scheme in the neighborhood of an irregular point of the boundary of a plane area.
– – – —pure shear line

parameter is observed for the inner, nested in the remaining isocline loops, and
varies from 45°…50° up to 70° when increasing the opening of the model end from
2α = 180◦ to 2α = 260◦.

There is a change in the direction of the main sites rotation in area II. If the main
sites rotate clockwise in area III, then, passing area II, they change the direction of
rotation to the opposite, so that the rotation of the main sites at the points of area I is
observed in a clockwise direction as before.

In the transition area II (see Fig. 2a), a pure shear site is observed. The principal
stresses at these points are equal in modulo and opposite in sign: σ1 = −σ2. The sites
tilted at an angle of 45° to the main ones are in pure shear conditions, i.e. τmax =
σ1−σ2

2 = σ1, and the normal stresses across these sites are zero: σi = (σ1+σ2)

2 = 0.
According to the experimental data, the pure shear sites coincide with the radial ones.
The radial stress as the normal stress over the pure shear site is zero: σr = 0, and
shear stresses τmax = mσ 1.0

2t �= 0. Therefore, the isochrome orders m at the points of
pure shear sites are not equal to zero. According to the experimental data, pure shear
sites are observed at the tops of sharp angles of isochromes and their vicinities.

The stresses are continuous in the area �2: 0 ≤ θ ≤ α, so there is a subarea in
transition area II in which pure shear and a stress state close to it are observed. For
this “pure shear” subarea, there are sites where the normal stresses coincide or are
close to the radial stresses and are equal or close to zero: σi

∼= σr ∼= 0 (see Fig. 2).
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Main stresses σ2 continuously varying from the highest value along the contact
line of the area �: y = 0 in area I, going to area II “pure shear” subarea, then quickly
decrease to zero values in area III. The sign may also change for main stresses σ2

when approaching the boundary of the area S. Similar, tensile stresses σ1, changing
continuously from the highest values at themodel cutout boundary in area III, passing
to the “pure shear” subarea II, then rapidly decreasing to zero values in area I. For
the main stresses σ1 the sign may also change at the transition to the area contact
line � = �1 ∩ �2, �: y = 0.

Radial stresses in area I: σr ∼= σ2 at (x, y) → (x, 0), and in area III: σr ∼= σ1

at (x, y) → (x, αx), S: y = ax , a = tgα. In the transition area II on pure shear
sites and close to them σr = 0 or σr ≈ 0. Such a distribution of radial stresses in
the neighborhood of the top of the model end cutout corresponds to the theoretical
radial stress distribution of the form:

σr = c f (r) f (θ) = αET

r1−λ
(c1 cos θ + c2 sin θ), σθ = τrθ = 0 (1)

At the pure shear sites, at θ = θ0, r > r0, r0—sufficiently small, σr = 0,

σr = αET
r1−λ0

(c1 cos θ0 + c2 sin θ0) = 0 ⇒ c1 = −c2
(

sin θ0
cos θ0

)
.

The theoretical radial distribution of stresses in the neighborhood of the cutout
of the model of the form (1) is understood as a self-balanced “own” stress state
in the neighborhood of an irregular border point obtained as a solution of a plane
homogeneous boundary value problem.

2.3 Example of Stress State Analysis Obtained on a Flat
Model with a Straight End

The stress state is analyzed in the neighborhood of the irregular point of the boundary
where the gap of forced deformations exits, using the straight end model as an
example. According to the theoretical model [1–4, 12, 13], the stress state in the
neighborhood of an irregular point of the area boundary can be represented as:

σi j = σ o
i j + σ l

i j (2)

where σi j—stresses in the vicinity of an irregular point of the area boundary; σ o
i j—

eigensolution of the homogeneous boundary value problem in the vicinity of an
irregular boundary point; σ l

i j—stress caused by the action of the specified loads or
the total stress field.

