
Chapter 5
Colloidal Particles in Confined and
Deformed Nematic Liquid Crystals:
Electrostatic Analogy and Its
Implications

O. M. Tovkach, S. B. Chernyshuk, and B. I. Lev

Abstract Liquid crystals doped with inclusions of other solid or liquid phases pos-
sess a number of properties, such as intrinsic anisotropy and extreme responsiveness
to external stimuli, that make them particularly attractive for biomedical applica-
tions, varying from imaging and spectroscopy to biosensing. One of the hallmarks
of such systems is an effective host-mediated interaction between colloidal particles.
Building upon similarities between electrostatic potential and small deformations of
the nematic director, we show how these anisotropic long-range interactions emerge
from the interplay of colloids shape and nematic order and derive general expres-
sions for the long-range interaction potentials for particles of arbitrary shape and
size in the presence of confining boundaries and electromagnetic fields. To demon-
strate the proposed formalism at work, we consider a series of illustrative exam-
ples, ranging from ellipsoids and banana-shaped particles in a sandwich-type cell
to nanocolloids in a cylindrical capillary. Our results suggest that one can exploit
the interplay of shape, symmetry, and liquid-crystalline order to design particles
with prescribed long-range elasticity-mediated interactions, which opens promising
pathways to novel mesostructured functional materials.
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List of Abbreviations and Symbols

2D Two-dimensional
3D Three-dimensional
LC Liquid crystal

NLC Nematic liquid crystal
NP Nanoparticle
THz Terahertz (1012 Hz)
HL Quasi-hexagonal lattice
DL Dense quasi-hexagonal lattice

5.1 Introduction

Nematic liquid crystals combine spatial anisotropy of the orientational order with the
fluidity of conventional liquids. Typical NLCs comprise elongated organicmolecules
with a strong propensity toward aligning their axes along a specific direction charac-
terized by a unit-length vector n — the director. Traditionally widely used in infor-
mation displays, liquid crystalline materials are now rapidly conquering new realms.
One of the most mature non-display applications of LCs is in tunable optic filters
and light modulators. These components are crucial, in particular, in hyperspectral
medical imaging [1, 2], which has tremendous potential in early detection of patho-
logical conditions and disease, such as different types of cancer [3–5], diabetic foot
ulceration [6], hemorrhagic shock [7]. Real-time hyperspectral imaging augments
the surgeon’s field of view and can be used for tumor residue analysis [4, 8]. Due to
their strong birefringence in a wide range of frequencies, liquid-crystalline materials
are of keen interest to terahertz optics as well [9–11]. Unlike X-rays, THz waves
do not ionize biological tissues and have energies corresponding to low-frequency
vibrational and rotational modes of common biomolecules, making them a powerful
non-invasive diagnostic tool with unprecedented spatiotemporal sensitivity [12, 13].
Dispersed nanoscale dopants, ranging from quantum dots [14] to metal nanoparticles
[15, 16], can further improve the functionality and efficiency of LC-based devices.
At the same time, optical properties of NPs strongly depend on their environment.
For instance, surface plasmon resonance in golden nanorods is highly sensitive to
their spatial arrangement and the dielectric permittivity of the host medium. These
parameters are relatively easy to control with the LC matrix [17], which makes LC-
NP composites promisingmaterials for plasmonic applications, including biosensing
[18–20].

The anisotropy ofmechanical properties allows LC-based templates and scaffolds
to guide biological cells in specific directions, thereby controlling tissue growth
and morphogenesis [21, 22]. Extreme responsiveness to mechanical stimuli endows
liquid crystals per se with unsurpassed biosensing capabilities. Chemical binding
of biomolecules on the surface or in the bulk of an NLC can disrupt orientational
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order, thereby changing its optical appearance. This mechanism has been proven
successful in detectingdifferent proteins [23, 24], lipids [25], glucose [26],DNA[27].
Recently, Kim et al. designed a self-reporting and self-regulating biosensor using an
LC film doped with microdroplets containing an anti-bacterial agent. Shear stresses
induced by swimming bacteria shift an intricate balance of elastic and electrostatic
forces at the LC-droplet interface and trigger the controlled release of the agent
via a feedback loop [28]. One of the major drawbacks of this type of biosensors
is comparatively low sensitivity. A growing number of studies suggests that this
problem also can be solved with nanodopants [29–32]. For example, Zhao et al.
proposed a thrombin sensor utilizing gold nanoparticles functionalized with ∼80
binding aptamers each. When loaded with thrombin, the ensuing aggregates are
large enough to cause significant distortions of the otherwise uniform director field,
thus enabling detection of nanomolar (10−9 mol/L) thrombin concentrations [33].

Nematic liquid crystals dopedwith nano- andmicroscale inclusions of othermate-
rials are representatives of a broad class of NLC colloids. The world of colloidal
particles in an NLC host is dramatically different than in isotropic fluids. Particles
suspended in a nematic distort its orientational order even on length scales much
larger than the particle size. Distortions overlap and interact with each other, giving
rise to effective elastic interactions between colloidal particles. Two hallmarks of
such deformation-induced interactions are their long-ranged distance dependence
and strong spatial anisotropy. These colloidal interactions generally resemble those
between electrostatic multipoles, but the ordered host medium often endows them
with distinct traits. The elastic interactions are responsible for the formation of dif-
ferent colloidal structures in liquid crystals. A paradigmatic example is a spherical
water droplet accompanied by a point defect (hyperbolic hedgehog) with asymp-
totic dipole symmetry (see Fig. 5.1a). The ensuing director profile gives rise to the
elastic dipole-dipole interaction between the droplets, which then assemble into lin-
ear chains parallel to the average director field n0 [34–37]. Droplets of glycerol,
on the other hand, induce planar (tangential) anchoring of nematic molecules at the
interface, which results in a director field of quadrupole symmetry (Fig. 5.1c) and
triggers the aggregation of droplets into inclined chains [36, 38–40]. Similarly, solid
microspheres with planar anchoring form chains directed at 30◦ to n0 [38].

Colloids floating at the nematic-air interface distort the director in the bulk and
deform the LC surface. This elasto-capillary coupling leads to the formation of
two-dimensional (2D) hexagonal structures with different lattice constants [41, 42].
Photochemical switching between those structures induced by laser light was directly
observed in [43, 44]. Transformation of the interfacial hexagonal lattice into linear
chains under the action of magnetic field was studied in [45].

One can create a wide variety of 2D crystals in thin nematic cells. In particular,
there have been reported hexagonal lattices of glycerol droplets [46], oblique lattices
of silica beads [47], antiferroelectrically ordered crystals of dipolar particles [47,
48], and mixed dipole-quadrupole crystals sandwiched between cell walls [49]. The
authors of [50] found colloidal superstructures inmixtures of small and large colloids.
In these systems, small particles populate amatrix of topological defects surrounding
large colloids. One-dimensional structures bound by delocalized topological defects
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Fig. 5.1 Possible director configurations around spherical colloidal particles: a point defect - hyper-
bolic hedgehog b line defect — Saturn ring disclination; c pair of point defects — boojums. Dark
pink area (coat) contains all topological defects and strong deformations inside. Outside the coat
deformations are small; they are governed by Laplace equation and can be expanded in multipoles

are also of interest. These so-called colloidalwires,whose existencewas confirmed in
[51], have great potential as optical waveguides. Two-dimensional colloidal crystals
assembled from chiral colloidal dimers in a twisted nematic cell were observed in
[52]. If the system is sufficiently large, one can even assemble three-dimensional
(3D) structures. For instance, Nych et al. developed a step-by-step protocol for the
assembly of 3D colloidal crystals of tetragonal symmetry. Surprisingly, these crystals
exhibit a highly unusual electro-mechanical response, such as giant electrostriction
and collective electro-rotation [53].

Many experimental results were reproduced via numerical minimization of the
Landau - de Gennes free energy [47–52, 54–62] as well as by molecular dynamics
[63].

In this chapter, we summarise our current understanding of the long-range elastic
interactions in NLC colloids. It is worth keeping inmind that short-range interactions
are no less important in the context of colloidal assemblies. In NLCs, the short-range
interaction is closely intertwined with topological defects emerging in the vicinity
of micro-sized colloids, as shown in Fig. 5.1. These singularities in the director field,
where it becomes ill-defined, generally have to be studied numerically using Landau-
deGennes formalism. Topological defects and the associated short-range interactions
are beyond the scope of this review. For a brief topology oriented discussion of NLC
colloids, we refer the reader to [64].

Theoretical understanding of the long-range elastic interactions in NLC colloids
is based on their striking similarity to electrostatics. Far from the particle, the direc-
tor field is governed by the Laplace equation and can be expanded in multipoles.
This fact became a starting point for a number of approaches toward the theory of
NLC colloids [65–70]. However, only one of them, [65], gives analytical results that
quantitatively agree with experimental data [71, 72]. The authors of [37] directly
measured the elastic interaction between two spherical iron particles by balancing it
with a magnetic field and found the predictions of [65] to hold within a few-percent
accuracy. Recently, the authors of [60, 61] carried out numerical calculations of
the interparticle force between colloids of different sizes. They found their numeri-
cal results in good agreement with the experimental data and the predictions of the
electrostatic analogy for distances bigger than approximately 3 particle radii.
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In practice, liquid crystals are always confined by some surfaces, which can
profoundly affect the interparticle interactions. It has been first discovered exper-
imentally that the elastic interactions in a nematic cell are exponentially screened
at distances larger than the cell thickness (so-called confinement effect) [54, 73].
Qualitative theoretical investigations of the effects of confinement were performed
in [74–78], using the notion of “coat” — introduced in [67] and discussed here in
Sect. 5.3 — an area around the particle populated by topological defects and large
deformations, as shown schematically in Fig. 5.1. A breakthrough was achieved in
Refs. [79–81], where external boundaries and fields were incorporated in the form of
Green’s functions. Using that approach, the authors derived the interaction potentials
for axially symmetric particles in a nematic cell and near one wall with either planar
(tangential) or homeotropic (normal) alignment of the LC molecules. The proposed
theory [79, 80] is in excellent agreement with the measurements of the confinement
effect for two spheres in a homeotropic cell in the range 1 ÷ 1000 kBT [54] and a
planar cell of varying thickness [73].

While theoretical studies were mostly concerned with spherical or axially sym-
metric particles, experiments and numerical simulations adopted a more diverse
set of shapes and topologies. Using lithographically fabricated polygonal platelets,
Lapointe et al. were first to demonstrate the relevance of particles’ shape for the inter-
particle interactions and colloidal self-assembly [82]. In addition to the 2D crystals
mentioned above, pentagonal microplatelets in a thin layer of nematic can be assem-
bled into Penrose tilingswith quasicrystalline order [83, 84]. Other notable examples
of non-spherical colloids include rod-like particles [85], handlebodies of high topo-
logical genus [86], micron-sized spheres with nanoscale surface roughness [87],
key-lock colloids [88], gourd-shaped dimers [89], colloidal boomerangs [90], and
shape-shifting elastomeric rods [91]. Interestingly, the presence of chiral inclusions
(e.g., spirals) in an intrinsically achiral nematic can induce spontaneous symmetry
breaking evident in chiral defect configurations and director profiles [92].

