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Abstract The paper shows the results of the studies of appliedmagnetostrictive level
gauges (AMRLG) in order to increase their efficiency. For the research proposed to
use the methods of mathematical modeling and numerical methods. In particular,
during the simulation of magnetic fields AMRLG iterative procedure Richardson has
been involved and shown the bestway to calculate the acceleration of the convergence
of the parameters using the rotation method. Its efficiency by reducing the number
of iterations of Richardson modified technique for solving systems of differential
equations and magnetic fields AMRLG shown has been described in detail in the
work. The proposed method of numerical simulation of magnetic fields can also be
used to study other similar devices, which proves its versatility and effectiveness.

Keywords Mathematical modeling of magnetic fields · Numerical methods ·
Richardson’s method · Method of rotation

1 Introduction

When they perform mathematical modeling of magnetic fields for applied magne-
tostrictive level gauges (AMRLG), there is the problem of solving the systems of
finite-difference equations with a large number of unknowns. This problem was
formulated and solved in the works of many authors, for example in [1, 2]. The deter-
mination of the sought magnetic potentials was carried out using numerical methods
that require significant computational resources and time when they simulate an
AMRLG with a complex geometry of the acoustic path for bypass systems.

However, the practice of solving the systems of equations, similar in structure
to the finite-difference equations obtained for the AMRLG magnetic field, makes
it possible to develop some ways to reduce the calculation time while maintaining
and sometimes increasing the result accuracy [2]. In particular, a modification of
the Richardson method with the calculation of the optimal set of parameters by the
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rotation method gives a good gain in time and accuracy. Let’s consider this technique
in more detail.

As is known, the system of Maxwell’s equations, describing, in particular, the
distribution of AMRLG magnetic fields, can be approximated by a system of finite-
difference equations of the form [3] via one method or another:

Au = b (1)

where A = ∥
∥ai, j

∥
∥—the matrix of the system coefficients, u—the column of

unknowns (potentials), b—the column of the right parts.
Moreover, it is known about the matrix A that it is sparse and ill-conditioned, and

the system of equations has a large number of unknowns, commensurate with the
number of grid nodes [4].

It is known from various sources [3–6] that to solve the systems of difference
equations of the form (1) in the computational domain with complex geometry, it is
most expedient to use the Richardson method, the alternating triangular method, and
various iterative methods of the variational type. Moreover, all of them, except for
the first one, require a preliminary calculation of many parameters, while allowing
solve the problem in the areas with a pronounced inhomogeneity of the media.

Within the framework of the problem being solved, the computational domain
of the AMRLG type for bypass systems does not have significant heterogeneity,
therefore, in this case, the use of the Richardson method will be effective. The main
difficulty of this method use is the partial problem of finding the eigenvalues λmax

and λmin of the array A. At that, when they solve the problem on a computer, it seems
most expedient to use the rotation method to find the indicated eigenvalues [4].

2 Materials and Methods

The approach to an iterative Richardson scheme development is to study the behavior
of the error δ = f (n). Such an analysis makes it possible to choose a parameter τ ,
considering the nature of the error δn change during the transition from the nth to (n
+ 1)th iteration, and

δn = un − uT (2)

where uT—the array of exact potential values.
Indeed, boundary conditions are specified at the computational domain bound-

aries, and their error is equal to zero. Therefore, inside the region, the function δn

can be expanded in a Fourier series, which will have the following form:

δni, j =
∑

k,m

Ckm sin
kπ

N
i · sin mπ

M
j (3)
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where the expansion coefficientsCkm depend on the parameter τ the iteration number
n [4]. The smaller the value of the coefficientCkm , the less influence the k,mharmonic
makes on the total error δn .

Therefore, the choice of the optimal value τo should be carried out from the
criterion of error harmonics best suppression in the middle part of the spectrum. We
also take into account that the harmonic composition of the error δn can be changed
from one iteration to another, and a new value τ n

o should be chosen at each step for
the maximum efficiency of the method [4].

