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Abstract. We study the K-item knapsack problem (i.e., 1.5-
dimensional knapsack problem), a generalization of the famous 0-1 knap-
sack problem (i.e., 1-dimensional knapsack problem) in which an upper
bound K is imposed on the number of items selected. This problem
is of fundamental importance and is known to have a broad range of
applications in various fields. It is well known that, there is no fully
polynomial time approzimation scheme (FPTAS) for the d-dimensional
knapsack problem when d > 2, unless P = NP. While the K-item
knapsack problem is known to admit an FPTAS, the complexity of all
existing FPTASs have a high dependency on the cardinality bound K
and approximation error €, which could result in inefficiencies especially
when K and e increase. The current best results are due to [Mastro-
lilli and Hutter, 2006], in which two schemes are presented exhibiting
a space-time tradeoff-one scheme with time complexity O(n + Kz2/¢?)
and space complexity O(n + 23 /€), and another scheme that requires a
run-time of O(n + (K2? + 2*)/e®) but only needs O(n + 2%/¢) space,
where z = min{K,1/e}.

In this paper we close the space-time tradeoff exhibited in [Mastro-
lilli and Hutter, 2006] by designing a new FPTAS with a running time
of O(n + 2%/¢?), while simultaneously reaching a space complexity (O
notation hides terms poly-logarithmic in n and 1/¢) of O(n+ 22 /¢). Our
scheme provides O(K) and O(z) improvements on the state-of-the-art
algorithms in time and space complexity respectively, and is the first
scheme that achieves a running time that is independent of the cardinal-
ity bound K (up to logarithmic factors) under fixed . Another salient
feature of our algorithm is that it is the first FPTAS that achieves better
time and space complexity bounds than the very first standard FPTAS
over all parameter regimes.

1 Introduction

The famous 0-1 knapsack problem (0-1 KP), also known as the binary knapsack
problem (BKP), is a classical combinatorial optimization problem which often
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arises when there are resources to be allocated within a budget. In addition, the
0—-1 knapsack problem can be also viewed as the most fundamental non-trivial
integer linear programming (ILP) problem, and can be formally formulated as
follows:

maXZpﬂvz, (1)
i€E
s.t. Zwixi < W and z; € {0,1}. (2)
i€E

The value and size of each item i is called profit (p;) and weight (w;) respectively.
For any positive integer m, let [m] = {1,2,...,m}, we use set E = [n] to denote
the ground set, which includes all possible items. Our goal is to make a binary
choice for each item ¢ to maximize the overall profit subject to a budget constraint
W. Beyond this basic model, there are several interesting practical extensions
and variations of 0-1 KP, readers are referred to [9] for details.

In this paper, we study the K-item knapsack problem (KKP), a well known
generalization of the famous 0-1 KP that can be formulated as (1)—(2) with the
additional constraint Zie g i < K, which means that the number of items in
any feasible solutions is upper bounded by K. The KKP can be cast as a special
case of the two-dimensional knapsack problem, which is a knapsack problem with
two different packing constraints. Hence K KP problem can also be interpreted as
1.5-dimensional knapsack problem (1.5-KP) [9, p. 269]. Another closely related
problem is the exact K-item knapsack problem (E-KKP), for which the results
in this paper still hold and discussions are included in [18].

The KKP (and E-KKP) represents many practical applications in various
fields ranging from assortment planning [5] to multiprocessor task scheduling [3],
and crowdsourcing [19]. For example, the worker selection problem in crowdsourc-
ing systems [7], i.e., maximizing opinion diversity in constructing a wise crowd,
can be reduced to E-KKP. On the other hand, KKP also appears as a key
subproblem in the solutions of several more complicated problems [1,2,6,8,12].
For example, in the bin packing problem [6], to apply the ellipsoid algorithm
to approximately solve the linear program, the (approximation) algorithm to
the K'KP is utilized to construct a polynomial time (approximate) separation
oracle. In many such practical and theoretical applications, e.g., the single-sink
capacitated K -facility location problem [1] and the resource constrained schedul-
ing problem [8], the subroutine utilized to solve KKP frequently appears to be
one of the main complexity bottleneck. These observations and facts motivate
our study of designing a faster algorithm for KKP.