Here, we describe a theoretical framework applicable to colloids of arbitrary
shape and chirality. Building upon [65, 79–81, 93–95], in Sect. 5.2 we derive general
expressions for the pairwise interaction potential in the presence of confining bound-
aries and electromagnetic fields. Key elements of our model are elastic multipole
moments that define the far-field director profile around the particle. In Sect. 5.3,
we demonstrate how these coefficients arise from the symmetry of the near-field
director, which is dictated by an interplay of the particle shape and the type and
strength of nematic anchoring. We thoroughly consider the cases of weak and strong
as well as polar and azimuthal anchoring on the particle surface. In the following sec-
tions, we apply the proposed formalism to a series of illustrative examples. Namely,
Sect. 5.4 discusses in detail the dipole-dipole interaction of banana-shaped particles
in a homeotropic and planar nematic cell and contrasts it with that of axially symmet-
ric colloids. In Sect. 5.5, we touch upon elastic monopoles in a confined environment
and highlight their distinctive features. The proposed framework is employed to
study the behavior of colloids carrying elastic monopole, dipole and/or quadrupole
moment in a deformed NLC (nonuniform director field) in Sect. 5.6 and find the
distribution of nanoparticles around different types of disclinations in a cylindrical
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capillary, Sect. 5.7. Finally, Sect. 5.8 elucidates the role of elastic interactions in the
coexistence of two quasi-hexagonal structures of glycerol droplets at the nematic-air
interface [41, 42].

5.2 Elastic Interactions in Nematic Liquid Crystal Colloids

Let us first consider a single colloidal particle suspended in a nematic liquid crystal.
Wewill follow the paper [93]. Anchoring of the LCmolecules to the particle’s surface
distorts the otherwise uniform director field n = n0, so that n varies from point to
point. The total free energy of the system can be written as the sum of bulk and
surface terms F = Fbulk + Fsur f ace, where the former reads

Fbulk = K

2

∫
dV

[
(∇ · n)2 + (∇ × n)2

]
, (5.1)

with K denoting the Frank elastic constant. Two comments are in order. First, we
adopt the one-constant approximation, K11 = K22 = K33 = K ; implications of this
assumption are discussed in [96]. Second, we also omit the K24-term because it
does not play a crucial role in further considerations, as was shown in [80]. Surface
energy Fsur f ace penalizes deviations of the director from the preferred orientation
at the particle surface. It will be discussed in detail in Sect. 5.3 [for definition see
Eq. (5.20)].

Regardless of the particle’s shape, size or anchoring type and strength, deforma-
tions of the director field decay with the distance from the particle and eventually
become small, n(r) ≈ (nx , ny, 1), where |nμ| � 1, n0 = (0, 0, 1) is the NLC ground
state, and μ = {x, y} hereafter. Thus, far from the particle the bulk free energy takes
a simple harmonic form

Fbulk = K

2

∫
dV∇nμ · ∇nμ, (5.2)

where repeatedμ implies summation over x and y, i.e. (∇nμ)2 = (∇nx )
2 + (∇ny)

2.
Hereafter,

∫
dV stands for the integration over the whole volume of the system

unless otherwise specified, and we do not take into account the volume of the coat(s).
This is justified by several reasons: 1) we are interested mainly in the interparticle
interactions which are caused by the changes in the director field caused by other
particles, and these changes are small inside the coat where the director is governed
by strong anchoring to the surface, i.e., the energy of the coat is approximately
constant and can be omitted from the theory; 2) the volume inside the coat is much
smaller than the volume outside, therefore the replacement of the total energy (5.1)
with (5.2) inside the coat does not affect the interparticle interaction considerably
(at least when the separation is large enough compared to the particle size); 3) this
approximation is in good agreement with experimental data for spherical particles
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as long as their surfaces are separated by more than ∼0.2–0.8 radii depending on the
system [97–100]. Note that these studies, in contrast to [60, 61], consider higher-
order contributions as explained below.

The Euler-Lagrange equations for nμ are of the Laplace type

Δnμ = 0. (5.3)

In analogy to classical electrostatics, solutions to these equations can be expanded
in multipoles

nμ(r) = qμ

r
+ pα

μrα
r3

+ 3Qαβ
μ rαrβ
r5

− SpQμ

r3
+ ..., (5.4)

where α and β take values x, y, z and summation over repeated greek indices is
assumed. Quantities qμ, pα

μ, Q
αβ
μ are called elastic charge (monopole), three com-

ponents of the dipole moment, and five components of the quadrupole moment for
each μ, respectively. They are phenomenological far-field characteristics of a given
colloidal particle.

Even though we truncated the expansion (5.4) at quadrupolar terms, higher-order
contributions may be important as well. It was noticed in [65, 97] that if the leading
contribution to nμ is dipolar, then anharmonic corrections to nμ associatedwith small
variations of nz = √

1 − nμnμ scale as rμ/r7, suggesting that high-order terms up to
1/r5 should be considered. Similarly, if the leading contribution to nμ is quadrupo-
lar, anharmonic corrections to nμ are of the form rμ/r10 and high-order terms of
up to 1/r8 can effectively influence short-range behavior. High-order terms have
a profound effect on the spatial anisotropy of the interaction potential at relatively
small distances and play an important role in the formation of colloidal crystals [97–
100]. Reference [97] also introduced the concept of three zones: in the first zone
(at distances �1.1–1.4 particle radii depending on the system) the linear theory is
inapplicable; the second zone (between roughly 1.3–1.4 and 2 radii) is where the
high-order terms reside; and the third zone (�2 radii) is dominated by the first non-
vanishing term in (5.4). In what follows, we will limit ourselves to the first three
terms in the multipole expansion (5.4).

As follows from (5.4), director deviations nx and ny have a long-range nature. This
means that deformations caused by different particles can overlap even if the particles
are located at a large distance from each other. In practice, the overlapping manifests
itself in the emergence of effective long-range interactions between colloidal particles
mediated by the hostmedium.Aswewill see below, these interactions are determined
precisely by the multipole moments qμ, pα

μ, Q
αβ
μ .

Imagine that somehow we have found all these multipole coefficients. That is,
we know two elastic charges qμ, six components of the dipole moment pα

μ and five
components of the quadrupole moment Qαβ

μ for every μ = {x, y} (10 altogether).

Note that the quadrupole moment tensor Q̂μ = {Qαβ
μ } can be always introduced

(with a substitution Q̃αβ
μ = Qαβ

μ − 1
3δαβSpQ̂μ) in such a way that it is symmetric,
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Q̃αβ
μ = Q̃βα

μ , and traceless, Sp ˆ̃Qμ = Q̃αβ
μ δαβ = 0 [101]. Thus, we have 18 multipole

parameters. Now we need to build an effective free energy functional, which incor-
porates these coefficients and gives correct behavior of the director at large distances
from the particle.

This aim was first achieved in [65] for the case of axially symmetric particles.
The effective free energy functional was written as

Faxial−sym
e f f = K

∫
dV

[
(∇nμ)2

2
− 4π P(x)∂μnμ −4πC(x)∂z∂μnμ

]
, (5.5)

where P(x) = Pδ(x) and C(x) = Cδ(x) are scalar dipole and quadrupole moment
densities and ∂μnμ = ∂xnx + ∂yny .

The generalization of the free energy (5.5) for particles of arbitrary shape and
anchoring strength is quite straightforward:

Fef f = K
∫

dV

[
(∇nμ)2

2
− 4πqμ(x)nμ − 4πpα

μ(x)∂αnμ

−4πQαβ
μ (x)∂α∂βnμ

]
, (5.6)

whereqμ(x) = qμδ(x), pα
μ(x = pα

μδ(x), Qαβ
μ (x) = Qαβ

μ δ(x) are point-like densities;
α and β take values x, y, z and summation over repeated greek indices μ = x, y is
assumed. In the case of axially symmetric particles without helical twisting qμ =
0, pα

μ = 0 except for pxx = py
y = P , Qxz

x = Qzx
x = Qyz

y = Qzy
y = C and we arrive

at Eq. (5.5).
The Euler-Lagrange equations arising from (5.6) are of Poisson type

Δnμ = −4πqμ(x) + 4π
[
∂α p

α
μ(x) − ∂α∂βQ

αβ
μ (x)

]
. (5.7)

If the liquid crystal is confined by some surfaceΣ such that nμ

∣∣∣
Σ

= 0 then solutions

to (5.7) are as follows

nμ =
∫
V
dV ′Gμ(x, x′)

[
qμ(x′) − ∂ ′

α p
α
μ(x′) − ∂ ′

α∂ ′
βQ

αβ
μ (x′)

]
, (5.8)

where Gμ(x, x′) are appropriate Green functions, ΔGμ(x, x′) = −4πδ(x − x′) for
any x, x′ ∈ V and Gμ(x, s) = 0 for any s ∈ Σ . In the absence of confinement,
Gμ(x, x′) = 1

|x−x′| and (5.8) yields (5.4).
Due to the linearity of the Euler-Lagrange equations (5.7), we can use the super-

position principle for the system of N colloidal particles
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qμ(x) =
N∑
i=1

qμ,iδ(x − xi ),

pα
μ(x) =

N∑
i=1

pα
μ,iδ(x − xi ), (5.9)

Qαβ
μ (x) =

N∑
i=1

Qαβ

μ,iδ(x − xi ).

That is, the resulting director deformation is the sum of distortions caused by every
single particle. Substituting (5.8) into (5.6) and implying (5.9), we come to the fact
that the free energy of the system can be presented as the sum of the self energy part
and pair interactions Fef f = Usel f +Uinteraction , where Usel f = ∑

i U
sel f
i and

Uinteraction =
∑
i

∑
j<i

U i j (xi , x j ). (5.10)

The pairwise elastic interaction Ui j , in turn, is the sum of monopole-monopole,
monopole-dipole, monopole-quadrupole, dipole-dipole, dipole-quadrupole and
quadrupole-quadrupole interactions, Ui j = Uqq +Uqd +UqQ +Udd +UdQ +UQQ,
where

Uqq = −4πK qμ,i qμ, j Gμ(xi , x′
j ), (5.11)

Uqd = −4πK
{
qμ,i p

α
μ, j ∂

′
αGμ(xi , x′

j ) + qμ, j p
α
μ,i ∂αGμ(xi , x′

j )
}
, (5.12)

UqQ = −4πK
{
qμ,i Q

αβ

μ, j ∂
′
α∂ ′

βGμ(xi , x′
j ) + qμ, j Q

αβ

μ,i ∂α∂βGμ(xi , x′
j ),
}

(5.13)

Udd = −4πK pα
μ,i p

β

μ, j ∂α∂ ′
βGμ(xi , x′

j ), (5.14)

UdQ = −4πK
{
pα

μ,i Q
βγ

μ, j ∂α∂ ′
β∂ ′

γGμ(xi , x′
j ) + pα

μ, j Q
βγ

μ,i ∂
′
α∂β∂γGμ(xi , x′

j )
}

,

(5.15)
UQQ = −4πK Qαβ

μ,i Q
γ δ

μ, j ∂α∂β∂ ′
γ ∂ ′

δGμ(xi , x′
j ). (5.16)

Expressions (5.11)–(5.16) give a general form of the pairwise long-range elastic
interaction between colloidal particles of arbitrary shape in a confined NLC. They
hold in the bulk as well with Gμ(x, x′) = 1

|x−x′| .
Self-energy of the colloid (or the energy of the particle-walls interaction) also

can be presented as the sumUsel f
i = Usel f

qq +Usel f
qd +Usel f

qQ +Usel f
dd +Usel f

dQ +Usel f
QQ

where all Usel f
AB are given by the formulas (5.11)–(5.16) upon replacing Gμ(xi , x′

j )

with Hμ(xi , x′
j ), where Gμ(x, x′) = 1

|x−x′| + Hμ(x, x′) and ΔxHμ(x, x′) = 0. Note
that to regularize the self-energy by excluding the divergent part associated with
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1
|x−x′| , it is necessary to set x′

j = xi after all primed derivatives ∂ ′
ξ are calculated.

