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Abstract. We design and implement from scratch a new fuzzer called
Sivo that refines multiple stages of grey-box fuzzing. First, Sivo refines
data-flow fuzzing in two ways: (a) it provides a new taint inference engine
that requires only logarithmic number of tests in the input size to infer
dependency of many program branches on the input bytes, and (b) it
employs a novel method for inverting branches by solving a systems
of inequalities efficiently. Second, our fuzzer refines accurate tracking
and detection of code coverage with simple and easily implementable
methods. Finally, Sivo refines selection of parameters and strategies by
parameterizing all stages of fuzzing and then dynamically selecting opti-
mal values during fuzzing. Thus the fuzzer can easily adapt to a target
program and rapidly increase coverage. We compare our fuzzer to 11
other state-of-the-art grey-box fuzzers on 27 popular benchmarks. Our
evaluation shows that Sivo scores the highest both in terms of code
coverage and in terms of number of found vulnerabilities.

1 Introduction

Fuzzing is the automatic generation of test inputs for programs with the goal of
finding bugs. With increasing investment of computational resources for fuzzing,
tens of thousands of bugs are found in software each year today. We view fuzzing
as the problem of maximizing coverage within a given computational budget. The
coverage of all modern fuzzers improves with the computation budget allocated.
Therefore, we can characterize the quality of a fuzzer on its rate of coverage
increase, the average number of new control-flow edges exercised per CPU cycle.

Broadly, there are three types of fuzzers. Black-box fuzzers do not utilize
any knowledge of the program internals, and are sometimes referred to as undi-
rected fuzzers. White-box fuzzers perform intensive instrumentation, for exam-
ple, enabling dynamic symbolic execution to systematically control which pro-
gram branches to invert in each test. Grey-box fuzzers introduce low-overhead
instrumentation into the tested program to guide the search for bug-triggering
inputs. These three types of fuzzers can be combined. For instance, recent hybrid
fuzzers selectively utilize white-box fuzzers in parallel to stand-alone grey-box
fuzzers. Of the three types of fuzzers, grey-box fuzzers have empirically shown
promising cost-to-bug ratios, thanks to their low overhead techniques, and have
seen a flurry of improved strategies. For example, recent grey-box fuzzers have
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introduced many new strategies to prioritize seed selection, byte mutations, and
so on during fuzzing. Each of these strategies works well for certain target pro-
grams, while being relatively ineffective on others. There is no dominant strategy
that works better than all others on all programs presently.

In this paper, we present the design of a new grey-box fuzzer called Sivo that
generalizes well across many target programs. Sivo embraces the idea that there
is no one-size-fits-all strategy that works universally well for all programs. Cen-
tral to its design is a “parameterization-and-optimization” engine where many
specialized strategies and their optimization parameters can be specified. The
engine dynamically selects between the specified strategies and optimizes their
parameters on-the-fly for the given target program based on the observed cov-
erage. The idea of treating fuzzing as an optimization problem is not new—in
fact, many prior fuzzers employ optimization either implicitly or explicitly, but
they do so partially [4,22,30,35]. Sivo differs from these works conceptually in
that it treats parameterization as a first-class design principle—all of its inter-
nal strategies are parameterized. The selection of strategies and determination
of all parameter values is done dynamically. We empirically show the power of
embracing complete parameterization as a design principle in grey-box fuzzers.

Sivo introduces 3 additional novel refinements for grey-box fuzzers. First,
Sivo embodies a faster approximate taint inference engine which computes taint
(or sensitivity to inputs) for program branches during fuzzing, using number of
tests that are only logarithmic in the input size. Such taint information is helpful
for directed exploration in the program path space, since inputs influencing cer-
tain branches can be prioritized for mutation. Our proposed refinement improves
exponentially over a recent procedure to calculate taint (or data-flow dependen-
cies) during fuzzing [12]. Second, Sivo introduces a light-weight form of symbolic
interval reasoning which, unlike full-blown symbolic execution, does not invoke
any SMT/SAT solvers. Lastly, it eliminates deficiencies in the calculation of
edge coverage statistics used by common fuzzers (e.g. AFL [37]), thereby allow-
ing the optimization procedure to be more effective. We show that each of these
refinements improves the rate of coverage, both individually and collectively.

We evaluate Sivo on 27 diverse real-world benchmarks comprising several
used in recent work on fuzzing and in Google OSS-fuzz [15]. We compare Sivo
to 11 other state-of-the-art grey-box fuzzers. We find that Sivo outperforms all
fuzzers in terms of coverage on 25 out of the 27 benchmarks we tested. Our
fuzzer provides 20% increase in coverage compared to the next best fuzzer, and
180% increase compared to the baseline AFL. Furthermore, Sivo finds most
vulnerabilities among all fuzzers in 18 of the benchmarks, and in 11 benchmark
programs finds unique vulnerabilities. This provides evidence that Sivo gen-
eralizes well across multiple programs according to multiple metrics. We have
released our fuzzer publicly and open-source [25].

2 Problem

Fuzzers look for inputs that trigger bugs in target programs. As the distribution
of bugs in programs is unknown, fuzzers try to increase the chance of finding



108 I. Nikolić et al.

bugs by constructing inputs that lead to maximal program code execution. The
objective of fuzzers is thus to construct inputs, called seeds, that increase the
amount of executed program code, called code coverage. The coverage is mea-
sured based on the control-flow graph of the executed program, where nodes
correspond to basic blocks (sets of program statements) and edges exist between
sequential blocks. Some of the nodes are conditional (e.g. correspond to if and
switch statements) and have multiple outgoing edges. Coverage increases when
at some conditional node, called a branch, the control flow takes a new edge
which is not seen in previous tests—this is called inverting or flipping a branch.

Grey-box fuzzers assess code coverage by instrumenting the programs and
profiling coverage data during the execution of the program on the provided
inputs. They maintain a pool of seeds that increase coverage. A grey-box fuzzer
selects one seed from its pool, applies to it different operations called mutations
to produce a new seed, and then executes the program on the new seed. Those
new seeds that lead to previously unseen coverage are added to the pool. To
specify a grey-box fuzzer one needs to define its seed selection, the types of
mutations it uses, and the type of coverage it relies on. All these fuzzing com-
ponents, we call stages or subroutines of grey boxes. We consider a few research
questions related to different stages of fuzzing.

RQ1: Impact ofCompleteParameterization? Fuzzers optimize for coverage.
There is no single fuzzing strategy that is expected toworkwell across all programs.
So, the use of multiple strategies and optimization seems natural. Existing fuzzers
do use dynamic strategy selection and optimize the parameter value selection. For
example, MOpt [22], AFLFast [4], and EcoFuzz [35] use optimization techniques
for input seed selection and mutations. But, often such parameterization comes
with internal constants, which have been hand-tuned on certain programs, and it is
almost never applied universally in prior fuzzers. The first question we ask is what
would be the result of complete parameterization, i.e., if we encode all subroutines
and their built-in constants as optimization parameters.