Complexity of Knapsack Problems. An FPTAS is highly desirable for NP-hard
problems. Unfortunately, it has been shown that there exists no FPTAS for
d-dimensional knapsack problem for d > 2, unless P =NP [11].
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1.1 Theoretical Motivations and Contributions

Known Results of KKP. In this paper we focus on FPTAS for KKP (and
E-KKP). The first FPTAS for KKP was proposed in [3], by utilizing standard
dynamic programming and profit scaling techniques, which runs in O(nK?/e)
time and requires O(n+ K3 /¢) space. This algorithm was later improved by [13].
Based on the hybrid rounding technique, two alternative FPTASs (denoted by
Scheme A and Scheme B) were presented, which significantly accelerate the
dynamic programming procedure while exhibiting a space-time tradeoff. More
specifically, Scheme A achieves a time complexity of O(n + Kz?/¢?) and space
complexity of O(n + 23/¢), Scheme B needs O(n + 22 /¢) space but requires a
run-time of O(n + K22 + 2*/e2). We remark that [10] also investigated this
problem, under an additional assumption that item profits follow an underlying
distribution. This assumption enables the design of a fast algorithm via rounding
the item profits adaptively according to the profit distribution.

The current fastest FPTAS (Scheme A) sacrifices its space complexity in
order to improve run-time performance. This may not be desirable as the space
requirement is often a more serious bottleneck for practical applications than
running time [9, p. 168]. Despite the recent widespread applications of the
KKP problem [2,5,6,16,17,19], the state-of-the-art complexity results estab-
lished in [13] have not been improved since then. This lack of progress brings us
to our first question: Is it possible to design a more efficient FPTAS with lower
time and/or space complexity to enhance practicality?

Moreover, while the two schemes in [13] achieve substantial improvements
compared with [3], it is worth noting that there exists a hard parameter regime
H = {(n,K,e)|K = O(n),e~t = 2(n)}, in which existing FPTASs in the lit-
erature fail to surpass both the time and space complexity barriers guaranteed
by the standard scheme in [3]. For example, the run-time of Scheme B is higher
than that of [3]. Hence from a theoretical point of view, it is natural to ask: Can
we design a new FPTAS that has lower time complexity or space complezity than
the standard FPTAS [3] over all parameter regimes?

Table 1. Comparisons between different FPTASs

Reference Time complexity | Space complexity
[3] 0("2‘2) 0(n+K—3>
[13] (Scheme A) | O(n + ) O(n )
[13] (Scheme B)  O(n + m) O(n %)
This paper 2 O(n + 52) O(n %2)

Lz =min{K, e},
[2] As shown in Theorem 2, our time complexity can
be refined to O(n + z* + é -min{n,e"'}).

Our Contributions. As summarized in Table1, we break the longstanding
barrier and answer the aforementioned questions in the affirmative. In particular,
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we present a new FPTAS with O(n + 22/¢2) running time and O(n + 22/¢)
space requirement, which offers 6([( ) and O(z) improvements in time and space
complexity respectively. Our FPTAS is the first to achieve time complexity
that is independent of K (up to logarithmic factors, for a given ). According
to Theorem 2, the time complexity of our algorithm can be indeed refined to
O(n+ 24+ é -min{n,e~1}). From this refined bound, it can be seen that even
in the hard regime H, our algorithm has the same time complexity (up to log
factors) as the standard FPTAS [3], while improving its space complexity by
a factor of n. This implies that our algorithm is also the first FPTAS that
outperforms the standard FPTAS [3] over all parameter regimes, thus answering
the second question in the affirmative.

Our new scheme also helps to improve the state-of-the-art complexity results
of several problems in other fields, owing to the widespread applications of KKP.
In [18], we take the resource constrained scheduling problem [8] as an illustrative
example.

