
Leyla Bilge
Lorenzo Cavallaro
Giancarlo Pellegrino
Nuno Neves (Eds.)

LN
CS

 1
27

56 Detection of Intrusions
and Malware, and
Vulnerability Assessment
18th International Conference, DIMVA 2021
Virtual Event, July 14–16, 2021
Proceedings

DIMVA 2021

Lecture Notes in Computer Science 12756

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Leyla Bilge · Lorenzo Cavallaro ·
Giancarlo Pellegrino · Nuno Neves (Eds.)

Detection of Intrusions
and Malware, and
Vulnerability Assessment
18th International Conference, DIMVA 2021
Virtual Event, July 14–16, 2021
Proceedings

Editors
Leyla Bilge
NortonLifeLock Research Group
Biot, France

Giancarlo Pellegrino
CISPA Helmholtz Center for Information
Security
Saarbrücken, Germany

Lorenzo Cavallaro
King’s College London
London, UK

Nuno Neves
University of Lisbon
Lisbon, Portugal

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-80824-2 ISBN 978-3-030-80825-9 (eBook)
https://doi.org/10.1007/978-3-030-80825-9

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2021
Chapter “Specularizer: Detecting Speculative ExecutionAttacks via Performance Tracing” is licensed under
the terms of theCreativeCommonsAttribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/). For further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-80825-9
http://creativecommons.org/licenses/by/4.0/

Preface

We would like to welcome you once again to the proceedings of the virtual edition
of DIMVA 2021 – the 18th Conference on Detection of Intrusions and Malware and
Vulnerability Assessment.

This year, despite the impact of the ongoing COVID-19 pandemic, we received
a higher number of submissions compared to last year. We were excited about the
program that the Program Committee put together. DIMVA 2021 received 65 valid
submissions from academic and industrial organizations from more than 114 differ-
ent institutions across 38 countries. Each submission was carefully reviewed by three
Program Committee members or external experts. The final selection of papers was
decided by Program Committee members during online discussions, in lieu of our tra-
ditional physical meeting. Our Program Committee members put a tremendous effort
into the reviewing and paper discussion process. As a result, we selected 18 full papers
and 1 short paper for presentation at the conference and publication in the proceedings,
resulting in an acceptance rate of 27.9%.

We would like to express our appreciation to the Program Committee members and
external reviewers for the time spent reviewing papers, participating in the online discus-
sion, and shepherding some of the papers to ensure the highest quality possible. This was
clearly a difficult time for everybody, but the ProgramCommittee did a great job.We also
deeply thank the members of the Organizing Committee and the Steering Committee for
their hard work and responsiveness during this crisis. We are wholeheartedly thankful to
our sponsors, Fachgruppe Sidar of the German Informatics Society and Lasige, Ciancias
ULisboa, for generously supporting DIMVA 2021.

Our final thanks go to all participants, authors, and attendees, who are at the core of
our conference - thank you so much for making DIMVA 2021 such an interesting and
beautiful conference.

June 2021 Leyla Bilge
Lorenzo Cavallaro

Organization

General Chair

Nuno Neves University of Lisbon, Portugal

Program Committee Chair

Leyla Bilge NortonLifeLock Research Group, France

Program Committee Co-chair

Lorenzo Cavallaro King’s College London, UK

Publications Chair

Giancarlo Pellegrino CISPAHelmholtz Center for Information Security, Germany

Publicity Chair

Daniel Kats NortonLifeLock Research Group, USA

Sponsor Chair

Andrew Paverd Microsoft Research Cambridge, UK

Local Arrangements Chair

Ibéria Medeiros University of Lisbon, Portugal

Steering Committee Chairs

Ulrich Flegel Infineon Technologies, Germany
Michael Meier University of Bonn and Fraunhofer FKIE, Germany

viii Organization

Steering Committee Members

Magnus Almgren Chalmers University of Technology, Sweden
Sébastien Bardin CEA, France
Gregory Blanc Télécom SudParis, France
Herbert Bos Vrije Universiteit Amsterdam, the Netherlands
Danilo M. Bruschi Università degli Studi di Milano, Italy
Roland Bueschkes RWE AG, Germany
Juan Caballero IMDEA Software Institute, Spain
Lorenzo Cavallaro King’s College London, UK
Hervé Debar Télécom SudParis, France
Sven Dietrich City University of New York, USA
Cristiano Giuffrida Vrije Universiteit Amsterdam, the Netherlands
Bernhard Haemmerli Acris GmbH and HSLU Lucerne, Switzerland
Thorsten Holz Ruhr-University Bochum, Germany
Marko Jahnke CSIRT, German Federal Authority, Germany
Klaus Julisch Deloitte, Switzerland
Christian Kreibich ICSI, USA
Christopher Kruegel University of California, Santa Barbara, USA
Pavel Laskov University of Liechtenstein, Liechtenstein
Federico Maggi Trend Micro Research, Italy
Clémentine Maurice CNRS and IRISA, France
Roberto Perdisci University of Georgia and Georgia Institute of Technology,

USA
Michalis Polychronakis Stony Brook University, USA
Konrad Rieck Technische Universität Braunschweig, Germany
Jean-Pierre Seifert Technical University Berlin, Germany
Robin Sommer ICSI and LBNL, USA
Urko Zurutuza Mondragon University, Spain

Program Committee

Magnus Almgren Chalmers University of Technology, Sweden
Daniel Arp Technische Universität Braunschweig, Germany
Tiffany Bao ASU, USA
Sébastien Bardin CEA LIST, France
Antonio Bianchi Purdue University, USA
Gregory Blanc Télécom SudParis, France
Juan Caballero IMDEA Software Institute, Spain
Sven Dietrich City University of New York, USA
Brendan Dolan-Gavitt New York University, USA
Ulrich Flegel Infineon Technologies AG, Germany
Yanick Fratantonio, Cisco Talos, USA
Chris Gates NortonLifeLock, USA
Mariano Graziano Cisco Talos, USA
Christophe Hauser University of Southern California, USA

Organization ix

Alexandros Kapravelos North Carolina State University, USA
Vasileios Kemerlis Brown University, USA
Johannes Kinder Bundeswehr University Munich, Germany
Erik van der Kouwe Vrije Universiteit Amsterdam, the Netherlands
Platon Kotzias NortonLifeLock, Greece
Christopher Kruegel VMWare, USA
Pierre Laperdrix CNRS and Lille University, France
Pavel Laskov University of Liechtenstein, Liechtenstein
Federico Maggi Trend Micro, Italy
Michael Meier University of Bonn and Fraunhofer FKIE, Germany
Marius Muench Vrije Universiteit Amsterdam, the Netherlands
Anita Nikolich Illinois Institute of Technology, USA
Giancarlo Pelegrino CISPAHelmholtz Center for Information Security, Germany
Roberto Perdisci University of Georgia and Georgia Tech, USA
Fabio Pierazzi King’s College London, UK
Fabio Pagani University of California, Santa Barbara, USA
Christian Rossow CISPAHelmholtz Center for Information Security, Germany
Deborah Shands SRI International, USA
Seungwon Shin KAIST, South Korea
Yan Shoshitaishvili Arizona State University, USA
Gianluca Stringhini Boston University, USA
Juan Tapiador Universidad Carlos III, Spain
Sam Thomas University of Birmingham, UK
Gang Wang University of Illinois at Urbana-Champaign, USA
Christian Wressnegger Karlsruhe Institute of Technology, Germany

Additional Reviewers

Kevin Roundy
Gibran Gómez
Avinash Sudhodanan
Soheil Khodayari
Sergej Epp
Yufei Han
Andrea Marcelli
Xabier Ugarte-Pedrero
Michaël Marcozzi
Matthieu Lemerre
Lesly-Ann Daniel
Thomas Papastergiou
Kleanthis Karakolios

x Organization

Sponsors

Contents

You’ve Got (a Reset) Mail: A Security Analysis of Email-Based Password
Reset Procedures . 1
Tommaso Innocenti, Seyed Ali Mirheidari, Amin Kharraz,
Bruno Crispo, and Engin Kirda

The Full Gamut of an Attack: An Empirical Analysis of OAuth CSRF
in the Wild . 21
Michele Benolli, Seyed Ali Mirheidari, Elham Arshad, and Bruno Crispo

Detecting and Measuring In-The-Wild DRDoS Attacks at IXPs 42
Karthika Subramani, Roberto Perdisci, and Maria Konte

Digging Deeper: An Analysis of Domain Impersonation in the Lower
DNS Hierarchy . 68
Florian Quinkert, Dennis Tatang, and Thorsten Holz

Help, My Signal has Bad Device! Breaking the Signal Messenger’s
Post-Compromise Security Through a Malicious Device . 88
Jan Wichelmann, Sebastian Berndt, Claudius Pott,
and Thomas Eisenbarth

Refined Grey-Box Fuzzing with Sivo . 106
Ivica Nikolić, Radu Mantu, Shiqi Shen, and Prateek Saxena

SCRUTINIZER: Detecting Code Reuse in Malware via Decompilation
and Machine Learning . 130
Omid Mirzaei, Roman Vasilenko, Engin Kirda, Long Lu,
and Amin Kharraz

Specularizer: Detecting Speculative Execution Attacks via Performance
Tracing . 151
Wubing Wang, Guoxing Chen, Yueqiang Cheng, Yinqian Zhang,
and Zhiqiang Lin

Aion Attacks: Manipulating Software Timers in Trusted Execution
Environment . 173
Wei Huang, Shengjie Xu, Yueqiang Cheng, and David Lie

Third- Eye: Practical and Context-Aware Inference of Causal
Relationship Violations in Commodity Kernels . 194
Chuhong Yuan, Dong Du, and Haibo Chen

xii Contents

Find My Sloths: Automated Comparative Analysis of How Real Enterprise
Computers Keep Up with the Software Update Races . 215
Omid Setayeshfar, Junghwan “John” Rhee, Chung Hwan Kim,
and Kyu Hyung Lee

FP-Redemption: Studying Browser Fingerprinting Adoption for the Sake
of Web Security . 237
Antonin Durey, Pierre Laperdrix, Walter Rudametkin,
and Romain Rouvoy

Introspect Virtual Machines Like It Is the Linux Kernel! . 258
Ahmed Abdelraoof, Benjamin Taubmann, Thomas Dangl,
and Hans P. Reiser

Calibration Done Right: Noiseless Flush+Flush Attacks . 278
Guillaume Didier and Clémentine Maurice

Zero Footprint Opaque Predicates: Synthesizing Opaque Predicates
from Naturally Occurring Invariants . 299
Yu-Jye Tung and Ian G. Harris

PetaDroid: Adaptive Android Malware Detection Using Deep Learning 319
ElMouatez Billah Karbab and Mourad Debbabi

Spotlight on Phishing: A Longitudinal Study on Phishing Awareness
Trainings . 341
Florian Quinkert, Martin Degeling, and Thorsten Holz

Extended Abstract: A First Large-Scale Analysis on Usage of MTA-STS 361
Dennis Tatang, Robin Flume, and Thorsten Holz

Centy: Scalable Server-Side Web Integrity Verification System Based
on Fuzzy Hashes . 371
Lizzy Tengana, Jesus Solano, Alejandra Castelblanco, Esteban Rivera,
Christian Lopez, and Martin Ochoa

Author Index . 391

You’ve Got (a Reset) Mail: A Security
Analysis of Email-Based Password Reset

Procedures

Tommaso Innocenti1(B), Seyed Ali Mirheidari2(B), Amin Kharraz4(B),
Bruno Crispo2,3(B), and Engin Kirda1(B)

1 Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
{innocenti.t,e.kirda}@northeastern.edu

2 University of Trento, via Calepina, 14, 38122 Trento, Italy
{seyedali.mirheidari,Bruno.crispo}@unitn.it

3 KU Leuven, Oude Markt 13, 3000 Leuven, Belgium
4 Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA

ak@cs.fiu.edu

Abstract. The password recovery process is a critical part of a web-
site’s functionality. Many websites that provide online services to their
users also need to solve the problem of allowing their users to reset their
passwords (e.g., if they have forgotten it). A popular, established tech-
nique for allowing a user to recover a lost account is to allow her to
send a reset link to her own account via email. Although it might seem
easy at a first glance, the security requirements of the password recovery
process require web sites to carefully design each step of the process to
be resilient even in the presence of an attack. In this paper, we present
an in-depth security analysis of the email-based recovery mechanisms of
a wide range of web applications. By manually registering accounts and
triggering the password recovery process for each website, we were able
to study the password reset mechanisms of web sites from three different
groups in the Alexa Top 5K (i.e., popular sites, medium popular sites,
low popular sites). In this work, we show that the lack of standards
in the password recovery process plagues many websites with security
weaknesses, and negatively influences the security of the reset process
itself. We also show that concrete password-recovery reset attacks can
be launched against a high percentage of websites that might even lead
to account takeover.

Keywords: Web applications · Account recovery · Password resets

1 Introduction

Web applications have been historically an attractive target for adversaries. They
are often open to the public-facing Internet and are designed to handle critical
tasks and valuable data [27]. Therefore, any flaws in their identity and account

c© Springer Nature Switzerland AG 2021
L. Bilge et al. (Eds.): DIMVA 2021, LNCS 12756, pp. 1–20, 2021.
https://doi.org/10.1007/978-3-030-80825-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80825-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-80825-9_1

2 T. Innocenti et al.

access management can have a significant impact on the integrity and confiden-
tiality of the protected resources. This paper primarily focuses on the security
of the account recovery process, a set of steps users have to follow to re-gain
access to their accounts. We provide an empirical study on what is missing in
the current implementation of account recovery mechanisms and how some of
the flaws introduce significant risks with consequential impacts.

Account management has never been an easy task for normal users. Reports
show that users, on average, possess 80 accounts [12]. Hence, it is not very sur-
prising if users lose their access to their accounts and generate password recovery
requests from time-to-time [21]. Although modern password managers [25] have
shown to be effective in facilitating account management, the need to have a
well-designed recovery mechanism has not been diminished. Users may need to
update their accounts and change their passwords for many reasons. Conse-
quently, having a robust password recovery is undeniably a critical service to
maintain the security posture of web applications and protect users’ accounts
from unauthorized access.

Despite the importance of password recovery, the necessary details to imple-
ment and enforce the mechanism do not seem to be sufficient. The main source of
guidance is OWASP [26] which mainly focuses on general requirements without
providing specifics on how to implement or assess the security of the procedure.
Consequently, little knowledge is available to web developers on how to create a
secure and usable account recovery process. This lack of guidance has provided
a unique opportunity for adversaries [7,8,11] to steal sensitive information.

Our work is guided by three primary research questions. First, how do web-
sites implement the account recovery process? Second, how prevalent are account
recovery problems? And third, what are the immediate threats of misconfigured
recovery processes? To answer these questions, we built an analysis pipeline
to collect a real-world dataset of the account recovery process in 366 websites
in the Top 5K Alexa list.1 This dataset includes information about the login
page, password reset request page, and recovery link. We defined eight imple-
mentation controls in account recovery based on OWASP guidelines and ran
a semi-automated experiment to empirically analyze if websites satisfy these
requirements.

Our analysis shows that insecure practices are prevalent. Our measurements
revealed that the account recovery mechanism in 72% of the websites is affected
by at least one implementation weakness. For instance, 147 (40%) of the web-
sites were generating multiple valid tokens, providing an opportunity to issue
unauthorized password reset requests. Among all websites, 163 (45%) did not
send password change request notifications to the account owner, leaving users
with no warning in case of unauthorized password reset. We also found that
82 (22%) websites suffering from login CSRF, where users can be tricked into
performing the password reset and get authenticated as the attacker, allowing
the attacker to observe all user’s interactions with the site. Despite the broad

1 Our data collection infrastructure will be made open source.

A Security Analysis of Email-Based Password Reset Procedures 3

set of sites analyzed, our measurement findings represent a lower bound of the
potential weaknesses in the wild.

Our analysis also shows that OWASP guidelines are only partially deployed
in practice. Since there was no concrete implementation standard for account
recovery, we used the OWASP guidelines as the “metric” to determine the adher-
ence of websites to these basic security recommendations. Our results show that
only 13% of the websites were following the OWASP guidelines. We observed
that 82% of the password reset procedures on the test websites were based on
sending reset links. In most cases, we observed violations of OWASP guidelines.
For instance, 52 websites were sending the tokens via insecure links, 75 websites
had a very long link expiration window (i.e., more than 24 h). We were able to
use the reset links after 24 h. We also observed that in 21 websites, the gener-
ated token could be used multiple times. Among other empirical evidence, our
data shows that the security controls in account recovery mechanisms are almost
missing – leaving significant opportunities for abuses.

Finally, our experiments reveal that the weaknesses in the account recovery
process can have consequential impacts on the security posture of the websites.
For instance, we observed that attackers can mislead the remote server to gener-
ate poisoned reset mails during the password reset request. Users can be tricked
to click on the poisoned reset link providing an opportunity for attackers to
launch login CSRF attacks where they can collect the user’s reset token and
potentially perform an account takeover. Moreover, it also allows the adver-
sary to retrieve almost all the activities on the target account (e.g., message
exchange, credit card entry) by misleading the victim to reset an attacker-
controlled account.

While the weaknesses mentioned in this paper may not always result in bla-
tant security vulnerabilities, they are indicators that developers are failing to
follow robust practices, leading to a more fertile environment for adversarial
operations. We provide an empirical look at the security consequences of these
unsavory practices such as login CSRF and header manipulation. We hope that
this work serves to raise awareness about the importance of defining reliable
mechanisms for the account recovery in the web ecosystem. We also hope our
approach will prove useful to the web security community and open the door for
future solutions.

This paper’s contributions are summarized as follows.

– We propose a methodology to identify weakness in email-based password
recovery process.

– We present a measurement of common weaknesses in password recovery
among the Alexa Top 5K.

– We study a set of web-based attack scenarios on email-based password recov-
ery, and quantify the prevalence of them among high-profile sites.

The remainder of this paper is structured as follows. In Sect. 2, we present
the related work. In Sect. 3, we provide the background information introducing
the OWASP guidelines and the related threat model. In Sect. 4, we explain the

4 T. Innocenti et al.

adopted methodology and the data collection infrastructure used to conduct the
study. In Sect. 5, we present our findings.

2 Related Work

The security community has introduced several fallback authentication mecha-
nisms for account recovery, ranging from knowledge-based authentication (e.g.,
security questions) to possession-based authentication (e.g., OAuth, tokens, secu-
rity cards, and email verification). In the following, we will discuss works that
primarily focus on the security of account recovery mechanisms.

Password Reset via Email Verification. Although email-based account
recovery [4] has reached a wide adoption among sites [29], the procedures to
deploy the mechanism is not very well-defined [3,13,14,28–30]. The motivation
for some of the prior work was to analyze the effectiveness of account recovery
emails [1,2,15,20]. The research showed that malformed recovery emails that
do not inform users of the reset link’s validity time, or that do not warn users
about keeping the link confidential may introduce a vulnerability. In a different
approach, Raponi et al. [29] proposed a technique to protect users from service
provider-level attacks. Despite the open-source availability of the solution, the
study is limited in scope and the vulnerabilities covered in the work. In our
work, we investigated eight common weaknesses and attack scenarios based on
OWASP guidelines [26] as described in Sect. 4.

Password Reset via SMS OTP. Researchers have also performed several
security analyses of the implication of SMS OTP methods in the authentication
process [10,19,22,24,33]. For instance, AUTH-EYE [22] proposed an automated
approach to detect implementation flaws in the authentication modules of a
program. The analysis showed that in 98.5% of the test cases, the applications
violated different security rules in generating (OTP randomness, length) and
verifying the SMS OTP code (e.g., allowed retry attempts and renewal interval).
In a similar study, Mulliner et al. [24] conducted a measurement study of the
SMS OTP security architecture by introducing several weaknesses and attack
scenarios. They demonstrated that intruders could obtain the SMS OTP utiliz-
ing SIM swapping or the wireless interception attacks. Dmitrienkoet et al. [10],
investigated two-factor authentications of high profile Internet service providers
and discovered several weaknesses which could be exploited to circumvent SMS-
based authentication in four larges online banks applications as well as Google.
In a recent study, Zeyu Lei et al. [19] performed a systematic study on mobile
apps’ authentication schemes based on SMS OTP. Their study not only discov-
ered vulnerable mobile apps with hundreds of millions of installations, but also
revealed several flaws in core API implementations of mobile operating systems.

A Security Analysis of Email-Based Password Reset Procedures 5

Password reset request

Password reset

1

2’

2

2”

1*

Reset token

Close active sessions

Invalidate token

Input validationUsername/email

Reset link
Validate token

Password
reset

Login

Update password

Reset mail

Password
reset

Username/email
Host:evil.com

Attacker’s reset link

Attack scenario 1

Attack scenario 2

evil.com

Fig. 1. Password reset flow

3 Background

In this section, we first discuss the OWASP guidelines [26] for resetting user
passwords. Then, we provide information on the attack scenarios that we used
as complementary security checks for our measurement.

3.1 OWASP Guidelines

The main reference that is publicly available for password reset is provided by
OWASP. The guideline divides the password reset process into two parts; (1)
initiating the password reset request, (2) processing the password reset request.
In the following, we briefly describe each step.

Initiating the Password Reset Requests. The first part of the procedure is
to initiate the password reset as presented in Fig. 1. For this step, the OWASP
guidelines suggest providing to the users a consistent message for existing and
non-existing accounts with a constant time for each reply. This approach reduces
the risk of classic timing side-channel attacks on password management [5] and
also protect websites from possible user enumeration attacks [4,6]. Malicious
web bots can target the password reset mechanism. To reduce the impact of such
adversarial attempts on the password reset, the guidelines suggest the implemen-
tation of a protection mechanism against automated submission as CAPTCHA
or other rate-limiting controls [34]. Moreover, before processing the request, the
received input should be properly sanitized with an input validation alongside
an SQL injection prevention method that will protect the website’s database.
After the input validation, the website first stores the generated reset token in a
database and then includes it in the reset link. Finally, a reset email containing
the reset link is sent to the user.

6 T. Innocenti et al.

Responding to Password Reset Requests. The second part of the procedure
is the actual password reset that starts with the Action 2 of Fig. 1 where the
user clicks on the reset-link received and accesses the password reset page. The
guidelines suggest that users should confirm the new password twice – respecting
a consistent password policy with the rest of the web application. The site should
then invalidate the reset token and store the new password following secure
practices (e.g., using a proper hashing function). Finally, the site should inform
the user of the successful password reset with an email that should not include
the new password.

After the successful password reset, the guidelines suggest redirecting the
users to the normal authentication procedure instead of automatically logging
them since this will complicate the session code handling, and could potentially
introduce CSRF vulnerabilities. The last suggestion is to provide the users the
option to close the open sessions of the account or automatically invalidate them
requesting them to provide the newer credentials.

3.2 Attack Scenarios

The attack scenarios presented are derived from the OWASP guidelines [26].
These attacks are directly related with email-based password recovery process
that represent the majority of the recovery methods adopted in the wild. With
the studied attack scenarios, we demonstrated how misconfigurations in the
recovery process could be used to directly target a website’s users. We first
explain header manipulation issues, and then discuss login CSRF problems.

Header Injection. The first attack scenario starts at the initiation of the pass-
word reset procedure [16–18] due to improper processing of the network headers.
That is, the attacker sends a poisoned password reset request marked as 1* in
Fig. 1 and manipulates the host field in the network header of the requests. This
can mislead the site’s server that, without a proper sanitization, will generate
the reset link using the poisoned field. As a result, the attacker without needing
any interaction with the victim, mislead the websites’ server to send a poisoned
reset mail to the victim. The only information the attacker needs to initiate the
attack is the victim email. This attack thanks to the generation of the poisoned
email by the website’s server will easily bypass victims’ inbox spam filter. More-
over, since most of the resetlink included in reset mail is hide behind a button,
the poisoned email generated can easily mislead the victim in click the malicious
link (Action 2’) increasing the chance of a successful attack.

Login CSRF. As depicted in Fig. 1, a user would choose a new password in the
final step of the password reset process. Since the user is expected to submit a
valid reset link that is confidential, some applications immediately set an autho-
rization cookie and redirect the user to the dashboard, bypassing the normal
authentication. Skipping the authentication phase occurs in many applications
as they presume that only the valid user would have access to this concrete
reset link. Unfortunately, this assumption creates a security risk. In login CSRF
attacks, an attacker would request a password reset link for its own account, and

A Security Analysis of Email-Based Password Reset Procedures 7

then send this link to the victims (Action 2*), encouraging them to click on the
link to update the password.

The application would then validate the password reset token, and would set
the proper authorization cookie associated with the reset token. This process
is very dangerous since the victims (Action 2”) use the attacker’s authorization
cookies (i.e., the owner of the reset link) to interact with the website. In fact, the
application recognizes the victim as the account owner because of the possession
of the password reset link. As a result, any of the user’s activities in the attacker’s
account (e.g., web search history, exchanged messages, etc.), can later be accessed
by the attacker. Moreover, if the user saves any personally-identifiable or financial
information (e.g., credit card numbers), this information would be accessible to
the attacker as it is saved in an account under the attacker’s control.

Motivating Example. It is critical to evaluate how websites initiate and pro-
cess account recovery requests. Account recovery problems are less well-studied
security issues with significant impact. For instance, springer.com, a well-known
scientific publisher, has multiple issues in initiating the password requests. We
observed that password reset tokens in this website do not expire. OWASP
strictly suggests single-use reset tokens to minimize the risk of account takeover
and the abuse of the reset mechanism. We also observed that users are pro-
vided with no notification about the password recovery requests. The notification
allows users to identify unauthorized attempts for hijacking accounts. As other
examples, Seattlenews.com, a very popular news website in the US Northwest
region, and rakuten.co.jp, a known Japanese shopping website all suffer from
similar types of account recovery problems. The examples we discussed here are
among the most popular websites with a significant number of users and web
traffic. Consequently, issues in password recovery can have consequential impacts
on the security of users as well as the web application. Our experiments, dis-
cussed at length in Sect. 5, show that these issues occur frequently. In Sect. 4, we
describe eight different classes of weaknesses in the account recovery mechanism,
and incorporate them to evaluate the security of real-world recovery mechanisms.

4 Methodology

This section introduces our data collection infrastructure, and the methodology
we used to study the security of the password reset procedure in real-world
websites.

4.1 Measurement Setup

The initial step of the measurement is to select websites and form a test corpus.
We selected 900 websites from the Alexa Top 5,000 websites. We divided the
sites into three groups based on their popularity. As presented in Sect. 5.3, this
site selection enabled us to analyze the behavior of each site group allowing us
to identify how sites with different popularity exhibit similar results.

8 T. Innocenti et al.

Fig. 2. Data collection infrastructure.

However, we were able to create accounts only on 513 websites since for
some websites, we were not able to provide all the required information during
the account creation process. For instance, some websites did not have a public
login page or required a pre-approval process such as bank account information.
Also, some of the 900 sites required a specific class of data such as a local phone
number or a Social Security Number (SSN). In some cases, the confirmation link
was not received during the account generation process. To measure the security
of the password reset procedure, we created a user account for each site under
test. During our measurements, we observed that some data deduplication was
necessary. That is, institutions such as Google Inc. had several websites with
different Country Code Top-Level Domains (ccTLDs) where the reset link was
redirected to the main domain. For instance, the password reset requests on
google.es or google.it were redirected to google.com. We removed these cases
from our analysis which were 147 websites to avoid identical measurements.
This initial setup allowed us to collect metadata for each site under test such as
the presence of CAPTCHAs. The metadata helped us in the account recovery
process where we could decide how to interact with the target websites. Figure 2
shows the overall data collection pipeline.

4.2 Data Collection Infrastructure

As presented in Fig. 2, the data collection infrastructure is coordinated by the
Experiment coordinator that takes as input the filtered domains and performs
test probes using several high-level components: (1) the test harness, (2) the
reset link monitor, and (3) the header manipulation proxy.

Test Harness. Is in charge of managing all the account interfaces and communi-
cating with the header manipulation proxy to generate the manipulated account
reset. This component is responsible for reproducing the user’s interaction with
the website. The interaction with the website was done by writing a Python
script based on Selenium Chrome web driver. The crawler uses CSS selectors
to identify the login element in the page and issue the password reset request.
To verify the correct validation of a correct login, a visual check was performed
to make sure that the browsing session works well in practice. Moreover, we note
that 44 sites were using CAPTCHA services in their login page and that 90 sites
require an explicit CAPTCHA verification before initiating the password reset

A Security Analysis of Email-Based Password Reset Procedures 9

request. Since automatic interaction was not possible in these cases, we manually
ran the experiment to find and reset the password.

Header Manipulation Proxy. Is in charge of modifying the request gener-
ated by the test harness. The header manipulation proxy modifies the generated
requests from the test harness including markers in two different header types:
Host header and non-Standard Headers. The markers are used to modify the
requests that are subsequently used by the reset link monitor to pinpoint the
creation of a poisoned reset mail from the web applications.

Reset Link Monitor. Monitors email accounts corresponding to user accounts
created in the setup step. Received emails are scanned using a combination
of regular expressions and inspection of HTML mail body to extract all links
contained in the message body and check the presence of injected markers. The
extracted links are then filtered using a keyword heuristic to retain password
reset links and discard all others.

4.3 Password Reset Testing Methodology

Using OWASP guidelines [26] as a benchmark, we derived the following tests to
evaluate the OWASP adherence of the website’s recovery process.

Reset Link Validity Window (TW). The length of time a reset link is valid
after being issued can have security consequences. A long validity window can
introduce opportunity for an attacker to abuse a stolen link. That being said,
there is also an inherent usability trade-off in this mechanism. That is, a too short
validity window makes it difficult to legitimately use a link before it expires. Since
OWASP guidelines only suggest an “appropriate time validity”, we chose 24 h as
a reasonable trade-off between reset link validity window security and usability.
To test the validity window TW for a site s, a fresh link l is requested. This
reset link is then stored for 24 h before it is used to attempt a password reset.
Effectively, the test determines whether or not TW (s) > 24 h.

Multi-Use Reset Links (TU). Another security-relevant property of reset
links is whether the reset links are valid for multiple uses. OWASP strictly sug-
gests a single use reset link for each reset token. This prevents, for example,
an attacker from gaining access to an email account containing older reset links
and reusing them to perform a password reset without generating new reset link
emails. This test measures whether a site s allows resetting links to be used mul-
tiple times, denoted by TU . First, a reset link l is requested. Then, we attempt
to use it to perform a password reset twice in succession. If the second attempt
succeeds, then s does not invalidate l on first use and so TU (s) > 1.

No Password Change Confirmation (TC). As suggested by OWASP, web-
sites should notify users after a successful password change. These notifications
allow users to recognize when an attacker is attempting an account takeover via
password reset requests. Since these notifications are sent as a password change
confirmation email, we measure this property for each website. The test mea-
sures whether a site s confirms password changes, denoted by TC . To carry out

10 T. Innocenti et al.

the test, we first request a reset link l and then use it to perform a password
reset. Next, the email monitor waits to receive a confirmation email. If one is
not received within 1 h, we consider the test to have failed, i.e., TC(s) = false.

No Session Invalidation (TI). After a password reset has been performed,
OWASP suggests allowing the users to shutdown all the account’s active ses-
sions. This is a useful practice because if a password reset was requested due
to an account compromise, failing to invalidate existing sessions would allow an
attacker to maintain persistence. Hence, we tested which websites by default do
not close the account’s active session after a password reset. To measure whether
the website s invalidates existing sessions after a password reset (TI), a reset link
l is requested. Then, a fresh session is created by authenticating to s. In a sepa-
rate unauthenticated browser instance, l is used to reset the account’s password.
Then, we check whether u1 is still authenticated to s. If so, then TI(s) = true.
To prove that the site s closes the session u1, we performed a manual verification
interacting with the open session for a maximum of 60 s. The manual verification
is necessary due to the heterogeneous behavior of websites where in some cases
a page refresh would invalidate the session and in some others, a more complex
interaction with the site is needed for session invalidation.

Insecure Reset Link (TS). OWASP suggests that all the reset links should
use HTTPS. Otherwise, users run the risk of falling victim to several attacks.
For instance, an attacker could act as a man-in-the-middle and intercept the
new account password. Furthermore, a passive network attacker could sniff the
new account password if HTTPS redirection is not performed and subsequent
requests are transmitted in the clear. This test, which we denote TS , simply
involves checking whether a reset link l for site s uses the HTTPS scheme. If
not, then TS(s) = true.

Multiple Valid Reset Links (TN). If a site receives multiple password reset
requests, it may issue multiple reset links.2 However, each new reset link repre-
sents another opportunity for leakage and abuse by an attacker. Thus, although
not specified in the OWASP guideline [26], from a security perspective, it is
preferable to limit the number of reset links that are valid at any point in time,
ideally to one. This test measures whether a site s allows multiple, simultaneously
valid reset links; we denote the number of simultaneously valid links allowed by
a site as TN . First, two reset links l1, l2 are requested. Then, we attempt to use
l1 to initiate a password reset. If the reset succeeds, then this indicates that
TN (s) > 1. In particular, it means that s does not invalidate older links when a
new one is issued.

HTTP Header Injection (TH). As suggested by OWASP, websites should
validate the user’s input before processing it. This includes secure handling
of HTTP headers since malicious content injection of various kinds could be
reflected in reset emails. These vulnerabilities can enable several distinct attacks.

2 In principle, a site could also refuse to issue a new reset link while prior links are
still valid. In our experiments, we never observed this to occur.

A Security Analysis of Email-Based Password Reset Procedures 11

For instance, if a site uses a password reset request’s Host header to generate
reset links, an attacker could explicitly set the Host header when issuing a reset
request to point to an attacker-controlled origin. This would allow the attacker
to phish victims and intercept both the old and new account passwords. Alter-
natively, arbitrary content injection vulnerabilities could be abused to carry out
XSS attacks against victims that receive reset emails.

To test whether a site s is vulnerable to HTTP header injection (TH), we
used our test harness to issue a password reset request, but this time, using
the Headers manipulation proxy, we intercept it, inject unique markers and
then send it to the site s. In particular, we selected a number of standard
and non-standard HTTP headers to inject markers into. These headers include
Host, Origin, Referer, X-Host, X-Forwarded-Host, X-Forwarded-For, X-Forwarded-
Server, Proxy-Host, Destination, True-Client-IP, Client-IP, X-Client-IP, X-Real-IP,
X-Originating-IP, CF-Connecting-IP, X-Original-URL, X-HTTP-DestinationURL, X-
Arbitrary, X-Forwarded-Proto, Proxy, Contact, From, Forwarded, X-Wap-Profile,
and Profile. The email monitor collects the password reset email. Once it is
received, it is scanned for the presence of an injected marker. If one is found, then
the site is considered to be conditionally vulnerable to HTTP header injection;
that is, TH(s) = true. The reset email is flagged for later manual confirmation.

Login CSRF(TL). Immediate redirection of a user to the authenticated page
after a successful password reset without an intervening re-authentication rep-
resents a potential login CSRF vulnerability. For this reason, OWASP suggests
redirecting users to the login process instead of automatically logging in users.
In fact, by targeting a vulnerable site, an attacker could send a password reset
email to a victim for an attacker-controlled account. If the victim is tricked into
performing the password reset, she will be authenticated as the attacker, allow-
ing the attacker to observe all of the victim’s interactions with the site. To test
for the presence of a login CSRF vulnerability at site s, we request a rest link l
and then use it to perform a password reset. After the password, reset we man-
ually verify if the site si, without requesting the new password, automatically
logs in the user. If so, then TL(s) = true.

4.4 Limitations

Due to the inherent limitations of the proposed approach, the reported findings
and results in this paper should be considered as a lower bound. For instance,
we exclude websites that require entering the social security numbers, corporate
email addresses, or credit card information. Furthermore, in the header manipu-
lation assessment, our crawler tested only fifteen popular HTTP headers, while
the origin server might be still vulnerable to other headers which have not been
tested in our methodology. Since our crawler should send a new request for each
test case, some websites blocked our test accounts after a number of password
reset attempts. We stopped testing these websites. However, the implementa-
tions of these websites might still be vulnerable.

12 T. Innocenti et al.

4.5 Ethical Considerations

We defined a set of security controls in our experiments to make sure that
the measurements will not cause any damage to the sites under analysis. For
instance, we ran a minimum number of password reset requests to limit the
amount of traffic generated by our measurement tools. During our measure-
ments, we never injected any malicious code in the network traffic, nor tried to
access accounts that were not under our control. Since our study measures the
actual presence of weaknesses in real-world websites, we did not publicly disclose
the vulnerable websites and contacted the vulnerable websites directly.

We followed the recommendations proposed by works such as [23,31,32].
We first used an open-source vulnerability disclosure and bug bounty program
database to obtain the sites’ contact [9]. From the database, we were able to
obtain the contact information of 62 vulnerable sites. In addition, we identified
sites that use a broker (e.g., HackerOne or Bugcrowd) as a designed channel
to disclose vulnerabilities. We then manually contacted each site following the
platforms’ processes.

Unfortunately, not all the vulnerable sites we identified were included in the
database. For the remaining 200 sites, we used the WhoisXML API to gather
the sites’ contact associated with the registered domain. Once we obtained all
sites’ contact information, we used these as input for our automated email script
to automatically generate and send a custom email for each site. In the com-
munication, we used a verified mail account, as well as our contact information
and a method to verify our identity. Along with the weakness that afflicted each
site, we included a link to the OWASP guidelines used to measure the process
security.

Of all the contacted sites, we received an acknowledgment from 38 sites
(14.5%). The sites contacted by email showed lower responsiveness compared
to the sites that used a broker. In fact, we received 19 replies out of 243 sites. 8
sites reported the issue to their dev team and another 8 marked our report as
informative. 3 sites fixed the issue that we reported.

All the 19 sites contacted through a broker replied to our report, with 8 of
them marking our report as duplicated. Some of the duplicated reports were
dated as far back as 2014 – indicating that the website lacked a fix. A known
site of video streaming confirmed that they will fix the issue. The remaining
sites acknowledged the issue, but due to restricted bug bounty program scope,
our report was marked as informative without providing any information about
possible future fixes.

5 Security Measurement

In this section, we provide the result of our measurement, and present the secu-
rity implications of our findings.

A Security Analysis of Email-Based Password Reset Procedures 13

5.1 Account Recovery Implementation

Password Recovery Type. Since analyzing email-based recovery processes
are the main focus of this work, the first step is to identify the recovery methods
adopted by the selected websites. The most reliable way to discover the recovery
method is to perform a password reset request on each of the selected websites.
This step of the initial filtration, described in Sect. 4.1, allowed us to remove
websites that do not provide a password recovery mechanism as well as websites
that consisted of multiple domains. The output of the setup is 366 websites
that constitute our study’s site seed. A summary of the password recovery type
discovery is presented in Table 1. Our dataset’s analysis confirms the findings of
[4] that the majority of websites adopt an email-based password recovery pro-
cedure. Moreover, it answers our first research question by defining how many
websites implement the account recovery process. In fact, the email-based recov-
ery type (361 websites) represents 98.6% of the whole recovery types with only
five websites that adopt SMS as the primary recovery method.

Table 1. Recovery types summary

Recovery type Channel # Sites

Text-Msg SMS 5 (1.4%)

Original Password E-mail 7 (1.9%)

One-time Security Code E-mail 27 (7.4%)

Temporary Password E-mail 25 (6.8%)

Password Reset Link E-mail 302 (82.5%)

Total 366 (100%)

Table 2. Common weaknesses statistics

Weakness All sites

No Change Notification (NCN) 163 (44.5%)

Multiple Valid Tokens (MVT) 147 (40.2%)

No Session Termination (NST) 139 (38.0%)

Login CSRF (LC) 82 (22.4%)

No Expiration (NE) 75 (20.5%)

Insecure Reset Link (IRL) 52 (14.2%)

Multi Use Token (MUT) 21 (5.7%)

Headers Manipulation (HM) 6 (2.0%)

Total 262 (71.6%)

5.2 Recovery Procedure Analysis

Since 302 sites (82.5%) used the reset-link as the recovery method, we focused
on the security implementation of the reset tokens included in the reset-link.

14 T. Innocenti et al.

Fig. 3. Sites distribution in Alexa
ranking

Ne
ws

Int
ern
et
Se
rvi
ces

Po
rno
gra
ph
y

Po
rta
l S
ite
s

Bu
sin
ess

Ga
me
s

Blo
gs/
W
iki

So
ftw
are
/H
ard
wa
re

Ne
tw
ork

St
ora
ge

En
ter
tai
nm
en
t

0

5

10

15

20

25

30

27

21

18

13 13

10
9 9 9

8
9

7

5 5

3
2

1
0

2 2

25

20

17

12

8
7

8 8

6 6

Crawled site
of site with Token vulnerability
of site with Web vulnerability

Fig. 4. Top 10 categories

The reset token is a secret code generated by the website, and included in the
reset-link. The token allows opening a temporary session to reset the account’s
password. Due to its central role, the reset token’s security checks play a fun-
damental part in ensuring the password reset procedure’s security. Hence, we
allocated four out of six implementation checks to verify its correct implemen-
tation and the remaining two to verify a correct implementation after password
reset (i.e., no session termination, no change notification). The result of our
measurement are presented in Table 2.

Combining the result of Table 2 with the data of Fig. 6 shows that 57.7%
of websites (211 websites out of 366) misimplemented a security check on reset
token. For the remaining two implementation checks, we found that 54.0% (198
out of 366 websites) of websites wrongly managed the active sessions after a
password reset, or missed a confirmation email after a successful password reset.
The tests performed show a large diffusion of misimplementation of the password
reset procedure among websites. Moreover, the widespread number of websites
with at least one weakness (i.e., 262 out of 366 – 71.6%) answers the second
research question affirmatively; That is, the missing of a standard clearly causes
a degradation of the password reset procedure’s implementation security on web-
sites. The diffusion of weaknesses among websites is a clear indicator of a much-
needed strict regulation of this critical procedure urging a practical effort from
websites to the research community to solve this overlooked problem.

5.3 Weakness Analysis

Alexa Ranking. As presented in Fig. 3, the percentage of websites affected by
a weakness is, in the first group, 97% (198 sites) of the most popular websites,
97.7% (87 sites) for the second group and, 87.7% (64 sites) for less popular
websites. The result of our measurement shows an homogeneous diffusion of
weaknesses among all three different groups.

A Security Analysis of Email-Based Password Reset Procedures 15

0 100 200 300 400 500
Ranking of sites

0.0

0.2

0.4

0.6

0.8

1.0
Co

m
ul
at
iv
e
pr
ob
ab
ili
ty

MVT
NCN
NST
IRL
MUT
NE
LC

2400 2450 2500 2550 2600
Ranking of sites

0.0

0.2

0.4

0.6

0.8

1.0

MVT
NCN
NST
IRL
MUT
NE
LC

4800 4850 4900 4950 5000
Ranking of sites

0.0

0.2

0.4

0.6

0.8

1.0

MVT
NCN
NST
IRL
MUT
NE
LC

Fig. 5. CDF weaknesses comparison

Category. The analysis of the website categories reveals that all the categories
have at least 60% of websites that are vulnerable, with six categories that have
at least 89% of the websites that are vulnerable. As presented in Fig. 4, from
the composition of the sites’ weaknesses, it is clear that token weaknesses have
a higher incidence with respect to the web vulnerabilities. Even though some
categories showed a lower percentage in weaknesses, the result obtained shows
how the weaknesses we analyzed affect all the website categories indiscriminately,
reinforcing the conclusion that the security of password reset procedure is an
open and widespread problem.

