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Abstract. The k-Median problem is one of the well-known optimiza-
tion problems that formalize the task of data clustering. Here, we are
given sets of facilities F and clients C, and the goal is to open k facilities
from the set F , which provides the best division into clusters, that is,
the sum of distances from each client to the closest open facility is min-
imized. In the Capacitated k-Median, the facilities are also assigned
capacities specifying how many clients can be served by each facility.

Both problems have been extensively studied from the perspective
of approximation algorithms. Recently, several surprising results have
come from the area of parameterized complexity, which provided bet-
ter approximation factors via algorithms with running times of the form
f(k) · poly(n). In this work, we extend this line of research by study-
ing a different choice of parameterization. We consider the parameter
� = |F | − k, that is, the number of facilities that remain closed. It
turns out that such a parameterization reveals yet another behavior of
k-Median. We observe that the problem is W[1]-hard but it admits
a parameterized approximation scheme. Namely, we present an algo-
rithm with running time 2O(� log(�/ε)) · poly(n) that achieves a (1 + ε)-
approximation. On the other hand, we show that under the assumption
of Gap Exponential Time Hypothesis, one cannot extend this result to
the capacitated version of the problem.

1 Introduction

Recent years have brought many surprising algorithmic results originating from
the intersection of the areas of approximation algorithms and parameterized
complexity. It turns out that the combination of techniques from these theories
can be very fruitful and a new research area has emerged, devoted to studying
parameterized approximation algorithms. The main goal in this area it to design
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an algorithm processing an instance (I, k) in time f(k) · |I|O(1), where f is some
computable function, and producing an approximate solution to the optimization
problem in question. Such algorithms, called FPT approximations, are particu-
larly interesting in the case of problems for which (1) we fail to make progress
on improving the approximation factors in polynomial time, and (2) there are
significant obstacles for obtaining exact parameterized algorithms. Some results
of this kind are FPT approximations for k-Cut [22], Directed Odd Cycle

Transversal [27], and Planar Steiner Network [10]. A good introduction
to this area can be found in the survey [20].

One problem that has recently enjoyed a significant progress in this direction
is the famous k-Median problem. Here, we are given a set F of facilities, a
set C of clients, a metric d over F ∪ C and an upper bound k on the number
of facilities we can open. A solution is a set S ⊆ F of at most k open facilities
and a connection assignment φ : C → S of clients to the open facilities. The goal
is to find a solution that minimizes the connection cost

∑
c∈C d(c, φ(c)). The

problem can be approximated in polynomial time up to a constant factor [3,9]
with the currently best approximation factor being (2.675 + ε) [5]. On the other
hand, we cannot hope for a polynomial-time (1 + 2/e − ε)-approximation, since
it would entail P = NP [21]. Therefore, there is a gap in our understanding of
the optimal approximability of k-Median.

Surprisingly, the situation becomes simpler if we consider parameterized algo-
rithms, with k as the natural choice of parameterization. Such a parameterized
problem is W[2]-hard [1] so it is unlikely to admit an exact algorithm with run-
ning time of the form f(k) · nO(1), where n is the size of an instance. However,
Cohen-Addad et al. [12] have obtained an algorithm with approximation factor
(1 + 2/e + ε) and running time1 2O(k log k) · nO(1). This result is essentially tight,
as the existence of an FPT-approximation with factor (1 + 2/e − ε) would con-
tradict the Gap Exponential Time Hypothesis2 (Gap-ETH) [12]. The mentioned
hardness result has also ruled out running time of the form f(k) · ng(k), where
g = kpoly(1/ε). This lower bound has been later strengthened: under Gap-ETH
no algorithm with running time f(k) · no(k) can achieve approximation factor
(1 + 2/e − ε) [28].