Employing this procedure we can find

Usel f
qq = −4πK qμ,i qμ,i Hμ(xi , xi ), (5.17)

Usel f
qd = −4πK [qμ,i p

α
μ,i ∂

′
αHμ(xi , x′

i ) + qμ,i p
α
μ,i ∂αHμ(xi , x′

i )]|xi=x′
i
, (5.18)

Usel f
dd = −4πK pα

μ,i p
β

μ,i ∂α∂ ′
βHμ(xi , x′

i )|xi=x′
i
, ... (5.19)

and so forth. We leave the rest of this series as an exercise for the reader. It should
be noted that the self-energies (5.17)–(5.19) do not include the energy of nonlinear
deformations (i.e., internal energy of the coat). While that contribution cannot be
computed within the framework of multipole expansion, it can be treated as an
unknown constant, as we argued above. In this context, the self-energy refers only
to the difference between the energy of the particle in a confined NLC and its energy
in the bulk. In other words, it is the energy of interaction between one particle
and all confining boundaries. Hence, Hsel f

i ≡ 0 in the absence of confinement. In a
sandwich-type cell, for instance, Hsel f

i = Hsel f
i (z) with z being normal to the cell

walls; minimization of the corresponding self-energy yields an equilibrium position
of the particle inside the cell, see [102].

Upon proper substitution of Green’s functions Gμ(xi , x′
j ) with G f ield

μ (xi , x′
j ),

Eqs. (5.11)–(5.19) remain valid even in the presence of external electric E or mag-
netic H fields, as was shown in [81] for axially symmetric particles. Reference [81]
also reported the explicit form of Green’s functionsG f ield

μ (xi , x′
j ) for different orien-

tations of the field in a nematic cellwith homeotropic and planar boundary conditions.
Equations (5.11)–(5.16) show that the energy of interaction depends on both mul-

tipole coefficients and Green’s functions. The former originate from the interaction
between the particle surface and NLC molecules. The latter are determined by the
shape of the confining surface Σ as well as by external fields E/H.

5.3 Multipole Coefficients and Particle’s Symmetry

In this sectionwewant to establish a connection between the symmetry of the particle
and the director deformations produced at large distances.1

As mentioned above these distortions are completely described by a set of mul-
tipole coefficients qμ, pα

μ, Qαβ
μ . Strictly speaking, we should distinguish two cases

here. When the anchoring is weak Wr0/K < 1 (r0 being the average size of the par-
ticle ) the deformations are small everywhere outside the particle and the coefficients
can be found from the mechanical equilibrium condition (we apply this procedure

1 This Section lays the foundation for all subsequent examples of elastic multipoles and their inter-
actions. Yet, it is highly technical and can be skipped on first reading. The reader can proceed
directly to examples in Subsubsect. 5.3.2.1 or Sect. 5.4.
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below). If the anchoring is strong Wr0/K > 1 the deformations in the particle’s
vicinity are large, even topological defects may appear there. So the coefficients can-
not be linked directly to the particle’s symmetry. But in this case the notion of the
coat suggested in [67] is helpful. The coat is an area, which contains all topological
defects and large deformations inside, so that the director field outside is presented
in the form of multipole expansion (5.4). The symmetry of the coat matches the
symmetry of the director field around the particle and, depending on its size, can
be observed experimentally or computed numerically via Landau-de Gennes energy
minimization. In fact, one can treat the coat as some imaginary particle with appro-
priate symmetry and weak anchoring on its surface. Therefore we use only the term
“particle” further.

Thus, it is enough to consider one colloidal particle with weak anchoring in a bulk
NLC. The free energy of such a system is the sum of two parts: bulk energy (5.2)
and the surface anchoring energy. The latter can be presented as

Fsurface =
∮

dS W αβ(s)nα(s)nβ(s) (5.20)

where W αβ(s) is the symmetrical local anchoring tensor at point s on the particle’s
surface [103]. The tensor description has the covariant form and describes both polar
and azimuthal anchoring simultaneously. But a connection between the particle’s
symmetry and tensor’s properties is not so clear in general case. In order to make our
analysis as transparent as possible we should use the following representation of the
surface energy

Fsur f ace =
∮

dS W p(s)
(
ν(s) · n(s)

)2 −
∮

dS Wa(s)
(
τ (s) · n(s)

)2
. (5.21)

This is the generalized Rapini-Popular surface energy with W p and Wa being the
strengths of the polar and azimuthal anchoring energies, respectively. Here ν is the
outer normal to the particle’s surface at the point s and τ is the unit tangential vector
along the local rubbing which also depends on the point s of the surface. Azimuthal
anchoring Wa > 0 makes alignment of the director along vector field τ (s) at the
surface. Since the anchoring is weak the total energy can be reduced to

Fharm = K

2

∫
dV (∇nμ)2

+2
∮

dS W p(s)νz(s)νμ(s)nμ(s)

−2
∮

dS Wa(s)τz(s)τμ(s)nμ(s),(5.22)
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where we neglected terms like (∇nz)2, W pnμnμ′ and Wanμnμ′ because of their
smallness. Note that, in fact, W pνzνμ − Waτzτμ = Wzμ in (5.20). Note that here∫
dV denotes integration over the LC volume.
At the same time the director field everywhere outside the particle in the bulk

NLC is described by (5.4) so that

(∇nμ)2 = ∇nμ · ∇nμ

= qμqμ

r4 + pα
μ p

α
μ

r6 + 3
pα

μrα p
β
μrβ

r8 + 5 Qαβ
μ rαrβ Q

γ δ
μ rγ rδ

r12 + 4 Qαγ
μ Qβγ

μ rαrβ
r10

+4
qμ pα

μrα
r6 + 6 qμQ

αβ
μ rαrβ
r8 + 8

pα
μQ

βγ
μ rαrβrγ
r10 + 4

pα
μQ

αβ
μ rβ

r8 , (5.23)

where the summation over all repeated Greek indices is implied. Then substituting
(5.4), (5.23) into (5.22) and performing the integration one can obtain the free energy
of the system as a function of the multipole coefficients

Fharm = 1

2

∑
uv

auvmumv +
∑
u

cumu, (5.24)

where we introduced vector of the coefficientsm = (qμ, pα
μ, Qαβ

μ ) = (qx , qy, pxx ,
py
x , pzx , p

x
y , p

y
y , pzy, Q

xx
x , Qxy

x ...). Hence mu,mv denote unknown multipole coeffi-
cients. Quantities auv arise from the bulk energy, for example,

a11(qxqx ) ∝
∫
V
dVr−4

a33(pxx pxx ) ∝
∫
V
dVr−6

a15(qx pzx ) ∝
∫
V
dV zr−6 etc.

Apparently, all auu are positive and finite, auv depend on the particle shape. Each cu
is the sum of two terms cpu and cau arising from the polar and azimuthal anchoring,
respectively, cu = cpu + cau . So, for instance,

cp1(qx ) ∝
∮

dS W pνzνx , ca1(qx ) ∝ −
∮

dS Waτzτx

cp3(pxx ) ∝
∮

dS W pνzνx sx , ca3(pxx ) ∝ −
∮

dS Waτzτx sx

...

(5.25)

cu depends on both the anchoring and the particle’s shape, s = (sx , sy, sz) is the
radius vector from the center of the particle to the point s at the surface (this center
of the particle coincides with the center of the coordinate cystem (CS) from which
all rα are measured). In the remainder of this section, we mathematically prove
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that if a given cu vanishes, so does the associated multipole moment. As follows
from their definitions (5.25), these quantities, and consequently their corresponding
multipoles, vanish if the particle possesses certain symmetries. Table5.1 summarizes
these relations between the particle symmetry and its multipole moments.

Now it is natural to assume that the system under investigation is in equilibrium.
Therefore its energy is minimal. Hence one can find the multipole coefficients from
the following system of linear equations ∂Fharm

∂mu
= 0:

auumu +
∑

v,v �=u

auvmv + cu = 0, (5.26)

or the same in the matrix form:
Âm = −c. (5.27)

Here we should make some remarks. First of all this Eq. (5.27) is the exact
equation for the multipole coefficients m for the weak anchoring case. In this case
we know exactly weak anchoring coefficient Wa,p(s) and vector fields ν(s),τ (s), we
can calculate all cu and auv and finally we can solve this matrix equation and find all
18 unknown coefficients.

On the other hand, this lengthy procedure is usually unnecessary. Typically, we
do not need to calculate coefficients m - we can infer them from experimental or
numerical data. It is thusmuchmore valuable to understandwhich coefficients vanish
and which remain finite. We can then find nonzero coefficients as fitting parameters
for the director field measured experimentally or simulated numerically. Therefore,
our primary strategy is to understand which coefficients vanish and which remain
nonzero without solving the system (5.27) based on symmetry considerations only!
This strategy is realized in the following subsections.

Since c = cp + ca , a solution of the system (5.27) can be written as the sum

m = mp + ma (5.28)

of two solutions of the following systems

Âmp = −cp, (5.29)

Âma = −ca . (5.30)

Thus the polar and azimuthal anchorings make their contributions to the coefficients
independently and we can consider these two cases separately.
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Table 5.1 Multipole coefficients and symmetry of the shape. Here, σik means that the particle’s
plane of symmetry coincides with the coordinate ik-plane, I denotes inversion center. If a col-
loidal particle has at least one of the inhibiting symmetry elements then the appropriate multipole
coefficient vanishes. Table is taken from [93].

Defining integral Multipole
coefficient

Inhibiting
symmetry

Multipole
coefficient

Inhibiting
symmetry∮

dS W pνzνμ qx σxy, σyz qy σxy, σxz∮
dS W pνzνμx pxx σxy, I pxy σxy, σxz, σyz, I∮
dS W pνzνμy pyx σxy, σxz, σyz, I pyy σxy, I∮
dS W pνzνμz pzx σyz, I pzy σxz, I∮
dS W pνzνμxx Qxx

x σxy, σyz Qxx
y σxy, σxz∮

dS W pνzνμyy Qyy
x σxy, σyz Qyy

y σxy, σxz∮
dS W pνzνμzz Qzz

x σxy, σyz Qzz
y σxy, σxz∮

dS W pνzνμxy Qxy
x σxz, σxy Qxy

y σxy, σyz∮
dS W pνzνμxz Qxz

x – Qxz
y σxz, σyz∮

dS W pνzνμyz Qyz
x σyz, σxz Qyz

y –

5.3.1 Polar Anchoring

Suppose that we have a particle with usual polar anchoring on its surface, Wa ≡ 0.
Then the multipole coefficients satisfy system (5.29). Here we should say that the
phrase “particle symmetry” means that the appropriate symmetry element belongs
to the particle shape as well as to the anchoring distributionW p(s). Thus, in terms of
symmetry, particles of symmetrical shape with asymmetric anchoring do not differ
from those of asymmetrical shape with symmetric W p(s).