The main advantage of the Richardson method is in the use of a set of optimal
values τ n

o . The slow convergence of other methods (simple iteration, Seidel, upper
relaxationmethod) is explained by the fact that the low and high frequency harmonics
of the error δn are suppressed at the same rate and the overall convergence of the
method is determined only by the extreme boundaries of the error spectrum. The
introduction of a set of optimal values τ n

o ensures successive suppression of all error
harmonics and its uniform rapid decrease during a small number of iterations.

Let’s consider the ways to obtain a set of optimal values τ n
o .

For this, assuming that τ n depends on the iteration number, we put down the
Richardson iteration scheme in the following form [4]:

un+1 = (

1 − τ n A + b
)

un (4)

Due to the fact that a relation similar to (4) will be fulfilled for an array of exact
potentials uT and taking into account (2), it is possible to write the following for the
error δn:

δn+1 = (

1 − τ n A + b
)

δn (5)

Then, after denoting the initial error (for n = 0) via δ0, we get an expression for
the error after n1 of iterations:

δn1 = δ0
n1∏

n=0

(

1 − τ n A + b
)

(6)

Using (6), it can be shown that for the best suppression of the error with n1 of
iterations, the parameters τ n should be selected based on the condition [4]:

∥
∥
∥
∥
∥

n1∏

n=0

(

1 − τ n A + b
)

∥
∥
∥
∥
∥

= min (7)
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In practice, the search for a set of parameters τ n ,minimizing the norm (7) is usually

replaced by the search of τ n ∈
[

λ
−1−1

min
max

]

, at which the Chebyshev polynomials of the

first kind of the degree n1 take the values closest to zero. Then, as is known [4]:

τ n = 2

(

λ cos
(2n − 1)π

2n1
min

−1
max
1

min
max

)

(8)

3 Results

Calculated in accordance with (8), the first elements of the sequence τ n have the
order 1/λmax, and therefore, the error harmonics corresponding to the right side of
the spectrum aremost actively suppressed during the first iterations. The components
of the left side of the spectrum are suppressed slowly with these iterations. However,
they are actively suppressed by the higher order sequence elements τ n , with the order
1/λmin, i.e., at τ n → τ n1 . Thus, there is a significant uniform decrease of the error
δn during n1 of iterations [2].

When they solve practical problems on a computer by the Richardson method,
they are usually set with a relatively small number n1 ∼ 10 . . . 50, the parameters
τ n1 are calculated using the formula (7), and a series of n1 iterations (4) with the
same parameters τ n1 until the accuracy criterion is met.

Richardson’s method is characterized by a high convergence rate. It is known that
when they use an optimal set of parameters τ n

o the number of iterations n on a mesh
with N × M of nodes depends on the specified accuracy as follows [4]:

n = 0.32NM ln
2

ε
(9)

Since the main difficulty during the implementation of this method is finding the
eigenvalues λmax and λmin of the array A, we will further consider some approximate
methods for their calculation, suitable for the arrays with the marked properties.

Currently, a large number ofmethods are known solving such problems. These are
the methods of direct expansion, iteration, rotation, etc. [1, 4–8]. All these methods
are classified into partial (allowing find only some, often arbitrary, eigenvalues of
a matrix) and complete one (finding all eigenvalues). Since in the context of this
problem it is necessary to find only the minimum and maximum eigenvalues, the use
of partial methods is ineffective, due to the arbitrariness of the obtained eigenvalues.
Therefore, we will search for all eigenvalues by the full method, and then select the
maximum and minimum from them.

The most effective complete method used for large symmetric matrices is the
rotation method [2]. The essence of this method is as follows.
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The method is based on the transformation of the original symmetric matrix A
similarity using the orthogonal matrix H. An orthogonal matrix is taken as a matrix
H for the rotation method, such that HHT = HT H = E , where E is the single
matrix.