The parameterized approach brought also a breakthrough to the understand-
ing of Capacitated k-Median. In this setting, each facility f is associated with
a capacity uf ∈ Z�0 and the connection assignment φ must satisfy

∣
∣φ−1(f)

∣
∣ � uf

for every facility f ∈ S. The best known polynomial-time approximation for
Capacitated k-Median is burdened with a factor O(log k) [1,8] and relies
on the generic technique of metric tree embeddings with expected logarithmic
distortion [19]. All the known constant-factor approximations violate either the
number of facilities or the capacities. Li has provided such an algorithm by

1 We omit the dependency on ε in the running time except for approximation schemes.
2 The Gap Exponential Time Hypothesis [18,29] states that, for some constant γ > 0,

there is no 2o(n)-time algorithm that can, given a 3SAT instance, distinguish between
(1) the instance is fully satisfiable or (2) any assignment to the instance violates at
least γ fraction of the clauses.
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opening (1 + ε) · k facilities [24,25]. Afterwards analogous results, but violating
the capacities by a factor of (1 + ε) were also obtained [6,17]. This is in con-
trast with other capacitated clustering problems such as Facility Location

or k-Center, for which constant factor approximation algorithms have been
constructed [15,23]. However, no superconstant lower bound for Capacitated

k-Median is known.
When it comes to parameterized algorithms, Adamczyk et al. [1] have pre-

sented a (7 + ε)-approximation algorithm with running time 2O(k log k) · nO(1)

for Capacitated k-Median. Xu et al. [31] proposed a similar algorithm for
the related Capacitated k-Means problem, where one minimizes the sum
of squares of distances. These results have been improved by Cohen-Addad and
Li [13], who obtained factor (3 + ε) for Capacitated k-median and (9 + ε) for
Capacitated k-means, within the same running time.

Our Contribution. In this work, we study a different choice of parameteriza-
tion for k-Median. Whereas k is the number of facilities to open, we consider the
dual parameter � = |F |−k: the number of facilities to be closed. We refer to this
problem as co-�-Median in order to avoid ambiguity. Note that even though this
is the same task from the perspective of polynomial-time algorithms, it is a differ-
ent problem when seen through the lens of parameterized complexity. First, we
observe that co-�-Median is W[1]-hard (Theorem 3), which motivates the study
of approximation algorithms also for this choice of parameterization. It turns out
that switching to the dual parameterization changes the approximability status
dramatically and we can obtain an arbitrarily good approximation factor. More
precisely, we present an efficient parameterized approximation scheme (EPAS),
i.e., (1 + ε)-approximation with running time of the form f(�, ε) · nO(1). This
constitutes our main result.

Theorem 1. The co-�-Median problem admits a deterministic (1 + ε)-
approximation algorithm running in time 2O(� log(�/ε)) · nO(1) for any constant
ε > 0.

We obtain this result by combining the technique of color-coding from the
FPT theory with a greedy approach common in the design of approximation
algorithms. The running time becomes polynomial whenever we want to open
all but O

(
log n

log log n

)
facilities. To the best of our knowledge, this is the first non-

trivial setting with general metric space which admits an approximation scheme.
A natural question arises about the behavior of the capacitated version

of the problem in this setting, referred to as Capacitated co-�-Median. Both
in polynomial-time regime or when parameterized by k, there is no evidence that
the capacitated problem is any harder and the gap between the approximation
factors might be just a result of our lack of understanding. Somehow surprisingly,
for the dual parameterization � we are able to show a clear separation between
the capacitated and uncapacitated case. Namely, we present a reduction from
the Max k-Coverage problem which entails the same approximation lower
bound as for the uncapacitated problem parameterized by k.
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Theorem 2. Assuming Gap-ETH, there is no f(�) · no(�)-time algorithm that
can approximate Capacitated co-�-Median to within a factor of (1+2/e− ε)
for any function f and any constant ε > 0.

