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Chapter 3
Classification of COVID-19 CT Scan 
Images Using Novel Tolerance Rough Set 
Approach

S. Nivetha and H. Hannah Inbarani

3.1  Introduction

As of date, Corona Virus Disease-19 (COVID-19) confirmed cases are 180,372,985 
all over the world, with a mortality rate of 3,907,656 and a recovered rate of 
165,098,641. The  pandemic of 2019–2020 is a global public health emergency. The 
coronavirus affects not only the respiratory system but also other vital organs includ-
ing the kidneys and liver [1]. Severe Acute Respiratory Syndrome Corona Virus 2 
(SARS-CoV2) causes COVID-19, a coronavirus disease [2]. The Corona  Virus 
Disease 2019 (COVID-19) is extremely infectious and can cause serious respiratory 
distress, pneumonia, multiple organ failure, and death. Symptoms can range from a 
common cold to fever, cough, shortness of breath, and acute respiratory problems, 
depending on the type of coronavirus. Handwashing periodically, wearing a mask, 
social distancing, and avoiding close contact with infected people are all general 
guidelines for preventing the spread of this coronavirus [3]. The COVID-19 virus 
has a 1-week incubation cycle, according to experts [4]. This is important because 
the infected patient serves as a virus carrier and unwittingly transmits the virus dur-
ing this time. COVID-19 can be diagnosed using three different methods: blood 
tests, X-rays, and Computed Tomography (CT) scans [5, 6]. The use of CT scans 
and X-ray images of the chest has a very strong ability to diagnose the disease in the 
absence of common symptoms such as fever [7]. The first step is to identify the 
disease’s symptoms and use distinct signs to correctly diagnose the coronavirus. To 
diagnose COVID-19, a medical professional will ask whether the patient has been 
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in touch if he/she wears the mask and whether he/she follows the distance and 
hygiene laws. The second step is to examine the symptoms of the patient. In the 
third step, the Reverse Transcription Polymerase Chain Reaction (RT-PCR) test is 
used. The fourth step is to use the radiological imaging method. The Nasopharyngeal 
Swab, which includes exposing a swab to paper strips that causes negative antibod-
ies intended to bind to coronavirus antigens, is the most popular diagnostic method. 
Antigens bind to the strips, resulting in a visible result. The procedure is quite quick 
and is used at the point of care. The sensitivity of the nucleic acid test is modest, 
ranging from 60 to 71%. Laboratory tests use samples from the nasopharyngeal 
swab, throat swabs, sputum, and deep airway material. However, radiological pro-
cedures may have a higher sensitivity than lab tests. Chest Radiography (Chest 
X-Ray) is used in the early stages. CT and ultrasonography are used when chest 
radiography is inadequate. Finally, the results of the blood analysis are investigated. 
From these results, the medical professional determines if the patient is affected by 
COVID-19 or not. CT imaging is currently clinically adopted as the major approach 
to confirm positive and suspected positive cases of COVID-19. When the patients 
were admitted to the hospital, 86.2% of the CT scans revealed abnormal symptoms. 
Ground-Glass Opacity (56.4%) and bilateral patchy shadows are the most common 
symptoms of COVID-19 patients as seen on CT images (51.8%).

CT images were found to have a wide range of COVID-specific lung infection pat-
terns, including the presence of ground-glass opacities, mixed ground-glass opacities, 
or consolidation; the presence of an air bronchogram, interlobular septal thickening, 
or cavitation; the presence of a different number of lobes afflicted by ground-glass or 
consolidative opacities; and the presence of pleural effusion; thoracic lymphadenopa-
thy; underlying lung illness, such as tuberculosis, emphysema, or interstitial lung dis-
ease; and various opacity distribution patterns, such as peripheral, central, bilateral, 
focal, multi-lobar, and diffuse. CT is a more accurate imaging method for the chest, 
with greater sensitivity and reliability than Chest X-Rays (CXR) [8]. According to the 
National Health Commission of China, chest CT may be used to detect nCoV infec-
tion. CT is a non-invasive medical imaging technology that was preferred because it 
is recognized as a powerful method for advanced internal porosity detection and char-
acterization [9]. A chest CT scan may provide an abundance of pathological facts. As 
a result of its high sensitivity, chest CT has been used as an alternative method to 
detect nCoV infection [10]. When compared to first RT-PCR from pharyngeal swab 
samples, chest CT has a better sensitivity for COVID-19 diagnosis.

The main goal of this study is to use CT scan images to identify COVID-19- 
infected patient. For data reduction based on attribute dependence, a rough set is a 
suitable strategy. Rough Set Theory has proven to be a useful method for solving a 
variety of problems, including representing unknown or imprecise knowledge, 
knowledge analysis, evaluating the quality and availability of information in terms 
of accuracy, identifying and evaluating data dependence, and reasoning based on 
uncertainty. The inability of Rough Set Theory (RST) to deal with real-valued data 
is its major flaw. The number of rough set applications used today is much broader 
than in the past, with applications mostly in medicine, database attribute analysis, 
and process control. The tolerance rough set model can work effectively with 
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real- valued (and crisp) data, resulting in minimal information loss [11]. The Novel 
Tolerance Rough Set Classification approach is used to incorporate a measure of 
feature value similarity and determine lower and upper approximations based on 
these measures of similarity. Tolerance rough sets are described by certain lower 
and upper approximations [12]. The efficacy of the proposed approach is compared 
with Decision Tree Classifier (DTC), Random Forest Classifier (RFC), Naive Bayes 
Classifier (NBC), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM). 
In this paper, we present a Novel Tolerance Rough Set Classification (NTRSC) 
approach for handling COVID-19 medical diagnosis system.

