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Abstract. Android malware detection is a significant problem that
affects billions of users using millions of Android applications (apps) in
existing markets. Thiss paper proposes PetaDroid, a framework for accu-
rate Android malware detection and family clustering on top of static
analyses. PetaDroid automatically adapts to Android malware and benign
changes over time with resilience to common binary obfuscation tech-
niques. The framework employs novel techniques elaborated on top of
natural language processing (NLP) and machine learning techniques to
achieve accurate, adaptive, and resilient Android malware detection and
family clustering. We extensively evaluated PetaDroid on multiple refer-
ence datasets. PetaDroid achieved a high detection rate (98–99% f1-score)
under different evaluation settings with high homogeneity in the produced
clusters (96%). We conducted a thorough quantitative comparison with
state-of-the-art solutions MaMaDroid, DroidAPIMiner, MalDozer, in which
PetaDroid outperforms them under all the evaluation settings.

1 Introduction

Android OS’s popularity has increased tremendously since the last decade. It
is undoubtedly an appropriate choice for smart mobile devices such as phones
and tablets or the internet of things devices such as TVs due to its open-source
license and the massive number of useful apps developed for this platform (about
4 Million apps in 2019 [2]). Nevertheless, malicious apps target billions of Android
users through centralized app markets. The detected malicious apps increased by
40% in 2018-Q3 compared to the same period in 2017 [1]. Google Play employs
a vetting system named Bouncer to detect malicious apps through static and
dynamic analyses. Despite these analyses, many malicious apps1 were able to
bypass Bouncer and infect several hundred thousand devices2. Therefore, there
is a dire need for accurate, adaptive, yet resilient Android malware detection
systems for the app market scale.

1.1 Problem Statement

In this paper, we identify the following gaps in the state-of-the-art solutions for
Android malware detection:
1 https://tinyurl.com/y4qdtuy9.
2 https://tinyurl.com/y4mckwxm.
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P1: The accuracy of Android malware detection systems tends to decrease
over time due to different factors: (1) variations in existing malware family, (2)
new malware families, (3) and new Android APIs in benign and malicious apps.
These factors are mostly reflected in the changes in Android API call sequences in
malicious and benign apps. Nevertheless, these changes are incremental in most
cases compared to the existing apps. In this context, we consider two problems:
(1) The resiliency of the detection systems that use machine learning models
[31] to changes over time, (2) and the possibility of automatic adaptation to the
new changes [40].

P2: Android malware family attribution is an important problem in the
realm of malware detection. The malware family attribution could be impor-
tant essential to define the threats3 of the detected malware [28]. However, few
existing solutions [7] provide Android malware family attribution. Furthermore,
these solutions rely on supervised learning where prior knowledge of the families
is required [12]. However, such knowledge is hard to get and not realistic in many
cases, especially for new malware families4.

P3: Malware developers employ various obfuscation techniques to thwart
detection attempts. Obfuscation resiliency is a key requirement in modern mal-
ware fingerprinting that applies static analyses. Few solutions address the obfus-
cation issue [36,40] in the context of Android malware detection, more specifi-
cally, the resiliency to common obfuscations and binary code transformations.

1.2 Proposed Solution

In this paper, we propose PetaDroid, an accurate, adaptive, resilient, and yet
efficient Android malware detection and family clustering using natural language
processing (NLP) and deep learning techniques on top of static analysis features.
In PetaDroid, we aim to address the previously mentioned problems as follows:

1. Our fundamental intuition for time resiliency and adaptation is that
Android apps are changing over time incrementally. Benign apps embrace new
Android APIs, deprecations, and components gracefully to do not disturb the
user experience. Malware developers aim to target the maximum devices by
employing stable and cross-Android version APIs. We argue that PetaDroid can
fingerprint malicious apps within a time window with high confidence because
the application still contains enough patterns of similarity to known samples.

2. PetaDroid goes a step further in the detection process by clustering the
detected samples into groups with high similarity. We exclusively group highly
similar samples, most likely of the same malware family. PetaDroid family attri-
bution is found upon the assumption that malicious applications tend to have
similar characteristics in the Android Dalvik bytecode code. We leverage this
assumption to build an automatic and unsupervised malware family tagging
system using deep neural network auto-encoder for sample digest generation on
top of InstNGram2Bag features (based on NLP bag of words). Using the DBScan

3 https://tinyurl.com/yydg5vew.
4 https://tinyurl.com/y8rc6q89.
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[11] clustering algorithm, we cluster the most similar samples from the detected
malicious apps.

3. PetaDroid introduces code fragments randomization during training and
deployment phases to enhance the obfuscation resiliency. We artificially apply
random permutations to change the order of code basic-blocks without alter-
ing the basic-block instructions. We consider a code basic-block as a possible
micro-action in the app execution flows. Therefore, we randomize the app exe-
cution flows without affecting the micro-actions within the flow to emulate code
transformation during the training and deployment phases. Code fragment ran-
domization strengthens the obfuscation robustness of PetaDroid, as shown in
Sect. 4.3.

1.3 Contributions and Outline

The main contributions of this paper are:

(1) We propose a novel adaptation technique for Android malware detection
to automatically adapt the detection system. The proposed techniques rely
on the confidence probability of the detection ensemble to collect extension
training datasets from received samples during the deployment (Sect. 2.2).

(2) We propose a novel fragment randomization technique to boost the detec-
tion system resiliency to common code-obfuscation techniques. In this tech-
nique, we randomize the order of code basic-blocks without affecting the
basic-blocks instructions during the training and the deployment phases
(Sect. 2.2).