Weakness Distribution. Figure 5 shows the cumulative distribution of web-
sites that exhibit an implementation weakness. For each weakness measured, we
represent here the distribution of vulnerable sites in all three sites bucket. A
more inclined line shows that a particular weakness affects more popular sites
than less popular sites. As shown in the graph, the majority of the weaknesses
show a similar trend among sites. Further analyzing the distribution of each
bucket of sites, we performed a Mann-Whitney U test and, with a p-value of
0.01, we cannot reject the null hypothesis that all three buckets belongs to the
same distribution. This result suggests a counter-intuitive result; that websites
are affected regardless of their ranking and popularity.

Furthermore, we investigated the diffusion of weaknesses among websites with
the co-occurrence matrix presented in Fig. 6. The matrix shows three weakness
clusters: Multiple Valid Token, No Change notification, and No Session Termi-
nation. These clusters suggest that websites that did not pass one of the security
checks have a higher chance of having issues in other security check implementa-
tions. The consequence is that even a single misimplementation could endanger
the security of the reset procedure. However, websites that expose multiple weak-
nesses enable the chaining of weaknesses, considerably increasing the severity of
the problems.

5.4 Attack Scenarios

In this section, we present the result of our attack scenarios investigation. While
our analysis represents a lower bound of vulnerable sites, it still shows an urgent

16 T. Innocenti et al.

Fig. 6. Co-occurence matrix

need for a better password reset procedure implementation. Furthermore, sites
should account for every potential attack when designing their recovery proce-
dure to reduce the risk that malicious actors could exploit security assumptions.

Header Injection. In this experiment, our proxy, in two separate account
reset requests, manipulated Host header as well and fifteen standard and Non-
Standard HTTP headers through injecting specific values. We later investigated
all reset email contents and reset links for the presence of a marker (manipulated
headers value). Our crawler discovered 6 out of 366 (2.0%) websites echoed our
injected marker either in reset link, or inside email contents. The details of each
category are described below.

Host Header Injection. In the first step, our proxy replaced the Host header
in all password reset requests with a specific marker. By investigating all reset
emails, our crawler discovered 3 out of 366 (1.0%) websites to be vulnerable,
i.e., the generated password reset link pointed to the injected domain name by
the crawler. It is noteworthy that our crawler did not detect any changes in the
content of the password reset email, which implies Host header manipulation
would only affect reset links. Leveraging this vulnerability enables an attacker
to steal the password reset token and compromise user’s accounts. Our results
show that only 66 out of 366 (18%) websites accepted password reset requests

A Security Analysis of Email-Based Password Reset Procedures 17

with manipulated Host header and sent the password reset emails, whereas
only 3 were found to be vulnerable. For the rest of the websites, our crawler
recorded three different behaviors. 96 websites handled requests properly and
redirected our crawler to custom error pages. 70 websites returned different 400
error codes (mostly 403 Not Found), and 8 websites returned 500 Internal
Server Error. For websites that do not accept password reset requests, it is
plausible that a variety of middle HTTP components (e.g., Load balancer, Web
application firewall, etc.) have blocked requests with manipulated Host header
and do not route the request to the server. Then, the presented result in this
section should be considered as a lower bound because the server can still be
vulnerable, but other in the middle protections avoid the server’s exposure to
vulnerability.

Other HTTP Headers Injection. In the final step, our proxy manipulated
the password reset requests by adding fifteen standard and Non-Standard HTTP
headers and discovered 3 out of 366 (1.0%) websites to be vulnerable. Dur-
ing the measurement, 198 websites out of 366 (54%) accepted our poisoned
request showing a lower bouncing rate compared to the host headers poisoning an
older and better documented vulnerability. The lower popularity and documen-
tation of Non-Standard HTTP headers open the door to unexplored weakness as
showed by the result of our measurement. Two of three cases were vulnerable to
X-Forwarded-Host header, and the servers used these header values to create a
password reset link. Obtaining the password reset link would enable the attacker
to steal the password reset token and perform an account take over.

The third site was exploited with manipulation of a different header, namely
x-originating-ip, while the site was vulnerable to altering neither Host nor
X-Forwarded-Host headers. The result of manipulating x-originating-ip was
notable in that the marker we injected in the field was echoed in the contents of
the email. Therefore, it would be possible to inject arbitrary phishing contents in
the password reset email. Another notable observation was specifically observed
in anonymous.com site, which was including not only the password reset link in
the password reset email, but also the IP address of the requester. This IP address
would be set as the value of x-originating-ip header. Interestingly, when we
populated x-originating-ip with our marker, this value was the one which was
shown in the anonymous password reset email. We think this observation could
be justified with assuming the existence of some middle network components or
servers, which are responsible to find the requester’s IP and then append that IP
address to the header, without overwriting the value we set. When the results
are sent to the server, it shows the first value of x-originating-ip, which
had been set by us. These results confirmed our hypothesis that manipulating
Non-Standard headers are an effective variation of header manipulation and can
target password reset processes either by reset link poisoning or email content
manipulation.

Login CSRF. The attack scenario presented in Sect. 3.2 is a variation of the
well-known Login CSRF (i.e., Auth-CSRF). Login CSRF was first introduced in

18 T. Innocenti et al.

2009 [15]. In the attack, an attacker forces the victim to login to the attacker’s
account by sending a forged authentication request with the attacker’s creden-
tials through the victim’s browser. As described in Sect. 4.3, after completing the
password reset process, we manually investigated the landing pages to verify if
the browser session is authenticated. In case of an authentication landing page,
the site would be tagged as vulnerable. As a result of our experiments, 82 out
of 366 (22.4%) websites were vulnerable to login CSRF.

6 Conclusions

One of the most security-critical aspects of a website’s functionality is the pass-
word recovery service. It has been long known that malicious actors often target
the password recovery process to hijack a victim’s account (e.g., by guessing
their secret recovery questions). A popular, established technique for allowing a
user to recover a lost account is to allow her to send a reset link to her account
via email. The security requirements of the password recovery process requires
web sites to carefully design each step of the process to be resilient even in the
presence of an attack.

This paper presented a security analysis of the email-based recovery mecha-
nisms of a wide range of web applications from the Alexa Top 5K. We studied
groups of popular, medium popular, and low popular websites, and manually
registered accounts on these websites. Our work shows that the lack of stan-
dards in the password recovery process plagues many websites with security
weaknesses, and also negatively influences the security of the reset process itself.
We also show that concrete password-recovery reset attacks (e.g., login CSRF,
header manipulation) can be launched against a significant number of websites
that might even lead to account takeover. We hope that this paper will pave
the way in highlighting the importance of improving the email-based account
recovery mechanisms in real-world websites.

Acknowledgments. We would like to thank anonymous reviewers for reading the
paper carefully and making helpful comments. This work was supported by National
Science Foundation under grant CNS-1703454. This work was also partially supported
by Secure Business Austria.

References

1. Al Maqbali, F., Mitchell, C.J.: Email-based password recovery-risking or rescu-
ing users? In: 2018 International Carnahan Conference on Security Technology
(ICCST), pp. 1–5. IEEE (2018)

2. Maqbali, F.A., Mitchell, C.J.: Web password recovery: a necessary evil? In: Arai,
K., Bhatia, R., Kapoor, S. (eds.) FTC 2018. AISC, vol. 881, pp. 324–341. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-02683-7 23

3. Bonneau, J., Bursztein, E., Caron, I., Jackson, R., Williamson, M.: Secrets, lies,
and account recovery: lessons from the use of personal knowledge questions at
google. In: Proceedings of the 24th International Conference on World Wide Web,
pp. 141–150 (2015)

https://doi.org/10.1007/978-3-030-02683-7_23

A Security Analysis of Email-Based Password Reset Procedures 19

4. Bonneau, J., Preibusch, S.: The password thicket: technical and market failures in
human authentication on the web. In: WEIS (2010)

5. Cao, Y., Chen, Z., Li, S., Wu, S.: Deterministic browser. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, pp.
163–178 (2017)

6. Chen, S., Wang, R., Wang, X., Zhang, K.: Side-channel leaks in web applications:
a reality today, a challenge tomorrow. In: 2010 IEEE Symposium on Security and
Privacy, pp. 191–206. IEEE (2010)

7. Conikee, C.: Case study: exploiting a business logic flaw with github’s forgot
password workflow, December 2019. https://medium.com/@chetan conikee/case-
study-exploiting-a-business-logic-flaw-with-githubs-forgot-password-workflow-
discovered-d4d36ee3dd16

8. Corporation, T.M.: CWE-640: weak password recovery mechanism for forgotten
password. https://cwe.mitre.org/data/definitions/640.html

9. Disclose.io: Open-source tools to help hackers and organizations make the internet
safer, together. https://disclose.io. Accessed 20 Feb 2021

10. Dmitrienko, A., Liebchen, C., Rossow, C., Sadeghi, A.R.: Security analysis of
mobile two-factor authentication schemes. Intel Technol. J. 18(4) (2014)

11. Gracey, J.: Hacking github with unicode’s dotless ‘i’, November 2019. https://eng.
getwisdom.io/hacking-github-with-unicode-dotless-i/

12. Hanamsagar, A., Woo, S.S., Kanich, C., Mirkovic, J.: Leveraging semantic trans-
formation to investigate password habits and their causes. In: Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018)

13. Jakobsson, M., Stolterman, E., Wetzel, S., Yang, L.: Love and authentication. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pp. 197–200 (2008)

14. Just, M.: Designing and evaluating challenge-question systems. IEEE Secur. Priv.
2(5), 32–39 (2004)

15. Karlof, C., Tygar, J.D., Wagner, D.A.: Conditioned-safe ceremonies and a user
study of an application to web authentication. In: NDSS (2009)

16. Kettle, J.: Practical http host header attacks, May 2013. https://www.
skeletonscribe.net/2013/05/practical-http-host-header-attacks.html

17. Kettle, J.: Cracking the lens: targeting http’s hidden attack-surface, July
2017. https://portswigger.net/research/cracking-the-lens-targeting-https-hidden-
attack-surface

18. Kettle, J.: Collaborator everywhere, May 2018. https://github.com/PortSwigger/
collaborator-everywhere

19. Lei, Z., Nan, Y., Fratantonio, Y., Bianchi, A.: On the insecurity of SMS one-time
password messages against local attackers in modern mobile devices. In: Proceed-
ings of the 2021 Network and Distributed System Security (NDSS) Symposium
(2021)

20. Li, Y., Wang, H., Sun, K.: Email as a master key: analyzing account recovery in the
wild. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications,
pp. 1646–1654. IEEE (2018)

21. Lovisotto, G., Malik, R., Sluganovic, I., Roeschlin, M., Trueman, P., Martinovic,
I.: Mobile biometrics in financial services: a five factor framework. University of
Oxford, Oxford, UK (2017)

22. Ma, S., et al.: An empirical study of SMS one-time password authentication in
android apps. In: Proceedings of the 35th Annual Computer Security Applications
Conference, pp. 339–354 (2019)

https://medium.com/@chetan_conikee/case-study-exploiting-a-business-logic-flaw-with-githubs-forgot-password-workflow-discovered-d4d36ee3dd16
https://medium.com/@chetan_conikee/case-study-exploiting-a-business-logic-flaw-with-githubs-forgot-password-workflow-discovered-d4d36ee3dd16
https://medium.com/@chetan_conikee/case-study-exploiting-a-business-logic-flaw-with-githubs-forgot-password-workflow-discovered-d4d36ee3dd16
https://cwe.mitre.org/data/definitions/640.html
https://disclose.io
https://eng.getwisdom.io/hacking-github-with-unicode-dotless-i/
https://eng.getwisdom.io/hacking-github-with-unicode-dotless-i/
https://www.skeletonscribe.net/2013/05/practical-http-host-header-attacks.html
https://www.skeletonscribe.net/2013/05/practical-http-host-header-attacks.html
https://portswigger.net/research/cracking-the-lens-targeting-https-hidden-attack-surface
https://portswigger.net/research/cracking-the-lens-targeting-https-hidden-attack-surface
https://github.com/PortSwigger/collaborator-everywhere
https://github.com/PortSwigger/collaborator-everywhere

20 T. Innocenti et al.

23. Mirheidari, S.A., Arshad, S., Onarlioglu, K., Crispo, B., Kirda, E., Robertson,
W.: Cached and confused: web cache deception in the wild. In: 29th {USENIX}
Security Symposium ({USENIX} Security 2020), pp. 665–682 (2020)

24. Mulliner, C., Borgaonkar, R., Stewin, P., Seifert, J.-P.: SMS-based one-time pass-
words: attacks and defense. In: Rieck, K., Stewin, P., Seifert, J.-P. (eds.) DIMVA
2013. LNCS, vol. 7967, pp. 150–159. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39235-1 9

25. Oesch, S., Ruoti, S.: That was then, this is now: a security evaluation of password
generation, storage, and autofill in browser-based password managers. In: USENIX
Security Symposium (2020)

26. OWASP: Forgot password cheat sheet. https://cheatsheetseries.owasp.org/
cheatsheets/ForgotPasswordCheatSheet.html

27. Preibusch, S., Bonneau, J.: The password game: negative externalities from weak
password practices. In: Alpcan, T., Buttyán, L., Baras, J.S. (eds.) GameSec 2010.
LNCS, vol. 6442, pp. 192–207. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17197-0 13

28. Rabkin, A.: Personal knowledge questions for fallback authentication: security
questions in the era of Facebook. In: Proceedings of the 4th Symposium on Usable
Privacy and Security, pp. 13–23 (2008)

29. Raponi, S., Di Pietro, R.: A longitudinal study on web-sites password management
(in) security: evidence and remedies. IEEE Access 8, 52075–52090 (2020)

30. Schechter, S., Brush, A.B., Egelman, S.: It’s no secret. Measuring the security and
reliability of authentication via “secret” questions. In: 2009 30th IEEE Symposium
on Security and Privacy, pp. 375–390. IEEE (2009)

31. Stock, B., Pellegrino, G., Li, F., Backes, M., Rossow, C.: Didn’t you hear me?
- Towards more successful web vulnerability notifications. In: Proceedings of the
2018 Network and Distributed System Security (NDSS) Symposium (2018)

32. Stock, B., Pellegrino, G., Rossow, C., Johns, M., Backes, M.: Hey, you have a
problem: on the feasibility of large-scale web vulnerability notification. In: 25th
{USENIX} Security Symposium ({USENIX} Security 2016), pp. 1015–1032 (2016)

33. Yoo, C., Kang, B.T., Kim, H.K.: Case study of the vulnerability of OTP imple-
mented in internet banking systems of South Korea. Multimedia Tools Appl.
74(10), 3289–3303 (2015)

34. Zhang, Y., Gao, H., Pei, G., Luo, S., Chang, G., Cheng, N.: A survey of research
on captcha designing and breaking techniques. In: 2019 18th IEEE Interna-
tional Conference on Trust, Security and Privacy in Computing and Communi-
cations/13th IEEE International Conference on Big Data Science and Engineering
(TrustCom/BigDataSE), pp. 75–84 (2019). https://doi.org/10.1109/TrustCom/
BigDataSE.2019.00020

https://doi.org/10.1007/978-3-642-39235-1_9
https://doi.org/10.1007/978-3-642-39235-1_9
https://cheatsheetseries.owasp.org/cheatsheets/ForgotPasswordCheatSheet.html
https://cheatsheetseries.owasp.org/cheatsheets/ForgotPasswordCheatSheet.html
https://doi.org/10.1007/978-3-642-17197-0_13
https://doi.org/10.1007/978-3-642-17197-0_13
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00020
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00020

The Full Gamut of an Attack:
An Empirical Analysis of OAuth CSRF in

the Wild

Michele Benolli, Seyed Ali Mirheidari, Elham Arshad(B), and Bruno Crispo

University of Trento, Trento, Italy
{seyedali.mirheidari,elham.arshad,bruno.crispo}@unitn.it

Abstract. OAuth 2.0 is a popular and industry-standard protocol. To
date, different attack classes and relevant countermeasures have been
proposed. However, despite the presence of guidelines and best practices,
the current implementations are still vulnerable and error-prone. In this
research, we focus on OAuth Cross-Site Request Forgery (OCSRF) as an
overlooked attack scenario.

We studied one of the most recurrent types of OCSRF attacks by
proposing several novel attack strategies based on different status of
the victim browser. In order to validate them, we designed a repeatable
methodology and conducted a large-scale analysis on 314 high-ranked
sites to assess the prevalence of OCSRF vulnerabilities. Our automated
crawler discovered about 36% of targeted sites are still vulnerable and
detected about 20% more well-hidden vulnerable sites utilizing the novel
attack strategies. Although our experiment revealed a significant increase
in the number of OCSRF protection compared to the past scale analy-
ses, over one-fourth are still vulnerable to at least one proposed attack
strategy.

1 Introduction

OAuth 2.0 is an industry-standard protocol for authorization. It was released in
2012 as RFC 6749 and nowadays is pervasively used to manage authorization
flows in web, desktop, mobile applications, and in smart devices. The protocol
has been widely studied, and its theoretical and practical security has been
covered extensively by the literature. OAuth was designed to enhance several
aspects of the former client-server authorization model.

The OAuth 2.0 Threat Model and Security Considerations [26] and OAuth
2.0 Security Best Current Practice [16] documents are published to address the
most common security issues and vulnerability scenarios discovered within con-
crete implementations of the protocol. However, despite the rich guidelines and
the many mitigation proposed over time, several OAuth-based services are still
subject to a wide range of security flaws. This because, those guidelines are
not detailed enough to consider all possible settings that can lead to an attack,
especially for what relates client-side parameters.
c© Springer Nature Switzerland AG 2021
L. Bilge et al. (Eds.): DIMVA 2021, LNCS 12756, pp. 21–41, 2021.
https://doi.org/10.1007/978-3-030-80825-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80825-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-80825-9_2

22 M. Benolli et al.

As reported by [23] CSRF vulnerabilities related to authentication and iden-
tity management services are extremely pervasive, even among the top-ranked
domains. Our paper is mainly focused on a specific vulnerability, the CSRF
attack against the redirect_uri [26], since it’s one of the most popular concrete
attack in OAuth implementations. The attack is well documented in the Threat
Model document and it can lead to serious consequences, ranging from the dis-
closure of sensitive information to a malicious user [3] to the complete account
takeover [10]. Our work extensively covers the details of this security threat,
with a systematic analysis of its root causes and practical impact. We built an
automated testing framework to evaluate the presence of the aforementioned
vulnerability in a large number of popular sites that implement the Facebook
login service. The rationale of our approach is to help developers to avoid imple-
mentation mistakes by providing the most comprehensive set of attack strategy
such that developers are aware what implementation settings to avoid.

The outcome of our large-scale analysis is that more than a third of the tested
sites were found vulnerable to at least one of the proposed attack strategy.

We selected only one attack because the purpose of the paper is not to find
the highest number of vulnerabilities, but rather to demonstrate how to build a
comprehensive set of attack strategies for an attack, considering scenarios and
configurations that have been so far ignored or overlooked in the literature,
This based on the wrong assumptions those scenarios were not significant. Our
analysis proved they are indeed significant and contributed to find 20% additional
vulnerabilities.

The paper makes the following contributions:

– To the best of our knowledge, we present the most comprehensive set of
test cases to exploit OCSRF vulnerabilities, including novel attack strategies
that stress all possible client-side status. They complement and integrate the
guidelines provided by documents such as [16,26] in helping OAuth developers
to mitigate implementation mistakes.

– We designed a repeatable methodology and conducted an automated and
large-scale analysis on 314 high-ranked sites to assess the prevalence of CSRF
attack against the redirect_uri in OAuth implementations.

– The analysis discovered that about 36% of targeted sites are still vulnerable
and detected about 20% more well-hidden vulnerable sites utilizing the novel
attack strategies.

2 Background

This work primarily focuses on a specific OAuth vulnerability, that can lead to
a cross-site request forgery attack. For a thorough understanding of the risks
and consequences related to this vulnerability, this section provides a brief back-
ground on OAuth and CSRF attacks in the context of OAuth. Threat model
and its impact are described as well.

The Full Gamut of an Attack 23

2.1 OAuth

OAuth is an authorization protocol and does not handle user authentication.
However, authentication protocols can be built on top of it [19]. Many identity
providers (IdP) such as Google and Facebook use OAuth to allow their users to
share identity and personal information with third-party websites and applica-
tions (clients).

The OAuth 2.0 specification describes different methods for a client applica-
tion to obtain an access token and consequently the access to user’s protected
resources. The four grant types are authorization code, implicit, resource owner
password credentials, and client credentials. Each grant type is optimized for a
particular use case. In this research, we are only concerned with the authorization
code and implicit grant flows.

2.2 Login CSRF

In a login cross-site request forgery, the attacker deceives the victim into execut-
ing a cross-site request to the login endpoint of a target website. The attacker
uses its own credentials to forge the login request. If the attack succeeds, the
server issues a session cookie for the browser of the victim. As a result, the victim
is logged into the target website with the account of the attacker [3]. There has
been several studies [13,21,23,30] analysing the login CSRF attacks.

At first sight, the attack may appear quite innocuous. Generally, a cross-
site request forgery attack concerns operations performed on the victim’s pro-
tected resources. In the login CSRF, the attacker exploits an application flaw
to deceive the users into performing some unintended operations inside the
attacker’s account. The browser state is changed after the execution of the attack,
and the victims may be completely unaware of the fact they are using an account
owned by someone else. As a result, they may upload sensitive documents, share
credit card numbers and other personal data with a malicious user.

2.3 State Parameter

According to OAuth 2.0 specification [9], the client must implement CSRF pro-
tection for its redirection URI. Any request sent to the redirection endpoint
must include a value that binds to the user-agent’s authenticated state. This
value state parameter which can be performed in OAuth 2.0 flow. The state
parameter, to prevent CSRF attacks, should be a non-guessable randomly gen-
erated sequence of characters. However, the presence of the parameter does not
guarantee the security of the client against a CSRF attack. A wrong validation or
a mishandling of the parameter may lead to the vulnerability of the application,
as evidenced in [30].

3 OAuth Cross Site Request Forgery

In the context of OAuth 2.0, a successful cross-site request forgery can allow an
attacker to obtain authorization to resources protected by the protocol, without

24 M. Benolli et al.

the consent of the user. A recurrent type of login OCSRF is the OCSRF attack
against redirect_uri [26], where the victim is logged into an account controlled
by the attacker. As a direct consequence, all the operations performed by the
victim are unconsciously accomplished inside the attacker’s session and the result
of these actions can potentially be disclosed to the attacker.

3.1 Threat Model

Figure 1 represents the main steps of the OCSRF attack against redirect_uri
considered in our large-scale analysis. The attack starts with the victim’s browser
opening a malicious web page (1). At the loading page, the crafted request is
generally launched by the browser automatically (2). The OAuth flow, initiated
by the attacker, is then completed on the victim’s side. The identity provider
exchanges the received code for an access token and returns it to the client (4).
At this point, the client can use the token to access the information needed to
authenticate the user. Since the flow is initiated by the attacker, the login is
performed using the attacker’s account.

Fig. 1. Main steps involved in the OCSRF attack against redirect_uri

3.2 Impact

Some sites allow their users to register several OAuth provider logins, linked to
the principal account. It represents an alternative and simpler way to access the
application. In this scenario, if one of the implemented OAuth flows is insecure,
a login OCSRF attack may lead to an account takeover. The account linking
feature can be exploited to gain full access to the victim’s data. The attack flow
was first discussed by Egor Homakov [10]. The attack is possible only if certain
preconditions are satisfied. The attack can only be executed against a registered
user on the target site. At the end of the attack, the account owned by the
attacker is linked to the victim’s account. As a result, the attacker can access
the victim’s account on the client with the identity provider’s profile used in the
attack.

The Full Gamut of an Attack 25

3.3 Enabling Factors

Several factors can influence the success rate of the OCSRF attack against
redirect_uri. What happens if the victim is registered to the vulnerable appli-
cation? Is the attack feasible even if the user never visited the domain before?
If the victim is already authenticated to the website, is the attack prevented?
Having these questions answered is important to better understand the impact
of OCSRF in real-life scenarios. To be exploitable, the OCSRF attack against
redirect_uri does not require the victim to be authenticated on the target
application. Frequently the attack works even if the victim never visited the site
before. However, the presence of cookies, previously set by the target site in the
browser, can alter the outcome of the attack. In our analysis, we investigated
this hypothesis running all the test scenarios with three different victim browser
status as follows: a) No cookie, b) Visitor (unauthorized) cookies and c) Autho-
rized cookies. We designed different attack strategies utilizing above-mentioned
victim browser status which would be discussed in detail in Sect. 5.3. In the rest
of the paper, for brevity, OCSRF attack refers to the OCSRF attack against
redirect_uri.

4 Related Work

The security of OAuth 2.0 has been widely examined in the literature. Several
theoretical studies (e.g. [2,7,20,29]) use abstract models to evaluate the security
of the OAuth protocol. A downside of theoretical approach is that it does not
allow to discover the vulnerabilities resulting from implementation errors.

Many empirical works have been done on the security of OAuth-SSO (e.g.,
[1,5,6,18,25,28,31]) either by developing web-based tools or evaluating the risk
in real-world implementations.

A similar approach is employed by Li and Mitchell [13] to analyse the secu-
rity of SSO implementations based on OAuth 2.0. Regarding the CSRF attack
against the redirect_uri, authors found a significant fraction of clients are not
implementing any countermeasure. The detected security issues were manually
inspected and led to the generation of several case studies.

Sumongkayothin et al. present OVERSCAN [24], a security scanner able to
identify missing parameters within the OAuth 2.0 protocol, analysing the traffic
between the browser and the web application. Part of this analysis required
manual inspection. The main limitation of the manual approach is scalability.
The lack of automation makes the inspection process extremely time consuming
and the limited size of the resulting sample makes it difficult to generalize the
findings and distill error patterns.

Calzavara et al. [4] designed and implemented a browser-side security monitor
for web protocols, called WPSE, to prevent nine attacks violating the security
properties of OAuth. However, WPSE cannot prevent certain classes of attacks,
including automatic login CSRF attacks, network attacks which are not observ-
able by the browser and impersonation attacks.

26 M. Benolli et al.

Yang et al. [30] propose a model-based approach for the automated discov-
ery of vulnerabilities in OAuth 2.0 implementations, called OAuthTester. To
overcome the limitations of previous theoretical approaches, OAuthTester starts
building a state machine from the protocol specifications, but then enhance the
state machine and fills the gaps due to the ambiguities of the specification by
observing traffic traces of the OAuth flow and the server state. However, as said
by the authors, they can observe only traffic over HTTP, so they cannot gain
the all knowledge we used in our approach to design the attack strategies. As a
results they do not detect vulnerabilities that we detect with our analysis.

Shernan et al. [21] perform a large-scale analysis to assess the presence of
CSRF vulnerabilities in real-world deployments of OAuth. The analysis on the
Alexa Top 10K sites reveals that 25% of sites using OAuth were vulnerable
to CSRF attacks. A significant limitation of this approach is represented by
the metric used to assess the occurrence of CSRF vulnerabilities. A lot of sites
were excluded from the analysis simply because of the existence of the state
parameter in the authorization URL. As we show in this paper, the mere presence
of the state value does not guarantee protection against CSRF attacks.

Sudhodanan et al. [23] present a comprehensive study on the different types
of authentication CSRF reported in the literature. For identification of strategies
in order to detect and reproduce each vulnerability, they used the same browser
to simulate the interaction between the attacker and the victim, which led to
missing some additional scenarios regarding to victim’s browser states at the
time of the attack. Our approach consider additional attack strategies. Instead of
using the same browser, we totally separated the environment in which attacker
and victim operate. In place of performing the attack only in a clean browser
session, we also performed tests in presence of visitor and authorized cookies;
which is not considered in their analysis.

5 Methodology

We designed a repeatable methodology to discover and validate OCSRF vulnera-
bilities in targeted sites. As depicted in Fig. 2, our methodology has three phases:
1. target selection, 2. measurement setup 3. OCSRF detection. We developed a
tool based on Python-Selenium to automatically select targets and test different
OCSRF scenarios.

Fig. 2. Abstract view of OCSRF detection methodology.

The Full Gamut of an Attack 27

5.1 Phase 1: Target Selection

Step 1: OAuth Login Detection. For extracting the initial seed set of can-
didate sites using OAuth login, we develop a browser-based crawler to visit
sites in the initial seed set (e.g., Alexa Top 50K) in April 2020. The crawler
is designed in a way that extracts initial OAuth login links for specific pop-
ular providers via checking the presence of OAuth standard parameters in all
extracted links.: response_type, client_id, and oauth. The string «oauth» is
commonly contained in the URL of authorization endpoints and its presence is a
good indicator of the existence of an OAuth-based process. All these parameters
are used by the crawler in the detection phase, to classify the links and identify
the different login systems built on top of the OAuth protocol. Since many sites
use JavaScript which requires interaction with users to trigger OAuth login, we
develop a browser-based crawler to increase the detection rate.

Step 2: OAuth Flow Extraction. In order to remove false positives and
extract OAuth redirection flows properly, the crawler follows all extracted and
selected links. If the crawler lands on any well-known identity provider we will
add the site to our candidate list, which would be later used to test our OCSRF
attack strategies. A keyword-based approach is used to detect the Login/Sign-in
buttons (these elements usually contain some known keywords to identify the
login action and the identity provider). Extracted flows would later fed into next
phases.

5.2 Phase 2: Measurement Setup

Step 1: Manual Registration. We follow the extracted OAuth links and
create two sets of test accounts (victim and attacker) for each targeted site.
Since the information provided by the external identity provider is not sufficient
for the account creation process in many targeted sites, manual data entry is
necessary. We adopt previously proposed technique [17] to populate attacker
and victim accounts with unique information (e.g., name, email, user identifier,
phone number, profile logo, etc.) and use them in next steps as markers.

Step 2: Login Validation. To verify the login steps, the crawler uses the
login information gathered in the first phase to initiate the OAuth login trail.
It reaches the authentication page and enters the credential automatically. At
this point the flow is complete, and the browser is redirected to the target site’s
landing page.

OCSRF attack detection requires a victim to login as an attacker to the
targeted site. The detection crawler should be capable of detecting the forged
login to the attacker’s account. In this regard, a learning process is developed
for the crawler to automatically complete and learn the login processes for both
attacker and user accounts. In the learning process, the crawler scans the HTML
code of the landing page and looks for specific user-related strings. We presume
the presence of some predefined unique markers, visible only as a result of a
valid login to each account (which is populated to each account in registration
step).

28 M. Benolli et al.

5.3 Phase 3: OCSRF Discovery

The main goal of this phase is to discover exploitable sites. The crawler is
designed in a way to discover various implementation flaws in state validation
(described in the step 2). In the first step, the crawler follows the OAuth flow,
logs into the attacker account and extracts the authorization response links. In
the second step, the crawler applies different modifications based on five attack
strategies on the extracted authorization link. In the last step, the different vic-
tim browser status is exploited with modified links.

Step 1: Authorization link Extraction. Since the successful exploitation
of OCSRF needs an attacker authorization response link including authoriza-
tion code, state etc., the crawler initially follows OAuth login and obtains an
attacker authorization response from the identity provider. We develop a browser
extension to allow the crawler to record the attacker authorization link from the
identity provider and halt the OAuth flow immediately. In other words, the
generated authorization link is recorded and the OAuth flow is stopped before
redirection to the target site. The extracted link will be modified in the next
steps to discover vulnerable sites.

Step 2: state Modification. The extracted authorization link would be mod-
ified via going through five attack strategies. All attack strategies are performed
mainly based on modifications on state, as a result of which attack URLs would
be created. The first scenario is applied to the subset of sites in which a state is
not present in the authorization link. In other scenarios, attack strategy would
build further attack URLs by manipulating the state value as enumerated as
follows.

0. No state. The link is sent unaltered to the victim if the original link does
not contain a state.

1. Empty state. The state value is replaced with an empty string.
2. Lack of state validation. The value of the state is replaced with a ran-

domly generated string.
3. Unlinked state. The link including state is sent unaltered to the victim.
4. Missing state. The state is removed.

In the first attack strategy, the authorization response link obtained at the
first stage remains unchanged. In order to build other test cases, the testing
strategy would manipulate the value of state value by either replacing it with
an empty string, substitute it with a randomly generated string or keep the same
value. Last attack strategy would completely remove the state parameter. In
both strategies 0 and 3 the attacker would deliver the attack link unchanged
to the victim. The strategies 1 and 2 rely on different alterations of the state
value. In strategy 1, the content of the parameter is replaced with an empty
string while attack strategy 2 replaces the value with random string. Finally, in
the last strategies the state value and parameter name is completely removed.

Step 3: Exploitation. Each of the attack URLs generated in the previous step
would be opened in a separate browser. We propose several OCSRF test cases

The Full Gamut of an Attack 29

based on above strategies to determine whether a site is exploitable or not. In
this regard, above strategies assess various victim browser status. Each of them
is performed on three different victim browser status:

(a) Status A. No Cookie, when the victim opens the attack URL, there is
no cookie related to the targeted site in the victim browser. In other words,
either victim never visited the targeted site in the past or uses a new/history-
cleared browser. Obviously, no cookies will be sent to the server when attack
URLs are requested.

(b) Status B. Visitor Cookies, If the victim visited the targeted site in the
past and visitor or unauthorized cookies have been set in the browser, the
victim browser adds them to all requests. In this case, the crawler visits the
first page of candidate site and stores all cookies before requesting the attack
URLs.

(c) Status C. Authorized Cookies, If the victim is already authenticated to
the targeted site, authorized cookies have been set on the victim browser.
To simulate this test case, the victim has been authenticated by our crawler
through logging in the victim’s account, before requesting the attack URLs.

Each of the created attack URLs, obtained from applying previously-
mentioned strategies, would be tested on each and every browser status defined
above. As we have five different attack strategies and three possible victim
browser status, we would end up with 15 test cases which would be exploited for
each site. We later open all attack URLs inside victim browsers. We consider a
test case to be successful if the attacker’s marker is observed inside the victim’s
browser.

In a nutshell, each test case could be considered as the following three-step
process.

1. Extract an attacker valid authorization response.
2. state parameter modification based on attack strategies.
3. Simulation of OCSRF attack on one of victim browser’s status

5.4 Ethical Consideration

All test cases were performed with accounts specifically generated for this pur-
pose. We never tried to exploit user accounts outside of our control. In all vulner-
ability assessment phases, our crawler never injected, sent or stored any malicious
payload to candidate sites. In order to evade detection by bots detector [27], less
than 100 pages of each candidate site was visited slowly in the data collection
phase. We also developed Selenium crawler to complete the authentication steps
and simulate a real user browser session. The number of requests involved in all
test cases are significantly low, and the examined websites did not suffer from
excessive bandwidth consumption. Moreover, all tests were conducted on the
entire set of candidate sites therefore none of them has repeatedly been scanned
in a short period of time.

30 M. Benolli et al.

Responsible Disclosure. Since the impact of the discovered vulnerabilities
are severe, we reported the site owners using recommended notification tech-
niques [12,22]. Additionally, we tried to disclose the vulnerabilities to those sites
for which a centralized reporting system such as Hackerone [8] can be used, as
these promise an increased success rate over attempting direct notification.

6 Analysis

In this section, we present the results of the empirical analysis and discuss them
in detail. We also independently evaluate the results of each attack strategy and
test case. This approach gives us the opportunity to properly focus on individual
case studies among exploitable sites. The section would be concluded with the
presentation of noteworthy observations.

6.1 Measurement Overview

Dataset. We fed our crawler with the Alexa Top 50K sites and analyzed the first
page of them to extract the list of candidate sites with OAuth login. Since most of
the discovered sites support different identity providers in their authentication
pages, we only targeted one of their implementations and selected the most
popular one, Facebook. The crawler discovered 539 sites with Facebook login. In
the next step, we tried to create two sets of accounts (victim and attacker) and
recorded the successful OAuth flow on each site. We narrowed down the dataset
to 314 due to exclusion of sites with incomplete account registration (e.g., Social
Security Number, credit card, etc.) and unsuccessful account verification.

Alexa Ranking. Our crawler analyzed all fifteen proposed test cases on target
dataset and discovered 114 out of 314 (%36.3) sites to be exploitable by at least
one test case. Given the distribution of the targeted and vulnerable sites across
the Alexa Top 50K, it is noteworthy that about 32% of the sites among the
Top Alexa 1K are vulnerable. Sites with higher Alexa ranking are slightly more
vulnerable, but no specific major correlation among different buckets has been
observed.

Categories Based on Presence of state. The candidate sites have been
categorized based on absence or presence of state parameter within the recorded
authorization request. For the former category, as mentioned in Sect. 5.3, our
crawler directly exploit site without state and no modification applied on the
attack URLs. However, on the latter category, due to presence of state parameter,
15 different attack scenarios have been tested. We will discuss the result of both
categories in Sect. 6.2 in detail.

1. The first category, 44 out of 314 (14.0%) sites, do not use state, which
shows a significant increase in utilization of state compare to past large
scale analyses [3,11,14].

The Full Gamut of an Attack 31

2. The second category, 270 out of 314 (85.9%) sites, are using state. Although,
this indicates a significant increase in OCSRF protection compared to the past
studies [3,11,14,15], our crawler detected 73 out of 270 (27.0%) exploitable
sites utilizing different test cases.

Table 1. Number of exploitable sites in Facebook by OCSRF for each attack strategies

No cookies (a) Visitor cookies (b) Auth. cookies (c) All
0 33 (10.5%) 41 (13.1%) 23 (7.3%) 41 (13.1%)

1 34 (10.8%) 33 (10.5%) 23 (7.3%) 41 (13.1%)
2 30 (9.6%) 40 (12.7%) 23 (7.3%) 40 (12.7%)
3 49 (15.6%) 63 (20.1%) 36 (11.5%) 64 (20.4%)
4 33 (10.5%) 34 (10.8%) 24 (7.6%) 40 (12.7%)
Total 91 (29.0%) 105 (33.4%) 62 (19.7%) 114 (36.3%)

Attack Strategies. Table 1 shows the number of exploitable sites to each attack
strategy. As shown, the «attack strategy 3: Unlinked state» has the highest
success rate (20.4%) in all victim browser status. In this attack strategy, as
previously described in Sect. 5.3, the victim visited a crafted attack URL with
an attacker’s valid and unused state. It means lack of proper relation between
the victim browser and generated state is the most common implementation
mistake. Interestingly «attack strategy 1: Empty state» has the second rank
which means some sites mistakenly accept the authorization link with a null
state value.

Test Cases. Since visitor cookie is the most vulnerable status which makes
highest success rate (20.4%) and «attack strategy 3: Unlinked state» is the
most effective attack strategy, test case «3b» has the highest detection rate. Our
crawler detected 63 out of 270 (20.1%) sites to be exploitable with it. Test cases
«1c» and «2c» had the lowest detection rates, most probably because targeted
sites do not accept new OAuth login when user is authenticated.

Table 2. Classification of exploitable sites in Facebook by OCSRF - The first category
of candidates (with Absence of state parameter)

0a 0b 0c Sites

1 ○ ○ ○ 17 (38.6%)
2 ○ ○ ○␣ 16 (36.4%)
3 ○␣ ○ ○ 6 (13.6%)
4 ○␣ ○␣ ○␣ 3 (6.8%)
5 ○␣ ○ ○␣ 2 (4.5%)
Total 33 41 23 44

32 M. Benolli et al.

Victim Browser Status. We tested each attack strategy with three differ-
ent victim browser status. Our crawler detects unique exploitable cases in each
browser status. Previous researches only test the OCSRF in a clean browser with-
out presence of any cookie [23] or only with visitor cookie [30]. In this research,
our crawler was able to detect 23 out of 114 (20.2%) more exploitable OCSRF
cases compared to test case «a: No cookies» through utilizing different browser
status and 9 out of 114 (7.9%) compared to test case «b: Visitor cookies». Apply-
ing all of the browser status together with attack strategies have been done for
the first time to the best of our knowledge.

Based on our results presented in Table 1, the presence of visitor cookie in vic-
tim browser increases the chance of finding exploitable cases significantly. Even
though it is common that sites with authorization cookies are less vulnerable,
we observed test cases that unexpectedly were vulnerable only in this specific
test cases, which would be discussed in Sect. 6.2.

Table 3. Classification of exploitable sites in Facebook by OCSRF - The second cate-
gory of candidates (with Presence of state parameter)

1a 1b 1c 2a 2b 2c 3a 3b 3c 4a 4b 4c Sites Sites/Const state

1 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ 197 (73.0%) 1 (5.9%)
2 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 18 (6.7%) 4 (23.5%)
3 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○ ○ ○␣ ○␣ ○␣ 11 (4.1%) 5 (29.4%)
4 ○ ○ ○␣ ○ ○ ○␣ ○ ○ ○␣ ○ ○ ○␣ 7 (2.6%) 0
5 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○ ○␣ ○␣ ○␣ ○␣ 6 (2.2%) 1 (5.9%)
6 ○␣ ○ ○␣ ○␣ ○ ○␣ ○␣ ○ ○␣ ○␣ ○ ○␣ 5 (1.9%) 1 (5.9%)
7 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○␣ ○␣ ○␣ 4 (1.5%) 3 (17.6%)
8 ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○␣ 4 (1.5%) 0
9 ○␣ ○␣ ○␣ ○ ○ ○ ○ ○ ○ ○␣ ○␣ ○␣ 3 (1.1%) 0
10 ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○␣ ○ ○␣ ○␣ ○␣ ○␣ 3 (1.1%) 0
11 ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ 2 (0.7%) 0
12 ○ ○␣ ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○ 2 (0.7%) 0
13 ○␣ ○␣ ○␣ ○ ○ ○␣ ○ ○ ○␣ ○␣ ○␣ ○␣ 2 (0.7%) 0
14 ○␣ ○ ○ ○␣ ○ ○ ○␣ ○ ○ ○␣ ○ ○ 2 (0.7%) 1 (5.9%)
15 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○ ○ ○ ○ ○ 1 (0.4%) 1 (5.9%)
16 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○␣ ○␣ ○␣ ○␣ 1 (0.4%) 0
17 ○ ○ ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○ ○ 1 (0.4%) 0
18 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○ ○␣ ○␣ ○␣ 1 (0.4%) 0

Total 34 33 23 30 40 23 49 63 36 33 34 24 270 17

6.2 state Parameter

As mentioned, there are two categories of candidates based on the presence of
state parameter within the recorded authorization request, which would be
analysed and explained separately in this section.

The Full Gamut of an Attack 33

Absence of state. Interestingly, 44 out of 314 (14.0%) of sites do not set
state and our crawler detected 33 (75.0%), 41 (93.1%) and 23 (52.2%) sites
are vulnerable to test cases «0a», «0b» and «0c» respectively. In some cases,
the absence of visitor cookies led to errors in the OAuth login flow, and this
contributes to explain the lower number of vulnerabilities found in status «a»
than «b».

Interestingly, all exploitable sites are also exploitable to «b» while about half
of them are not exploitable when there is an authorized cookie. The classification
of exploitable sites are listed in Table 2. Each row represents one pattern w.r.t
different test cases (1a, 1b, etc.). A filled circle in each entry indicates successful
exploitation. The Sites column shows the total number of sites which have been
found exploitable via the indicated pattern in corresponding row. For example,
3 out of 44 sites were not exploitable to any of test cases, so on. While only
17 sites are vulnerable to all three test cases, there are two sites that are only
exploitable when the visitor cookies are present. It means successful exploitation
of them requires the victim browser to add only unauthorized cookies in the
Attack URL.

