
The Full Gamut of an Attack:
An Empirical Analysis of OAuth CSRF in

the Wild

Michele Benolli, Seyed Ali Mirheidari, Elham Arshad(B), and Bruno Crispo

University of Trento, Trento, Italy
{seyedali.mirheidari,elham.arshad,bruno.crispo}@unitn.it

Abstract. OAuth 2.0 is a popular and industry-standard protocol. To
date, different attack classes and relevant countermeasures have been
proposed. However, despite the presence of guidelines and best practices,
the current implementations are still vulnerable and error-prone. In this
research, we focus on OAuth Cross-Site Request Forgery (OCSRF) as an
overlooked attack scenario.

We studied one of the most recurrent types of OCSRF attacks by
proposing several novel attack strategies based on different status of
the victim browser. In order to validate them, we designed a repeatable
methodology and conducted a large-scale analysis on 314 high-ranked
sites to assess the prevalence of OCSRF vulnerabilities. Our automated
crawler discovered about 36% of targeted sites are still vulnerable and
detected about 20% more well-hidden vulnerable sites utilizing the novel
attack strategies. Although our experiment revealed a significant increase
in the number of OCSRF protection compared to the past scale analy-
ses, over one-fourth are still vulnerable to at least one proposed attack
strategy.

1 Introduction

OAuth 2.0 is an industry-standard protocol for authorization. It was released in
2012 as RFC 6749 and nowadays is pervasively used to manage authorization
flows in web, desktop, mobile applications, and in smart devices. The protocol
has been widely studied, and its theoretical and practical security has been
covered extensively by the literature. OAuth was designed to enhance several
aspects of the former client-server authorization model.

The OAuth 2.0 Threat Model and Security Considerations [26] and OAuth
2.0 Security Best Current Practice [16] documents are published to address the
most common security issues and vulnerability scenarios discovered within con-
crete implementations of the protocol. However, despite the rich guidelines and
the many mitigation proposed over time, several OAuth-based services are still
subject to a wide range of security flaws. This because, those guidelines are
not detailed enough to consider all possible settings that can lead to an attack,
especially for what relates client-side parameters.
c© Springer Nature Switzerland AG 2021
L. Bilge et al. (Eds.): DIMVA 2021, LNCS 12756, pp. 21–41, 2021.
https://doi.org/10.1007/978-3-030-80825-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80825-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-80825-9_2

22 M. Benolli et al.

As reported by [23] CSRF vulnerabilities related to authentication and iden-
tity management services are extremely pervasive, even among the top-ranked
domains. Our paper is mainly focused on a specific vulnerability, the CSRF
attack against the redirect_uri [26], since it’s one of the most popular concrete
attack in OAuth implementations. The attack is well documented in the Threat
Model document and it can lead to serious consequences, ranging from the dis-
closure of sensitive information to a malicious user [3] to the complete account
takeover [10]. Our work extensively covers the details of this security threat,
with a systematic analysis of its root causes and practical impact. We built an
automated testing framework to evaluate the presence of the aforementioned
vulnerability in a large number of popular sites that implement the Facebook
login service. The rationale of our approach is to help developers to avoid imple-
mentation mistakes by providing the most comprehensive set of attack strategy
such that developers are aware what implementation settings to avoid.

The outcome of our large-scale analysis is that more than a third of the tested
sites were found vulnerable to at least one of the proposed attack strategy.

We selected only one attack because the purpose of the paper is not to find
the highest number of vulnerabilities, but rather to demonstrate how to build a
comprehensive set of attack strategies for an attack, considering scenarios and
configurations that have been so far ignored or overlooked in the literature,
This based on the wrong assumptions those scenarios were not significant. Our
analysis proved they are indeed significant and contributed to find 20% additional
vulnerabilities.

The paper makes the following contributions:

– To the best of our knowledge, we present the most comprehensive set of
test cases to exploit OCSRF vulnerabilities, including novel attack strategies
that stress all possible client-side status. They complement and integrate the
guidelines provided by documents such as [16,26] in helping OAuth developers
to mitigate implementation mistakes.

– We designed a repeatable methodology and conducted an automated and
large-scale analysis on 314 high-ranked sites to assess the prevalence of CSRF
attack against the redirect_uri in OAuth implementations.

– The analysis discovered that about 36% of targeted sites are still vulnerable
and detected about 20% more well-hidden vulnerable sites utilizing the novel
attack strategies.

2 Background

This work primarily focuses on a specific OAuth vulnerability, that can lead to
a cross-site request forgery attack. For a thorough understanding of the risks
and consequences related to this vulnerability, this section provides a brief back-
ground on OAuth and CSRF attacks in the context of OAuth. Threat model
and its impact are described as well.

The Full Gamut of an Attack 23

2.1 OAuth

OAuth is an authorization protocol and does not handle user authentication.
However, authentication protocols can be built on top of it [19]. Many identity
providers (IdP) such as Google and Facebook use OAuth to allow their users to
share identity and personal information with third-party websites and applica-
tions (clients).

The OAuth 2.0 specification describes different methods for a client applica-
tion to obtain an access token and consequently the access to user’s protected
resources. The four grant types are authorization code, implicit, resource owner
password credentials, and client credentials. Each grant type is optimized for a
particular use case. In this research, we are only concerned with the authorization
code and implicit grant flows.

2.2 Login CSRF

In a login cross-site request forgery, the attacker deceives the victim into execut-
ing a cross-site request to the login endpoint of a target website. The attacker
uses its own credentials to forge the login request. If the attack succeeds, the
server issues a session cookie for the browser of the victim. As a result, the victim
is logged into the target website with the account of the attacker [3]. There has
been several studies [13,21,23,30] analysing the login CSRF attacks.

At first sight, the attack may appear quite innocuous. Generally, a cross-
site request forgery attack concerns operations performed on the victim’s pro-
tected resources. In the login CSRF, the attacker exploits an application flaw
to deceive the users into performing some unintended operations inside the
attacker’s account. The browser state is changed after the execution of the attack,
and the victims may be completely unaware of the fact they are using an account
owned by someone else. As a result, they may upload sensitive documents, share
credit card numbers and other personal data with a malicious user.

2.3 State Parameter

According to OAuth 2.0 specification [9], the client must implement CSRF pro-
tection for its redirection URI. Any request sent to the redirection endpoint
must include a value that binds to the user-agent’s authenticated state. This
value state parameter which can be performed in OAuth 2.0 flow. The state
parameter, to prevent CSRF attacks, should be a non-guessable randomly gen-
erated sequence of characters. However, the presence of the parameter does not
guarantee the security of the client against a CSRF attack. A wrong validation or
a mishandling of the parameter may lead to the vulnerability of the application,
as evidenced in [30].