(3) We propose PetaDroid, an accurate and efficient malware detection and clus-
tering framework based on code static analyses, NLP, and machine learning
techniques. In PetaDroid, we propose an ensemble of CNN models on top
of a code embedding model, namely Inst2Vec, to accurately detect mal-
ware with probability confidence (Sect. 2.2). We released the source code of
PetaDroid to the community in https://github.com/mouatez/petadroid.

(4) We extensively evaluate PetaDroid to assess its effectiveness and efficiency
on different reference datasets of PetaDroid under various evaluation set-
tings (Sect. 2.1).

2 PetaDroid

In this section, we detail PetaDroid methodology and its components.

2.1 Android App Representation

In this section, we present the preprocessing of Dalvik code and its representation
into a canonical instructions sequence. We seek the preservation of the maximum
information about apps’ behaviors while keeping the process very efficient. The
preprocessing begins with the disassembly of an app bytecode to Dalvik assembly
code, as depicted in Fig. 1.

https://github.com/mouatez/petadroid
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Fig. 1. Android assembly from a malware sample

We model the Dalvik assembly code as code fragments where each fragment
is a class’s method code in the Dalvik assembly. It is a natural separation because
Dalvik code D is composed of a set of classes D = {C1, C2, . . . Cs}. Each class Ci

contains a set of methods C = {M1,M2, . . . Mk}, where we find actual assem-
bly code instructions. We preserve the order of Dalvik assembly instructions
within methods while ignoring the global execution paths. Method execution is
a possible micro-behavior for an Android app, while a global execution path is
a likely macro-behavior. An Android app might have multiple global execution
paths based on external events. In contrast, Android malware tends to have one
crucial global execution path (malicious payload) and other ones to distract mal-
ware detection systems. The malware could produce variations for the payload
global execution path. However, it still depends on the micro-behavior to pro-
duce another global one. PetaDroid assembly preprocessing produces a multiset
of sequences P = {S1, S2, . . . Sh} where each sequence S contains an ordered
instruction sequence S = 〈I1, I2, . . . Iv〉 of a class’s method. In other words, P
contains instruction sequences P = {〈I1, I2, . . . 〉1, 〈I1, I2, . . . 〉2, . . . 〈I1, I2, . . . 〉h}
where the order is only preserved inside individual sequences Si (the methods
instructions). Thus, a sequence S defines a possible micro-execution (or behav-
ior) from the Android app’s overall runtime execution.

As shown in Fig. 1, the Dalvik assembly is too sparse. We want to keep
the assembly instruction skeleton that reflects possible runtime behaviors with
less sparsity. In PetaDroid, we propose a canonical representation for Dalvik
assembly code, as shown in Fig. 2. The key idea is to keep track of the Android
platform APIs and objects utilized inside the method assembly. To fingerprint
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Fig. 2. Canonical representation of Dalvik assembly

malicious apps, the canonical representation will mostly preserve the actions
and the manipulated system objects, such as sending SMS action or getting
(setting) sensitive information objects. PetaDroid canonical representation covers
three types of Dalvik assembly instructions, namely: Method invocation, object
manipulation, and field access, as shown in Fig. 2. In the method invocation,
we focus on the method call, Package.ClassName.MethodName, the parameters
list, Package.ClassName, and the return type, Package.ClassName. In object
manipulation, we capture the class object, Package.ClassName, that is being
used. Finally, we track the access to system fields by capturing the field name,
Package.ClassName.FieldName, and its type, Package.ClassName. Our manual
inspections of Dalvik assembly for hundreds of malicious and benign samples
shows that these three forms cover the essential of Dalvik assembly instructions.

PetaDroid instruction parser keeps only the canonical representation and
ignores the rest. For example, our experiments show that Dalvik opcodes add a
lot of sparsity without enhancing the malware fingerprinting performance. On
the contrary, it could negatively affect overall performance, which is shown in
previous solutions [29]. The final step in preprocessing a method M (see Fig. 1)
is to flatten the canonical representation of a method into a single sequence S.

We keep only the Android platform related assets like API, classes, and
system fields in the final method’s sequence S. We maintain a vocabulary dic-
tionary (key: value) in the form of (Androidassets : identifier) (for example
(Android/telephony/TelephonyManager : 439)) of all Android OS assets (all
versions) to filter and map Android assets to unique identifiers (unique integer
for a given Android assets) for the method instruction sequence during the pre-
processing. The output of the app representation phase is a list of sequences
P̂ = {Sc,1, Sc,2, . . . Sc,h}. Each sequence is an ordered canonical instruction rep-
resentation of one method. In the following, we summarize the notations used
in the rest of the paper (Table 1):

2.2 Malware Detection

In this section, we present the PetaDroid malware detection process using CNN
on top of Inst2Vec embedding features. The detection process starts from a
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Table 1. Notation summary

Notation Description Format

D Dalvik assembly code of one Android App Raw text

C Dalvik Java Class Raw text

M Dalvik Java Method Raw text

S Sequence of extracted instructions of one Dalvik Java

Method M

List of Dalvik raw text instructions

P Multiset of methods’ sequences S Multiset of sequences

Sc Sequence of canonical instructions generated from S

using V

List of canonical instruction IDs

P̂ Multiset of methods’ sequences Sc Multiset of sequences

Pc The result of shuffling and concatenating of all Sc Sequence of canonical instructions

F Fragment is a truncated portion from Pc List of canonical instructions

CNNModel Classification model based on Convolutional Neural

Network (CNN)

Deep learning model

Φ Ensemble of classification models

Φ = {CNNModel1, CNNModel2, . . . CNNModelφ}
Set of deep learning models

y Dataset label Malware or not

ŷ Prediction likelihood of the classification models

ŷ = Φ(F )

Probability

ζ Detection threshold for the general decision strategy Probability threshold

η Detection threshold for the confidence decision strategy Probability threshold

multiset of discretized canonical instruction sequences P̂ = {Sc,1, Sc,2, . . . Sc,h}.
Notice that P̂ is a multiset and not a set since it might contain duplicated
sequences. The duplication comes from having the same Dalvik method’s code
in two (or more) distinct Dalvik classes. PetaDroid CNN ensemble produces a
detection result together with maliciousness and benign detection probabilities
for a given sample. To achieve automatic adaptation, we leverage the detec-
tion probabilities to automatically collect an extension dataset that PetaDroid
employs to build new CNN ensemble models.