1.2 Technique Overview

Different from the hybrid rounding technique proposed in [13], which simplifies
the structure of the input instance and approximately guarantees the objective
value, we show that it is possible to achieve a better complexity result solely
via the geometric rounding in the preprocessing phase. We divide items into two
classes according to their profits and present distinct methods for each class of
items. To solve the subproblem for items with low profit, we present a continuous
relaxation function, using the natural linear programming relaxation and other
alternatives based on structured weights and scaled budget constraint. The care-
fully designed relaxation function well approximates the optimal objective value
of the subproblem and allows us to exploit the redundancy among various input.
For every new input parameters, the relaxation can be computed in O(z/¢) time
on average. As for items with large profit, our treatment mainly follows from
the novel “functional” approximation approach and point of view, which was
recently proposed in [4]. As a straightforward generalization of the 0-1 KP, a
two dimensional convolution operator is defined. We perform the convolution
procedure in parallel planes to reduce the running time. The fact that there are
at most z elements with large profits helps us to bound the discretization preci-
sion via parameter z, instead of the number of profit functions. Here we adopt a
slightly different but rather (unnecessary) sophisticated and tedious presentation
via the lens of numerical discretization. We hope that this presentation helps to
make the approach more clear (in the context of KKP). Finally, an approximate
solution is obtained by appropriately putting these two modules together.

2 Item Preprocessing

Definition 1 (Item Partition). Let £ and S denote the set of large and small
items, respectively. Item e € E is called a small item if its profit is no more than
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eOPT, otherwise it is called a large item', i.e., S = {e € E|eOPT/K < p. <
eOPT} and £ = {e € E|p. € £}, where = = [eOPT,OPT]. We further divide
L and S into different classes, {Ej}ie[m] and {Sj}ie[rs], where L',z = {e €
Llpe. € (e(1 +¢)i"OPT, &(1 + ¢)'OPT]} (i € [rz]) and S] = {e € S|p. €
(e(1 4+ &)7'OPT, &(1 + &)"*T'OPT]|} (i € [rs]). Let r denote the number of
non-empty classes in E, as shown in [18], we have

r = O(min{rz + rs,n}) = O(min{log(K/¢e)/e,n}) = O(min{1l/e,n}). (3)

Definition 2 (Geometric Rounding). Without loss of generality, we can
assume that elements in the same class have the same profit value. More
specifically, we let p. = p;r = ¢(1 + ¢)'OPT (Ve € L;) and p. = pf =
e(1+4¢)7'OPT (Ve € S;).

The simplification in Definition 2 does not hurt the solution since it will incur
a loss of O(¢OPT) in the objective value. Let O* denote the optimal solution,
exploiting the simple structure of item profits after item partition and profit
rounding, we are able to derive the following more fine-grained bound on the
size of |O* N L] and S. Its proof is deferred to [18].

Proposition 1. There are no more than |O*NL| < z large items in the optimal
solution set O*. Without loss of generality, we can assume that the number of

small items |S| = O(min{K - log(K/e)/e,n}) = O(min{ K /e,n}).

3 Algorithm for Large Items

To approximately solve the K-item knapsack problem on ground set E, the first
step of our approach is to divide this problem into two smaller KKP problems,
which are defined on the large item set £ and small item set S respectively. In
this section we study the subproblem on £, which is the same as the original
problem, except that the ground set is substituted by £ and the cardinality
upper bound k£ must be no less than z.

3.1 An Abstract Algorithm Based on Convolution

We first define the profit function ¢(-,) : 2¢ x RT x [z] — R*. From the
definition we can see that ¢, (w, k) is equal to the optimal objective value of the
subproblem considered in this section.

Definition 3 (Profit function [4]). For any given set T C E, real number

w, and integer k, or(p, k) is given by or(w, k) = max{d . Pel Y ocr We <
w,|T'| < k,T" CT C E}, which denotes the optimal objective value of the K-
item knapsack problem that is defined on set T, while the budget and cardinality
are w, k respectively.

! We discuss the method of obtaining OPT in [18].
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Our objective is to approximately compute matrix Az = {¢r(w, k) }wex kel
in which the value of X will be specified in Sect.3.3. This matrix plays an
important role in our final item combination procedure, as we will show later
in Sect. 5. To compute the profit function efficiently, we introduce the following
inverse weight function ¢(.(-,-) : 2 x = x [z] — R*, which is one of the key
ingredients in computing the profit function.

Definition 4 (Inverse weight function). For any given set T C E, real num-
ber p and integer k, ¢r(p, k) is given by ¢r(p, k) = min{d__p wel Y- cps Pe >
p,|T"| < k,T" C T}, which characterizes the minimum possible total weights
under which there exists a subset of T with total profit being no less than p and
cardinality no more than k.