3 OAuth Cross Site Request Forgery

In the context of OAuth 2.0, a successful cross-site request forgery can allow an
attacker to obtain authorization to resources protected by the protocol, without

24 M. Benolli et al.

the consent of the user. A recurrent type of login OCSRF is the OCSRF attack
against redirect_uri [26], where the victim is logged into an account controlled
by the attacker. As a direct consequence, all the operations performed by the
victim are unconsciously accomplished inside the attacker’s session and the result
of these actions can potentially be disclosed to the attacker.

3.1 Threat Model

Figure 1 represents the main steps of the OCSRF attack against redirect_uri
considered in our large-scale analysis. The attack starts with the victim’s browser
opening a malicious web page (1). At the loading page, the crafted request is
generally launched by the browser automatically (2). The OAuth flow, initiated
by the attacker, is then completed on the victim’s side. The identity provider
exchanges the received code for an access token and returns it to the client (4).
At this point, the client can use the token to access the information needed to
authenticate the user. Since the flow is initiated by the attacker, the login is
performed using the attacker’s account.

Fig. 1. Main steps involved in the OCSRF attack against redirect_uri

3.2 Impact

Some sites allow their users to register several OAuth provider logins, linked to
the principal account. It represents an alternative and simpler way to access the
application. In this scenario, if one of the implemented OAuth flows is insecure,
a login OCSRF attack may lead to an account takeover. The account linking
feature can be exploited to gain full access to the victim’s data. The attack flow
was first discussed by Egor Homakov [10]. The attack is possible only if certain
preconditions are satisfied. The attack can only be executed against a registered
user on the target site. At the end of the attack, the account owned by the
attacker is linked to the victim’s account. As a result, the attacker can access
the victim’s account on the client with the identity provider’s profile used in the
attack.

The Full Gamut of an Attack 25

3.3 Enabling Factors

Several factors can influence the success rate of the OCSRF attack against
redirect_uri. What happens if the victim is registered to the vulnerable appli-
cation? Is the attack feasible even if the user never visited the domain before?
If the victim is already authenticated to the website, is the attack prevented?
Having these questions answered is important to better understand the impact
of OCSRF in real-life scenarios. To be exploitable, the OCSRF attack against
redirect_uri does not require the victim to be authenticated on the target
application. Frequently the attack works even if the victim never visited the site
before. However, the presence of cookies, previously set by the target site in the
browser, can alter the outcome of the attack. In our analysis, we investigated
this hypothesis running all the test scenarios with three different victim browser
status as follows: a) No cookie, b) Visitor (unauthorized) cookies and c) Autho-
rized cookies. We designed different attack strategies utilizing above-mentioned
victim browser status which would be discussed in detail in Sect. 5.3. In the rest
of the paper, for brevity, OCSRF attack refers to the OCSRF attack against
redirect_uri.

4 Related Work

The security of OAuth 2.0 has been widely examined in the literature. Several
theoretical studies (e.g. [2,7,20,29]) use abstract models to evaluate the security
of the OAuth protocol. A downside of theoretical approach is that it does not
allow to discover the vulnerabilities resulting from implementation errors.

Many empirical works have been done on the security of OAuth-SSO (e.g.,
[1,5,6,18,25,28,31]) either by developing web-based tools or evaluating the risk
in real-world implementations.

A similar approach is employed by Li and Mitchell [13] to analyse the secu-
rity of SSO implementations based on OAuth 2.0. Regarding the CSRF attack
against the redirect_uri, authors found a significant fraction of clients are not
implementing any countermeasure. The detected security issues were manually
inspected and led to the generation of several case studies.

Sumongkayothin et al. present OVERSCAN [24], a security scanner able to
identify missing parameters within the OAuth 2.0 protocol, analysing the traffic
between the browser and the web application. Part of this analysis required
manual inspection. The main limitation of the manual approach is scalability.
The lack of automation makes the inspection process extremely time consuming
and the limited size of the resulting sample makes it difficult to generalize the
findings and distill error patterns.

Calzavara et al. [4] designed and implemented a browser-side security monitor
for web protocols, called WPSE, to prevent nine attacks violating the security
properties of OAuth. However, WPSE cannot prevent certain classes of attacks,
including automatic login CSRF attacks, network attacks which are not observ-
able by the browser and impersonation attacks.

26 M. Benolli et al.

Yang et al. [30] propose a model-based approach for the automated discov-
ery of vulnerabilities in OAuth 2.0 implementations, called OAuthTester. To
overcome the limitations of previous theoretical approaches, OAuthTester starts
building a state machine from the protocol specifications, but then enhance the
state machine and fills the gaps due to the ambiguities of the specification by
observing traffic traces of the OAuth flow and the server state. However, as said
by the authors, they can observe only traffic over HTTP, so they cannot gain
the all knowledge we used in our approach to design the attack strategies. As a
results they do not detect vulnerabilities that we detect with our analysis.

Shernan et al. [21] perform a large-scale analysis to assess the presence of
CSRF vulnerabilities in real-world deployments of OAuth. The analysis on the
Alexa Top 10K sites reveals that 25% of sites using OAuth were vulnerable
to CSRF attacks. A significant limitation of this approach is represented by
the metric used to assess the occurrence of CSRF vulnerabilities. A lot of sites
were excluded from the analysis simply because of the existence of the state
parameter in the authorization URL. As we show in this paper, the mere presence
of the state value does not guarantee protection against CSRF attacks.

Sudhodanan et al. [23] present a comprehensive study on the different types
of authentication CSRF reported in the literature. For identification of strategies
in order to detect and reproduce each vulnerability, they used the same browser
to simulate the interaction between the attacker and the victim, which led to
missing some additional scenarios regarding to victim’s browser states at the
time of the attack. Our approach consider additional attack strategies. Instead of
using the same browser, we totally separated the environment in which attacker
and victim operate. In place of performing the attack only in a clean browser
session, we also performed tests in presence of visitor and authorized cookies;
which is not considered in their analysis.

5 Methodology

We designed a repeatable methodology to discover and validate OCSRF vulnera-
bilities in targeted sites. As depicted in Fig. 2, our methodology has three phases:
1. target selection, 2. measurement setup 3. OCSRF detection. We developed a
tool based on Python-Selenium to automatically select targets and test different
OCSRF scenarios.

Fig. 2. Abstract view of OCSRF detection methodology.