3.1.1  Research Objectives and Contributions

Several papers are presented, with an emphasis on coronavirus detection using 
machine learning and deep learning techniques. The applications such as medical 
imaging diagnosis, disease tracking, protein structure prediction, drug discovery, and 
virus infectivity use machine learning algorithms and deep learning architectures. 
The main objective of this work is to classify COVID and NON-COVID images 
using Novel Tolerance Rough Set Classification approach. It includes four main 
tasks such as preprocessing, feature extraction, segmentation, and classification. 
Initially, the COVID images are denoised using median filter. Then, Gray- Level 
Co-occurrence Matrix (GLCM) features are generated for the dimensions 0°, 45°, 
90°, and 135°. Segmentation of the COVID images is done by using Otsu threshold-
ing. For COVID-19 and NON-COVID images, segmented feature values are 
extracted from the datasets which are continuous values. To use rough sets, a discreti-
zation step must be performed first, which sometimes results in data loss. Therefore, 
Novel Tolerance Rough Set Classification is implemented for COVID and NON-
COVID CT scan image identification to overcome this disadvantage, which improves 
the diagnosis system’s performance. The tolerance similarity measure is used to find 
lower and upper approximation-based similarity values. The proposed approach is 
evaluated by comparing it to existing algorithms such as Decision Tree Classifier, 
Random Forest Classifier, Naive Bayes Classifier, K-Nearest Neighbor, and Support 
Vector Machine. The overall classification accuracy of the proposed NTRSC 
approach is 95%, 88%, 96%, and 93% for the GLCM 0°, GLCM 45°, GLCM 90°, 
and GLCM 135° datasets, respectively, based on the experimental results.

3.1.2  Research Motivation

Nowadays, many kinds of research were done for the pandemic of the new corona-
virus (COVID-19), which is dangerous and threatening to people’s lives. This paper 
contributed a Novel Tolerance Rough Set Classification (NTRSC) approach for the 
classification of COVID-19 CT scan images. There are four phases to the process
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 1. In the first phase, a denoising operation is performed to remove artifacts in 
the images.

 2. In the second phase, Otsu thresholding-based segmentation is applied to 
the images.

 3. In the third phase, Gray-Level Co-occurrence Matrix (GLCM) is used to extract 
relevant features from the COVID-19 CT scan dataset.

 4. In the fourth phase, Novel Tolerance Rough Set Classification is applied.

Then, the effectiveness of various classification algorithms is assessed using appro-
priate classification scales.

3.2  Related Work

G.D. Rubin et al. [13] discussed 14 main questions based on the expected value of 
the information that thoracic imaging will be expected to provide, which corre-
sponded to 11 decision points within the three scenarios and three additional clini-
cal situations. The findings were compiled into five major and three supplementary 
guidelines to assist medical professionals in the use of chest radiography and CT in 
the treatment of COVID-19. Zhao et  al. [14] proposed COVID-mechanistic 
COVID-19 diagnosis models using a CT dataset with 349 positive COVID-19 CT 
images from 216 patients. The authors tested the dataset’s utility for developing 
COVID-19 diagnosis models in experimental studies. In this work, diagnosis meth-
ods are built based on multitask learning and self-supervised learning with an F1 of 
0.90, an area under the Receiver Operating Characteristic (ROC) curve (AUC) of 
0.98, and a precision of 0.89 using a CT dataset. Shan et  al. [15] proposed that 
VB.Net is a deep learning-based system that uses chest CT to automatically parti-
tion all lung and infection locations. CT. Zhao et al. [16] discussed the relationship 
between chest CT images and pneumonia. The results have shown that COVID-19 
pneumonia patients have imaging features that can assist with the early detection of 
highly suspected cases as well as determining the seriousness and severity of the 
disease. Wang et al. [17] developed the algorithm called modified inception transfer 
learning model, which is followed by internal and external validation. The internal 
validation was 89.5% accurate overall, with a precision of 0.88 and a sensitivity of 
0.87. The external research dataset revealed a total accuracy of 79.3%, with a preci-
sion of 0.83 and a sensitivity of 0.67. Gozes et al. [18] proposed and demonstrated 
that deep learning-based automated CT image analysis tools for COVID-19 identi-
fication, quantification, and monitoring can distinguish patients from healthy peo-
ple. They achieved area under the ROC curve (AUC) was 0.996, the sensitivity was 
98.2%, and the specificity was 92.2%. Hasan et al. [19] proposed a promising tech-
nique for using Convolutional Neural Network (CNN) to predict COVID-19 patients 
from a CT scan. The modified CNN architecture in the current state to detect 
COVID-19 is based on DenseNet. With a 95% recall rate, the findings outperformed 
92% accuracy. To diagnose COVID-19 automatically, Maghdid et al. [20] used a 
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deep learning approach and transfer learning strategies. The structure is a hybrid of 
CNN and an enhanced AlexNet structure. On the X-rays and CT slice datasets, 
enhanced architecture accuracy hits 94.10%. Pathak et  al. [21] presented Deep 
Transfer Learning (DTL) which is utilized to train the COVID-19 classification 
model. To avoid overfitting, tenfold cross-validation was used. The dataset’s train-
ing and research ratios were set to 60% and 40%, respectively. A total of 10% of the 
training data was used for validation purposes, out of a total of 60%. The presented 
method obtains 96.2264% and 93.018% training and testing accuracy, respectively. 
Shaban et al. [22] proposed Enhanced K-Nearest Nneighbor (EKNN) which avoids 
the trapping issue of conventional KNN by using solid heuristics to choose the 
tested item’s neighbors. EKNN selects only the qualified neighbors for classifica-
tion after calculating the degree of both closeness and intensity of each neighbor of 
the tested object. EKNN will reliably detect infected patients with the least amount 
of time penalty. Dilbag Singh et al. [23] studied the deep learning model for classi-
fication of CT images based on Multi-Objective Differential Evolution (MODE) 
CNN. The proposed model is compared to models such as CNN, Adaptive Network- 
Based Fuzzy Inference System (ANFIS), and Artificial Neural Network (ANN). 
The proposed model outperforms competitive models in terms of accuracy, 
F-measure, sensitivity, specificity, and kappa statistics by 1.978%, 2.0928%, 
1.8262%, 1.6827%, and 1.9276% respectively, in terms of ANN, ANFIS, and CNN 
models. Eduardo et  al. [24] discussed artificially intelligent techniques that can 
determine if a person is infected with Severe Acute Respiratory Syndrome 
CoronaVirus 2 (SARS-CoV-2) by analyzing CT scans. They proposed eXplainable 
Deep Learning (xDNN) is a non-iterative method that relies solely on recursive 
calculations and prototypes. As a result, it is incredibly computationally efficient. 
xDNN produces 97.38%, 9.16%, 95.53%, 97.13%, and 97.36% in terms of accu-
racy, precision, recall, F1-Score, and AUC, respectively. xDNN outperforms the 
other deep learning models such as Residual neural Network (ResNet), GoogLeNet, 
Visual Geometry Group-16 (VGG-16), AlexNet, decision tree, and Adaptive 
Boosting (AdaBoost). Shaoping Hu et al. [25] proposed the weakly supervised deep 
learning framework for fully automatic identification and classification. This frame-
work can help determine the specific location of COVID-19-induced lesions or 
inflammations. They can learn to detect and localize tumors on COVID-19 and 
Community-Acquired Pneumonia (CAP) and Non-Pneumonia (NP) CT images 
based just on image-level labels. The suggested framework provides good accuracy, 
precision, and AUC for classification, as well as promising qualitative visualization 
for lesion detections, according to experimental findings. Aayush Jaiswal et al. [26] 
proposed DenseNet201 to categorize patients as COVID-infected or not. The pro-
posed model extracts feature from the ImageNet dataset using its learned weights 
and CNN. When compared to certain well-known deep transfer learning models 
such as Inception-ResNetV2, VGG16, and ResNet152V2, the DenseNet201-based 
CNN performs much better. The proposed system diagnoses chest CT scans as hav-
ing 99.82%, 96.25%, and 97.4% training, testing, and validation accuracy, respec-
tively. Siqi Liu et al. [27] discussed that COVID-19-related tomographic patterns on 
chest CTs from negative cases were generated using a Generative Adversarial 
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Network (GAN) model. The 2D network’s Dice Similarity Coefficient (DSC) was 
increased from 0.623 to 0.645, while the 3D network’s DSC increased from 0.657 
to 0.706, which is equivalent to the inter-user variability DSC (0.7132 ± 0.1831). 
For the 2D network, Pearson’s Correlation Coefficient (PCC) was improved from 
0.908 to 0.939, and for the 3D network, it improved from 0.933 to 0.961, which is 
comparable to the inter-user variability range PCC = 0.957. Similarly, for the 2D 
network, the PCC for Percentage of High Opacity (PHO) improved from 0.906 to 
0.927, and for the 3D network, it improved from 0.9099 to 0.9387. In addition to the 
research mentioned above, the following studies are described in detail. Table 3.1 
presents the data of additional studies. When the table is reviewed, the methodology 
utilized in the studies, as well as the size and type of datasets, is shown.