Related Work. A simple example of dual parameterization is given by k-
Independent Set and �-Vertex Cover. From the perspective of polynomial-
time algorithms, these problems are equivalent (by setting � = |V (G)| − k), but
they differ greatly when analyzed as parameterized problems: the first one is
W[1]-hard while the latter is FPT and admits a polynomial kernel [14]. Another
example originates from the early work on k-Dominating Set, which is a basic
W[2]-complete problem. When parameterized by � = |V (G)| − k, the problem is
known as �-Nonblocker. This name can be interpreted as a task of choosing
� vertices so that none is blocked by the others, i.e., each chosen vertex has
a neighbor which has not been chosen. Under this parameterization, the problem
is FPT and admits a linear kernel [16]. The best known running time for �-
Nonblocker is 1.96� · nO(1) [30]. It is worth noting that �-Nonblocker is
a special case of co-�-Median with a graph metric and F = C = V (G), however
this analogy works only in a non-approximate setting.

The Gap Exponential Time Hypothesis was employed for proving parameter-
ized inapproximability by Chalermsook et al. [7], who presented hardness results
for k-Clique, k-Dominating Set, and Densest k-Subgraph. It was later
used to obtain lower bounds for Directed Odd Cycle Transversal [27],
Directed Steiner Network [10], Planar Steiner Orientation [11], and
Unique Set Cover [28], among others. Moreover, Gap-ETH turned out to be
a sufficient assumption to rule out the existence of an FPT algorithm for k-Even
Set [4].

2 Preliminaries

Parameterized Complexity and Reductions. A parameterized problem
instance is created by associating an input instance with an integer parameter
k. We say that a problem is fixed parameter tractable (FPT) if it admits an algo-
rithm solving an instance (I, k) in time f(k)·|I|O(1), where f is some computable
function. Such an algorithm we shall call an FPT algorithm.

To show that a problem is unlikely to be FPT, we use parameterized reductions
analogous to those employed in the classical complexity theory (see [14]). Here,
the concept of W-hardness replaces the one of NP-hardness, and we need not
only to construct an equivalent instance in time f(k) · |I|O(1), but also to ensure
that the value of the parameter in the new instance depends only on the value
of the parameter in the original instance. In contrast to the NP-hardness theory,
there is a hierarchy of classes FPT = W[0] ⊆ W[1] ⊆ W[2] ⊆ . . . and these
containments are believed to be strict. If there exists a parameterized reduction
transforming a W[t]-hard problem to another problem Π, then the problem Π
is W[t]-hard as well. If a parameterized reduction transforms parameter linearly,
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i.e., maps an instance (I1, k) to (I2,O(k)), then it also preserves running time
of the form f(k) · |I|o(k).

In order to prove hardness of parameterized approximation, we use parame-
terized reductions between promise problems. Suppose we are given an instance
(I1, k1) of a minimization problem with a promise that the answer is at most
D1 and we want to find a solution of value at most α · D1. Then a reduction
should map (I1, k1) to such an instance (I2, k2) so that the answer to it is at
most D2 and any solution to (I2, k2) of value at most α · D2 can be transformed
in time f(k1) · |I1|O(1) to a solution to (I1, k1) of value at most α ·D1. If an FPT
α-approximation exists for the latter problem, then it exists also for the first
one. Again, if we have k2 = O(k1), then this relation holds also for algorithms
with running time of the form f(k) · |I|o(k).

Problem Definitions. Below we formally introduce the main studied problem
and the problems employed in reductions.

(Capacitated) co-�-Median Parameter: �
Input: set of facilities F , set of clients C, metric d over F ∪ C, sequence of
capacities uf ∈ Z�0, integer �
Task: find a set S ⊆ F of at most |F | − � facilities and a connection assign-
ment φ : C → F \ S that satisfies

∣
∣φ−1(f)

∣
∣ � uf for all f ∈ F \ S, and

minimizes
∑

c∈C d(c, φ(c))

A metric d : (F ∪ C) × (F ∪ C) → R�0 is a symmetric function that obeys
the triangle inequality d(x, y) + d(y, z) ≥ d(x, z) and satisfies d(x, x) = 0.
In the uncapacitated version we assume that all capacities are equal |C|, so
any assignment φ : C → F \ S is valid. In the approximate version of Capac-

itated co-�-Median we treat the capacity condition
∣
∣φ−1(f)