In contrast to other researches, absence of state does not guarantee suc-
cess exploitation of OCSRF, as other enabling factors can prevent targets from
being exploited. In order to remove the false positives, our crawler analyzed
all 44 sites in the first category of candidates. Unexpectedly, 3 sites were not
exploitable. Two out of three sites use encoded and nonstandard parameters in
the redirect_uri and implement proper validation to check if the OAuth flow
initiated with the same browser. At the time of writing this paper, Facebook
doesn’t allow developers to set arbitrary parameters to redirect_uri as the
full redirect URL should be reserved and the OAuth flow is blocked if there is
any change in redirect_uri. It seems Facebook still allows old implementa-
tions to use nonstandard parameters in redirect_uri, probably for backward
compatibility reasons. Anyhow, further investigation into the exceptions of the
Facebook OAuth implementation is beyond the scope of this research.

The third secure expects the flow to be completed in a popup window, which
is not opened by the crawler during the attack execution. The JavaScript code
running on the client-side fails due to the absence of an opener parent window
and the attack is consequently blocked in the browser. We consider this site as a
secure one despite the absence of adequate protection against OCSRF. We will
discuss related case studies in Sect. 6.4.

Presence of state Attack. Presence of the state does not mitigate OCSRF
vulnerabilities. We summarized each exploitable pattern which was observed
during our experiment on 270 sites in our candidate set in Table 3. About 73%
of sites are not exploitable to any of the proposed test cases. In many sites, this is
due to a correct implementation of the OAuth flow. Some secure instances notify
the user about the OCSRF attack, others simply display a generic authorization
error or do not perform any action. It should be noted that the group of 197
site marked as not exploitable by the crawler may contain a small fraction of
false negatives. This hypothesis is supported by some evidence presented later

34 M. Benolli et al.

in the analysis. For this reason, the number of vulnerabilities identified in our
tests must be considered as a lower bound. Details would be discussed in the
following section.

6.3 Case Studies

In this section, different test cases used during this research would be explained
along with notable case studies of each attack strategy. It is worth mentioning
that in this section the second category, presence of state parameter, is studied.

Empty and Missing state. In attack strategy 1, the value of the state in
the authorization response is replaced with an empty string. At the beginning of
the flow, the site generates a valid state to identify the authorization request.
If the authorization response contains an empty state value, the application
is supposed to not accept it and block the OAuth flow. The same approach
applies to attack strategy 4, in which the state parameter – not only its value
– is entirely removed from the authorization response URL. One of the manu-
ally analyzed sites has been discovered to be exploitable only to attacks 1 and
4, as illustrated in Table 3, classification 17. This result shows that when the
parameter is present, state is handled supposedly and would be verified by the
application. However, when the state value is empty or the parameter is miss-
ing, the validation would be bypassed and the flow successfully be accepted. The
application source code is not directly available. However, we can get an insight
into the internal logic of the state validation algorithm by analyzing the site
reactions in response to different inputs.

A couple of sites are exploitable only via attack strategy 1 but not the 4th
(Refer to Table 3, classification 11). The validation process checks the presence
of a parameter called "state" in the authorization response and blocks the flow
if it is not found. However, an empty state is accepted as valid and leads to
the flow completion. The reverse is still possible when a site is exploitable with
attack 4 and not to 1 (Refer to Table 3, classification 15). As an instance, we
found a case study in which the verification succeeds only in presence of a valid
state, while it could be bypassed if the parameter was not provided. The empty
state supplied in the first test scenario was considered invalid by the application
and caused the flow to be halted. Furthermore, we also found 6 exploitable sites
in which the only performed validation is related to the presence of the state
parameter inside the authorization response (Table 3, classification 9 and 10).
The client application does not accept requests with a missing or empty state
parameter, but even a random value is enough to bypass the validation.

The difference between attack strategy 1 and 4 is subtle and the results are
almost overlapping. But the insight provided by above-mentioned unexpected
results would be to take both attack strategies into account to discover related
vulnerabilities to a great extent.

Lack of state Validation. In attack 3, the authorization response received
by the attacker is maintained unchanged and sent to the victim. The test is
performed to assess the absence of a valid relation between the state and the

The Full Gamut of an Attack 35

user’s session. If the state is not handled properly during the generation of
the authorization request, the application does not have enough information to
perform correct validation in the subsequent steps of the flow. The site is not
able to understand whether the authorization response was issued by the identity
provider for the current user or if someone else initiated the request. As a result,
the client may accept all the state values produced by the application as valid.

As illustrated in Table 1, attack strategy 3 is the most successful one. More
than 20% of the candidate site are vulnerable to scenario «3a», «3b», or «3c».
This can be justified by the inherent complexity of implementing a valid relation
between the browser session and the state, which requires to generate and
store a random token and proper management of that in the validation phase.
Even though the RFC clearly describes the role and operation of the state
parameter, the documentation provided by different identity providers are not
often sufficiently precise and detailed. 23 out of 114 (20.2%) exploitable sites
are only vulnerable to attack strategy 3 (Table 3, classifications 3, 5, 7, 16, and
18). For these applications, arbitrary state values are correctly rejected by the
validation method, but valid states with incorrect associated to user sessions
are erroneously not refused. Eleven sites are vulnerable to all configurations of
attack strategy 3 (Table 3, classifications 3).

Unlinked state. In attack strategy 2, the state parameter produced by the
client application is replaced with another string which is a random permutation
of the initially generated value. The new parameter has the same length as the
original and the same character set. The purpose of this strategy is to under-
stand if using an invalid state is sufficient to bypass the OCSRF protections
implemented by the examined sites. Our crawler detects total number of 30 out
of 114 (26.3%), 40 out of 114 (35.1%) and 23 out of 114 (20.2%) exploitable sites
to be vulnerable to test cases «2a»,«2b», and «2c». Presence of visitor cookies
increases the attack success rate similar to other attack strategies.

It can be easily noticed from Table 3 that the results of attack strategies 2
and 3 are strongly related. There are no sites discovered to be vulnerable only
to 2, and the sites vulnerable to this attack constitute a proper subset of the
ones vulnerable to the third scenario. Although it does not add any item to
the set of vulnerable domains, the second scenario gives remarkable indications
about the nature of the validation performed. For instance, looking at the attack
results reveals the possibility of a completely incorrect validation from a session
association issue. A particular case in attack 2 is represented by sites that use a
state consisting of a single character, or a sequence of N identical characters. In
this scenario, the generation of a different permutation of the original string is not
feasible and the attack cannot be performed as originally described. Among the
samples considered, there are two sites with state of length one. The characters
used are underscore «_» and slash «/», respectively. The site using «/» was
found vulnerable to attack 3b. The attack succeeded even if «/» is substituted
with a different arbitrary character. In the other site, the replacement of «_»
with a random character prevented the attack from being executed successfully.

Based on above-mentioned implementation mistakes, we recommend to use
a state value which is not guessable and is randomly produced. Moreover, it

36 M. Benolli et al.

is required state to be in correct association with the user session in order to
avoid OCSRF vulnerability.

6.4 Notable Observations

Constant state. The OAuth 2.0 specification clearly states that the state
parameter must be one time use and a random string. This requirement is nec-
essary to protect applications from brute-force attack. Some sites do not follow
these instructions and include a fixed and constant state in the OAuth autho-
rization request which would not change for different users and browser sessions.
These websites are not able to distinguish between a legitimate authorization
response created for the victim and a response forged by the attacker. We vis-
ited all candidate sites twice from two different browser sessions and compared
the state values in order to identify this implementation problem. If the state
remains unchanged, the site is potentially vulnerable to a “state reuse” attack.
Our crawler collected and stored all authorization requests. We later extracted
the state values from the URL and compared them to each other. The analysis
disclosed 17 out of 270 (6.3%) sites reusing the same state values. Table 3 in
the last column shows the number of discovered test cases with constant state
parameter for each classification. 16 out of 17 (94.1%) were found vulnerable to
the CSRF against redirect-uri. A manual analysis showed that the use of a
popup-based login prevented the completion of OCSRF attack.

The presence of a constant state value does not provide any additional
protection to the OAuth flow as a malicious user can easily assess the existence
of a “state reuse” vulnerability and include the same unchanged parameter in
every attack attempt. Finally, a web application was classified as not vulnerable
by the crawler (Table 3, classification 7).

Popup-Based Login. Some sites open a popup window during the login pro-
cess. The developed crawler correctly handles the opening of multiple browser
windows, switching the control from one to the other. Selenium has the capability
to check if a secondary window is opened or closed and deal with it properly.

In some cases, the usage of a popup provides unintended protection against
OCSRF attack. As an instance, we discovered one application which is not
exploitable. In that case, a popup window is opened when the «Login with
Facebook» button is clicked. Our crawler correctly extracts the authorization
response generated for the attacker. When the URL is opened within the vic-
tim’s browser session, the redirection endpoint on the target site is reached.
The page response contains a few lines of JavaScript in which a function of the
window.opener object is invoked. Since the attack URL is called directly from
the address bar of the victim’s browser and there is no opener window, an error
is generated and the attack would not be completed.

However, this login architecture cannot be considered as an effective OCSRF
mitigation because it does not prevent the attack from being executed with
other techniques. For instance, the domain with the constant state appears to
be vulnerable to a specifically crafted attack using a POST request. When the

The Full Gamut of an Attack 37

login popup calls the JavaScript function in the main window, a script generates
a POST request to an internal endpoint, providing the authorization code as
a body parameter. The client subsequently continues the flow, contacting the
authorization server to receive a valid access token. To bypass the error and
complete the attack, it is sufficient to replicate the POST request using a form
from a domain which is under the attacker’s control. Therefore, popup-based
logins do not always prevent our crawler from successfully performing attacks.
We found evidence of several sites using this access strategy and many of them
were exploited successfully using simple techniques.

6.5 Limitations

Some technologies built specifically to detect bots and crawlers and to interfere
with their operation. We found evidence of several protections implemented by
the sites tested to prevent automated login and browsing, such as CAPTCHA
and similar human verification systems. An attack could fail due to the pres-
ence of a properly implemented OCSRF protection or because of the sporadic
intervention of a bot detection system. However, this does not undermine the
presented results as they indicate a notable lower bound for vulnerable sites.

The performed tests were not exempt from false positives. Our analysis
revealed that marker information is sometimes present even if the login was
not performed correctly. We verified all successful attacks by manual analysis
in order to avoid including false positives which were mistakenly considered as
successful in our automated crawler. Another source of errors in testing is the
occurrence of temporary service unavailability. Even a highly available system
has periods of downtime, for instance due to system failures, bad network con-
ditions, or scheduled maintenance. We manually assessed the presence of these
classification errors. For all the reasons outlined above, the sites classified as
vulnerable by the crawler do not represent a comprehensive list but only a rea-
sonably lower bound for the number the vulnerable sites in our analyzed candi-
date sites including high profile sites. This indicates the requirements of OCSRF
countermeasures and the significance of the implementation mistakes which have
been captured through our carefully designed attack strategies.

7 Mitigation

The OAuth 2.0 standard clearly states that developers must implement CSRF
protection, by using a value that binds the authorization request to the browser
session. For this purpose, the use of the state parameter is strongly recommended.
The empirical evidence gathered in our work suggests that still today many
OAuth implementations are vulnerable due to the absence of the state value
(13%). Even when the parameter is correctly included inside the authorization
URI, often it is not properly handled and validated (27%). Additionally, more
than 5% of the applications tested reuse the same constant string.

38 M. Benolli et al.

Lack of adherence to the standard leaves a significant portion of websites
using the OAuth 2.0 flow vulnerable to OCSRF attacks. Undeniably, identity
providers have the responsibility to request the inclusion of suitable security
measures. In Facebook Login the state parameter is not mandatory, and the
flow works correctly also without it. The provided documentation does not help
developers understand the importance of this security countermeasure and the
absolute need to introduce it. At the time of writing, the examples provided do
not mention that the parameter must be a random string. It is not specified
how its value should be generated and there are no details about the validation
process. The state value used in the practical examples is "state123abc", which
is also misleading as it does not help developers understand the need to make
the parameter not guessable. The documentation provided by Facebook is not
sufficient for a developer to build a working and secure login flow.

Alternative mitigations to OCSRF attacks involve the analysis of HTTP
headers. Li et al. [14] proposed a technique based on the analysis of the Referer
header field. Their strategy involves the introduction of an additional valida-
tion that must be performed by the relying party. When the client application
receives the authorization response from the identity provider, it must analyse
the Referer header. If the address contained in the field belongs to the relying
party or to the identity provider domain, the authorization response is consid-
ered legitimate, otherwise it is discarded. The technique allows preventing the
execution of OCSRF initiated from domains under the control of an attacker.

This mitigation was used inside a browser extension named OAuthGuard
[15], a vulnerability scanner developed with the aim of providing real-time pro-
tection against common OAuth vulnerabilities to end-users. Even if this solution
is technically valuable and relatively easy to implement, its real impact in pro-
tecting against the perils of OCSRF attacks is directly related to the number
of users who employ it. From the perspective of a developer who is made aware
of the threats associated with OCSRF attacks, focusing on generating a secure
flow that involves the use of the state parameter represents probably still the
best solution.

8 Conclusions

Our work is mainly focused on the analysis of the CSRF attack against
redirect_uri, a well-known and documented OAuth 2.0 vulnerability. Our
security assessment revealed that many actual implementations of OAuth-based
SSO services are vulnerable to the considered attack. The reason behind the
prevalence of this class of vulnerabilities is related to the complexity of imple-
menting effective mitigations and to the absence of tools to reliably detect the
threats. As a future work, we plan to test similar strategies also for other OCSRF
attacks.

We designed a wide range of different, including novel, attack strategies,
considering different possible implementation weaknesses and the state of the
victim’s browser at the time of the attack. Our analysis showed that several

The Full Gamut of an Attack 39

enabling factors influence the feasibility of the attack and play a major role in
preventing it or increasing its chances of success, augmenting the overall risk. We
inspected several under-explored aspects of the vulnerability, trying to cover dif-
ferent areas of interest, and to expand our knowledge and understanding about
the impact of the attack in different scenarios. The large number of considered
test cases helped us to discover numerous well-hidden vulnerabilities and imple-
mentation mistakes. We conducted a large-scale analysis based on the approach
presented, to assess the presence of OCSRF vulnerabilities in more than 300 sites
implementing the Facebook Login flow. More than a third of them were found
vulnerable to at least one of the designed attack scenarios. This result demon-
strates that this security threat still represents a critical problem for OAuth-
based authentication systems and that it probably deserves more attention from
researchers and developers.

References

1. Bai, G., et al.: Authscan: automatic extraction of web authentication protocols
from implementations. In: NDSS (2013)

2. Bansal, C., Bhargavan, K., Delignat-Lavaud, A., Maffeis, S.: Discovering concrete
attacks on website authorization by formal analysis 1. J. Comput. Secur. 22(4),
601–657 (2014)

3. Barth, A., Jackson, C., Mitchell, J.C.: Robust defenses for cross-site request forgery.
In: Proceedings of the 15th ACM Conference on Computer and Communications
Security, pp. 75–88 (2008)

4. Calzavara, S., Focardi, R., Maffei, M., Schneidewind, C., Squarcina, M., Tempesta,
M.: {WPSE}: fortifying web protocols via browser-side security monitoring. In:
27th {USENIX} Security Symposium ({USENIX} Security 2018), pp. 1493–1510
(2018)

5. Farooqi, S., Zaffar, F., Leontiadis, N., Shafiq, Z.: Measuring and mitigating oauth
access token abuse by collusion networks. In: Proceedings of the 2017 Internet
Measurement Conference, pp. 355–368 (2017)

6. Fett, D., Küsters, R., Schmitz, G.: SPRESSO: a secure, privacy-respecting single
sign-on system for the web. In: Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pp. 1358–1369. ACM (2015)

7. Fett, D., Küsters, R., Schmitz, G.: A comprehensive formal security analysis of
OAuth 2.0. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1204–1215. ACM (2016)

8. HackerOne: Hackerone bug bounty platform (2020). https://www.hackerone.com/
9. Hardt, D.: The OAuth 2.0 authorization framework. RFC 6749, RFC Editor,

October 2012. http://www.rfc-editor.org/rfc/rfc6749.txt. http://www.rfc-editor.
org/rfc/rfc6749.txt

10. Homakov, E.: The most common OAuth2 vulnerability. His Blog at (2012)
11. Kerschbaum, F.: Simple cross-site attack prevention. In: 2007 Third Interna-

tional Conference on Security and Privacy in Communications Networks and the
Workshops-SecureComm 2007, pp. 464–472. IEEE (2007)

12. Li, F., et al.: You’ve got vulnerability: exploring effective vulnerability notifications.
In: 25th {USENIX} Security Symposium ({USENIX} Security 2016), pp. 1033–
1050 (2016)

https://www.hackerone.com/
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc6749.txt

40 M. Benolli et al.

13. Li, W., Mitchell, C.J.: Security issues in OAuth 2.0 SSO implementations. In:
Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS,
vol. 8783, pp. 529–541. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13257-0_34

14. Li, W., Mitchell, C.J., Chen, T.: Mitigating CSRF attacks on OAuth 2.0 and
OpenID connect. arXiv preprint arXiv:1801.07983 (2018)

15. Li, W., Mitchell, C.J., Chen, T.: Oauthguard: protecting user security and privacy
with OAuth 2.0 and OpenID connect. In: Proceedings of the 5th ACM Workshop
on Security Standardisation Research Workshop, pp. 35–44 (2019)

16. Lodderstedt, T., Bradley, L.F.: draft-ietf-oauth-security-topics-15 (2020). https://
tools.ietf.org/html/draft-ietf-oauth-security-topics-15

17. Mirheidari, S.A., Arshad, S., Onarlioglu, K., Crispo, B., Kirda, E., Robertson,
W.: Cached and confused: web cache deception in the wild. In: 29th {USENIX}
Security Symposium ({USENIX} Security 2020), pp. 665–682 (2020)

18. Mladenov, V., Mainka, C., Schwenk, J.: On the security of modern single
sign-on protocols: second-order vulnerabilities in openid connect. arXiv preprint
arXiv:1508.04324 (2015)

19. OAuth.net: User authentication with OAuth 2.0 (2020). https://oauth.net/
articles/authentication/. Accessed 30 July 2020

20. Pai, S., Sharma, Y., Kumar, S., Pai, R.M., Singh, S.: Formal verification of OAuth
2.0 using alloy framework. In: 2011 International Conference on Communication
Systems and Network Technologies, pp. 655–659. IEEE (2011)

21. Shernan, E., Carter, H., Tian, D., Traynor, P., Butler, K.: More guidelines than
rules: CSRF vulnerabilities from noncompliant OAuth 2.0 implementations. In:
Almgren, M., Gulisano, V., Maggi, F. (eds.) DIMVA 2015. LNCS, vol. 9148, pp.
239–260. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20550-2_13

22. Stock, B., Pellegrino, G., Rossow, C., Johns, M., Backes, M.: Hey, you have a
problem: on the feasibility of large-scale web vulnerability notification. In: 25th
{USENIX} Security Symposium ({USENIX} Security 2016), pp. 1015–1032 (2016)

23. Sudhodanan, A., Carbone, R., Compagna, L., Dolgin, N., Armando, A., Morelli,
U.: Large-scale analysis & detection of authentication cross-site request forgeries.
In: 2017 IEEE European Symposium on Security and Privacy (EuroS&P), pp.
350–365. IEEE (2017)

24. Sumongkayothin, K., Rachtrachoo, P., Yupuech, A., Siriporn, K.: OVERSCAN:
OAuth 2.0 scanner for missing parameters. In: Liu, J.K., Huang, X. (eds.) NSS
2019. LNCS, vol. 11928, pp. 221–233. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-36938-5_13

25. Sun, S.T., Beznosov, K.: The devil is in the (implementation) details: an empirical
analysis of OAuth SSO systems. In: Proceedings of the 2012 ACM Conference on
Computer and Communications Security, pp. 378–390 (2012)

26. Lodderstedt, T.: OAuth 2.0 threat model and security considerations. RFC 6819,
RFC Editor, January 2013. https://www.rfc-editor.org/rfc/rfc6819.txt. https://
www.rfc-editor.org/rfc/rfc6819.txt

27. Wang, D.Y., Savage, S., Voelker, G.M.: Cloak and dagger: dynamics of web search
cloaking. In: Proceedings of the 18th ACM Conference on Computer and Commu-
nications Security, pp. 477–490 (2011)

28. Wang, R., Chen, S., Wang, X.: Signing me onto your accounts through facebook
and google: a traffic-guided security study of commercially deployed single-sign-on
web services. In: 2012 IEEE Symposium on Security and Privacy, pp. 365–379.
IEEE (2012)

https://doi.org/10.1007/978-3-319-13257-0_34
https://doi.org/10.1007/978-3-319-13257-0_34
http://arxiv.org/abs/1801.07983
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-15
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-15
http://arxiv.org/abs/1508.04324
https://oauth.net/articles/authentication/
https://oauth.net/articles/authentication/
https://doi.org/10.1007/978-3-319-20550-2_13
https://doi.org/10.1007/978-3-030-36938-5_13
https://doi.org/10.1007/978-3-030-36938-5_13
https://www.rfc-editor.org/rfc/rfc6819.txt
https://www.rfc-editor.org/rfc/rfc6819.txt
https://www.rfc-editor.org/rfc/rfc6819.txt

The Full Gamut of an Attack 41

29. Wang, R., Zhou, Y., Chen, S., Qadeer, S., Evans, D., Gurevich, Y.: Explicating
SDKS: uncovering assumptions underlying secure authentication and authoriza-
tion. In: 22nd {USENIX} Security Symposium ({USENIX} Security 2013), pp.
399–314 (2013)

30. Yang, R., Li, G., Lau, W.C., Zhang, K., Hu, P.: Model-based security testing:
an empirical study on OAuth 2.0 implementations. In: Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security, pp. 651–
662 (2016)

31. Zhou, Y., Evans, D.: SSOScan: automated testing of web applications for single
sign-on vulnerabilities. In: 23rd {USENIX} Security Symposium ({USENIX} Secu-
rity 2014), pp. 495–510 (2014)

Detecting and Measuring In-The-Wild
DRDoS Attacks at IXPs

Karthika Subramani1(B), Roberto Perdisci1,2, and Maria Konte2

1 University of Georgia, Athens, USA
{ks54471,perdisci}@uga.edu

2 Georgia Institute of Technology, Atlanta, USA
mkonte@gatech.edu

Abstract. Distributed reflective denial of service (DRDoS) attacks are
a popular choice among adversaries. In fact, one of the largest DDoS
attacks ever recorded, reaching a peak of 1.3 Tbps against GitHub, was
a memcached-based DRDoS attack. More recently, a record-breaking
2.3 Tbps attack against Amazon AWS was due to a CLDAP-based DRDoS
attack. Although reflective attacks have been known for years, DRDoS
attacks are unfortunately still popular and largely unmitigated.

In this paper, we measure in-the-wild DRDoS attacks as observed from
a large Internet exchange point (IXP) and provide a number of security-
relevant insights. To enable our measurements, we first developed IXmon,
an open-source DRDoS detection system specifically designed for deploy-
ment at large IXP-like network connectivity providers and peering hubs.
We deployed IXmon at Southern Crossroads (SoX), an IXP-like hub that
provides both peering and upstream Internet connectivity services to more
than 20 research and education (R&E) networks in the South-East United
States. In a period of about 21 months, IXmon detected more than 900
DRDoS attacks towards 31 different victim ASes. An analysis of the real-
world DRDoS attacks detected by our system shows that most DRDoS
attacks are short lived, lasting only a few minutes, but that large-volume,
long-lasting, and highly-distributed attacks against R&E networks are not
uncommon. We then use the results of our analysis to discuss possible
attack mitigation approaches that can be deployed at the IXP level, before
the attack traffic overwhelms the victim’s network bandwidth.

Keywords: DDoS attack · DRDoS attack · IXP · Traffic analysis

1 Introduction

Large-scale distributed denial of service (DDoS) attacks pose an imminent threat
to the availability of critical Internet-based operations [35], and have become part
of sophisticated cyber-warfare arsenals [52]. DDoS attacks can take many differ-
ent forms [43], and leverage weaknesses that span from the application-layer to
the physical-layer. In particular, recent incidents have demonstrated that band-
width exhaustion DDoS attacks are capable of bringing down even the most well-
provisioned Internet services, such as highly popular websites (e.g., Twitter, Net-
flix, etc.) and cybersecurity services [27,39,49,67]. Among bandwidth exhaustion
c© Springer Nature Switzerland AG 2021
L. Bilge et al. (Eds.): DIMVA 2021, LNCS 12756, pp. 42–67, 2021.
https://doi.org/10.1007/978-3-030-80825-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80825-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-80825-9_3

Detecting and Measuring In-The-Wild DRDoS Attacks at IXPs 43

Fig. 1. IXmon system overview

attacks, distributed reflective denial of service (DRDoS) attacks are a popular
choice among adversaries [44]. In fact, one of the largest DDoS attacks ever
recorded, reaching a peak of 1.3 Tbps against GitHub, was a memcached-based
DRDoS attack [20]. More recently, a record-breaking 2.3 Tbps attack against
Amazon AWS was due to a CLDAP-based DRDoS attack [51] and attackers
have started exploiting Microsoft’s RDP for DDoS attacks [63].

Although reflective attacks have been known for years [54] and could be
mitigated in part by filtering/throttling traffic to/from some UDP services (e.g.,
filtering memcached traffic at the edge of a network [23]), DRDoS attacks are
unfortunately still popular [33] and largely unmitigated. At the same time, while
some information about DRDoS attacks can be found in blog posts or white
papers from security vendors (e.g., [22]), there is a lack of systematic studies
that provide an in-depth measurement of the properties of in-the-wild DRDoS
attacks, such as occurrence frequency, the distribution of their sources, duration,
volume, targets, and what mitigation steps could be applied to combat them.

In this paper, we aim to partly fill this gap by measuring real-world DRDoS
attacks as observed from a large Internet exchange point (IXP)1. IXPs are
high-density peering and connectivity hubs that provide infrastructure used by
autonomous systems (ASes) to interconnect with each other (e.g., public or private
peering and other connectivity agreements). Because IXPs provide an increasingly
large portion of the global Internet infrastructure used by ASes to exchange traffic,
they can play a key role in detecting and mitigating DDoS attacks.

To enable our measurements, we first develop IXmon, an open-source DRDoS
detection system specifically designed for deployment at large IXP-like network
connectivity providers and peering hubs. While there exists several DDoS detec-
tion and mitigation solutions, such as traffic scrubbing services [12,21], these are
typically expensive third-party commercial services. In addition, they are not
designed for detecting DRDoS attacks at IXPs, and are instead more focused on
inline DDoS traffic detection and traffic filtering. On the other hand, our IXmon
system is fully open-source2, can be deployed at large IXPs, and can also be used
to enable IXP-based DDoS mitigations. IXmon’s goal is not only to detect the
occurrence of a DRDoS attack very early after its inception, but also to identify
ASes that host the reflectors used in the attack. This capability could be used

1 Whereas others may define IXPs purely as facilitating public peering, we refer to IXPs
more broadly as hubs that facilitate both peering and commercial connectivity (e.g.,
transit) services.

2 https://github.com/perdisci/IXmon.

https://github.com/perdisci/IXmon

44 K. Subramani et al.

Fig. 2. Example of reflection attack traffic flowing through an IXP

to enable filtering of DRDoS attack traffic at IXP level before it is routed to the
victim, thus preventing the victim’s network bandwidth from being exhausted.

Figure 1 provides an overview of our IXmon system, whereas Fig. 2 shows an
example of how reflected traffic belonging to a DRDoS attack may traverse an
IXP’s fabric to reach the victim network. To detect DRDoS attacks, IXmon takes
in input network flow summaries (e.g., using Cisco’s NetFlow v9 format [19]),
which report flow statistics for all traffic from any source IP to a any destination
IP that crosses the IXP. Because IXmon aims to detect DRDoS attacks, we focus
on UDP flows whose source port is associated with services that can be abused
for amplification attacks, such as DNS, NTP, memcached, CLDAP, etc. [54] (see
Sect. 3 for a complete list). Given a specific service (e.g., memcached), we then
aggregate all related UDP flows directed to each destination AS and compute
the overall traffic volume of all flows belonging to the same (service, dstAS) pair.
We update these aggregate flow statistics in an online fashion at regular (small)
time intervals, and perform online time series anomaly detection to detect highly
anomalous increases in traffic volume. Finally, every time an anomalous traffic
volume increase is detected for a (service, dstAS) pair, we pass this information
to the DRDoS detection module, which applies additional checks to filter out
possible false positives and only issue an alert for events that are highly likely
associated with actual DRDoS attacks. Additionally, the DRDoS detection mod-
ule identifies the source ASes involved in an attack, and ranks them according
to the attack traffic volume they contribute. By knowing the UDP source port
number, the destination AS (i.e., the victim network), and the source ASes that
contribute the highest amount of attack traffic, an IXP could then deploy traffic
filtering rules to mitigate the attack in its very early stages. In fact, this fil-
tering rule deployment process could be automated by automatically deriving
BGPFlowSpec rules [1] from IXmon’s alerts.

Notice that while time-series analysis has been previously used in other con-
texts to detect DDoS attacks and other network traffic anomalies [10,40,62], the
contributions of our approach stems from adapting previous approaches to mod-
eling IXP-level traffic and to measuring in-the-wild DDoS attacks at a real-world
IXP.

We have deployed IXmon at Southern Crossroads (SoX) [60], an IXP-like
hub that provides both peering and upstream Internet connectivity services to

Detecting and Measuring In-The-Wild DRDoS Attacks at IXPs 45

more than 20 research and education (R&E) networks in the South-East United
States. In a period of about 21 months, IXmon detected more than 900 DRDoS
attacks towards 31 different victim ASes. In Sect. 4, we study the characteristics
of these attacks and present a number of insights regarding their duration and
intensity, what services are most abused, what networks are more often targeted,
and whether the victim networks took action to mitigate the attacks.

In summary, we make the following contributions:

– To measure in-the-wild DDoS attacks, we develop IXmon, an open-source
DRDoS detection system (available after publication) specifically designed to
be deployed at large IXP-like peering and connectivity hubs.

– We deploy IXmon at a large IXP-like R&E peering and connectivity hub
located in the South-East United Sates for a period of about 21 months,
where we detected a large number and variety of real-world DRDoS attacks
in near real time.

– We analyze the real-world DRDoS attacks detected by our system and report
a number of security-relevant measurements and insights. For instance, we
show that most DRDoS attacks are short lived, lasting only a few minutes,
but that large-volume, long-lasting, and highly-distributed attacks against
R&E networks are not uncommon.

2 Background on IXPs

IXPs have been traditionally established as infrastructures that primarily offer
peering services. The primary role of an IXP is to serve as a physical exchange
point to facilitate the exchange of Internet traffic between different autonomous
systems (ASes). The minimum number of ASes that interconnect at an IXP
should be at least three and there must be a clear and open policy for other
ASes to join [4]. The ASes interconnect through a shared switching fabric that
the IXPs offer. This interconnection infrastructure can vary widely in complexity.
Some infrastructures can be very simple and minimal (as a single switch), or
very complex (as a large scale distributed infrastructure that includes remote
peering) [45].

Since their initial establishment, the role of IXPs has been evolving along
with their offered services. Some services are offered as free value-added ser-
vices and others are paid services. Many IXPs offer both public peering and
private peering, multi-lateral and bi-lateral peering, data center services, multi-
ple network management and other services including route servers, SDN-based
network management, traffic engineering, and traffic blackholing.

IXPs have been recently further evolving towards becoming major peering
and connectivity hubs, claiming a central role as part of the Internet’s core
infrastructures [11,16,53]. There are currently hundreds of IXPs worldwide, with
more than 200 just in Europe [3]. IXP membership and traffic growth show their
dynamic and evolving role in the Internet ecosystem. Some of the largest IXPs
have several hundreds members, while they carry as much traffic as some of
the largest global Tier-1 ISPs [3]. It should also be noted that IXPs may serve

46 K. Subramani et al.

different roles in different regions of the world. For example, there exist significant
differences between traditional European IXP models and US-based IXPs [9]. In
addition, non-profit, EDU-oriented IXPs such as SoX [60] exist with the purpose
of helping EDU networks interconnect directly with each other (as in typical IXP
peering) but also connect with upstream providers (i.e., providing an exchange
point for access to upstream services). In this work, we refer to IXPs in this
latter broader sense, as exchange points in which multiple ASes peer with each
other and can also connect to upstream Internet connectivity services.

3 IXmon System

In this section, we describe how IXmon’s components work, following the high-
level overview shown in Fig. 1. It worth noting that IXmon relies on time-series
analysis as a component of our detection pipeline. While time-series analysis
been previously used in other contexts to detect DDoS attacks and other net-
work traffic anomalies [10,40,62], the contributions of our approach stems from
adapting previous approaches to modeling IXP-level traffic and to measuring
in-the-wild DDoS attacks at a real-world IXP, as explained below.

Approach Overview: IXmon is designed to detect DRDoS attacks in near real
time (e.g., with a delay of only one minute) in IXP-like network environments.
Given the traffic towards a specific AS, A, to detect DRDoS attacks against A
we look for the following factors:

1. Focus on traffic coming from a UDP source port typically associated with a
service that can be abused for attack amplification.

2. For each of those source ports, has the traffic volume towards A increased in
a highly anomalous way?

3. Is the anomalous traffic distributed across several contributing source ASes?

As an example, assume that a destination AS A usually receives very low
amounts of traffic from source port UDP 123, which is typically associated with
the NTP service. We monitor all traffic from port UDP 123 that flows towards
A through IXP’s fabric. All of a sudden, at time t we detect a spike in incoming
NTP traffic, and notice that several different source AS numbers are contributing
in a coordinated way to this traffic spike. This scenario meets the “recipe” for
a DRDoS attack, which IXmon aims to detect automatically. Next, we explain
how we translate the above high-level approach into a concrete DRDoS detection
system.

3.1 Aggregate Traffic Statistics

IXmon is designed to monitor network traffic at large real-world IXP-like peering
and connectivity hubs. Due to the sheer amount of traffic observed from such a
vantage point, efficiency is a high priority goal. In particular, memory consump-
tion is a main concern, given the large amount of network traffic statistics that

Detecting and Measuring In-The-Wild DRDoS Attacks at IXPs 47

we need to track over all possible targets and sources of DRDoS attacks visible
from an IXP. To this end, our first step is to condense detailed information about
network flows crossing the IXP into traffic sketches containing aggregated traffic
statistics.

IXmon receives network flow statistics as input. While our current imple-
mentation supports and has been tested only on Cisco NetFlow versions 9 and
10 [18], it is designed to also support other formats, including sFlow [48]. For
simplicity, in the following we will simply use the term flow to refer to a net-
work flow in NetFlow format. While NetFlow flows include many details about
how the related network packets traversed the IXP (e.g., including the network
interfaces involved in routing the flow), we will only refer to the properties that
are used by our system. Let the tuple

fi = (srcIPi, srcPorti, dstIPi, dstPorti, protocoli, packetsi, bytesi) (1)

represent a network flow, where packetsi and bytesi represent the number of
packets and overall number of bytes sent from the source to the destination
IPs/ports that have been “captured” by flow fi.

Table 1. List of monitored UDP
source ports

Service Port
Bandwidth

amplification
factor

DNS 53 28 to 54
NTP 123 556.9
CLDAP 389 56 to 70
CharGen 19 358.8
Memcached 11211 10,000 to 51,000
SunRPC 111 7 to 28
SSDP 1900 30.8
SNMP 161 6.3
SRCDS 27005 –
Call of Duty 20800 –
NETBIOS 137 3.8
RIP 520 131.24
Quake 27960 63.9
Steam 29015 5.5
QOTD 17 140.3

The IXP collects all flows crossing its
infrastructure by implementing a uniform
packet sampling policy to reduce load on its
routers and sends them to IXmon in a stream
(flows are sent out when they are closed by a
FIN packet, in case of TCP, or after a con-
figurable timeout managed by the IXP opera-
tors). IXmon mines this stream of traffic flows
to detect DRDoS attacks in near real time.
Given our focus on DRDoS attacks, we keep
only flows whose protocol is UDP and whose
source port is related to a service that is
known to be vulnerable to be used for attack
amplification. The set of source port numbers
and related UDP services we use in our cur-
rent configuration of IXmon is inspired by pre-
vious work [54,66] and listed in Table 1.

To analyze the continuous large stream of UDP flows received by IXmon, we
proceed as follows. First, IXmon partitions time into intervals of fixed length Δt
(one minute, in our experiments). Given the set of all flows received during an
interval Δt, we map srcIP and dstIP to their respective AS numbers, srcAS
and dstAS (e.g., using RouteViews data [7]). This gives us flows:

Fi(t) = (srcASi, srcPorti, dstASi, dstPorti, packetsi(t), bytesi(t)) (2)

where t indicates the start of a time interval Δt, protocol is omitted since it is
constant (always UDP), and the packets and bytes counts vary in time while
the other flow parameters are fixed for a given subscript index. Then, given a
time interval Δt, we aggregate all flows Fi(t) that share the same source port

48 K. Subramani et al.

and destination AS numbers, and sum up all of their bytes. More formally, we
obtain aggregate sketch flows of this form:

Ak(t) = (srcPortk, dstASk, bytesk(t)) (3)

where bytesk(t) is the sum of the byte counts contributed by all flows aggregated
into Ak(t).

Notice that, given a fixed pair of source port, srcPortk, and destination AS,
dstASk, the AS-level flows Ak(t) give us a time series of total traffic volume
(i.e., bytesk(t)) flowing through the IXP that originated from srcPortk (from
any source IP) and destined towards dstASk (to any destination IP belonging
to that AS and any destination UDP port). Also, while not represented in the
above sketch, for simplicity, we keep track of the contribution (in terms of total
bytes) to flow Ak(t) of each srcASi whose traffic is aggregated into the sketch.

3.2 Online Time Series Anomaly Detection

Given a stream of flow sketches Ak(t) related to a (srcPortk, dstASk) pair, we
detect anomalous increases in traffic volume by performing an online analysis of
the time series represented by bytesk(t). Specifically, we maintain a time series
model consisting of an exponentially-weighted moving average and variance [29],
as follows:

μ(t) = α · μ(t − 1) + (1 − α) · b(t) (4)

σ2(t) = (1 − α) · (σ2(t) + α · (b(t) − μ(t − 1))2) (5)

where α is a constant and where we omitted the subscript k and used b(t) in place
of bytesk(t), for brevity. Then, given the moving average, μk(t), and variance
σ2
k(t) computed at time t for Ak(t), we compute an anomaly (or deviation) score

as:

δk(t) = max
(

0,
bk(t) − (μk(t) + θ · σk(t))

bk(t) + ε

)
(6)

where θ is a tunable parameter (set to 3 in our experiments) and ε is a small
constant (e.g., 10−6) that is only needed to avoid division by zero. Essentially,
δk(t) tells us how much bk(t) deviates (on the positive side) from the moving
average plus a tolerance factor proportional to the standard deviation. Notice
that δk(t) ∈ [0, 1], which we use as an anomaly score. The larger δk(t), the more
strongly the current reading of Ak’s traffic volume, bk(t), deviates from the
expected value plus some tolerance that takes natural variations into account.
If δk(t) > τ , where τ is a tunable detection threshold (set to 0.5 in our exper-
iments), we say that the current reading of the traffic volume for the flows
aggregated by Ak is anomalous.

Notice that anomalies can be detected in real time, enabling a rapid detection
(and a potential automated mitigation) of DRDoS attacks.

Additional Details: At every new time interval, we use Eqs. 4 and 5 to update our
time series model. However, once an anomaly is detected, we stop updating the

Detecting and Measuring In-The-Wild DRDoS Attacks at IXPs 49

model until the new traffic volume measurements go back to pre-anomaly levels.
More formally, assume td is the first time in which an anomaly is detected, we
do not use the new measurement at time td to compute μ(td +1) and σ2(td +1).
Now, let

δk(t + n, t) = max
(

0,
bk(t + n) − (μk(t) + θ · σk(t))

bk(t + n) + ε

)
(7)

and td = t+1. In other words, at the time when the anomaly is detected, n = 1.
At the next time slot, n = 2, we compare the latest measurement of the traffic
volume bk(t + n) to the time series model that was last updated at time t. If
δk(t+n, t) > τ this means that the anomalous traffic is still present at time t+n,
and we continue to keep the same model computed at time t. Let us now assume
that at n = m the anomalous levels of traffic revert back to normal. Namely,
δk(t + m, t) ≤ τ . Then, we use bk(t + m) to update the values of μk and σk and
keep updating the model at the following time intervals, until another anomaly
is identified.

This approach of updating the average and standard deviation only dur-
ing “normal times” allows us to more easily determine when a traffic volume
anomaly, which may represent a DRDoS attack, starts and ends. Specifically, in
the example above we can determine that the anomaly started at time t+1 and
ended at time t + m.

3.3 Attack Detection

Let Ak(t) be a traffic sketch time series, and assume that td is the time interval in
which a time series anomaly has been detected using the approach described in
Sect. 3.2. To detect DRDoS attacks in real time while filtering out possible traffic
volume anomalies unrelated to reflection attacks, we introduce two additional
conditions:

– Minimum traffic volume: Given the last aggregate traffic volume measure-
ment, bk(td), we discard the detected anomaly if bk(td) < ν (in our experi-
ments we set ν to 5 Mbps). The reason is that if the aggregate traffic volume
is very low, either the anomaly is not caused by an attack, or the effects of
the attack on the target AS’s bandwidth are negligible and can be ignored.

– Source AS volume entropy: Since we focus on DRDoS attacks, we expect the
anomalous traffic volume increase to be distributed across multiple reflectors
located in different source ASes.

To compute the source AS volume entropy, we first consider the set of source
ASes whose traffic is aggregated into Ak, and take into account the overall num-
ber of bytes sent from each of this sources ASes to Ak’s destination AS (i.e.,
the potential victim network). Let Sk(td) = {s1, s2, . . . , sn} represents the set
of traffic volume amounts contributed by each source AS at time td. We then
normalize each element in the set as s′

i = si∑n
j=1 sj

. Finally, we treat s′
i as the

50 K. Subramani et al.

probability of “observing” the i-th source AS as contributor to Ak’s aggregate
traffic, and compute the entropy H(S′

k(td)) of the set S′
k(td) = {s′

1, s
′
2, . . . , s

′
n}. If

H(S′
k(td)) = 1, it means that the traffic from port srcPortk to dstASk is evenly

distributed across the contributing source ASes. On the other hand, low values of
H(S′

k(td)) mean that most of the traffic is contributed by only one (or very few)
source ASes. Therefore, we set a threshold h so that traffic volume anomalies
are labeled as DRDoS attacks only when H(S′

k(td)) > h (in our experiments, we
use h = 0.4).

All time series anomalies detected based on the algorithm described in Sect. 3.2
that also meet the two above conditions are labeled as DRDoS attacks. Corre-
spondingly, a DRDoS attack alert is issued, which contains all details of the attack
as measured at time td, including the destination AS number, source port, current
aggregate attack volume, and distribution of traffic amounts from the contributing
source ASes. A new alert is issued for every new time interval td + n for which the
attack is sustained, allowing a network operator to identify whether the attack is
still ongoing or has terminated (when no new alert is issued). On the other hand,
time series anomalies that do not pass the checks discussed above are logged and
can be sent to network operators but are not labeled as DRDoS attacks.

4 Analysis of In-the-Wild Attacks

In this section we provide some background information about SoX, describe
how we setup and deployed IXmon at SoX, and present our measurements and
analysis of the in-the-wild DRDoS attacks we detected during our deployment
period. SoX’s customer ASes rely on the IXP’s infrastructure for both peering
with each other and upstream connectivity. Therefore, SoX provided us with an
important vantage point for measuring DRDoS attacks.