Assume first that the particle has one plane of symmetry. Say for instance that it
coincides with the coordinate xz-plane. Then for any point s = (x, y, z), where ν =
(νx , νy, νz), there exists point s′ = (x,−y, z),where ν = (νx ,−νy, νz), andW p(s) =
W p(s′). Then using these symmetry relations one can easily ensure that, for example,
aqxqx = K

∫
dVr−4 �= 0, aqx py

x
= 4K

∫
dV yr−6 = 0, cpqy = 2

∫
dS W pνzνys−1 = 0

etc. In the same way aqx py
x
= apxx p

y
x
= apy

x p
z
x
= aqy py

y
= apxy p

y
y
= apy

y p
z
y
= 0 and cpqy =

cppxy = cppzy = cp
py
x

= 0. It is well known that if the leading term in nμ decreases as r−n

then the leading anharmonic correction will fall off as r−3n [65]. Thus, quadrupolar
terms can be neglected here as anharmonic corrections to nμ. Since in vector m the
multipole coefficients can be arranged in any order, we are able to rewrite the system
(5.26) in the following matrix form Âmp = −cp:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

aqx bqx pxx bqx pzx 0 0 0 0 0
bqx pxx apxx bpxx p

z
x 0 0 0 0 0

bqx pzx bpxx p
z
x apzx 0 0 0 0 0

0 0 0 apy
y

0 0 0 0
0 0 0 0 apy

x
0 0 0

0 0 0 0 0 aqy bqy pxy bqy pzy
0 0 0 0 0 bqy pxy apxy bpxy p

z
y

0 0 0 0 0 bqy pzy bpxy p
z
y apzy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

qx
pxx
pzx
py
y

py
x

qy
pxy
pzy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cpqx
cppxx
cppzx
cp
py
y

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.31)

Here Â is a block diagonal matrix, Â =
(

Ânh 0
0 Âh

)
. So the system (5.26) splits into

two independent subsystems, nonhomogeneous with matrix Ânh and homogeneous
with matrix Âh . At the same time Â is a positive-definite matrix. Indeed we can
treat components of arbitrary nonzero vectorm as the coefficients of some multipole
expansion, then

mT Âm = K
∫

dV
(∇nμ

)2
> 0. (5.32)

Thus det Â = det Ânh · det Âh > 0. So homogeneous subsystem has only trivial solu-
tion. It is easy to ensure that the same scenario occurs for particles of other symme-
tries. If certain cpu is equal to zero then the related multipole coefficient mu vanishes:
cpu = 0 ⇒ mp

u = 0.
Accordingly, only those multipole coefficients can exist which are allowed by the

particle symmetry from the Table5.1.
Note that the same classification was obtained in the paper [67] on the basis

of gradient expansion ∂nμ in the center of the particle. But actually the gradient
expansion can not be done exactly as ∂nμ ≈ 1 is not a small parameter. Therefore
the current approach can be considered as more consistent and correct.

Here we should remark that multipole coefficientsm depend on the chosen coor-
dinate system. In one coordinate system CS1 there will be one set of parametersm1

and in the CS2 (which can be rotated or shifted by some vector d with respect to
CS1) there will be another set of multipole coefficients m2, but the total sum (5.4)
will be the same in both CSs. In our consideration we have chosen the most appro-
priate case when symmetry planes coincide with coordinate planes as in this CS the
classification is possible and useful. But in any CS the main multipole coefficient qμ

will be the same as well as in electrostatics - the charge does not depend on the CS
[104] while high order moments do depend on the CS.

5.3.2 Azimuthal Anchoring and Chiral Colloids

As follows from (5.28) and (5.30) the long-ranged director deformations can also
arise from the azimuthal anchoring of NLC molecules on the particle surface.
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Table 5.2 Multipole coefficients which are born by azimuthal helical alignment along z axis. Here,
phel > 0 and Qhel > 0 for right-handed helicity and phel < 0 and Qhel < 0 for left-handed helicity
(see Fig. 5.2). Table is taken from [93].

Defining integral Multipole
coefficient

Value Multipole
coefficient

Value

∮
dS Waτzτμ qx 0 qy 0∮
dS Waτzτμx pxx 0 pxy phel∮
dS Waτzτμy pyx −phel pyy 0∮
dS Waτzτμz pzx 0 pzy 0∮
dS Waτzτμxx Qxx

x 0 Qxx
y 0∮

dS Waτzτμyy Qyy
x 0 Qyy

y 0∮
dS Waτzτμzz Qzz

x 0 Qzz
y 0∮

dS Waτzτμxy Qxy
x 0 Qxy

y 0∮
dS Waτzτμxz Qxz

x 0 Qxz
y Qhel∮

dS Waτzτμyz Qyz
x −Qhel Qyz

y 0

Simple examples of such particles are uniaxial helicoids - axially symmetric parti-
cles like cylinders or cones with the helicoidal alignment along their easy axes z (see
Figs. 5.2 and 5.3). For this case we need to takeWa > 0 and vector τ(s)makes screw
thread at the surface of the particle. Then using the method suggested in the previ-
ous subsection one can find that multipole coefficients ma in this case are defined
from the Table5.2. Inasmach as phel ∝ ∮

dSWaτzτy x and Qhel ∝ ∮
dSWaτzτy xz,

so that phel > 0 and Qhel > 0 for right-handed helicity and phel < 0 and Qhel < 0
for left-handed helicity (see Fig. 5.2).

5.3.2.1 Interaction Between Helicoid Cylinders

Consider cylinders (or other symmetric particles like ellipsoid or sphere) with heli-
coidal alignment at the surface (see Fig. 5.2). This azimuthal helicoid anchoring
gives rise to nonzero dipole moments pxy = phel = −py

x , though the shape of the
cylinder does not produce any dipole moments (see Table5.1). Under these condi-
tions, (5.11) gives the following dipole-dipole elastic interaction between helicoid
cylinders (ellipsoids or spheres):

Udd = −4πKphel p
′
hel(∂x∂

′
xGy(x, x′) + ∂y∂

′
yGx (x, x′)). (5.33)

TheGreen’s functionsGx �= Gy are different onlywhen some external field (elec-
tric or magnetic) is applied along the axis x or y [81]. When the external fields are
absent in any other cases (like in homeotropic or planar nematic cell) Gx = Gy = G
and we come to the expression

Udd = −4πKphel p
′
hel∂μ∂ ′

μG(x, x′), (5.34)
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Fig. 5.2 Helicoid cylinders
with the same handedness
phel p′

hel > 0 attract along z
axis and repel in
perpendicular direction and
vice versa for helicoids with
different handedness
phel p′

hel < 0 (see (5.35))
(reprinted with permission
from [93])

which coincides with the dipole-dipole interaction between usual axially symmetric
dipole particles (∂μ∂ ′

μ = ∂x∂
′
x + ∂y∂

′
y). In the bulk nematic liquid crystal, for exam-

ple, G(x, x′) = 1
|x−x′| so that

Ubulk
dd = 4πKphel p

′
hel

(1 − 3cos2θ)

r3
, (5.35)

where θ is the angle between r and z and the director field around the particle has
the form:

nx = −phel
y

r3
, (5.36)

ny = phel
x

r3
.

The formula (5.35) means that helicoids with the same handedness phel p′
hel > 0

attract along z axis and repel in perpendicular direction and vice versa for helicoids
with different handedness phel p′

hel < 0 (see Fig. 5.2). In the nematic cell the interac-
tion, falling off as r−3 in the bulk NLC, becomes exponentially screened at distances
comparable to the thickness L of the cell. At the same time the borders between the
attraction and repulsion zones transform from straight lines into some parabola like
curves. These effects are caused only by the confining walls so they do not depend
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Fig. 5.3 Helicoid cones with
different dipole moments p
and phel produced by the
shape and azimuthal helical
anchoring respectively (see
(5.39)) (reprinted with
permission from [93])

on the particles shape and anchoring. More detailed consideration of these issues is
presented in [79, 80].

5.3.2.2 Interaction Between Helicoid Cones

Consider cones (or other axially symmetric particles without symmetry plane σxy)
with helicoidal alignment at the surface (see Fig. 5.3). The shape of the particle pro-
duces dipole moments pxx = py

y = p according to the Table5.1. Azimuthal helicoid
anchoring gives rise to nonzero dipole moments pxy = phel = −py

x . Then substitu-
tion of it to the (5.11) gives the dipole-dipole elastic interaction between helicoid
cones:

Udd = −4πK
[
pp′(∂x∂ ′

xGx (x, x′) + ∂y∂
′
yGy(x, x′))

+phel p′
hel(∂x∂

′
xGy(x, x′) + ∂y∂

′
yGx (x, x′))

]
. (5.37)

In the absence of the external fields Gx = Gy = G and we come to the expression

Udd = −4πK (pp′ + phel p
′
hel)∂μ∂ ′

μG(x, x′). (5.38)
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In the confined nematic this formula gives the same results as in the [80] but with
new coefficient pp′ + phel p′

hel .
In the bulk nematic liquid crystal G(x, x′) = 1

|x−x′| so that

Ubulk
dd = 4πK (pp′ + phel p

′
hel)

(1 − 3cos2θ)

r3
, (5.39)

and the director field around the particle has the form:

nx = p
x

r3
− phel

y

r3
, (5.40)

ny = p
y

r3
+ phel

x

r3
.

Formulas similar to (5.35), (5.36), (5.39), (5.40) were first obtained in [70] but
our results predict 3 times stronger interaction. In paper [70] authors made very
good classification of different types of dipoles in nematostatics based on the firm
fixation of the director field on the surface of the imaginary sphere enclosing the
particle and containing all the defects inside. At first glance it seems quite similar to
the coat-approach used above. The authors of [70] do not use any anchoring surface
energy explicitly and consider the total energy as just the bulk one. But the total
energy is the sum of the bulk and surface energies. This, we suppose, is the reason
for the discrepancy. The surface terms do play their important role and increase the
energy of the system and should be taken into consideration. In the current approach
the surface terms are taking into account via terms −4πqμ(x)nμ − 4πpα

μ(x)∂αnμ −
4πQαβ

μ (x)∂α∂βnμ in the effective free energy (5.6). These terms in the effective
free energy (5.6) replace surface terms in the real free energy (5.22) so they can be
effectively considered as surface born.

5.4 Banana-Shaped Particles in a Nematic Cell

As an example of the interaction between non axially-symmetrical colloids we con-
sider now the interaction between banana-shaped particles (see Fig. 5.4) and as well
consider the interaction between axially symmetrical particles including particles
with helical screw-thread (see Figs. 5.2 and 5.3). Here let us content ourselves with
the dipole-dipole interactions in homeotropic and planar nematic cells.

5.4.1 Homeotropic Cell

Coordinate system for this case is depicted in Figs. 5.5a and 5.5b. Green’s function
then has a form that is well known in electrostatics [104]
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Fig. 5.4 Banana-shaped colloids: a general view, b front view (see Figs. 5.6, 5.9), c side view (see
Fig. 5.5), d top view (see Fig. 5.10) (reprinted with permission from [93])

Fig. 5.5 Banana-shaped particles in the nematic cell, side view (see Fig. 5.4 as well) (reprinted
with permission from [93])
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Gμ(x, x′) = 4
L

∞∑
n=1

∞∑
m=−∞

eim(ϕ−ϕ′) sin nπ z
L

× sin nπ z′
L Im(λnρ<)Km(λnρ>), (5.41)

where Im , Km are modified Bessel functions, tan ϕ = y
x , tan ϕ′ = y′

x ′ , λn = nπ
L , ρ< is

the smaller of ρ = √
x2 + y2 and ρ ′ = √

x ′2 + y′2.
Every banana-shaped particle has two orthogonal symmetry planes. Suppose first

that the particles are oriented in such a way that these planes are parallel to the
coordinate xz and yz planes (see Fig. 5.5a), i.e. particles are located primarily per-
pendicular to the director (we will use symbol ⊥ for this case). Then using Table5.1
one can easily find that the allowed dipole coefficients are pxx and py

y . Below we omit
the upper indexes and assume py > px . Note that px = py for axially symmetric
particles. It follows from (5.14) that

Uhom
dd,⊥ = −4πK

[
px p

′
x∂x∂

′
xG + py p

′
y∂y∂

′
yG
]
, (5.42)

Uhom
dd,⊥ = 8πK

L

[(
px p

′
x + py p

′
y

)
A1 + (

px p
′
x − py p

′
y

)
A2 cos 2φ

]
, (5.43)

where ρ = √
(y − y′)2 + (x − x ′)2 is the horizontal projection of the distance

between particles, φ is the azimuthal angle between ρ and x-axis,

A1 =
∞∑
n=1

λ2
n sin

nπ z

L
sin

nπ z′

L
K0(λnρ), (5.44)

A2 =
∞∑
n=1

λ2
n sin

nπ z

L
sin

nπ z′

L
K2(λnρ). (5.45)

Before proceeding to a discussion of this interaction in the cell let us consider
its features in the bulk liquid crystal. The Green’s function for the bulk NLC is
G(x, x′) = 1

|x−x′| so that U
bulk
dd,⊥ is anisotropic as well,

U bulk
dd,⊥ = −4πK

r3

[
px p

′
x + py p

′
y − 3 sin2 θ(px p

′
x cos

2 φ + py p
′
y sin

2 φ)
]
, (5.46)

where r is the distance between particles, θ is the polar angle between r and z-axis,
φ is the azimuthal angle between ρ and x-axis.