The Full Gamut of an Attack 27

5.1 Phase 1: Target Selection

Step 1: OAuth Login Detection. For extracting the initial seed set of can-
didate sites using OAuth login, we develop a browser-based crawler to visit
sites in the initial seed set (e.g., Alexa Top 50K) in April 2020. The crawler
is designed in a way that extracts initial OAuth login links for specific pop-
ular providers via checking the presence of OAuth standard parameters in all
extracted links.: response_type, client_id, and oauth. The string «oauth» is
commonly contained in the URL of authorization endpoints and its presence is a
good indicator of the existence of an OAuth-based process. All these parameters
are used by the crawler in the detection phase, to classify the links and identify
the different login systems built on top of the OAuth protocol. Since many sites
use JavaScript which requires interaction with users to trigger OAuth login, we
develop a browser-based crawler to increase the detection rate.

Step 2: OAuth Flow Extraction. In order to remove false positives and
extract OAuth redirection flows properly, the crawler follows all extracted and
selected links. If the crawler lands on any well-known identity provider we will
add the site to our candidate list, which would be later used to test our OCSRF
attack strategies. A keyword-based approach is used to detect the Login/Sign-in
buttons (these elements usually contain some known keywords to identify the
login action and the identity provider). Extracted flows would later fed into next
phases.

5.2 Phase 2: Measurement Setup

Step 1: Manual Registration. We follow the extracted OAuth links and
create two sets of test accounts (victim and attacker) for each targeted site.
Since the information provided by the external identity provider is not sufficient
for the account creation process in many targeted sites, manual data entry is
necessary. We adopt previously proposed technique [17] to populate attacker
and victim accounts with unique information (e.g., name, email, user identifier,
phone number, profile logo, etc.) and use them in next steps as markers.

Step 2: Login Validation. To verify the login steps, the crawler uses the
login information gathered in the first phase to initiate the OAuth login trail.
It reaches the authentication page and enters the credential automatically. At
this point the flow is complete, and the browser is redirected to the target site’s
landing page.

OCSRF attack detection requires a victim to login as an attacker to the
targeted site. The detection crawler should be capable of detecting the forged
login to the attacker’s account. In this regard, a learning process is developed
for the crawler to automatically complete and learn the login processes for both
attacker and user accounts. In the learning process, the crawler scans the HTML
code of the landing page and looks for specific user-related strings. We presume
the presence of some predefined unique markers, visible only as a result of a
valid login to each account (which is populated to each account in registration
step).

28 M. Benolli et al.

5.3 Phase 3: OCSRF Discovery

The main goal of this phase is to discover exploitable sites. The crawler is
designed in a way to discover various implementation flaws in state validation
(described in the step 2). In the first step, the crawler follows the OAuth flow,
logs into the attacker account and extracts the authorization response links. In
the second step, the crawler applies different modifications based on five attack
strategies on the extracted authorization link. In the last step, the different vic-
tim browser status is exploited with modified links.

Step 1: Authorization link Extraction. Since the successful exploitation
of OCSRF needs an attacker authorization response link including authoriza-
tion code, state etc., the crawler initially follows OAuth login and obtains an
attacker authorization response from the identity provider. We develop a browser
extension to allow the crawler to record the attacker authorization link from the
identity provider and halt the OAuth flow immediately. In other words, the
generated authorization link is recorded and the OAuth flow is stopped before
redirection to the target site. The extracted link will be modified in the next
steps to discover vulnerable sites.

Step 2: state Modification. The extracted authorization link would be mod-
ified via going through five attack strategies. All attack strategies are performed
mainly based on modifications on state, as a result of which attack URLs would
be created. The first scenario is applied to the subset of sites in which a state is
not present in the authorization link. In other scenarios, attack strategy would
build further attack URLs by manipulating the state value as enumerated as
follows.

0. No state. The link is sent unaltered to the victim if the original link does
not contain a state.

1. Empty state. The state value is replaced with an empty string.
2. Lack of state validation. The value of the state is replaced with a ran-

domly generated string.
3. Unlinked state. The link including state is sent unaltered to the victim.
4. Missing state. The state is removed.

In the first attack strategy, the authorization response link obtained at the
first stage remains unchanged. In order to build other test cases, the testing
strategy would manipulate the value of state value by either replacing it with
an empty string, substitute it with a randomly generated string or keep the same
value. Last attack strategy would completely remove the state parameter. In
both strategies 0 and 3 the attacker would deliver the attack link unchanged
to the victim. The strategies 1 and 2 rely on different alterations of the state
value. In strategy 1, the content of the parameter is replaced with an empty
string while attack strategy 2 replaces the value with random string. Finally, in
the last strategies the state value and parameter name is completely removed.

Step 3: Exploitation. Each of the attack URLs generated in the previous step
would be opened in a separate browser. We propose several OCSRF test cases

The Full Gamut of an Attack 29

based on above strategies to determine whether a site is exploitable or not. In
this regard, above strategies assess various victim browser status. Each of them
is performed on three different victim browser status:

(a) Status A. No Cookie, when the victim opens the attack URL, there is
no cookie related to the targeted site in the victim browser. In other words,
either victim never visited the targeted site in the past or uses a new/history-
cleared browser. Obviously, no cookies will be sent to the server when attack
URLs are requested.

(b) Status B. Visitor Cookies, If the victim visited the targeted site in the
past and visitor or unauthorized cookies have been set in the browser, the
victim browser adds them to all requests. In this case, the crawler visits the
first page of candidate site and stores all cookies before requesting the attack
URLs.

(c) Status C. Authorized Cookies, If the victim is already authenticated to
the targeted site, authorized cookies have been set on the victim browser.
To simulate this test case, the victim has been authenticated by our crawler
through logging in the victim’s account, before requesting the attack URLs.

Each of the created attack URLs, obtained from applying previously-
mentioned strategies, would be tested on each and every browser status defined
above. As we have five different attack strategies and three possible victim
browser status, we would end up with 15 test cases which would be exploited for
each site. We later open all attack URLs inside victim browsers. We consider a
test case to be successful if the attacker’s marker is observed inside the victim’s
browser.

In a nutshell, each test case could be considered as the following three-step
process.

1. Extract an attacker valid authorization response.
2. state parameter modification based on attack strategies.
3. Simulation of OCSRF attack on one of victim browser’s status

5.4 Ethical Consideration

All test cases were performed with accounts specifically generated for this pur-
pose. We never tried to exploit user accounts outside of our control. In all vulner-
ability assessment phases, our crawler never injected, sent or stored any malicious
payload to candidate sites. In order to evade detection by bots detector [27], less
than 100 pages of each candidate site was visited slowly in the data collection
phase. We also developed Selenium crawler to complete the authentication steps
and simulate a real user browser session. The number of requests involved in all
test cases are significantly low, and the examined websites did not suffer from
excessive bandwidth consumption. Moreover, all tests were conducted on the
entire set of candidate sites therefore none of them has repeatedly been scanned
in a short period of time.