Notice that because sizable ground truth datasets of IXP traffic with labeled
DRDoS attacks are very difficult to come by (we are not aware of any publicly
available dataset of this kind), to tune IXmon’s detection parameters we rely on
domain knowledge and a manual analysis of IXmon’s logs during the preliminary
phases of our deployment. In addition, during our preliminary deployment phase
we also contacted SoX and its participants to verify some of the attacks detected
by IXmon, and we received positive confirmation from network operators that in
fact the victim network identified by IXmon was under attack at the time when
the alerts were issued. In practice, to tune our systems’ detection parameters
we take a conservative approach that favors minimizing possible false detections
(see Sect. 4.1). While this may cause us to miss some smaller (i.e., lower volume
and duration), more subtle DRDoS attacks, these attacks are unlikely to have a
significant impact on their target networks.

One possible valuable alternative to enable gathering more ground truth
could be to correlate our findings with traffic from DRDoS honeypots [38,64].
At the same time, concurrent work has found that the intersection between
attacks observed at IXPs and attacks observed from DRDoS honeypots may
be limited [37]. We plan to investigate the overlap between attacks detected by
IXmon and DRDoS honeypots in followup work.

Detecting and Measuring In-The-Wild DRDoS Attacks at IXPs 51

In the following analysis we anonymize all AS numbers related to autonomous
systems involved in the detected DRDoS attacks, as some of this information
may be sensitive (e.g., some of SoX’s members may not want to publicly disclose
how many attacks their network received and if/how they mitigated them). For
instance, we replace AS 10490 with a consistent but randomly chosen identifier
of the form “Anon.XXX” (where XXX is a positive integer).

4.1 IXmon Implementation and Setup

We implemented IXmon’s flow parsing and traffic aggregation modules in C++,
leveraging an open-source tools named FastNetMon [47]. FastNetMon is a DDoS
detection system mainly geared towards enterprise networks or single ASes. Its
detection approach is not designed to detect and track DRDoS attacks related
to many possible large networks and involving large numbers of source and des-
tination ASes, making it unusable for our purposes. For instance, we found that
in FastNetMon one would need to explicitly specify all subnets that should be
considered as DRDoS attack targets, and that attack detection is done per IP
address. In an IXP environment in which many large ASes are the potential tar-
gets, in which there can be many sources of attack, and in which we are interested
in tracking if the IXP customers are either victims or potentially contributors
to DRDoS attacks, we found that FastNetMon would use an exceedingly large
amount of resources. Therefore, while we leveraged and adapted the NetFlow
parsing module of FastNetMon, we designed and implemented our own open-
source IXP-focused online time series anomaly detection and DRDoS detection
algorithms using Python. Our IXmon system code can be found on GitHub3.

As explained in Sect. 3, the mining and aggregation of the NetFlow traffic,
which are implemented in C++, allow IXmon to be scalable and process large
volumes of traffic typically observed at IXPs (in the order of hundreds of Gbps).
During our experiments, IXmon has had no issue keeping up with the large traffic
volumes received from SoX, thanks to the use of efficient flow aggregation.

IXmon’s online anomaly detection and DRDoS detection algorithms include
a few tunable parameters (see Sect. 3). As mentioned earlier, to set our systems’
parameters we take a conservative approach that favors minimizing possible
false detections. We set the length of the time interval for traffic aggregation
Δt = 1 minute. This interval is long enough to accumulate sufficient aggregate
data from the stream of flows related to each (srcPortk, dstASk) pair and to
compute meaningful traffic sketches, and at the same time it enables near real-
time DRDoS detection. Specifically, after traffic sketches are computed they
are immediately analyzed and an alert is triggered immediately as attacks are
detected in the data stream.

In Eq. 6, we set the parameter θ = 3. Essentially, θ controls how much the
traffic volume can deviate from the mean, before an anomaly is detected. The
value of θ = 3 is quite conservative, and is inspired by the fact that for Gaussian
distributions Pr(μ−3σ ≤ X ≤ μ+3σ) ≈ 99.73%. In addition, we set the anomaly

3 https://github.com/perdisci/IXmon.

https://github.com/perdisci/IXmon

52 K. Subramani et al.

detection threshold τ = 0.5. In other words, we tune the system to detect large
anomalies, as compared to historic traffic volumes modeled by moving average
and standard deviations. While this may cause us to miss small (i.e., low volume)
attacks, it makes sure that the anomalies we detect are in fact highly likely
related to attacks. This is further reinforced by additional constraints explained
in Sect. 3.3.

As for the parameters defined in Sect. 3.3, we set ν = 5 Mbps because DRDoS
attacks whose peak traffic is lower are unlikely to cause much disruption to insti-
tutional networks (such networks typically have Internet connectivity bandwidth
ranging from hundreds of Mbps to tens of Gbps). Finally we set the source AS
entropy threshold h = 0.4. We tuned this threshold based on a data collected
during a preliminary deployment of IXmon, and is meant to capture attacks
whose traffic is fairly distributed across multiple sources, rather than all coming
mostly from one single source AS.

An additional “operational” parameter is related to the packet sampling rate
used by the network operator that provides the raw flows. In IXmon, we take
the sampling rate into account, and adjust our traffic measurements accordingly
(e.g., we adjust the average traffic volume measured per minute of observation).

4.2 Data Collection at SoX

As mentioned earlier, we deployed IXmon at a large IXP called SoX (AS 10490)
that provides peering and Internet connectivity services to several research and
education networks. Specifically, we deployed IXmon at one of two routers oper-
ated by SoX that enables peering among educational networks and upstream
connectivity to Internet2 [5]. This provided us with visibility on most of the
traffic crossing the SoX infrastructure (though not all).

Based on public data on AS-to-AS relationships provided by CAIDA [14,41],
SoX has more than 20 direct customer networks (also called the IXP members
or participants), peers with 9 other large ASes, and is connected to 5 upstream
providers. Furthermore, SoX serves as upstream provider for a variety of smaller
ASes that are reachable through it from the rest of the Internet. This study is
based on data collected between April,2018 - April,2020 (due to interruptions
due to operational reasons, our traffic monitoring was only active during part of
this time period). Overall, we collected traffic information for 634 days. During
this period, the source/destination traffic crossing the IXP’s fiber was related to
a total of 5212 different autonomous systems.

4.3 Attack Measurements and Analysis

In this section, we present an analysis of the DRDoS attacks detected by IXmon to
understand their behavior and gain insights that could prove useful for mitigating
future attacks. As an example of the attacks that are included in the analysis
provided below, Fig. 3 shows a snapshot of two different DRDoS attacks detected
by IXmon. Notice that IXmon detected the represented attacks in near real-time
(within about one minute from the attack inception). However, the plots in Fig. 3

Detecting and Measuring In-The-Wild DRDoS Attacks at IXPs 53

are formed post-detection stage by combining consecutive attack alerts, and are
shown here to visualize the intensity and duration of the attacks as a whole.
The x axis shows the time window within which the attack occurred (including
a duration of 30 min prior to and after the attack), whereas the y axis shows
the volume of traffic contributed by each source AS involved in the attack (the
graph is limited to the top 10 source ASes by volume). Each line in the graph
represents the traffic sent to the victim AS from a single source AS. For instance,
Fig. 3a (top) shows a DRDoS attack that leverages the CLDAP service (source
port 389) directed towards AS Anon.2371. The aggregate traffic for the attack,
which sums the contribution of all source ASes that sent traffic to AS Anon.2371
from UDP port 389 reached a peak of ≈210 Mbps. It is interesting to notice that
before and after the attack there was little or no traffic sent by those source ASes
to the destination AS from port 389. Then, all of a sudden all the source ASes
start sending high volumes of traffic in a coordinated way, which is a telltale sign
of an ongoing DRDoS attack. After all, inter-AS CLDAP use is rarely needed
or justified, and it is therefore natural to have very low or no inter-AS CLDAP
traffic outside of DRDoS attacks. In addition, having many source ASes sending
CLDAP traffic to a common destination AS would be quite a big coincidence
for this to be explained by normal activities.

(a) (b)

Fig. 3. Two examples of DRDoS attacks detected by IXmon. The top figures show the
attack traffic contributed by the top 10 source ASes, while the bottom figures show the
overall attack traffic volume compared to all traffic (TCP and UDP) flowing towards
the destination AS. Notice also that while these figures span a large time window,
IXmon detected the attacks in near real-time.

54 K. Subramani et al.

Volume and Duration. While large DDoS attacks have caught the attention
of bloggers and news media, there is limited publicly available data on the overall
distribution and characteristics of in-the-wild DRDoS attacks (some information
can be found in a 2017 blog post by Cloudflare [22]).

To better understand in-the-wild DRDoS attacks, we analyze the characteris-
tics of all attacks detected by IXmon. Specifically, during our deployment period
IXmon detected 987 attacks. We use this large number of attacks to measure the
distribution of the volume and duration of in-the-wild DRDoS attacks, which
are reported in Figs. 4a and 4b. It can be seen that most of the observed attacks
(≈ 80%) have a duration of less than 10 min, whereas the median peak attack
volume is less than 20 Mbps. Overall, only ≈ 8% of the attacks reach a peak
volume of more than 100 Mbps with a few attacks reaching peaks above 1 Gbps
(the highest attack volume we observed was 1.5 Gbps).

Fig. 4. Distribution of peak attack volumes and durations

A number of factor may explain the relatively low volume of the attacks
we observed, compared to measurements provided in other works [37]. First, we
should note that low-volume DDoS attacks are not uncommon [2,8]. Also, tens
of Mbps are often sufficient to overwhelm a single machine within a network,
although the impact on the network overall may be low. For instance, such
DRDoS attacks may be sufficient to knock a competing gamer offline [46,50].
In addition, as mentioned earlier, our system has access to only one of two SoX
router and it is therefore possible that additional DRDoS attack traffic was not
measurable by our IXmon deployment. In general, we should keep in mind that
attacks towards different types of networks (e.g., educational vs. commercial)
and measured from different vantage points (e.g., different types of IXPs), may
present different characteristics.

Detecting and Measuring In-The-Wild DRDoS Attacks at IXPs 55

Fig. 5. (a) Number of attack instances per (reflection) source port (b) Distribution of
attack volume per (reflection) source port

Services Abused for Attack Amplification. IXmon monitors traffic from
the UDP ports listed in Table 1. However, only some of these ports were used in
DRDoS attacks visible from SoX. Figure 5a shows the distribution of source ports
(ab)used for reflecting traffic against DRDoS victims, with the y axis showing the
number of attacks in which a given port was used. As can be seen, CLDAP (port
389) appears to be the most abused service for attack amplification, followed by
DNS (port 53) and NTP (port 123). Figure 5b reports a boxplot showing the
distribution of peak attack volume per port (the red line represents the median,
while the red square shows the average value). This shows that some CLDAP-
based attacks reached peak volumes above 1 Gbps.

Fig. 6. Example of a multi-vector attack

Multi-vector Attacks. DRDoS
attacks can be launched by abus-
ing more than one UDP service at
a time. Currently, IXmon separately
tracks traffic from a given source port
and detects DRDoS attacks indepen-
dently for each abused service. How-
ever, attackers can abuse multiple ser-
vices at the same to increase the num-
ber of reflectors to be aimed against the victim and thus further amplify the
attack bandwidth. To analyze these attacks in our alerts dataset, we can retrieve
DRDoS attacks related to individual source ports that have a common destina-
tion AS and that overlap in time. By doing so, we found 36 multi-vector attack
instances (out of 987) involving up to 4 different source ports simultaneously.

Figure 6 shows an example of attack detected by IXmon that simultaneously
leverages NTP (port 123) and CLDAP (port 389) to reflect the attack traffic
towards AS Anon.2354. A coordinated surge in traffic volume can be seen from
both source ports, clearly indicating a multi-vector attack.

56 K. Subramani et al.

Fig. 7. (a) Distribution of number of source ASes involved in attacks (b) Distribution
of peak traffic volume contributed by the top 10 Source ASes in Attacks

Distribution of Reflectors. DRDoS attacks are executed by exploiting a
(at times large) number of publicly reachable reflection servers. In this section,
we analyze where reflected attack traffic originates from. Figure 7a shows the
distribution of the number of different source ASes that contribute to each attack
(notice that, due to packet sampling, reflectors that only contribute very low
amounts of traffic may not be visible in our data). The median is 40, indicating
that at least half of all attacks are highly distributed across many different
source networks that are themselves abused to reflect and amplify attack traffic.
In Fig. 7b we show the distribution of peak traffic contributed to different attacks
by the top 10 source ASes (ranked based on the number of DRDoS attacks each
source AS participates to). As can be seen, the median (red line) peak volume for
reflected traffic from each AS is relatively limited, typically around ≈ 1 Mbps,
though there are also significant outliers with high peak traffic volumes. Either
way, when combining together all contributing source ASes the attacks these
ASes facilitate can easily reach hundreds of Mbps.

To analyze the geographical distribution of the networks where reflection
servers reside, we plot the location of the source ASes that contributed to the
DRDoS attacks detected by IXmon. To map the geolocation of a given AS we
first obtain the prefixes owned by the AS, based on BGP traffic from the day
before the AS participated in an attack. Next, we select a random IP address
belonging to one of the prefixes and map the IP address to its geolocation via a IP
geolocation API [6]. While this is only an approximate method for determining
the geolocation of an AS (some AS numbers span multiple regions), it gives an
idea of how geographically distributed the reflectors typically are.

Detecting and Measuring In-The-Wild DRDoS Attacks at IXPs 57

Fig. 8. Geo-locations of source and destina-
tion ASes for NTP-based DRDoS attacks

As an example, Fig. 8 shows
the geolocation of both destination
ASes (i.e., the victims) and source
ASes (i.e., the networks that host
the servers abused for reflection
and amplification) related to NTP-
based attacks detected by IXmon.
Naturally, given the fact that SoX
serves as a peering hub for research
and education networks in the
South-East USA, the destination
ASes are clustered in that region. It is easy to see that the sources of NTP
traffic are distributed widely across the world. This is evidently anomalous, in
that in normal (i.e., non-attack) cases the vast majority of NTP responses would
be coming from NTP servers that are geographically closer to the requesting IP
address. Combined with the fact that no NTP requests are sent from a victim
AS to those reflection servers, this lack of “locality” could be used as a way to
develop an attack mitigation strategy.

4.4 Attack Mitigation

We now analyze whether the operators of the victim networks attempted to
mitigate the attacks detected by IXmon. Specifically, we focus on mitigations
that require BGP actions. Afterwards, we discuss how IXmon could help mitigate
future attacks by (a) detecting DRDoS attacks in near real time (with a delay
of about Δt = 1 min); (b) determining the AS being targeted by the attack and
what service (i.e., source UDP port) is being abused to reflect/amplify attack
traffic; and (b) identifying the source ASes that contribute the most to the attack,
so that attack traffic originating from those ASes can be filtered out.

Mitigation Strategies. Multiple ways exist to respond to DDoS attacks [55].
However, as we focus on bandwidth exhaustion DRDoS attacks, we ignore mit-
igations implemented locally at the victim network. Instead, we focus on miti-
gations that are implemented upstream, with the help of third-party networks
such as traffic providers or scrubbing centers, and that make use of BGP to drop
or redirect traffic before it reaches the victim network:

– Blackholing: BGP-based blackholing redirects all traffic towards a victim AS
(both legitimate and malicious traffic) into a null interface, or “blackhole.”
Although multiple variations of blackholing exist, they are primarily achieved
by adjusting the next-hop attribute and BGP communities in BGP announce-
ments [36]. The next-hop method involves the trigger source sending a BGP
update to the edge routers with the next-hop attribute set to an IP address
that is pre-configured to a null interface. The most commonly used next-
hop IP for blackholing is 192.0.2.1, which is reserved by IANA for test net-
works [15].

58 K. Subramani et al.

– Traffic re-routing: In this method, all traffic towards the victim network is
redirected to third-party services, such as a traffic scrubbing center that is
capable of detecting and dropping DDoS attack traffic. Then, legitimate traffic
is forwarded back to the original destination (i.e., the victim AS). To re-
route traffic, a BGP announcement can be issued by the scrubbing center AS
taking ownership of the victim’s targeted IP prefixes, essentially performing
an authorized BGP hijacking. After these BGP announcements propagate, all
traffic destined to the victim AS will instead reach the scrubbing center. After
the attack has ended, another BGP messages can be issued to reinstate the
original IP prefix ownership and again route all traffic to the true destination.

Detecting BGP-Based DRDoS Mitigations. To detect whether mitigations
were put into place to counter the attacks detected by IXmon, we perform an
analysis of BGP announcements related to the victim ASes before, during and
after a DRDoS attack occurrence. To this end, we leverage routing information
from RouteViews [7], as explained below:

– Blackholing: To detect the use of blackholing mitigations, we monitor the
BGP updates involving all IP prefixes owned by a victim AS, and check if
any of these updates announce the next-hop to be 192.0.2.1. In addition, we
look for BGP updates with a community value set to 666, which is commonly
used to implement balckholing [36].

– Traffic re-routing: To detect cases in which traffic is re-routed to a third-party
AS (e.g., to a scrubbing center), we gather all BGP updates made around a
DRDoS attack time window and consider all updates related to IPs that fall
within the victim’s network ownership. Then, for each such BGP update, we
check if the origin AS (extracted from RIB records) has changed, compared
to before the attack (e.g., compared to the previous day). If the origin AS in
the BGP updates observed during the attack does not match the previously
seen origin AS, we mark this as a temporary change in ownership, and check
whether future BGP messages also show another change of AS ownership
from the third-party AS back to the previous origin AS. We implement this
approach using PyBGPStream library and Routeview data.

Measuring In-the-Wild Mitigations. Using the BGP-based analysis
explained earlier, we measure whether a mitigation effort was deployed for the
DRDoS attacks detected by IXmon. With respect to mitigating attacks via traffic
re-routing traffic, we found 56 BGP relevant announcements that occurred dur-
ing 3 different DRDoS attacks. These BGP announcements effectively changed
the origin AS of IP prefixes owned by the victim network and redirected traffic
to a known traffic scrubbing provider. All of these mitigation efforts were related
to attacks directed towards AS Anon.2354, with traffic being re-routed to the
AS Anon.1890. All 3 attacks for which mitigation was deployed had a duration
greater than 30 min. With respect to mitigation via BGP-based blackholing, we
did not find any evidence that blackholing was used for remediating any of the
DRDoS attacks we detected.

Detecting and Measuring In-The-Wild DRDoS Attacks at IXPs 59

Figure 9 shows an example of DRDoS attack for which a traffic rerouting miti-
gation was implemented. As can be seen, in this case the attack had been ongoing
for around 45 min, before traffic was re-routed to a scrubbing center. Traffic re-
routing is identified by the BGP announcements to change origin (as seen in Fig. 9)
of the victim prefix to scrubbing center’s AS Anon.1890. Considering this specific
AS Anon.2354 that had employed scrubbing services, we performed an experiment
to test if our system had missed any attacks for which similar mitigation by re-
routing traffic was deployed. To this end, we collected BGP updates for a period
of 6 months related to prefixes belonging to our victim AS Anon.2354 whose ori-
gin was changed to the scrubbing AS Anon.1890. However, we did not find any
evidence in BGP updates to denote an attack that our system missed.

Fig. 9. Example of DRDoS attack and traffic re-routing mitigation

While it was a bit surprising that only 3 attacks and only one network oper-
ator used attack mitigation, personal communications with the SoX operators
confirmed that only that one member network made use of a DDoS mitigation
plan available to all of SoX’s customers/members. Another surprising observa-
tion is that only long-lived attacks are considered for mitigation. It is possible
that one of the main issue is that currently DDoS detection happens “manually,”
once the attack has started to cause noticeable disruption and perhaps network
users start complaining to the operators. Our IXmon system can reduce such
detection delay significantly, by performing DRDoS attack detection in near real
time with an inexpensive open-source solution.

Improving Attack Mitigation at IXPs. While re-routing traffic to third-
party scrubbing services is a commonly used strategy for mitigating DDoS
attacks, it can become a quite expensive depending on the size and duration
of the attack that a victim is trying to defend against. Another possibility for
mitigation is to rely on IXPs and upstream ISPs to implement traffic black-
holing. However, as explained earlier, currently blackholing is either an “all or
nothing” or very coarsely selective strategy that can cause significant collat-
eral damage [30,59], because it filters out both legitimate and attack traffic.
In this section, we discuss how IXmon could enable IXPs to help their cus-
tomer/members who fall victim of DRDoS attacks, by making traffic blackhol-
ing more “surgical” so that only traffic associated with specific services and
with specific attack-contributing source ASes is blocked. This has the potential
of significantly reducing collateral damage.

60 K. Subramani et al.

The strategy we propose is the following. Let V be the victim AS of a DRDoS
attack detected by IXmon, p be the source UDP port abused for reflecting attack
traffic towards V , and S = {s1, s2, . . . , sn} be the set of source ASes that send
traffic from port p to V during the attack. The IXP could implement a filtering
rule that only blocks all traffic from each source AS si and port p directed towards
V . Because all information necessary to create these filtering rules is contained
in IXmon’s DRDoS alerts, it would be possible to simply automatically translate
each alert into a BGP Flowspec rule that can be propagated to the IXP’s routers
thus greatly reducing the mitigation time compared to manual intervention.

To understand what is the potential impact to the above strategy, we inves-
tigate the extent of the “collateral damage” (i.e., blocked non-DRDoS traffic) a
target network may incur. To this end, let us consider the measurements shown
in Fig. 10. Each heatmap corresponds to one of the UDP source ports reported in
Fig. 5a, from which we observed at least one DRDoS attack. All four heatmaps
are related to one single destination AS, which we select as the AS number
for which we observed the largest number of distinct DRDoS attacks, during
IXmon’s deployment period. The x axis reports a period of 30 consecutive days
of traffic monitoring, whereas the y axis reports a randomly selected set of 20
source ASes. These source ASes were selected among all source ASes that during
the 30 days period in the x axis sent at least some traffic from any of the six
source UDP ports. The color of each heatmap cells indicates the total number of
MBytes sent by a source AS to the destination AS during each day. Gray cells
indicate zero bytes, whereas other cell colors indicated the “intensity” of the
daily traffic. From all these graphs we exclude attack traffic detected by IXmon.
The reason is that we want to highlight the volume of normal (i.e., non-DRDoS
attack) traffic typically sent by any source AS to a destination AS, as seen from
the vantage point of an IXP.

Let us consider first Fig. 10a, which is related to CLDAP traffic (port 389).
As we can see, it is rare to observe any inter-AS traffic for this service. This
makes sense, in that CLDAP is primarily meant as an authentication protocol
to be used within a local network. Similarly, ports 19, 111, and 11211 are unlikely
to be used for legitimate inter-AS communication purposes. Therefore, blocking
inter-AS traffic from these ports at the IXP level is unlikely to cause much col-
lateral damage at all. Services such as NTP (port 123) and DNS (port 53) have
a different traffic profile. Inter-AS traffic in these cases is not uncommon, though
the overall volume can be quite low, and therefore traffic filtering can produce
some observable collateral damage. For example, filtering all source port 53 traf-
fic towards a destination AS may impact DNS resolutions for domains whose
authoritative name servers are located within the destination AS. However, let
us assume IXmon detects an attack related to one of these ports/services. A
BGP Flowspec rule automatically derived from IXmon’s DRDoS alert would
suggest that the IXP filter all traffic coming from the identified attack source
port directed to the victim network. In addition the filtering rule would specify
what source ASes are contributing to the attack, so that the IXP could block
only traffic from a specific source port and a specific subset of source ASes, thus

Detecting and Measuring In-The-Wild DRDoS Attacks at IXPs 61

Fig. 10. Daily traffic (in MBytes per day) to destination AS Anon.2354 from a set of
20 legitimate ASes not involved in DRDoS attacks.

further limiting possible collateral damage. Furthermore, filtering could be lim-
ited to the duration of the attack. As soon as IXmon detects that the DRDoS
attack is over, a new BGP Flowspec rule could be issued so that the IXP would
stop filtering any traffic towards the target AS. This approach could help IXPs
protect their downstream customer/member networks from bandwidth exhaus-
tion DRDoS attacks with minimal collateral damage.

5 Related Work

In this section we are presenting prior work in the area of DDoS detection and
mitigation both in the context of IXPs and large Tier-1 ISPs.

Detection: Concurrently to our work, Kopp et al. [37] also studied amplification
attacks from an IXP. Many of our findings agree with their results [37]. How-
ever, our work differs from [37] in the following ways: 1) IXmon can detect low
volume attacks, whereas [37] only focuses on attacks with volume ≥ 1 Gbps; 2)
IXmon provides insights into traffic from research and education networks in the

62 K. Subramani et al.

US, whereas [37] focuses mostly on commercial networks; 3) IXmon is an open-
source system that can be used for near real-time detection of DRDoS attacks,
whereas [37] appears to present offline traffic analysis results.

Sekar et al. [56] proposes LADS, a multi-stage flow collection and moni-
toring infrastructure for DDoS detection at Tier-1 ISPs that relies on SNMP
and NetFlow feeds from routers. While LADS’s detection approach also relies
on detecting traffic volume anomalies, IXmon uses a more lightweight approach
based on time series anomaly detection that is entirely focused towards an IXP-
based deployment. Rossow et al. [54] provide a detailed study of how different
protocols can be abused for amplification attacks, and analyze DRDoS traffic at
a large ISP. The authors set up multiple bait services and monitored their abuse
by attackers and also propose ways to identify DRDoS victims and legitimate
reflectors that are abused to amplify the attacks. For instance, traffic asymme-
tries between the victim and reflectors are used as a telltale sign that the victim
never requested traffic from the reflector, and that the incoming traffic is instead
due to spoofing. We also explored using a similar feature in our system. However,
as we attempted to measure such traffic imbalances to detect spoofed traffic, we
observed that the heavy traffic sampling applied by SoX did not allow us to
detect spoofed traffic with high confidence, and we therefore chose not to use
this feature in IXmon.

Hsieh and Chan [34] propose a neural networks approach to detect DDoS
attacks. They rely on network features such as number of packets, number of
bytes, time interval variance, packet rate and bit rate. Similarly, [68] proposes
to detect DDoS attacks based on Naive Bayes and Random Forest trees. The
drawback of these approaches is that they are not designed for real-time traffic
analysis and deployment at large IXPs. Furthermore, they require large volumes
of historical labeled data for reliable model training, which is often difficult to
collect.

BGP-Based Mitigation: Past research [26,30] has developed BGP-based tech-
niques that an infrastructure operator can use to mitigate DDoS attacks. These
techniques work in the premise that a network operator has already deployed a
tool to detect DDoS attacks. Once a DDoS attack is detected then the network
operator can inform an upstream provider, for example, a higher-tier ISP or an
IXP, to enforce BGP-based rules and redirect the attack traffic away from the
victim network. The techniques are primarily based on: a) BGP Blackholing,
and b) BGP Flowspec rules. [25,30,44] offer a detailed description and mea-
surements of the BGP blackholing technique that has become popular and is
offered as a service at many IXPs. [1] offers an example application of BGP
Flowspec rules. Another study [57,58,65] proposes an additional BGP-based
technique, called BGP poisoning, to filter out attack traffic. Our work differs
from these approaches because we focus on designing a detection system that
can be deployed at IXPs to enable the measurement of DRDoS attack charac-
teristics and that could also be used to enable faster and more selective attack
mitigation.

Detecting and Measuring In-The-Wild DRDoS Attacks at IXPs 63

SDN-Based Mitigation: Previous works propose systems that leverage the
capabilities of Software Defined Networking (SDN) technologies and Network
Functions Virtualization (NFV) to detect and mitigate DDoS attacks. To over-
come BGP-based mitigation techniques [13,61], Fayaz et al. [28] propose an
OpenDayLight [42] controller and a network of Virtual Machines (VMs) for
increased scalability. The controller is designed to route the traffic through the
VMs to scrub the traffic. Gupta et al. [17,31,32] and Dietzel et al. [24] have pro-
posed SDN enabled applications as a network management solution for IXPs.
Our approach is not based on the SDN and NVF paradigms. Instead, our system
can complement these approaches because it can be deployed on infrastructures
that do not have SDN-based capabilities, and could be adapted to work with
SDN-based traffic routing infrastructure at IXPs to mitigate DRDoS attacks in
a very selective way with low collateral damage.

6 Conclusion

In this paper, we studied in-the-wild DRDoS attacks as seen from a large Internet
exchange point (IXP). To enable this study, we first developed IXmon, an open-
source DRDoS detection system specifically designed for deployment at large
IXP-like network connectivity providers and peering hubs. We then deployed
IXmon at Southern Crossroads (SoX), an IXP-like hub that provides both peer-
ing and upstream Internet connectivity services to more than 20 research and
education (R&E) networks in the South-East United States. In a period of about
21 months, IXmon detected more than 900 DRDoS attacks towards 31 different
victim ASes. An analysis of the real-world DRDoS attacks detected by our sys-
tem shows that most DRDoS attacks are short lived, lasting only a few minutes,
but that large-volume, long-lasting, and highly-distributed attacks against R&E
networks are not uncommon. We then used the results of our analysis to discuss
possible attack mitigation approaches that can be deployed at the IXP level,
before the attack traffic overwhelms the victim’s network bandwidth.

Acknowledgments. We would like to thank the anonymous reviewers for their con-
structive comments and suggestions on how to improve this paper, and Prof. Christian
Rossow for serving as our shepherd. Also, many thanks to the SoX network opera-
tors for their help with IXmon’s deployment. This material is based in part upon work
supported by the National Science Foundation (NSF) under grants No. 1741607 and
1741608. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the NSF.

References

1. BGP flowspec. https://archive.nanog.org/sites/default/files/wed.general.
trafficdiversion.serodio.10.pdf

2. DDoS attack frequency grows 40%, low volume attacks dominate. https://www.
helpnetsecurity.com/2018/09/13/ddos-attack-frequency-grows/

https://archive.nanog.org/sites/default/files/wed.general.trafficdiversion.serodio.10.pdf
https://archive.nanog.org/sites/default/files/wed.general.trafficdiversion.serodio.10.pdf
https://www.helpnetsecurity.com/2018/09/13/ddos-attack-frequency-grows/
https://www.helpnetsecurity.com/2018/09/13/ddos-attack-frequency-grows/

64 K. Subramani et al.

3. Euro IX- internet exchange points. https://www.euro-ix.net/media/filer public/
d5/84/d584495f-b8ae-4f24-b589-7b9efed3594b/ixp report 2018-2019-final.pdf

4. European internet exchange association 2012 report on European IXPs. https://
www.euro-ix.net/documents/1117-Euro-IX-IXP-Report-2012-pdf

5. Internet2: Regional research and education networks. https://internet2.edu/
network/state-and-regional-r-e-networks/

6. IP geolocation mappingk. https://ipgeolocation.io/ip-location-api.html
7. Routeviews project. http://www.routeviews.org/routeviews/
8. Threat actors target remote learning during COVID-19. https://www.netscout.

com/blog/threat-actors-target-remote-learning-during-covid-19
9. The U.S. vs. European internet exchange point models. http://drpeering.net/

HTML IPP/chapters/ch12-9-US-vs-European-Internet-Exchange-Point/ch12-9-
US-vs-European-Internet-Exchange-Point.html

10. Fouladi, R.F., Ermiş, O., Anarim, E.: A DDoS attack detection and defense scheme
using time-series analysis for SDN. J. Inf. Secur. Appl. 54, 102587 (2020). https://
doi.org/10.1016/j.jisa.2020.102587

11. Ager, B., Chatzis, N., Feldmann, A., Sarrar, N., Uhlig, S., Willinger, W.: Anatomy
of a large European IXP. In: Proceedings of the ACM SIGCOMM 2012 Confer-
ence on Applications, Technologies, Architectures, and Protocols for Computer
Communication, pp. 163–174 (2012)

12. Akamai: Why Akamai cloud security for DDoS protection? https://www.akamai.
com/us/en/solutions/products/cloud-security/ddos-protection-service.jsp

13. Butler, K., Farley, T.R., McDaniel, P., Rexford, J.: A survey of BGP security issues
and solutions. Proc. IEEE 98(1), 100–122 (2010)

14. CAIDA: As relationship. http://data.caida.org/datasets/as-relationships/
15. Network Startup Resource Center: Remote blackhole filtering lab. https://nsrc.

org/workshops/2019/mnnog1/riso/networking/routing-security/en/labs/RTBH-
local.html

16. Chatzis, N., Smaragdakis, G., Feldmann, A., Willinger, W.: There is more to IXPs
than meets the eye. ACM SIGCOMM Comput. Commun. Rev. 43(5), 19–28 (2013)

17. Chiesa, M., et al.: Inter-domain networking innovation on steroids: empowering
IXPs with SDN capabilities. IEEE Commun. Mag. 54(10), 102–108 (2016)

18. CISCO: Netflow layer 2 and security monitoring exports. http://www.cisco.com/
c/en/us/td/docs/ios-xml/ios/netflow/configuration/12-4/nf-12-4-book/nf-lay2-
sec-mon-exp.html

19. CISCO: Netflow v9. https://www.cisco.com/en/US/technologies/tk648/tk362/
technologies white paper09186a00800a3db9.html

20. CloudFlare: Famous DDoS attacks learning objectives. https://www.cloudflare.
com/learning/ddos/famous-ddos-attacks/

21. Cloudflare: How cloudflare’s architecture allows us to scale to stop the
largest attacks. https://blog.cloudflare.com/how-cloudflares-architecture-allows-
us-to-scale-to-stop-the-largest-attacks/

22. CloudFlare: Reflections on reflection (attacks) (2017). https://blog.cloudflare.com/
reflections-on-reflections/

23. CloudFlare: Memcrashed - major amplification attacks from UDP port 11211
(2018). https://blog.cloudflare.com/memcrashed-major-amplification-attacks-
from-port-11211/

24. Dietzel, C., Antichi, G., Castro, I., Fernandes, E.L., Chiesa, M., Kopp, D.: SDN
traffic engineering and advanced blackholing at IXPs. In: Proceedings of the Sym-
posium on SDN Research (2017)

https://www.euro-ix.net/media/filer_public/d5/84/d584495f-b8ae-4f24-b589-7b9efed3594b/ixp_report_2018-2019-final.pdf
https://www.euro-ix.net/media/filer_public/d5/84/d584495f-b8ae-4f24-b589-7b9efed3594b/ixp_report_2018-2019-final.pdf
https://www.euro-ix.net/documents/1117-Euro-IX-IXP-Report-2012-pdf
https://www.euro-ix.net/documents/1117-Euro-IX-IXP-Report-2012-pdf
https://internet2.edu/network/state-and-regional-r-e-networks/
https://internet2.edu/network/state-and-regional-r-e-networks/
https://ipgeolocation.io/ip-location-api.html
http://www.routeviews.org/routeviews/
https://www.netscout.com/blog/threat-actors-target-remote-learning-during-covid-19
https://www.netscout.com/blog/threat-actors-target-remote-learning-during-covid-19
http://drpeering.net/HTML_IPP/chapters/ch12-9-US-vs-European-Internet-Exchange-Point/ch12-9-US-vs-European-Internet-Exchange-Point.html
http://drpeering.net/HTML_IPP/chapters/ch12-9-US-vs-European-Internet-Exchange-Point/ch12-9-US-vs-European-Internet-Exchange-Point.html
http://drpeering.net/HTML_IPP/chapters/ch12-9-US-vs-European-Internet-Exchange-Point/ch12-9-US-vs-European-Internet-Exchange-Point.html
https://doi.org/10.1016/j.jisa.2020.102587
https://doi.org/10.1016/j.jisa.2020.102587
https://www.akamai.com/us/en/solutions/products/cloud-security/ddos-protection-service.jsp
https://www.akamai.com/us/en/solutions/products/cloud-security/ddos-protection-service.jsp
http://data.caida.org/datasets/as-relationships/
https://nsrc.org/workshops/2019/mnnog1/riso/networking/routing-security/en/labs/RTBH-local.html
https://nsrc.org/workshops/2019/mnnog1/riso/networking/routing-security/en/labs/RTBH-local.html
https://nsrc.org/workshops/2019/mnnog1/riso/networking/routing-security/en/labs/RTBH-local.html
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/netflow/configuration/12-4/nf-12-4-book/nf-lay2-sec-mon-exp.html
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/netflow/configuration/12-4/nf-12-4-book/nf-lay2-sec-mon-exp.html
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/netflow/configuration/12-4/nf-12-4-book/nf-lay2-sec-mon-exp.html
https://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
https://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper09186a00800a3db9.html
https://www.cloudflare.com/learning/ddos/famous-ddos-attacks/
https://www.cloudflare.com/learning/ddos/famous-ddos-attacks/
https://blog.cloudflare.com/how-cloudflares-architecture-allows-us-to-scale-to-stop-the-largest-attacks/
https://blog.cloudflare.com/how-cloudflares-architecture-allows-us-to-scale-to-stop-the-largest-attacks/
https://blog.cloudflare.com/reflections-on-reflections/
https://blog.cloudflare.com/reflections-on-reflections/
https://blog.cloudflare.com/memcrashed-major-amplification-attacks-from-port-11211/
https://blog.cloudflare.com/memcrashed-major-amplification-attacks-from-port-11211/

Detecting and Measuring In-The-Wild DRDoS Attacks at IXPs 65

25. Dietzel, C., Feldmann, A., King, T.: Blackholing at IXPs: on the effectiveness of
DDoS mitigation in the wild. In: Proceedings of Passive and Active Measurement:
17th International Conference, PAM 2016, Heraklion, Greece, 31 March–1 April
2016 (2016)

26. Dietzel, C., Wichtlhuber, M., Smaragdakis, G., Feldmann, A.: Stellar: network
attack mitigation using advanced blackholing. In: Proceedings of the 14th Inter-
national Conference on emerging Networking EXperiments and Technologies, pp.
152–164 (2018)

27. Digital Attack Map: DDoS attacks worldwide. http://www.digitalattackmap.com
28. Fayaz, S.K., Tobioka, Y., Sekar, V., Bailey, M.: Bohatei: flexible and elastic DDoS

defense. In: 24th USENIX Conference on Security Symposium. USENIX Associa-
tion, USA (2015)

29. Finch, T.: Incremental calculation of weighted mean and variance (2009). https://
fanf2.user.srcf.net/hermes/doc/antiforgery/stats.pdf

30. Giotsas, V., Smaragdakis, G., Dietzel, C., Richter, P., Feldmann, A., Berger, A.:
Inferring BGP blackholing activity in the internet. In: 2017 Internet Measurement
Conference (2017)

31. Gupta, A., et al.: An industrial-scale software defined internet exchange point. In:
13th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 2016), pp. 1–14 (2016)

32. Gupta, A., et al.: SDX: a software defined internet exchange. ACM SIGCOMM
Comput. Commun. Rev. 44(4), 551–562 (2014)

33. Hao, M.: DDoS attack landscape (2020). https://nsfocusglobal.com/ddos-attack-
landscape-3/

34. Hsieh, C., Chan, T.: Detection DDoS attacks based on neural-network using apache
spark. In: 2016 International Conference on Applied System Innovation (ICASI),
pp. 1–4 (2016)

35. Kang, M.S., Lee, S.B., Gligor, V.D.: The crossfire attack. In: Proceedings of the
2013 IEEE Symposium on Security and Privacy (2013). http://dx.doi.org/10.1109/
SP.2013.19

36. King, T., Dietzel, C., Snijders, J., Doering, G., Hankins, G.: Blackhole BGP com-
munity for blackholing. https://tools.ietf.org/html/draft-ietf-grow-blackholing-00

37. Kopp, D., Dietzel, C., Hohlfeld, O.: DDoS never dies? An IXP perspective on
DDoS amplification attacks. In: Hohlfeld, O., Lutu, A., Levin, D. (eds.) PAM
2021. LNCS, vol. 12671, pp. 284–301. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-72582-2 17

38. Krämer, L., et al.: AmpPot: monitoring and defending against amplification DDoS
attacks. In: Bos, H., Monrose, F., Blanc, G. (eds.) RAID 2015. LNCS, vol. 9404, pp.
615–636. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26362-5 28

39. Krebs, B.: Krebsonsecurity hit with record DDoS. https://krebsonsecurity.com/
2016/09/krebsonsecurity-hit-with-record-ddos/

40. Li, D., Chen, D., Goh, J., kiong Ng, S.: Anomaly detection with generative adver-
sarial networks for multivariate time series (2019)

41. Luckie, M., Huffaker, B., Dhamdhere, A., Giotsas, V., Claffy, K.: As relationships,
customer cones, and validation. In: 2013 Conference on Internet Measurement Con-
ference (2013). https://doi.org/10.1145/2504730.2504735

42. Medved, J., Varga, R., Tkacik, A., Gray, K.: Opendaylight: towards a model-driven
SDN controller architecture. In: Proceeding of IEEE International Symposium on
a World of Wireless, Mobile and Multimedia Networks 2014, pp. 1–6. IEEE (2014)

43. Mirkovic, J., Reiher, P.: A taxonomy of DDoS attack and DDoS defense mecha-
nisms. SIGCOMM Comput. Commun. Rev. 34(2), 39–53 (2004)

http://www.digitalattackmap.com
https://fanf2.user.srcf.net/hermes/doc/antiforgery/stats.pdf
https://fanf2.user.srcf.net/hermes/doc/antiforgery/stats.pdf
https://nsfocusglobal.com/ddos-attack-landscape-3/
https://nsfocusglobal.com/ddos-attack-landscape-3/
http://dx.doi.org/10.1109/SP.2013.19
http://dx.doi.org/10.1109/SP.2013.19
https://tools.ietf.org/html/draft-ietf-grow-blackholing-00
https://doi.org/10.1007/978-3-030-72582-2_17
https://doi.org/10.1007/978-3-030-72582-2_17
https://doi.org/10.1007/978-3-319-26362-5_28
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://doi.org/10.1145/2504730.2504735

66 K. Subramani et al.

44. Nawrocki, M., Blendin, J., Dietzel, C., Schmidt, T.C., Wählisch, M.: Down the
black hole: dismantling operational practices of BGP blackholing at IXPs. In: Pro-
ceedings of the Internet Measurement Conference, pp. 435–448. Association for
Computing Machinery, New York (2019)

45. Norton, W.: The Internet Peering Playbook: Connecting to the Core of the Inter-
net. DrPeering Press (2011). https://books.google.com/books?id=rkDz6fvX XkC

46. NSFOCUS: Have rich game customers who suffered DDoS attacks turned
to you? https://nsfocusglobal.com/have-rich-game-customers-who-suffered-ddos-
attacks-turned-to-you/

47. Odintsov, P.: Fastnetmon - very fast DDoS analyzer with sflow/netflow/mirror
support. https://github.com/pavel-odintsov/fastnetmon

48. Phaal, P., Lavine, M.: sFlow version 5. http://sflow.org/sflow version 5.txt
49. Prince, M.: The DDoS that knocked spamhaus offline. https://blog.cloudflare.com/

the-ddos-that-knocked-spamhaus-offline-and-ho/
50. Radware: 3 attack surfaces that can take your game offline. https://blog.radware.

com/security/ddosattacks/2020/10/3-attack-surfaces-that-can-take-your-game-
offline/

51. Computer Business Review: AWS hit with a record 2.3 Tbps DDoS attack. https://
www.cbronline.com/news/record-ddos-attack-aws

52. Richards, J.: Denial-of-service: the Estonian cyberwar and its implications for U.S.
National Security. http://www.iar-gwu.org/node/65

53. Richter, P., Smaragdakis, G., Feldmann, A., Chatzis, N., Boettger, J., Willinger,
W.: Peering at peerings: on the role of IXP route servers. In: Proceedings of the
2014 Conference on Internet Measurement Conference, pp. 31–44 (2014)

54. Rossow, C.: Amplification hell: revisiting network protocols for DDoS abuse. In:
Proceedings of the 2014 Network and Distributed System Security (NDSS) Sym-
posium, February 2014

55. Ryba, F.J., Orlinski, M., Wählisch, M., Rossow, C., Schmidt, T.C.: Amplification
and DRDoS attack defense - a survey and new perspectives (2015)

56. Sekar, V., Duffield, N.G., Spatscheck, O., van der Merwe, J.E., Zhang, H.: Lads:
large-scale automated DDoS detection system. In: USENIX Annual Technical Con-
ference (2006)

57. Smith, J.M., Schuchard, M.: Routing around congestion: defeating DDoS attacks
and adverse network conditions via reactive BGP routing. In: 2018 IEEE Sympo-
sium on Security and Privacy (2018)

58. Smith, J., Birkeland, K., McDaniel, T., Schuchard, M.: Withdrawing the BGP
re-routing curtain: understanding the security impact of BGP poisoning through
real-world measurements (2020)

59. Snijders, J.: DDoS damage control, cheap and effective. https://ripe68.ripe.net/
presentations/176-RIPE68 JSnijders DDoS Damage Control.pdf

60. SoX: Southern crossroads. https://www.sox.net/
61. Streibelt, F., et al.: BGP communities: even more worms in the routing can. In:

Proceedings of the Internet Measurement Conference 2018, pp. 279–292 (2018)
62. Tabatabaie Nezhad, S.M., Nazari, M., Gharavol, E.A.: A novel DoS and DDoS

attacks detection algorithm using Arima time series model and chaotic system in
computer networks. IEEE Commun. Lett. 20(4), 700–703 (2016). https://doi.org/
10.1109/LCOMM.2016.2517622

63. arsTECHNICA: DDoSers are abusing Microsoft RDP to make attacks more
powerful. https://arstechnica.com/information-technology/2021/01/ddosers-are-
abusing-microsoft-rdp-to-make-attacks-more-powerful/

https://books.google.com/books?id=rkDz6fvX_XkC
https://nsfocusglobal.com/have-rich-game-customers-who-suffered-ddos-attacks-turned-to-you/
https://nsfocusglobal.com/have-rich-game-customers-who-suffered-ddos-attacks-turned-to-you/
https://github.com/pavel-odintsov/fastnetmon
http://sflow.org/sflow_version_5.txt
https://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-offline-and-ho/
https://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-offline-and-ho/
https://blog.radware.com/security/ddosattacks/2020/10/3-attack-surfaces-that-can-take-your-game-offline/
https://blog.radware.com/security/ddosattacks/2020/10/3-attack-surfaces-that-can-take-your-game-offline/
https://blog.radware.com/security/ddosattacks/2020/10/3-attack-surfaces-that-can-take-your-game-offline/
https://www.cbronline.com/news/record-ddos-attack-aws
https://www.cbronline.com/news/record-ddos-attack-aws
http://www.iar-gwu.org/node/65
https://ripe68.ripe.net/presentations/176-RIPE68_JSnijders_DDoS_Damage_Control.pdf
https://ripe68.ripe.net/presentations/176-RIPE68_JSnijders_DDoS_Damage_Control.pdf
https://www.sox.net/
https://doi.org/10.1109/LCOMM.2016.2517622
https://doi.org/10.1109/LCOMM.2016.2517622
https://arstechnica.com/information-technology/2021/01/ddosers-are-abusing-microsoft-rdp-to-make-attacks-more-powerful/
https://arstechnica.com/information-technology/2021/01/ddosers-are-abusing-microsoft-rdp-to-make-attacks-more-powerful/

Detecting and Measuring In-The-Wild DRDoS Attacks at IXPs 67

64. Thomas, D.R., Clayton, R., Beresford, A.R.: 1000 days of UDP amplification DDoS
attacks. In: 2017 APWG Symposium on Electronic Crime Research (eCrime), pp.
79–84 (2017)

65. Tran, M., Kang, M.S., Hsiao, H., Chiang, W., Tung, S., Wang, Y.: On the feasibility
of rerouting-based DDoS defenses. In: 2019 IEEE Symposium on Security and
Privacy (SP) (2019)

66. US CERT: UDP-based amplification attacks. https://www.us-cert.gov/ncas/
alerts/TA14-017A

67. York, K.: DYN statement on 10/21/2016 DDoS attack. http://dyn.com/blog/dyn-
statement-on-10212016-ddos-attack/

68. Zhang, B., Zhang, T., Yu, Z.: DDoS detection and prevention based on artificial
intelligence techniques. In: 2017 3rd IEEE International Conference on Computer
and Communications (ICCC), pp. 1276–1280 (2017)

https://www.us-cert.gov/ncas/alerts/TA14-017A
https://www.us-cert.gov/ncas/alerts/TA14-017A
http://dyn.com/blog/dyn-statement-on-10212016-ddos-attack/
http://dyn.com/blog/dyn-statement-on-10212016-ddos-attack/

Digging Deeper: An Analysis of Domain
Impersonation in the Lower

DNS Hierarchy

Florian Quinkert(B), Dennis Tatang, and Thorsten Holz

Ruhr University Bochum, Bochum, Germany
{florian.quinkert,dennis.tatang,thorsten.holz}@rub.de

Abstract. Attackers use various techniques to lure victims to malicious
domains. A typical approach is to generate domains which look similar
to well-known ones so that a confused victim is tricked into visiting the
domain. An important attack technique in practice is the impersonation
of domains in the lower DNS hierarchy as subdomains of otherwise unsus-
piciously looking domains, such as paypal.com.foo.example.com.