Fig. 3. Example of fragment generation
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Fragment Detection. Fragment-based detection is a key technique in
PetaDroid. A fragment F is a truncated portion from the beginning of the
concatenation Pc of P̂ = {Sc,1, Sc,2, . . . Sc,h} as shown in Fig. 3. The size |F |
is the number of canonical instructions in the fragment F , and it is a hyper-
parameter in PetaDroid. Our grid search for the best |F | hyper-parameter result
|F | = 10k for the current version of PetaDroid. For a sequence Sc,i, the order of
canonical instructions is preserved within a method. In other words, we guar-
antee the preservation of order inside the method sequence or what we refer
to as a micro-action. However, no specific order is assumed between meth-
ods’ sequences or what we refer to as macro-action (or behavior). On the con-
trary, before we truncate Pc into size |F |, we apply random permutations on
P̂ to produce a random order in the macro-behavior. The randomization hap-
pens in every access, whether it is during training or deployment phases. Each
Android sample has h!

(h−k)! possible permutations for the methods’ sequences

P̂ = {Sc,1, Sc,2, . . . Sc,h}, where h is the number of methods’ sequence in a given
Android app, and k is the number of sampled sequences. The concatenation of
the sampled k sequences must be greater than |F |.

Inst2Vec Embedding. Inst2Vec is based on word2vec [30] technique to pro-
duce an embedding vector for each canonical instruction in our sequences.
Inst2Vec is trained on instruction sequences to learn instruction semantics from
the underlying contexts. This means that Inst2Vec learns a dense representation
of a canonical instruction that reflects the instruction co-occurrence and context.
The produced embeddings capture the semantics of instructions (interpreted by
geometric distances). Furthermore, embedding features show high code finger-
printing accuracy and resiliency to common obfuscation techniques [10].

Classification Model. Our single CNN model takes Inst2Vec features, which
are a sequence of embeddings; each embedding captures the semantics of an
instruction. The temporal CNN [23], or 1-dimensional CNN [42], is the work-
ing core component in the PetaDroid single classification model. We choose to
build our classification models based on CNN architecture over recurrent neural
networks (RNN) such as LSTM or GRU. Due to the efficiency of CNN during
the training and the deployment compared to RNN. In the training phase,
the CNN models take on average 0.05 s per batch (32 samples), which is five
times faster than RNN models in our experiments. The CNN model converges
early (starting from 10 epochs) compared to the RNN model (starting from 30
epochs). In the deployment phase, the CNN model’s inference is, on average,
five times faster than RNN models. Both neural network architecture gives very
similar detection results in our experiments. However, our automatic adaptation
technique will benefit from the efficiency of CNN models to rapidly build new
models using large datasets. The non-linearity used in our model employ the rec-
tified linear unit (ReLUs) h(x) = max{0, x}. We used Adam [13] optimization
algorithm with a 32 mini-batch size and a 3e − 4 learning rate for 100 epochs
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in all our experiments. The chosen hyper-parameters are the results of empirical
evaluations to find the best values.

Detection Ensemble. PetaDroid detection component relies on an ensemble
Φ = {CNNModel1, CNNModel2, . . . , CNNModelφ}. Ensemble Φ is composed
of φ single CNN models. The number of single CNN models in the ensemble φ
is a hyper-parameter. We choose to be φ = 6, which is a trade-off of between
maximum effectiveness on malware detection with the highest efficiency possible
base on our evaluation experiments.

As mentioned previously, PetaDroid trains each CNN model for the number
of epochs (epochs = 100). In each epoch, we compute LossT and LossV , the
training and validation losses, respectively, and save a snapshot of the single
CNN model parameters. LossT and LossV are the log loss across training and
validation sets:

p = CNNModelθ(y = 1|F )

loss(y, p) = −(y log(p) + (1 − y) log(1 − p)),

LossT =
−1

mtrain

mtrain∑

i=1

loss(yi, pi),

LossV =
−1

mvalid

mvalid∑

i=1

loss(yi, pi),

Where p is the maliciousness likelihood probability given a fragment F (a trun-
cated concatenation of canonical instructions Pc) and model parameters θ (Sect.
2.1). PetaDroid selects the top φ models automatically from the saved model
snapshots that have the lowest training and validation losses LossT and LossR,
respectively.

ŷ = Φ(x) =
1
φ

(
φ∑

i

CNNModeli(x)

)
(1)

PetaDroid CNN ensemble Φ produces a maliciousness probability likelihood
by averaging the likelihood probabilities of multiple CNN models, as shown in
Eq. 1.