Table 3.1 Summary of related work

References Dataset Technique

G.D. Rubin 
et al. [13]

Risk factors such as community conditions and 
resource constraints are represented in three 
different scenarios

To provide guidelines to 
physicians on the use of 
thoracic imaging in a range 
of healthcare environments

Zhao et al. 
[14]

https://github.com/UCSD- AI4H/COVID- CT For binary classification of 
COVID-19 or NON- 
COVID- 19, the 
DenseNet169 model was 
utilized

Shan et al. 
[15]

For validation, 300 CT images from 300 
COVID-19 patients (from Shanghai) were 
gathered. For training, 249 CT images of 249 
COVID-19 patients were gathered from other 
centers (outside Shanghai)

DL-based segmentation 
network: VB.Net

Zhao et al. 
[16]

In Hunan, China, data on 101 cases of COVID-19 
pneumonia were collected retrospectively from 
four institutions

Early screening and tracking 
the diseases

Wang et al. 
[17]

Collected CT images from 259 patients, with 180 
cases of standard viral pneumonia and the 
remaining 79 cases from three hospitals with 
reported SARS-CoV-2 nucleic acid testing

A deep learning-based 
prediction model

Gozes O 
et al. [18]

6150 CT images of the lungs with anomalies and 
lung masks

Deep learning-based 
automated CT image 
analysis tool

Hasan et al. 
[19]

2482 CT images in total while 1252 CT images 
were COVID-19 positive, and 1230 CT images 
were from noninfected COVID-19 images but who 
have other pulmonary diseases

Deep learning architecture 
DenseNet121 for image 
classification

Maghdid 
et al. [20]

5 different sources to form a dataset of 170 X-ray 
images and 361 CT images of COVID-19

An effective CNN model 
together with testing 
pre-trained AlexNet for the 
detection of COVID-19 
images

(continued)
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3.3  Methods and Materials

Dataset is used in this work is available at https://github.com/UCSD-AI4H/
COVID-CT [42] from the github repository: in this repository, 349 positive COVID 
CT images and 397 NON-COVID. The images in this COVID-19 CT Scan dataset 
have varying sizes : 153,491,and 1853 are the minimum, average and greatest 
heights respectively. These images were taken from 216 different patient instances. 
medRxiv and bioRxiv have been used to collect the positive images. To maintain 
uniform properties in our final dataset for studies, all images were transformed to 
Portable Network Graphics (.png) format. Both positive and negative class photo-
graphs were also downsized to 256*256.