The problem of increasing coverage is equivalent to the problem of invert-
ing more branches. In the initial stage of fuzzing, when the number of not yet
inverted branches is high, AFL mutation strategies (such as mutation of ran-
domly chosen bytes) are successful and often help to invert branches in bulk.
However, easily invertible branches soon become exhausted, and different strate-
gies are required to keep the branch inversion going. One way is to resort to tar-
geted inversion. In targeted inversion, the fuzzer chooses a branch and mutates
input bytes that influence it. The following two questions are about refining
target inversion in grey-box fuzzing.

RQ2: Efficient Taint Inference? Several fuzzers have shown that taint infor-
mation, which identifies input bytes that influence a given variable, is useful to
targeted branch inversion [2,6,8,12,26,34]. If we want to flip a particular branch,
the input bytes on which the branch condition variables depend should be
mutated while keeping the other bytes unchanged. The main challenge, however,
is to efficiently calculate the taint information. Classical methods for dynamic
taint-tracking incur significant instrumentation overheads whereas static meth-
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ods have false negatives, i.e. they miss dependencies due to imprecision. The
state-of-the-art fuzzers aim for light-weight techniques for dynamically inferring
taint during fuzzing itself. Prior works have proposed methods which require
number of tests linear in n, the size of the seed input [12]. This is extremely
inefficient for programs with large inputs. This leads to our second question:
Can we compute useful taint information but with exponentially fewer tests?

RQ3: Efficient Constraint-Based Reasoning? Taint only captures whether
a change in certain values of an input byte may lead to a change in the value
of a variable. If we are willing to compute more expressive symbolic constraints,
determining the specific input values which cause a program branch to flip is
possible. The challenge is that computing and solving expressive constraints, for
instance first-order SAT/SMT symbolic formulae, is computationally expensive.
In this work, we ask: Which symbolic constraints can be cheap to infer and solve
during grey-box fuzzing?

RQ4: Precise Coverage Measurement? Grey-box fuzzers use coverage infor-
mation as feedback to guide input generation. AFL, and almost all other fuzzers
building on it, use control-flow edge counts as a common metric. Since there
can be many control-flow edges in the program, space-efficient data structures
for storing runtime coverage data are important. Recent works have pointed out
AFL’s hash-based coverage map can result in collisions [13], which has an unpre-
dictable impact on the resulting optimization. How do we compute compressed
edge counts with high precision using standard compilers for instrumentation?

3 Overview of Sivo

Grey-box fuzzers instrument the target program to gather runtime profiling data,
which in turn guides their seed generation strategies. The objective of Sivo is
to generate seeds that increase code coverage by using better and more of the
profiling data. Sivo addresses the four research questions with four refinements.

Parametrize-Optimize Approach (RQ1). Sivo builds on the idea of com-
plete parameterization of all fuzzing subroutines and strategies, i.e. none of the
internal parameters are hard-coded. Sivo selects strategies and parameter val-
ues dynamically based on the observed coverage statistics, using a standard opti-
mization algorithm. Such complete parameterization and optimization inherently
makes Sivo adaptable to the target program and more general, since specialized
strategies that work best for the program are prioritized. To answer RQ1, we
empirically show in our evaluation that this design principle individually helps
Sivo outperform other evaluated fuzzers across multiple target programs.

Fast Approximate Taint Inference (RQ2). We devise a fast and approxi-
mate taint inference engine TaintFAST based on probabilistic group testing [10].
Instead of testing individually for each input byte, TaintFAST tests for carefully
chosen groups of bytes and then combines the results of all tests to infer the
taint for each individual byte. This helps to reduce the test complexity of taint
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inference from O(n) to O(log n) executions of the program, where n is the num-
ber of input bytes. Thus the fuzzer can infer useful taint dependency even for
very large inputs using TaintFAST.

Symbolic Interval Constraints (RQ3). We propose inferring symbolic inter-
val constraints that capture the relationship between inputs and variables used
in branch conditions only. Instead of deductively analyzing the semantics of exe-
cuted instructions, we take an optimistic approach and infer these constraints
from the observed values of the inputs and branch conditional variables. The
value-based inference is computationally cheap and tailored for a common case
where values of the variables are direct copies of the inputs and when branches
have comparison operations (=, �=, <,≤, >,≥). We show that such a constraint
system can be solved efficiently as well without the use of SAT/SMT solvers.

Compressed and Precise Edge Count Recording (RQ4). We tackle both
the collision problem and the compressed edge count problem in tracking cover-
age efficiently during grey-box fuzzing. For the former, we show a simple strategy
based on using multiple basic block labels (rather than only one as in AFL) and
reduce or entirely eliminate the collisions. For the later, to improve the prospect
of storing important edge counts we propose temporary coverage flushing (i.e.
resetting the coverage to zero). Although this may appear to be a minor refine-
ment in grey-box fuzzing, we find that it has a noticeable impact experimentally.

4 Design

We present the details of our four refinements in Sects. 4.1–4.4 and then show
the complete design of Sivo in Sect. 4.5.

4.1 The Parametrize-Optimize Paradigm

The Sivo grey-box fuzzer aims to increase the code coverage in the fuzzed pro-
grams. Two points are central to this goal. First, fuzzed programs come in different
flavors, hence the fuzzer should be flexible and adaptive. We tackle the first point
with parametrization, i.e. by expanding the choice of available fuzzer subroutines.
Second, a fuzzer has a few stages (i.e., selection of seeds, choice of mutations and
their parameters, etc.), and each one of them can be optimized. To address this
point, we apply a complete optimization of all available parameters.

Parametrization. The more fuzzing subroutines are available, the higher the
chance that some of them may be optimal for fuzzing the targeted program.
Thus it is useful to expand the set of available fuzzing subroutines. To do so, we:

– Add many fuzzing subroutines. For instance, in addition to the AFL-style
vanilla mutations that do not require any dependency information (e.g.
mutate random bytes), we implement data-flow strategies that utilize input
dependency of program branches (e.g., mutation of dependent bytes). Besides
adding new mutations, we also add more seed prioritization methods that
determine how to sample a seed from the pool.
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– Introduce variations in each subroutines. Often this can be done by varying
internal hard-coded parameters in subroutines. For instance, in the mutation
of random bytes, instead of changing a single byte, Sivo can change 1, 2,
4, 8, 16, 32, or 64 bytes at once. The exact number of bytes is considered
an input parameter; it can take one of the above 7 values (and the choice
of value potentially can be optimized). Not all variations in subroutines are
effected with changing integer parameters. For instance, the seed selection
criterion is based on speed, number of repetitions, length of seed, and so on.
These variations are enumerated and serve as an input parameter to the seed
criterion. All such parameters to subroutines are optimized per program.

As a result, across the whole fuzzer, there are 17 different fuzzing subroutines
with 68 variations. In comparison, the baseline AFL has around 15 different
subroutines with around 45 variations1.

Optimization. The parametrization increases the chance that potentially opti-
mal subroutines are chosen for each program. The next step is to select which
subroutines are turned on for a given program. It is critical to understand that
we are not dealing with a single optimization problem. Fuzzing is a continuous
process, composed of iterations that select a seed and a mutation, apply the
mutation to the seed, and check on coverage increase. Thus, in each iteration we
need to optimize the selection of fuzzing subroutines several times—for example,
the used seed criterion and class, the mutation strategy, (potentially a number
of) mutations sub-strategies, the inputs to the mutation strategy, and so on. For
this purpose, we use multi armed bandits (MAB), a simple reinforcement learn-
ing algorithm. Given a set of choices, each choice providing a certain reward
when selected, MAB helps to select the choices such that their accumulative
rewards are maximized. The rewards are unknown and stochastic, and the selec-
tion process is continuous. Note, after MAB selects a choice, it needs to receive
as a feedback the obtained reward to update its choice selection strategy.