In this paper, we present an in-depth, empirical measurement study
of low-level domain impersonations to understand their prevalence and
provide a basis for the development of corresponding countermeasures.
We introduce a generic measurement approach to find and analyze such
domains in phishing feeds from three large anti-phishing vendors (Phish-
Labs, Phishtank, and OpenPhish) covering multiple years and a data set
consisting of one and a half years of certificate transparency logs (CTL).
In our measurement study, we discovered more than 122,000 cases of
domain impersonations detected during the last seven years in Phish-
Labs, almost 3,000 in Phishtank, and a couple of hundred instances in
OpenPhish. Additionally, we compared the usage of low-level domain
impersonation with other well-known domain squatting techniques and
find that low-level domain impersonation is among the most popular
squatting techniques in the wild.

1 Introduction

Domain names, or short domains, are an important building block of today’s
Internet because they allow users to use easily recognizable strings to access
websites and other resources instead of difficult to remember IP addresses. How-
ever, attackers utilize domains to maintain their attack infrastructure, e.g., to
switch seamlessly between multiple IP addresses. Furthermore, attackers regis-
ter domains similar to well-known ones to use them, e.g., in e-mails they send
to potential victims as part of spearphishing [19] and similar attacks. Creating
such domains is often referred to as domain squatting [18] and has been studied
multiple times before [10,20,22,28]. But it is possible to detect such malicious
domains in (almost) real-time by monitoring newly registered domains and com-
paring them to a set of benign reference domains [10,20,22].

c© Springer Nature Switzerland AG 2021
L. Bilge et al. (Eds.): DIMVA 2021, LNCS 12756, pp. 68–87, 2021.
https://doi.org/10.1007/978-3-030-80825-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80825-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-80825-9_4

Digging Deeper: Domain Impersonation in Lower DNS Hierarchy 69

To avoid the early detection, an attacker can initially register an unsus-
piciously looking domain and, afterwards, create subdomains which contain a
well-known domain that she wants to impersonate. For example, an attacker
registers the legitimate domain example.com and creates a subdomain for mali-
cious purposes, e.g., secure.paypal.com.example.com. We refer to such domains
as low-level domain impersonation (LLDI) because the impersonated domain is
added in the lower level of the domain within the DNS hierarchy. In contrast to
other domain squatting techniques, the registered domain does not reveal the
malicious purpose, i.e., it is not possible to detect such domains by examining
registered domains and other similar detection techniques. Additionally, defen-
sive registrations (i.e., the legitimate owner of a second-level domain registers
potential domain squatting names in advance) are not possible, rendering an
important, practical defense mechanism futile. Nowadays, the technique is even
more effective because many users access websites via mobile browsers on devices
with a limited screen width so that only the well-known part of the domain is
visible [26]. Even the Advanced Persistent Threat (APT) group Silent Librarian
uses this attack technique to create targeted phishing e-mails for universities [17].

In this paper, we introduce a generic approach, independent of a prede-
fined list of well-known domains, to find domains which potentially use this
technique. Moreover, we present the results of a long-term, empirical measure-
ment study using this approach to attract attention and better understand this
domain squatting technique. We analyze LLDIs in phishing feeds and newly
issued certificates (Certificate Transparency Logs (CTL)) to provide a compre-
hensive overview and dissect the structure of domains using LLDIs. The phishing
feeds contain multiple years of malicious domains collected by PhishLabs [6], a
commercial anti-phishing company, and multiple months of malicious domains
collected by the two anti-phishing initiatives Phishtank [7] and OpenPhish [4].
These data feeds serve as a ground truth on phishing attacks and enable us to
comprehensively study LLDI in the wild. In addition, we compare LLDI with
common domain squatting vectors to demonstrate that the number of LLDIs is
comparable with these techniques. The CTLs cover a period of 18 months and
contain almost two billion entries. Since CTLs contain the domain for which a
certificate is issued and almost 70% of all phishing sites nowadays use TLS [5],
we can use this data set to investigate LLDIs.

In our empirical measurement study, we discovered more than 122,000 LLDIs
during the last seven years in PhishLabs. Additionally, we found almost 3,000
domains in Phishtank since August 2018 and a couple of hundred ones since
February 2019 in OpenPhish. Our results show that especially big technol-
ogy companies (e.g., facebook) as well as financial companies (e.g., paypal) face
LLDIs. However, our generic approach also identified smaller companies as tar-
gets, such as regional banks (e.g., the Belgian bank kbc). Furthermore, our results
show that most domains start with the impersonated brand name but often use
suitable terms, e.g., login or secure, to lure a victim. Analyzing the CTLs revealed
that many more LLDIs are used in the wild which further emphasizes the need
for proper countermeasures.

70 F. Quinkert et al.

2 Background and Related Work

2.1 Structure of Domains

In networks, domains are used to provide easy access to resources which oth-
erwise would require hard to remember, plain IP addresses. A domain is a
sequence of labels separated by dots with each label defining a namespace (see
RFC 1035 [27]). The domain is also referred to as fully qualified domain name
(FQDN). The rightmost label is called top-level domain (TLD) and with the
next label to the left second-level domain. A user registers a second-level domain,
e.g., example.com, and can add an arbitrary number of lower-level labels, e.g.,
test.example.com, which is called subdomain. We refer to the level of a subdomain
as the number of labels, i.e., a subdomain www.appleid has level two.

2.2 Certificate Transparency Logs (CTLs)

A domain owner can obtain a digital certificate from a certificate authority
(CA) for a registered domain and use it to secure the connection to the resource
associated with the domain. Especially in case of applications requiring the
input of sensitive information (e.g., passwords or personal details), the usage
of secured connections and certificates is nowadays inevitable. Because users
expect a connection to be secured, attackers generate certificates for their mali-
cious domains, too [2]. A couple of years ago, multiple certificate authorities were
compromised [13,15], leading to the establishment of certificate transparency
logs (CTLs) [9] which store details about every issued certificate. CTLs aim at
detecting maliciously issued certificates faster by making newly issued certifi-
cates publicly available, hence enabling more transparency.

2.3 Related Work

Domain Squatting. Attackers use multiple techniques to create believable
domains. In a homograph domain, the attacker replaces characters in a well-
known domain with visually similar ones, e.g., from different alphabets [14,20,
24,31,34]. In typosquatting, attackers register well-known domains with a com-
mon typing error, e.g., faecbook.com instead of facebook.com [10,35].

Combosquatting is a popular phishing technique, in which an attacker adds
suitable words to a well-known domain to obtain a new domain which still looks
legitimate, e.g., facebook-security.com [21]. Additionally, attackers use randomly
occurring bit errors to redirect victims to domains under their control [29] as
well as domains which sound similar to well-known domains (e.g., jutube.com
instead of youtube.com) [28].

In case of shadow domains, an attacker gains access to legitimate domains, e.g.,
via phishing, and registers additional subdomains for malicious purposes [25]. In
contrast, we do not focus only on subdomains an attacker created when she gained
access to a second-level domain, but focus on all subdomains containing a well-
known domain, regardless of how the second-level domain was generated.

Digging Deeper: Domain Impersonation in Lower DNS Hierarchy 71

Malicious Domain Detection. Researchers introduced multiple approaches
to detect malicious domain usage as early as possible. In 2011, Bilge et al. pro-
posed a system called Exposure which analyzes passive DNS data and detects
malicious domains based on the domain itself and the way it is requested [12].
Antonakakis et al. presented a similar system called Kopis [11]. In contrast to
Exposure, Kopis uses DNS data from the upper DNS hierarchy, e.g., from
authoritative nameservers, which allows a more global perspective. Hao et al.
developed Predator, a system detecting malicious domains at the time of reg-
istration based on typical characteristics, such as a high number of registrations
almost at the same time or registration of similar domains [16]. Tian et al. identi-
fied phishing domains by taking both the domain itself and the visual appearance
of the website into consideration [36]. They detected 1,175 phishing domains, out
of which more than 90% were not added to well-known blacklists within a month.
Roberts et al. also analyzed the usage of well-known domains in subdomains [32].
In contrast to our approach, they used a fixed set of well-known domains and
searched for them in certificate transparency logs only.

3 Measurement Setup

3.1 Input Data

Our measurement setup works with every kind of data source that provides
access to subdomains. In this work, we focus on phishing feeds from three differ-
ent vendors as they represent a ground truth for our analysis, and complement
our study with data obtained from certificate transparency logs.

Phishing Feeds. We use phishing feeds from security company PhishLabs [6]
and two data sets collected from OpenPhish [4] and Phishtank [7]. Detecting
LLDI in these verified sources of phishing domains demonstrates that attackers
use this attack vector in the wild.

We analyzed 1,410,201 domains collected by PhishLabs during a period of
about seven years between 2012/06/12 and 2019/07/31. This high-quality data
source enables us to study LLDIs in detail and provides a broad overview of
all domain squatting techniques in recent years. Phishtank is an anti-phishing
website that collects URLs involved in phishing and updates its database hourly.
We collected all available phishing domains on an hourly basis for about one year
between 2018/08/10 and 2019/07/31. Afterwards, we extracted the distinct fully
qualified domain names (FQDNs), leading to 103,147 distinct domains, which we
use as input for our analysis pipeline. Similarly, we collected all available phishing
domains from OpenPhish, another initiative to collect phishing domains, on an
hourly basis for about half a year between 2019/02/12 and 2019/07/31, leading
to 36,351 FQDNs.

Certificate Transparency Logs (CTLs). In 2018, Scheitle et al. already
briefly discussed the benefits of CTLs to detect phishing domains [33]. The CTL
ecosystem consists of multiple log files to which everybody can submit certifi-
cates. The certificates contain FQDNs so that they are especially interesting to

72 F. Quinkert et al.

detect LLDIs. Collecting data from CTLs requires maintaining a list of active
log files, collecting and parsing the data, and removing duplicates. To overcome
these challenges, we use CertStream [1], an aggregated, real-time feed of newly
added certificates provided by security company Calidog. CertStream contains
the date and time as well as the FQDN for which a certificate is issued, without
additional certificate information. However, our analysis needs only the FQDNs
as input data. We collected the CTLs from CertStream for almost one and a
half years between 2018/02/02 and 2019/07/31 and gathered almost two billion
entries in total.

3.2 Analysis Pipeline

Next, we describe the analysis pipeline used in our measurement study. First,
we define the three terms test domain, candidate domain, and reference domain.
A test domain is an FQDN from the three phishing feeds and CTLs, which we
use as input. A candidate domain is a test domain which contains a domain
in the subdomain part, e.g., secure.paypal.com .account.example.com contains
paypal.com. A candidate domain consists of a prefix, a reference brand, a TLD,
a suffix, and a second-level domain: <prefix>.<reference-brand>.<top-level-
domain>.<suffix>.<second-level-domain>. In the previous example, secure is
the prefix, paypal the reference brand, com is the TLD, account the suffix, and
example.com the second-level domain. Prefix and suffix can also be empty. We
refer to the reference brand plus top-level domain (TLD) as reference domain.

Identification of Candidate Domains. Our approach to identify candidate
domains among test domains consists of three steps. As example test domain,
we continue to use secure.paypal.com .account.example.com. First, we split each
test domain at the dots to obtain a list of labels, ignoring the test domain’s TLD.
In our example, this leads to: [secure, paypal, com, account, example] Afterwards,
we search for labels consisting of a valid TLD or starting with a valid TLD plus
a hyphen. For that purpose, we compiled a list of 258 country-code TLDs and
the four generic TLDs com, net, org, and edu. We ignored the newly introduced
generic TLDs because they often consist of generic terms which can lead to false
positives. Furthermore, well-known brands do not use these TLDs. If a list of
labels does not contain such a TLD or a label starting with a TLD plus hyphen,
we reject it as candidate domain. However, our example list of labels contains
the label com so that we continue.

Second, we collect the previously identified top-level domain along with the
label before as possible reference domain. In our example, this leads to pay-
pal.com. Next, we send a DNS A resource record request to the possible reference
domain to check whether it is an actual registered domain or just a coincidental
finding. If a DNS A resource record exists, which is the case for paypal.com, we
continue with step three.

Digging Deeper: Domain Impersonation in Lower DNS Hierarchy 73

Third, even a registered domain can still be rather a coincidental finding
than an interesting reference domain. Thus, we additionally send an HTTP GET
request secured via a TLS connection to the possible reference domain, based
on the assumption that connections to banks, companies, and other interesting
phishing targets are TLS secured nowadays [2]. In our example, we send a request
to https://paypal.com and discover that the connection is properly secured.

In summary, we refer to a test domain as candidate domain, if it contains a
registered domain (i.e., it has a valid A resource record) in the subdomain part,
which is reachable via an HTTPS connection.

4 Measurement Study

In this section, we evaluate the previously introduced approach to detect ref-
erence domains. Afterwards, we analyze LLDIs utilizing the phishing feeds and
compare it to other domain squatting techniques. Subsequently, we describe our
findings in the CTL data set.

4.1 Reference Domain Evaluation

We use a generic approach to automatically detect reference domains instead of
using a predefined list of reference domains (see Sect. 3). In this section, we first
show the feasibility of our approach and second compare the selected reference
domains with 500 and 1,000 static reference domains from the Tranco list [23].

Quality of Identified Reference Domains. Step one of our approach iden-
tified 3,313 reference domains in test domains from the PhishLabs data set. In
this section, we assess how well steps two and three of our approach are able
to tell apart actual reference domains from coincidental findings. For that pur-
pose, a human annotator visits each in step one identified reference domain and
decides whether it is a valid reference domain, e.g., because it contains input
forms or belongs to a well-known brand. The manual annotation is not part of
our approach but only done to show the feasibility of our approach.

Table 1 shows a comparison between the approach’s and the human anno-
tator’s results. True positive (TP) means both the approach and the human
annotator classified a reference domain as valid reference domain. This cate-
gory contains mostly domains of well-known brands, such as facebook.com, pay-
pal.com, or apple.com. The connections to these domains are TLS secured and
display meaningful content. In case of true negative (TN), both the approach
and the human annotator considered a reference domain as invalid reference
domain. This category contains often typo- or combosquatted variants of well-
known brands, e.g., appleid.com or mobile-facebook.com. In addition, it contains
domains consisting of common words, for example, confirm.eu. The connections
to these domains are neither TLS secured, nor is the content meaningful. The
combination of TPs and TNs contains 85% of the reference domains, which are
responsible for almost 98% of the candidate domains. That is, the vast majority

https://paypal.com

74 F. Quinkert et al.

Table 1. Overview of reference domain evaluation results showing that reference
domains responsible for 98% of the candidate domains were classified correctly.

Reference domains Candidate domains

True positives 666 (20%) 121,113 (87%)

True negatives 2,155 (65%) 14,831 (11%)

False positives 348 (10%) 1,593 (1%)

False negatives 144 (5%) 2,259 (1%)

Precision 0.66 0.99

Recall 0.82 0.98

F-score 0.73 0.98

of candidate domains are classified correctly. Similarly, false positive (FP) means
the human annotator considered a domain not to be a reference domain while the
approach did so. In those cases, the domains had a valid certificate issued, but
the human annotator did not consider the domains as relevant. Example domains
include support.com or service.com. On the contrary, false negative (FN) means
the human annotator considered a domain to be a reference domain while the
approach did not. This category includes domains which are not considered by
the approach because they forward to another valid domain, e.g., fb.com which
forwards to facebook.com. However, in case of both FP and FN, the number of
affected candidate domains is minimal (about 2%). The reference domains’ pre-
cision is 0.657, recall is 0.822, and F-score is 0.730. For the candidate domains,
we calculated a precision of 0.987, a recall of 0.982, and an F-score of 0.984.
The reference domains’ precision is comparatively low because it classifys some
reference domain wrong. However, this metric does not consider the different
number of candidate domains for each reference domain. In contrast, the can-
didate domains’ precision shows that we classify the vast majority of candidate
domains correctly. Hence, our evaluation confirms that our generic automated
approach works in a reasonably precise way.

Comparison with Static Reference Domains List. Multiple recent pub-
lications studying domain squatting used fixed sets of 1,000 or less reference
domains [10,21,29]. Therefore, we downloaded the top one million Tranco list [23]
on 2019/09/11 and compared the 1,014 reference domains our approach iden-
tified with the top 500 and top 1,000 domains on the Tranco list: the top 500
contain only 71 reference domains of the 1,014 ones our approach identified, i.e.,
we would have missed 943 reference domains responsible for 28,108 candidate
domains (about 23% of all candidate domains), including noteworthy examples
like capitalone.com, bankofamerica.com, or rbcroyalbank.com.

The top 1,000 contain 102 of the reference domains identified by our app-
roach so that still 912 reference domains with 18,074 candidate domains would
be missing (about 15% of all candidate domains), such as westernunion.com,

http://westernunion.com

Digging Deeper: Domain Impersonation in Lower DNS Hierarchy 75

Fig. 1. Cumulative distribution function
for reference brands with at least one can-
didate domain, showing that a small frac-
tion of reference brands is responsible for
a majority of the candidate domains

Fig. 2. Number of candidate domains
as a function of the top 20 reference
brands. Big tech and financial compa-
nies are targeted

scotiabank.com, or intesasanpaolo.com. The results show that our generic app-
roach is capable of detecting important reference domains which would otherwise
be missing. In addition, our approach will identify reference domains in future
without having to modify a static list of reference domains.

4.2 Analysis of Phishing Feeds

In this section, we analyze LLDI in phishing feeds and start with an overview of
our findings. Afterwards, we analyze each part of a candidate domain to provide
information for the development of countermeasures. We focus on the PhishLabs
data set because it covers by far the longest time period.

Overview. In the PhishLabs data set, our approach identified 122,707 candidate
domains for 1,014 distinct reference domains (true positives plus false positives
in Table 1). The oldest LLDIs date back to 2012. Additionally, the usage slightly
increased over the years with a higher number of candidate domains in 2015. In
the Phishtank data set, we identified 2,920 candidate domains for 258 reference
domains and in the OpenPhish data set 424 candidate domains for 47 reference
domains. That is, other phishing feeds detect LLDI as well.

Subsequently, we analyze each part of a candidate domain based on the
structure: <prefix>.<reference-brand>.<top-level-domain>.<suffix>.<second-
level-domain>. The goal is to understand how attackers use this type of imper-
sonation in the wild. We start with the reference brand part because it is most
important to understand which brands are affected.

Reference Brand. The 122,707 candidate domains in the PhishLabs data set
target 1,014 distinct reference domains. Figure 1 depicts a cumulative distribu-
tion function for reference brands with at least one candidate domain. Only a
small number of reference brands is responsible for the vast majority of candidate

http://scotiabank.com
http://intesasanpaolo.com

76 F. Quinkert et al.

domains and, in contrast, many reference brands have only very few candidate
domains. Therefore, we first focus on the 20 reference brands with the highest
number of candidate domains, which are responsible for almost 90% of all candi-
date domains. Figure 2 shows the number of candidate domains as a function of
these 20 reference brands. By far the most candidate domains contain the social
network facebook as reference brand, followed by the payment service paypal, and
the technology company apple. In general, the most often targeted brands are
financial institutions, technology companies, and e-commerce businesses, which
is as anticipated because the accounts at the corresponding websites reveal access
to sensitive information. Interestingly, the reference brands apple and icloud are
both among the most often targeted reference brands.

In the following, we analyze interesting reference brands in more detail: The
most often targeted reference brand facebook has 57,439 candidate domains (47%
of all candidate domains). Interestingly, the vast majority of candidate domains
(97%) starts with facebook, i.e., they do not have additional characters or words
before the reference brand starts. Facebook is one of the most popular websites
so that the high number of candidate domains is not surprising. Additionally,
we found candidate domains on 499 distinct days during our evaluation period
with the first occurrence in September 2012 and the last occurrence in March
2019. This leads to the conclusion that a company like Facebook constantly faces
LLDIs, and it is crucial to develop proper countermeasures.

The second most-often targeted reference brand is paypal. It has 18,543 candi-
date domains (15% of all candidate domains). In contrast to facebook, only about
40% of the candidate domains start with paypal itself. However, almost the same
number of candidate domains starts with the equally well-known www.paypal
(37%) so that victims again get the impression that the domain is legitimate.
Furthermore, we detected candidate domains on almost every day (more than
2,000 days out of about 2,200 days covered by PhishLabs). The reference brand
paypal was the most often targeted in the OpenPhish data set, too (192 candi-
date domains) with almost all candidate domains starting with paypal and being
detected through the whole evaluation time period.

The reference brand square-enix, a video game company, has 758 candi-
date domains and differs from the other reference brands, which mainly tar-
get well-known tech companies or financial institutions. All candidate domains
either start with the term secure or support.na, followed by square-enix.com, fol-
lowed by a short randomly looking second-level domain or a second-level domain
which contains additional terms like oauth, login, or account. The domains fre-
quently use the free subdomain usa.cc (499 candidate domains) or the uncommon
top-level domain asia (114 candidate domains). The subdomain secure.square-
enix.com is the login page to the Square Enix account, while support.na.square-
enix.com is Square Enix’ support page for North America. Hence, scammers use
valid subdomains as beginning for their own subdomains. Phishlabs detected the
candidate domains on 199 days between 2013 and 2016, i.e., the campaign was
active for a very long time. Furthermore, it shows how difficult it is to detect
and protect against LLDIs.

Digging Deeper: Domain Impersonation in Lower DNS Hierarchy 77

Another example emphasizing the necessity to understand LLDI better is the
reference brand runescape, which is an online game. PhishLabs identified 241
candidate domains on 150 days between 2012 and 2018. All candidate domains
for runescape either start with the term secure or services, followed by runescape,
followed by a second-level domain which starts with com- and ends with up to
three random letters or numbers and a rather unusual top-level domain, like
for example ml (56 candidate domains) or ga (45). Further research revealed a
common phishing scheme [8] in which attackers generate such domains, create
videos on the popular streaming website twitch.tv, and promise users a reward if
they log in to lure them to the phishing website, which is hosted on the previously
generated domain. Surprisingly, the reference brand runescape is the most often
targeted brand in the Phishtank data set (816 candidate domains).

In summary, our analysis shows that big financial and technology brands
are predominantly targeted. Further analyses of the four most often targeted
reference brands facebook, paypal, apple, and citi revealed that the candidate
domains for each reference brand often share a common domain beginning. In
contrast, the number of active days differed in some cases. Additionally, the
examples of square-enix and runescape demonstrate that smaller vendors should
pay attention to how their domains are used, too.

Candidate Domain Prefix. It is crucial to either start with the reference
brand or with a suitable prefix to trick the victim into thinking this is a legiti-
mate domain. Therefore, we analyzed the prefixes and found that the PhishLabs
candidate domains on average have a prefix of length three before the reference
brand starts. Overall, we discovered 3,951 distinct prefixes for the 122,707 can-
didate domains. A small number of prefixes is used by many candidate domains,
while many other prefixes are used by only one or very few candidate domains.
61% of the candidate domains start with the reference brand and do not have
a prefix at all. The most popular prefix is the common www (13,732 candidate
domains, 11%). The prevalence of no prefix and www is as expected because both
guarantee a believably impersonated domain. Additionally common are generic
prefixes like online (6,695, 5%), signin (2,931, 2%), or secure (1678, 1.4%). Those
prefixes can help to convince a victim to click on a domain because they let
a domain look believable. Furthermore, the prefixes appleid (4,308, 4%) and
www.appleid (538, 0.4%) were among the top ten prefixes, which is explained by
the brand apple being one of the most prevalent reference brands. In contrast,
the term mobile, which is often used for mobile websites, was less prevalent (120
candidate domains). The more generic m had 1,367 of the candidate domains
as prefix. Moreover, the prefixes have on average two levels with one and two
being by far the most prevalent levels. We found the same structure (high num-
ber of candidate domains without a prefix and generic terms as prefixes) when
analyzing the Phishtank and OpenPhish data sets, i.e., it is common for LLDIs.

Top-Level Domain. In total, we discovered the use of 90 distinct top-level
domains. Table 2 provides an overview of the five most often observed top-level

78 F. Quinkert et al.

Table 2. Five most often used top-level domains along with top ranked reference
brands and number of candidate domains

.com .co.uk .de .ca .nl

facebook paypal ebay paypal apple

57,439 2,403 2,121 2,192 613

paypal apple amazon scotiabank isccards

13,086 806 462 58 239

apple ebay paypal interac rabobank

9,180 237 304 37 66

citi barclays account bell abnamro

5,896 157 53 27 38

wellsfargo amazon postbank bmo wunion

3,741 114 36 26 26

domains. International companies, such as facebook, paypal, or ebay are usually
top-ranked. However, attackers not only focus on globally-known brands but
target locally-known brands as well, which further demonstrates the importance
of our generic approach because those regional reference brands are usually not
among the globally top ranked domains. For example, we found the british bank
barclays in .co.uk, the german bank postbank in .de, the canadian bank scotiabank
in .ca, and the dutch bank rabobank in .nl.

We found 77 reference brands with at least two different top-level domains
among our candidate domains. Furthermore, the reference brands apple and
paypal have 20 different top-level domains. This shows that it is not sufficient to
use only the .com address of a brand name to get a comprehensive overview.

The top-level domain .com was also predominantly used by the candidate
domains we identified in the Phishtank data set which is as expected because it
is the most often used top-level domain. Subsequently, candidate domains used
as well country-code top-level domains, such as .co.uk or .de.

Candidate Domain Suffix. A victim usually focuses on the beginning of
the generated domain. Nevertheless, using a prefix to separate the reference
brand further from the often obviously not legitimate second-level domain is
reasonable. In total, we found 96,505 distinct suffixes. 17,949 of the 122,707
candidate domains do not have a suffix (15%), i.e., the reference domain is
immediately followed by the second-level domain. The most prevalent suffixes
usually contain, comparable to the prefixes, terms which suggest the candidate
domain is valid, such as login (191 candidate domains), signin (36), or support
(20). In 1,687 candidate domains, attackers used suffixes starting with at least
two dashes (--) to shift away the second-level domain.

In the Phishtank data set, more than 70% of candidate domains do not have
a suffix. While this might be confusing, the reference brand runescape is by
far the most often targeted one. These candidate domains do not use a suffix,
explaining the prevalence of candidate domains without a suffix.

Digging Deeper: Domain Impersonation in Lower DNS Hierarchy 79

Table 3. Characteristics of LLDI shared by the three phishing feeds.

Characteristic PhishLabs Phishtank OpenPhish

Start date 12/06/12 18/08/10 19/02/12

End date 19/07/31 19/07/31 19/07/31

Candidate domains 122,707 2,919 424

Targeted brands 823 227 41

Targeted brand #1 facebook runescape paypal

Targeted brand #2 paypal paypal facebook

Targeted brand #3 apple apple apple

Predominant TLD com com com

Most often prefix no prefix no prefix no prefix

Most often suffix no suffix no suffix no suffix

Second-Level Domain. An attacker can use a second-level domain only
very few times for malicious actions because it will be blacklisted by security
tools. Therefore, we expected a low number of candidate domains per second-
level domain. The 122,707 candidate domains have 29,634 distinct second-level
domains, i.e., on average a second-level domain has two candidate domains.
In addition, 424 second-level domains were discovered by PhishLabs within less
than 10 days (average 1.9 days, median 1 day). For the remaining second-level
domains, there were often multiple years between the detections so that we
assume the second-level domains were re-registered.

An analysis of the Phishtank candidate domains further supported our
assumption (1.3 candidate domains per second-level domain). Nevertheless, we
found 552 second-level domains in the PhishLabs data set with more than ten
candidate domains. However, the majority of those second-level domains was
detected within a short period of time, i.e., attackers use a second-level domain
multiple times but in a short period of time.

Summary. Table 3 summarizes the key characteristics of LLDIs. The three
phishing feeds cover different time periods, but the candidate domains share
common characteristics and target the same brands. Surprisingly, only Phish-
Labs and Phishtank share 521 candidate domains, while PhishLabs and Open-
Phish as well as PhishTank and OpenPhish do not share any candidate domains.
In general, the overlap between the data sources is higher. For our data collec-
tion time periods, PhishLabs and Phishtank shared 30,079 FQDNs, PhishLabs
and OpenPhish 5,303 FQDNs, and Phishtank and OpenPhish 9,537 FQDNs.
Comparing the overall overlap with the overlap in case of LLDI shows that there
is room for improvement in the detection of LLDIs. Furthermore, it shows that
using additional phishing feeds broaden the analysis.

80 F. Quinkert et al.

Table 4. Comparison of different domain squatting techniques. Examples with refer-
ence domain paypal.com. Note that the number of combosquatting domains is an upper
bound (see Sect. 4.3 for details)

Type Example # candidate domains

LLDI paypal.com.foo.com 122,707

Typosquatting aypal.com 2,503

Combosquatting paypal-login.com 394,471

Wrong TLD paypal.top 3,290

Homograph domains päypal.com 139

4.3 Other Domain Squatting Techniques

In the following, we compare our findings of LLDIs with the prevalent domain
squatting techniques typosquatting [10], combosquatting [21], the usage of a
wrong top-level domain (wrong TLD) [3], and homograph domains [20]. We
used the PhishLabs data set because it covers by far the longest time period and
provides a good overview of the domain squatting landscape. Table 4 shows an
example as well as the number of candidate domains for each domain squatting
technique. LLDI and combosquatting have by far the most candidate domains,
while typosquatting, wrong TLD, and homograph domains have a negligible
number of candidate domains.

Figure 3 visualizes the fraction of LLDI (red) in comparison with typosquat-
ting, combosquatting, wrong TLD, and homograph domains (green) for the top
five reference brands we identified as using LLDI. Up to 98% of the candidate
domains utilize LLDI, i.e., the share is comparably high among the analyzed
reference brands. It is remarkable that combosquatting is by far the most often
used domain squatting technique besides LLDI. In particular, almost 99% of the
non-LLDI candidate domains belong to combosquatting. The reference brand
apple is special because it consists of a common word. Therefore, Kintis et al.
excluded it in their study on combosquatting [21]. However, we did not remove
common words from our list of reference brands to keep it as comparable as
possible. The lower part of the Fig. 3 shows the same comparison for the total
amount of reference brands. This reveals that LLDI is used in about one third of
all domain squatting candidate domains. Next, we analyze the different domain
squatting techniques in more depth.

Typosquatting. In typosquatting, an attacker uses a domain which differs from
a well-known domain by a typical typing error [10]. We took the 1,014 reference
domains identified in the PhishLabs data set and created the 58,290 possible
typosquatting domains according to the five rules of Wang et al. [37]: ① Miss-
ing dot between www and reference brand: wwwexample.com ② Omit character:
xample.com ③ Swap neighboring characters: xeample.com ④ Substitute character

Digging Deeper: Domain Impersonation in Lower DNS Hierarchy 81

Fig. 3. Fraction of LLDI (red) in comparison with the other domain squatting tech-
niques (green) for the top five reference brands in LLDI. The lower part shows this
regarding all reference brands. (Color figure online)

with neighboring character on qwerty keyboard: wxample.com ⑤ Duplicate char-
acter: eexample.com

Afterwards, we searched for test domains which ended with one of the
typosquatted reference domains and found 2,503 such domains targeting 402
unique reference domains. The number of possible typosquatting domains is
limited so that the low number of typosquatting domains is not surprising. Fur-
thermore, a lot of possible typosquatting domains do not look convincing and
are therefore unlikely to be used, e.g., bay.com instead of ebay.com. The number
of typosquatted domains increased between 2012 and 2016 from about 100 per
year to about 500 per year and remains constant since then. It is easy to defend
against typosquatting by registering the domains in advance.

Combosquatting. In combosquatting, an attacker registers a well-known
domain with added suitable terms (e.g., login-paypal.com) or random charac-
ters (e.g., abcpaypal.com) to get a not yet registered domain which looks still
similar to the original one [21]. Kintis et al. already mentioned that combosquat-
ting is hard to detect if the reference domains are too short or consist of common
words [21]. Eventually, they selected only 246 domains for their study. To keep
the combosquatting results, at least to a certain degree, comparable to the other
domain squatting techniques, we did not remove reference domains from the
list of 1,014 reference domains we identified in the PhishLabs data set. Instead
we used the second-level labels and searched for test domains which end with
a second-level label and at least one additional character plus a valid top-level
domain. Given that some of the second-level labels are short or consist of common
words, the 394,471 candidate domains (254,011 unique fqdns because some fqdns
contain more than one reference domain) are an upper bound. Especially among
the most often targeted reference domains are many which are most likely can-
didate domains because they are common words often used in phishing domains,
e.g., service.com or account.co.jp. However, we found many examples for well-
known reference domains, such as icloud.com (6,142), paypal.com (3,127), or
wellsfargo.com (1,946).

82 F. Quinkert et al.

Wrong TLD. In wrong TLD, an attacker registers the second-level label of
a well-known domain in a different top-level domain, e.g., paypal.top instead of
paypal.com. To measure the prevalence of wrong TLD, we took the 1,014 second-
level labels of the reference domains we identified in the PhishLabs data set
and searched for test domains having one of the second-level labels but a dif-
ferent top-level domain. Overall, we could identify 3,290 wrong TLD candidate
domains. However, our set of reference domains is not perfectly suited for this
experiment because it contains, for example, the domain home.ge, a georgian
real estate portal. We found 451 candidate domains ending with the general
term home plus another top-level domain than ge. But it is unlikely that all
these domains target the real estate portal. Nevertheless, we found interesting
examples, e.g., the canadian bank cibc.com (72 candidate domains), airbnb.com
(43), and icloud.com (35). The usage of wrong TLD is limited by the number of
available top-level domains, and a legitimate domain owner can defend herself
by registering such domains in advance.

Homograph Domains. A homograph domain is a domain using a well-known
domain as template and replacing one or multiple characters with similar look-
ing Unicode characters [20]. For example, paypal.com and paypal.com differ in
the usage of a Cyrillic a in the first domain. Similarly to Quinkert et al. [31], we
created a list of pairs of Latin characters and similarly looking Unicode charac-
ters. We searched for test domains in the PhishLabs data set differing from one
of the 1,014 reference domains by one or multiple pairs in our list.

In total, we identified 139 domains as homograph domains targeting 27
unique reference domains, which is a comparatively low number but in line
with recent publications [20,24,31]. The most often targeted reference domains
include the two crypto currency related websites myetherwallet.com (26 candi-
date domains) and poloniex.com (17). The majority of candidate domains was
identified in recent years, showing at least a small increase of homograph domain
usage. Compared to LLDIs, the usage of homograph domains is complicated
because the attacker has to select a suitable replacement and make sure that
it looks similar in different browsers. Modern browsers often display the homo-
graph domain in an encoded form, e.g., the aforementioned paypal.com as xn--
pypl-53dc.com. The resulting domain does not look like the original domain at
all, further explaining the little usage of homograph domains.

4.4 Certificate Transparency Logs (CTLs)

Besides phishing feeds, we used Certificate Transparency Logs (CTLs) from
CertStream as additional input for our analysis pipeline. In total, we identified
1,260,639 candidate domains. A closer examination of these candidate domains
revealed that in some cases either the selected reference domains are not rele-
vant or the second-level domains are clearly not malicious. For example, univer-
sities provide their students access to scientific newspapers using domains like
wiley.com.lib-ezproxy.<university>.edu. While wiley.com is a legitimate domain

Digging Deeper: Domain Impersonation in Lower DNS Hierarchy 83

and a valid reference domain, university.edu is a legitimate second-level domain
and not an impersonation attempt.

In the following, we focus on the 20 most often targeted reference brands
in the PhishLabs data. We identified 102,509 candidate domains for these 20
reference brands with 246 distinct reference domains in CTLs. Note that 1.5
years of CTLs already contain almost as many candidate domains for these 20
reference domains as seven years of PhishLabs’ data. In addition, only 4,415
of the 102,509 candidate domains in CTLs are already included in PhishLabs,
indicating that many LLDIs are not properly identified by phishing feeds. Next,
we analyze each part of the candidate domains, similarly to the phishing feeds.

Candidate Domain Prefix. Overall, we identified 37,787 distinct prefixes
which is a lot higher than the 20,386 in PhishLabs identified prefixes, even though
the number of candidate domains is comparable. A closer look revealed that the
fraction of candidate domains without a prefix is considerably smaller than in
the PhishLabs candidate domains (19% vs. 56%). The prefix www is similarly
common (12% vs 8%), and we found suitable terms like accounts (0.5%), support
(0.5%), or maps (0.3%) among the most often used prefixes. In conclusion, our
results show that the prefix structure of the examined candidate domains is
similar to the PhishLabs candidate domains’ prefix structure.

Reference Brand. In general, bigger brands like apple or google have more
candidate domains than less well-known brands like desjardins or kbc. We found
only one candidate domain for the reference brand square-enix. However, the
candidate domains in PhishLabs were all detected between 2013 and 2016, while
our CTL data set covers February 2018 through July 2019 so that the low number
of candidate domains is as expected.

Besides the 20 most often targeted reference brands, we also analyzed the pre-
viously discussed reference brand runescape. Surprisingly, we found more than
5,000 candidate domains for this reference brand in CTLs (compared to 241 can-
didate domains identified between 2012 and 2018 by PhishLabs). The vast major-
ity of these candidate domains follows a very similar structure than the candidate
domains identified by PhishLabs. More than 3,000 candidate domains start with
secure or www.secure and more than 1,500 candidate domains start with ser-
vice or www.service. Additionally, we could find prefixes like webmail.secure or
mail.services showing that attackers change the particular subdomains.

Our results show that phishing feeds cover LLDI usage to a certain extent.
However, the number of domains possibly used in the wild is far higher so that
better detection mechanisms are necessary to identify the domains early on.
Instead of using our generic method, which we used to get a broad overview of
LLDIs, a domain owner can use our technique to monitor a limited, predefined
set of domains she owns.

Top-Level Domain. We identified 136 distinct top-level domains being used
with the previously mentioned reference brands. However, only 20 top-level

84 F. Quinkert et al.

domains are used in more than 96% of the candidate domains with the generic
top-level domain .com being the by far most often used top-level domain (85%).
Subsequently, country code top-level domains like .co.uk, .co.jp, or .de are used
to a lesser degree. These results are similar to the PhishLabs results, even though
the particular country code top-level domains following .com changed slightly.