30 M. Benolli et al.

Responsible Disclosure. Since the impact of the discovered vulnerabilities
are severe, we reported the site owners using recommended notification tech-
niques [12,22]. Additionally, we tried to disclose the vulnerabilities to those sites
for which a centralized reporting system such as Hackerone [8] can be used, as
these promise an increased success rate over attempting direct notification.

6 Analysis

In this section, we present the results of the empirical analysis and discuss them
in detail. We also independently evaluate the results of each attack strategy and
test case. This approach gives us the opportunity to properly focus on individual
case studies among exploitable sites. The section would be concluded with the
presentation of noteworthy observations.

6.1 Measurement Overview

Dataset. We fed our crawler with the Alexa Top 50K sites and analyzed the first
page of them to extract the list of candidate sites with OAuth login. Since most of
the discovered sites support different identity providers in their authentication
pages, we only targeted one of their implementations and selected the most
popular one, Facebook. The crawler discovered 539 sites with Facebook login. In
the next step, we tried to create two sets of accounts (victim and attacker) and
recorded the successful OAuth flow on each site. We narrowed down the dataset
to 314 due to exclusion of sites with incomplete account registration (e.g., Social
Security Number, credit card, etc.) and unsuccessful account verification.

Alexa Ranking. Our crawler analyzed all fifteen proposed test cases on target
dataset and discovered 114 out of 314 (%36.3) sites to be exploitable by at least
one test case. Given the distribution of the targeted and vulnerable sites across
the Alexa Top 50K, it is noteworthy that about 32% of the sites among the
Top Alexa 1K are vulnerable. Sites with higher Alexa ranking are slightly more
vulnerable, but no specific major correlation among different buckets has been
observed.

Categories Based on Presence of state. The candidate sites have been
categorized based on absence or presence of state parameter within the recorded
authorization request. For the former category, as mentioned in Sect. 5.3, our
crawler directly exploit site without state and no modification applied on the
attack URLs. However, on the latter category, due to presence of state parameter,
15 different attack scenarios have been tested. We will discuss the result of both
categories in Sect. 6.2 in detail.

1. The first category, 44 out of 314 (14.0%) sites, do not use state, which
shows a significant increase in utilization of state compare to past large
scale analyses [3,11,14].

The Full Gamut of an Attack 31

2. The second category, 270 out of 314 (85.9%) sites, are using state. Although,
this indicates a significant increase in OCSRF protection compared to the past
studies [3,11,14,15], our crawler detected 73 out of 270 (27.0%) exploitable
sites utilizing different test cases.

Table 1. Number of exploitable sites in Facebook by OCSRF for each attack strategies

No cookies (a) Visitor cookies (b) Auth. cookies (c) All
0 33 (10.5%) 41 (13.1%) 23 (7.3%) 41 (13.1%)

1 34 (10.8%) 33 (10.5%) 23 (7.3%) 41 (13.1%)
2 30 (9.6%) 40 (12.7%) 23 (7.3%) 40 (12.7%)
3 49 (15.6%) 63 (20.1%) 36 (11.5%) 64 (20.4%)
4 33 (10.5%) 34 (10.8%) 24 (7.6%) 40 (12.7%)
Total 91 (29.0%) 105 (33.4%) 62 (19.7%) 114 (36.3%)

Attack Strategies. Table 1 shows the number of exploitable sites to each attack
strategy. As shown, the «attack strategy 3: Unlinked state» has the highest
success rate (20.4%) in all victim browser status. In this attack strategy, as
previously described in Sect. 5.3, the victim visited a crafted attack URL with
an attacker’s valid and unused state. It means lack of proper relation between
the victim browser and generated state is the most common implementation
mistake. Interestingly «attack strategy 1: Empty state» has the second rank
which means some sites mistakenly accept the authorization link with a null
state value.

Test Cases. Since visitor cookie is the most vulnerable status which makes
highest success rate (20.4%) and «attack strategy 3: Unlinked state» is the
most effective attack strategy, test case «3b» has the highest detection rate. Our
crawler detected 63 out of 270 (20.1%) sites to be exploitable with it. Test cases
«1c» and «2c» had the lowest detection rates, most probably because targeted
sites do not accept new OAuth login when user is authenticated.

Table 2. Classification of exploitable sites in Facebook by OCSRF - The first category
of candidates (with Absence of state parameter)

0a 0b 0c Sites

1 ○ ○ ○ 17 (38.6%)
2 ○ ○ ○␣ 16 (36.4%)
3 ○␣ ○ ○ 6 (13.6%)
4 ○␣ ○␣ ○␣ 3 (6.8%)
5 ○␣ ○ ○␣ 2 (4.5%)
Total 33 41 23 44

32 M. Benolli et al.

Victim Browser Status. We tested each attack strategy with three differ-
ent victim browser status. Our crawler detects unique exploitable cases in each
browser status. Previous researches only test the OCSRF in a clean browser with-
out presence of any cookie [23] or only with visitor cookie [30]. In this research,
our crawler was able to detect 23 out of 114 (20.2%) more exploitable OCSRF
cases compared to test case «a: No cookies» through utilizing different browser
status and 9 out of 114 (7.9%) compared to test case «b: Visitor cookies». Apply-
ing all of the browser status together with attack strategies have been done for
the first time to the best of our knowledge.

Based on our results presented in Table 1, the presence of visitor cookie in vic-
tim browser increases the chance of finding exploitable cases significantly. Even
though it is common that sites with authorization cookies are less vulnerable,
we observed test cases that unexpectedly were vulnerable only in this specific
test cases, which would be discussed in Sect. 6.2.