Reducing the selection of fuzzing subroutines to MAB problem is straight-
forward. First, note that we consider each selection as an independent MAB
problem, for instance, the optimal number of random bytes to mutate is one
MAB problem. Our objective is to maximize the coverage, hence it is natural
to use the additional coverage acquired from executing the choice as the MAB
reward. However, this metric alone may not be accurate because some choices
incur higher computational costs. Therefore, we use the additional coverage per
time unit as the reward. In the conventional MAB, the distributions of rewards
are stationary with some unknown mean. In our case, as the fuzzer progresses, it
requires more computational effort to reach the remaining unexplored code and
increase coverage. In other words, the rewards for the selection choices mono-
tonically decrease over time. Therefore, we model our problem as MAB with
non-stationary rewards and use discounting to solve it [19]. For more details on
application of MAB in Sivo, we refer the reader to Algorithm 1 and Sect. 4.5.
1 Despite having comparable numbers, Sivo and AFL use mostly different mutations

and thus subroutines.
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4.2 Fast Approximate Taint Inference

Fig. 1. Branches with dependent
input bytes.

To infer dependency of branches on input
bytes, earlier fuzzers relied on the truth value
of branch conditions: if changing the value of
a particular byte changes the truth value of
a branch, then it is inferred that the branch
depends on this byte. For instance, in Fig. 1, to
correctly infer the dependency of the branch
at line 6, the engine first needs to select for
mutation the input byte x[100] and then to
change its value from any other than 40 to
40. GreyOne [12] proposed so-called fuzzing-
driven taint inference FTI by switching the
focus from the truth value of a branch to the value of the variables used in
the branch. For instance, FTI determines the dependency of branch at line 6
on x[100] as soon as this input bytes is mutated, because this will lead to a
change of the value of the variable A that is used in the branch. FTI is sound
(no over-taint) and incomplete (some under-taint). Exact reasoning with prov-
able soundness or completeness is not a direct concern in fuzzers, since they only
use it to generate tests which are concretely run to exhibit bugs.

The prime issue with FTI, which improves significantly over many other prior
data-flow based engines, is efficiency. The taint is inferred by mutating bytes one-
by-one in FTI. Thus, to infer the full dependency on all input bytes, the engine
will require as many executions as the number of bytes. A seed may have tens
of KBs, and there may be thousands of seeds, therefore the full inference may
quickly become a major bottleneck in the fuzzer. On the other hand, precise
or improved branch dependency may not significantly boost fuzzer bug-finding
performance, thus long inference time may be unjustified. Hence, it is critical to
reduce the inference time.

The TaintFAST Engine. We use probabilistic group testing [10] to reduce
the required number of test executions for potential full inference from O(n) to
O(log n), where n is the number of input bytes. Instead of mutating each byte
individually followed by program execution (and subsequent FTI check for each
branch condition if any of its variables has changed), we simultaneously mutate
multiple bytes, and then execute the program with the FTI check. We choose
the mutation positions non-adaptively, according only to the value of n. This
assures that dependency for many branches can be processed simultaneously.

Consider the code fragment at Fig. 1 (here n = 1024). We begin the inference
by constructing 1024-bit binary vectors Vi, where each bit corresponds to one
of the input bytes. A bit at position j is set iff the input byte j is mutated (i.e.
assigned a value other than the value that has in the seed). Once Vi is built,
we execute the program on the new input (that corresponds to Vi) and for each
branch check if any of its variables changed value (in comparison to the values
produced during the execution of the original seed). If so, we can conclude that
the branch depends on some of the mutated bytes determined by Vi. Note, in all
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prior works, the vectors Vi had a single set bit (only one mutated byte). As such,
the inference is immediate, but slow. On the other hand, we use vectors with
1024
2 = 512 set bits and select 2 · log2 1024 = 20 such vectors. Vectors V2·j , V2·j+1

have repeatedly 2j set bits, followed by 2j unset bits, but with different starts. For
instances, the partial values of the first 5 vectors Vi are given below on the right.

V0 = 1010101010101010101010...
V1 = 0101010101010101010101...
V2 = 1100110011001100110011...
V3 = 0011001100110011001100...
V4 = 1111000011110000111100...

...

We execute the resulting 20 inputs and
for each branch build 20-bit binary vec-
tor Y . The bit i in Y is set if any of
the branch values changed after execut-
ing the input that corresponds to Vi. For
instance, for the branch at line 6 of Fig. 1,
Y = 10100110100101101010. Finally, we
decode Y to infer the dependency. To do so, we initialize 1024-bit vector D that
will hold the dependency of the branch on input bytes—bit i is set if the branch
depends on the input byte i. We set all bits of D, i.e. we start by guessing full
dependency on all inputs. Then we remove the wrong guesses according to Y .
For each unset bit j in Y (i.e. the branch value did not change when we mutated
bytes Vj), we unset all bits in D that are set in Vj (i.e. the branch does not
depend on any of the mutated bytes Vj).

After processing all unset bits of Y , the vector D will have set bits that cor-
respond to potential dependent input bytes. Theoretically, there may be under
and over-taint, according to the following information-theoretic argument: Y has
20 bits of entropy and thus it can encode at most 220 dependencies, whereas a
branch may depend on any of the 1024 input bytes and thus it can have 21024 dif-
ferent dependencies. In practice, however, it is reasonable to assume that most of
the branches depend only on a few input bytes2, and in such a case the inference
is more accurate. For branches that depend on a single byte, the correctness of
the inference follows immediately from group testing theory3. For instance, the
branch at line 6 of Fig. 1 will have correctly inferred dependency only on byte
x[100]. For branches that depend on a few bytes, we can reduce (or entirely
prevent) over-taint by repeating the original procedure while permuting the vec-
tors Vi. In such a case, each repeated inference will suggest different candidates,
except the truly dependent bytes that will be suggested by all procedures. These
input bytes then can be detected by taking intersection of all the suggested
candidates. For instance, for the branch at line 8 (that actually depends on 8
bytes), a single execution of the procedure will return 16 byte candidates. By
repeating once the procedure with randomly permuted positions of Vi, with high
probability only the 8 actual candidates will remain.

The above inference procedure makes the implicit assumption that same
branches are observed across different executions. Otherwise, if a branch is not

2 C-type branches that contain multiple variables connected with AND/OR state-
ments, during compilation are split into subsequent independent branches. Our infer-
ence is applied at assembly level, thus most of the branches depend only on a few
variables.