Table 3.1 (continued)

References Dataset Technique

Pathak et al. 
[21]

413 COVID-19 images, 439 – Normal or 
pneumonia images

COVID-19-infected patients 
are classified using a deep 
transfer learning algorithm

Shaban et al. 
[22]

216 COVID-19 images and 133 NON-COVID 
images

Enhanced KNN 
classification technique

Dilbag Singh 
et al. [23]

From January 21 to February 3, 2020, 73 
individuals with COVID-19 were proactively 
collected in six hospitals

Multi-objective differential 
evolution-based 
convolutional neural 
networks

Eduardo 
Soares et al. 
[24]

2482 CT scans, of which 1252 corresponds to 60 
patients identified with SARS-CoV-2 and 1230 CT 
scans corresponds to 60 patients not identified 
with SARS-CoV-2. These data have been collected 
from different hospitals in Sao Paulo, Brazil

eXplainable deep learning 
(xDNN) approach

Shaoping Hu 
et al. [25]

150 3D volumetric chest CT exams of COVID-19, 
CAP, and NP patients, respectively. In total, 450 
patient scans acquired from two participating 
hospitals between September 2016 and March 
2020 were included for further analysis

Weakly supervised deep 
learning method

Aayush 
Jaiswal et al. 
[26]

Dataset collected from Kaggle website. The 
dataset consists of a total of 2492 CT scans out of 
which 1262 are positive for SARS-CoV-2 
infection, i.e., COVID-19 (+), and the rest of 1230 
are negative for SARS-CoV-2 infection, i.e., 
COVID-19 (−)

DenseNet201-based Ddeep 
Transfer Learning (DTL)

Siqi Liu et al. 
[27]

Collected 2143 chest CTs, containing 327 
COVID-19 positive cases, acquired from 12 sites 
across seven countries

Generative Adversarial 
Network (GAN)
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Fig. 3.1 Filtering using Different Techniques: (a) Input COVID Image, (b) Add Gaussian Noise 
to Image, (c) Gaussian Filter (d), Average Filter, (e) Median Filter, (f) Bilateral Filter

3.3.1  Preprocessing

Preprocessing is a vital step in the automated disease detection process. Before 
computational processing, images are usually preprocessed by eliminating low- 
frequency background noise, normalizing the intensity of individual particle images, 
and removing or enhancing data images. Preprocessing includes conversion, image 
resizing, noise removal, and quality enhancement. Filtering is a technique for 
improving an image in which filters are primarily used to remove either the image’s 
high frequencies, i.e., smoothing the image, or the image’s low frequencies, i.e., 
enhancing or detecting edges [28]. The median filter resides on a rectangular region. 
During the filtering process, it alters the size of images based on the conditions. The 
median value in the three-by-three neighborhood around the corresponding pixel in 
the input images is stored in each output pixel. The filter’s output is a single value 
that replaces the current pixel, value at (x, y) the time when S is oriented. The 
applied preprocessing technique not only saves time and also compares with various 
filtering techniques to determine the best pixel result using the median filter. 
Figures 3.1 and 3.2 describe the original COVID and NON-COVID images and dif-
ferent filtering techniques images.
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3.3.2  Segmentation

The Otsu (Otsu) is a global adaptive binarization threshold image segmentation 
algorithm developed by Japanese researchers in 1979 [29]. As the threshold selec-
tion rule, this algorithm uses the maximum inter-class variance between the context 
and target image. The maximum between-class variance method is an alias of the 
Otsu method based on the same theory. According to the grayscale characteristics of 
the image, it divides it into foreground and background. The disparity between the 
two parts is the greatest when the better threshold is used. The maximum inter-class 
variance, which is a fairly common measure norm, is used by the Otsu algorithm. 
Otsu thresholding is used for the images in this study, and it is used to perform 
automatic thresholding in image processing. After segmenting the portion of an 
image, apply erosion operation to the images. The erosion process increases the 
number of pixels with a value of zero (background) while decreasing the number of 
pixels with a value of one (foreground). Figure  3.3 and Fig.  3.4 depict Otsu’s 
thresholding- based segmentation applied on CT COVID and NON-COVID images.

Fig. 3.2 Filtering using Different Techniques: (a) Input NON-COVID image, (b) Add Gaussian 
Noise to Image, (c) Gaussian Filter (d), Average Filter (e), Median Filter, (f) Bilateral Filter

Fig. 3.3 Input and Output of CT COVID Images: (a) Original CT image of COVID Image, (b) 
Output of Median Filter for CT COVID image, (c) Apply Otsu’s Thresholding for CT COVID 
Image, (d) The Output of Morphological Operation – Erosion of CT COVID
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3.3.3  Feature Extraction

A prominent texture-based feature extraction approach is the Gray-Level 
Co-occurrence Matrix (GLCM). The GLCM defines the textural relationship 
between pixels by executing an operation on the images second-order statistics. A 
matrix with the same number of rows and columns as the gray values is used to 
represent the GLCM properties of an image. For GLCM, two pixels are usually 
used [30]. The GLCM features used in this study are as follows: Contrast, 
Dissimilarity, Homogeneity, Energy, Correlation, and Angular Second Moment 
(ASM). GLCM is constructed in four spatial dimensions which are 0°, 45°, 90°, and 
135°. For all segmented COVID and NON-COVID images, Gray-Level 
Co-occurrence Matrix is applied to extract the features in 0°, 45°, 90°, and 135° 
directions.

3.4  Background Study of Tolerance Rough Set

Pawlak introduced a new mathematical method called Rough Set Theory [31, 32] in 
the early 1980s to deal with vagueness and ambiguity in datasets. Many extensions 
of the rough set model have been suggested in terms of different criteria over the last 
40 years, including the rough set model based on a soft rough set model, the rough 
soft set model, the fuzzy soft set model, tolerance relations, and rough fuzzy model 
[33]. The equivalence relation is used to identify Pawlak’s rough set-based classifi-
cation algorithms, which are only suitable for discrete datasets. If the attribute val-
ues of objects in typical rough sets are similar, they are grouped into equivalence 
groups. For continuous data, where values can only vary due to noise, this criterion 

Fig. 3.4 Input and output of CT NON-COVID image: (a) original CT image of NON-COVID 
image, (b) output of median filter for CT NON-COVID image, (c) Otsu’s thresholding applied to 
CT NON-COVID image, (d) output of morphological operation  – erosion of CT NON- 
COVID image
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may be too stringent. When using the Pawlak model to handle continuous data, the 
computation cost keeps increasing. Several extensions of rough set theory have 
been developed to replace analogous relations, dimensionality reduction, and clas-
sification systems, such as the fuzzy rough set model [34], probabilistic rough sets 
[35], similarity rough set [36], tolerance relation rough set [37], decision-making 
rough set [38], and covering rough set [12].