∣
∣ � uf as a hard

constraint and we allow only the connection cost
∑

c∈C d(c, φ(c)) to be larger
than the optimum.

k-Independent Set Parameter: k
Input: graph G = (V,E), integer k
Task: decide whether there exists a set S ⊆ V (G) of size k such that for all
pairs u, v ∈ S we have uv �∈ E(G)

Max k-Coverage Parameter: k
Input: universe U , family of subsets T1, . . . , Tn ⊆ U , integer k
Task: find k subsets Ti1 , . . . , Tik

that maximizes |Ti1 ∪ · · · ∪ Tik
|

3 Uncapacitated CO-�-MEDIAN

We begin with a simple reduction, showing that the exact problem remains hard
under the dual parameterization.

Theorem 3. The co-�-Median problem is W[1]-hard.
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Proof. We reduce from �-Independent Set, which is W[1]-hard. We transform
a given graph G into a co-�-Median instance by setting F = V (G), and placing
a client in the middle of each edge. The distance from a client to both endpoints
of its edge is 1 and the shortest paths of such subdivided graph induce the
metric d.

If we did not close any facilities, the cost of serving all clients would equal
|E(G)|. The same holds if each client has an open facility within distance 1, so
the set of closed facilities forms an independent set of vertices in G. On the other
hand, if we close a set of facilities containing two endpoints of a single edge then
the cost increases. Therefore the answer to the created instance is |E(G)| if and
only if G contains an independent set of size �.

We move on to designing a parameterized approximation scheme for
co-�-Median. We use notation d(c, S) for the minimum distance between c and
any element of the set S. In the uncapacitated setting the connection assignment
φS is unique for a given set of closed facilities S: each client is assigned to the
closest facility outside S. Whenever we consider a solution set S ⊆ F , we mean
that this is the set of closed facilities and denote cost(S) =

∑
c∈C d(c, F \ S).

We define V (f) to be the Voronoi cell of facility f , i.e., the set of clients for
which f is the closest facility. We can break ties arbitrarily and for the sake of
disambiguation we assume an ordering on F and whenever two distances are
equal we choose the facility that comes first in the ordering.

Let C(f) denote the cost of the cell V (f), i.e.,
∑

c∈V (f) d(c, f). For a solution
S and f ∈ S, g �∈ S, we define C(S, f, g) =

∑
d(c, g) over {c ∈ V (f) |φS(c) = g},

that is, the sum of connections of clients that switched from f to g. Note that
as long as f ∈ F remains open, there is no need to change connections of the
clients in V (f). We can express the difference of connection costs after closing
S as

Δ(S) =
∑

f∈S

∑

c∈V (f)

d(c, F \ S) −
∑

f∈S

C(f) =
∑

f∈S

∑

g∈F\S

C(S, f, g) −
∑

f∈S

C(f).

We have cost(S) =
∑

f∈F C(f)+Δ(S), therefore the optimal solution closes
set S of size � minimizing Δ(S).

The crucial observation is that any small set of closed facilities S can be
associated with a small set of open facilities that are relevant for serving the
clients from

⋃
f∈S V (f). Intuitively, if C(S, f, g) = O( ε

�2 ) · cost(S) for all f ∈ S,
then we can afford replacing � such facilities g with others that are not too far
away.

Definition 1. The ε-support of a solution S ⊆ F , |S| = �, referred to as
ε-supp(S), is the set of all open facilities g (i.e., g �∈ S) satisfying one of the
following conditions:

1. there is f ∈ S such that g minimizes distance d(f, g) among all open facilities,
2. there is f ∈ S such that C(S, f, g) > ε

6�2 · cost(S).
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We break ties in condition (1) according to the same rule as in the definition
of V (f), so there is a single g satisfying condition (1) for each f .

Lemma 1. For a solution S of size �, we have |ε-supp(S)| ≤ 6 · �3/ε + �.

Proof. We get at most � facilities from condition (1). Since the sets of clients
being served by different g ∈ F \ S are disjoint and

∑
g∈F C(S, f, g) ≤ cost(S),

we obtain at most 6 · �3/ε facilities from condition (2).