Table 3. Classification of exploitable sites in Facebook by OCSRF - The second cate-
gory of candidates (with Presence of state parameter)

1a 1b 1c 2a 2b 2c 3a 3b 3c 4a 4b 4c Sites Sites/Const state

1 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ 197 (73.0%) 1 (5.9%)
2 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 18 (6.7%) 4 (23.5%)
3 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○ ○ ○␣ ○␣ ○␣ 11 (4.1%) 5 (29.4%)
4 ○ ○ ○␣ ○ ○ ○␣ ○ ○ ○␣ ○ ○ ○␣ 7 (2.6%) 0
5 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○ ○␣ ○␣ ○␣ ○␣ 6 (2.2%) 1 (5.9%)
6 ○␣ ○ ○␣ ○␣ ○ ○␣ ○␣ ○ ○␣ ○␣ ○ ○␣ 5 (1.9%) 1 (5.9%)
7 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○␣ ○␣ ○␣ 4 (1.5%) 3 (17.6%)
8 ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○␣ 4 (1.5%) 0
9 ○␣ ○␣ ○␣ ○ ○ ○ ○ ○ ○ ○␣ ○␣ ○␣ 3 (1.1%) 0
10 ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○␣ ○ ○␣ ○␣ ○␣ ○␣ 3 (1.1%) 0
11 ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ 2 (0.7%) 0
12 ○ ○␣ ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○ 2 (0.7%) 0
13 ○␣ ○␣ ○␣ ○ ○ ○␣ ○ ○ ○␣ ○␣ ○␣ ○␣ 2 (0.7%) 0
14 ○␣ ○ ○ ○␣ ○ ○ ○␣ ○ ○ ○␣ ○ ○ 2 (0.7%) 1 (5.9%)
15 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○ ○ ○ ○ ○ 1 (0.4%) 1 (5.9%)
16 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○␣ ○␣ ○␣ ○␣ 1 (0.4%) 0
17 ○ ○ ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○ ○ 1 (0.4%) 0
18 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○ ○␣ ○␣ ○␣ 1 (0.4%) 0

Total 34 33 23 30 40 23 49 63 36 33 34 24 270 17

6.2 state Parameter

As mentioned, there are two categories of candidates based on the presence of
state parameter within the recorded authorization request, which would be
analysed and explained separately in this section.

The Full Gamut of an Attack 33

Absence of state. Interestingly, 44 out of 314 (14.0%) of sites do not set
state and our crawler detected 33 (75.0%), 41 (93.1%) and 23 (52.2%) sites
are vulnerable to test cases «0a», «0b» and «0c» respectively. In some cases,
the absence of visitor cookies led to errors in the OAuth login flow, and this
contributes to explain the lower number of vulnerabilities found in status «a»
than «b».

Interestingly, all exploitable sites are also exploitable to «b» while about half
of them are not exploitable when there is an authorized cookie. The classification
of exploitable sites are listed in Table 2. Each row represents one pattern w.r.t
different test cases (1a, 1b, etc.). A filled circle in each entry indicates successful
exploitation. The Sites column shows the total number of sites which have been
found exploitable via the indicated pattern in corresponding row. For example,
3 out of 44 sites were not exploitable to any of test cases, so on. While only
17 sites are vulnerable to all three test cases, there are two sites that are only
exploitable when the visitor cookies are present. It means successful exploitation
of them requires the victim browser to add only unauthorized cookies in the
Attack URL.

In contrast to other researches, absence of state does not guarantee suc-
cess exploitation of OCSRF, as other enabling factors can prevent targets from
being exploited. In order to remove the false positives, our crawler analyzed
all 44 sites in the first category of candidates. Unexpectedly, 3 sites were not
exploitable. Two out of three sites use encoded and nonstandard parameters in
the redirect_uri and implement proper validation to check if the OAuth flow
initiated with the same browser. At the time of writing this paper, Facebook
doesn’t allow developers to set arbitrary parameters to redirect_uri as the
full redirect URL should be reserved and the OAuth flow is blocked if there is
any change in redirect_uri. It seems Facebook still allows old implementa-
tions to use nonstandard parameters in redirect_uri, probably for backward
compatibility reasons. Anyhow, further investigation into the exceptions of the
Facebook OAuth implementation is beyond the scope of this research.

The third secure expects the flow to be completed in a popup window, which
is not opened by the crawler during the attack execution. The JavaScript code
running on the client-side fails due to the absence of an opener parent window
and the attack is consequently blocked in the browser. We consider this site as a
secure one despite the absence of adequate protection against OCSRF. We will
discuss related case studies in Sect. 6.4.

Presence of state Attack. Presence of the state does not mitigate OCSRF
vulnerabilities. We summarized each exploitable pattern which was observed
during our experiment on 270 sites in our candidate set in Table 3. About 73%
of sites are not exploitable to any of the proposed test cases. In many sites, this is
due to a correct implementation of the OAuth flow. Some secure instances notify
the user about the OCSRF attack, others simply display a generic authorization
error or do not perform any action. It should be noted that the group of 197
site marked as not exploitable by the crawler may contain a small fraction of
false negatives. This hypothesis is supported by some evidence presented later

34 M. Benolli et al.

in the analysis. For this reason, the number of vulnerabilities identified in our
tests must be considered as a lower bound. Details would be discussed in the
following section.

6.3 Case Studies

In this section, different test cases used during this research would be explained
along with notable case studies of each attack strategy. It is worth mentioning
that in this section the second category, presence of state parameter, is studied.

Empty and Missing state. In attack strategy 1, the value of the state in
the authorization response is replaced with an empty string. At the beginning of
the flow, the site generates a valid state to identify the authorization request.
If the authorization response contains an empty state value, the application
is supposed to not accept it and block the OAuth flow. The same approach
applies to attack strategy 4, in which the state parameter – not only its value
– is entirely removed from the authorization response URL. One of the manu-
ally analyzed sites has been discovered to be exploitable only to attacks 1 and
4, as illustrated in Table 3, classification 17. This result shows that when the
parameter is present, state is handled supposedly and would be verified by the
application. However, when the state value is empty or the parameter is miss-
ing, the validation would be bypassed and the flow successfully be accepted. The
application source code is not directly available. However, we can get an insight
into the internal logic of the state validation algorithm by analyzing the site
reactions in response to different inputs.

A couple of sites are exploitable only via attack strategy 1 but not the 4th
(Refer to Table 3, classification 11). The validation process checks the presence
of a parameter called "state" in the authorization response and blocks the flow
if it is not found. However, an empty state is accepted as valid and leads to
the flow completion. The reverse is still possible when a site is exploitable with
attack 4 and not to 1 (Refer to Table 3, classification 15). As an instance, we
found a case study in which the verification succeeds only in presence of a valid
state, while it could be bypassed if the parameter was not provided. The empty
state supplied in the first test scenario was considered invalid by the application
and caused the flow to be halted. Furthermore, we also found 6 exploitable sites
in which the only performed validation is related to the presence of the state
parameter inside the authorization response (Table 3, classification 9 and 10).
The client application does not accept requests with a missing or empty state
parameter, but even a random value is enough to bypass the validation.