3.4.1  Tolerance Rough Set

Tolerance Rough Set (TRS) analyzes the indeterminate data found in the limit 
region of tolerance rough sets using comparability steps. This technique is used to 
present an estimate of highlight value comparability as well as define the lower and 
upper approximations using these similitude metrics. Tolerance rough sets are char-
acterized by certain lower and upper approximations [39].

3.4.1.1  Tolerance Information Systems

If A = (U, A) is an information system and B ⊆ A, then INF(B) = {InfB(x) : x ∈ U } 
is the set of information vectors InfB(x) = {(a, a(x))  : a ∈ B}. If u ϵ INF(C) and 
B ⊆ C ⊆ A, then u ∣ B = {(a, w) ∈ u : a ∈ B}. That is, u ∣ B is the restriction of u to 
B [12]. A tolerance information system is a pair (A, D) where

A = (U, A) is an information system,
D = (DB) B ⊆ A and DB ⊆ INF(B) × INF(B) are a relation termed as the discernibility 

relation satisfying the conditions [12]:

 (i) INF(B) × INF(B) − DB is a tolerance (indiscernibility) relation.
 (ii) ((u − v) ∪ (v − u) ⊆ (u0 − υ0) ∪ (υ0 − u0)) & uDBυ → uDBυ0 for any u, v, u0, 

υ0 ϵ INF(B) that is DB is monotonic with respect to discernibility property.
 (iii) non(uDCυ) implies non(u| BDBυ| B) for any B ⊆ C and u, v ϵ INF(C).

A(B, DB) tolerance function, I[B, DB] : U → P(U) is defined by y ∈ I[B, DB](x) if 
non(InfB(x)DBInfB(y)) for any x, y ϵ U. The set I[B, DB](x) is called the tolerance set 
of x [12].

3.4.1.2  Definition 1: Tolerance Similarity Measures

Let xiTaxj epitomize the similarity between xi and xj in terms of the tolerance thresh-
old attribute. xi and xj are identical in terms of attribute ‘a,’ where Ta denotes the 
tolerance similarity threshold relation for attribute ‘a,’ whose value falls within the 
Ta [0,1] range. As a result, we can apply the standard similarity measure Sa (xi, xj) to 
the Ta that can be determined by a simple distance,
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where a(xi) and a(xj) are attribute values concerning xi and xj, respectively, and maxa 
and mina are the maximum and minimum values of attribute ‘a’ [7]. Ta’s and Sa’s 
relationship is depicted below,
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where ta is the attribute a-based similarity threshold. The similarity measure in clas-
sification is based on the normalized distance function as follows:
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The maximum distance between two attribute values a(xi) and a(xj) is denoted 
by dmax,
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which is the distance function between two objects in terms of attribute values [40]. 
The similarity measure SA (xi, xj) between two objects xi and xj is defined as an 
arithmetic average of similarity measures of all attributes between two objects 
xi and xj:

 

S x x
A

s x xA i j
a A

a i j, ,( ) ∑ ( )
∀

1


 (3.5)

The number of attributes in A is represented by |A|. When all attributes ‘A’ is con-
sidered at the same time, we can apply the tolerance related to the similarity mea-
sure as follows,

 
x t x S x x t Ai A j A i j↔ ( ) ≥ ( ),

 (3.6)

where t(A) [0,1] is an image classification similarity threshold dependent on all 
attributes A.

3.4.1.3  Definition 2: Tolerance Rough Set

The degree of similarity is calculated for each function in the tolerance rough set 
method as follows [41]:
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SIM x y

a x a y

a aa ,
max min

( ) = −
( ) − ( )

−
1

 (3.7)

The feature or attribute is ‘a,’ and the maximum and minimum values for the fea-
tures taken are amax and amin. Similarity can be achieved for a subset of features P 
as follows:

 
x y SIM iff SIM x yP

a P
a, ,( )∈ ∏ ( ) ≥,τ τ

  (3.8)

 

x y SIM iff
SIM x y

PP
a P a,

,
( )∈

∑ ( )
≥,τ τ

 (3.9)

Lower PτX and upper P Xτ  approximations are demarcated as follows:

 
P X x SIM x XPτ τ= ( ) ⊆{ }| ,

 (3.10)

 
P X x SIM x XPτ τ= ( )∩ ≠ ∅{ }| ,  (3.11)

Positive region and negative region are as follows:

 

POS y P XP
X U y U

,
|

τ
ε ε

τ( ) =
( )
∪

 (3.12)

 

NEG y P XP
X U y U

,
|

τ
ε ε

τ( ) =
( )
∪

 (3.13)

3.4.2  Proposed Approach: Novel Tolerance Rough Set 
Classification (NTRSC)

The proposed approach is shown in Fig. 3.5. This proposed NTRSC approach is 
used to provide a measure of feature value similarity and define lower approxima-
tions using the similarity measures. In the first phase, preprocessing and Otsu seg-
mentation are applied to the COVID and NON-COVID images. In the second phase, 
GLCM features for four directions are extracted. In the third phase, the NTRSC 
approach was applied to the dataset. A classification dataset is separated into two 
parts: a training set and a testing set. The efficiency of a classifier is determined by 
presenting it with a testing set. In this NTRSC training approach, tolerance cosine 
similarity is constructed in step 1. In the second step, novel tolerance lower approxi-
mation of the dataset based on decision class C is constructed. With the help of 
tolerance approximation, we generate the rules which are certain rules. In the third 
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step, certain rules are generated based on tolerance rough set lower approximation. 
In the testing algorithm matching, the closest decision rule is applied for the test 
data. Finally, classification measures are used to assess the effectiveness of different 
categorization procedures for COVID and NON-COVID diagnosis.

The experimental results for the proposed NTRSC and other benchmark algo-
rithms are validated using classification validation accuracy measures. Table  3.2 
shows the proposed Novel Tolerance Rough Set Classification (NTRSC) approach 
for the training dataset. Table 3.3 depicts the NTRSC testing algorithm. NTRSC 
algorithm is applied to generate certain rules for tolerance lower approxima-
tion space.