3 The matrix with rows V0, V1, . . . is 1-disjunct and thus it can detect 1 dependency.
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observed during some of the executions, then the corresponding bit in Y will
be undefined, thus no dependency information about the branch will be inferred
from that execution. For some branches the assumption always holds (e.g. for
branches at lines 6,8 in Fig. 1). For other branches, the assumption holds only
with some probability that depends on their branch conditions. For instance, the
branch at line 12 may not be seen if the branch at line 10 is inverted, thus any of
the 20 bits of Y may be undefined with a probability of 200

232 . In general, for any
branch that lies below some preceding branches, the probability that bits in Y
will be defined is equivalent to the probability that none of the above branches
will inverted by the mutations4. As a rule of thumb, the deeper the branch
and the easier to invert the preceding branches are, the harder will be to infer
the correct dependency. To infer deeper branches, we introduce a modification
based on forced execution. We instrument the code so the executions at each
branch will take a predefined control-flow edge, rather than decide on the edge
according to the value of the branch condition. This guarantees that the target
branches seen during the execution of the original seed file (used as a baseline
for mutation), will be seen at executions of all subsequent inputs produced by
mutating the original seed. We perform forced execution dynamically, with the
same statically instrumented program, working in two modes. In the first mode,
the program is executed normally, and a trace of all branches and their condition
values is stored. In the second mode, during execution as the branches emerge,
their condition values are changed to the stored values, thus the execution takes
the same trace as before. No other variables aside from the condition values
are changed. Note that our procedure aims to infer taint dependencies fast and
optimistically; we refer readers to Sect. 4.6 for a discussion on these aspects.

4.3 Solving System of Intervals

It was noted in RedQueen [2], that when branches depend trivially on input
bytes (so-called direct copies of bytes) and the branch condition is in the form of
equality (either = or �=), then such branches can be solved trivially. For instance,
the branch at line 1 of Fig. 2, depends trivially on the byte x[0] and its condition
can be satisfied by assigning x[0] = 5 (or inverted by assigning x[0] �= 5).

Fig. 2. Branches and systems
of intervals.

Thus it is easy to satisfy or invert such
branches, as long as the dependency is correctly
inferred and the branch condition is equality. Sim-
ilar reasoning, however, can be applied when the
condition is in the form of inequality over inte-
gers. Consider the branch at line 3 of Fig. 2, that
depends trivially on the input byte x[1]. From the
type of inequality (which can be obtained from
the instruction code of the branch), and the cor-
rect dependency on the input byte x[1] and the

4 This holds even in the case of FTI. However, the probabilities there are higher
because there is a single mutated byte.
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constant 100, we can deduce the branch form x[1] < 100, and then either satisfy
it resulting in x[1] ∈ [0, 99], or invert it, resulting in x[1] ∈ [100, 255]. In short,
we can represent the solution in the form of integer intervals for that particular
input byte.

Often to satisfy/invert a branch we need to take into account not one, but
several conditions that correspond to some of the branches that have common
variables with the target branch. For instance, to satisfy the branch at line 7,
we have two inequalities and thus two intervals: x[2] ∈ [0, 200] corresponding to
target branch at line 7 and x[2] ∈ [11, 255] corresponding to branch at line 5.
Both share the same input variable x[2] with the target branch. A solution
(x[2] ∈ [11, 200]) exists because the intersection of the intervals is not empty.

In general, Sivo builds a system of such constraints starting from the target
branch, by adding gradually preceding branches that have common input vari-
ables with the target branch. Each branch (in)equality is solved independently
immediately, resulting in one or two intervals (two intervals only when solving
x �= value, i.e. x ∈ [0, value−1]∪ [value+1,maxvalue]), and then intersection is
found with the previous set of intervals corresponding to those particular input
bytes. Keeping intervals sorted assures that the intersection will be found fast.
Also, each individual intersection can increase the number of intervals at most
by 4. Thus the whole procedure is linear in the number of branches along the
executed path. As a result, we can efficiently solve these type of constraints and,
thus, satisfy or invert branches that depend trivially on input bytes.

Even when some of the preceding branches do not depend trivially on input
bytes, solving the constraints for the remaining branches gives an advantage
in inverting the target branch. In such a case, we repeatedly sample solutions
from the solved constraints and expect that the non-inverted branch constraints
will be satisfied by chance. As sampling from the system requires constant time
(after solving it), the complexity of branch inversion is reduced only to that of
satisfying non-trivially dependent branches. For instance, to reach line 10, we
first solve the lines 5, 7 to obtain x[2] ∈ [11, 200], and then keep sampling x[2]
from this interval and hope to satisfy the branch at line 9 by chance.

4.4 More Accurate Coverage

AFL uses a simple and an elegant method to record the edges and their counts by
using an array showmap. First, it instruments all basic blocks Bi of a program by
assigning them a unique random label Li. Then, during the execution of the pro-
gramona seed, as any twoadjacent basic blocksBj , Bk are processed, it computes a
hash of the edge (Bj , Bk) asE = (Lj � 1)⊕Lk and performs showmap[E]++. New
coverage is observed if the value 	log2 showmap[E]
 of a non-zero entry showmap[E]
has not been seen before. If so, AFL updates its coverage information to include
the new value, which we will refer to as the logarithmic count.

Prevent Colliding Edge Hashes. CollAFL [13] points out that when the
number of edges is high, their hashes will start to collide due to birthday paradox,
and showmap will not be able to signal all distinct edges. Therefore, a fuzzer will



116 I. Nikolić et al.

fail to detect some of the coverage. We propose a simple solution to the collision
problem. Instead of assigning only one label Li to each basic block Bi, we assign
several labels L1

i , . . . , L
m
i , but use only one of them during an execution. The

index of the used label is switched occasionally for all blocks simultaneously. The
switch assures that with a high chance, each edge will not collide with any other
edge at least for some of the indices. The number of labels required to guarantee
that all edges will be unique with a high chance at some switch depends on the
number of edges. Due to space restrictions we omit the combinatorial analysis.
In our actual implementation the size of the showmap is 216 and we use m = 4
labels per basic block – on average this allows around 8,000 edges to be mapped
uniquely (and even 20,000 with less than 100 collisions), which is sufficiently high
quantity for most of the programs considered in our experiments. By default,
the index is switched once every 20 min.
Improve Compressed Edge Counts. The logarithmic count helps to reduce
storing all possible edge counts, but it may also implicitly hinder achieving better
coverage. This is because certain important count statistics that have the same
logarithmic count as previously observed during fuzzing might be discarded.

Fig. 3. The effects of AFL’s edge count
compression.

For instance, if the for loop in Fig. 3
gets executed 13 times, then AFL will
detect this as a new logarithmic count of
	log2 13
 = 3, it will update the coverage,
save the seed in the pool, and later when
processing this seed, the code block F1()
will be executed as soon as the condition
C1 holds. On the other hand, afterwards
if the for loop gets executed 14 times, then
the same logarithmic count 	log2 14
 = 3
is achieved, thus the new seed will not be stored, therefore the chance of exe-
cuting the code block F2() is much lower. In other words, to reach F2(), simul-
taneously the for loop needs to be executed 14 times and C2 condition needs
to hold. Hence, F1() and F2() cannot be reached with the same ease despite
having similar conditional dependency, only because of AFL’s logarithmic count
mechanism.

To avoid this issue, we propose flushing the coverage information periodically.
More precisely, periodically we store the current coverage information, then reset
it to zero, and during some time generate new coverage from scratch. After
exhausting the time budget on new coverage, we keep only the seeds that increase
the stored coverage, and continue the fuzzing with the accumulated coverage.