Confidence Analysis. PetaDroid ensemble computes the maliciousness prob-
ability likelihood ProbMal given a fragment F , as follows:

ŷ = Φ(F ), P robMal = ŷ, P robBen = (1 − ŷ)

Previous Android malware detection solutions, such as [18,31], utilize a sim-
ple detection technique (we refer to it as a general decision) to decide on the
maliciousness of Android apps. In the general decision, we compute the gen-
eral threshold ζ ∈ [0, 1] that achieves the highest detection performance on the
validation dataset Xvalid. In the deployment phase (or evaluation in our case
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on Xtest), The general decision Dζ utilize the computed threshold ζ to make
detection decisions:

Dζ =

{
Malware ProbMal > ζ

Benign ProbMal <= ζ

PetaDroid employs f1-score as a detection performance metric to automati-
cally select ζ and to report the general detection performance on the test set
Xtest during our evaluation, in Sect. 4. We choose f1-score as our detection
performance metric due to its simplicity, and its measurement reflects the real-
ity under unbalanced datasets. The general decision provides a firm decision for
every sample. However, security practitioners might prefer dealing with decisions
that have associated confidence values and filter out less-confident decisions for
further investigations. In a real deployment, we want as many detection decisions
with high confidence and filter out the few uncertain apps with low confidence
probability. Unfortunately, the general decision strategy that has been used by
most previous solutions does not provide such functionality. For this purpose,
we propose the confidence decision strategy, a mechanism to automatically
filter out apps with uncertain decisions. PetaDroid computes a confidence thresh-
old η that achieves a high detection performance (f1-score) and a negligible error
rate (false negative and false positive rates) in the validation dataset. In other
words, we add the error rate constraint to the system that computes the detec-
tion threshold η from Xvalid. In the deployment, we make the confidence-based
decision as follow:

Dη =

⎧
⎪⎨

⎪⎩

Uncertain ProbMal < η ∧ ProbBen < η

Malware ProbMal >= η ∧ ProbMal > ProbBen

Benign ProbBen >= η ∧ ProbBen > ProbMal

Automatic Adaptation. In this section, we describe our mechanism to
adapt to Android ecosystem changes over time automatically. The key idea
is to re-train the CNN ensemble on new benign and malware samples peri-
odically to learn the latest changes. To enhance the automatic adaptation, we
leverage the confidence analysis to collect an extension dataset that captures
the incremental change over time. Initially, we train PetaDroid ensemble using
Xbuild = {Xtrain +Xvalid}. Afterward, PetaDroid leverages the confidence detec-
tion strategy to build an extension dataset Xexten from test dataset Xtest from
high-confidence detected apps. In a real deployment, Xtest is a stream of Android
apps that needs to be checked for maliciousness by the vetting system. The
test dataset Xtest = {XCertain,XUncertain} is composed of apps having a high-
confidence decision (XCertain or Xexten) and apps having uncertain decisions
XUncertain. In the deployment, PetaDroid accumulates from high-confidence apps
over time to form Xexten dataset. Periodically, PetaDroid utilizes the extension
dataset Xexten to extend the original Xbuild and later updates the CNN ensem-
ble models. In our evaluation, and after updating the CNN ensemble, we report
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updated general performance and updated confidence-based perfor-
mance, respectively the general and confidence-based performance of the new
trained CNN ensemble on Xtest. These metrics answer the question: what would
be the detection performance on Xtest = {XCertain,XUncertain} after we build
the ensemble on XNewBuild = {XCertain,Xbuild}? In other words, PetaDroid
reviews previous detection decisions using the new CNN ensemble and drives
new general and confidence-based performance.

2.3 Malware Clustering

In this section, we detail the family clustering system. PetaDroid clustering aims
to group the previously detected malicious apps (Sect. 2.2) into highly similar
malicious apps groups, which are most likely part of the same malware fam-
ily. PetaDroid clustering process starts from a multiset of discretized canonical
instruction sequences P = {Sc,1, Sc,2, . . . Sc,h} of the detected malicious apps. We
introduce the InstNGram2Vec technique and deep neural network auto-encoder
to generate embedding digests for malicious apps. Afterward, we cluster malware
digests using the DBScan [11] clustering algorithm to generate malware family
groups. Notice that our clustering system (DBScan [11]) requires to represent
malware samples by one feature vector for each sample instead of a list of embed-
dings as in Inst2Vec for PetaDroid classification. For this reason, we introduce
InstNGram2Vec technique that automatically represents malware samples as fea-
ture vectors without an explicit manual feature selection. InstNGram2Vec is a
technique that maps concatenated instruction sequences to fixed-size embeddings
employing NLP bag of words (N-grams) and feature hashing [35] techniques.

Auto-Encoder. We develop a deep neural auto-encoder through stacked neural
layers of encoding and decoding operations The proposed auto-encoder learns the
latent representation of Android apps in an unsupervised way. The unsupervised
learning of the auto-encoder is done through the reconstruction of the unlabeled
hashing vectors HV = {hv0, hv1, . . . hvDMal} of random Android apps. Notice
that we do not need any labeling during the training of PetaDroid auto-encoder,
off-the-self Android apps are sufficient.

Family Clustering. PetaDroid clusters the detected malware digests Z = {z0,
z1, . . . ,zDMal} into groups of malware with high similarity and most likely
belonging to the same family. In PetaDroid clustering: First, we use an exclu-
sive clustering mechanism. The clustering algorithm only groups highly similar
samples and tags the rest as non-clustered. This feature could be more con-
venient for real-world deployments since we might not always detect malicious
apps from the same family, and we would like to have family groups only if there
are groups of the sample malware family. To achieve this feature, we employ
the DBScan clustering algorithm. Second, as an optional step, we find the best
cluster for the non-cluster samples, from the clusters produced previously by
computing the euclidean similarity between a given non-cluster sample and a
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given cluster samples. We call this step the family matching. In the evaluation,
we report homogeneity and coverage metric for the clustering before and after
applying this optional step. DBScan, in contrast with clustering algorithms such
as K-means, produces clusters with high confidence. The most important metrics
in PetaDroid clustering is the homogeneity of the produces clusters.