The difference between attack strategy 1 and 4 is subtle and the results are
almost overlapping. But the insight provided by above-mentioned unexpected
results would be to take both attack strategies into account to discover related
vulnerabilities to a great extent.

Lack of state Validation. In attack 3, the authorization response received
by the attacker is maintained unchanged and sent to the victim. The test is
performed to assess the absence of a valid relation between the state and the

The Full Gamut of an Attack 35

user’s session. If the state is not handled properly during the generation of
the authorization request, the application does not have enough information to
perform correct validation in the subsequent steps of the flow. The site is not
able to understand whether the authorization response was issued by the identity
provider for the current user or if someone else initiated the request. As a result,
the client may accept all the state values produced by the application as valid.

As illustrated in Table 1, attack strategy 3 is the most successful one. More
than 20% of the candidate site are vulnerable to scenario «3a», «3b», or «3c».
This can be justified by the inherent complexity of implementing a valid relation
between the browser session and the state, which requires to generate and
store a random token and proper management of that in the validation phase.
Even though the RFC clearly describes the role and operation of the state
parameter, the documentation provided by different identity providers are not
often sufficiently precise and detailed. 23 out of 114 (20.2%) exploitable sites
are only vulnerable to attack strategy 3 (Table 3, classifications 3, 5, 7, 16, and
18). For these applications, arbitrary state values are correctly rejected by the
validation method, but valid states with incorrect associated to user sessions
are erroneously not refused. Eleven sites are vulnerable to all configurations of
attack strategy 3 (Table 3, classifications 3).

Unlinked state. In attack strategy 2, the state parameter produced by the
client application is replaced with another string which is a random permutation
of the initially generated value. The new parameter has the same length as the
original and the same character set. The purpose of this strategy is to under-
stand if using an invalid state is sufficient to bypass the OCSRF protections
implemented by the examined sites. Our crawler detects total number of 30 out
of 114 (26.3%), 40 out of 114 (35.1%) and 23 out of 114 (20.2%) exploitable sites
to be vulnerable to test cases «2a»,«2b», and «2c». Presence of visitor cookies
increases the attack success rate similar to other attack strategies.

It can be easily noticed from Table 3 that the results of attack strategies 2
and 3 are strongly related. There are no sites discovered to be vulnerable only
to 2, and the sites vulnerable to this attack constitute a proper subset of the
ones vulnerable to the third scenario. Although it does not add any item to
the set of vulnerable domains, the second scenario gives remarkable indications
about the nature of the validation performed. For instance, looking at the attack
results reveals the possibility of a completely incorrect validation from a session
association issue. A particular case in attack 2 is represented by sites that use a
state consisting of a single character, or a sequence of N identical characters. In
this scenario, the generation of a different permutation of the original string is not
feasible and the attack cannot be performed as originally described. Among the
samples considered, there are two sites with state of length one. The characters
used are underscore «_» and slash «/», respectively. The site using «/» was
found vulnerable to attack 3b. The attack succeeded even if «/» is substituted
with a different arbitrary character. In the other site, the replacement of «_»
with a random character prevented the attack from being executed successfully.

Based on above-mentioned implementation mistakes, we recommend to use
a state value which is not guessable and is randomly produced. Moreover, it

36 M. Benolli et al.

is required state to be in correct association with the user session in order to
avoid OCSRF vulnerability.

6.4 Notable Observations

Constant state. The OAuth 2.0 specification clearly states that the state
parameter must be one time use and a random string. This requirement is nec-
essary to protect applications from brute-force attack. Some sites do not follow
these instructions and include a fixed and constant state in the OAuth autho-
rization request which would not change for different users and browser sessions.
These websites are not able to distinguish between a legitimate authorization
response created for the victim and a response forged by the attacker. We vis-
ited all candidate sites twice from two different browser sessions and compared
the state values in order to identify this implementation problem. If the state
remains unchanged, the site is potentially vulnerable to a “state reuse” attack.
Our crawler collected and stored all authorization requests. We later extracted
the state values from the URL and compared them to each other. The analysis
disclosed 17 out of 270 (6.3%) sites reusing the same state values. Table 3 in
the last column shows the number of discovered test cases with constant state
parameter for each classification. 16 out of 17 (94.1%) were found vulnerable to
the CSRF against redirect-uri. A manual analysis showed that the use of a
popup-based login prevented the completion of OCSRF attack.

The presence of a constant state value does not provide any additional
protection to the OAuth flow as a malicious user can easily assess the existence
of a “state reuse” vulnerability and include the same unchanged parameter in
every attack attempt. Finally, a web application was classified as not vulnerable
by the crawler (Table 3, classification 7).

Popup-Based Login. Some sites open a popup window during the login pro-
cess. The developed crawler correctly handles the opening of multiple browser
windows, switching the control from one to the other. Selenium has the capability
to check if a secondary window is opened or closed and deal with it properly.

In some cases, the usage of a popup provides unintended protection against
OCSRF attack. As an instance, we discovered one application which is not
exploitable. In that case, a popup window is opened when the «Login with
Facebook» button is clicked. Our crawler correctly extracts the authorization
response generated for the attacker. When the URL is opened within the vic-
tim’s browser session, the redirection endpoint on the target site is reached.
The page response contains a few lines of JavaScript in which a function of the
window.opener object is invoked. Since the attack URL is called directly from
the address bar of the victim’s browser and there is no opener window, an error
is generated and the attack would not be completed.

However, this login architecture cannot be considered as an effective OCSRF
mitigation because it does not prevent the attack from being executed with
other techniques. For instance, the domain with the constant state appears to
be vulnerable to a specifically crafted attack using a POST request. When the

The Full Gamut of an Attack 37

login popup calls the JavaScript function in the main window, a script generates
a POST request to an internal endpoint, providing the authorization code as
a body parameter. The client subsequently continues the flow, contacting the
authorization server to receive a valid access token. To bypass the error and
complete the attack, it is sufficient to replicate the POST request using a form
from a domain which is under the attacker’s control. Therefore, popup-based
logins do not always prevent our crawler from successfully performing attacks.
We found evidence of several sites using this access strategy and many of them
were exploited successfully using simple techniques.

6.5 Limitations

Some technologies built specifically to detect bots and crawlers and to interfere
with their operation. We found evidence of several protections implemented by
the sites tested to prevent automated login and browsing, such as CAPTCHA
and similar human verification systems. An attack could fail due to the pres-
ence of a properly implemented OCSRF protection or because of the sporadic
intervention of a bot detection system. However, this does not undermine the
presented results as they indicate a notable lower bound for vulnerable sites.