4.5 Design of the Whole Fuzzer Sivo

Sivo implements all the refinements mentioned so far. It uses the standard grey-
box approach of processing seeds iteratively. In each iteration, it selects a seed,
mutates it to obtain new seeds, and stores those that increase coverage.
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Algorithm 1: OneIterationSivo ( Seeds, Coverage )
use class ← MAB select( Seed class ) // choose seed class with MAB
use crit ← MAB select( Seed criterion ) // choose seed criterion
seed ← Sample( use class , use crit, Seeds ) // sample seed from the pool
use strategy ← MAB select( Fuzzer strategy ) // choose Data-flow or Vanilla
if use strategy == Data-flow then

Taint inference(seed) // if Data-flow then infer dependency

tot cov incr ← 0
while time budget left do

use mut ← MAB select( strategy ) // choose one mutation
use mut params ← MAB select( use mut ) // choose its params
new seed ← Mutate( seed, use mut, use mut params ) // apply mutation
new coverage ← ProduceCoverage(new seed)
cov increase ← ‖ new coverage \ Coverage ‖ // new coverage?
if cov increase > 0 then

Seeds ← Seeds
⋃

new seed // add new seed to the pool
Coverage ← Coverage

⋃
new coverage // update coverage

// feedback cov/sec to MAB to update the effectiveness of the chosen
mutation and its params
MAB update( [use mut , use mut params], cov increase, while time )
tot cov incr += cov increase

// feedback total cov/sec to MAB to update the effectiveness of the chosen
seed class/criterion and fuzzing strategy
MAB update( [use class,use crit,use strategy] , tot cov incr , iter time)

In Sivo (refer to the pseudo-code in Algorithm 1), the seed selection is opti-
mized: first with MAB the currently best class and best criterion are selected, and
then a seed is sampled from the pool according to the chosen class and criterion.
Afterwards, the fuzzer with the help of MAB decides on the currently optimal
fuzzing strategy, either vanilla (apply mutations that do not require dependency
information) or data-flow (require dependency). If latter, Sivo first infers the
dependency (as a combination of FTI and TaintFAST). Then, according to the
chosen fuzzing strategy the fuzzer again uses MAB to select one optimal muta-
tion strategy. The vanilla fuzzing strategy allows a choice of 3 different mutations:
1) mutation of random bytes, 2) copy/remove of byte sequence of current seed,
and 3) concatenation of different seeds. On the other hand, data-flow fuzzing
strategy consists of 5 mutations: 1) mutation of dependent bytes, 2) branch
inversion with system solver, 3) branch inversion by minimizing objective func-
tion, 4) branch inversion by mutation of their dependent bytes, and 5) reusing
previously found bytes from other seeds to current seed. Most mutations have
sub-versions or parameters which are also chosen with MAB. For instance, muta-
tion of random bytes supports two versions: it can use heuristics to determine
the positions of the bytes (choice 1), or use random byte positions (choice 2). If
choice 1, then it needs to select the number of mutated bytes (1, 2, 4, 8, 16, 32,
or 64). Both of these selections are determined with MAB. Each mutation is
applied to the chosen seed to obtain a new seed, and then the seed is executed.
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Algorithm 2: Sivo
Seeds ← Initial seeds
Coverage ← ProduceCoverage(Seeds)
while true do

OneIterationSivo ( Seeds, Coverage );
if time to switch index then

SwitchIndexInCoverage()
Coverage ← ProduceCoverage( Seeds )

if time to start flush then
Old coverage, Old seeds ← Coverage, Seeds
Seeds ← Initial seeds
Coverage ← ProduceCoverage( Seeds )

if time to stop flush then
New coverage ← Coverage \ Old coverage
Coverage ← Coverage

⋃
Old covarege

Seeds ← Old seeds
⋃

GetSeedsThatProduceCov(Seeds, New coverage)

The coverage update information is fed back to the MAB, thus assuring that
MAB can further optimize the selections.

Sivo runs the iterations and occasionally executes the code coverage refine-
ments – refer to Algorithm 2. We implement the whole fuzzer from scratch in
C++ with around 20,000 lines of code [25].

4.6 Limitations of Sivo

The taint engine TaintFAST relies on forced execution, which by definition is
not sound, thus the inference is approximate. It means, the engine may intro-
duce false positives/negatives, i.e. it may suggest dependencies of branches on
incorrect input bytes. This, however, is not a real concern in fuzzing because
later it leads solely to mutating incorrect input bytes, hence potentially it has
only impact on efficiency5, and does not affect the correctness of the fuzzer in
any other way. The accuracy of the engine varies between programs. In certain
cases (of particular traces), the forced execution crashes the program, and thus
the inference has lower accuracy (because the corresponding Y bit is undefined).
In our actual implementation of TaintFAST, we prevent some of the crashes by
detecting with binary search sequences of input bytes that lead to crashes, and
later eliminate them from consideration.

The refinement based on system of intervals is neither sound nor complete.
Problems may appear due to incorrect inference of the intervals as well as due
to the fact that the system describes only a partial dependency of the target
branch on input bytes, i.e. includes only branches that can be presented in the
form of integer intervals. Therefore, one may not assume that all of the branches
can be properly inverted using this refinement.
5 The impact can be reduced with various methods, e.g., the MAB-based optimization

presented in this paper.
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The remaining two refinements do not have apparent limitations, aside from
affecting the efficiency in some cases.

5 Evaluation

We show that Sivo performs well on multiple benchmarks according to the stan-
dard fuzzing metrics such as code coverage (Sect. 5.2) and found vulnerabilities
(Sect. 5.3). We evaluate the performance of each refinement in Sect. 5.4.

5.1 Experimental Setup

Experiment Environment. For all experiments we use the same box with
Ubuntu Desktop 16.04, two Intel Xeon E5-2680v2 CPUs @2.80 GHz with 40
cores, 64 GB DDR3 RAM @1866 MHz and SSD storage. All fuzzers are tested
on the same programs, provided with only one initial seed, randomly selected
from samples available on the internet. To keep experiments computationally
reasonable, while still providing a fair comparison of all considered fuzzers, we
performed a two-round tournament-like assessment. In the first round, all fuzzers
had been appraised over the course of 12 h. This interval is chosen based on
Google’s FuzzBench periodical reports, which shows that 12 h is sufficient to
decide the ranking of the fuzzers usually [15]. The top 3 fuzzers from the first
round that perform the best on average over all evaluated programs progress to
the second round, in which they are run for 48 h.

Baseline Fuzzers. We evaluate Sivo in relation to 11 notable grey-box fuzzers.
In addition to AFL [37], we take the extended and improved AFL family:
AFLFast [4], FairFuzz [20], LAF-Intel [1], MOpt [22] and EcoFuzz [35]. More-
over, we include Angora [6] for its unique mutation techniques, Ankou [23] for its
fitness function, and a few fuzzers that perform well on Google’s OSS-Fuzz [15]
platform such as Honggfuzz [32], AFL++ and AFL++ mmopt [11] (version
2.67c). To prevent unfair comparison, we omit from our experiments two cate-
gories of fuzzers. First, we exclude popular grey-box fuzzers that do not have
an officially available implementation, such as CollAFL [13] and GreyOne [12].
We did not implement these fuzzers from scratch due to the complexity of such
a task (e.g. the authors of GreyOne report 20K LoC implementation). Second,
we exclude hybrid fuzzers because their approach is basically orthogonal to tra-
ditional grey-box fuzzers and thus they can be combined. For instance, the well-
known hybrid fuzzer QSYM [36] inverts branches with symbolic execution and
is built on top of AFL. With minor modification, QSYM could be built on top of
Sivo instead of AFL, and this hybrid may lead to an even better performance.