Note that similar formula for bulkNLCwas obtained in [70] but our result predicts
three times stronger interaction.

Map of the attraction and repulsion zones between two particles with z = z′ and
py = 3px in the infinite crystal is depicted by the red dashed lines in Fig. 5.6.

Now assume that the particles are located in the centre of the homeotropic cell
z = z′ = L

2 (solid lines in Fig. 5.6). At small distances ρ � L the interaction is the
same as in the bulk nematic Uhom

dd,⊥ → U bulk
dd,⊥. But as ρ increases the lateral zones
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Fig. 5.6 Map of the attraction and repulsion zones for two identical banana-shaped particles,
px = p′

x and py = p′
y = αpx , α >

√
2, according to (5.43). Black line a corresponds to the case

py = 1.5px , blue line b corresponds to the py = 2px and red line c corresponds to the py = 3px .
The particles are located in the centre of the homeotropic cell z = z′ = L

2 . Their orientation are
shown on the Figs. 5.4b and 5.5a. Sign “-” means attraction (inside of the dumbbell-shaped regions),
“-”means repulsion. If py <

px√
2
then the attractionwill appear along the y-axis. Dashed lines depict

themapof interaction between twoparticleswith z = z′ and py = 3px in the absence of confinement
(reprinted with permission from [93])

become closed. So that identical particles attract inside some dumbbell-shaped
regions along x axis when py >

√
2px . These regions shrinks as |py − √

2px |
decreases and collapses to the point when py = √

2px . The crossover from the attrac-
tion to the repulsion when both particles are located along x axes and py >

√
2px is

shown on the Fig. 5.7.
When px√

2
< py <

√
2px there will be only repulsion for every φ in the perpendic-

ular plane θ = π/2. When py <
px√
2
there will be attraction inside some dumbbell-

shaped regions along y axis and repulsion everywhere along x axis.
Another important issue is the energy dependence on the distance between par-

ticles. It follows from (5.46) that in the bulk nematic host the interaction of dipolar
colloidal particles decreases as ρ−3 (see dashed line 4 in Fig. 5.8). But in the cell we
see completely different picture. The interaction potential falls off as ρ−3 only when
ρ < L . At larger distances ρ > L the potential becomes screened by the cell walls
(see solid line 2 in Fig. 5.8). Such screening known as confinement effect was first
reported experimentally in [54] and theoretically explained in [74, 80] for spherical
particles. This phenomena is related only with the confining surfaces and therefore
it occurs despite the particles shape.

But the particles orientation examined above is not the only possible. Their sym-
metry planes can be parallel to the coordinate yz and xy planes as well (see Fig. 5.5b),
i.e. particles lie primarily parallel to the director (we will use || for this case). Then
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Fig. 5.7 The crossover from
the attraction to the repulsion
between two banana-shaped
particles located in the
middle of the homeotropic
cell z = z′ = L

2 along x axis
(see Figs. 5.5a and 5.6),
px = p′

x , py = p′
y = αpx

for α >
√
2. Ũ =

Uhom
dd,⊥L3/8πK (px p′

x +
py p′

y), where U
hom
dd,⊥ is given

by (5.43) and φ = 0. Solid
black line 1 corresponds to
the py = p′

y = 1.5px ,
orange line 2 corresponds to
the py = p′

y = 1.7px
(reprinted with permission
from [93])

we have one dipole coefficient pzy = p �= 0 as follows from Table5.1. Thus

Uhom
dd,|| = −4πKpp′∂z∂ ′

zG, (5.47)

Uhom
dd,|| = −16πKpp′

L

∞∑
n=1

λ2
n cos

nπ z

L
cos

nπ z′

L
K0(λnρ). (5.48)

As well as in the previous case the interaction given by (5.48) is screened by the
cell walls (solid line 1 in Fig. 5.8). But here it exhibits cylindrical symmetry. In
particular, parallel dipoles with z = z′ attract each other throughout the cell plane.
In the unlimited case G = 1

|x−x′| and (5.48) becomes

Ubulk
dd,|| = −4πKpp′

r3
(1 − 3 cos2 θ). (5.49)

Similar result for the bulk NLC was obtained in [70] but our result again predicts
three times stronger interaction.

For axially symmetrical particles formula (5.38) with the Green function (5.41)
gives the result of dipole-dipole interaction between such particles as

Uhom
dd,axsym = 16πK (pp′ + phel p′

hel)

L
×

∞∑
n=1

λ2
n sin

nπ z

L
sin

nπ z′

L
K0(λnρ), (5.50)
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Fig. 5.8 Log-log plot of the dimensionless energy of the dipole-dipole interaction as a function
of the distance between two banana-shaped particles located in the middle of the homeotropic cell
z = z′ = L

2 . Solid blue line 2 corresponds to the particles repulsion for the orientation along y

axis depicted on the Fig. 5.5a, px = p′
x , py = p′

y = 2px , 2φ = π and Ũ = UddL3/8πK (px p′
x +

py p′
y), where Udd > 0 is given by (5.43). Dashed line 4 is an appropriate power law asymptotic

Uunc
dd L3/4πK (px p′

x + py p′
y) ∝

(
L
ρ

)3
. Solid red line 1 corresponds to the particles attraction along

y axis on the Fig. 5.5b, pzy = p �= 0 and Ũ = UddL3/16πKpp′, whereUdd < 0 is given by (5.48).

Dashed line 3 is the appropriate power law asymptotic 1
4

(
L
ρ

)3
(reprinted with permission from

[93])

where ρ = √
(y − y′)2 + (x − x ′)2 is the horizontal projection of the distance

between particles. We see that axially symmetric particles either attract or repel
each other independent on φ everywhere inside the homeotropic cell, while the
dipole-dipole interaction between banana-shaped particles can be either anisotropic
or independent of φ .

5.4.2 Planar Cell

Let us choose the coordinate system as shown in Figs. 5.5c and 5.5d. Then theGreen’s
function is as follows:

Gμ(x, x′) = 4
L

∑∞
n=1

∑∞
m=−∞ eim(ϕ−ϕ′) sin nπx

L

× sin nπx ′
L Im(λnρ<)Km(λnρ>), (5.51)

where L is the cell thickness, Im , Km are modified Bessel functions, tan ϕ = y
z ,

tan ϕ′ = y′
z′ , λn = nπ

L , ρ< is the smaller of ρ = √
z2 + y2 and ρ ′ = √

z′2 + y′2. This
Green’s functionwas already used by authors of [80] to describe interactions between
axially symmetric particles. Their predictions were found in good agreement with
the experimental data for a wide range of L [73].
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Fig. 5.9 Map of the
attraction and repulsion
zones for two identical
banana-shaped particles,
p = p′, according to the
(5.53). The particles are
located in the centre of the
planar cell x = x ′ = L

2 .
Their orientation are shown
on the Figs. 5.4b and 5.5c.
Sign “-” means attraction,
“+” means repulsion
(reprinted with permission
from [93])

Imagine first that the particles are oriented as depicted in Fig. 5.5c.Hence the every
particle has two symmetry elements affecting on themultipole coefficients existence.
They are σxz and σxy . Therefore, as follows from Table5.1, director deviations here
can be described by the only dipole coefficient pzx = p �= 0. Then

U plan
dd,|| = −4πKpp′∂z∂ ′

zG, (5.52)

U plan
dd,|| = 8πKpp′

L

∞∑
n=1

λ2
n sin

nπx
L

× sin nπx ′
L [K0(λnρ) + K2(λnρ) cos 2θ ] , (5.53)

where ρ = √
(y − y′)2 + (z − z′)2 is the horizontal projection of the distance

between particles, θ is the angle between ρ and z-axis. As well as in the homeotropic
cell the particles do not “feel” the cell walls at small distancesU plan

dd,|| → − 4πKpp′
ρ3 (1 −

3 cos2 θ). But if ρ increases the interaction falls off exponentially (Kn(z → ∞) ∝
e−z√
z ) and the borders between zones transform from straight lines into some parabola-

like curves (see Fig. 5.9).
Now suppose that the particles symmetry planes are parallel to the coordinate

yz and xz planes (see Fig. 5.5d). The allowed dipole coefficients are pxx = px and
py
y = py . Thus

U plan
dd,⊥ = −4πK

[
px p

′
x∂x∂

′
xG + py p

′
y∂y∂

′
yG
]
, (5.54)

U plan
dd,⊥ = 8πK

L

[−px p
′
x B1 + py p

′
y B2 − py p

′
y B3 cos 2θ

]
, (5.55)
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Fig. 5.10 Map of the
attraction and repulsion
zones for two identical
banana-shaped particles
px = p′

x and py = p′
y ,

according to the (5.55). The
particles are located in the
centre of the planar cell
x = x ′ = L

2 . Their
orientation are shown on the
Figs. 5.4d and 5.5d. Black
line a: px = py . Red line b:
px = 2py . Blue line c:
px = 5py . Green line d:
px = 10py . Sign “-” means
attraction, ’“+” means
repulsion (reprinted with
permission from [93])

where

B1 = 2
∞∑
n=1

λ2
n cos

nπx

L
cos

nπx ′

L
K0(λnρ), (5.56)

B2 =
∞∑
n=1

λ2
n sin

nπx

L
sin

nπx ′

L
K0(λnρ), (5.57)

B3 =
∞∑
n=1

λ2
n sin

nπx

L
sin

nπx ′

L
K2(λnρ). (5.58)

At small distances B1 → 1
2

(
L
ρ

)3
, B2 → 1

4

(
L
ρ

)3
and B3 → 3

4

(
L
ρ

)3
and we come to

the fact that in this case Udd → U bulk
dd when ρ � L as well. Note that here U bulk

dd,⊥ is
given by (5.46) if we set x = x ′ (φ = π/2), that is,U bulk

dd,⊥ = − 4πK
r3
[
px p′

x + py p′
y−

3py p′
y sin

2 θ
]
. Say, for instance, px > py . Then it can be easily found that the inter-

action between such particles in the bulk nematic is completely repulsive or attractive.
In the cell we again have both attraction and repulsion (see Fig. 5.10). In turn, since
the summation in (5.56) starts from n = 2 B1 falls off faster than B2 and B3. There-
fore when ρ � L the interaction is determined only by the coefficients py and p′

y .
Due to this at large distances these particles will interact as axially symmetrical ones
(black lines in Fig. 5.10). On the same grounds, if we set py > px no attraction will
appear along the y-axis. Map of the interaction in this case will be quite similar to
that one for the axially symmetrical particles.