An immediate consequence of Definitions 3 and 4 is that we can easily
obtain the value of ¢, (w, k) based on ¢, i.e., via equation ¢, (w, k) = sup{p €
R |¢s(p, k) < w}. Therefore it suffices to derive the inverse weight function
or(+,+) to compute A ..

Algorithm for Computing ¢,. If we partition the large item set £ into ¢
disjoint subsets as £ = U!_, L"), then ¢, can be computed by performing con-
volution operations sequentially. We specify the details of the algorithm in [18].
The convolution operation ® is defined as follows.

Definition 5 (Two Dimensional Convolution Operator ®). For any two
disjoint sets S1,S2 C E, we use (¢g, ® ¢s,)(-,-) to denote the convolution of
functions ¢g,(+,-) and ¢s,(-,+), then it can be represented as,

(65, @ bs,)(p, k) = min { B, (91, k1) + G5, (b2, k2) [l + k2 < ko1 +p2 > p

= ¢s,us, (D k).

Under this notation, function ¢,(-,-) defined on £ can be represented as
bc(p, k) = (®f_10,0)(p, k). Tt is important to remark that the algorithm is a
rather general description of the convolution procedure, and the partition scheme
should be further specified. Generally speaking, different partition schemes will
induce different complexity results. For example, if we partition £ into singletons,
i.e., L) = {e;} and £ = |L]|, then ¢ (p, K) = (®Li|1¢{ei})(p, K). In this case, the
algorithm is equivalent to the standard dynamic programming paradigm. In each
stage we are in charge of making the decision of whether to include item e; or
not. Here we divide £ in the same way as Definition 1, i.e., L) = EZ,W € [re].

3.2 Discretizing the Function Domain

At the current stage, it is worth pointing out that in the convolution operation
between inverse weight functions, the profit variable p appears as a decision
variable that varies continuously in =" In addition, we are not able to obtain the
closed form solution of the convolution operation analytically. The solution is to



22 W. Li et al.

transform the problem into a computationally tractable one via discretization,
then compute an (approximate) solution utilizing the computable version.
Discretizing the Profit Space. To implement the convolution in polynomial
time, we discretize the interval = with the points {x;};c[m) as X = {z; : eOPT =
] < 22 < ... < 1 < Ty, = OPT} C =E. We denote the discretization
parameter of X by discretization parameter 0x = maxi<i<m—1{Ti+1 — %;}. To
tackle the computational challenge induced by the continuity of profit p, we
execute the convolution operation over the discrete functions that are defined
on X x [z], i.e.,

(¢5, ® b5,) % (p, k) = plrgiréx{qﬁgi (p1,k1) + ¢fq{2 (p2, kZ)‘kl + ko <k,p1+p2 > p}.

More specifically, we start with functions gbf(,;), and compute qﬁfji () iteratively
j=1£"

until ¢ is obtained. In general, function ¢561£(“ (,) = (®iej¢§m)(-, -) for any

I C [{]. The discrete profit function @3 (-, -) can also be recovered by its relation

with the inverse weight function, i.e., p& (w,k) = max{p € X : ¢3(p,k) <
w},VS CE.

Convergence Behaviour of ¢¥(-,-). We first show point-wise convergence of
{gpg_()(-, )} x towards ¢(.(-,-) when dx goes to zero. The proof of Lemma 1 is
deferred to [18]. It is worth pointing out that the straightforward intuition that
convergence occurs if discretization is small, may not always hold. Indeed we can
verify that the weight function ¢X may not converge to ¢ through the example
in [18].

Lemma 1. For any finite index set I and w,k, we have
limg, o (pii-ezﬂ“ (W, k) = @y, 00 (W, k) for fized w, k.

The theoretical convergence of ¢~ (-,-) ensures the near-optimality of the
solution obtained by discretization, as long as X is dense enough in =. However,
what matters greatly is the order of the accuracy, which refers to how rapidly the
error decreases in the limit as the discretization parameter tends to zero. The
formal definition of the convergence speed of discretization methods is given in
[18]. This speed is directly related to the complexity of our algorithm. From
the following lemma, we can conclude that the method of discretizing X by a
uniform grid set converges with order 1, as dx = O(1/|X|) for uniform grid set
X. The proof of Lemma 2 is deferred to [18].