Even though we will not compute the set ε-supp(Opt) directly, we are going
to work with partitions F = A 	 B, such that Opt ⊆ A and ε-supp(Opt) ⊆ B.
Such a partition already gives us a valuable hint. By looking at each facility f ∈ A
separately, we can deduce that if f ∈ Opt and some other facility g belongs to
A (so it cannot belong to ε-supp(Opt)) then in some cases g must also belong
to Opt. More precisely, if g ∈ A is closer to f than the closest facility in B,
then g must be closed, as otherwise it would violate condition (1). Furthermore,
suppose that h ∈ A serves clients from V (f) (assuming f is closed) of total
cost at least ε

6�2 · cost(S). If we keep h open and close some other facilities, this
relation is preserved and having h in A violates condition (2). We formalize this
idea with the notion of required sets, given by the following procedure, supplied
additionally with a real number D, which can be regarded as the guessed value
of cost(Opt).

Algorithm 1. Compute-required-set(A,B, f, ε, �,D) (assume f ∈ A and
A ∩ B = ∅)
1: sf ← miny∈B d(f, y)
2: Rf ← {g ∈ A | d(f, g) < sf} (including f)
3: while ∃g ∈ A : C(Rf , f, g) > ε

3�2
· D do

4: Rf ← Rf ∪ {g}
5: end while
6: return Rf

Lemma 2. Let Opt ⊆ F be the optimal solution. Suppose F = A 	 B, f ∈
Opt ⊆ A, ε-supp(Opt) ⊆ B, and cost(Opt) ≤ 2D. Then the set Rf returned by
the routine Compute-required-set(A,B, f, ε, �,D) satisfies Rf ⊆ Opt.

Proof. Let yf be the facility in B that is closest to f . Due to condition (1) in
Definition 1, all facilities g ∈ A satisfying d(f, g) < d(f, yf ) must be closed in the
optimal solution, so we initially add them to Rf . We keep invariant Rf ⊆ Opt,
so for any g ∈ F \ Opt it holds that C(Opt, f, g) ≥ C(Rf , f, g). Whenever there
is g ∈ A satisfying C(Rf , f, g) > ε

3�2 · D, we get

C(Opt, f, g) ≥ C(Rf , f, g) >
ε

3�2
· D ≥ ε

6�2
· cost(Opt).

Since g does not belong to ε-supp(Opt) ⊆ B, then by condition (2) it must be
closed. Hence, adding g to Rf preserves the invariant.
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Before proving the main technical lemma, we need one more simple observa-
tion, in which we exploit the fact that the function d is indeed a metric.

Lemma 3. Suppose c ∈ V (f0) and d(f0, f1) ≤ d(f0, f2). Then d(c, f1) ≤ 3 ·
d(c, f2).

Proof. An illustration is given in Fig. 1. Since c belongs to the Voronoi cell of f0,
we have d(c, f0) ≤ d(c, f2). By the triangle inequality

d(c, f1) ≤ d(c, f0) + d(f0, f1) ≤ d(c, f0) + d(f0, f2)
≤ d(c, f0) + d(c, f0) + d(c, f2) ≤ 3 · d(c, f2).

Fig. 1. An example of a Voronoi diagram with squares representing facilities and
dots being clients. Lemma 3 states that even if d(c, f1) > d(c, f2) for c ∈ V (f0) and
d(f0, f1) ≤ d(f0, f2), then d(c, f1) cannot be larger than 3 · d(c, f2).

Lemma 4. Suppose we are given a partition F = A 	 B, such that Opt ⊆ A,
ε-supp(Opt) ⊆ B, and a number D ∈ R>0, such that cost(Opt) ∈ [D, 2D].
Then we can find a solution S ⊆ A, such that cost(S) ≤ (1 + ε) · cost(Opt), in
polynomial time.