3 Dataset

Our evaluation dataset contains 10 million Android apps as sampling space for
our experiments (over 100 TB) collected across the last ten years from August
2010 to August 2019, as depicted in Table 2. The extensive coverage in size (10
M), time range (06-2010 to 08-2019), and malware families (+300 family) make
the result of our evaluation quite compelling.

In Sect. 4.1 and 4.2, to evaluate PetaDroid detection and family clustering, we
leverage malware from reference Android malware datasets, namely: MalGenome
[44], Drebin [6], MalDozer [18], and AMD [38]. Also, we collected Android mal-
ware from VirusShare5 malware repository. In addition, we use benign apps from
AndroZoo [4] dataset (randomly sampling ≈ 100k apps from 7.4 Million benign
samples in each experiment). In the family clustering evaluation (Sect. 4.2), we
use only malware samples from the reference datasets.

Table 2. Evaluation datasets

Name #Samples #Families Time

MalGenome [44] 1.3K 49 2010–2011

Drebin [6] 5.5k 179 2010–2012

MalDozer [18] 21k 20 2010–2016

AMD [38] 25k 71 2010–2016

VirusShare8 33k / 2010–2017

MaMaDroid [31] 40k / 2010–2017

AndroZoo [4] 9.5M / 2010–Aug 2019

In the comparison (Sect. 5) between PetaDroid, MaMaDroid [27,31], and
DroidAPIMiner [3], we apply PetaDroid on the same dataset (benign and mal-
ware) used in MaMaDroid evaluation9 to measure the performance of PetaDroid
against state-of-the-art Android malware detection solutions.

To assess PetaDroid obfuscation resiliency (Sect. 4.3), we conduct an obfus-
cation evaluation on PRAGuard dataset10, which contains 11k obfuscated mali-
cious apps using common obfuscation techniques [26]. Besides, we generate over

5 https://VirusShare.com.
9 https://bitbucket.org/gianluca students/mamadroid code/src/master/.

10 http://pralab.diee.unica.it/en/AndroidPRAGuardDataset.

https://VirusShare.com
https://bitbucket.org/gianluca_students/mamadroid_code/src/master/
http://pralab.diee.unica.it/en/AndroidPRAGuardDataset
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100k benign and malware obfuscated Android apps employing DroidChameleon
obfuscation tool [33] using common obfuscation techniques and their combina-
tions.

To assess the adaptation of PetaDroid (Sect. 4.4), we employ the whole Andro-
Zoo11 [4] dataset (until August 2019), which contains 7.4 million benign apps
and 2.1 million malware apps (at least detected as malicious by three vendors),
by randomly sampling a dataset (100k malware and benign) in each experiment.
We rely on VirusTotal detection of multiple anti-malware vendors in (metadata
provided by AndroZoo repository) to label the samples. The dataset covers more
than ten years span of Android benign and malware apps [4].

4 Evaluation

In this section, we evaluate PetaDroid framework through a set of experiments
and settings involving different datasets.

4.1 Malware Detection

In this section, we report the detection performance of PetaDroid and the effect
of hyper-parameters on malware detection performance.

Detection Performance. Table 3 shows PetaDroid general and confidence-
based performance in terms of f1-score, recall, and precision metrics on the ref-
erence datasets. In the general performance, PetaDroid achieves a high f1-score
96–99% with a low false-positive rate (precision score of 96.4–99.5% in the gen-
eral detection). The detection performance is higher under confidence settings.
The f1-score is 99% and a very low false-positive rate (≈100k benign apps) with
a recall score of 99.8% on average. The confidence-based performance causes the
filtration of 1–8% low confidence samples from the testing set. In all our experi-
ments, the confidence performance flags ≈6% on average, as uncertain decisions,
which is a small and realistic value in a deployment with low false positives.

Table 3. General and confidence performances on various reference datasets

Name General (%) Confidence (%)
F1 - P - R F1 - P - R

Genome 99.1 - 99.5 - 98.6 99.5 - 100. - 99.0
Drebin 99.1 - 99.0 - 99.2 99.6 - 99.6 - 99.7
MalDozer 98.6 - 99.0 - 98.2 99.5 - 99.7 - 99.4
AMD 99.5 - 99.5 - 99.5 99.8 - 99.7 - 99.8
VShare 96.1 - 96.4 - 95.7 99.1 - 99.7 - 98.6

11 https://androzoo.uni.lu/.

https://androzoo.uni.lu/
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4.2 Family Clustering

In this section, we present the results of PetaDroid family clustering on refer-
ence datasets (only malware apps). Malware family clustering phase comes after
PetaDroid detects a considerable number of malicious Android apps. The num-
ber of detected apps could vary from 1k (MalGenome [44]) to +20k (Maldozer
[18]) samples depending on the deployment. We use homogeneity [34] and cov-
erage metrics to measure the family clustering performance. The homogeneity
metric scores the purity of the produced family clusters. A perfect homogeneity
means each produced cluster contains samples from only one malware family. By
default, PetaDroid clustering aims only to generate groups with confidence-based
while ignoring less certain groups. The coverage metrics score the percentage of
the clustered dataset with confidence. We also report the clustering performance
after applying the family matching (optional step) to cluster all the samples in
the dataset (100% coverage).