For axially symmetrical particles formula (5.38) with the Green function (5.51)
gives the result of dipole-dipole interaction between such particles as
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Fig. 5.11 Dependence of
the normalized interparticle
force FL4 on the reduced
interparticle distance R/L in
nematic cell at various
thickness L . The solid line is
the theoretically calculated
one from Eqs. (5.59) for
p = p′ = 2.04a2 and
K = 7.05 pN (NLC
MJ032358) (reprinted with
permission from [73])

U plan
dd,axsym = 16πK (pp′ + phel p′

hel)

L
(F1 − F2 cos

2 θ), (5.59)

F1 =
∞∑
n=1

λ2
n

2
sin

nπx

L
sin

nπx ′

L

[
K0(

nπρ

L
) + K2(

nπρ

L
)
]

−λ2
n cos

nπx

L
cos

nπx ′

L
K0(

nπρ

L
), (5.60)

F2 =
∞∑
n=1

λ2
n sin

nπx

L
sin

nπx ′

L
K2(

nπρ

L
). (5.61)

where ρ = √
(y − y′)2 + (x − x ′)2 is the horizontal projection of the distance

between particles and θ is the angle between ρ and z. Formula (5.59) was found
to explain very well experimental results [73] where θ = 0 (see Fig. 5.11).

5.5 Elastic Monopoles in a Nematic Cell

In this section, we will consider elastic monopoles in a nematic cell and discover
that they are insensitive to the type of confinement. Suppose we have two ellip-
soidal particles suspended in the cell (Fig. 5.12). For simplicity, let us assume that
their orientation is fixed and such that the long axes make angles ω and ω′ with
n0, 0 < ω,ω′ < π

2 and lie in the plane of the figure. In practice, configurations of
this symmetry have been realized through asymmetric anchoring conditions [105]
and via light-induced rotation of photo-responsive colloids [106]. Since ellipsoids
have a centre of symmetry, dominant deformations produced by these particles are
elastic monopoles: qx = q ′

x = 0, qy = q, q ′
y = q ′ in the homeotropic and qx = q,
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q ′
x = q ′, qy = q ′

y = 0 in the planar cell (see Table5.1). Then, as follows from (5.41)
and (5.11), the monopole-monopole interaction in the homeotropic cell is given by

U hom
qq = −16πKqq ′

L

∞∑
n=1

sin
nπ z

L
sin

nπ z′

L
K0(λnρ), (5.62)

where ρ = √
(y − y′)2 + (x − x ′)2. In the same way we can find from (5.51) and

(5.11) that in the planar cell this interaction is described by

U plan
qq = −16πKqq ′

L

∞∑
n=1

sin
nπx

L
sin

nπx ′

L
K0(λnρ), (5.63)

where ρ = √
(y − y′)2 + (z − z′)2. Expressions (5.62) and (5.63) demonstrate that

the monopole-monopole interaction is the same and does not depend on the type of
the nematic cell (see Fig. 5.13) as z on the Fig. 5.12a is the same as x on the Fig. 5.12b.
For small distances ρ � L both (5.62) and (5.63) converge to the Coulomb-like law

Fig. 5.12 Ellipsoidal particles in the homeotropic a and planar b nematic cell (reprinted with
permission from [93])
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Fig. 5.13 Monopole-
monopole interaction in a
nematic cell. Elastic
monopoles do not “feel” the
type of the cell. Blue line 1
corresponds to
Ũ = −Uplan

qq L/16πKqq ′.
Here Uplan

qq is given by
(5.63). The dashed line 2 is
the Coulomb-like Ũ = 1

4ρ/L
asymptotics for ρ � L
(reprinted with permission
from [93])

0.1 0.5 1.0 5.0

Uqq = −4πKqq ′ 1
r (see Fig. 5.13). Note that opposite elastic charges repel, and like

charges attract.

5.6 Colloidal Particles in a Deformed Nematic

In this section, we derive the free energy of a colloid in a deformed (non-uniform)
director field. An alternative approach to this question was developed in [107] and
obtained results differ a little bit from ours. Consider again a single particle located
at point x in a nematic liquid crystal which is deformed by external boundaries or
forces, i.e., the director field is intrinsically non-uniform n = n(r). Similarly to the
case of two colloids, these intrinsic deformations of the director overlap with those
induced by the particle, thereby making its energy position-dependent. If the particle
size is much smaller than the characteristic length of the intrinsic director variations,
(∇ · n)−1, the particle can be treated as if it was locally in a uniform director field.
In the local Cartesian coordinate system where n(x) ≈ (nx , ny, 1), the total energy
of the system is as follows:

Fef f = K
∫

dV

[
(∇nμ)2

2
− 4πqμ(x)nμ − 4πpα

μ(x)∂αnμ

−4πQαβ
μ (x)∂α∂βnμ

]
. (5.64)

Here, the first term is the energy of the LC deformations and the sum of three
subsequent terms represents the overlap of deformations. If we subtract the particle’s
self-energy in the homogeneous director field n(x) = (0, 0, 1) and the energy of the
bulk deformations caused by external forces and fields, we will find the energy of
interaction between the particle and the intrinsic deformations of the host medium,
or energy of the particle in the deformed director field n(x). In the local Cartesian
coordinates:

Fself,curv = −4πKqμnμ(x) − 4πKpα
μ∂αnμ(x) − 4πK Qαβ

μ ∂α∂βnμ(x). (5.65)
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Fig. 5.14 Examples of dipole and quadrupole particles. Pair of vectors (l||, l⊥) lies in a vertical
symmetry plane and sets local coordinate system XYZ. Vector l|| is parallel to n(x); a banana-
shaped dipole particles with two vertical symmetry planes; b banana-shaped dipole particles with
one vertical and one horizontal symmetry planes; c axially symmetric dipole particles with usual
elastic moment p and helical elastic moment phel d example of triangular particles with two vertical
symmetry planes e example of quadrupole particles with two different quadrupole moments

If a colloidal particle is inclined with respect to the local director field n(x) and has
elastic charge q = (qx , qy, 0), the first term has the biggest value in comparison with
others.

The second term defines the energy of a dipole. Here we will consider dipole
particles which have at least two symmetry planes: either two vertical planes xz
and yz (Fig. 5.14(a,c,d)) or one vertical plane yz and one horizontal plane xy
(Fig. 5.14(b)) in the local coordinate system.Axially-symmetric particleswith screw-
thread ((Figs. 5.14(c) and 5.2)) also have a helical elastic dipole moment phel .

The last term represents particles with a quadrupole moment. We will focus on
quadrupoles with two symmetry planes or particles with three symmetry planes
(Fig. 5.14(a,b,d,e)). Helical quadrupole moment Qhel characterizes, for instance,
axially-symmetric cone-like particles with screw-thread (like those shown in



5 Colloidal Particles in Confined and Deformed Nematic Liquid Crystals ... 143

Fig. 5.14(c)). Then, using Tables5.1 and 5.2, we can explicitly write Eq. (5.65) as
follows

Fself,curv = −4πKqμnμ

−4πK [pxx ∂xnx + py
x ∂ynx ]

−4πK [pxy∂xny + py
y∂yny + pzy∂zny]

−4πK [2Qxz
x ∂z∂xnx + 2Qyz

x ∂z∂ynx ]
−4πK [2Qyz

y ∂z∂yny + 2Qxz
y ∂z∂xny].

(5.66)

Equation (5.66) can be written in an invariant coordinate independent form:

Fself,curv = FCoul,curv + FDip,curv + FQuad,curv. (5.67)

Here,
FCoul,curv = −4πKq · n (5.68)

is valid only in the vicinity of a vector n0 such that (n − n0) · n0 ≈ 0 and the
monopole q is perpendicular to n0. In fact, vector n0 sets the average orientation
in this area, the ground state, and defines the elastic charge vector q in this area. For
instance if n0||z then q = (qx , qy, 0).

FDip,curv = −4πKp(l|| · n)divn

−4πKΔp(l|| · n)l⊥ · (l⊥ · ∇)n

−4πKphel(n · curln) − 4πKpban l⊥ · (n × curln), (5.69)

where we defined p = pxx , phel = pxy = −py
x , pban = −pzy ,Δp = py

y − pxx with the
local axes z and y being along n = l|| and l⊥, respectively. Vector l|| = n(x) is along
the particle itself and coincides with the local director field n(x), and vector l⊥
is perpendicular to it and lies in the vertical symmetry plane (Fig. 5.14). Strictly
speaking, the direction of l⊥ is not known a priori and has to be determined by
minimizing the total energy (5.67). Equation (5.69) gives the energy of a dipole
colloidal particle with two symmetry planes in a non-uniform director field.

FQuad,curv = −4πK Q(n · ∇)divn

−4πK Qhel(l|| · n)n · (n · ∇)curln

−4πKΔQl⊥ · (l⊥ · ∇)(n × curln), (5.70)

where Q = 2Qxz
x ,ΔQ = 2(Qxz

x − Qyz
y ), Qhel = 2Qxz

y = −2Qyz
x . Expression (5.70)

defines the energy of a colloidal dipole with two symmetry planes or a quadrupole
particle with three symmetry planes in a non-uniform director field (Fig. 5.14).

Let us now apply the general formulas (5.69) and (5.70) to some specific cases of
colloids.

For usual axially-symmetric particles without helical screw-thread (e.g., Fig.5.1),
the energy of the particle in the deformed director field takes the form:
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Faxial-sym,curv = −4πKp(l|| · n)divn − 4πK Q(n · ∇)divn, (5.71)

where both terms should be taken into account for dipole particles (see Fig. 5.1a),
and only second term remains for symmetrical quadrupole particles (Fig. 5.1b and
c). Note that Q > 0 for the Saturn ring configuration (Fig. 5.1 (b)), and Q < 0 for
boojums (Fig. 5.1 (c)). Equation (5.71) coincides with [65] and shows that a dipole
particle moves into regions with splay deformations. As a result, small water droplets
congregate at the center of a big nematic drop with normal anchoring at the surface
and near the poles/boojums in case of planar boundary conditions [34]. Quadrupole
particles behave differently depending on the anchoring type. Since Q < 0 for planar
conditions and Q > 0 for homeotropic, quadrupole particles with planar anchoring
will move towards regions of strong splay deformations whereas homeotropic parti-
cles will be repelled from them.