Candidate Domain Suffix. In total, we identified 9,870 distinct suffixes, which
is about 10% of the number of suffixes we identified in the PhishLabs candidate
domains. The vast majority of candidate domains does not have a suffix, fol-
lowed by short suffixes or suffixes with terms like admin, support, or manage. A
candidate domain with a suffix starting with -- is a good way to separate the
reference domain from the rest. In contrast to the PhishLabs data set, we found
only a very limited number of candidate domains which used this technique.

Second-Level Domain. The 102,509 candidate domains use 33,198 second-
level domains which is comparable to the 29,634 second-level domains used by
the PhishLabs candidate domains. Similarly, the vast majority of the second-
level domains is used for less than ten candidate domains. In addition, we found
218 candidate domains starting with com- (19 in PhishLabs) and one with de-
(0 in PhishLabs). The usage of suitable terms is more common in the CTL data
set. We found especially account (2,812), secure (1,148), and support (1,024)
being used. To a lesser degree, sign (689) and verification (542) were used.

5 Limitations

Our approach to detect reference domains performs well on phishing feeds
because domains in the subdomain part are impersonated with malicious intent.
In contrast, on CTLs we encountered challenges deciding whether a possible ref-
erence domain is impersonated with malicious intent or an accidental finding.
Using a fixed set of reference domains instead of our approach to discover ref-
erence domains works better as long as the reference domains are well-known
and often impersonated. While this is the case for a list containing a limited
number of well-known reference domains, e.g., the top 500 or top 1,000 Tranco
domains, increasing the number of domains so that less well-known domains are
included will lead to the same problem we faced with our approach. Additionally,
legitimate usage of domains in the subdomain part (e.g., magazine websites in
subdomains of university libraries) is an issue both our approach and the usage
of a fixed set of reference domains have. A possible mitigation is to check the
domain’s reputation to decide whether it is a legitimate second-level domain.
The generic approach offers interesting insights because it enables us to find
small and often overlooked phishing targets. Therefore, we decided to use the
generic approach and focus our analysis on the phishing feeds. This study is
a first step to show how prevalent LLDI is and to discuss the structure of the
domains.

Digging Deeper: Domain Impersonation in Lower DNS Hierarchy 85

We do not know how the phishing feeds are created so that we cannot assess
their completeness. To address this, we used three different phishing feeds for
the evaluation of our approach. Thus, we are confident to get the best possible
overview of phishing domains and the used domain squatting techniques.

6 Conclusion and Recommendations

In this paper, we presented a generic approach to identify LLDIs in phishing
feeds and CTLs to understand their usage and provide a basis to develop proper
countermeasures. In a comprehensive measurement study, we identified more
than 122,000 domains in PhishLabs showing that attackers use LLDIs for at least
seven years. Additionally, we discovered almost 3,000 domains in Phishtank and
a few hundred ones in OpenPhish. In contrast to other domain squatting stud-
ies, our generic approach does not rely on a predefined list of reference domains
so that we identified not only big technology companies or financial institutions
as victims, but also locally operating companies, such as regional banks. Our
analysis of LLDI’s structure revealed that attackers start with the imperson-
ated brand or use suitable terms to convince victims of the domain’s legitimacy.
Additionally, we compared LLDI with other domain squatting techniques and
found that it exceeds many of them. Hence, this attack technique needs more
attention from academics and practitioners. An analysis of one and a half years
of CTL data demonstrated an even greater usage of LLDI in the wild.

Our results show that domain owners should closely pay attention in which
context their domains are used to detect potential attacks early on. Since tradi-
tional detection (e.g., analyzing newly registered domains) and prevention mech-
anisms (e.g., defensive registrations) are not capable of defending against LLDIs,
our results emphasize a need to understand the technique better and develop
proper countermeasures. We consider a combination of two countermeasures as
most promising: first, awareness trainings for users, and second, identification
and proper representation of such domains in browsers. Recently, Quinkert et
al. showed teaching users how domain squatting works improves their capabil-
ity to identify malicious domains [30]. We analyzed the structure of candidate
domains to show characteristics, e.g., typical prefixes or the position of reference
brands in candidate domains. Our structural analysis can be a basis for aware-
ness campaigns to teach users how LLDI works and what characteristics are
important to detect it. We recommend browser vendors should clearly mark the
second-level domain (the trend to display the subdomain part in gray and the
second-level domain in black points in the right direction) and display a warning
if, for example, a well-known brand name is used in the subdomain part.

References

1. CertStream. https://certstream.calidog.io/. Accessed 06 Apr 2020
2. Half of all Phishing Sites Now Have the Padlock. https://krebsonsecurity.

com/2018/11/half-of-all-phishing-sites-now-have-the-padlock/comment-page-1/.
Accessed 06 Apr 2020

https://certstream.calidog.io/
https://krebsonsecurity.com/2018/11/half-of-all-phishing-sites-now-have-the-padlock/comment-page-1/
https://krebsonsecurity.com/2018/11/half-of-all-phishing-sites-now-have-the-padlock/comment-page-1/

86 F. Quinkert et al.

3. LEGO vs Cybersquatters: The burden of new gTLDs. https://news.netcraft.
com/archives/2017/04/14/lego-vs-cybersquatters-the-burden-of-new-gtlds.html.
Accessed 06 Apr 2020

4. OpenPhish. https://openphish.com. Accessed 06 Apr 2020
5. Phishing Activity Trends Report, 3rd Quarter 2019. https://docs.apwg.org/

reports/apwg trends report q3 2019.pdf. Accessed 06 Apr 2020
6. PhishLabs. https://www.phishlabs.com. Accessed 06 Apr 2020
7. Phishtank. https://www.phishtank.com/. Accessed 06 Apr 2020
8. Twitch Phishing - 182 Phishing Streams In 2 Weeks (2018). https://www.reddit.

com/r/runescape/comments/8in1r0/twitch phishing 182 phishing streams in 2
weeks/. Accessed 06 Apr 2020

9. What is Certificate Transparency? (2018). https://www.certificate-transparency.
org/what-is-ct. Accessed 06 Apr 2020

10. Agten, P., Joosen, W., Piessens, F., Nikiforakis, N.: Seven months’ worth of mis-
takes: a longitudinal study of typosquatting abuse. In: Network and Distributed
System Security Symposium (NDSS) (2015)

11. Antonakakis, M., Perdisci, R., Lee, W., Vasiloglou, N., Dagon, D.: Detecting Mal-
ware Domains at the Upper DNS Hierarchy. In: USENIX Security Symposium
(2011)

12. Bilge, L., Kirda, E., Kruegel, C., Balduzzi, M.: EXPOSURE: finding malicious
domains using passive DNS analysis. In: Network and Distributed System Security
Symposium (NDSS) (2011)

13. blog.comodo.com: Comodo SSL Affiliate The Recent RA Compromise (2011).
https://blog.comodo.com/other/the-recent-ra-compromise/. Accessed 06 Apr
2020

14. Chiba, D., Akiyama, A.H., Koide, T., Sawabe, Y., Goto, S., Akiyama, M.: Domain-
Scouter: understanding the risks of deceptive IDNs. In: Research in Attacks, Intru-
sions, and Defenses (RAID) (2019)

15. Fisher, D.: Attackers Obtain Valid Cert for Google Domains, Mozilla Moves
to Revoke It (2011). https://threatpost.com/attackers-obtain-valid-cert-google-
domains-mozilla-moves-revoke-it-082911/75590/. Accessed 06 Apr 2020

16. Hao, S., Kantchelian, A., Miller, B., Paxson, V., Feamster, N.: PREDATOR: proac-
tive recognition and elimination of domain abuse at time-of-registration. In: Con-
ference on Computer and Communications Security (CCS) (2016)

17. Hassold, C.: Silent Librarian: More to the Story of the Iranian Mabna Institute
Indictment (2018). https://info.phishlabs.com/blog/silent-librarian-more-to-the-
story-of-the-iranian-mabna-institute-indictment. Accessed 06 Apr 2020

18. Hatch, O.G.: The Anticybersquatting Consumer Protection Act (1999).
https://www.gpo.gov/fdsys/pkg/CRPT-106srpt140/html/CRPT-106srpt140.
htm. Accessed 06 Apr 2020

19. Ho, G., Sharma, A., Javed, M., Paxson, V., Wagner, D.: Detecting credential
spearphishing in enterprise settings. In: USENIX Security Symposium (2017)

20. Holgers, T., Watson, D.E., Gribble, S.D.: Cutting through the confusion: a mea-
surement study of homograph attacks. In: USENIX Annual Technical Conference
(2006)

21. Kintis, P., et al.: Hiding in plain sight: a longitudinal study of combosquatting
abuse. In: Conference on Computer and Communications Security (CCS) (2017)

22. Lauinger, T., Chaabane, A., Buyukkayhan, A.S., Onarlioglu, K., Robertson,
W.: Game of registrars: an empirical analysis of post-expiration domain name
takeovers. In: Usenix Security Symposium (2017)

https://news.netcraft.com/archives/2017/04/14/lego-vs-cybersquatters-the-burden-of-new-gtlds.html
https://news.netcraft.com/archives/2017/04/14/lego-vs-cybersquatters-the-burden-of-new-gtlds.html
https://openphish.com
https://docs.apwg.org/reports/apwg_trends_report_q3_2019.pdf
https://docs.apwg.org/reports/apwg_trends_report_q3_2019.pdf
https://www.phishlabs.com
https://www.phishtank.com/
https://www.reddit.com/r/runescape/comments/8in1r0/twitch_phishing_182_phishing_streams_in_2_weeks/
https://www.reddit.com/r/runescape/comments/8in1r0/twitch_phishing_182_phishing_streams_in_2_weeks/
https://www.reddit.com/r/runescape/comments/8in1r0/twitch_phishing_182_phishing_streams_in_2_weeks/
https://www.certificate-transparency.org/what-is-ct
https://www.certificate-transparency.org/what-is-ct
https://blog.comodo.com/other/the-recent-ra-compromise/
https://threatpost.com/attackers-obtain-valid-cert-google-domains-mozilla-moves-revoke-it-082911/75590/
https://threatpost.com/attackers-obtain-valid-cert-google-domains-mozilla-moves-revoke-it-082911/75590/
https://info.phishlabs.com/blog/silent-librarian-more-to-the-story-of-the-iranian-mabna-institute-indictment
https://info.phishlabs.com/blog/silent-librarian-more-to-the-story-of-the-iranian-mabna-institute-indictment
https://www.gpo.gov/fdsys/pkg/CRPT-106srpt140/html/CRPT-106srpt140.htm
https://www.gpo.gov/fdsys/pkg/CRPT-106srpt140/html/CRPT-106srpt140.htm

Digging Deeper: Domain Impersonation in Lower DNS Hierarchy 87

23. Le Pochat, V., Van Goethem, T., Tajalizadehkhoob, S., Korczynski, M., Joosen,
W.: TRANCO: a research-oriented top sites rankinghardened against manipula-
tion. In: Network and Distributed System Security Symposium (NDSS) (2019)

24. Liu, B., et al.: A reexamination of internationalized domain names: the good,
the bad and the ugly. In: International Conference on Dependable Systems and
Networks (DSN) (2018)

25. Liu, D., Li, Z., Du, K., Wang, H., Liu, B., Duan, H.: Don’t let one rotten apple
spoil the whole barrel: towards automated detection of shadowed domains. In:
Conference on Computer and Communications Security (CCS) (2017)

26. Luo, M., Starov, O., Honarmand, N., Nikiforakis, N.: Hindsight: understanding the
evolution of UI vulnerabilities in mobile browsers. In: Conference on Computer and
Communications Security (CCS) (2017)

27. Mockapetris, P.: RFC 1035 - Domain Names - Implementation and Specification
(1987). https://tools.ietf.org/html/rfc1035. Accessed 06 Apr 2020

28. Nikiforakis, N., Balduzzi, M., Desmet, L., Piessens, F., Joosen, W.: Soundsquat-
ting: uncovering the use of homophones in domain squatting. In: International
Conference on Information Security (ISC) (2014)

29. Nikiforakis, N., Van Acker, S., Meert, W., Desmet, L., Piessens, F., Joosen, W.:
Bitsquatting: exploiting bit-flips for fun, or profit? In: International World Wide
Web Conference (WWW) (2013)

30. Quinkert, F., Degeling, M., Blythe, J., Holz, T.: Be the phisher - understanding
users’ perception of malicious domains. In: ASIA Conference on Computer and
Communications Security (ASIACCS) (2020)

31. Quinkert, F., Lauinger, T., Robertson, W., Kirda, E., Holz, T.: It’s not what it
looks like: measuring attacks and defensive registrations of homograph domains.
In: Conference on Communications and Network Security (CNS) (2019)

32. Roberts, R., Goldschlag, Y., Walter, R., Chung, T., Mislove, A., Levin, D.: You
are who you appear to be: a longitudinal study of domain impersonation in TLS
Certificates. In: Conference on Computer and Communications Security (CCS)
(2019)

33. Scheitle, Q., et al.: The rise of certificate transparency and its implications on the
internet ecosystem. In: Internet Measurement Conference (IMC) (2018)

34. Suzuki, H., Chiba, D., Yoneya, Y., Mori, T., Goto, S.: ShamFinder: an automated
framework for detecting IDN homographs. In: Internet Measurement Conference
(IMC) (2019)

35. Szurdi, J., Kocso, B., Cseh, G., Spring, J., Felegyhazi, M., Kanich, C.: The long
“Taile” of typosquatting domain names. In: USENIX Security Symposium (2014)

36. Tian, K., Jan, S.T.K., Hu, H., Yao, D., Wang, G.: Needle in a haystack: tracking
down elite phishing domains in the wild. In: Internet Measurement Conference
(IMC) (2018)

37. Wang, Y.M., Beck, D., Wang, J., Verbowski, C., Daniels, B.: Strider typo-patrol:
discovery and analysis of systematic typo-squatting. In: USENIX Workshop on
Steps Reducing Unwanted Traffic on the Internet (SRUTI) (2006)

https://tools.ietf.org/html/rfc1035

Help, My Signal has Bad Device!

Breaking the Signal Messenger’s Post-Compromise
Security Through a Malicious Device

Jan Wichelmann(B), Sebastian Berndt, Claudius Pott, and Thomas Eisenbarth

University of Lübeck, Lübeck, Germany
{j.wichelmann,s.berndt,c.pott,thomas.eisenbarth}@uni-luebeck.de

Abstract. In response to ongoing discussions about data usage by com-
panies and governments, and its implications for privacy, there is a growing
demand for secure communication techniques. While during their advent,
most messenger apps focused on features rather than security, this has
changed in the recent years: Since then, many have adapted end-to-end
encryption as a standard feature. One of the most popular solutions is the
Signal messenger, which aims to guarantee forward secrecy (i. e. security
of previous communications in case of leakage of long-term secrets) and
future secrecy (i. e. security of future communications in case of leakage
of short-term secrets). If every user uses exactly one device, it is known
that Signal achieves forward secrecy and even post-compromise security
(i. e. security of future communications in case of leakage of long-term
secrets). But the Signal protocol also allows for the use of multiple devices
via the Sesame protocol. This multi-device setting is typically ignored in
the security analysis of Signal.

In this work, we discuss the security of the Signal messenger in this
multi-device setting. We show that the current implementation of the
device registration allows an attacker to register an own, malicious device,
which gives them unrestricted access to all future communication of their
victim, and even allows full impersonation. This directly shows that the
current Signal implementation does not guarantee post-compromise secu-
rity. We discuss several countermeasures, both simple ones aiming to
increase detectability of our attack, as well as a broader approach that
seeks to solve the root issue, namely the weak device registration flow.

1 Introduction

Messenger apps like Whatsapp, WeChat or Telegram have become a cornerstone
of person-to-person communication in the past decade. To meet users demand
for privacy and to protect their right for freedom of expression, many mes-
sengers now employ end-to-end encryption (E2EE) to ensure message privacy.
E2EE also ensures that operators cannot pry on users communication and thus
poses new challenges to government surveillance. With the popularity and bet-
ter protection of communication, governments and their police forces fear going
blind and try to regain access via jurisdiction and/or improved technical capa-
bilities. For example, Russia banned Telegram for several years, due to its use
c© Springer Nature Switzerland AG 2021
L. Bilge et al. (Eds.): DIMVA 2021, LNCS 12756, pp. 88–105, 2021.
https://doi.org/10.1007/978-3-030-80825-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80825-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-80825-9_5

Help, My Signal has Bad Device! 89

of E2EE [23]. But political will to push regulation and/or improve technical
capabilities also exist in the US [19] and the EU [8].

One messenger and its same-named secure communication protocol stands
out: Signal. The Signal protocol has received great scrutiny by the crypto com-
munity and is widely accepted as providing a very high level of security. In fact,
Whatsapp adopted the Signal protocol to restore user trust after being bought
by Facebook in 2014. One of the features that make the Signal protocol special is
its future secrecy property, which—in addition to protecting all communication
completed before a breach of local credentials—also provides security guaran-
tees in case the short-term keys of a system were leaked [25]. Furthermore, the
specification states that the protocol achieves some sort of security against pas-
sive attackers that were able to compromise one of the parties, but not against
active attackers [27]. This is a weaker notion than that of post-compromise secu-
rity, which also protects all communication if the long-term keys are leaked [16].
Post-compromise security seems particularly desirable in a world where govern-
ments invest heavily in the ability to intercept messenger communication. But it
can also restore trust in cases where long-term secrets have been compromised
due to a malware infection, leakage of backups, or legal reasons [12,17]. For most
messengers, even a short-term compromise results in insecure subsequent com-
munication if long-term keys could be leaked (see e. g. the comparison in [18]).
Most of the messengers that restore security toward a broad class of adversaries
even with compromised secrets are based on the Signal protocol. Furthermore,
it was shown that Signal does indeed guarantee the stronger notion of post-
compromise security, in the one-device-per-user use case [9,15].

Multi-device support is handled by the Sesame sub-protocol in Signal. Sesame
adds a new level of complexity to the protocol, which is often not reflected in
current cryptographic analysis [9,15]. Unlike other parts of the Signal protocol,
the Sesame specification is less precise and leaves a lot of freedom to the actual
implementation of the protocol. Whether Signal achieves post-compromise secu-
rity in the general case of users having multiple devices is thus not as clear.
In [16], the authors state that TextSecure—the predecessor of Signal—might
not achieve post-compromise security due to its implementation of the handling
of multiple devices. The authors of [15] state that the post-compromise security
of Signal depends on subtle details related to device state reset and the handling
of multiple devices, but that Signal could achieve some form of it.

Just recently, the question whether implementations of the Signal protocol
do have post-compromise security was answered in [18]: The authors argue that
the Signal protocol does guarantee post-compromise security, but several promi-
nent implementations either do not guarantee it at all (e. g. WhatsApp and
Facebook Secret Conversations) or only partially (e. g. Signal messenger), due
to their problematic handling of desynchronization scenarios. More concretely,
the authors clone a device and later try to use this clone. Whenever the clone
sends a message, the receiving party just displays a message “Bad encrypted
message”. Similarly, whenever this clone receives a message, only the message
“Bad encrypted message” is displayed. In both cases, the sending party does not

90 J. Wichelmann et al.

receive any notification about this. This behavior means that the cloned device
can impersonate the original device, but can not be used to send or receive
messages, making it rather useless.

In this work, we present an attack on the post-compromise security of the
Signal messenger that allows to stealthily register a new device via the Sesame
protocol. In contrast to the attack in [18], this new device can send and receive
messages without raising any “Bad encrypted message” errors. Our attack thus
shows that the Signal messenger does not guarantee post-compromise security
at all in the multi-device setting.

1.1 Our Contribution

This work analyzes the Sesame protocol as it is implemented in the current ver-
sion of the Signal messenger. As many parts of Sesame are not specified out,
we reverse-engineer specific implementation details of Sesame in the Signal mes-
senger. With those gaps in the Sesame specification filled, we analyze the post-
compromise security property of the Signal protocol, which indeed holds in the
single-device per user scenario [15]. However, we show that the current imple-
mentation of the Signal messenger, due to unfortunate choices in the Sesame
realization, undermines the post-compromise security and may ease interception
of messenger communication. We further point out how simple changes in the
realization of Sesame can be used to close these existing gaps. In summary, we

– give an overview of the Signal protocol suite, and discuss its security in case
one of a user’s devices gets temporarily compromised;

– highlight security-critical steps that have been declared implementation
details and thus were left out from the protocol specification;

– show that in the current implementation, an attacker can fully break post-
compromise security by leaking only two long-term secrets, and using these
to register a new device;

– discuss several mitigations to help users detect our attack, and to fix the
underlying issue in order to allow secure registration of devices.

1.2 Responsible Disclosure

We disclosed our findings to the Signal organization on October 20, 2020, and
received an answer on October 28, 2020. In summary, they state that they do
not treat a compromise of long-term secrets as part of their adversarial model.
Therefore, they do not currently plan to mitigate the described attack or imple-
ment one of the proposed countermeasures.

2 Background

We always denote key-pairs by capital letters. For a key-pair IK, we denote
the secret key by sec(IK) and the public key by pub(IK). Symmetric keys are
denoted by lowercase letters, e.g. sk.

Help, My Signal has Bad Device! 91

Nowadays, instant messaging is omnipresent and such messengers often even
replace the use of e-mail in companies (examples include Slack [4], Microsoft
Teams [2], or Webex Teams [6]). Over the last decades, many different crypto-
graphic protocols for secure messaging were developed. Due to the rapid technical
development, many new features were added to the applications implementing
these protocols, but their security guarantees were rarely updated as well. Two
common features leading to security problems are group communication and
multi-device communication (see also the discussion in [13] for important differ-
ences between these scenarios). In the case of group communication, multiple
users want to communicate in a group. Furthermore, these groups are typically
dynamic, i. e. the users in a group can and do change relatively often. To cir-
cumvent the arising problems with group communication, the Messaging Layer
Security (MLS) protocol was introduced and is currently in the standardization
process [5,14]. In the case of multi-device communication, two users want to
communicate, but each of them may use different devices (such as a laptop, a
smartphone, and a tablet). Furthermore, users typically want to register new
devices, transfer old messages, and have a synchronized status on all of their
devices. To the best of our knowledge, there is no proposal for a unified handling
of multiple devices.

In this work, we only consider the multi-device setting and the problems
arising in this scenario. For simplicity, we focus on two-user communication,
i. e., two users A (or Alice) and B (or Bob) communicate, but each of the users
owns several devices.

2.1 Post-Compromise Security

Modern cryptographic protocols aim to achieve different security guarantees,
depending on their use case. One of those guarantees is the security in case the
long-term keys of a party are leaked. Two important notions dealing with this
are forward secrecy and post-compromise security : Forward secrecy (typically
achieved by the use of ephemeral keys) guarantees that previous communication
is still confidential, even if the long-term keys of the parties are leaked (see
Fig. 1a).

Fig. 1. Schematic representation of forward secrecy and post-compromise security.

92 J. Wichelmann et al.

In contrast, post-compromise security guarantees that leakage of the long-
term keys does not break the confidentiality of future communication (see
Fig. 1b). Clearly, the general goal of universal post-compromise security is not
achievable. If A and B have not communicated before, an attacker knowing the
long-term identity key sec(IKA) of A can perfectly impersonate A and is thus
able to perform a man-in-the-middle attack, breaking the confidentiality of the
communication between A and B. But, only slightly weaker guarantees are still
possible: If A and B have already communicated before, they might have agreed
on an (ephemeral) key EKA,B during this session. Whenever A and B now want
to resume their communication, A uses both sec(IKA) and EKA,B to authenti-
cate themselves. Clearly, having only access to the long-term key sec(IKA) is thus
not sufficient to break the confidentiality of the communication in this scenario.

In [16], Cohn-Gordon, Cremers, and Garratt formalized this above intuition
both about the impossibility of universal post-compromise security, but also on
the possibility of slightly weaker versions. Informally, they show that even if
all but one exchange of messages before the secure session are compromised,
post-compromise security can still be achieved.

Note that post-compromise security can be useful for a wide range of situ-
ations, not only for a complete breach of a device: For example, an old backup
containing the long-term keys might have been leaked (see e. g. [3]), malware was
present on the device (see e. g. [1]), parts of the implementation were manipu-
lated (see e. g. [10,11]), or a secondary device might have been stolen.

Attacker Model. Here, we only give an informal discussion about the for-
malization of post-compromise security and refer the interested reader to [16]
for formal definitions. Alice and Bob communicate via a sequence of sessions,
which can be thought of as runs of an authenticated key exchange protocol. Each
session s has its own local state, which includes e. g. the session key EKs, the
parties A and B, the randomness used in s, and all messages exchanged during
the session. The parties A and B have a global state, which includes e. g. the
long-term secrets IK and the public keys of all other parties.

Now, consider a sequence of sessions s1, s2, . . . , s� between A and B, where
the final session s� is the test session. The goal of an attacker is to break the
confidentiality of this test session. To do so, we assume that an attacker can
obtain the long-term secrets and the short-term secrets of all sessions, except for
the session s�−1 (which can be used as a refresh session) and the test session
s� itself (see Fig. 1b) We furthermore assume that an attacker has the usual
abilities: They can read all of the (encrypted) messages sent between A and B,
are a valid user in the network, and can communicate with both A and B.

Multi-device Support. As noted before, we consider the situation that both
A and B communicate via multiple, different devices. This multi-device setting
already leads to non-trivial problems with regard to post-compromise security.
Consider a single-device communication protocol Π that has post-compromise
security. In order to adapt Π to a multi-device setting, several questions arise:

Help, My Signal has Bad Device! 93

– How to synchronize the different devices of a single user?
– How to register a new device?

To still guarantee the post-compromise security of the multi-device protocol,
these questions (and many more) need to be answered carefully.

To handle the synchronization of the different devices of a single user (and
also handle asynchronous messaging), one could make use of a server. For each
user A of the system, this server manages a mailbox, which stores all messages
sent to A, all messages received by A, and all registered devices of A. The
messages are stored encrypted. Now, whenever A uses one of their devices to
send a message to B, the device would put this message in the mailbox of A
and in the mailbox of B, if this device was successfully registered for A. To
synchronize received messages, every successfully registered device of A could
obtain and decrypt the content of the mailbox of A.

A straight-forward way to register a new device would be using the long-
term secret key sec(IKA) to add the new device to the device list of the mailbox
of A. Unfortunately, such a strategy might already break the post-compromise
security of the protocol: If, apart from knowing sec(IKA), no further verification
from A is required for such a registration, an attacker knowing sec(IKA) can
register a new device without alerting A. From this point on, the attacker would
be able to observe the complete communication of A, thus breaking the post-
compromise security of the protocol. The Sesame protocol used by Signal to
handle multiple devices roughly follows this approach and, as we will show, is
thus not post-compromise secure.

3 The Signal Protocol

The Signal (formerly Axolotl) protocol [26] provides end-to-end encryption for
text messages and multimedia files. It is widely used in different communica-
tion applications such as WhatsApp [33], Skype [24] and the Signal messenger
itself. The protocol is based on the Double Ratchet algorithm and uses a triple
Elliptic-curve Diffie–Hellman handshake (X3DH) to initiate new conversations.
The Sesame protocol is used to enable multi-device support. Signal uses a num-
ber of cryptographic primitives including

– Elliptic Curve Diffie-Hellman functions (implemented by X25519 or
X448 [21]);

– a signature scheme called XEdDSA producing EdDSA-compatible signatures
from X25519 or X448 using the hash function SHA-512 [26];

– a hash function (implemented by SHA-256/SHA-512);
– a key derivation function KDF based on the HKDF algorithm [20];
– an authenticated encryption (AEAD) scheme [31,32]. Concretely, KDF is used

to produce an encryption key, an authentication key, and an initialization
vector (IV). The plaintext is then encrypted with AES-256 in CBC mode.
Finally, HMAC with the hash function and the authentication key is used on
the authenticated data.

94 J. Wichelmann et al.

We continue by giving an overview over the three protocol parts that jointly
form the Signal protocol. For the remainder of this paper we use the term user
for one communicating entity that usually is a single person. Note, that one user
may have multiple devices, that they use for their communication. The term
party on the other hand is used more abstractly on the protocol level for one
side of the communication, usually represented by a single device or server.

3.1 X3DH [29]

In order to setup a secure session, all parties have to agree on a key. Usually,
this is done via a Diffie-Hellman key exchange, but this does not work well in a
messenger setting, which heavily relies on asynchronous communication. If party
A wants to send a message to party B, but party B is offline, party A needs a
way to derive a shared secret key sk without any interaction with party B.

The X3DH protocol aims to solve that problem, by allowing B to store a set
of public keys in a public location, which A can subsequently use for a Diffie-
Hellman computation. In order to provide authentication and freshness, B offers
their public identity key and a set of prekeys. A retrieves B’s public keys and
computes DH key exchanges with their own secret identity key and an ephemeral
key. To allow B to later derive the same shared key, A subsequently sends their
public identity key and the public ephemeral key. A can now encrypt messages
with the shared key and send them to B. As soon as B gets online again, they can
use A’s public keys to derive the same shared secret and decrypt A’s messages.
In order to encrypt and send messages to A, B executes the same protocol steps
as A, deriving another shared secret for the other direction of communication.

3.2 Double Ratchet [27]

While agreement on a shared secret key is sufficient for A and B to exchange
encrypted messages, it is quite vulnerable against possible compromise: As soon
as the shared key gets leaked, an attacker gains full access to all past and future
communication between A and B. To avoid this, the shared key needs to be
refreshed in regular intervals, to add new randomness and narrow down the
possible damage from a leaked secret.

The Double Ratchet protocol solves this by introducing four cryptographic
chains. The first one, the Diffie-Hellman (DH) chain, consists of an alternating
series of public and private ephemeral keys, where the private part is provided
by the local party, and the public part comes from the remote party. Ideally,
each message sent from A to B also contains a new public ephemeral key from
A, and vice versa. Each time a party receives a new public ephemeral key, they
advance their local DH chain by one step.

The shared secret from the DH chain is then fed into a symmetric root chain,
which is initialized with the initial secret from the X3DH key exchange. On each
step of the DH chain, the root chain is advanced by one step as well. The root
chain uses a keyed hash function to generate a root key, which is used as key for
the next root chain step, and a chain key for sending or receiving. Each chain

Help, My Signal has Bad Device! 95

key spawns a new sending or receiving chain, which is in turn used to derive
the keys for encrypting or decrypting messages. Since all chain keys are derived
using a keyed hash function, an attacker cannot compute their predecessors, so
the protocol grants forward secrecy.

Note that each DH chain step leads to a new sending or receiving chain.
Thus, if a sending or receiving chain key gets compromised, only the messages
encrypted with that particular chain are affected. The same holds for the root
chain: If a root key gets compromised, only the immediate sending or receiving
chain and its associated messages are affected. The next step of the root chain
can be considered secure again, as it incorporates fresh randomness from the DH
chain. In case a long-term secret (e.g., the private identity key) gets leaked, the
confidentiality of future messages from existing Double Ratchet sessions is still
preserved, as long as the attacker does not also gain access to all new private
ephemeral keys. Thus, intuitively, the Double Ratchet protocol also provides
post-compromise security. For a formal security proof of Signal’s forward secrecy
and post-compromise security we refer to [15].

3.3 Sesame [28]

In order to allow users to send and receive messages from multiple devices, the
Sesame protocol was introduced. The protocol describes two scenarios: A per-
user scenario, where a single identity key is used on all the user’s devices, and a
per-device scenario, where each device has its own identity key. Both scenarios
are handled in a similar fashion by the Sesame protocol, since the only difference
is the location where the identity keys are stored – either in the user records or
in the device records.

On the highest level, each device stores a list of users that it knows, including
its owner. For each of these users, a non-empty list of their devices is stored,
which in turn is associated with a list of Double Ratchet sessions. Additionally,
each device has its own mailbox on the server, which is used to asynchronously
fetch encrypted messages from other devices and which only contains messages
that weren’t yet received. For each device, exactly one session is active at a time,
while the other ones are stale and only kept in case delayed messages arrive.

Whenever a device of user A sends a message to user B, it sends this message
to each device associated with B, either via its current active session or by
initializing a new session via X3DH. Additionally, the message is sent to all
devices of A, using the same mechanism. The server then puts the messages into
the respective mailboxes, where the receiving devices can obtain their messages
from and then decrypt them using the corresponding session keys.

While Sesame describes how messages are kept synchronized on all devices in
a multi-device scenario, it does not cover the registration of new devices: These
details are fully left to the implementation, excluding them from considerations
regarding Sesame’s security. In Sect. 4, we show that the current implementa-
tion in the Signal messenger is indeed vulnerable, and allows an attacker to
impersonate their victim.

96 J. Wichelmann et al.

4 Signal Implementation in the Signal Messenger

While the specification of the X3DH key exchange and the Double Ratchet are
rather specific, Signal’s multi-device extension Sesame only describes a high-
level view of exchanging messages between multiple devices and sessions (com-
pare e. g. [27] and [28]). Many important details, most notably the registration
of new devices, are left to the programmer, and are thus not included in any
security proofs. In this section, we take a closer look at these implementation
details and show how these allow an attacker to work around Signal’s post-
compromise guarantees, gaining unconstrained access to a user’s future commu-
nication. Our attack shows that the Signal messenger currently does not guaran-
tee post-compromise security. Furthermore, in contrast to [18], our attack allows
us to completely break the privacy of the communication, as it allows us to both
send and receive messages.

For simplicity, we assume a single user with identity key IK and who uses
the Signal app A. The device registration aims to add a new device D.

4.1 Reverse Engineering the Protocol Implementation

Since the device registration protocol is not specified anywhere, we had to ana-
lyze how it is implemented in the Signal messenger. Unfortunately, there is nei-
ther an official API specification nor any documentation of the procedure, so we
had to dive into the implementation and try to piece together the relevant bits
in order to get a full view of the device registration protocol and do a security
analysis.

For our analysis, we checked out the source repositories of Signal’s Android
app (commit fc41fb51) and Desktop client (commit a1721ed2). Apart from
occasional source code comments, both implementations are almost entirely
undocumented, and it proved difficult for us to get an overview by inspecting the
various subfolders/packages. In order to roughly locate the relevant code parts,
we searched for various strings which are shown in the UI, and then followed the
call traces.

There is no built-in means for exporting sent/received packets in debug mode;
Signal does certificate pinning with a custom TLS root certificate, which we
weren’t able to circumvent without losing connectivity, so setting up a proxy for
intercepting the network communication was not an option. Thus, we mostly
resorted to static analysis in order to understand what data is sent across the
network, along with some custom debug outputs. Studying the server implemen-
tation3 helped us infer the higher level information flow.

We lay out our reverse engineering results in the following section, where we
explain the device registration process and the involved secrets.

1 https://github.com/signalapp/Signal-Android/tree/fc41fb5.
2 https://github.com/signalapp/Signal-Desktop/tree/a1721ed.
3 https://github.com/signalapp/Signal-Server.

https://github.com/signalapp/Signal-Android/tree/fc41fb5
https://github.com/signalapp/Signal-Desktop/tree/a1721ed
https://github.com/signalapp/Signal-Server

Help, My Signal has Bad Device! 97

4.2 Device Registration

Prerequisites. To register a new device, several private and public values are
required, which may be partially known to an attacker:

– The (private) identity key IK: As described in Sect. 3.1, this long-term key is
required to setup new prekeys and start new conversation sessions. It is only
stored on the user’s device.

– The phone number pn: As, for the current implementation, the phone number
is the only means for creating and identifying user accounts, it can be assumed
to be known to the attacker.

– The app’s API username unA and password pwA: These are used in HTTP
authentication when communicating with the server. The username directly
depends on the phone number and the device ID (which is constant for the
primary device), and can thus be easily guessed; the password is random and
needs to be leaked. Since the authentication data is sent in the clear, but
inside the TLS layer, the attacker may either exfiltrate it through the same
channel as the identity key, or by gaining (limited) access to the server, which
is assumed untrusted by the Signal protocol.

– The profile key pk : The profile key allows accessing certain meta information,
like the user’s display name and their avatar image. It usually is transmitted
when starting a new conversation, to allow the other peer to download and
decrypt the user’s profile information, so the attacker may have already gained
access to that key by communicating with their victim at an earlier point of
time. Anyway, we found that sending the profile key is optional for device
registration, and does not influence detectability of our attack.

Adversarial Scenario. We now concretize our generic attacker model, which
we presented earlier. Throughout the rest of the paper, we assume an adversary
who at some point managed to obtain the private identity key IK, the phone
number pn, the API username unA, and the password pwA. After all of these
information are retrieved, the attacker does not interact directly with the victim
or interferes with their communication. Instead, the adversary will only interact
with the public Signal servers once during the compromise stage, using these
cloned credentials of the victim to impersonate the victim towards the server (but
not toward any of the communication partners of the victim). Once registered,
the adversary performs direct communication with a party (the Signal server), to
collect messages from their mailbox. This corresponds to the scenario described
in [18], where an attacker was able to clone the complete smartphone and uses
this cloned copy at a later time.

The PIN. Another secret, which is only known to the user, is the PIN pin:
Signal PINs were introduced in 2020 [30], and are designed as a means for storing
private information in an untrusted location. This information may be later used
to recover key material and the contact list, e.g., after losing the primary phone
(Secure Value Recovery [22]). The PIN cannot be acquired by breaking into the

98 J. Wichelmann et al.

Fig. 2. The Signal device provisioning protocol. The user registers a new device D with
their primary device A.

server, as it is claimed to be secured by an SGX Enclave, which only permits
a small number of guesses. However, the current implementation of the app
offers a PIN “reminder” feature, which asks the user to enter the PIN in regular
intervals. This feature compares the hash of the entered PIN to a locally stored
value, in order to avoid accidentally using up the number of allowed guesses
on the server side. If an attacker manages to retrieve this hash value, e.g. by
dumping the memory of the app, they may be able to determine the (likely
short) PIN through an offline brute-force attack. However, knowing the PIN is
not required for our attack, except if the attacker wants to obtain the full contact
list of their victim.

Device Provisioning Protocol. The protocol for registering a new device,
called provisioning by the Signal implementation, is illustrated in Fig. 2. As
stated before, we use A to denote the phone (primary) instance of the user’s
Signal account, and D to denote the desktop client instance which the user tries
to register as a new device.

Upon start of the desktop client, the software will open a provisioning Web-
Socket to the Signal servers, which will generate and send a random device UUID
uuidD. The desktop client then generates a provisioning key pair PR and encodes
uuidD and pub(PR) into a QR code, which is presented to the user.

Help, My Signal has Bad Device! 99

After the user scanned the QR code using the Signal app, the app will first
request a verification code code from the server, and then encrypt some of the
app’s private data with a random AES key prs:

Encprs ({pub(IK), sec(IK), code, pn, pk})

The encrypted data and the encrypted key EncPR (prs) is sent to the server,
which relays it via the provisioning socket to the desktop client. The desktop
client uses the private provisioning key sec(PR) to obtain prs and thus decrypt
the data packet sent by the app.

The desktop client registers with the Signal servers by sending a packet con-
taining the phone number pn, the string code for verification, a random password
pwD, a random registration ID regId, and the device name nameD, which is cho-
sen by the user and is encrypted using the identity key IK. Upon receiving the
registration packet, the servers return a new device ID deviceIdD, completing
the protocol.

Since the Signal servers require HTTP authentication, the desktop client will
include the username unD := pn.deviceId and the password pwD in any future
communication.

After the registration is done, the desktop client requests the current list
of conversations, which is implemented via a hidden Double Ratchet session
between the desktop client and the app. This “shadow” session is also used
to synchronize messages sent by the user between their devices. There is no
notification to the user that a device requested their conversations. Note that
only the conversation metadata and the lists of participants are transmitted; the
data does not include the chat history prior to device registration.

4.3 Registering a Malicious Device

If an attacker manages to temporarily compromise the victim’s primary device
in a fashion that reveals certain private values, namely the victim’s identity key
IK and the API password pwA, they can simulate a device registration and add
a malicious device.

As illustrated in Fig. 2, the only points where the primary device interacts
with the server during the device registration are requesting a verification code
and sending the encrypted private data. The former only requires API creden-
tials, while the latter additionally requires the private identity key. Since we
assume that the attacker has gained access to these values, they can fully emu-
late the protocol and set up the new device, without any interaction from the
victim or their app.

To demonstrate malicious device registration, we created a simple dummy
app4 in C#, which takes the private identity key and the API credentials, and

4 Code is available on GitHub: https://github.com/balasdansb/signal-attack.

https://github.com/balasdansb/signal-attack

100 J. Wichelmann et al.

then runs the described API calls. For testing, we started a new instance of the
official desktop client, extracted the contents of the displayed QR code, and fed
these into our dummy app. As soon as the API calls were completed, the desktop
client started downloading the conversations from the victim’s phone app. As
the phone app happened to be up and online, all contacts and groups were suc-
cessfully retrieved, without showing any notification to the victim (Fig. 3). After
the registration was completed, the victim and their peers started to forward
new messages and conversations to the forged device as well, giving the attacker
full access to their communication.

Since the server manages a list of all registered devices, the forged device
will appear in the victim’s device list, if they access it in their app. However, in
case the attacker has some level of control over the (untrusted) server, they can
easily manipulate the returned list to exclude their forged device, making the
attack almost undetectable.

4.4 Implications for Post-compromise Security

The newly added device gives the attacker a high level of access to all commu-
nications of the victim.

According to the Sesame specification, new messages shall be sent to the
active sessions of each of the peers’ devices, so each device can display the entire
chat history from the point of device registration, even if the user switches their
active device in between. Thus, the attacker receives all new communication
directed to their victim, as well as all messages sent by the victim to other
devices, as chat history is kept synchronous between all devices of a user.

The attacker may also impersonate the victim and send messages on their
behalf. As sending such a message is easily detectable by other synchronized
devices, one might suppress the synchronization to the victim’s other devices.
However, this may be detected as soon as one of the peers responds, since an
answer will be sent to all registered devices, including the victim’s own ones.

In summary, our attack shows that compromising just two secret values leads
to a full disclosure of all future communications. Previously, it was only known
that a cloned devices could be used, but this device was not able to send or
receive messages [18]. In contrast, our attack shows that leaked long-term keys
of Signal can directly be used to completely break the post-compromise security,
both in theory and in practice. While Double Ratchet itself has strong post-
compromise guarantees, this is subverted by the weak device registration and
synchronization procedure in Signal’s implementation of the Sesame protocol.

Help, My Signal has Bad Device! 101

Fig. 3. View of a conversation between Alice and Bob (screenshots (a) and (b) slightly
shortened to save space, by removing the user icons). After Alice initiated the conver-
sation and Bob answered, both verified their safety numbers. After another message
(“This is a secure message”), Alice’s account got compromised. The attacker installed
another device, and was able to read Alice’s last message (“Not secure anymore”).
Finally, the attacker impersonated Alice and sent a message on her behalf. There is no
indication to Bob or Alice that a new device was added to the conversation, or which
device authored a given message.

102 J. Wichelmann et al.

5 Countermeasures

To counter the attack described above, there are several possibilities. Note that
according to the assumptions of the Signal protocol, we do not trust the server.
This lack of trust makes fixing the above problems much harder.

5.1 UI Changes

Right now, there is no active indication that a new device has been added, neither
for the user themselves, nor for their peers. While indicating a change or addition
of devices does not mitigate our attack, it greatly enhances detectability.