Internal stresses σ o
i j in the area of the end of the model with a straight end have a

radial view [1–4, 12, 13]:

σr = αET

r
(c1 cos θ0 + c2 sin θ0), σθ = τrθ = 0 (3)
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With a continuous distribution of stresses in the area �2 (similarly in the area �1)
of the form (3) in the cross-section r = r0 there will be a point at which σr = 0.
Consider one area of the straight-end model, for example, �2: E, ν, αT . Pattern of
the model strips for the area �2 is given in Fig. 2b. According to the experimental
data in area II of the model, the point with the net shear area is observed in the cross
section at an angle θ0 ≈ 60◦. Figure 2 shows the “pure shear” line, which has a slope
angle θ0 ≈ 57.5◦ in the vicinity of point O(0, 0). According to the experimental
findings

σr = 0 at θ0 ≈ 57.5◦ (4)

Taking into account the theoretical distribution (1), the radial stresses will be
recorded:

σr = c0
r

(c1 cos θ + c2 sin θ) = 0, (5)

or

c1 = −c2
sin θ0

cos θ0
= −c2

sin 57.5◦

cos 57.5◦ = −1.57c2 (6)

Stress (3) taking into account (6) will write over:

σr = c

r
(−1.57 cos θ + sin θ) (7)

where c = c0 c2, c is an unknown multiplier.
Determine what force is statically equivalent to the radial stresses (7), acting over

a small radius cross section r = r0 of the area �2 of the model end [4, 12, 16, 17].

PV =
∑

X =
π
2∫

0

σr cos θdF =
π
2∫

0

σr cos θr tdθ (8)

where t is a model thickness. Considering (7), force PV equals:

PV =
π
2∫

0

c

r
[−1.57 cos θ + sin θ] cos θr tdθ = − ct

r
(1.57π + 1) (9)

Let’s find the horizontal component of the acting forces:

PH =
∑

Y =
π
2∫

0

σr sin θ dF =
π
2∫

0

σr sin θr tdθ (10)
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Considering (7), force PH equals zero:

PH =
π
2∫

0

c

r
(−1.57 cos θ + sin θ) sin θr tdθ = 0 (11)

Then force action angle γ , statically equivalent to radial stresses of the form (7)
in the area �2: tgγ = PH

PV
= 0 → γ = 00.

Finally, the radial stresses of the form (7):

σr = c

r
(−1.57 cos θ + sin θ) (12)

in the small radius cross section r = r0 in the area �2 are statically equivalent to the
action of a vertical force directed along the axis OX :

PV =
∑

X = −ct

4
(1.57π + 1) (13)

and the horizontal thrust is zero: PH = ∑
Y = 0.

The resulting scheme of force action PV , PH in the small radius cross section
r = r0 of the model end coincides with the corresponding forces for the wedge with
an opening angle θ = π

2 under the action of a concentrated force at the top of the
wedge [4, 12, 16, 17].

3 Results

The experimentally obtained position of the pure shear line in the irregular point area
of the model boundary shows full coincidence with the position of the neutral axis of
the radial stress state for the wedge in the area of the top O(0, 0) under concentrated
force action.

The coincidence of the slope angle of the pure shear line in the area of the model
end and the neutral axis of the model wedge during the action of the radial stress
state, the coincidence of the isocline parameter in the model isochrome tops and
the calculated slope angle of the main sites confirm experimentally the existence
of the self-balanced radial stress state in the neighborhood of the model end top,
corresponding to the internal stress state σ o

i j in the general presentation of the SS:
σi j = σ o

i j + σ l
i j of the model end.



The Stress State of Corner Cutout Area of the Model Boundary … 79

4 Discussion

Experimentally, the singular area on the model is defined as the neighborhood of the
top of the corner cutout of the boundary, in which the interference fringes are blurred
and the isochrome pattern is not readable at any magnification of the neighborhood
fragment.A contradiction ariseswith a continuous change of stresses in the punctured
vicinity of an irregular boundary point, “sharp angles” of isochromes occur. The
above analysis is applicable to the neighborhood of an irregular point of the boundary
adjacent to the singular point from which the irregular point is removed. The validity
of the analysis data in the selected area of the irregular boundary point is confirmed
by the coincidence of the experimental and theoretical stress values.

5 Conclusions

The analysis of SS in the area of the irregular point of the boundary, in which
the gap of forced deformations exits, shows the existence of a self-balanced SS
σ o
i j , corresponding to the solution of the homogeneous boundary value elasticity

problem. It explains the growth of strips orders observed from the inside of the stress
concentration area, and not at the very top of the cutout of the area. The inequation
to zero of orders of the strips in area II of pure shear in the neighborhood of the top
of the model end shows the existence of a self-balanced SS caused by the action of
the given loads or the total stress field.
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