Proof. We compute the set Rf = Compute-required-set(A,B, f, ε, �,D) for
each facility f ∈ A. The subroutine from Algorithm1 clearly runs in polynomial
time. Furthermore, for each f ∈ A we compute its marginal cost of closing

mf =
∑

c∈V (f)

d(c, F \ Rf ) − C(f).

If |Rf | > � then f cannot belong to any solution consistent with the partition
(A,B) and in this case we set mf = ∞. Since the marginal cost depends only
on f , we can greedily choose � facilities from A that minimize mf – we refer to
this set as S.

We first argue that
∑

f∈F C(f) +
∑

f∈S mf is at most the cost of the opti-
mal solution. By greedy choice we have that

∑
f∈S mf ≤ ∑

f∈Opt mf . We



To Close Is Easier Than To Open 121

have assumed cost(Opt) ≤ 2D so by Lemma 2 we get that if f ∈ Opt, then
Rf ⊆ Opt. The set of facilities F \Opt that can serve clients from V (f) is a sub-
set of F \ Rf and the distances can only increase, thus for f ∈ Opt we have
mf ≤ ∑

c∈V (f) d(c, F \ Opt) − C(f). We conclude that
∑

f∈F C(f) +
∑

f∈S mf

is upper bounded by
∑

f∈F

C(f) +
∑

f∈Opt

∑

c∈V (f)

d(c, F \ Opt) −
∑

f∈Opt

C(f) = cost(Opt). (1)

The second argument is that after switching benchmark from the marginal
cost to the true cost of closing S, we will additionally pay at most εD. These
quantities differ when for a facility f ∈ S we have ‘connected’ some clients from
V (f) to g ∈ S \ Rf when computing mf . More precisely, we want to show that
for each f ∈ S we have

∑

c∈V (f)

d(c, F \ S) ≤
∑

c∈V (f)

d(c, F \ Rf ) +
εD

�
. (2)

By the construction of Rf , whenever g ∈ S \Rf we are guaranteed that there
exists a facility y ∈ B such that d(f, g) ≥ d(f, y) and, moreover, C(Rf , f, g) ≤

ε
3�2 ·D. We can reroute all such clients c to the closest open facility and we know
it is not further than d(c, y). By Lemma 3 we know that d(c, y) ≤ 3 · d(c, g) so
rerouting those clients costs at most ε

�2 ·D. Since there are at most � such facilities
g ∈ S \ Rf , we have proved Formula (2). Combining this with bound from (1)
implies that cost(S) ≤ cost(Opt) + εD. As we have assumed D ≤ cost(Opt),
the claim follows.

In order to apply Lemma4, we need to find a partition F = A 	 B satisfying
Opt ⊆ A and ε-supp(Opt) ⊆ B. Since ε-supp(Opt) = O(�3/ε), we can do this
via randomization. Consider tossing a biased coin for each facility independently:
with probability ε

�3 we place it in A, and with remaining probability in B. The
probability of obtaining a partitioning satisfying Opt ⊆ A and ε-supp(Opt) ⊆
S equals ( ε

�3 )� times (1 − ε
�3 )O( �3

ε ) = Ω(1). Therefore 2O(� log(�/ε)) trials give
a constant probability of sampling a correct partitioning. In order to derandomize
this process, we take advantage of the following construction which is a folklore
corollary from the framework of color-coding [2]. As we are not aware of any self-
contained proof of this claim in the literature, we provide it for completeness.

Lemma 5. For a set U of size n, there exists a family H of partitions U = A 	 B
such that |H| = 2O(� log(�+r)) log n and for every pair of disjoint sets A0, B0 ⊆ U
with |A0| ≤ �, |B0| ≤ r, there is (A,B) ∈ F satisfying A0 ⊆ A,B0 ⊆ B.
The family H can be constructed in time 2O(� log(�+r))n log n.