Fig. 3.5 The proposed NTRSC approach
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Algorithm 1: Proposed Approach – Novel Tolerance Rough Set Classification: 
Training Algorithm

Algorithm 2: Proposed Approach – Novel Tolerance Rough Set Classification: 
Testing Algorithm

3.5  Experimental Results and Discussion

An experimental evaluation of the proposed Novel Tolerance Rough Set 
Classification for COVID and NON-COVID images is presented in this section. All 
the experiments were run on an Intel® Core™ i5-10210U CPU at 1.60–2.11 GHz 
machine with 8 GB RAM. The NTRSC approach was implemented in Python using 
Anaconda. Experiments are carried out using a CT scan dataset. The COVID-19 CT 
dataset used in this study is open to the public (https://github.com/UCSD- AI4H/
COVID- CT) [42]. 349 CT images from COVID patients and 397 CT images from 

Table 3.2 Proposed NTRSC approach for training dataset

Input: <U, A ∪ B>,τ-threshold, U = {X1, X2, …, Xn}, A = {a1, a2, …, an} is the set of 
conditional attributes; D = {d1, d2, …, dn} is the decision attribute.
Output: Set of rules for each class.
Step 1: Extract the features from COVID and NON-COVID images using GLCM
Step 2: Define the tolerance relation for the conditional attributes using
[x]C ← C
Step 3: Construct the equivalence relation for the decision attribute:
[x]D ← C
Step 4: Compute tolerance cosine similarity for the tolerance relation:

SIM x y 1
a x a y

a aa ,
max min

( ) = −
( ) − ( )

−

Step 5: Construct the tolerance rough set lower approximation space for each class:

P X x SIM x XPτ τ= ( ) ⊆{ }| ,

Step 6: Generate certain rules for each class separately using a tolerance rough set based on 
lower approximation

Table 3.3 Proposed NTRSC approach for testing dataset

Input: Set of decision rules
Output: Decision values
Step 1: Extract the features for each image in the test set
Step 2: For each class, perform feature matching with decision rules
Step 3: Use the closest decision rule to classify the image
Step 4: Output decision
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NON-COVID-19 patients are included in the dataset. The experiments are carried 
out in the following ways: GLCM is used to extract the features of the COVID and 
NON-COVID images. Features were extracted from both training and testing 
images. Then, using NTRSC, each test image is matched with a lower approxima-
tion generated rule and matches the closest decision rule for classifying the image. 
In comparison to other filtering methods, the median filter yields strong Peak 
Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) values. The 
PSNR and SSIM values of COVID and NON-COVID images after noise removal 
using different filters are shown in Table 3.4.

A confusion matrix is a method of summarizing a classification algorithm’s 
results. A confusion matrix helps to get the summary of prediction results on a clas-
sification problem. Count values are used to sum and break down the number of 
correct and wrong predictions by class. True positive refers to correctly predicted 
NON-COVID images that are classified correctly. True negative refers to correctly 
predicted COVID images that are labeled as COVID images. False positive refers to 
the incorrectly predicted COVID images, and false negative refers to incorrectly 
predicted NON-COVID images. Precision, recall, specificity, F-measure, and 
G-Mean are among the useful performance indicators computed in medical applica-
tions. The findings are reviewed and compared to those of other decision-making 
classifiers. Precision is the prediction of a positive observation, accuracy is the accu-
rate prediction observation to the total observations, and F1-Score is the calculation 
of the weighted average of precision and sensitivity. G-Mean is the product of the 
prediction accuracies for both classes. In this paper, we show the performance of a 
classification algorithm using well-known metrics including Accuracy, Sensitivity, 
Specificity, Error Rate, Matthews Correlation Coefficient, Lift, Youden's Index, 
Balanced Classification Rate, and Balanced Error Rate. The complete interpretation 
for each metric is depicted in Table 3.5 [43–51].

Several machine learning algorithms such as Decision Tree Classifier, Random 
Forest Classifier, Naive Bayes Classifier, K-Nearest Neighbor, and Support Vector 
Machine were implemented for the classification of COVID and NON-COVID 
images. Performance values were evaluated via confusion matrix as shown in 
Table 3.6 for GLCM 0°, GLCM 45°, GLCM 90°, and GLCM 135°. According to 
the empirical results, the proposed NTRSC approach accurately classifies COVID 
and NON-COVID images. The proposed NTRSC approach produces the correct 
predictions as the same output results which prove that NTRSC provides the best 
result than other classifiers. From all the classifiers examined, GLCM 0° NTRSC 
has 0.95% accuracy. The proposed NTRSC achieved better classification accuracy 

Table 3.4 PSNR and SSIM values for various filters

Image Metrics Noisy image Gaussian filter Average filter Median filter Bilateral filter

CO PSNR 31.9639 38.9170 33.1507 41.2520 39.41192
SSIM 0.85376 0.9770 0.88605 0.98514 0.974788

N-CO PSNR 34.0622 40.538 34.1514 45.7168 41.89566
SSIM 0.93808 0.9919 0.94818 0.99558 0.988984
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than other methods, and the minimum error rate of 0.04 is represented in Table 3.7. 
It also proves the efficiency of the proposed NTRSC approach. The output of the 
decision-making algorithms for the GLCM 45° dataset in the proposed NTRSC 
algorithm has an 88% overall accuracy and a 0.12% error rate. The proposed 
decision- making algorithm earns the highest score on Youden index, i.e., 2.83. For 
GLCM 90° in the COVID dataset, the classification accuracy of the NTRSC is 
higher than that of Decision Tree, Random Forest Classifier, Naive Bayes Classifier, 
K-Nearest  Neighbor, and Support Vector Machine. It also demonstrates that the 

Table 3.5 Various evaluation metrics

Metrics Formula

Precision TP

TP FP+

Recall (sensitivity) TP

TP FP+

Specificity TN

TN FP+

Negative Predictive Value TN

TN FN+

False Predictive Value FP

FP TN+

False-Negative Value FP

TP FP+

F1-score
2.