The performed tests were not exempt from false positives. Our analysis
revealed that marker information is sometimes present even if the login was
not performed correctly. We verified all successful attacks by manual analysis
in order to avoid including false positives which were mistakenly considered as
successful in our automated crawler. Another source of errors in testing is the
occurrence of temporary service unavailability. Even a highly available system
has periods of downtime, for instance due to system failures, bad network con-
ditions, or scheduled maintenance. We manually assessed the presence of these
classification errors. For all the reasons outlined above, the sites classified as
vulnerable by the crawler do not represent a comprehensive list but only a rea-
sonably lower bound for the number the vulnerable sites in our analyzed candi-
date sites including high profile sites. This indicates the requirements of OCSRF
countermeasures and the significance of the implementation mistakes which have
been captured through our carefully designed attack strategies.

7 Mitigation

The OAuth 2.0 standard clearly states that developers must implement CSRF
protection, by using a value that binds the authorization request to the browser
session. For this purpose, the use of the state parameter is strongly recommended.
The empirical evidence gathered in our work suggests that still today many
OAuth implementations are vulnerable due to the absence of the state value
(13%). Even when the parameter is correctly included inside the authorization
URI, often it is not properly handled and validated (27%). Additionally, more
than 5% of the applications tested reuse the same constant string.

38 M. Benolli et al.

Lack of adherence to the standard leaves a significant portion of websites
using the OAuth 2.0 flow vulnerable to OCSRF attacks. Undeniably, identity
providers have the responsibility to request the inclusion of suitable security
measures. In Facebook Login the state parameter is not mandatory, and the
flow works correctly also without it. The provided documentation does not help
developers understand the importance of this security countermeasure and the
absolute need to introduce it. At the time of writing, the examples provided do
not mention that the parameter must be a random string. It is not specified
how its value should be generated and there are no details about the validation
process. The state value used in the practical examples is "state123abc", which
is also misleading as it does not help developers understand the need to make
the parameter not guessable. The documentation provided by Facebook is not
sufficient for a developer to build a working and secure login flow.

Alternative mitigations to OCSRF attacks involve the analysis of HTTP
headers. Li et al. [14] proposed a technique based on the analysis of the Referer
header field. Their strategy involves the introduction of an additional valida-
tion that must be performed by the relying party. When the client application
receives the authorization response from the identity provider, it must analyse
the Referer header. If the address contained in the field belongs to the relying
party or to the identity provider domain, the authorization response is consid-
ered legitimate, otherwise it is discarded. The technique allows preventing the
execution of OCSRF initiated from domains under the control of an attacker.

This mitigation was used inside a browser extension named OAuthGuard
[15], a vulnerability scanner developed with the aim of providing real-time pro-
tection against common OAuth vulnerabilities to end-users. Even if this solution
is technically valuable and relatively easy to implement, its real impact in pro-
tecting against the perils of OCSRF attacks is directly related to the number
of users who employ it. From the perspective of a developer who is made aware
of the threats associated with OCSRF attacks, focusing on generating a secure
flow that involves the use of the state parameter represents probably still the
best solution.

8 Conclusions

Our work is mainly focused on the analysis of the CSRF attack against
redirect_uri, a well-known and documented OAuth 2.0 vulnerability. Our
security assessment revealed that many actual implementations of OAuth-based
SSO services are vulnerable to the considered attack. The reason behind the
prevalence of this class of vulnerabilities is related to the complexity of imple-
menting effective mitigations and to the absence of tools to reliably detect the
threats. As a future work, we plan to test similar strategies also for other OCSRF
attacks.

We designed a wide range of different, including novel, attack strategies,
considering different possible implementation weaknesses and the state of the
victim’s browser at the time of the attack. Our analysis showed that several

The Full Gamut of an Attack 39

enabling factors influence the feasibility of the attack and play a major role in
preventing it or increasing its chances of success, augmenting the overall risk. We
inspected several under-explored aspects of the vulnerability, trying to cover dif-
ferent areas of interest, and to expand our knowledge and understanding about
the impact of the attack in different scenarios. The large number of considered
test cases helped us to discover numerous well-hidden vulnerabilities and imple-
mentation mistakes. We conducted a large-scale analysis based on the approach
presented, to assess the presence of OCSRF vulnerabilities in more than 300 sites
implementing the Facebook Login flow. More than a third of them were found
vulnerable to at least one of the designed attack scenarios. This result demon-
strates that this security threat still represents a critical problem for OAuth-
based authentication systems and that it probably deserves more attention from
researchers and developers.

References

1. Bai, G., et al.: Authscan: automatic extraction of web authentication protocols
from implementations. In: NDSS (2013)

2. Bansal, C., Bhargavan, K., Delignat-Lavaud, A., Maffeis, S.: Discovering concrete
attacks on website authorization by formal analysis 1. J. Comput. Secur. 22(4),
601–657 (2014)

3. Barth, A., Jackson, C., Mitchell, J.C.: Robust defenses for cross-site request forgery.
In: Proceedings of the 15th ACM Conference on Computer and Communications
Security, pp. 75–88 (2008)

4. Calzavara, S., Focardi, R., Maffei, M., Schneidewind, C., Squarcina, M., Tempesta,
M.: {WPSE}: fortifying web protocols via browser-side security monitoring. In:
27th {USENIX} Security Symposium ({USENIX} Security 2018), pp. 1493–1510
(2018)

5. Farooqi, S., Zaffar, F., Leontiadis, N., Shafiq, Z.: Measuring and mitigating oauth
access token abuse by collusion networks. In: Proceedings of the 2017 Internet
Measurement Conference, pp. 355–368 (2017)

6. Fett, D., Küsters, R., Schmitz, G.: SPRESSO: a secure, privacy-respecting single
sign-on system for the web. In: Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pp. 1358–1369. ACM (2015)

7. Fett, D., Küsters, R., Schmitz, G.: A comprehensive formal security analysis of
OAuth 2.0. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1204–1215. ACM (2016)

8. HackerOne: Hackerone bug bounty platform (2020). https://www.hackerone.com/
9. Hardt, D.: The OAuth 2.0 authorization framework. RFC 6749, RFC Editor,

October 2012. http://www.rfc-editor.org/rfc/rfc6749.txt. http://www.rfc-editor.
org/rfc/rfc6749.txt

10. Homakov, E.: The most common OAuth2 vulnerability. His Blog at (2012)
11. Kerschbaum, F.: Simple cross-site attack prevention. In: 2007 Third Interna-

tional Conference on Security and Privacy in Communications Networks and the
Workshops-SecureComm 2007, pp. 464–472. IEEE (2007)