Proof. Let use denote [n] = {1, 2, . . . , n} and identify U = [n]. We rely on the
following theorem: for any integers n, k there exists a family F of functions
f : [n] → [k2], such that |F| = kO(1) log n and for each X ⊆ [n] of size k there
is a function f ∈ F which is injective on X; moreover, F can be constructed
in time kO(1)n log n [14, Theorem 5.16].
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We use this construction for k = � + r. Next, consider the family G of all
functions g : [(� + r)2] → {0, 1} such that |g−1(0)| ≤ �. Clearly, |G| ≤ (� + r)2�.
The family H is given by taking all compositions {h = g ◦f | g ∈ G, f ∈ F} and
setting (Ah, Bh) = (h−1(0), h−1(1)). We have |H| ≤ |G|·|F| = 2O(� log(�+r)) log n.
Let us consider any pair of disjoint subsets A0, B0 ⊆ [n] with |A0| ≤ �, |B0| ≤ r.
There exists f ∈ F injective on A0 ∪ B0 and g ∈ G that maps f(A0) to 0 and
f(B0) to 1, so A0 ⊆ Ag◦f , B0 ⊆ Bg◦f .

Theorem 4. The co-�-Median problem admits a deterministic (1+ε)-approxi-
mation algorithm running in time 2O(� log(�/ε)) · nO(1) for any constant ε > 0.

Proof. We apply Lemma 5 for U = F , � being the parameter, and r = 6 ·
�3/ε + �, which upper bounds the size of ε-supp(Opt) (Lemma 1). The family
H contains a partition F = A 	 B satisfying Opt ⊆ A and ε-supp(Opt) ⊆ B.
Next, we need to find D, such that cost(Opt) ∈ [D, 2D]. We begin with any
polynomial-time α-approximation algorithm for k-Median (α = O(1)) to get an
interval [X,αX], which contains cost(Opt). We cover this interval with a constant
number of intervals of the form [X, 2X] and one of these provides a valid value
of D. We invoke the algorithm from Lemma4 for each such triple (A,B,D) and
return a solution with the smallest cost.

4 Hardness of Capacitated co-�-Median

In this section we show that, unlike co-�-Median, its capacitated counterpart
does not admit a parameterized approximation scheme.

We shall reduce from the Max k-Coverage problem, which was also the
source of lower bounds for k-Median in the polynomial-time regime [21] and
when parameterized by k [12]. However, the latter reduction is not longer valid
when we consider a different parameterization for k-Median, as otherwise we
could not obtain Theorem1. Therefore, we need to design a new reduction, that
exploits the capacity constraints and translates the parameter k of an instance
of Max k-Coverage into the parameter � of an instance of Capacitated

co-�-Median. To the best of our knowledge, this is the first hardness result in
which the capacities play a role and allow us to obtain a better lower bound.

We rely on the following strong hardness result. Note that this result is
a strengthening of [12], which only rules out f(k)·nkpoly(1/δ)

-time algorithm. This
suffices to rule out a parameterized approximation scheme for Capacitated

co-�-Median, but not for a strong running time lower bound of the form f(�) ·
no(�).

Theorem 5 ([28]). Assuming Gap-ETH, there is no f(k)·no(k)-time algorithm
that can approximate Max k-Coverage to within a factor of (1 − 1/e + δ) for
any function f and any constant δ > 0. Furthermore, this holds even when every
input subset is of the same size and with a promise that there exists k subsets
that covers each element exactly once.

We can now prove our hardness result for Capacitated co-�-Median.
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Theorem 6. Assuming Gap-ETH, there is no f(�) · no(�)-time algorithm that
can approximate Capacitated co-�-Median to within a factor of (1+2/e− ε)
for any function f and any constant ε > 0.

Proof. Let U, T1, . . . , Tn be an instance of Max k-Coverage. We create
an instance (F,C) of Capacitated co-�-Median as follows.

– For each subset Ti with i ∈ [n], create a facility fset
i with capacity |Ti|. For

each element u ∈ U , create a facility felement
u with capacity |U | + 2.

– For every i ∈ [n], create |Ti| clients cset
i,1 , . . . , cset

i,|Ti|. For each j ∈ [|Ti|],
we define the distance from cset

i,j to the facilities by

d(cset
i,j , fset

i ) = 0,

d(cset
i,j , felement

u ) = 1 ∀u ∈ Ti,

d(cset
i,j , fset

i′ ) = 2 ∀i′ �= i,

d(cset
i,j , felement

u ) = 3 ∀u /∈ Ti.