Lemma 2. Let ¢} be the weight function, then for any given budget w < W,
cardinality upper bound k < z, and discretization set X, we have |p3 (w, k) —
or(w, k)| < Cox, where the coefficient C = z + 1. As a consequence, | X| must
be of order £2(z/e) to ensure an error of order O(cOPT).

3.3 Fast Convolution Algorithm

In this subsection we settle the problem of designing a fast convolution algorithm,
which is the last remaining issue that has a critical impact on the efficiency of the
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algorithm for large items. To this end, we show an inherent connection between
convolution results under different inputs p and k, which is formally described
in Lemma 3. Owing to this observation, we are able to remove a large amount of
redundant calculations when facing new input parameters. To start with, we first
sort items in each EI in non-increasing order of weights, which takes O(zlog z)
time. We define the optimum index function as follows.

Definition 6 (Optimum index function). v : X x [K] — [K] is defined as,
Y(p, k) = argmin{@ € [k]’(ﬁiﬂ (max{z € X : 2 <6-p}},0)

+¢§(max{xeX:xgp—G-pZ},k—H)}(peX). (4)

Here (4) benefits from the partition in which all items in the same set £
have equal profit value. Specifically, when we derive the result of ( ff @¢x)(p, k),
there is indeed only one decision variable 6, i.e., the number of elements selected
from E;r, that should be figured out. Hence, we denote the optimal value of 6 by
the index function . Our primary objective is then reduced to figure out all the
indices {1 (p, k) }pex,ke[z], for which we give a graphic illustration in Fig. 1(a). It
can be regarded as finding column minimums in the cube, here column minimum
refers to the optimal indices defined in Definition 6.

Consider the Problem in Parallel Slices. We divide the cube into parallel
slices. Consider slice

H:{(p,k)’p:po—FC)\a,k:k0+C}ﬂ(E><[O,z]), (5)

as shown in Fig. 1(b), where (po, ko) denotes the boundary point of slice H, hence
poko = 0, and ¢ represents the drift of point (p, k) from boundary. It can be seen
that the angle between slice H and the frontal plane is equal to arctan \; !, and
there are O(|X|) = O(z/e) such parallel slices in the cube. On the other hand,
plugging (5) into (4), the index function can be simplified to

v (¢) = argmin {6 € 21|62, (A0, 0) + 63 (o + AalC — 0], ko + ¢ — ) }.

Bounded “Gradient” of yg. Without loss of generality we could assume that
there exists an integer 7, € Z* such that p} = 7,- Eof L otherwise we can always
modify p/ by an O(EO%) additive factor to meet this criteria while inducing a
O(eOPT) loss in the objective function. Consequently we have A\, = 7,6 OPT. We
consider the case when = is discretized by the uniform grid set X = {i- Eo%ﬁ €
[2/€]}. Then the following key observation about the distribution of column
minima in slice H holds. The proof of this lemma is deferred to [18].

Lemma 3. Consider two columns in H that are indexed by (1 and (5. We have
x# (€2)—xm (1) <1.

C2—C1
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Divide-and-Conquer on Slice H. In Lemma 3, we establish an upper bound
on the growth rate of the index function. Taking advantage of this lemma, we
are able to reduce the size of the searching space in one column, given that
we have figured out the optimum indices at some other columns in the slice H.
More specifically, consider columns indexed by (; < (5 < (3, the information of
xu(¢1) and xg(¢3) indeed provide two cutting planes to help us locate xp((2)
in a smaller interval [xm(¢3) + C2 — (3, xm (C1) + G — Gl

Inspired by this observation, for any slice in the form of (5), we design a
divide-and-conquer procedure to compute the optimum indices efficiently. We
start with a recursive call to determine the optimum indices of all the even-
indexed columns. Here a column is called even (odd) column if and only if its
corresponding ¢ value in (5) is even (odd). Then for each odd column x5 (27), it
can be computed by enumerating the interval [xg(2i +1) — 1, xm(2i — 1) + 1].
The details are specified in [18].

The time complexity of computing the index function for a single slice is
summarized in the following proposition, whose proof is presented in [18].