PRECISION RECALL

PRECISION RECALL

∗
+

G-Mean PRECISION RECALL∗

Accuracy TP TN

TP TN FP FN

+
+ + +

Error Rate FP FN

TP TN FP FN

+
+ + +

Matthews Correlation Coefficient (TP ∗ TN) − (FP ∗ FN)/SQRT((TP+
FP ∗ (TP + FN)∗
(TN + FP) ∗ (TN + FN))

Lift TP TP FP

TP FN TP TN FP FN

/

/ (

+( )( )
+( ) + + +( )

Youden's Index SENSITIVITY + SPECIFICITY − 1
Balanced Classification Rate 1

2
SENSITIVITY SPECIFICITY+( )

Balanced Error Rate 1 − BCR
aTN True Positive, TP True Negative, FP False Positive, FN False Negative
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Table 3.6 Confusion matrix, precision, recall, F1-Score, support, and G-Mean for various 
classifiers

GLCM 
features

Classification 
algorithm

Desired 
output

Output 
result for 
confusion 
matrix CO 
N-CO Precision Recall F1-Score Support G-Mean

GLCM 
0°

NTRSC CO 97 7 0.96 0.93 0.95 104 0.94
N-CO 4 116 0.94 0.97 0.95 120 0.95

Decision Tree CO 87 13 0.87 0.87 0.90 124 0.87
N-CO 13 111 0.90 0.90 0.90 121 0.90

Random 
Forest

CO 97 9 0.92 0.92 0.92 106 0.92
N-CO 9 109 0.92 0.92 0.92 118 0.92

Naive Bayes CO 67 39 0.85 0.63 0.72 106 0.73
N-CO 12 106 0.73 0.90 0.81 118 0.81

KNN CO 94 10 0.96 0.90 0.93 104 0.92
N-CO 4 116 0.92 0.97 0.94 120 0.94

SVM CO 79 19 0.86 0.81 0.84 97 0.83
N-CO 13 114 0.86 0.90 0.88 127 0.87

GLCM 
45°

NTRSC CO 98 8 0.97 0.70 0.81 97 0.82
N-CO 10 108 0.81 0.98 0.89 127 0.89

Decision Tree CO 85 24 0.80 0.78 0.79 109 0.78
N-CO 21 94 0.80 0.82 0.81 115 0.80

Random 
Forest

CO 91 9 0.70 0.78 0.74 95 0.73
N-CO 18 106 0.82 0.76 0.79 129 0.78

Naive Bayes CO 65 39 0.78 0.62 0.70 104 0.69
N-CO 18 102 0.72 0.85 0.78 120 0.80

KNN CO 95 11 0.80 0.90 0.84 106 0.84
N-CO 24 94 0.90 0.80 0.84 118 0.84

SVM CO 62 35 0.70 0.64 0.67 97 0.66
N-CO 27 100 0.74 0.79 0.76 127 0.76

GLCM 
90°

NTRSC CO 110 9 0.99 0.94 0.96 119 0.96
N-CO 2 103 0.94 0.99 0.96 105 0.96

Decision Tree CO 80 26 0.84 0.75 0.80 106 0.79
N-CO 15 103 0.80 0.87 0.83 118 0.87

Random 
Forest

CO 86 20 0.88 0.81 0.84 106 0.84
N-CO 12 106 0.84 0.90 0.87 118 0.86

Naive Bayes CO 50 49 0.66 0.51 0.57 99 0.58
N-CO 26 99 0.67 0.79 0.73 125 0.72

KNN CO 100 8 0.89 0.93 0.91 108 0.90
N-CO 12 104 0.93 0.90 0.91 116 0.91

SVM CO 52 45 0.74 0.54 0.62 97 0.63
N-CO 18 109 0.71 0.86 0.78 127 0.78

(continued)
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Table 3.6 (continued)

GLCM 
features

Classification 
algorithm

Desired 
output

Output 
result for 
confusion 
matrix CO 
N-CO Precision Recall F1-Score Support G-Mean

GLCM 
135°

NTRSC CO 110 9 0.97 0.90 0.93 119 0.93
N-CO 2 103 0.89 0.97 0.93 105 0.92

Decision Tree CO 90 14 0.82 0.87 0.84 104 0.84
N-CO 20 100 0.88 0.83 0.85 120 0.84

Random 
Forest

CO 98 8 0.89 0.92 0.91 106 0.90
N-CO 12 106 0.93 0.90 0.91 118 0.91

Naive Bayes CO 72 38 0.82 0.65 0.73 110 0.73
N-CO 16 98 0.72 0.86 0.78 114 0.78

KNN CO 97 4 0.88 0.96 0.92 101 0.91
N-CO 13 110 0.96 0.89 0.93 123 0.92

SVM CO 68 29 0.77 0.70 0.74 97 0.73
N-CO 20 107 0.79 0.84 0.81 127 0.81

Table 3.7 Performance metrics for various classifiers

GLCM features Performance measures NTRSC DTC RFC NBC KNN SVM

GLCM 0° Accuracy 0.95 0.88 0.92 0.77 0.94 0.86
Sensitivity 0.95 0.87 0.91 0.84 0.95 0.85
Specificity 0.94 0.89 0.92 0.73 0.92 0.86
Error rate 0.04 0.11 0.08 0.22 0.06 0.13
MCC 0.89 0.76 0.84 0.55 0.87 0.71
NPV 0.96 0.91 0.92 0.88 0.91 0.89
FPV 0.05 0.11 0.06 0.28 0.06 0.13
FNV 0.04 0.09 0.08 0.13 0.09 0.14
Lift 2.07 1.94 1.93 1.79 2.06 1.98
Youden's index 2.90 2.76 2.83 2.57 2.87 2.72
BCR 0.95 0.88 0.91 0.78 0.93 0.86
BER 0.04 0.11 0.08 0.21 0.06 0.13

GLCM 45° Accuracy 0.88 0.80 0.86 0.75 0.84 0.72
Sensitivity 0.90 0.80 0.83 0.78 0.79 0.69
Specificity 0.89 0.79 0.79 0.72 0.81 0.74
Error rate 0.12 0.20 0.13 0.28 0.15 0.27
MCC 0.73 0.62 0.70 0.44 0.69 0.43
NPV 0.75 0.78 0.92 0.83 0.84 0.78
FPV 0.17 0.19 0.06 0.29 0.21 0.25
FNV 0.29 0.25 0.08 0.22 0.17 0.30
Lift 1.91 1.64 1.87 1.64 1.68 1.60
Youden's index 2.83 2.59 2.75 2.72 2.43 2.43
BCR 0.91 0.79 0.87 0.86 0.71 0.71
BER 0.08 0.20 0.12 0.13 0.15 0.28