For axially-symmetric particles with helical screw-thread (Fig. 5.14c), the energy
has the form:

Faxial-helic,curv = −4πKp(l|| · n)divn

−4πKphel(n · curln)

−4πK Q(n · ∇)divn − 4πK Qhel(l|| · n)n · (n · ∇)curln, (5.72)

where p = 0 and Qhel = 0 if the particle has horizontal symmetry plane (Fig. 5.2).
For axially non-symmetric dipole particles, which have two vertical symmetry planes
(Fig. 5.14(a,d)) the energy reads

Fdip,vv,curv = −4πKp(l|| · n)divn − 4πKΔp(l|| · n)l⊥ · (l⊥ · ∇)n

−4πK Q(n · ∇)divn − 4πKΔQl⊥ · (l⊥ · ∇)(n × curln).
(5.73)

For axially non-symmetric dipole banana-shaped vertical particles, which have
one vertical and one horizontal symmetry planes (Fig. 5.14(b)) the energy is as
follows

Fbanana,curv = −4πKpbanl⊥ · (n × curln)

−4πK Q(n · ∇)divn − 4πKΔQl⊥ · (l⊥ · ∇)(n × curln).
(5.74)

This framework allows for understanding the behavior of colloids in the vicinity of
topological defects in the director field. Following experiment [34], consider a spher-
ical NLC droplet with normal boundary conditions on the surface that induce radial
orientation of the director with a defect (radial hedgehog) in the center (Fig. 5.15).
In spherical coordinates, the director can be represented as nr = 1, nθ = 0, nϕ = 0,
so divn = 1

r , where r is the distance from the center of the drop. If the particle
has dipole moment parallel to the director, the dominant part of the energy reads
F1 = −4πKp 1

r + 4πK Q 1
r2 , and the particle therefore moves to the center, as was

observed in [34] for p = 2.05r20 > 0 and Q = −0.2r30 < 0. Likewise, quadrupole
particles will assemble in the center of the droplet accordingly to the energy
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Fig. 5.15 Director field in a
nematic droplet with
homeotropic anchoring.
Because of the boundary
conditions, a topological
defect known as a radial
hedgehog emerges in the
center

F2 = −4πK Q (n · ∇) divn = 4πK Q
1

r2
. (5.75)

We can also find the energy of the interaction between a particle and a disclination
line, another type of defects in nematics. Say, we have a cylinder with homeotropic
boundary conditions which give rise to a disclination line along the cylinder axis
(Fig. 5.16). Given the symmetry, the director reads n = (nρ, nϕ, nz) = (1, 0, 0) in
cylindrical coordinates. Thus, the free energy of a colloid near a radial disclination
is as follows

F1 = −4πKpdivn − 4πK Q (n · ∇) divn

= −4πKp
1

ρ
+ 4πK Q

1

ρ2
,

(5.76)

which suggests the attraction of dipoles and negative quadrupoles (for instance,
a sphere with boojums) toward the disclination line and repulsion of positive
quadrupoles (a sphere with a Saturn ring, for example).

Equation (5.76) can be generalized for disclinations of any topological strength
m, which defines the angle θ = mφ + C of the director rotation in the plane perpen-
dicular to the disclination (say, the angle between n and axis x). The corresponding
energies of dipole and quadrupole particles are, respectively,

F1 = −4πKpdivn = −4πKpm
1

ρ
cos ((m − 1)φ + C) (5.77)

and
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Fig. 5.16 Small water
droplet near a radial
disclination line in a nematic
liquid crystal

F2 = −4πK Q (n · ∇) divn

= 4πK Qm

ρ2

[
1 + (m − 2) sin2 ((m − 1)φ + C)

]
.

(5.78)

In most cases, radial configuration considered above is unstable and “escapes in
the third dimension” [108], as shown in Fig. 5.17. The ensuing director field can
be written in cylindrical coordinates as nz = cos u(ρ), nρ = sin u(ρ), nϕ = 0 with
u(R) = π

2 and u(0) = 0, where, in the one-constant approximation, tan u(ρ)

2 = ρ

R
with R being the cylinder radius [108]. Then the energy of a dipole particle takes the
form

F2 = −4πKpdivn

= − 16πKpR3

(R2 + ρ2)2

(5.79)

which shows that elastic dipoles assemble at the center of the cylinder. For quadrupole
particles, we have

F2 = −4πK Q (n · ∇) divn

= 64πK QR4ρ2

(R2 + ρ2)4
.

(5.80)



5 Colloidal Particles in Confined and Deformed Nematic Liquid Crystals ... 147

Fig. 5.17 Radial
disclination “escapes in the
third dimension” in a
cylindrical capillary with
homeotropic boundary
conditions

Equation (5.80) suggests that positive quadrupoles, Q > 0, e.g., spheres with Saturn
ring defects (Fig. 5.1 a,b), aggregate at the center of the capillary, whichwas observed
experimentally in [55]. At the same time, particles with negative quadrupole moment
Q < 0, such as sphereswith boojums (Fig. 5.1c) should assemble at a distanceρmin =
R√
3
from the center. This result has not been confirmed experimentally yet.

5.7 Distribution of Nanoparticless in a Deformed Nematic

Thus far, we have focused on micron-sized colloidal particles. In such systems, the
energy of the elastic interactions is of the order of hundreds and thousands of kBT .
Hence, the temperature does not play a significant role, except for affecting elastic
constants and Brownian motion of the particles. Entropy can be safely neglected
under these conditions. In this section, we will consider the case of sub-micron
(∼0.1 μm) and nano-sized colloids in a nematic LC. For low concentrations, the
interactions between such particles typically do not exceed ∼1 kBT , and entropic
contributions to the free energy become important.

Let us consider a system of N particles with f (r) being the probability of finding
a particle at point r, f ∈ (0, 1). Equivalently, one can think of f (r) as the local
volume fraction of particles,

1

v0

∫
V
dV f (r) = N , (5.81)
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where V and v0 is the system and particle volume, respectively. Then the configura-
tional entropy of the system reads

S = −kB
v0

∫
V
dV { f (r) ln f (r) + [1 − f (r)] ln[1 − f (r)]} . (5.82)

For simplicity, we assume that the concentration is small, so that we can neglect
the interparticle interactions and retain only the interactionwith global nematic defor-
mations. Thus, the internal energy can be defined as

E = 1

v0

∫
V
dV ε(r) f (r), (5.83)

where ε(r) is generally given by Eq. (5.67). For axially symmetric colloids with
dipole elastic moment p and quadrupole elastic moment Q, it takes the form (5.71),

ε(r) = −4πKp(l||n)divn − 4πK Q(n∇)divn. (5.84)

Note that nanoparticles, because of their size, onlyweakly distort theNLC.Therefore,
the corresponding multipole moments are determined by the particle’s actual shape;
for spheres, in particular, p = 0. Given (5.82) and (5.83), the grand potential of
nanocolloids in a nematic host can be written as follows

Ωp = 1

v0

∫
V
dV {(ε(r) − μ) f (r)}

+kBT

v0

∫
V
dV { f (r) ln f (r) + [1 − f (r)] ln[1 − f (r)]} , (5.85)

where chemical potential μ enforces the constraint
∫
dV f (r) = v0N . Minimizing

(5.85), we arrive at the distribution function for nanoparticles in a deformed nematic
liquid crystal,

f (r) = 1

1 + e(ε(r)−μ)β
≈ f0e

− ε(r)
kB T , (5.86)

where β = 1
kBT

, f0 = eμβ � 1 for small concentrations and can be found from the
condition

∫
dV f (r) = v0N .

Then, for instance, the distribution of small spherical nano-colloids near a discli-
nation line of strength m is given by

f (r)disclquad = f0 exp

[
−4πK Qm

[
1 + (m − 2) sin2 ((m − 1)φ + C)

]
ρ2kBT

]
, (5.87)

There θ = mφ + C is the director rotation angle in the plane perpendicular to the
disclination (say, the angle between n and axis x) and φ is the azimuthal angle.
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Near the cores of disclination lines at nanoscale distances, nematic orderingmelts,
and the order parameter, as well as the elastic constant K , tend to zero. Our theory
is inapplicable in such regions.

Similarly, near an escaped radial disclination but far enough from the core we
have

f (r)capillarquad = f0 exp

[
− 64πK QR4ρ2

(R2 + ρ2)4kBT

]
(5.88)

with ρ being the distance from the particle to the disclination line.

5.8 Coexistence of Two Colloidal Structures at the
NLC-Air Interface

References [41, 42] experimentally observed the coexistence of two structures
formed by glycerol droplets at the nematic-air interface. Such droplets form usual
quasi-hexagonal (HL) and dense quasi-hexagonal (DL) structures (Fig. 5.18). The
experimental setup comprises glycerol droplets of radius R = 2.5 μm floating on
the NLC-air interface in a cone-like Petri dish (Fig. 5.18a). Glycerol slowly flows
out, ad a patch with the HL structure is shrinking. Initially, the average inter-
particle distance in the HL packing is r3 = 10 μm. When it becomes approxi-
mately r = rc =

√
3r3
2 ≈ 8.66 μm, the DL structure with the average lattice constant

r1 = 6 μm emerges.
Due to planar anchoring of the LC molecules to the droplets surface, they are

accompanied by surface boojums residing at their south poles. One can notice, how-
ever, that in the dense structure the boojums are shifted from the vertical axis. Indeed,
Fig. 5.18(c) demonstrates that in the HL packing boojums show in the center of the
droplet under crossed polarizers, whereas in Figs. 5.18(b) and (d) they are rotated
equally for all particles in parallel planes. In Ref. [67], it was shown that such a
rotation by an angle θ gives rise to elastic monopoles and Coulomb-like attraction
between the particles, which can be expressed as Uqq ∝ −b2sin2(2θ)/r < 0 for
small angles. At the same time, the self-energy of the particle scales as Usel f ∝
a sin2(θ) > 0. Since Coulomb attraction is proportional to the number of neighbors
and inversely proportional to the spacing of the particles, one can conjecture that at
some distance both terms will be balanced. Further compression will increase the
attraction and cause collapse to the dense structure, which will be eventually sta-
bilized by the elastic dipole-dipole repulsion (5.39), Uelb,thick (r) = K α2R4

r3 with R
denoting the droplet radius. To quantify this transition, recall the total free energy of
the system of colloids

Utotal =
∑
i

⎛
⎝Ui,sel f + 1

2

∑
j �=i

Ui j

⎞
⎠ =

∑
i

Fi , (5.89)
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Fig. 5.18 Two equilibrium quasi-hexagonal structures at the nematic-air interfacewhichwe refer to
as the usual hexagonal (HL) and dense hexagonal (DL), respectively. The DL lattice emerges when
the average spacing between the particles becomes smaller than some critical value rc (reprinted
with permission from [42])

where Fi is the average energy per particle, Fi = Ui,sel f + 1
2

∑
neighbors Ui j . Taking

for simplicity only the nearest 6 neighbors, we can write Fi as a function of the
average particle spacing r and the rotation angle θ in the following form

F(r, θ) = aK Rsin2(θ) − 3Kb2R2sin2(2θ)G(r)

+3Kα2R4

r3
+ 3 f 2el

2πσLC A
ln(

r

λ
),

(5.90)

where G(r) = 1
r − 1√

r2+4h2
is the Green function for a located at a distance h from

the interface. G(r) is, in fact, a superposition of the Coulomb attraction between
the particles, ∼1/r, and repulsion between the particle and its mirror reflection,
∼1/

√
r2 + 4h2, which accounts for the presence of the interface. In practice, one

could approximate G(r) by G0(r) = 1/r , but it is instructive to keep both contri-
butions. We consider that all particles have the same elastic charge (say qx only)
as all boojums are rotated equally for all particles in parallel planes. Parameters
a, b and α are unknown dimensionless constants which we need to find from the
comparison with experimental data. Self energy of the glycerol droplet with the
boojum is proportional to the a, elastic charge of the glycerol droplet with skewed
boojum is proportional to the bR and elastic dipole moment of the glycerol droplet is
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proportional to theαR2.Weknow thatαwas found to beα = 0.2 from the experiment
[41] so that only a and b are unknown. The last term in (5.90) describes capillary
attraction caused by deformations of the NLC-air interface, the force fel ≈ 10K
replaces standard gravitational buoyancy, σLC A is the surface tension and λ ≈ 2 mm
is the capillary length [41].

Setting h ≈ 2R, we see that mechanical equilibrium, ∂F
∂θ

= 0, implies that

cos(2θ) =
{
1, r > rb

a
12b2RG(r) = G(rb)

G(r) , r ≤ rb
(5.91)

where rb is the largest critical distance at which boojums start tomove from the poles,
rb can be found from the condition a

12b2RG(rb)
= 1. Substituting (5.91) into (5.90), we

arrive at the average per particle energy as a function of the particle spacing r only

F(r) = F1(r) + 3Kα2R4

r3
+ 3 f 2el

2πσLC A
ln(

r

λ
), (5.92)

where

F1(r) =
{
0, r > rb

6Kb2R2G(rb) − 3Kb2R2
[
G(r) + G2(rb)

G(r)

]
, r ≤ rb.