Table 4. The performance of the family clustering

Clustering metrics DBSCAN clustering After family matching

Homogeneity—Coverage Homogeneity—Coverage

Genome 90.00%—37% 79.67%—100%

Drebin 92.28%—49% 80.48%—100%

MalDozer 91.27%—55% 81.58%—100%

AMD 96.55%—50% 81.37%—100%

Table 4 summarizes the clustering performance in terms of homogeneity and
coverage scores before and after applying the family matching. First, PetaDroid
can produce clusters with high homogeneity 90–96% while keeping an accept-
able coverage, 50% on average. At first glance, 50% coverage seems to be a
modest result, but we argue that it is satisfactory because: (i) we could extend
the coverage, but this might affect the quality of the produced clusters. In the
deployment, high confidence clusters with minimum errors and acceptable cov-
erage might be better than perfect coverage (in the case of K-Means clustering
algorithm) with a high error rate. (ii) The evaluation datasets have long tail
malware families, meaning that most families have only a few samples. This
makes the clustering very difficult due to the few samples (less than five sam-
ples) in each malware family in the detected dataset. In a real deployment, we
could add non-cluster samples to the next clustering iterations. In this case, we
might accumulate enough samples to cluster for the long tail malware families.
Second, after applying the family matching, PetaDroid clusters all the samples
in the dataset (100% coverage) and homogeneity decreased to 80–82%, which is
acceptable.
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4.3 Obfuscation Resiliency

In this section, we report PetaDroid detection performance on obfuscated
Android apps. We experiment on: (1) PRAGuard obfuscation dataset [26]
(10k) and (2) obfuscation dataset generated using DroidChameleon [33] obfus-
cation tool (100k). In the PRAGuard experiment, we combine PRAGuard
dataset with 20k benign Android apps randomly sampled from the benign
apps of AndroZoo repository. We split the dataset equally into build dataset
Xbuild = {Xtrain,Xvalid} and test dataset Xtest. Table 5 presents the detection
performance of PetaDroid on different obfuscation techniques. PetaDroid shows
high resiliency to common obfuscation techniques by having an almost perfect
detection rate, 99.5% f1-score on average.

Table 5. PetaDroid obfuscation resiliency on PRAGuard dataset

ID Obfuscation techniques General performance (%)

F1 (%) P (%) R (%)

1 Trivial 99.4 99.4 99.4

2 String Encryption 99.4 99.3 99.4

3 Reflection 99.5 99.5 99.5

4 Class Encryption 99.4 99.4 99.5

5 (1) + (2) 99.4 99.4 99.4

6 (1) + (2) + (3) 99.4 99.3 99.5

7 (1) + (2) + (3) + (4) 99.5 99.4 99.6

Overall 99.5 99.6 99.4

In the DroidChameleaon experiment, we evaluate PetaDroid on other obfus-
cation techniques, as shown in Table 6. The generated dataset contains obfus-
cated benign (5k apps randomly sampled from AndroZoo) and malware samples
(originally from Drebin). In the building process of CNN ensemble, we only
train with one obfuscation technique (Table 6) and make the evaluation on the
rest of the obfuscation techniques. Table 6 reports the result of obfuscation
resiliency on DroidChameleon generated dataset. The results show the robust-
ness of PetaDroid. According to this experiment, PetaDroid is able to detect
malware obfuscated with common techniques even if the training is done on
non-obfuscated datasets. We believe that PetaDroid obfuscation resiliency comes
from the usage of (1) Android API (canonical instructions) sequences as features
in the machine learning development. Android APIs are crucial in any Android
app. A malware developer cannot hide API access, for example SendSMS, unless
the malicious payload is downloaded at runtime. Therefore, PetaDroid is resilient
to common obfuscations as long as they do not remove or hide API access calls.
(2) The other factor is fragment-randomization, which makes PetaDroid models
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robust to code transformation and obfuscation in general. We argue that train-
ing machine learning models on dynamic fragments enhances the resiliency of
the models against code transformation.

Table 6. Obfuscation resiliency on DroidChameleon dataset

Obfuscation techniques General performance

F1 (%) P (%) R (%)

No Obfuscation 99.7 99.8 99.6

Class Renaming 99.6 99.6 99.5

Method Renaming 99.7 99.7 99.7

Field Renaming 99.7 99.8 99.7

String Encryption 99.8 99.8 99.7

Array Encryption 99.8 99.8 99.7

Call Indirection 99.8 99.8 99.7

Code Reordering 99.8 99.8 99.7

Junk Code Insertion 99.8 99.8 99.7

Instruction Insertion 99.7 99.8 99.7

Debug Information Removing 99.8 99.8 99.7

Disassembling and Reassembling 99.8 99.8 99.7

4.4 Automatic Adaptation

PetaDroid automatic adaptation goes a step further beyond time resiliency (100k
benign and malicious apps every year). PetaDroid employs the confidence perfor-
mance to collect an extension dataset Xextend during the deployment. PetaDroid
automatically uses Xextend in addition to the previous build dataset as a new
build dataset Xbuild(t) = Xbuild(t−1) ∪ Xextend to build a new ensemble at every
new epoch. Table 7 depicts PetaDroid performance with and without auto-
matic adaptation. PetaDroid achieves very good results compared to the pre-
vious section. PetaDroid maintains an f1-score in the range of 83–95% during
all years. Without adaption, PetaDroid f1-score drops considerably starting from
2017. Table 7 shows the performance of revisiting detection decisions on previ-
ous Android apps Xtest (benign and malware) after updating PetaDroid ensemble
using Xbuild ∪Xextend,Xextend ⊆ Xtest, where the samples in Xextend have been
removed from Xtest. The update performance is significantly enhanced in the
overall detection during all years. Revisiting malware detection decisions is com-
mon practice in app market, (periodic full or partial scan the market’s apps),
which empowers the use case of PetaDroid automatic adaptation feature and the
update metric.
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Table 7. Performance of PetaDroid automatic adaptation