– For every element u ∈ U , create |U | + 1 clients celement
u,1 , . . . , celement

u,|U |+1 and, for
each j ∈ [|U | + 1], define the distance from celement

u,j to the facilities by

d(celement
u,j , felement

u ) = 0,

d(celement
u,j , fset

i ) = 1 ∀Ti � u,

d(celement
u,j , felement

u′ ) = 2 ∀u′ �= u,

d(celement
u,j , fset

i ) = 3 ∀Ti �� u.

– Let � = k.

Suppose that we have an f(�) · no(�)-time (1 + 2/e − ε)-approximation algo-
rithm for Capacitated co-�-Median. We will use it to approximate Max

k-Coverage instance with |T1| = · · · = |Tn| = |U |/k with a promise that there
exists k subsets that covers each element exactly once, as follows. We run the
above reduction to produce an instance (F,C) and run the approximation algo-
rithm for Capacitated co-�-Median; let S ⊆ F be the produced solution.
Notice that S may not contain any element-facility, as otherwise there would
not even be enough capacity left to serve all clients. Hence, S = {fset

i1
, . . . , fset

ik
}.

We claim that Ti1 , . . . , Tik
is an (1 − 1/e + ε/2)-approximate solution for Max

k-Coverage.
To see that Ti1 , . . . , Tik

is an (1 − 1/e + ε/2)-approximate solution for Max

k-Coverage, notice that the cost of closing {fset
i1

, . . . , fset
ik

} is exactly |Ti1 ∪· · ·∪
Tik

|+3 · |U \(Ti1 ∪· · ·∪Tik
)| because each element-facility felement

u can only serve
one more client in addition to celement

u,1 , . . . , celement
u,|U |+1 . (Note that we may assume

without loss of generality that felement
u serves celement

u,1 , . . . , celement
u,|U |+1 .) Moreover,

there are exactly |Ti1 |+ · · ·+ |Tik
| = |U | clients left to be served after the closure

of {fset
i1

, . . . , fset
ik

}. Hence, each element-facility felement
u with u ∈ Ti1 ∪ · · · ∪ Tik
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can serve a client of distance one from it. All other element-facilities will have
to serve a client of distance three from it. This results in the cost of exactly
|Ti1∪· · ·∪Tik

|+3·|U\(Ti1∪· · ·∪Tik
)|. Now, since we are promised that there exists

k subsets that uniquely covers the universe U , the optimum of Capacitated

co-�-Median must be |U |. Since our (assumed) approximation algorithm for
Capacitated co-�-Median has approximation factor (1 + 2/e − ε), we must
have |Ti1 ∪ · · · ∪Tik

|+3 · |U \ (Ti1 ∪ · · · ∪Tik
)| ≤ |U | · (1+2/e− ε), which implies

that |Ti1 ∪ · · · ∪ Tik
| ≥ |U | · (1 − 1/e + ε/2). Hence, the proposed algorithm is

an f(k) · no(k)-time algorithm that approximates Max k-Coverage to within
a factor of (1 − 1/e + ε/2), which by Theorem 5 contradicts Gap-ETH.

5 Conclusions and Open Problems

We have presented a parameterized approximation scheme for co-�-Median and
shown that its capacitated version does not admit such a scheme. It remains
open whether Capacitated co-�-Median admits any constant-factor FPT
approximation. Obtaining such a result might be an important step towards
getting a constant-factor polynomial-time approximation, which is a major open
problem.

Another interesting question concerns whether one can employ the framework
of lossy kernelization [26] to get a polynomial size approximate kernelization
scheme (PSAKS) for co-�-Median, which would be a strengthening of our main
result. In other words, can we process an instance I in polynomial time to
produce an equivalent instance I ′ of size poly(�) so that solving I ′ would provide
a (1 + ε)-approximation for I?
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