Notification for Own Device Addition. Currently, the attack can only be
detected when the victim checks their device list and spots the malicious device.
Since their own devices automatically sync settings and messages to all other
devices, they need to have a current list of all devices at all times. Whenever a
new device appears in this list, which the user did not actively add via scanning
a QR code, their primary app should issue a high-priority notification in order to
warn the user of a possible breach. However, this only works if the attacker is not
able to somehow suppress their malicious device at the server-side, which would
hide it from the victim, at the cost of not receiving the victim’s own messages
anymore.

Notification of Device List Changes. In order to communicate in accordance
with the Sesame protocol, each user maintains ratchet sessions with all devices
of their peers as well as all other devices of themselves. As soon as a new device
is added, this may be indicated in the chat history, if the users choose to opt-
in to such a feature (there may be privacy concerns). If, in order to escape such
measures, an attacker fully suppresses their device at the server-side, they won’t
receive any messages, making the attack useless.

Device-Specific Security Codes. Another optional extension are device-
specific security codes: Instead of verifying a user once and then trusting all their
devices, the conversation peers could do a pair-wise verification of all devices.
In this setting, messages are only sent to authenticated devices, and a warning
is issued whenever a non-verified device is present. This approach is taken e.g.
by the Matrix messenger platform [7], which allows either a device-based or a
user-based verification.

5.2 Alternative Multi-device Protocols

An alternative, more radical approach would be replacing the Sesame protocol
itself. Just recently, Campion, Devigne, Duguey, and Fouque devised a replace-
ment protocol for Sesame [13]. While Sesame realizes multi-device support by

Help, My Signal has Bad Device! 103

opening separate Signal channels between all devices used by the two communi-
cating parties, the approach presented in [13] uses a single Signal channel for all
communication between two users A and B. The usage of multiple devices on A’s
side is therefore transparent to B (and vice versa), meaning that higher privacy
guarantees are achieved. A’s devices can only use the same Signal channel to
communicate with B, if all of them use the same double ratchet session, which
can only be achieved when they synchronize the used ratchet key. In order to
achieve such a synchronization the authors introduce the Ratcheted Dynamic
Multicast (RDM). Based on asymmetric keys that are renewed regularly (hence
ratcheting), this allows every device of A to use a non-interactive multicast
channel to send session updates to all other devices owned by A, while providing
forward secrecy and post-compromise security (called healing properties in [13]).

In our attack we exploited the device registration and management, which
are mostly handled by the Signal server. The device registration presented in [13]
enforces the use of another already registered device. This is possible because
the registered devices of a user keep track of all other registered devices in a
decentralized fashion. If A wants to register a new device, they must use one of
their registered devices, which in turn uses the RDM to notify all other devices
of A about the new device. Note that the RDM can only be used if the current
ephemeral keys are known, which means that an attacker who has only extracted
long-term secrets is not able to register a new device.

6 Conclusion

In this work, we presented a security analysis of the Sesame protocol and its
current implementation in the Signal messenger, with focus on post-compromise
security. To enable a detailed security analysis, we first had to reverse-engineer
several implementation details of the Signal messenger. Based on the detailed
knowledge, we showed that the multi-device support of the Signal messenger can
be abused to eavesdrop on all communication after a one-time credential breach.
Thus, currently, the Signal messenger does not provide message privacy in the
post-compromise security scenario. We further discussed possible mitigations
of the described attack, where some are easy to implement and have minimal
impact on the user experience of the Signal messenger, while providing enhanced
detectability of our attack.

Acknowledgements. This project was funded by the Deutsche Forschungsgemein-
schaft (DFG) under Grant No. 427774779 and through the ERDF project EMSIK.

References

1. Barcode Scanner app on Google Play infects 10 million users with one update.
https://blog.malwarebytes.com/android/2021/02/barcode-scanner-app-on-
google-play-infects-10-million-users-with-one-update/. Accessed 22 Feb 2021

2. Microsoft Teams. https://teams.microsoft.com. Accessed 22 Feb 2021

https://blog.malwarebytes.com/android/2021/02/barcode-scanner-app-on-google-play-infects-10-million-users-with-one-update/
https://blog.malwarebytes.com/android/2021/02/barcode-scanner-app-on-google-play-infects-10-million-users-with-one-update/
https://teams.microsoft.com

104 J. Wichelmann et al.

3. More Keys Than A Piano: Finding Secrets in Publicly Exposed Ebs Volumes.
https://www.defcon.org/html/defcon-27/dc-27-speakers.html#Morris. Accessed
22 Feb 2021

4. Slack. https://slack.com/. Accessed 22 Feb 2021
5. The Messaging Layer Security (MLS) Protocol (11). https://tools.ietf.org/id/

draft-ietf-mls-protocol-11.html. Accessed 22 Feb 2021
6. Webex Teams. https://teams.webex.com. Accessed 22 Feb 2021
7. Matrix. https://matrix.org/. Accessed 16 Feb 2021
8. Council resolution on encryption. Council of the European Union, November 24

(2020). https://data.consilium.europa.eu/doc/document/ST-13084-2020-REV-1/
en/pdf. Accessed 22 Feb 2021

9. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: security notions, proofs, and
modularization for the signal protocol. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11476, pp. 129–158. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17653-2 5

10. Bellare, M., Jaeger, J., Kane, D.: Mass-surveillance without the state: strongly
undetectable algorithm-substitution attacks. In: Proceedings of the CCS. pp. 1431–
1440. ACM (2015)

11. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 1–19. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44371-2 1

12. Bergman, R., Fassihi, F.: Iranian hackers found way into encrypted apps,
researchers say (2020). https://www.nytimes.com/2020/09/18/world/middleeast/
iran-hacking-encryption.html. Accessed 13 Oct 2020

13. Campion, S., Devigne, J., Duguey, C., Fouque, P.-A.: Multi-device for signal. In:
Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds.) ACNS 2020. LNCS, vol.
12147, pp. 167–187. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
57878-7 9

14. Cohn-Gordon, K., Cremers, C., Garratt, L., Millican, J., Milner, K.: On ends-to-
ends encryption: asynchronous group messaging with strong security guarantees.
In: CCS, pp. 1802–1819. ACM (2018)

15. Cohn-Gordon, K., Cremers, C.J.F., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. In: EuroS&P, pp. 451–466. IEEE
(2017)

16. Cohn-Gordon, K., Cremers, C.J.F., Garratt, L.: On post-compromise security. In:
CSF, pp. 164–178. IEEE Computer Society (2016)

17. Cox, J.: How police secretly took over a global phone network for organized crime.
Motherboard Tech by VICE, July 2 (2020). https://www.vice.com/en/article/
3aza95/how-police-took-over-encrochat-hacked. Accessed 13 Oct 2020

18. Cremers, C., Fairoze, J., Kiesl, B., Naska, A.: Clone detection in secure messaging:
improving post-compromise security in practice. In: CCS, pp. 1481–1495. ACM
(2020)

19. Feiner, L.: Republican senators introduce bill that tech advocates have warned
would weaken privacy. CNBC, June 24 (2020). https://www.cnbc.com/2020/
06/24/gop-senators-introduce-bill-that-would-create-a-backdoor-for-encryption.
html. Accessed 22 Feb 2021

20. Krawczyk, H., Eronen, P.: Hmac-based extract-and-expand key derivation function
(HKDF). RFC 5869, 1–14 (2010)

21. Langley, A., Hamburg, M., Turner, S.: Elliptic curves for security. RFC 7748, 1–22
(2016)

https://www.defcon.org/html/defcon-27/dc-27-speakers.html#Morris
https://slack.com/
https://tools.ietf.org/id/draft-ietf-mls-protocol-11.html
https://tools.ietf.org/id/draft-ietf-mls-protocol-11.html
https://teams.webex.com
https://matrix.org/
https://data.consilium.europa.eu/doc/document/ST-13084-2020-REV-1/en/pdf
https://data.consilium.europa.eu/doc/document/ST-13084-2020-REV-1/en/pdf
https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://www.nytimes.com/2020/09/18/world/middleeast/iran-hacking-encryption.html
https://www.nytimes.com/2020/09/18/world/middleeast/iran-hacking-encryption.html
https://doi.org/10.1007/978-3-030-57878-7_9
https://doi.org/10.1007/978-3-030-57878-7_9
https://www.vice.com/en/article/3aza95/how-police-took-over-encrochat-hacked
https://www.vice.com/en/article/3aza95/how-police-took-over-encrochat-hacked
https://www.cnbc.com/2020/06/24/gop-senators-introduce-bill-that-would-create-a-backdoor-for-encryption.html
https://www.cnbc.com/2020/06/24/gop-senators-introduce-bill-that-would-create-a-backdoor-for-encryption.html
https://www.cnbc.com/2020/06/24/gop-senators-introduce-bill-that-would-create-a-backdoor-for-encryption.html

Help, My Signal has Bad Device! 105

22. Lund, J.: Technology Preview for secure value recovery. https://signal.org/blog/
secure-value-recovery/ (2019). Accessed 15 Feb 2021

23. Meyer, D.: Russia’s online censorship machine is no longer running smoothly.
FORTUNE, June 24 (2020). https://fortune.com/2020/06/24/russia-online-
censorship-faltering-telegram-kasparov/. Accessed 22 Feb 2021

24. Microsoft: Skype private conversation (2018). https://az705183.vo.msecnd.
net/onlinesupportmedia/onlinesupport/media/skype/documents/skype-private-
conversation-white-paper.pdf. Accessed 29 Sept 2020

25. Open Whisper Systems: Advanced cryptographic ratcheting. https://signal.org/
blog/advanced-ratcheting/. Accessed 16 Feb 2021

26. Open Whisper Systems: Signal Protocol Specifications. https://signal.org/docs/.
Accessed 29 Sept 2020

27. Open Whisper Systems: The Double Ratchet Algorithm. https://signal.org/docs/
specifications/doubleratchet/. Accessed 28 Sept 2020

28. Open Whisper Systems: The Sesame Algorithm: Session Management for Asyn-
chronous Message Encryption. https://signal.org/docs/specifications/sesame/.
Accessed 28 Sept 2020

29. Open Whisper Systems: The X3DH Key Agreement Protocol. https://signal.org/
docs/specifications/x3dh/. Accessed 28 Sept 2020

30. Randall: Introducing Signal PINs. https://signal.org/blog/signal-pins/ (2020).
Accessed 15 Feb 2021

31. Rogaway, P.: Authenticated-encryption with associated-data. In: ACM Conference
on Computer and Communications Security, pp. 98–107. ACM (2002)

32. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 23

33. WhatsApp: Whatsapp encryption overview (2017). https://www.whatsapp.com/
security/WhatsApp-Security-Whitepaper.pdf. Accessed 28 Sept 2020

https://signal.org/blog/secure-value-recovery/
https://signal.org/blog/secure-value-recovery/
https://fortune.com/2020/06/24/russia-online-censorship-faltering-telegram-kasparov/
https://fortune.com/2020/06/24/russia-online-censorship-faltering-telegram-kasparov/
https://az705183.vo.msecnd.net/onlinesupportmedia/onlinesupport/media/skype/documents/skype-private-conversation-white-paper.pdf
https://az705183.vo.msecnd.net/onlinesupportmedia/onlinesupport/media/skype/documents/skype-private-conversation-white-paper.pdf
https://az705183.vo.msecnd.net/onlinesupportmedia/onlinesupport/media/skype/documents/skype-private-conversation-white-paper.pdf
https://signal.org/blog/advanced-ratcheting/
https://signal.org/blog/advanced-ratcheting/
https://signal.org/docs/
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/sesame/
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/
https://signal.org/blog/signal-pins/
https://doi.org/10.1007/11761679_23
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

Refined Grey-Box Fuzzing with Sivo

Ivica Nikolić1(B), Radu Mantu2, Shiqi Shen1, and Prateek Saxena1

1 School of Computing, NUS, Singapore, Singapore
inikolic@nus.edu.sg

2 University Politehnica of Bucharest, Bucharest, Romania

Abstract. We design and implement from scratch a new fuzzer called
Sivo that refines multiple stages of grey-box fuzzing. First, Sivo refines
data-flow fuzzing in two ways: (a) it provides a new taint inference engine
that requires only logarithmic number of tests in the input size to infer
dependency of many program branches on the input bytes, and (b) it
employs a novel method for inverting branches by solving a systems
of inequalities efficiently. Second, our fuzzer refines accurate tracking
and detection of code coverage with simple and easily implementable
methods. Finally, Sivo refines selection of parameters and strategies by
parameterizing all stages of fuzzing and then dynamically selecting opti-
mal values during fuzzing. Thus the fuzzer can easily adapt to a target
program and rapidly increase coverage. We compare our fuzzer to 11
other state-of-the-art grey-box fuzzers on 27 popular benchmarks. Our
evaluation shows that Sivo scores the highest both in terms of code
coverage and in terms of number of found vulnerabilities.

1 Introduction

Fuzzing is the automatic generation of test inputs for programs with the goal of
finding bugs. With increasing investment of computational resources for fuzzing,
tens of thousands of bugs are found in software each year today. We view fuzzing
as the problem of maximizing coverage within a given computational budget. The
coverage of all modern fuzzers improves with the computation budget allocated.
Therefore, we can characterize the quality of a fuzzer on its rate of coverage
increase, the average number of new control-flow edges exercised per CPU cycle.

Broadly, there are three types of fuzzers. Black-box fuzzers do not utilize
any knowledge of the program internals, and are sometimes referred to as undi-
rected fuzzers. White-box fuzzers perform intensive instrumentation, for exam-
ple, enabling dynamic symbolic execution to systematically control which pro-
gram branches to invert in each test. Grey-box fuzzers introduce low-overhead
instrumentation into the tested program to guide the search for bug-triggering
inputs. These three types of fuzzers can be combined. For instance, recent hybrid
fuzzers selectively utilize white-box fuzzers in parallel to stand-alone grey-box
fuzzers. Of the three types of fuzzers, grey-box fuzzers have empirically shown
promising cost-to-bug ratios, thanks to their low overhead techniques, and have
seen a flurry of improved strategies. For example, recent grey-box fuzzers have
c© Springer Nature Switzerland AG 2021
L. Bilge et al. (Eds.): DIMVA 2021, LNCS 12756, pp. 106–129, 2021.
https://doi.org/10.1007/978-3-030-80825-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80825-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-80825-9_6

Refined Grey-Box Fuzzing with Sivo 107

introduced many new strategies to prioritize seed selection, byte mutations, and
so on during fuzzing. Each of these strategies works well for certain target pro-
grams, while being relatively ineffective on others. There is no dominant strategy
that works better than all others on all programs presently.

In this paper, we present the design of a new grey-box fuzzer called Sivo that
generalizes well across many target programs. Sivo embraces the idea that there
is no one-size-fits-all strategy that works universally well for all programs. Cen-
tral to its design is a “parameterization-and-optimization” engine where many
specialized strategies and their optimization parameters can be specified. The
engine dynamically selects between the specified strategies and optimizes their
parameters on-the-fly for the given target program based on the observed cov-
erage. The idea of treating fuzzing as an optimization problem is not new—in
fact, many prior fuzzers employ optimization either implicitly or explicitly, but
they do so partially [4,22,30,35]. Sivo differs from these works conceptually in
that it treats parameterization as a first-class design principle—all of its inter-
nal strategies are parameterized. The selection of strategies and determination
of all parameter values is done dynamically. We empirically show the power of
embracing complete parameterization as a design principle in grey-box fuzzers.

Sivo introduces 3 additional novel refinements for grey-box fuzzers. First,
Sivo embodies a faster approximate taint inference engine which computes taint
(or sensitivity to inputs) for program branches during fuzzing, using number of
tests that are only logarithmic in the input size. Such taint information is helpful
for directed exploration in the program path space, since inputs influencing cer-
tain branches can be prioritized for mutation. Our proposed refinement improves
exponentially over a recent procedure to calculate taint (or data-flow dependen-
cies) during fuzzing [12]. Second, Sivo introduces a light-weight form of symbolic
interval reasoning which, unlike full-blown symbolic execution, does not invoke
any SMT/SAT solvers. Lastly, it eliminates deficiencies in the calculation of
edge coverage statistics used by common fuzzers (e.g. AFL [37]), thereby allow-
ing the optimization procedure to be more effective. We show that each of these
refinements improves the rate of coverage, both individually and collectively.

We evaluate Sivo on 27 diverse real-world benchmarks comprising several
used in recent work on fuzzing and in Google OSS-fuzz [15]. We compare Sivo
to 11 other state-of-the-art grey-box fuzzers. We find that Sivo outperforms all
fuzzers in terms of coverage on 25 out of the 27 benchmarks we tested. Our
fuzzer provides 20% increase in coverage compared to the next best fuzzer, and
180% increase compared to the baseline AFL. Furthermore, Sivo finds most
vulnerabilities among all fuzzers in 18 of the benchmarks, and in 11 benchmark
programs finds unique vulnerabilities. This provides evidence that Sivo gen-
eralizes well across multiple programs according to multiple metrics. We have
released our fuzzer publicly and open-source [25].

2 Problem

Fuzzers look for inputs that trigger bugs in target programs. As the distribution
of bugs in programs is unknown, fuzzers try to increase the chance of finding

108 I. Nikolić et al.

bugs by constructing inputs that lead to maximal program code execution. The
objective of fuzzers is thus to construct inputs, called seeds, that increase the
amount of executed program code, called code coverage. The coverage is mea-
sured based on the control-flow graph of the executed program, where nodes
correspond to basic blocks (sets of program statements) and edges exist between
sequential blocks. Some of the nodes are conditional (e.g. correspond to if and
switch statements) and have multiple outgoing edges. Coverage increases when
at some conditional node, called a branch, the control flow takes a new edge
which is not seen in previous tests—this is called inverting or flipping a branch.

Grey-box fuzzers assess code coverage by instrumenting the programs and
profiling coverage data during the execution of the program on the provided
inputs. They maintain a pool of seeds that increase coverage. A grey-box fuzzer
selects one seed from its pool, applies to it different operations called mutations
to produce a new seed, and then executes the program on the new seed. Those
new seeds that lead to previously unseen coverage are added to the pool. To
specify a grey-box fuzzer one needs to define its seed selection, the types of
mutations it uses, and the type of coverage it relies on. All these fuzzing com-
ponents, we call stages or subroutines of grey boxes. We consider a few research
questions related to different stages of fuzzing.

RQ1: Impact ofCompleteParameterization? Fuzzers optimize for coverage.
There is no single fuzzing strategy that is expected toworkwell across all programs.
So, the use of multiple strategies and optimization seems natural. Existing fuzzers
do use dynamic strategy selection and optimize the parameter value selection. For
example, MOpt [22], AFLFast [4], and EcoFuzz [35] use optimization techniques
for input seed selection and mutations. But, often such parameterization comes
with internal constants, which have been hand-tuned on certain programs, and it is
almost never applied universally in prior fuzzers. The first question we ask is what
would be the result of complete parameterization, i.e., if we encode all subroutines
and their built-in constants as optimization parameters.

The problem of increasing coverage is equivalent to the problem of invert-
ing more branches. In the initial stage of fuzzing, when the number of not yet
inverted branches is high, AFL mutation strategies (such as mutation of ran-
domly chosen bytes) are successful and often help to invert branches in bulk.
However, easily invertible branches soon become exhausted, and different strate-
gies are required to keep the branch inversion going. One way is to resort to tar-
geted inversion. In targeted inversion, the fuzzer chooses a branch and mutates
input bytes that influence it. The following two questions are about refining
target inversion in grey-box fuzzing.

RQ2: Efficient Taint Inference? Several fuzzers have shown that taint infor-
mation, which identifies input bytes that influence a given variable, is useful to
targeted branch inversion [2,6,8,12,26,34]. If we want to flip a particular branch,
the input bytes on which the branch condition variables depend should be
mutated while keeping the other bytes unchanged. The main challenge, however,
is to efficiently calculate the taint information. Classical methods for dynamic
taint-tracking incur significant instrumentation overheads whereas static meth-

Refined Grey-Box Fuzzing with Sivo 109

ods have false negatives, i.e. they miss dependencies due to imprecision. The
state-of-the-art fuzzers aim for light-weight techniques for dynamically inferring
taint during fuzzing itself. Prior works have proposed methods which require
number of tests linear in n, the size of the seed input [12]. This is extremely
inefficient for programs with large inputs. This leads to our second question:
Can we compute useful taint information but with exponentially fewer tests?

RQ3: Efficient Constraint-Based Reasoning? Taint only captures whether
a change in certain values of an input byte may lead to a change in the value
of a variable. If we are willing to compute more expressive symbolic constraints,
determining the specific input values which cause a program branch to flip is
possible. The challenge is that computing and solving expressive constraints, for
instance first-order SAT/SMT symbolic formulae, is computationally expensive.
In this work, we ask: Which symbolic constraints can be cheap to infer and solve
during grey-box fuzzing?

RQ4: Precise Coverage Measurement? Grey-box fuzzers use coverage infor-
mation as feedback to guide input generation. AFL, and almost all other fuzzers
building on it, use control-flow edge counts as a common metric. Since there
can be many control-flow edges in the program, space-efficient data structures
for storing runtime coverage data are important. Recent works have pointed out
AFL’s hash-based coverage map can result in collisions [13], which has an unpre-
dictable impact on the resulting optimization. How do we compute compressed
edge counts with high precision using standard compilers for instrumentation?

3 Overview of Sivo

Grey-box fuzzers instrument the target program to gather runtime profiling data,
which in turn guides their seed generation strategies. The objective of Sivo is
to generate seeds that increase code coverage by using better and more of the
profiling data. Sivo addresses the four research questions with four refinements.

Parametrize-Optimize Approach (RQ1). Sivo builds on the idea of com-
plete parameterization of all fuzzing subroutines and strategies, i.e. none of the
internal parameters are hard-coded. Sivo selects strategies and parameter val-
ues dynamically based on the observed coverage statistics, using a standard opti-
mization algorithm. Such complete parameterization and optimization inherently
makes Sivo adaptable to the target program and more general, since specialized
strategies that work best for the program are prioritized. To answer RQ1, we
empirically show in our evaluation that this design principle individually helps
Sivo outperform other evaluated fuzzers across multiple target programs.

Fast Approximate Taint Inference (RQ2). We devise a fast and approxi-
mate taint inference engine TaintFAST based on probabilistic group testing [10].
Instead of testing individually for each input byte, TaintFAST tests for carefully
chosen groups of bytes and then combines the results of all tests to infer the
taint for each individual byte. This helps to reduce the test complexity of taint

110 I. Nikolić et al.

inference from O(n) to O(log n) executions of the program, where n is the num-
ber of input bytes. Thus the fuzzer can infer useful taint dependency even for
very large inputs using TaintFAST.

Symbolic Interval Constraints (RQ3). We propose inferring symbolic inter-
val constraints that capture the relationship between inputs and variables used
in branch conditions only. Instead of deductively analyzing the semantics of exe-
cuted instructions, we take an optimistic approach and infer these constraints
from the observed values of the inputs and branch conditional variables. The
value-based inference is computationally cheap and tailored for a common case
where values of the variables are direct copies of the inputs and when branches
have comparison operations (=, �=, <,≤, >,≥). We show that such a constraint
system can be solved efficiently as well without the use of SAT/SMT solvers.

Compressed and Precise Edge Count Recording (RQ4). We tackle both
the collision problem and the compressed edge count problem in tracking cover-
age efficiently during grey-box fuzzing. For the former, we show a simple strategy
based on using multiple basic block labels (rather than only one as in AFL) and
reduce or entirely eliminate the collisions. For the later, to improve the prospect
of storing important edge counts we propose temporary coverage flushing (i.e.
resetting the coverage to zero). Although this may appear to be a minor refine-
ment in grey-box fuzzing, we find that it has a noticeable impact experimentally.

4 Design

We present the details of our four refinements in Sects. 4.1–4.4 and then show
the complete design of Sivo in Sect. 4.5.

4.1 The Parametrize-Optimize Paradigm

The Sivo grey-box fuzzer aims to increase the code coverage in the fuzzed pro-
grams. Two points are central to this goal. First, fuzzed programs come in different
flavors, hence the fuzzer should be flexible and adaptive. We tackle the first point
with parametrization, i.e. by expanding the choice of available fuzzer subroutines.
Second, a fuzzer has a few stages (i.e., selection of seeds, choice of mutations and
their parameters, etc.), and each one of them can be optimized. To address this
point, we apply a complete optimization of all available parameters.

Parametrization. The more fuzzing subroutines are available, the higher the
chance that some of them may be optimal for fuzzing the targeted program.
Thus it is useful to expand the set of available fuzzing subroutines. To do so, we:

– Add many fuzzing subroutines. For instance, in addition to the AFL-style
vanilla mutations that do not require any dependency information (e.g.
mutate random bytes), we implement data-flow strategies that utilize input
dependency of program branches (e.g., mutation of dependent bytes). Besides
adding new mutations, we also add more seed prioritization methods that
determine how to sample a seed from the pool.

Refined Grey-Box Fuzzing with Sivo 111

– Introduce variations in each subroutines. Often this can be done by varying
internal hard-coded parameters in subroutines. For instance, in the mutation
of random bytes, instead of changing a single byte, Sivo can change 1, 2,
4, 8, 16, 32, or 64 bytes at once. The exact number of bytes is considered
an input parameter; it can take one of the above 7 values (and the choice
of value potentially can be optimized). Not all variations in subroutines are
effected with changing integer parameters. For instance, the seed selection
criterion is based on speed, number of repetitions, length of seed, and so on.
These variations are enumerated and serve as an input parameter to the seed
criterion. All such parameters to subroutines are optimized per program.

As a result, across the whole fuzzer, there are 17 different fuzzing subroutines
with 68 variations. In comparison, the baseline AFL has around 15 different
subroutines with around 45 variations1.

Optimization. The parametrization increases the chance that potentially opti-
mal subroutines are chosen for each program. The next step is to select which
subroutines are turned on for a given program. It is critical to understand that
we are not dealing with a single optimization problem. Fuzzing is a continuous
process, composed of iterations that select a seed and a mutation, apply the
mutation to the seed, and check on coverage increase. Thus, in each iteration we
need to optimize the selection of fuzzing subroutines several times—for example,
the used seed criterion and class, the mutation strategy, (potentially a number
of) mutations sub-strategies, the inputs to the mutation strategy, and so on. For
this purpose, we use multi armed bandits (MAB), a simple reinforcement learn-
ing algorithm. Given a set of choices, each choice providing a certain reward
when selected, MAB helps to select the choices such that their accumulative
rewards are maximized. The rewards are unknown and stochastic, and the selec-
tion process is continuous. Note, after MAB selects a choice, it needs to receive
as a feedback the obtained reward to update its choice selection strategy.

Reducing the selection of fuzzing subroutines to MAB problem is straight-
forward. First, note that we consider each selection as an independent MAB
problem, for instance, the optimal number of random bytes to mutate is one
MAB problem. Our objective is to maximize the coverage, hence it is natural
to use the additional coverage acquired from executing the choice as the MAB
reward. However, this metric alone may not be accurate because some choices
incur higher computational costs. Therefore, we use the additional coverage per
time unit as the reward. In the conventional MAB, the distributions of rewards
are stationary with some unknown mean. In our case, as the fuzzer progresses, it
requires more computational effort to reach the remaining unexplored code and
increase coverage. In other words, the rewards for the selection choices mono-
tonically decrease over time. Therefore, we model our problem as MAB with
non-stationary rewards and use discounting to solve it [19]. For more details on
application of MAB in Sivo, we refer the reader to Algorithm 1 and Sect. 4.5.
1 Despite having comparable numbers, Sivo and AFL use mostly different mutations

and thus subroutines.

112 I. Nikolić et al.

4.2 Fast Approximate Taint Inference

Fig. 1. Branches with dependent
input bytes.

To infer dependency of branches on input
bytes, earlier fuzzers relied on the truth value
of branch conditions: if changing the value of
a particular byte changes the truth value of
a branch, then it is inferred that the branch
depends on this byte. For instance, in Fig. 1, to
correctly infer the dependency of the branch
at line 6, the engine first needs to select for
mutation the input byte x[100] and then to
change its value from any other than 40 to
40. GreyOne [12] proposed so-called fuzzing-
driven taint inference FTI by switching the
focus from the truth value of a branch to the value of the variables used in
the branch. For instance, FTI determines the dependency of branch at line 6
on x[100] as soon as this input bytes is mutated, because this will lead to a
change of the value of the variable A that is used in the branch. FTI is sound
(no over-taint) and incomplete (some under-taint). Exact reasoning with prov-
able soundness or completeness is not a direct concern in fuzzers, since they only
use it to generate tests which are concretely run to exhibit bugs.

The prime issue with FTI, which improves significantly over many other prior
data-flow based engines, is efficiency. The taint is inferred by mutating bytes one-
by-one in FTI. Thus, to infer the full dependency on all input bytes, the engine
will require as many executions as the number of bytes. A seed may have tens
of KBs, and there may be thousands of seeds, therefore the full inference may
quickly become a major bottleneck in the fuzzer. On the other hand, precise
or improved branch dependency may not significantly boost fuzzer bug-finding
performance, thus long inference time may be unjustified. Hence, it is critical to
reduce the inference time.

The TaintFAST Engine. We use probabilistic group testing [10] to reduce
the required number of test executions for potential full inference from O(n) to
O(log n), where n is the number of input bytes. Instead of mutating each byte
individually followed by program execution (and subsequent FTI check for each
branch condition if any of its variables has changed), we simultaneously mutate
multiple bytes, and then execute the program with the FTI check. We choose
the mutation positions non-adaptively, according only to the value of n. This
assures that dependency for many branches can be processed simultaneously.

Consider the code fragment at Fig. 1 (here n = 1024). We begin the inference
by constructing 1024-bit binary vectors Vi, where each bit corresponds to one
of the input bytes. A bit at position j is set iff the input byte j is mutated (i.e.
assigned a value other than the value that has in the seed). Once Vi is built,
we execute the program on the new input (that corresponds to Vi) and for each
branch check if any of its variables changed value (in comparison to the values
produced during the execution of the original seed). If so, we can conclude that
the branch depends on some of the mutated bytes determined by Vi. Note, in all

Refined Grey-Box Fuzzing with Sivo 113

prior works, the vectors Vi had a single set bit (only one mutated byte). As such,
the inference is immediate, but slow. On the other hand, we use vectors with
1024
2 = 512 set bits and select 2 · log2 1024 = 20 such vectors. Vectors V2·j , V2·j+1

have repeatedly 2j set bits, followed by 2j unset bits, but with different starts. For
instances, the partial values of the first 5 vectors Vi are given below on the right.

V0 = 1010101010101010101010...
V1 = 0101010101010101010101...
V2 = 1100110011001100110011...
V3 = 0011001100110011001100...
V4 = 1111000011110000111100...

...

We execute the resulting 20 inputs and
for each branch build 20-bit binary vec-
tor Y . The bit i in Y is set if any of
the branch values changed after execut-
ing the input that corresponds to Vi. For
instance, for the branch at line 6 of Fig. 1,
Y = 10100110100101101010. Finally, we
decode Y to infer the dependency. To do so, we initialize 1024-bit vector D that
will hold the dependency of the branch on input bytes—bit i is set if the branch
depends on the input byte i. We set all bits of D, i.e. we start by guessing full
dependency on all inputs. Then we remove the wrong guesses according to Y .
For each unset bit j in Y (i.e. the branch value did not change when we mutated
bytes Vj), we unset all bits in D that are set in Vj (i.e. the branch does not
depend on any of the mutated bytes Vj).

After processing all unset bits of Y , the vector D will have set bits that cor-
respond to potential dependent input bytes. Theoretically, there may be under
and over-taint, according to the following information-theoretic argument: Y has
20 bits of entropy and thus it can encode at most 220 dependencies, whereas a
branch may depend on any of the 1024 input bytes and thus it can have 21024 dif-
ferent dependencies. In practice, however, it is reasonable to assume that most of
the branches depend only on a few input bytes2, and in such a case the inference
is more accurate. For branches that depend on a single byte, the correctness of
the inference follows immediately from group testing theory3. For instance, the
branch at line 6 of Fig. 1 will have correctly inferred dependency only on byte
x[100]. For branches that depend on a few bytes, we can reduce (or entirely
prevent) over-taint by repeating the original procedure while permuting the vec-
tors Vi. In such a case, each repeated inference will suggest different candidates,
except the truly dependent bytes that will be suggested by all procedures. These
input bytes then can be detected by taking intersection of all the suggested
candidates. For instance, for the branch at line 8 (that actually depends on 8
bytes), a single execution of the procedure will return 16 byte candidates. By
repeating once the procedure with randomly permuted positions of Vi, with high
probability only the 8 actual candidates will remain.

The above inference procedure makes the implicit assumption that same
branches are observed across different executions. Otherwise, if a branch is not

2 C-type branches that contain multiple variables connected with AND/OR state-
ments, during compilation are split into subsequent independent branches. Our infer-
ence is applied at assembly level, thus most of the branches depend only on a few
variables.

3 The matrix with rows V0, V1, . . . is 1-disjunct and thus it can detect 1 dependency.

114 I. Nikolić et al.

observed during some of the executions, then the corresponding bit in Y will
be undefined, thus no dependency information about the branch will be inferred
from that execution. For some branches the assumption always holds (e.g. for
branches at lines 6,8 in Fig. 1). For other branches, the assumption holds only
with some probability that depends on their branch conditions. For instance, the
branch at line 12 may not be seen if the branch at line 10 is inverted, thus any of
the 20 bits of Y may be undefined with a probability of 200

232 . In general, for any
branch that lies below some preceding branches, the probability that bits in Y
will be defined is equivalent to the probability that none of the above branches
will inverted by the mutations4. As a rule of thumb, the deeper the branch
and the easier to invert the preceding branches are, the harder will be to infer
the correct dependency. To infer deeper branches, we introduce a modification
based on forced execution. We instrument the code so the executions at each
branch will take a predefined control-flow edge, rather than decide on the edge
according to the value of the branch condition. This guarantees that the target
branches seen during the execution of the original seed file (used as a baseline
for mutation), will be seen at executions of all subsequent inputs produced by
mutating the original seed. We perform forced execution dynamically, with the
same statically instrumented program, working in two modes. In the first mode,
the program is executed normally, and a trace of all branches and their condition
values is stored. In the second mode, during execution as the branches emerge,
their condition values are changed to the stored values, thus the execution takes
the same trace as before. No other variables aside from the condition values
are changed. Note that our procedure aims to infer taint dependencies fast and
optimistically; we refer readers to Sect. 4.6 for a discussion on these aspects.

4.3 Solving System of Intervals

It was noted in RedQueen [2], that when branches depend trivially on input
bytes (so-called direct copies of bytes) and the branch condition is in the form of
equality (either = or �=), then such branches can be solved trivially. For instance,
the branch at line 1 of Fig. 2, depends trivially on the byte x[0] and its condition
can be satisfied by assigning x[0] = 5 (or inverted by assigning x[0] �= 5).

Fig. 2. Branches and systems
of intervals.

Thus it is easy to satisfy or invert such
branches, as long as the dependency is correctly
inferred and the branch condition is equality. Sim-
ilar reasoning, however, can be applied when the
condition is in the form of inequality over inte-
gers. Consider the branch at line 3 of Fig. 2, that
depends trivially on the input byte x[1]. From the
type of inequality (which can be obtained from
the instruction code of the branch), and the cor-
rect dependency on the input byte x[1] and the

4 This holds even in the case of FTI. However, the probabilities there are higher
because there is a single mutated byte.

Refined Grey-Box Fuzzing with Sivo 115

constant 100, we can deduce the branch form x[1] < 100, and then either satisfy
it resulting in x[1] ∈ [0, 99], or invert it, resulting in x[1] ∈ [100, 255]. In short,
we can represent the solution in the form of integer intervals for that particular
input byte.

Often to satisfy/invert a branch we need to take into account not one, but
several conditions that correspond to some of the branches that have common
variables with the target branch. For instance, to satisfy the branch at line 7,
we have two inequalities and thus two intervals: x[2] ∈ [0, 200] corresponding to
target branch at line 7 and x[2] ∈ [11, 255] corresponding to branch at line 5.
Both share the same input variable x[2] with the target branch. A solution
(x[2] ∈ [11, 200]) exists because the intersection of the intervals is not empty.

In general, Sivo builds a system of such constraints starting from the target
branch, by adding gradually preceding branches that have common input vari-
ables with the target branch. Each branch (in)equality is solved independently
immediately, resulting in one or two intervals (two intervals only when solving
x �= value, i.e. x ∈ [0, value−1]∪ [value+1,maxvalue]), and then intersection is
found with the previous set of intervals corresponding to those particular input
bytes. Keeping intervals sorted assures that the intersection will be found fast.
Also, each individual intersection can increase the number of intervals at most
by 4. Thus the whole procedure is linear in the number of branches along the
executed path. As a result, we can efficiently solve these type of constraints and,
thus, satisfy or invert branches that depend trivially on input bytes.

Even when some of the preceding branches do not depend trivially on input
bytes, solving the constraints for the remaining branches gives an advantage
in inverting the target branch. In such a case, we repeatedly sample solutions
from the solved constraints and expect that the non-inverted branch constraints
will be satisfied by chance. As sampling from the system requires constant time
(after solving it), the complexity of branch inversion is reduced only to that of
satisfying non-trivially dependent branches. For instance, to reach line 10, we
first solve the lines 5, 7 to obtain x[2] ∈ [11, 200], and then keep sampling x[2]
from this interval and hope to satisfy the branch at line 9 by chance.

4.4 More Accurate Coverage

AFL uses a simple and an elegant method to record the edges and their counts by
using an array showmap. First, it instruments all basic blocks Bi of a program by
assigning them a unique random label Li. Then, during the execution of the pro-
gramona seed, as any twoadjacent basic blocksBj , Bk are processed, it computes a
hash of the edge (Bj , Bk) asE = (Lj � 1)⊕Lk and performs showmap[E]++. New
coverage is observed if the value 	log2 showmap[E]
 of a non-zero entry showmap[E]
has not been seen before. If so, AFL updates its coverage information to include
the new value, which we will refer to as the logarithmic count.

Prevent Colliding Edge Hashes. CollAFL [13] points out that when the
number of edges is high, their hashes will start to collide due to birthday paradox,
and showmap will not be able to signal all distinct edges. Therefore, a fuzzer will

116 I. Nikolić et al.

fail to detect some of the coverage. We propose a simple solution to the collision
problem. Instead of assigning only one label Li to each basic block Bi, we assign
several labels L1

i , . . . , L
m
i , but use only one of them during an execution. The

index of the used label is switched occasionally for all blocks simultaneously. The
switch assures that with a high chance, each edge will not collide with any other
edge at least for some of the indices. The number of labels required to guarantee
that all edges will be unique with a high chance at some switch depends on the
number of edges. Due to space restrictions we omit the combinatorial analysis.
In our actual implementation the size of the showmap is 216 and we use m = 4
labels per basic block – on average this allows around 8,000 edges to be mapped
uniquely (and even 20,000 with less than 100 collisions), which is sufficiently high
quantity for most of the programs considered in our experiments. By default,
the index is switched once every 20 min.
Improve Compressed Edge Counts. The logarithmic count helps to reduce
storing all possible edge counts, but it may also implicitly hinder achieving better
coverage. This is because certain important count statistics that have the same
logarithmic count as previously observed during fuzzing might be discarded.

Fig. 3. The effects of AFL’s edge count
compression.

For instance, if the for loop in Fig. 3
gets executed 13 times, then AFL will
detect this as a new logarithmic count of
	log2 13
 = 3, it will update the coverage,
save the seed in the pool, and later when
processing this seed, the code block F1()
will be executed as soon as the condition
C1 holds. On the other hand, afterwards
if the for loop gets executed 14 times, then
the same logarithmic count 	log2 14
 = 3
is achieved, thus the new seed will not be stored, therefore the chance of exe-
cuting the code block F2() is much lower. In other words, to reach F2(), simul-
taneously the for loop needs to be executed 14 times and C2 condition needs
to hold. Hence, F1() and F2() cannot be reached with the same ease despite
having similar conditional dependency, only because of AFL’s logarithmic count
mechanism.

To avoid this issue, we propose flushing the coverage information periodically.
More precisely, periodically we store the current coverage information, then reset
it to zero, and during some time generate new coverage from scratch. After
exhausting the time budget on new coverage, we keep only the seeds that increase
the stored coverage, and continue the fuzzing with the accumulated coverage.

4.5 Design of the Whole Fuzzer Sivo

Sivo implements all the refinements mentioned so far. It uses the standard grey-
box approach of processing seeds iteratively. In each iteration, it selects a seed,
mutates it to obtain new seeds, and stores those that increase coverage.

Refined Grey-Box Fuzzing with Sivo 117

Algorithm 1: OneIterationSivo (Seeds, Coverage)
use class ← MAB select(Seed class) // choose seed class with MAB
use crit ← MAB select(Seed criterion) // choose seed criterion
seed ← Sample(use class , use crit, Seeds) // sample seed from the pool
use strategy ← MAB select(Fuzzer strategy) // choose Data-flow or Vanilla
if use strategy == Data-flow then

Taint inference(seed) // if Data-flow then infer dependency

tot cov incr ← 0
while time budget left do

use mut ← MAB select(strategy) // choose one mutation
use mut params ← MAB select(use mut) // choose its params
new seed ← Mutate(seed, use mut, use mut params) // apply mutation
new coverage ← ProduceCoverage(new seed)
cov increase ← ‖ new coverage \ Coverage ‖ // new coverage?
if cov increase > 0 then

Seeds ← Seeds
⋃

new seed // add new seed to the pool
Coverage ← Coverage

⋃
new coverage // update coverage

// feedback cov/sec to MAB to update the effectiveness of the chosen
mutation and its params
MAB update([use mut , use mut params], cov increase, while time)
tot cov incr += cov increase

// feedback total cov/sec to MAB to update the effectiveness of the chosen
seed class/criterion and fuzzing strategy
MAB update([use class,use crit,use strategy] , tot cov incr , iter time)

In Sivo (refer to the pseudo-code in Algorithm 1), the seed selection is opti-
mized: first with MAB the currently best class and best criterion are selected, and
then a seed is sampled from the pool according to the chosen class and criterion.
Afterwards, the fuzzer with the help of MAB decides on the currently optimal
fuzzing strategy, either vanilla (apply mutations that do not require dependency
information) or data-flow (require dependency). If latter, Sivo first infers the
dependency (as a combination of FTI and TaintFAST). Then, according to the
chosen fuzzing strategy the fuzzer again uses MAB to select one optimal muta-
tion strategy. The vanilla fuzzing strategy allows a choice of 3 different mutations:
1) mutation of random bytes, 2) copy/remove of byte sequence of current seed,
and 3) concatenation of different seeds. On the other hand, data-flow fuzzing
strategy consists of 5 mutations: 1) mutation of dependent bytes, 2) branch
inversion with system solver, 3) branch inversion by minimizing objective func-
tion, 4) branch inversion by mutation of their dependent bytes, and 5) reusing
previously found bytes from other seeds to current seed. Most mutations have
sub-versions or parameters which are also chosen with MAB. For instance, muta-
tion of random bytes supports two versions: it can use heuristics to determine
the positions of the bytes (choice 1), or use random byte positions (choice 2). If
choice 1, then it needs to select the number of mutated bytes (1, 2, 4, 8, 16, 32,
or 64). Both of these selections are determined with MAB. Each mutation is
applied to the chosen seed to obtain a new seed, and then the seed is executed.