Proposition 2. It takes O(zlogz) = O(z) time to compute xpg(-).

Bound
= Discrete Set X O.u ndary
N i Point

~7 % Column | X |=z/¢
a) Searching Space of ¢~ @ ¢ b) Divide-and-Conquer on H
LT

Fig. 1. Graphic illustrations of the convolution operation

Fast Convolution Operation. The details of the convolution operation are
specified in [18]. The following lemma summarizes the complexity of our algo-
rithm, the proof is presented in [18].

Lemma 4. It takes O(n) space and
O(n + (z%log z/¢) - minf{log(1/¢) /e,n}) = O(n) + O(min{z?/e?,nz>/e})

time to complete the convolution operation.
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Generally speaking, for given p € X and k € Z7, it requires O(z-|X|) arithmetic
operations to compute (¢, ® ¢s,)(p, k) if we enumerate all possible pairs of
(p1, k1), which further results in a total complexity of O(2?|X|?) for operator ®.
Compared with our Algorithm, this is unnecessarily inefficient, since it restarts
all the arithmetic operations when the input parameters varies.

4 Continuous Relaxation for Small Items

In Sect. 3 we have shown how to approximately select the most profitable large
items under any given budget and cardinality constraints. One important task
left is to solve the subproblem with only small items involved. In this section
we show how to approximately solve this subproblem efficiently. Similar to Def-
inition 4, the profit function of small items, ¢s(-,-) : Rt x [K] — R, is given
by ps(w, k) = max{d csPeTe| D ccs Te kD e Wee < w,ze € {0,1}}. The
main spirit of our approach for small items is similar to that of Sect. 3, i.e., find
a new function ¢g, which is a good approximation of ps and is economical in
computations. To this end, our main result in this subsection is formally stated
in the following lemma. We leave the proof of this lemma in [18], which relies on
our analysis in the following two subsections.

Lemma 5. There exists a relazation @s(-,-) : RT x [K] — R* that satisfies
|ps — ws| = O(cOPT), and the corresponding matriz As = {ps(w,k)|lw €
W,k € K} can be computed within O(n + z* + min{z—z, "EY) time when [W| =
O(e™Y) and |K| = O(z), while requiring O(z/¢) space.

One question that may arise is the following: can the methods in Sect. 3 still work
for the small item set S, i.e., can we apply the algorithm for large items over S
and use the output discrete function as an approximation of ¢s? Unfortunately
it can be verified that O(n) + O(K?/?) time is required, which is significantly
high especially when K is large, and fails to provide the desired complexity result.
This is because there could be many more small items than large items, which
will result in a larger searching space.

To construct the new function @s, we turn to the continuous relaxation of
the subproblem, as the continuous problem is much easier to deal with. More
importantly, the boundness of small item profits will ensure that the gap between
the optimal values of the two problems is small.

4.1 Continuous Relaxation Design and Error Analysis
Designing ¢s. In our algorithm, we let

(2)

Ng)(wyk) Iyr<e1y +Ps (Wi k) - Lgsey,

Ps (w7 k)=¢o
in which the two building block functions @g) (i = 1,2) are specified in the fol-

lowing definition. The first function cﬁg) is the most natural linear programming

relaxation of @g, in which all the integer variables are relaxed to real numbers
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n [0,1]. In the second function @g), we only relax variables corresponding to
elements in S, while the element weights are rounded to an integer power of

(1+¢€), and the budget is given by (1 — ¢)w instead of w.

Definition 7 (Definition of cpg),gos)) Functions go( )( ) RY x [K] —
R* (i = 1,2) are constructed as

0 = s { S S < D < <01

ecS ecS ecS

and

~(2 _ ~(2) _ ~(2)
(w, k) = Joax, {‘Psw (W, k—1)+ g (t)}
Here set S, = {e € S|w. < ew/K} represents the set of elements in S with
weight less than a threshold ew /K, and S, = (S\Sw)\{e € S|we > w}. Function

g@) (t) = max{>  cppe|T C S.,|T| < t} denotes the total profits of the top t

Sw
elements in S,,. In addition, 95‘(323 (w,t) is given by

wg)(wt max {Zpea:e ergt wae_ (1-¢e)w } (6)

[0,1
2c€[0,1] e€S. e€S.