Programs. Our choice of programs was influenced by multiple factors, such as
implementation robustness, diversity of functionality, and previous analysis in
other works. Our main goal of the evaluation is comparison of fuzzers according to
a few criteria (including discovery of bugs), thus we use versions of programs that
have already been tested in prior fuzzer evaluations on similar criteria. Due to lim-
ited resources, we did not run the fuzzers on the latest versions to look for actual
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CVEs. Our final selection consists of 27 programs including: binutils (e.g.: read-
elf, nm), parsers and parser generators (e.g.: bson to json@libbson, bison), a wide
variety of analysis tools (e.g.: tcpdump, exiv2, cflow, sndfile-info@libsndfile), image
processors (e.g.: img2txt), assemblers and compilers (e.g.: nasm, tic@libncurses),
compression tools (e.g.: djpeg, bsdtar), the LAVA-M dataset [9], etc. A complete
list of the programs and their version under test is given in Table 1.

Efficiency Metrics. We use two metrics to compare the efficiency of fuzzers:
edge coverage and the number of found vulnerabilities. To determine the cover-
age, we use the logarithmic edge count because this number is the objective in
the fuzzing routines of the AFL family of fuzzers (simple count of unique edges
leads to similar results which we omit due to space restrictions). To measure the
total number of distinct vulnerabilities found by each fuzzer, first we confirm
the reported vulnerabilities, i.e. we take all seeds generated by a fuzzer and keep
those that trigger a crash by any of the sanitizers ASAN [28], UBSAN [27] and
Valgrind [24]. Then, for each kept seed, we record the program source line where
the crash triggers and count each such distinct source line as a vulnerability.

5.2 Coverage

We run all 12 fuzzers for 12 h each, and record the coverage discovered during
the fuzzing. The results are reported in Fig. 4. We can see that at the end,
Sivo provides the best coverage for 25 out of the 27 programs. On average
Sivo produces 11.8% higher coverage than the next best fuzzer when analyzed
individually for each program. In direct comparison to fuzzers, Sivo outperforms
the next best fuzzer MOpt by 20.2%, and EcoFuzz by 30.6%, and outperforms the
baseline AFL by producing 180% increase in coverage. For most of the programs,
our fuzzer very soon establishes as the top fuzzer. In fact, the time frame needed
to create advantage is so short, that the improved coverage refinement of Sect. 4.4
has still not kicked in, whereas the MAB optimization of Sect. 4.1 had barely any
time to feed enough data back to the MABs. Thus, arguably the early advantage
of Sivo is achieved due to the parametrize paradigm, as well as the remaining
two refinements (TaintFAST and the system solver method).

We test the top three fuzzers Sivo, MOpt, and EcoFuzz on 48-h runs and
report the obtained coverage in Fig. 5. We see that Sivo is the top fuzzer for 24
of the programs, with 13.4% coverage increase on average with respect to the
next best fuzzer for each program, and 15.7%, and 28.1% with respect to MOpt
and EcoFuzz. In comparison to the 12-h runs, the other two fuzzers managed
to reduce slightly the coverage gap, but this is expected (given sufficient time
all fuzzers will converge). However, the gap is still significant and Sivo provides
consistently better coverage.

5.3 Vulnerabilities

We summarize the number of vulnerabilities found by each fuzzer on 25 programs
during the 12-h runs in Table 1. (We removed two programs from Table 1, as none
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Fig. 4. Coverage for all fuzzers during
12 h of fuzzing (in 5 min increments).

Fig. 5. Coverage for top three fuzzers
Sivo, MOpt, EcoFuzz during 48 h of
fuzzing.

of the fuzzers finds vulnerabilities for them.) Out of 25 evaluated programs, Sivo
is able to find the maximal number of vulnerabilities in 18 programs (72%). For
comparison, the next best fuzzer MOpt holds top positions in 11 programs (44%)
in terms of vulnerability discovery. This indicates that Sivo is significantly more
efficient at finding vulnerabilities than the remaining candidate fuzzers. However,
Sivo achieves less top positions in discovery of vulnerabilities compared to code
coverage, but this is not unusual as the objective of our fuzzer is code coverage,
and the correlation between produced coverage and found vulnerabilities is not
necessarily strong [17,18].



122 I. Nikolić et al.

Table 1. The number of found vulnerabilities. The number of unique vulnerabilities
(when non-zero) are reported after “/”. “-” indicates failure to instrument/run the
program. “#Vuln.” and “#Vuln. uniq” give the number of all vulnerabilities and the
number of unique vulnerabilities, respectively. “#Top vuln.” shows the number of pro-
grams for which the fuzzer finds the maximal number of vulnerabilities. “#Prog. uniq”
shows the number of programs for which the fuzzer finds some unique vulnerabilities.

Application Version Fuzzer

AFL AFL++ AFL++ mmopt AFLFast FairFuzz LAF-Intel MOpt EcoFuzz Honggfuzz Angora Ankou Sivo