(continued)
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Table 3.7 (continued)

GLCM features Performance measures NTRSC DTC RFC NBC KNN SVM

GLCM 90° Accuracy 0.96 0.82 0.86 0.67 0.91 0.72
Sensitivity 0.99 0.84 0.87 0.65 0.89 0.74
Specificity 0.93 0.79 0.84 0.66 0.92 0.70
Error rate 0.03 0.18 0.14 0.33 0.08 0.28
MCC 0.92 0.74 0.73 0.73 0.85 0.42
NPV 0.99 0.92 0.88 0.79 0.90 0.85
FPV 0.06 0.20 0.13 0.30 0.05 0.29
FNR 0.00 0.09 0.13 0.36 0.10 0.25
Lift 1.87 1.77 1.85 1.48 1.85 1.71
Youden's index 2.92 2.64 2.71 2.32 2.82 2.45
BCR 0.96 0.82 0.85 0.66 0.91 0.72
BER 0.03 0.17 0.14 0.33 0.08 0.27

GLCM 135° Accuracy 0.93 0.88 0.91 0.76 0.92 0.78
Sensitivity 0.97 0.81 0.89 0.81 0.88 0.77
Specificity 0.89 0.87 0.92 0.72 0.96 0.78
Error rate 0.06 0.15 0.08 0.24 0.07 0.21
MCC 0.86 0.72 0.81 0.40 0.80 0.55
NPV 0.97 0.84 0.96 0.79 0.89 0.84
FPV 0.10 0.15 0.06 0.27 0.08 0.21
FNR 0.02 0.18 0.10 0.25 0.11 0.22
Lift 1.84 1.76 1.88 1.66 1.95 1.78
Youden's index 2.86 2.69 2.82 2.53 2.84 2.55
BCR 0.93 0.84 0.91 0.76 0.92 0.77
BER 0.06 0.15 0.08 0.23 0.07 0.22

proposed NRSC approach is more efficient than the KNN classification algorithm. 
For GLCM 135°, the proposed NTRSC outperforms all the algorithms, and NTRSC 
produces the 0.93% accuracy with a 0.06 error rate.

The effectiveness of algorithms is computed using various validation measures. 
Figures  3.6 and 3.7 present the performance of various classifiers: GLCM 0°, 
GLCM 45°, GLCM 90°, and GLCM 135° datasets. From this figure, the proposed 
NTRSC approach produces the best accuracy for all datasets and minimum error 
rate, i.e., it outperforms the other algorithms.

A Receiver Operating Characteristic (ROC) curve is a graph that shows how well 
a classification model performs overall classification thresholds. Two parameters 
plotted on this curve are true-positive and false-positive rate. The proposed NTRSC 
approach outperformed the other current classification algorithms on all datasets, 
including GLCM 0°, GLCM 45°, GLCM 90°, and GLCM 135°. The NTRSC algo-
rithm’s curve appears in the ROC graph’s top left border. This indicates that the 
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Fig. 3.6 Accuracy comparison for various classifiers

Fig. 3.7 Error rate comparison for various classifiers

proposed approach correctly differentiates between COVID and NON-COVID. The 
ROC curve comparison of the proposed NTRSC approach and current decision- 
making algorithms is shown in Figs. 3.8, 3.9, 3.10, and 3.11 for GLCM 0°, GLCM 
45°, GLCM 90°, and GLCM 135° datasets.
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Fig. 3.9 ROC curve analysis NTRSC approach – GLCM 45°

Fig. 3.8 ROC curve analysis NTRSC approach – GLCM 0°
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3.6  Conclusion

Finally, in the current situation, where COVID-19 is still spreading, rapid and accu-
rate diagnosis and disease progression analysis are critical. COVID-19 must be 
diagnosed early to treat and isolate individuals and prevent the virus from spread-
ing. COVID-19 CT scan images for the GLCM 0°, GLCM 45°, GLCM 90°, and 

Fig. 3.10 ROC curve analysis NTRSC approach – GLCM 90°

Fig. 3.11 ROC curve analysis NTRSC approach – GLCM 135°

3 Classification of COVID-19 CT Scan Images Using Novel Tolerance Rough Set Approach



78

GLCM 135° datasets were retrieved from the GitHub source, with accuracy values 
of 95%, 88%, 96%, and 93%, respectively. The chest CT dataset of COVID-19- 
infected patients and NON-COVID-19-infected patients is first decomposed into 
two sets: training and testing. Novel Tolerance Rough Set Classification (NTRSC) 
approach is applied in the training process, deciding on a collection of new informa-
tion based on data acquired by lower rules and identifying the closest matches with 
the testing dataset. The experimental results were found to be highly compelling, 
and the approach was shown to be a helpful tool for COVID-19 screening on CT 
scan images of corona suspects. The presented approach is combined with current 
benchmark algorithms, and several classification measures are assessed. The 
obtained findings suggest that the proposed NTRSC approach has greater output 
accuracy with a low error rate than other algorithms. The obtained result demon-
strates that the presented approach outperforms other comparative classification 
algorithms in terms of accuracy. Furthermore, the proposed algorithm achieves the 
greatest ROC. Finally, proposed Novel Tolerance Rough Set Classification approach 
for distinguishing COVID-19 and NON- COVID- 19 images are classified accurately 
and helpful for diagnosis. Multiple illnesses such as pneumonia, bronchitis, and 
tuberculosis (TB), as well as COVID-19 of suspected persons with respiratory ill-
ness, can be detected in the future. As future work, the proposed approach might be 
extended to classify more lung illnesses. This can be accomplished by using multi-
class classifier. For further studies, a larger dataset COVID-19 data will be col-
lected, and deep learning architectures on the datasets will be tested.
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