Kuwe

where w!, = (w(1+¢) [og(14e) (555

M /(Ke) and [-] refers to the ceiling function.

Error of Approximation. We show that g provides a good approximation
of s in the following lemma. The proof of Lemma 6 is presented in [18].

Lemma 6. The differences between functions ps and ¢s is bounded as
|Ps(w, k) — ps(w, k)| < 4eOPT.

Obtain the Final Solution Set. Recall that our ultimate objective is to
retrieve an solution set that has near optimal objective function value. To this
end, for the subproblem of small items, we can solve the continuous problem and
return the corresponding integer components S = {e|xz} = 1} as an approximate
solution, where x* denotes the optimal fractional solution.

4.2 Computing ps Efficiently

In this subsection, we consider how to efficiently compute the function @s(-,-).
More specifically, our objective is to compute set {@s(w, k)|w € W, k € K}, for
given K € ZIXl and W e RIWI,

Computing Relaxation go( )( ,+). One straightforward approach is to utilize

the linear time algorithm [3,14,15] to solve go( ) under distinct parameters in
W, K separately, which will result in a total complexity of O(|S| - |K| - [W|) =
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O(Z -min{K/e,n}). Note that under this approach, the complexity has a high
dependence on the parameter K.

Computing Relaxation Lp( )( ,+). Let fi(w, k) = (2) (w k—1) + QEE,SQ)( ), then

~(2)(w k) = maxo<i<k fi(w, k) according to Deﬁmtlon 7. We first claim the
following key observation with regard to { f;(w, k) }o<t<i. Basically this concavity
property enables us to compute @g) using O(log k) calls to the subroutine of

computing f;(w, k). The proof is presented in [18].

Theorem 1 (Concavity of f;). The sequence {fi(w,k)}iem i a concave

sequence with respect to t. As a result, &g)(w,k:) can be computed in

O(T;logk) = O(T;) time, where Ty represents the worst case time complexity
for computing fi(w, k) under fized values of t,w, k.

At the current stage, the problem of computing (ﬁg)(w, k) has been shown
to have the same time complexity (up to a factor of O(logk)) as comput-
ing fi(w,k), which is further determined by the following two subroutines—

calculating @gj (w,t) and ﬁ(s—?)(t) We dualize the budget constraint as

L(p,w,t) = max { Z (Pe — pwe) @, —|—,uw’ Z T, < t},
ecS,

€[0,1
@ €[0,1] eeS,

which helps to figure out the first function under multiple input parameters.
Indeed we can always apply binary search on set

(1—1—5

B = {(1+5)b- e ‘|b| lel, |d| < log(K/¢)/e, and b, ¢ dez}
to figure out the optimal multiplier p*, owing to the convexity of the

Lagrange function. As for function {5;2)( ), we take advantage of the fact that

{aps (t)}ieqs)) can be computed together to reduce running time, under the same
budget w. We present the details and complexity analysis in [18].

5 Putting the Pieces Together—Combining Small and
Large Items

In our main algorithm, we utilize our two algorithms established in Sect. 3 and 4
as two basic building blocks, to approximately enumerate all the possible profit
allocations among £ and S. The details are specified in [18] and performance
guarantee is given by Theorem 2. We remark that set X’ in the algorithm is not
equal to X but a subset of X, and is given by X’ = {icOPT|i € [1/e]}. The
proof of theorem 2 is deferred to [18].

Theorem 2. The total profits of items in set S, given in the main algorithm is
~ 2

no less than p(S,) > (1 —0(e))OPT, while requires O(n+ z* + % -min{n,e~'})

time, which is within the order of O(n + g—j)
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Conclusion

In this paper we proposed a new FPTAS for the K-item knapsack problem
(and Ezactly K-item knapsack problem) that exhibits O(K) and O(z) improve-
ments in time and space complexity respectively, compared with the state-of-
the-art [13]. More importantly, our result suggests that for a fixed value of ¢, an
(1 —¢&)-approximation solution of KKP can be computed in time asymptotically
independent of cardinality bound K. Our scheme is also the first FPTAS that
achieves better time and space complexity (up to logarithmic factors) than the
standard dynamic programming scheme in [3] over all parameter regimes.
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