base64 LAVA-M 2 2 2 2 2 2 2 2 2 2 1 2

bison 3.0.5 3 3 3 3 4/1 3 4/1 2 2 1 3 2

bson to json 1.8 2 1 1 1 2 2 2 1 1 2 1 2

cflow 1.5 2 1 1 2 2 1 5 3 2 1 3 6/1

exiv2 0.27.3 6 5 6 5 6 6 11/3 0 - - 8 8

Fig. 2dev 3.2.7a 29/1 24 29 26 30/1 22 35 30/2 43/4 1 40 59/7

ftpconf 3.2.2 2 2 2 2 2 2 2 2 2 2 2 2

img2sixel 1.8.2 1 1 1 1 1 0 16/1 12/1 15/3 - 7 22/6

img2txt 0.99beta19 2 2 2 0 4 2 8/2 5/1 3 - 7/3 10/5

md5sum LAVA-M 1 1 1 1 2/1 1 1 1 1 1 1 1

nasm 2.14rc15 4 4 5 4 8 4 10 8 2 5/1 9 13/1

nm 2.31 4 3 3 4 4 4 6/1 5 3 0 4 6/1

readelf 2.31 1 1 1 1 1 1 1 1 1 2/1 1 1

sassc 3.5 1 1 1 1 2 1 2 2 1 - 1 5/3

slaxproc 0.22.0 4 3 3 3 3 3 4 3 3 - 6/2 5/1

sndfile-info 1.0.28 0 0 0 0 3 0 8/2 6 13/6 - 1 7

tcpdump 4.10.0rc1 0 0 0 0 0 0 3 1 1 - 1 7/3

testsolv 0.7.2 6 6 6 6 6 6 7 8/1 14/8 - 6 9/2

tic 6.1 2 1 2 1 2 2 3 2 2 - 0 3

tiff2pdf 4.0.9 2 2 1 2 1 2 4 3 1 0 3 4

tiffset 4.0.9 1 1 1 1 1 1 1 1 1 0 1 1

uniq LAVA-M 1 1 1 1 1 1 2 3 7 1 2 7

webm2pes 1.0.0.27 1 1 1 1 1 1 2 2 1 - 1 3/1

who LAVA-M 1 1 1 1 1 1 7 3 6 0 3 7

wpd2html 0.10.1 0 0 0 0 0 0 1/1 1 0 - 1 1

#Vuln. 78 67 74 69 89 68 147 107 127 18 113 193

#Top vuln. 4 3 3 3 6 4 11 4 6 4 4 18

#Vuln. uniq 1 0 0 0 3 0 11 5 21 2 5 31

#Prog. uniq 1 0 0 0 3 0 7 4 4 2 2 11

We also measure and report in Table 1 the number of vulnerabilities unique
to each fuzzer, i.e. bugs that are found only by one fuzzer, and not by any other.
This metric signals distinctiveness of each fuzzer—the greater the number of
unique vulnerabilities, the more distinct the fuzzer is on vulnerability detection.
Out of 25 programs, Sivo discovers at least one unique vulnerability in 11 pro-
grams. In total, Sivo finds 31 unique vulnerabilities, while the next best fuzzer
is Honggfuzz [32] with 21 vulnerabilities.

5.4 Performance of Refinements

We evaluate the four refinements individually, in terms of their impact and
necessity. To assess the impact of a refinement, i.e. to estimate how much it
helps to advance the fuzzer, we compare the performance of the baseline version
of Sivo (where all four refinements have been removed) to the baseline version
with the one refinement added on. On the other hand, to assess the necessity
of a refinement, i.e. to estimate how irreplaceable in comparison to the other
three refinements it is, we compare the full version of Sivo to the version with a
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single refinement removed. We note that all refinements aside for the Parametrize-
Optimize strategy, can be assessed reasonably well because it is easy to switch
them on or off in the fuzzer. The same holds for Optimize, but not for Parametrize.
As Sivo is built from scratch with many new fuzzing subroutines that are not
necessarily present in AFL, it is not clear which fuzzing subroutines and which
of their variations need to be removed in the baseline. Therefore, we only assess
Optimize, and consider Parametrize to be part of the baseline.

We fuzz the 25 programs (on which Sivo outperformed all other 11 fuzzers)
for 12 h, and compare the found coverage to the coverage produced by the com-
plete version of Sivo. In Table 2, we provide the comparisons (as a percentage
drop of the coverage) of the versions. We also give the data about the per-
formance of the best non-Sivo fuzzer for each program (see the column Best
NoneSivo). In the last row of the table we summarize the number of programs
on which the considered version of the fuzzer is able to out-perform all of the
remaining 11 none-Sivo fuzzers (for reference, for Sivo this number is 25).

A few observations are evident from the Table 2:

Table 2. Percentage drop in coverage of fuzzers in comparison to Sivo. When no drop
occurs, the cells are empty.

Application Fuzzer

Best NoneSivo SivoBase SivoBase+Opt SivoBase+FI SivoBase+SI SivoBase+AC Sivo-Opt Sivo-FI Sivo-SI Sivo-AC

base64 9.1 7.2 2.4 7.2 4.7 7.2 3.3 3.3 8.4 1.7

bison 23.9 23.1 23.1 23.1 23.1 33.4 4.9

bsdtar 4.1 0.4 0.4 0.4

bson to json 0.8 18.9 3.0 18.9 16.1 18.9 17.1 4.6 2.9

cflow 9.5 10.9 4.6 10.9 10.9 10.9 13.4 3.8 5.0

djpeg 11.9 23.9 23.9 23.9 23.9 21.2 33.7 15.4 22.0

fig2dev 15.9 13.3 13.3 13.3 13.3 23.0 1.8 6.1

ftpconf 3.5 10.5 0.6 9.8 9.9 10.5 12.3 1.4

img2sixel 24.7 21.9 8.0 21.5 15.9 21.9 19.9 3.8 7.7 0.6

img2txt 9.8 9.3 9.3 9.3 9.3 8.9 8.6 8.9 7.9 10.3

md5sum 2.9 14.8 14.2 14.8 0.6 6.4 4.6 12.3

nasm 20.3 27.7 0.5 27.7 27.0 27.7 39.8 3.7 0.6

nm 33.6 11.8 11.8 11.8 6.6 11.8 15.9 43.6 27.4 18.8

readelf 22.0 15.2 7.7 5.0 7.1 7.8 1.9 0.1

sassc 10.9 25.4 25.4 21.5 23.5 34.6

slaxproc 3.3 34.9 31.1 28.0 30.3 38.5 1.9

sndfile-info 16.2 17.2 10.8 17.2 11.7 17.2 6.6 18.6 1.7

testsolv 9.4 43.0 33.1 42.3 10.9 24.6 33.3 34.3 37.2 10.6

tic 6.0 16.9 16.9 16.7 13.7 19.7 0.1

tiff2pdf 10.5 2.4 2.4 2.4 2.0 0.3 3.7

tiffset 4.4 8.9 7.8 8.9 8.9 0.3

uniq 7.8 16.4 0.4 16.4 3.1 16.4 0.2 4.8

webm2pes 3.0 14.0 12.6 14.0 14.0 12.2 7.1 6.6

who 27.3 29.3 13.6 23.3 17.4 27.6 2.7 9.5 35.9 10.5

wpd2html 11.8 27.1 13.6 27.1 27.1 27.1 48.9 6.4 0.3 5.2

Top positions 9 19 11 13 9 11 22 18 21
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– Parametrize alone is valuable. The baseline SivoBase, i.e. the version of the
fuzzer that does not have any of the four refinements aside from Parametrize,
already performs well. It is able to achieve the most coverage for 9 of the
25 considered programs. Hence, just by introducing new fuzzing subroutines
and their variations, the fuzzer is able to outperform in terms of coverage the
other 11 fuzzers on 36% of the fuzzed programs.

– Optimize has a strong impact. Among the four refinements, Optimize has
the strongest impact. It helps the baseline fuzzer to add 10 top stops resulting
in 19 top positions (refer to SivoBase+Opt column in Table 2), thus leading
to most coverage in comparison to the other 11 none-Sivo fuzzers on 76%
of the programs. On the other hand, Sivo without Optimize (refer to Sivo-
Opt), loses 14 top positions, i.e. the fuzzer loses the top spot for 56% of the
programs. Moreover, this refinement effects all of the fuzzed programs, with
the exception of a few. The effect is significant—the coverage drop when this
refinement is not present is at least 10% and sometimes more than 30%.

– TaintFAST has a moderate to low impact. This refinement, denoted as
FI in the Table 2, helps the baseline fuzzer to add two top spots. On the other
hand, Sivo without TaintFAST, i.e. with only the FTI engine present, loses
three top spots. TaintFAST has a strong variance (refer to the Sivo-FI column)
in terms of providing additional coverage and most fuzzed programs either
benefit largely, or have no benefit at all. This is not unexpected, because the
true benefit of TaintFAST is manifested in programs that accept large inputs
and that have branches that depend on all of those inputs.