Because of the orthogonality property of the similarity transformation, the original
matrix A and the matrix A(i), obtained after the transformation retain their trace and
eigenvalues λi , i.e. the following equality holds:

trA =
∑

i

aii = A
∑

i

λi = trA(i) (10)

The rotation method idea is in repeated application of a similarity transformation
to the original matrix:

A(k+1) = (

H (k)
)−1 · A(k) · H (k) = (

H (k)
)T · A(k) · H (k), k = 0, 1, 2, . . . (11)

The formula (11) defines an iterative process, during which an orthogonal matrix
H (k) is determined at the kth iteration, for an arbitrarily chosen off-diagonal element
a(k)
i j , i �= j , that transforms this element and the elementa(k)

j i intoa(k+1)
i j = a(k+1)

j i ≈ 0.

In this case, at each iteration, the off-diagonal element a(k)
i j is selected among the

maximum ones. At that, the matrix H (k) is called the Jacobi rotation matrix. It
depends on the rotation angle φ(k), determined from the following expression:

tg2φ(k) = 2a(k)
i j

a(k)
i i − a(k)

j j

(12)

At that
∣
∣2φ(k) < π

2

∣
∣, i < j , and it has the following form [3]:

H (k) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 . . . 0 0 0 . . . 0 0 0 . . . 0
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 . . . 1 0 0 . . . 0 0 0 . . . 0
0 . . . 0 cosφ(k) 0 . . . 0 − sin φ(k) 0 . . . 0
0 . . . 0 0 1 . . . 0 0 0 . . . 0
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 . . . 0 0 0 . . . 1 0 0 . . . 0
0 . . . 0 sin φ(k) 0 . . . 0 cosφ(k) 0 . . . 0
0 . . . 0 0 0 . . . 0 0 1 . . . 0
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 . . . 0 0 0 . . . 0 0 0 . . . 1

⎞

⎟
⎟
⎟
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
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⎠

(13)
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In the course of the iterative process (10) at k → ∞ the moduli of all off-diagonal
elements a(k)

i j , i �= j tend to zero, and the matrix itself A(k) → diag(λ1, λ2, . . . λn).
The criterion for achieving the required accuracy of the rotation method is [4]:

max
i �= j

∣
∣
∣a(k)

i j

∣
∣
∣ < ε (14)

4 Discussion

The implementation of the rotation algorithm for finding the eigenvalues of the
system ratio matrix made it possible to evaluate the efficiency of the Richardson
method with an optimal set of parameters τ n

o , calculated by the formula (8). The
experimental dependences of the number of iterations n on a given accuracy ε,
obtained at various sets of parameters τ n , are shown on Fig. 1.

As you can see, the number of iterations n with a set of parameters τ n
o , calculated

by the formula (8) using the rotation method (line 2) differs slightly from the ideal
theoretical one (line 3) determined by the expression (9). With a random selection
of a set of parameters τ n (line 1), the number of iterations increases by 2–3 times.

Figure 2 shows the results of the magnetic field calculations of AMRLG, when
YUNDK24B alloy is selected as a permanent magnet [9].

Fig. 1 Influence of a set of parameters τ n on the number of iterations n according to the Richardson
method



Increasing the Efficiency of Calculation of Magnetic Fields … 99

Fig. 2 The picture of the magnetic field strength of the applied AMRLG

Figure 3 shows the results of the magnetic field modeling of AMRLG using
ELCUT system,whenYUNDK24B alloy is selected as a permanentmagnet [10–13].

So, the results of calculating the magnetic field of AMRLG by the proposed
method and using the known modeling system turned out to be similar.

Fig. 3 The picture of the magnetic field strength of the applied AMRLG in ELCUT
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5 Conclusion

Thus, the use of the developed methodology to calculate AMRLG magnetic fields
for bypass systems reduces the number of iterations and the solution time, proving
its effectiveness.
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