Year No update (F1%) General (F1%) Confidence (F1%) Update (F1%)

2014 98.2 97.0 97.9 99.7

2015 96.1 95.8 96.7 97.5

2016 93.0 93.3 94.8 96.4

2017 70.6 83.9 84.2 95.4

2018 54.8 87.6 91.6 93.8

2019 55.6 96.3 98.7 99.1

5 Comparative Study

In this section, we conduct a comparative study between PetaDroid and state-
of-the-art Android malware detection systems, namely: MaMaDroid [27,31],
DroidAPIMiner [3], and MalDozer [18]. Our comparison is based on applying
PetaDroid on the same dataset (malicious and benign apps) and settings that
MaMaDroid used in the evaluation (provided by the authors in [31]). The dataset
is composed of 8.5K benign and 35.5K malicious apps in addition to the Drebin
[6] dataset. The malicious samples are tagged by time; malicious apps from 2012
(Drebin), 2013, 2014, 2015, and 2016 and benign apps are tagged as oldbenign
and newbenign, according to MaMaDroid evaluation.

5.1 Detection Performance Comparison

Table 8 depicts the direct comparison between MaMaDroid and PetaDroid differ-
ent dataset combinations. In PetaDroid, we present the general and the confidence
performance in terms of f1-score. For MaMaDroid and DroidAPIMiner, we present
the original evaluation result [31] in terms of f1-score, which are equivalent to
the general performance in our case. Notice that we present only the best results
of MaMaDroid and DroidAPIMiner as reported in [31].

Table 8. Performance of MaMaDroid, PetaDroid, and DroidAPIMiner

Peta (F1%) MaMa (F1%) Miner (F1%)

General-Confidence

drebin& oldbenign 98.94–99.40 96.00 32.00

2013& oldbenign 99.43–99.81 97.00 36.00

2014& oldbenign 98.94–99.47 95.00 62.00

2014& newbenign 99.54–99.83 99.00 92.00

2015& newbenign 97.98–98.95 95.00 77.00

2016& newbenign 97.44–98.60 92.00 36.00
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As depicted in Table 8, PetaDroid outperforms MaMaDroid and
DroidAPIMiner in all datasets in the general performance. The detection per-
formance gap increases with the confidence-based performance. Notice that the
coverage in the confidence-based settings is almost perfect for all the experiments
in Table 8.

5.2 Efficiency Comparison

In Table 9, we report the required average time for MaMaDroid and PetaDroid
to fingerprint one Android app. PetaDroid takes 03.58 ± 04.21 s on average for
the whole process (DEX disassembly, assembly preprocessing, CNN ensemble
inference). MaMaDroid, compared to PetaDroid, tends to be slower due to the
heavy preprocessing. MaMaDroid preprocessing [31] is composed of the call graph
extraction, sequence extraction, and Markov change modeling, which require
25.40 ± 63.00, 1.73 ± 3.2, 6.7 ± 3.8 s respectively for benign samples and 09.20 ±
14.00, 1.67 ± 3.1, 2.5 ± 3.2 s respectively for malicious samples. On average,
PetaDroid (3.58 s) is approximately eight times faster than MaMaDroid.

Table 9. MaMaDroid and PetaDroid runtime

PetaDroid (seconds) MaMaDroid (seconds)

Malware 02.64 ± 03.94 09.20 ± 14.00 + 1.67 ± 3.1 + 2.5 ± 3.2

Benign 05.54 ± 05.12 25.40 ± 63.00 + 1.73 ± 3.2 + 6.7 ± 3.8

Average 03.58 ± 04.21 ≈23 s

5.3 Time Resiliency Comparison

MaMaDroid evaluation emphasizes the importance of time resiliency for modern
Android malware detection. Table 10 depicts the performance with different
dataset settings, such as training using an old malware dataset and testing on a
newer one. PetaDroid outperforms (or obtains a very similar result in few cases)
MaMaDroid and DroidAPIMiner in all settings. Furthermore, the results show
that PetaDroid is more robust to time resiliency compared to MaMaDroid [31].

Table 10. Time Resiliency of MaMaDroid, PetaDroid, DroidAPIMiner.

Testing Sets drebin & oldbenign 2013 & oldbenign 2014 & oldbenign 2015 & oldbenign 2016 & oldbenign

Training Sets Miner MaMa Peta Miner MaMa Peta Miner MaMa Peta Miner MaMa Peta Miner MaMa Peta
drebin&oldbenign 32.0 96.0 99.4 35.0 95.0 98.6 34.0 72.0 77.5 30.0 39.0 44.0 33.0 42.0 47.0
2013&oldbenign 33.0 94.0 97.8 36.0 97.0 99.6 35.0 73.0 85.4 31.0 37.0 59.3 33.0 28.0 56.6
2014&oldbenign 36.0 92.0 95.8 39.0 93.0 98.6 62.0 95.0 99.4 33.0 78.0 91.4 37.0 75.0 88.9

drebin & newbenign 2013 & newbenign 2014 & newbenign 2015 & newbenign 2016 & newbenign

Training Sets Miner MaMa Peta Miner MaMa Peta Miner MaMa Peta Miner MaMa Peta Miner MaMa Peta
2014&newbenign 76.0 98.0 99.3 75.0 98.0 99.7 92.0 99.0 99.8 67.0 85.0 91.4 65.0 81.0 82.1
2015&newbenign 68.0 97.0 97.1 68.0 97.0 97.8 69.0 99.0 98.9 77.0 95.0 99.0 65.0 88.0 95.4
2016&newbenign 33.0 96.0 95.6 35.0 98.0 98.2 36.0 98.0 97.9 34.0 92.0 95.2 36.0 92.0 98.3
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5.4 PetaDroid and Maldozer Comparison