– Solving systems of interval (SI) has a strong to moderate impact. It
adds 4 top stops to the baseline, and removes 7 top spots from the complete
version of Sivo. It provides consistent benefits to the fuzzer – for most of the
fuzzed programs SI produces extra coverage. Presumably, this is based on the
fact that most programs do have branches based on integer inequalities and
that use direct copy of input bytes.

– Accurate coverage (AC) has a moderate to low impact. This refinement
does not have a strong impact on providing top positions (no jumps after
adding it to the baseline, and lost 4 positions when removing it from Sivo),
but it gives well balanced improvements in coverage to the fuzzer.

5.5 The Cause of Observed Benefits

It is important to understand and explain why certain fuzzing techniques (or
in our case refinements) work well. In Sect. 5.4 we speculate about the type of
programs that can be fuzzed well with some of the refinements. Showing this
conclusively, however, is difficult. Table 2 shows the percentage drop in coverage
observe, per application, obtained by adding and removing one-by-one each of
our proposed refinements. However, attributing the cause of improved perfor-
mance to individual refinements based on such coarse empirical data could be
misleading. This is because we are measuring the joint outcome of mutually-
dependent fuzzing strategies. We cannot single out the cause of an observed
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outcome and attribute it to each strategy, since the strategies mutate the inter-
nal state that others use. We thus only coarsely estimate their impact via our
empirical findings and speculate that these results extend to other programs.

6 Related Work

Grey-box fuzzers, starting from the baseline AFL [37], have been the backbone
of modern, large-scale testing efforts. The AFL-family of fuzzers (e.g. AFLGo [3],
AFLFast [4], LAF-Intel [1], MOpt [22], and MTFuzz [30]) improve upon differ-
ent aspects of the baseline fuzzer. For instance, instead of randomly selecting
mutation strategy, MOpt [22] uses particle swarm optimization to guide the
selection. MTFuzz [30] trains a multiple-task neural network to infer the rela-
tionship between program inputs and different kinds of edge coverage to guide
input mutation. Similarly, for the seed selection, AFLFast [4] prioritizes seeds
that exercise low-probability paths, CollAFL [13] prioritizes seeds that have a lot
of not-yet inverted branches, and EcoFuzz [35] uses multi-armed bandits to guide
the seed selection. Common feature for all current fuzzers from the AFL-family
is that they optimize at most one of the fuzzing subroutine6. In contrast, Sivo
first parameterizes all aspects, i.e. introduces many variations of the fuzzing sub-
routines, and then tries to optimize all the selection of parameters. Even the seed
selection subroutines of EcoFuzz and Sivo differ, despite both using multi-armed
bandits: EcoFuzz utilizes MAB to select candidate seed from the pool, whereas
Sivo uses MAB to decide on the selection criterion and the pool of seeds.

Several grey-box fuzzers deploy data-flow fuzzing, i.e. infer dependency of
branches on input bytes and use it to accomplish more targeted branch inver-
sion. VUzzer [26], Angora [6], BuzzFuzz [14] and Matryoshka [7] use a classical
dynamic taint inference engine (i.e. track taint propagation) to infer dependen-
cies. Fairfuzz [20], ProFuzzer [34], and Eclipser [8] use lighter engine and infer
partial dependency by monitoring the execution traces of the seeds. RedQueen [2]
and Steelix [21] can infer only dependencies based on exact (often called direct)
copies of input bytes in the branches, by mutating individual bytes. Among grey
boxes, the best inference in terms of speed, type, and accuracy is achieved by
GreyOne [12]. Its engine called FTI is based on mutation of individual bytes (thus
fast because it does not track taint propagation) and can detect dependencies of
any type (not only direct copies of input bytes). FTI mutates bytes one by one
and checks on changes in variables involved in branch conditions (thus accurate
because it does not need for the whole branch to flip, only some of its variables).
Sivo inference engine TaintFAST improves upon FTI and provides exponential
decrease in the number of executions required to infer the full dependency, at
a possible expense of accuracy. Instead of testing bytes one by one, TaintFAST
uses probabilistic group testing and reduces the number of executions.

Data-flow grey boxes accomplish targeted branch inversion by randomly
mutating the dependent bytes. A few fuzzers deploy more advanced strategies:
6 This refers to optimization only – some fuzzers improve (but not optimize) multiple

fuzzing subroutines.
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Angora [6] uses gradient-descent based mutation, Eclipser [8] can invert effi-
ciently branches that are linear or monotonic, and GreyOne [12] inverts branches
by gradually reducing the distance between the actual and expected value in the
branch condition. Some fuzzers, such as RedQueen and Steelix invert branches
by solving directly the branch conditions based on equality (called magic bytes).
Sivo can solve more complex branch inversion conditions that involve inequal-
ities, without the use of SAT/SMT solvers. On the other hand, white boxes
such as KLEE [5], and hybrid fuzzers such as Driller [31] and QSYM [36], use
symbolic execution that relies on SMT solvers (thus it may be slow) to perform
inversions in even more complex branches. The hybrid fuzzer Pangolin [16] uses
linear approximations of branch constraints (thus more general than our inter-
vals) called polyhedral path abstraction and later it utilizes them to efficiently
sample solutions that satisfy path constraints. To infer the (more universal) lin-
ear approximations, Pangolin uses a method based on SMT solver. On the other
hand, Sivo infers the (less universal) intervals with a simpler method.

The AFL-family of fuzzers as well as many other grey boxes track edge cov-
erage. In addition, the AFL-family uses bucketization, i.e. besides edges, they
track the counts of edges and group them in buckets that have ranges of powers
of two. For practical purposes AFL does not record the precise edges (this will
require storing whole execution traces which may be slow), but rather it works
with hashes of edges (which is quite fast). The process of hashing may introduce
collisions as noted by CollAFL [13]. To avoid such collisions, CollAFL proposes
during compilation to choose the free parameters of the hashing function non-
randomly, and according to a specific strategy. AFL++ [11] uses a similar idea
and provides an open-source implementation based on link-time instrumentation.
In addition, AFL++, LibFuzzer [29], and Honggfuzz [32] use so-called sanitizer
coverage available in LLVM starting from version 11 to prevent collisions by
assigning the free parameters during runtime. On the other hand, Sivo solution
is to switch between different hashing functions during the fuzzing (i.e. at run-
time). Instead of tracking edge coverage, a few fuzzers such as Honggfuzz [32],
VUzzer [26] and LibFuzzer [29] track block coverage. Moreover, the grey-box
fuzzer TortoiseFuzz [33] uses alternative coverage measurement metric (assigns
different weights to edges based on their potential security impact) to prioritize
testcases, and achieves higher rate of vulnerability detection.

7 Conclusion

We have presented four refinements for grey-box fuzzers that boost different
fuzzing stages, specifically: (a) a faster dynamic taint dependency inference
engine, (b) an integer inequality constraint learner and inference engine, (c)
improved coverage tracker, and (d) complete parameterization of the strategies
which can be optimized for dynamically. We have implemented the refinements
in a fuzzer called Sivo. In comparison to 11 other popular grey-box fuzzers, Sivo
scores highest with regards to coverage and number of vulnerabilities found.
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