(5.93)

Nowwe need to to find out under what conditions this function has two local minima
and one maximum. In dimensionless units x = r/R, the condition ∂F

∂r = 0 reduces
to the equation

f (x) = f1(x) + 3α2

(
1

x · x33
− 1

x4

)
= 0, (5.94)

where

f1(x) =
{
0, x > xb

b2G ′(x) ·
[
G2(xb)
G2(x) − 1

]
, x ≤ xb

(5.95)

Experimental data [41, 42] suggests that x1 = r1
R = 2.4, x2 = xc = rc

R = 3.46,
x3 = r3

R = 4 for droplets of radius R = 2.5µm, α = 0.2. Thus, we need to find such
b and xb that f (x1) = 0 and f (x2) = 0. This is equivalent to finding necessary
a and b. Omitting technicalities, we report that such solutions exist. Namely, for
the unscreened Coulomb potential G0(x) = 1/x , we have b2Coul = 0.028, xb,Coul =
3.7 (that is, a = aCoul = 0.091 and the boojum rotation angle θCoulomb = 24.7◦ in
the DL), and for the full Green function G(x) = 1

x − 1√
x2+16

, which accounts for

the interface, b2 = 0.023, xb,Green = 3.66 (a = aGreenl = 0.025 in this case and the
boojum rotation angle θGreen = 31.7◦ in the DL).

The average per particle energy F(r), calcualted from (5.92) for the experimental
data [42], as a function of the average interparticle distance is plotted in Fig. 5.19.
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Fig. 5.19 Calculated per
particle energy F(r) given
by (5.92) as a function of the
average distance between the
droplets. Dotted line -
Coulomb attraction between
skewed boojums, solid line -
attraction with Green
function from (5.90). Here
parameters R = 2.5 μm,
K = 7 pN,
σLC A = 3.8 · 10−2 J/m2,
α = 0.2, fel = 88.4 pN,
λ = 2 mm are taken from
[42]

It features two distinct minima separated by a ∼ kBT barrier, consistently with the
coexistence of HL and DL lattices.

In the paper [42] another dipolar approach explanation of DL structure has been
proposed.We think that the current approachdescribes the experimentmore correctly.
In Ref. [42] there is no explanation of the existence of the global minimum with
respect to the boojum rotation angle and the particle separation distance both at the
same time. Here we have found such global minimum. Therefore, we consider that
this approach describes the situation in a more correct way.

Dense packing of glycerol droplets at the nematic-air interface is caused by spon-
taneous rotational symmetry breaking with the emergence of elastic charges and
Coulomb-like elastic attraction between rotated topological defects - boojums at the
bottom of glycerol droplets.

5.9 Conclusions

Colloidal particles suspended in a nematic liquid crystal cause deviations of the
director from its ground state. Far from the particle, these distortions can be written
in the form of the multipole expansion. The notion of multipoles, well familiar
from classical electrostatics, has become one of the cornerstones of our current
understanding of the host-mediated interactions in NLC colloids.

Building upon the electrostatic analogy, we developed a general framework of
colloidal nematostatics applicable to particles of arbitrary shape, size, chirality, and
anchoring strength and type. Unlike many alternative approaches, the formalism we
propose in this paper easily incorporates the effects of confinement and the presence
of external electric or magnetic fields. Our theory is centered around elastic multi-
poles— coefficients in the multipole expansion of the far-field director. Considering
two limiting cases of anchoring strength, weak (Wr0 � K ) and strong (Wr0 � K ),
we demonstrated how these coefficients emerge as asymptotics of the near-field solu-
tion. In the former case, Wr0 � K , the proposed approach allows us to find exact
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analytical expressions for all multipole moments. While that is generally impossible
when Wr0 � K , one can still infer the overall structure of the expansion (that is,
which coefficients vanish and which do not) just from the symmetry of the director
in the immediate vicinity of the particle. Since this information is typically available
in experiments, the formalism we developed here can be readily applied for particles
of arbitrary shapes, sizes, and anchoring types.

The proposed framework relies on two assumptions: (i) differences in the NLC
elastic constants can be neglected; (ii) deviations of the director field from its ground
state are small, n = n0 + δn with |n0| ≈ 1 and |δn| � 1. This assumption is well
justified for submicron particles but is limited to large interparticle distances in the
case of micron and supramicron colloids. The vicinity of a large particle features
strong director deformations and topological defects, which render the electrostatic
analogy invalid. As such, our theory is inapplicable to entangled and knotted colloidal
structures [51, 109–111], where disclination loops extend over many particle sizes.
These structures are born out of short-range interactions. It is worth noting that even
in the case of localized defects, the nature and extent of short-range interactions (in
other words, the size and shape of the coat) are not fully understood. Indirectly, this
question was addressed in [99]. There was shown that lattice constants and angles
of dipolar 2D and 3D structures could be consistently reproduced with multipole
interactions incorporating higher-order terms and spherically symmetric hard-core
repulsion. Using this model, the authors estimated that the radius of such a sphere-
shaped coat around a hedgehog dipole (Fig. 5.1a) is about 1.2r0, where r0 is the
particle size, and roughly matches the distance to the defect. It would be interesting
to explore the transition between near-field and far-field director in three dimensions
to develop a more detailed idea of the coat’s size and shape and to quantify the limits
of electrostatic analogy.

To demonstrate our approach at work, we considered the dipole-dipole interaction
between banana-shaped particles in a nematic cell with both planar and homeotropic
alignment of the LC molecules at the boundaries. Given that a banana-like colloid
possesses two orthogonal planes of symmetry, one can intuitively expect that in
the mechanical equilibrium either both of these planes are normal to the cell walls
(orientation A) or just one (orientation B). We found that the A-oriented particles
placed in the middle of a homeotropic cell interact anisotropically. Each “banana” in
this case has two “butterfly wings” on its longer sides within which the interaction
is attractive. The less asymmetric the particles are, the smaller the “wings”, so when
the axial symmetry is fully restored, the interaction is isotropic. The “wings” have
finite size, as r → ∞ the interaction becomes completely repulsive. This behavior
contrastswith the interactionof banana-like colloids in the bulkLC,where the angular
and distance dependencies are completely decoupled. In a planar cell, both axially
symmetric colloids and B-oriented “bananas” interact anisotropically. However, the
symmetric particles repel along the direction perpendicular to the rubbing, whereas
the asymmetric ones attract at small distances.

We have also found that elastic monopoles are insensitive to the type of con-
finement: nematostatic analog of the Coulomb law has the same form regardless of



154 O. M. Tovkach et al.

anchoring at the cell walls and converges to the 1/r scaling in the limit of infinite
thickness L → ∞.

General expressions for the self-energy of colloidal particles carrying elastic
monopole, dipole and/or quadrupole moment in a nonuniform director field were
derived within the proposed framework and employed to find the distribution of
nanoparticles in a cylindrical capillary. We showed that particles with homeotropic
boundary conditions assemble at the center of the escaped radial disclination,whereas
those with planar anchoring aggregate at a distance ρmin = R√

3
from the capillary

axis.
To elucidate the role of elastic interactions in many-particle systems, we con-

sidered the coexistence of two colloidal structures — usual hexagonal and dense
hexagonal — formed by glycerol droplets at the nematic-air interface [41, 42]. Our
calculations demonstrate how the dense configuration emerges from spontaneous
rotational symmetry breaking, which triggers the onset of Coulomb-like attraction
between skewed boojums — topological defects at the bottom of glycerol droplets.

These examples strikingly demonstrate how one could exploit the interplay of
shape, symmetry, and order to design colloids with prescribed long-range interac-
tions, thereby possibly revealing new types of colloidal superstructures. An inter-
esting and yet unexplored example is that of spheres with conically degenerate
surface anchoring — elastic hexadecapoles [100]. These particles appear to have
very localized, isotropic short-range interactions and highly anisotropic long-range
potential, which underlies the formation of quasi diamond-like assemblies. Such low-
symmetric structures have great potential for photonic applications. Another emerg-
ing direction, which likely will gain significant attention in the future, focuses on
charged colloids. Recently, Everts et al. demonstrated, both theoretically and exper-
imentally, how the interplay of elastic and electrostatic interactions between nearly-
spherical particles gives rise to qualitatively different interaction regimes [112].
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LavrentovichOD (2007)Coexistence of two colloidal crystals at the nematic-liquid-crystal-air
interface. Phys Rev Lett 98:057801. https://doi.org/10.1103/PhysRevLett.98.057801

https://doi.org/10.1021/la303213h
https://doi.org/10.1021/la303213h
https://doi.org/10.1016/j.biomaterials.2008.10.037
https://doi.org/10.1021/ac402916v
https://doi.org/10.1039/C1AN15173H
https://doi.org/10.1039/C1AN15173H
https://doi.org/10.1038/s41586-018-0098-y
https://doi.org/10.1038/s41586-018-0098-y
https://doi.org/10.1039/C2CC17861C
https://doi.org/10.1002/anie.201004272
https://doi.org/10.1002/anie.201004272
https://doi.org/10.1039/C8AN02171F
https://doi.org/10.1039/C8AN02171F
https://doi.org/10.1016/j.snb.2015.03.054
https://doi.org/10.1016/j.snb.2015.03.054
https://doi.org/10.1021/acsami.5b08924
https://doi.org/10.1126/science.275.5307.1770
https://doi.org/10.1103/PhysRevLett.79.4862
https://doi.org/10.1103/PhysRevE.57.626
https://doi.org/10.1103/PhysRevLett.96.217801
https://doi.org/10.1103/PhysRevLett.96.217801
https://doi.org/10.1103/PhysRevLett.95.157801
https://doi.org/10.1103/PhysRevLett.95.157801
https://doi.org/10.1063/1.1849839
https://doi.org/10.1063/1.1849839
https://doi.org/10.1103/PhysRevLett.96.207801
https://doi.org/10.1103/PhysRevLett.96.207801
https://doi.org/10.1103/PhysRevLett.93.117801
https://doi.org/10.1103/PhysRevLett.98.057801


5 Colloidal Particles in Confined and Deformed Nematic Liquid Crystals ... 157

43. Yamamoto T, Yamamoto J, Lev BI, Yokoyama H (2002) Light-induced assembly of tailored
droplet arrays in nematic emulsions. Appl Phys Lett 81:2187–2189. https://doi.org/10.1063/
1.1508816

44. Lev B, Chernyshuk SB, Yamamoto T, Yamamoto J, Yokoyama H (2008) Photochemical
switching between colloidal photonic crystals at the nematic-air interface. Phys Rev E
78:020701. https://doi.org/10.1103/PhysRevE.78.020701

45. Lev B, Nych A, Ognysta U, Reznikov D, Chernyshuk S, Nazarenko V (2002) Nematic emul-
sion in a magnetic field. JETP Lett 75:322–325. https://doi.org/10.1134/1.1485260

46. Nazarenko VG, Nych AB, Lev BI (2001) Crystal structure in nematic emulsion. Phys Rev
Lett 87:075504. https://doi.org/10.1103/PhysRevLett.87.075504
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I, Babič D (2008) 2d interactions and binary crystals of dipolar and quadrupolar nematic
colloids. Phys Rev Lett 100:217803. https://doi.org/10.1103/PhysRevLett.100.217803

50. ŠkarabotM, RavnikM, Žumer S, Tkalec U, Poberaj I, Babič D,Muševič I (2008) Hierarchical
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