In this section, we compare PetaDroid with MalDozer [18] to check the effec-
tiveness of the proposed approach. Specifically, we evaluate the performance of
both detection systems on raw Android datasets without any code transforma-
tion. Afterward, we evaluate the systems on randomization transformation (Sect.
2.2). Table 11 shows the effectiveness comparison between the detection systems.
First, PetaDroid outperforms MalDozer in all the evaluation dataset without
code transformation. One major factor to this result is the usage of the machine
learning model ensemble to enhance the detection performance. Second, this
gap significantly increases when we use code transformation in the various eval-
uation datasets. PetaDroid preserves the high detection performance due to the
fragment randomization technique used in the training phase. As depicted in
Table 11, the evaluation result shows the enhancement that the fragment ran-
domization technique adds to the Android malware detection overall to enhance
the resiliency.

Table 11. PetaDroid and MalDozer Comparison

PetaDroid (F1 %) MalDozer (F1 %)

Raw-Randomization Raw-Randomization

MalGenome 99.6-99.3 98.1-92.5

Drebin 99.2-99.1 97.4-91.6

MalDozer 98.5-98.6 95.2-89.3

AMD 99.4-99.5 96.1-90.1

VShare 95.8-96.0 94.2-88.1

6 Related Work

The Android malware analysis techniques can be classified to static analysis,
dynamic analysis, or hybrid analysis. The static analysis methods [5,6,20,39]
use static features that are extracted from the app, such as: requested per-
missions and APIs to detect malicious app. The dynamic analysis methods
[8,16,21,36] aim to identify behavioral signature or behavioral anomaly of the
running app. These methods are more resistant to obfuscation. The dynamic
methods offer limited scalability as they incur additional cost in terms of process-
ing and memory. The hybrid analysis [15,25], combine between both analyses to
improve detection accuracy, which costs additional computational cost. Assum-
ing that malicious apps of the same family share similar features, some methods
[17,19,22], measure the similarity between the features of two samples (similar
malicious code). The deep learning techniques are more suitable than conven-
tional machine learning techniques for Android malware detection [41]. Research
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works on deep learning for Android malware detection are recently getting more
attention [18,43]. These deep learning models are more venerable to common
machine learning adversarial attacks as described in [9]. In contrast, PetaDroid
employs the ensemble technique to mitigate such adversarial attacks [37] and to
enhance the overall performance. In DroidEvolver [40], the authors use online
machine learning techniques to enhance the time resiliency of the Android mal-
ware detection system. In contrast, PetaDroid employs batch training techniques
instead of online training, which means that in each epoch t PetaDroid builds
new models using the extended dataset at once. We argue that batch learning
could generalize better since the training system has a complete view of the app
dataset. It is less venerable to biases that could be introduced by the order of
the apps in online training.

PetaDroid provides Android malware detection and family clustering
using advanced natural language processing and machine learning techniques.
PetaDroid is resilient to common obfuscation techniques due to code randomiza-
tion during the training. PetaDroid introduces a novel automatic adaption tech-
nique inspired from [24] that leverages the result confidence to build a new CNN
ensemble on confidence detection samples. Our automatic adaptation technique
aims to overcome the issue of new Android APIs over time, while other meth-
ods could be less resilient and might require updates with a manually crafted
dataset. The empirical comparison with state-of-the-art solutions, MaMaDroid
[31] and MalDozer [18], shows that PetaDroid outperforms MaMaDroid and Mal-
Dozer under the various evaluation settings in the malware detection effectiveness
and efficiency.

7 Limitation

Although the high obfuscation resiliency of PetaDroid showed in Sect. 4.3,
PetaDroid is not immune to complex obfuscation techniques. Also, PetaDroid
most likely will not be able to detect Android malware that downloads the pay-
load during runtime. PetaDroid focuses on the fingerprinting process on DEX
bytecode. Therefore, Android malware, which employs C/C++ native code, is
less likely to be detected because we do not consider native code in our fin-
gerprinting process. Covering native code is a possible future enhancement for
PetaDroid. We consider including selective dynamic analysis for low confidence
detection as future work. The latter will empower PetaDroid against sophisti-
cated obfuscation techniques. Also, PetaDroid system needs more validation on
real world deployments to check the performance as proposed in previous inves-
tigations [14,32]. Also, we need to check the correctness of the dataset split to
prevent bias results as a result of spatial bias and temporal bias [32]. In Sect. 5.3
and 7, we partially addressed this issues by (1) evaluating the system on tem-
poral splits from AndroZoo dataset and (2) employing collected samples dataset
(VirusShare) in addition to multiple references datasets.
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8 Conclusion

In this paper, we presented PetaDroid, an Android malware detection and family
clustering framework for large scale deployments. PetaDroid employs supervised
machine learning, an ensemble of CNN models on top of Inst2Vec features, to
fingerprint Android malicious apps accurately. DBScan clustering on top of Inst-
NGram2Vec and deep auto-encoders features, to cluster highly similar malicious
apps into their most likely malware family groups. In PetaDroid, we introduced
fragment-based detection, in which we randomize the macro-action of Dalvik
assembly instructions while keeping the inner order of methods’ sequences. We
introduced the automatic adaption technique that leverages confidence-based
decision making to build a new CNN ensemble on confidence detection samples.
PetaDroid achieved high detection (98–99% f1-score) and family clustering (96%
cluster homogeneity) performance. Our comparative study between PetaDroid,
MaMaDroid [31] and MalDozer shows that PetaDroid outperforms state-of-the-art
solutions on various evaluation settings.
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