12. Li, F., et al.: You’ve got vulnerability: exploring effective vulnerability notifications.
In: 25th {USENIX} Security Symposium ({USENIX} Security 2016), pp. 1033–
1050 (2016)

https://www.hackerone.com/
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc6749.txt

40 M. Benolli et al.

13. Li, W., Mitchell, C.J.: Security issues in OAuth 2.0 SSO implementations. In:
Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS,
vol. 8783, pp. 529–541. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13257-0_34

14. Li, W., Mitchell, C.J., Chen, T.: Mitigating CSRF attacks on OAuth 2.0 and
OpenID connect. arXiv preprint arXiv:1801.07983 (2018)

15. Li, W., Mitchell, C.J., Chen, T.: Oauthguard: protecting user security and privacy
with OAuth 2.0 and OpenID connect. In: Proceedings of the 5th ACM Workshop
on Security Standardisation Research Workshop, pp. 35–44 (2019)

16. Lodderstedt, T., Bradley, L.F.: draft-ietf-oauth-security-topics-15 (2020). https://
tools.ietf.org/html/draft-ietf-oauth-security-topics-15

17. Mirheidari, S.A., Arshad, S., Onarlioglu, K., Crispo, B., Kirda, E., Robertson,
W.: Cached and confused: web cache deception in the wild. In: 29th {USENIX}
Security Symposium ({USENIX} Security 2020), pp. 665–682 (2020)

18. Mladenov, V., Mainka, C., Schwenk, J.: On the security of modern single
sign-on protocols: second-order vulnerabilities in openid connect. arXiv preprint
arXiv:1508.04324 (2015)

19. OAuth.net: User authentication with OAuth 2.0 (2020). https://oauth.net/
articles/authentication/. Accessed 30 July 2020

20. Pai, S., Sharma, Y., Kumar, S., Pai, R.M., Singh, S.: Formal verification of OAuth
2.0 using alloy framework. In: 2011 International Conference on Communication
Systems and Network Technologies, pp. 655–659. IEEE (2011)

21. Shernan, E., Carter, H., Tian, D., Traynor, P., Butler, K.: More guidelines than
rules: CSRF vulnerabilities from noncompliant OAuth 2.0 implementations. In:
Almgren, M., Gulisano, V., Maggi, F. (eds.) DIMVA 2015. LNCS, vol. 9148, pp.
239–260. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20550-2_13

22. Stock, B., Pellegrino, G., Rossow, C., Johns, M., Backes, M.: Hey, you have a
problem: on the feasibility of large-scale web vulnerability notification. In: 25th
{USENIX} Security Symposium ({USENIX} Security 2016), pp. 1015–1032 (2016)

23. Sudhodanan, A., Carbone, R., Compagna, L., Dolgin, N., Armando, A., Morelli,
U.: Large-scale analysis & detection of authentication cross-site request forgeries.
In: 2017 IEEE European Symposium on Security and Privacy (EuroS&P), pp.
350–365. IEEE (2017)

24. Sumongkayothin, K., Rachtrachoo, P., Yupuech, A., Siriporn, K.: OVERSCAN:
OAuth 2.0 scanner for missing parameters. In: Liu, J.K., Huang, X. (eds.) NSS
2019. LNCS, vol. 11928, pp. 221–233. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-36938-5_13

25. Sun, S.T., Beznosov, K.: The devil is in the (implementation) details: an empirical
analysis of OAuth SSO systems. In: Proceedings of the 2012 ACM Conference on
Computer and Communications Security, pp. 378–390 (2012)

26. Lodderstedt, T.: OAuth 2.0 threat model and security considerations. RFC 6819,
RFC Editor, January 2013. https://www.rfc-editor.org/rfc/rfc6819.txt. https://
www.rfc-editor.org/rfc/rfc6819.txt

27. Wang, D.Y., Savage, S., Voelker, G.M.: Cloak and dagger: dynamics of web search
cloaking. In: Proceedings of the 18th ACM Conference on Computer and Commu-
nications Security, pp. 477–490 (2011)

28. Wang, R., Chen, S., Wang, X.: Signing me onto your accounts through facebook
and google: a traffic-guided security study of commercially deployed single-sign-on
web services. In: 2012 IEEE Symposium on Security and Privacy, pp. 365–379.
IEEE (2012)

https://doi.org/10.1007/978-3-319-13257-0_34
https://doi.org/10.1007/978-3-319-13257-0_34
http://arxiv.org/abs/1801.07983
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-15
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-15
http://arxiv.org/abs/1508.04324
https://oauth.net/articles/authentication/
https://oauth.net/articles/authentication/
https://doi.org/10.1007/978-3-319-20550-2_13
https://doi.org/10.1007/978-3-030-36938-5_13
https://doi.org/10.1007/978-3-030-36938-5_13
https://www.rfc-editor.org/rfc/rfc6819.txt
https://www.rfc-editor.org/rfc/rfc6819.txt
https://www.rfc-editor.org/rfc/rfc6819.txt

The Full Gamut of an Attack 41

29. Wang, R., Zhou, Y., Chen, S., Qadeer, S., Evans, D., Gurevich, Y.: Explicating
SDKS: uncovering assumptions underlying secure authentication and authoriza-
tion. In: 22nd {USENIX} Security Symposium ({USENIX} Security 2013), pp.
399–314 (2013)

30. Yang, R., Li, G., Lau, W.C., Zhang, K., Hu, P.: Model-based security testing:
an empirical study on OAuth 2.0 implementations. In: Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security, pp. 651–
662 (2016)

31. Zhou, Y., Evans, D.: SSOScan: automated testing of web applications for single
sign-on vulnerabilities. In: 23rd {USENIX} Security Symposium ({USENIX} Secu-
rity 2014), pp. 495–510 (2014)

	The Full Gamut of an Attack: An Empirical Analysis of OAuth CSRF in the Wild
	1 Introduction
	2 Background
	2.1 OAuth
	2.2 Login CSRF
	2.3 State Parameter

	3 OAuth Cross Site Request Forgery
	3.1 Threat Model
	3.2 Impact
	3.3 Enabling Factors

	4 Related Work
	5 Methodology
	5.1 Phase 1: Target Selection
	5.2 Phase 2: Measurement Setup
	5.3 Phase 3: OCSRF Discovery
	5.4 Ethical Consideration

	6 Analysis
	6.1 Measurement Overview
	6.2 state Parameter
	6.3 Case Studies
	6.4 Notable Observations
	6.5 Limitations

	7 Mitigation
	8 Conclusions
	References