118 I. Nikolić et al.

Algorithm 2: Sivo
Seeds ← Initial seeds
Coverage ← ProduceCoverage(Seeds)
while true do

OneIterationSivo (Seeds, Coverage);
if time to switch index then

SwitchIndexInCoverage()
Coverage ← ProduceCoverage(Seeds)

if time to start flush then
Old coverage, Old seeds ← Coverage, Seeds
Seeds ← Initial seeds
Coverage ← ProduceCoverage(Seeds)

if time to stop flush then
New coverage ← Coverage \ Old coverage
Coverage ← Coverage

⋃
Old covarege

Seeds ← Old seeds
⋃

GetSeedsThatProduceCov(Seeds, New coverage)

The coverage update information is fed back to the MAB, thus assuring that
MAB can further optimize the selections.

Sivo runs the iterations and occasionally executes the code coverage refine-
ments – refer to Algorithm 2. We implement the whole fuzzer from scratch in
C++ with around 20,000 lines of code [25].

4.6 Limitations of Sivo

The taint engine TaintFAST relies on forced execution, which by definition is
not sound, thus the inference is approximate. It means, the engine may intro-
duce false positives/negatives, i.e. it may suggest dependencies of branches on
incorrect input bytes. This, however, is not a real concern in fuzzing because
later it leads solely to mutating incorrect input bytes, hence potentially it has
only impact on efficiency5, and does not affect the correctness of the fuzzer in
any other way. The accuracy of the engine varies between programs. In certain
cases (of particular traces), the forced execution crashes the program, and thus
the inference has lower accuracy (because the corresponding Y bit is undefined).
In our actual implementation of TaintFAST, we prevent some of the crashes by
detecting with binary search sequences of input bytes that lead to crashes, and
later eliminate them from consideration.

The refinement based on system of intervals is neither sound nor complete.
Problems may appear due to incorrect inference of the intervals as well as due
to the fact that the system describes only a partial dependency of the target
branch on input bytes, i.e. includes only branches that can be presented in the
form of integer intervals. Therefore, one may not assume that all of the branches
can be properly inverted using this refinement.
5 The impact can be reduced with various methods, e.g., the MAB-based optimization

presented in this paper.

Refined Grey-Box Fuzzing with Sivo 119

The remaining two refinements do not have apparent limitations, aside from
affecting the efficiency in some cases.

5 Evaluation

We show that Sivo performs well on multiple benchmarks according to the stan-
dard fuzzing metrics such as code coverage (Sect. 5.2) and found vulnerabilities
(Sect. 5.3). We evaluate the performance of each refinement in Sect. 5.4.

5.1 Experimental Setup

Experiment Environment. For all experiments we use the same box with
Ubuntu Desktop 16.04, two Intel Xeon E5-2680v2 CPUs @2.80 GHz with 40
cores, 64 GB DDR3 RAM @1866 MHz and SSD storage. All fuzzers are tested
on the same programs, provided with only one initial seed, randomly selected
from samples available on the internet. To keep experiments computationally
reasonable, while still providing a fair comparison of all considered fuzzers, we
performed a two-round tournament-like assessment. In the first round, all fuzzers
had been appraised over the course of 12 h. This interval is chosen based on
Google’s FuzzBench periodical reports, which shows that 12 h is sufficient to
decide the ranking of the fuzzers usually [15]. The top 3 fuzzers from the first
round that perform the best on average over all evaluated programs progress to
the second round, in which they are run for 48 h.

Baseline Fuzzers. We evaluate Sivo in relation to 11 notable grey-box fuzzers.
In addition to AFL [37], we take the extended and improved AFL family:
AFLFast [4], FairFuzz [20], LAF-Intel [1], MOpt [22] and EcoFuzz [35]. More-
over, we include Angora [6] for its unique mutation techniques, Ankou [23] for its
fitness function, and a few fuzzers that perform well on Google’s OSS-Fuzz [15]
platform such as Honggfuzz [32], AFL++ and AFL++ mmopt [11] (version
2.67c). To prevent unfair comparison, we omit from our experiments two cate-
gories of fuzzers. First, we exclude popular grey-box fuzzers that do not have
an officially available implementation, such as CollAFL [13] and GreyOne [12].
We did not implement these fuzzers from scratch due to the complexity of such
a task (e.g. the authors of GreyOne report 20K LoC implementation). Second,
we exclude hybrid fuzzers because their approach is basically orthogonal to tra-
ditional grey-box fuzzers and thus they can be combined. For instance, the well-
known hybrid fuzzer QSYM [36] inverts branches with symbolic execution and
is built on top of AFL. With minor modification, QSYM could be built on top of
Sivo instead of AFL, and this hybrid may lead to an even better performance.

Programs. Our choice of programs was influenced by multiple factors, such as
implementation robustness, diversity of functionality, and previous analysis in
other works. Our main goal of the evaluation is comparison of fuzzers according to
a few criteria (including discovery of bugs), thus we use versions of programs that
have already been tested in prior fuzzer evaluations on similar criteria. Due to lim-
ited resources, we did not run the fuzzers on the latest versions to look for actual

120 I. Nikolić et al.

CVEs. Our final selection consists of 27 programs including: binutils (e.g.: read-
elf, nm), parsers and parser generators (e.g.: bson to json@libbson, bison), a wide
variety of analysis tools (e.g.: tcpdump, exiv2, cflow, sndfile-info@libsndfile), image
processors (e.g.: img2txt), assemblers and compilers (e.g.: nasm, tic@libncurses),
compression tools (e.g.: djpeg, bsdtar), the LAVA-M dataset [9], etc. A complete
list of the programs and their version under test is given in Table 1.

Efficiency Metrics. We use two metrics to compare the efficiency of fuzzers:
edge coverage and the number of found vulnerabilities. To determine the cover-
age, we use the logarithmic edge count because this number is the objective in
the fuzzing routines of the AFL family of fuzzers (simple count of unique edges
leads to similar results which we omit due to space restrictions). To measure the
total number of distinct vulnerabilities found by each fuzzer, first we confirm
the reported vulnerabilities, i.e. we take all seeds generated by a fuzzer and keep
those that trigger a crash by any of the sanitizers ASAN [28], UBSAN [27] and
Valgrind [24]. Then, for each kept seed, we record the program source line where
the crash triggers and count each such distinct source line as a vulnerability.

5.2 Coverage

We run all 12 fuzzers for 12 h each, and record the coverage discovered during
the fuzzing. The results are reported in Fig. 4. We can see that at the end,
Sivo provides the best coverage for 25 out of the 27 programs. On average
Sivo produces 11.8% higher coverage than the next best fuzzer when analyzed
individually for each program. In direct comparison to fuzzers, Sivo outperforms
the next best fuzzer MOpt by 20.2%, and EcoFuzz by 30.6%, and outperforms the
baseline AFL by producing 180% increase in coverage. For most of the programs,
our fuzzer very soon establishes as the top fuzzer. In fact, the time frame needed
to create advantage is so short, that the improved coverage refinement of Sect. 4.4
has still not kicked in, whereas the MAB optimization of Sect. 4.1 had barely any
time to feed enough data back to the MABs. Thus, arguably the early advantage
of Sivo is achieved due to the parametrize paradigm, as well as the remaining
two refinements (TaintFAST and the system solver method).

We test the top three fuzzers Sivo, MOpt, and EcoFuzz on 48-h runs and
report the obtained coverage in Fig. 5. We see that Sivo is the top fuzzer for 24
of the programs, with 13.4% coverage increase on average with respect to the
next best fuzzer for each program, and 15.7%, and 28.1% with respect to MOpt
and EcoFuzz. In comparison to the 12-h runs, the other two fuzzers managed
to reduce slightly the coverage gap, but this is expected (given sufficient time
all fuzzers will converge). However, the gap is still significant and Sivo provides
consistently better coverage.

5.3 Vulnerabilities

We summarize the number of vulnerabilities found by each fuzzer on 25 programs
during the 12-h runs in Table 1. (We removed two programs from Table 1, as none

Refined Grey-Box Fuzzing with Sivo 121

Fig. 4. Coverage for all fuzzers during
12 h of fuzzing (in 5 min increments).

Fig. 5. Coverage for top three fuzzers
Sivo, MOpt, EcoFuzz during 48 h of
fuzzing.

of the fuzzers finds vulnerabilities for them.) Out of 25 evaluated programs, Sivo
is able to find the maximal number of vulnerabilities in 18 programs (72%). For
comparison, the next best fuzzer MOpt holds top positions in 11 programs (44%)
in terms of vulnerability discovery. This indicates that Sivo is significantly more
efficient at finding vulnerabilities than the remaining candidate fuzzers. However,
Sivo achieves less top positions in discovery of vulnerabilities compared to code
coverage, but this is not unusual as the objective of our fuzzer is code coverage,
and the correlation between produced coverage and found vulnerabilities is not
necessarily strong [17,18].

122 I. Nikolić et al.

Table 1. The number of found vulnerabilities. The number of unique vulnerabilities
(when non-zero) are reported after “/”. “-” indicates failure to instrument/run the
program. “#Vuln.” and “#Vuln. uniq” give the number of all vulnerabilities and the
number of unique vulnerabilities, respectively. “#Top vuln.” shows the number of pro-
grams for which the fuzzer finds the maximal number of vulnerabilities. “#Prog. uniq”
shows the number of programs for which the fuzzer finds some unique vulnerabilities.

Application Version Fuzzer

AFL AFL++ AFL++ mmopt AFLFast FairFuzz LAF-Intel MOpt EcoFuzz Honggfuzz Angora Ankou Sivo

base64 LAVA-M 2 2 2 2 2 2 2 2 2 2 1 2

bison 3.0.5 3 3 3 3 4/1 3 4/1 2 2 1 3 2

bson to json 1.8 2 1 1 1 2 2 2 1 1 2 1 2

cflow 1.5 2 1 1 2 2 1 5 3 2 1 3 6/1

exiv2 0.27.3 6 5 6 5 6 6 11/3 0 - - 8 8

Fig. 2dev 3.2.7a 29/1 24 29 26 30/1 22 35 30/2 43/4 1 40 59/7

ftpconf 3.2.2 2 2 2 2 2 2 2 2 2 2 2 2

img2sixel 1.8.2 1 1 1 1 1 0 16/1 12/1 15/3 - 7 22/6

img2txt 0.99beta19 2 2 2 0 4 2 8/2 5/1 3 - 7/3 10/5

md5sum LAVA-M 1 1 1 1 2/1 1 1 1 1 1 1 1

nasm 2.14rc15 4 4 5 4 8 4 10 8 2 5/1 9 13/1

nm 2.31 4 3 3 4 4 4 6/1 5 3 0 4 6/1

readelf 2.31 1 1 1 1 1 1 1 1 1 2/1 1 1

sassc 3.5 1 1 1 1 2 1 2 2 1 - 1 5/3

slaxproc 0.22.0 4 3 3 3 3 3 4 3 3 - 6/2 5/1

sndfile-info 1.0.28 0 0 0 0 3 0 8/2 6 13/6 - 1 7

tcpdump 4.10.0rc1 0 0 0 0 0 0 3 1 1 - 1 7/3

testsolv 0.7.2 6 6 6 6 6 6 7 8/1 14/8 - 6 9/2

tic 6.1 2 1 2 1 2 2 3 2 2 - 0 3

tiff2pdf 4.0.9 2 2 1 2 1 2 4 3 1 0 3 4

tiffset 4.0.9 1 1 1 1 1 1 1 1 1 0 1 1

uniq LAVA-M 1 1 1 1 1 1 2 3 7 1 2 7

webm2pes 1.0.0.27 1 1 1 1 1 1 2 2 1 - 1 3/1

who LAVA-M 1 1 1 1 1 1 7 3 6 0 3 7

wpd2html 0.10.1 0 0 0 0 0 0 1/1 1 0 - 1 1

#Vuln. 78 67 74 69 89 68 147 107 127 18 113 193

#Top vuln. 4 3 3 3 6 4 11 4 6 4 4 18

#Vuln. uniq 1 0 0 0 3 0 11 5 21 2 5 31

#Prog. uniq 1 0 0 0 3 0 7 4 4 2 2 11

We also measure and report in Table 1 the number of vulnerabilities unique
to each fuzzer, i.e. bugs that are found only by one fuzzer, and not by any other.
This metric signals distinctiveness of each fuzzer—the greater the number of
unique vulnerabilities, the more distinct the fuzzer is on vulnerability detection.
Out of 25 programs, Sivo discovers at least one unique vulnerability in 11 pro-
grams. In total, Sivo finds 31 unique vulnerabilities, while the next best fuzzer
is Honggfuzz [32] with 21 vulnerabilities.

5.4 Performance of Refinements

We evaluate the four refinements individually, in terms of their impact and
necessity. To assess the impact of a refinement, i.e. to estimate how much it
helps to advance the fuzzer, we compare the performance of the baseline version
of Sivo (where all four refinements have been removed) to the baseline version
with the one refinement added on. On the other hand, to assess the necessity
of a refinement, i.e. to estimate how irreplaceable in comparison to the other
three refinements it is, we compare the full version of Sivo to the version with a

Refined Grey-Box Fuzzing with Sivo 123

single refinement removed. We note that all refinements aside for the Parametrize-
Optimize strategy, can be assessed reasonably well because it is easy to switch
them on or off in the fuzzer. The same holds for Optimize, but not for Parametrize.
As Sivo is built from scratch with many new fuzzing subroutines that are not
necessarily present in AFL, it is not clear which fuzzing subroutines and which
of their variations need to be removed in the baseline. Therefore, we only assess
Optimize, and consider Parametrize to be part of the baseline.

We fuzz the 25 programs (on which Sivo outperformed all other 11 fuzzers)
for 12 h, and compare the found coverage to the coverage produced by the com-
plete version of Sivo. In Table 2, we provide the comparisons (as a percentage
drop of the coverage) of the versions. We also give the data about the per-
formance of the best non-Sivo fuzzer for each program (see the column Best
NoneSivo). In the last row of the table we summarize the number of programs
on which the considered version of the fuzzer is able to out-perform all of the
remaining 11 none-Sivo fuzzers (for reference, for Sivo this number is 25).

A few observations are evident from the Table 2:

Table 2. Percentage drop in coverage of fuzzers in comparison to Sivo. When no drop
occurs, the cells are empty.

Application Fuzzer

Best NoneSivo SivoBase SivoBase+Opt SivoBase+FI SivoBase+SI SivoBase+AC Sivo-Opt Sivo-FI Sivo-SI Sivo-AC

base64 9.1 7.2 2.4 7.2 4.7 7.2 3.3 3.3 8.4 1.7

bison 23.9 23.1 23.1 23.1 23.1 33.4 4.9

bsdtar 4.1 0.4 0.4 0.4

bson to json 0.8 18.9 3.0 18.9 16.1 18.9 17.1 4.6 2.9

cflow 9.5 10.9 4.6 10.9 10.9 10.9 13.4 3.8 5.0

djpeg 11.9 23.9 23.9 23.9 23.9 21.2 33.7 15.4 22.0

fig2dev 15.9 13.3 13.3 13.3 13.3 23.0 1.8 6.1

ftpconf 3.5 10.5 0.6 9.8 9.9 10.5 12.3 1.4

img2sixel 24.7 21.9 8.0 21.5 15.9 21.9 19.9 3.8 7.7 0.6

img2txt 9.8 9.3 9.3 9.3 9.3 8.9 8.6 8.9 7.9 10.3

md5sum 2.9 14.8 14.2 14.8 0.6 6.4 4.6 12.3

nasm 20.3 27.7 0.5 27.7 27.0 27.7 39.8 3.7 0.6

nm 33.6 11.8 11.8 11.8 6.6 11.8 15.9 43.6 27.4 18.8

readelf 22.0 15.2 7.7 5.0 7.1 7.8 1.9 0.1

sassc 10.9 25.4 25.4 21.5 23.5 34.6

slaxproc 3.3 34.9 31.1 28.0 30.3 38.5 1.9

sndfile-info 16.2 17.2 10.8 17.2 11.7 17.2 6.6 18.6 1.7

testsolv 9.4 43.0 33.1 42.3 10.9 24.6 33.3 34.3 37.2 10.6

tic 6.0 16.9 16.9 16.7 13.7 19.7 0.1

tiff2pdf 10.5 2.4 2.4 2.4 2.0 0.3 3.7

tiffset 4.4 8.9 7.8 8.9 8.9 0.3

uniq 7.8 16.4 0.4 16.4 3.1 16.4 0.2 4.8

webm2pes 3.0 14.0 12.6 14.0 14.0 12.2 7.1 6.6

who 27.3 29.3 13.6 23.3 17.4 27.6 2.7 9.5 35.9 10.5

wpd2html 11.8 27.1 13.6 27.1 27.1 27.1 48.9 6.4 0.3 5.2

Top positions 9 19 11 13 9 11 22 18 21

124 I. Nikolić et al.

– Parametrize alone is valuable. The baseline SivoBase, i.e. the version of the
fuzzer that does not have any of the four refinements aside from Parametrize,
already performs well. It is able to achieve the most coverage for 9 of the
25 considered programs. Hence, just by introducing new fuzzing subroutines
and their variations, the fuzzer is able to outperform in terms of coverage the
other 11 fuzzers on 36% of the fuzzed programs.

– Optimize has a strong impact. Among the four refinements, Optimize has
the strongest impact. It helps the baseline fuzzer to add 10 top stops resulting
in 19 top positions (refer to SivoBase+Opt column in Table 2), thus leading
to most coverage in comparison to the other 11 none-Sivo fuzzers on 76%
of the programs. On the other hand, Sivo without Optimize (refer to Sivo-
Opt), loses 14 top positions, i.e. the fuzzer loses the top spot for 56% of the
programs. Moreover, this refinement effects all of the fuzzed programs, with
the exception of a few. The effect is significant—the coverage drop when this
refinement is not present is at least 10% and sometimes more than 30%.

– TaintFAST has a moderate to low impact. This refinement, denoted as
FI in the Table 2, helps the baseline fuzzer to add two top spots. On the other
hand, Sivo without TaintFAST, i.e. with only the FTI engine present, loses
three top spots. TaintFAST has a strong variance (refer to the Sivo-FI column)
in terms of providing additional coverage and most fuzzed programs either
benefit largely, or have no benefit at all. This is not unexpected, because the
true benefit of TaintFAST is manifested in programs that accept large inputs
and that have branches that depend on all of those inputs.

– Solving systems of interval (SI) has a strong to moderate impact. It
adds 4 top stops to the baseline, and removes 7 top spots from the complete
version of Sivo. It provides consistent benefits to the fuzzer – for most of the
fuzzed programs SI produces extra coverage. Presumably, this is based on the
fact that most programs do have branches based on integer inequalities and
that use direct copy of input bytes.

– Accurate coverage (AC) has a moderate to low impact. This refinement
does not have a strong impact on providing top positions (no jumps after
adding it to the baseline, and lost 4 positions when removing it from Sivo),
but it gives well balanced improvements in coverage to the fuzzer.

5.5 The Cause of Observed Benefits

It is important to understand and explain why certain fuzzing techniques (or
in our case refinements) work well. In Sect. 5.4 we speculate about the type of
programs that can be fuzzed well with some of the refinements. Showing this
conclusively, however, is difficult. Table 2 shows the percentage drop in coverage
observe, per application, obtained by adding and removing one-by-one each of
our proposed refinements. However, attributing the cause of improved perfor-
mance to individual refinements based on such coarse empirical data could be
misleading. This is because we are measuring the joint outcome of mutually-
dependent fuzzing strategies. We cannot single out the cause of an observed

Refined Grey-Box Fuzzing with Sivo 125

outcome and attribute it to each strategy, since the strategies mutate the inter-
nal state that others use. We thus only coarsely estimate their impact via our
empirical findings and speculate that these results extend to other programs.

6 Related Work

Grey-box fuzzers, starting from the baseline AFL [37], have been the backbone
of modern, large-scale testing efforts. The AFL-family of fuzzers (e.g. AFLGo [3],
AFLFast [4], LAF-Intel [1], MOpt [22], and MTFuzz [30]) improve upon differ-
ent aspects of the baseline fuzzer. For instance, instead of randomly selecting
mutation strategy, MOpt [22] uses particle swarm optimization to guide the
selection. MTFuzz [30] trains a multiple-task neural network to infer the rela-
tionship between program inputs and different kinds of edge coverage to guide
input mutation. Similarly, for the seed selection, AFLFast [4] prioritizes seeds
that exercise low-probability paths, CollAFL [13] prioritizes seeds that have a lot
of not-yet inverted branches, and EcoFuzz [35] uses multi-armed bandits to guide
the seed selection. Common feature for all current fuzzers from the AFL-family
is that they optimize at most one of the fuzzing subroutine6. In contrast, Sivo
first parameterizes all aspects, i.e. introduces many variations of the fuzzing sub-
routines, and then tries to optimize all the selection of parameters. Even the seed
selection subroutines of EcoFuzz and Sivo differ, despite both using multi-armed
bandits: EcoFuzz utilizes MAB to select candidate seed from the pool, whereas
Sivo uses MAB to decide on the selection criterion and the pool of seeds.

Several grey-box fuzzers deploy data-flow fuzzing, i.e. infer dependency of
branches on input bytes and use it to accomplish more targeted branch inver-
sion. VUzzer [26], Angora [6], BuzzFuzz [14] and Matryoshka [7] use a classical
dynamic taint inference engine (i.e. track taint propagation) to infer dependen-
cies. Fairfuzz [20], ProFuzzer [34], and Eclipser [8] use lighter engine and infer
partial dependency by monitoring the execution traces of the seeds. RedQueen [2]
and Steelix [21] can infer only dependencies based on exact (often called direct)
copies of input bytes in the branches, by mutating individual bytes. Among grey
boxes, the best inference in terms of speed, type, and accuracy is achieved by
GreyOne [12]. Its engine called FTI is based on mutation of individual bytes (thus
fast because it does not track taint propagation) and can detect dependencies of
any type (not only direct copies of input bytes). FTI mutates bytes one by one
and checks on changes in variables involved in branch conditions (thus accurate
because it does not need for the whole branch to flip, only some of its variables).
Sivo inference engine TaintFAST improves upon FTI and provides exponential
decrease in the number of executions required to infer the full dependency, at
a possible expense of accuracy. Instead of testing bytes one by one, TaintFAST
uses probabilistic group testing and reduces the number of executions.

Data-flow grey boxes accomplish targeted branch inversion by randomly
mutating the dependent bytes. A few fuzzers deploy more advanced strategies:
6 This refers to optimization only – some fuzzers improve (but not optimize) multiple

fuzzing subroutines.

126 I. Nikolić et al.

Angora [6] uses gradient-descent based mutation, Eclipser [8] can invert effi-
ciently branches that are linear or monotonic, and GreyOne [12] inverts branches
by gradually reducing the distance between the actual and expected value in the
branch condition. Some fuzzers, such as RedQueen and Steelix invert branches
by solving directly the branch conditions based on equality (called magic bytes).
Sivo can solve more complex branch inversion conditions that involve inequal-
ities, without the use of SAT/SMT solvers. On the other hand, white boxes
such as KLEE [5], and hybrid fuzzers such as Driller [31] and QSYM [36], use
symbolic execution that relies on SMT solvers (thus it may be slow) to perform
inversions in even more complex branches. The hybrid fuzzer Pangolin [16] uses
linear approximations of branch constraints (thus more general than our inter-
vals) called polyhedral path abstraction and later it utilizes them to efficiently
sample solutions that satisfy path constraints. To infer the (more universal) lin-
ear approximations, Pangolin uses a method based on SMT solver. On the other
hand, Sivo infers the (less universal) intervals with a simpler method.

The AFL-family of fuzzers as well as many other grey boxes track edge cov-
erage. In addition, the AFL-family uses bucketization, i.e. besides edges, they
track the counts of edges and group them in buckets that have ranges of powers
of two. For practical purposes AFL does not record the precise edges (this will
require storing whole execution traces which may be slow), but rather it works
with hashes of edges (which is quite fast). The process of hashing may introduce
collisions as noted by CollAFL [13]. To avoid such collisions, CollAFL proposes
during compilation to choose the free parameters of the hashing function non-
randomly, and according to a specific strategy. AFL++ [11] uses a similar idea
and provides an open-source implementation based on link-time instrumentation.
In addition, AFL++, LibFuzzer [29], and Honggfuzz [32] use so-called sanitizer
coverage available in LLVM starting from version 11 to prevent collisions by
assigning the free parameters during runtime. On the other hand, Sivo solution
is to switch between different hashing functions during the fuzzing (i.e. at run-
time). Instead of tracking edge coverage, a few fuzzers such as Honggfuzz [32],
VUzzer [26] and LibFuzzer [29] track block coverage. Moreover, the grey-box
fuzzer TortoiseFuzz [33] uses alternative coverage measurement metric (assigns
different weights to edges based on their potential security impact) to prioritize
testcases, and achieves higher rate of vulnerability detection.

7 Conclusion

We have presented four refinements for grey-box fuzzers that boost different
fuzzing stages, specifically: (a) a faster dynamic taint dependency inference
engine, (b) an integer inequality constraint learner and inference engine, (c)
improved coverage tracker, and (d) complete parameterization of the strategies
which can be optimized for dynamically. We have implemented the refinements
in a fuzzer called Sivo. In comparison to 11 other popular grey-box fuzzers, Sivo
scores highest with regards to coverage and number of vulnerabilities found.

Refined Grey-Box Fuzzing with Sivo 127

Acknowledgments. We thank our shepherd Erik van der Kouwe for his helpful feed-
back. Abhik Roychoudhury, Zhijingcheng Yu, Shin Hwei Tan, Lu Yan, Andrea Fioraldi,
and the anonymous reviewers gave us valuable comments and improvements on this
work, for which we are thankful. All opinions expressed in this paper are solely those
of the authors. This research is supported in part by the Crystal Centre at NUS and
by the research grant DSOCL17019 from DSO in Singapore.

References

1. Circumventing fuzzing roadblocks with compiler transformations (2016). https://
lafintel.wordpress.com/

2. Aschermann, C., Schumilo, S., Blazytko, T., Gawlik, R., Holz, T.: Redqueen:
fuzzing with input-to-state correspondence. NDSS. 19, 1–15 (2019)

3. Böhme, M., Pham, V.T., Nguyen, M.D., Roychoudhury, A.: Directed greybox
fuzzing. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 2329–2344 (2017)

4. Böhme, M., Pham, V.T., Roychoudhury, A.: Coverage-based greybox fuzzing as
Markov chain. IEEE Trans. Softw. Eng. 45(5), 489–506 (2017)

5. Cadar, C., Dunbar, D., Engler, D.R., et al.: Klee: unassisted and automatic gen-
eration of high-coverage tests for complex systems programs. OSDI 8, 209–224
(2008)

6. Chen, P., Chen, H.: Angora: efficient fuzzing by principled search. In: 2018 IEEE
Symposium on Security and Privacy (SP), pp. 711–725. IEEE (2018)

7. Chen, P., Liu, J., Chen, H.: Matryoshka: fuzzing deeply nested branches. In: Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security (2019)

8. Choi, J., Jang, J., Han, C., Cha, S.K.: Grey-box concolic testing on binary code. In:
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE),
pp. 736–747. IEEE (2019)

9. Dolan-Gavitt, B., et al.: Lava: large-scale automated vulnerability addition. In:
S&P (2016)

10. Du, D., Hwang, F.K., Hwang, F.: Combinatorial group testing and its applications,
vol. 12. World Scientific (2000)

11. Fioraldi, A., Maier, D., Eißfeldt, H., Heuse, M.: Afl++: combining incremental
steps of fuzzing research. In: 14th USENIX Workshop on Offensive Technologies
WOOT) (2020)

12. Gan, S., et al.: Greyone: data flow sensitive fuzzing. In: 29th USENIX Security
Symposium (USENIX Security 20). USENIX Association, Boston, MA (2020).
https://www.usenix.org/conference/usenixsecurity20/presentation/gan

13. Gan, S., et al.: CollAFL: path sensitive fuzzing. In: 2018 IEEE Symposium on
Security and Privacy (SP), pp. 679–696. IEEE (2018)

14. Ganesh, V., Leek, T., Rinard, M.: Taint-based directed whitebox fuzzing. In: 2009
IEEE 31st International Conference on Software Engineering, pp. 474–484. IEEE
(2009)

15. Google: OSS-Fuzz - continuous fuzzing of open source software (2020). https://
github.com/google/oss-fuzz

16. Huang, H., Yao, P., Wu, R., Shi, Q., Zhang, C.: Pangolin: incremental hybrid
fuzzing with polyhedral path abstraction. In: 2020 IEEE Symposium on Security
and Privacy (SP), pp. 1613–1627. IEEE (2020)

https://lafintel.wordpress.com/
https://lafintel.wordpress.com/
https://www.usenix.org/conference/usenixsecurity20/presentation/gan
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz

128 I. Nikolić et al.

17. Inozemtseva, L., Holmes, R.: Coverage is not strongly correlated with test suite
effectiveness. In: Proceedings of the 36th International Conference on Software
Engineering, pp. 435–445 (2014)

18. Klees, G., Ruef, A., Cooper, B., Wei, S., Hicks, M.: Evaluating fuzz testing. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pp. 2123–2138 (2018)

19. Kocsis, L., Szepesvári, C.: Discounted UCB. In: 2nd PASCAL Challenges Work-
shop, vol. 2 (2006)

20. Lemieux, C., Sen, K.: Fairfuzz: a targeted mutation strategy for increasing grey-
box fuzz testing coverage. In: Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, pp. 475–485 (2018)

21. Li, Y., Chen, B., Chandramohan, M., Lin, S.W., Liu, Y., Tiu, A.: Steelix: program-
state based binary fuzzing. In: Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, pp. 627–637 (2017)

22. Lyu, C., Ji, S., Zhang, C., Li, Y., Lee, W.H., Song, Y., Beyah, R.: MOPT: optimized
mutation scheduling for fuzzers. In: 28th USENIX Security Symposium (USENIX
Security 2019), pp. 1949–1966 (2019)

23. Manès, V.J., Kim, S., Cha, S.K.: Ankou: guiding grey-box fuzzing towards combi-
natorial difference. In: Proceedings of the ACM/IEEE 42nd International Confer-
ence on Software Engineering, pp. 1024–1036 (2020)

24. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: PLDI (2007)

25. Nikolic, I., Mantu, R.: Sivo: Refined gray-box fuzzer. https://github.com/ivicani
kolicsg/SivoFuzzer

26. Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., Bos, H.: Vuzzer:
application-aware evolutionary fuzzing. NDSS 17, 1–14 (2017)

27. Ryabinin, A.: Ubsan: run-time undefined behavior sanity checker (2014). https://
lwn.net/Articles/617364/

28. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: Addresssanitizer: a fast
address sanity checker. In: USENIX ATC (2012)

29. Serebryany, K.: Continuous fuzzing with libfuzzer and addresssanitizer. In: 2016
IEEE Cybersecurity Development (SecDev), pp. 157–157. IEEE (2016)

30. She, D., Krishna, R., Yan, L., Jana, S., Ray, B.: Mtfuzz: fuzzing with a multi-task
neural network. In: FSE (2020)

31. Stephens, N., et al.: Driller: augmenting fuzzing through selective symbolic execu-
tion. NDSS 16, 1–16 (2016)

32. Swiecki, R.: Honggfuzz: Security oriented software fuzzer. supports evolutionary,
feedback-driven fuzzing based on code coverage (SW and HW based) (2020).
https://honggfuzz.dev/

33. Wang, Y., et al.: Not all coverage measurements are equal: fuzzing by coverage
accounting for input prioritization. NDSS (2020)

34. You, W., et al.: Profuzzer: On-the-fly input type probing for better zero-day vul-
nerability discovery. In: 2019 IEEE Symposium on Security and Privacy (SP), pp.
769–786. IEEE (2019)

35. Yue, T., et al.: Ecofuzz: adaptive energy-saving greybox fuzzing as a variant of the
adversarial multi-armed bandit. In: 29th USENIX Security Symposium (USENIX
Security 20) (2020)

https://github.com/ivicanikolicsg/SivoFuzzer
https://github.com/ivicanikolicsg/SivoFuzzer
https://lwn.net/Articles/617364/
https://lwn.net/Articles/617364/
https://honggfuzz.dev/

Refined Grey-Box Fuzzing with Sivo 129

36. Yun, I., Lee, S., Xu, M., Jang, Y., Kim, T.: QSYM: a practical concolic execution
engine tailored for hybrid fuzzing. In: 27th USENIX Security Symposium (USENIX
Security 2018), pp. 745–761 (2018)

37. Zalewski, M.: American fuzzy lop (2.52b) (2019). https://lcamtuf.coredump.cx/afl/

https://lcamtuf.coredump.cx/afl/

SCRUTINIZER: Detecting Code Reuse
in Malware via Decompilation

and Machine Learning

Omid Mirzaei1(B), Roman Vasilenko2, Engin Kirda1, Long Lu1,
and Amin Kharraz3

1 Northeastern University, Boston, USA
{o.mirzaei,e.kirda,l.lu}@northeastern.edu

2 VMware, Boston, USA
rvasilenko@vmware.com

3 Florida International University, Miami, USA
ak@cs.fiu.edu

Abstract. Growing numbers of advanced malware-based attacks
against governments and corporations, for political, financial and scien-
tific gains, have taken security breaches to the next level. In response
to such attacks, both academia and industry have investigated tech-
niques to model and reconstruct these attacks and to defend against
them. While such efforts have been all useful in mitigating the effects
of modern attacks, automated malware code reuse inspection and cam-
paign attribution have received less attention.

In this paper, we present an automated system, called SCRUTI-
NIZER, to identify code reuse in malware via a novel machine learning-
based encoding mechanism at the function-level. By creating a large
knowledge base of previously observed and tagged malware campaigns,
we can compare unknown samples against this knowledge base and deter-
mine how much overlap exists. SCRUTINIZER leverages an unsuper-
vised learning approach to filter out irrelevant functions before code
reuse detection. It provides two valuable capabilities. First, it identifies
ties between an unknown sample and those malware specimens that are
known to be used by a specific campaign. Second, it inspects if specific
tools or functionalities are used by a campaign. Using SCRUTINIZER,
we were able to identify 12 samples that were previously unknown to us
and that we were able to correctly assign to well-known APT campaigns.

Keywords: Malware analysis · Code reuse detection

1 Introduction

Recent reports show that advanced malware-based breaches are increasing in vol-
ume and impact [68]. Companies are frequently becoming the targets of financially
and politically-motivated attackers. For example, very recently, several biotech
c© Springer Nature Switzerland AG 2021
L. Bilge et al. (Eds.): DIMVA 2021, LNCS 12756, pp. 130–150, 2021.
https://doi.org/10.1007/978-3-030-80825-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80825-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-80825-9_7

SCRUTINIZER: Detecting Code Reuse in Malware 131

research firms experienced crippling targeted attacks during the COVID19 pan-
demic [14,54]. Despite more attention on advanced attacks recently [25,27,28,30,
40,48] and their significant effects [3], there has been little investigation into how
to automatically detect and identify specific advanced malware campaigns at scale
when looking at large volumes of incoming malware samples.

The security community has extensively investigated how unknown attacks
can be detected based on code similarity. Previous work studied binary and
source code similarity testing detection [18,63,71], clone detection [4,5,35,37,42]
and (fuzzy) hashing [38,41,58,67]. Very recently, the community has also begun
to explore the use of modern machine learning approaches to detect more sophis-
ticated malware attacks such as APTs [27]. While these efforts have been useful
in identifying some forms of attacks, the challenge of detecting more interest-
ing samples (e.g., APTs) in large volumes of incoming malware data is still an
open challenge. Existing approaches are inadequate for characterizing malicious
code reuse and campaign attribution in modern malware attacks for two pri-
mary reasons: First, relevant data about advanced (e.g., APT) samples is scarce.
Hence, in real-world deployments, this limitation makes common machine learn-
ing techniques such as supervised machine learning significantly less effective in
finding specific types of malware. Second, current static code similarity testing
approaches are ineffective in locating previously unknown threats due to the
intense use of evasive techniques by malware authors, rendering almost all of the
existing static analysis approaches ineffective in practice (and hence, making
dynamic analysis often necessary).

The core insight behind of our work is that almost all malware-based attacks
(including advanced, targeted attacks such as APTs) follow practically proven
patterns to deliver the actual malicious payload. Malware is rarely written from
scratch and often depends on an existing code base or on specific, unique code
bases (e.g., Mimikatz). Thus, if we accurately create a knowledge base of a
large corpus of known, malicious source code snippets (some of them being
known APT activity) observed in modern malware attacks, we can then compare
unknown samples against this dataset and identify code similarities.

One major challenge when analyzing malware samples is the lack of source
code. Hence, the malware binary needs to be analyzed and understood. While
binary comparisons between malware samples are possible, in practice, even
small differences between the files can lead to major reported differences even
though the samples might belong to the same campaign. To be able to build an
effective, accurate code similarity detection approach that works on real-world
malware binaries, in the first step, we need to use dynamic analysis techniques
that can execute the code and then create process snapshots of the running
sample. In the second step, we need to be able to reconstruct the corresponding
high-level source code from the memory dumps, and automatically locate seg-
ments of the code that are highly likely used in the malicious operation. This
second step is more challenging, and has not been addressed to date.

In this work, we partnered with a well-known anti-malware company to run
and extract run-time memory snapshots from 12,450 real-world malware samples.

132 O. Mirzaei et al.

We then built tools to analyze the process snapshots and to reconstruct the source
code of the actualmalicious payloads, and retrieve the corresponding function code
snippets. Armed with a large set of decompiled code samples from a wide-range of
malware specimens, in this paper, we propose a novel encoding mechanism to per-
form automated code similarity analysis. We developed a python-based framework
to post-process run-time memory snapshots, and extract source code in order to be
able to translate an arbitrary malware sample into a set of encoded functions that
are representative of the functionality of the code. To achieve this, we take advan-
tage of advances from the field of document classification by treating each function
in the decompiled code as a sequence of words. We incorporate Siamese Neural
Networks (SNNs) [9] to vectorize the functions and build the encoding model to
be able to perform similarity testing. We applied our proposed similarity testing
approach on 44,015 recent benign and malicious samples we received from the anti-
malware company. The knowledge base we generated contains 1,734,992 clusters
of extracted functions that were determined to be similar.

The automated code similarity comparison system that we built, called
SCRUTINIZER, was used to analyze 3,000 random samples submitted to the
anti-malware company in the summer of 2020. We could automatically identify
and assign unknown samples to already known APT campaigns using function-
level similarities. Evaluating advanced malware (e.g., APT) in the real-world is
a great challenge because of the lack of ground truth. However, we were able
to manually verify our detection results for 12 different, unknown samples by
comparing our findings with those of other security vendors. Also, on average,
SCRUTINIZER was able to discard on average 56% of the code of the unknown
samples because it was determined to be uninteresting. Hence, SCRUTINIZER
also proved to be useful during binary analysis as a filtering mechanism.

Contributions. In summary, this paper makes the following main contributions:

– We propose a machine-learning-based system, called SCRUTINIZER, to
detect code reuse in malware samples. SCRUTINIZER relies on an unsu-
pervised learning algorithm to filter out less relevant functions to malicious
code samples.

– To our knowledge, we are the first to extract and use high-level source code
from adversarial malware samples for performing automated malware cam-
paign attribution. We were able to identify 12 samples that were previously
unknown to us and that we were able to correctly assign to well-known APT
campaigns.

– We have created a large knowledge base which contains more than 1.7M
clusters of function encodings obtained from a large-scale analysis of 44K
real-world advanced malware and benign samples. Both filtering and code
reuse detection rely on this knowledge base to discard noisy functions and to
identify code reuse.

– We release our code, our findings and other relevant information to foster the
research in this area [64].

SCRUTINIZER: Detecting Code Reuse in Malware 133

2 Approach

In this section, we describe our approach for performing automated code analy-
sis. Building of a solution that serves this goal requires extracting the unpacked
version of a given payload for decompilation, developing an efficient encoding
mechanism on decompiled code for similarity testing, and constructing an unsu-
pervised model to run code analysis on an unknown sample. The overall architec-
ture of the proposed system for both the modeling and testing phases is shown
in Fig. 1. In this section, we describe SCRUTINIZER’s architecture in detail
and our approach to implement each part.

Fig. 1. Overall architecture of the proposed system and steps of modeling (i.e., solid
arrows) and testing (i.e., dashed arrows) phases.

2.1 Decompilation

The first step in our pipeline involves binary decompilation to generate the
unpacked version of the given payload. To this end, our approach relies on
existing dynamic analysis techniques where the given binary is executed in an
advanced sandbox developed by Lastline [39], to load and unpack the payload
and record the run-time behavior. The sandbox acts as a universal unpacker by
running the sample inside a guest operating system.

The dynamic analysis engine produces multiple process dumps (or snapshots)
at critical points during different stages of the analysis. An analysis stage is
known to be critical if one of these conditions are met: 1) when sensitive APIs are
executed, causing a new process creation (e.g., CreateProcess), a new file creation
(e.g., CreateFile) or privilege escalation (e.g., AdjustTokenPrivileges), 2) when
execution happens outside of the original PE image, and 3) when the original PE
image changes. The process dumps contain run-time information about loaded
code and memory blocks of the binary under analysis. These snapshots, taken
at different stages of the analysis, are then saved under a single analysis subject
when the engine detects a suspicious behavior (e.g., a sensitive API call from

134 O. Mirzaei et al.

an untrusted memory region). We parse these snapshots and run a post-process
analysis to reconstruct the program’s source code in C/C++. To this end, we
developed a plugin for Ghidra [24] to map the memory regions from snapshots
into Ghidra’s virtual memory space and decompile the code found in memory.

2.2 Func2vec Encoding

The second step in the analysis pipeline is designed to perform code similarity
testing across malicious payloads. Our analysis on existing similarity testing tech-
niques on source code [4,5,18,35,37,42,63,71] revealed that these approaches are
too sparse to such an adversarial landscape where malicious operators have sig-
nificant freedom to utilize evasive techniques and bypass contemporary similarity
testing mechanisms.

Our function to vector encoding mechanism relies on Siamese neural net-
works [9]. Prior research and our empirical preliminary experiments with mal-
ware have shown that SSNs are quite effective in a wide range of tasks, most
specifically in similarity and metric learning [56,57] and hashing [44]. SSNs con-
sist of two or more sub-network components with identical architectures. The
most common type of Siamese networks is the one with two similar sub-networks
which takes two inputs simultaneously and computes two representation vectors
(encodings) for inputs. It then leverages a distance metric to estimate the simi-
larity between the two vectors [9]. Each sub-network component (#2 in Fig. 2)
is a Long Short-Term Memory (LSTM) [29], an artificial Recurrent Neural Net-
work (RNN) architecture, that has shown to be efficient on a variety of tasks
such as anomaly detection [21] and forecasting time series data [26]. LSTMs are
also capable of learning long-term dependencies which is not quite possible in
other types of networks due to the vanishing gradient problem [7]. To vectorize
functions and feed them as inputs to the Siamese network, we rely on Abstract
Syntax Trees (ASTs). In particular, we map each function to a flattened version
of its AST node types (#1 in Fig. 2). Finally, to compare the final hidden states
of two LSTM layers, we leverage the Manhattan distance metric (#5 in Fig. 2),
which turns our Siamese network to be of a MaLSTM [52] variant.

To find similar functions across decompiled samples, we start by extracting
n-grams of each function vector (i.e., a sequence of AST nodes). We then hash
all extracted functions by applying the Locality Sensitive Hashing (LSH) algo-
rithm [33] to these n-grams. LSH can map similar functions to the same hash
code which is referred to as a bucket. At the end of the analysis, buckets that
contain only a single function are incorporated as dissimilar functions. We then
select all permutations of these functions as dissimilar pairs. We have observed
that relying on LSH alone normally introduces false positives, especially in cases
where functions are extracted from decompiled codes and they have major dif-
ferences. For this reason, we leverage this hashing mechanism along with two
verification techniques to discard false positives and come up with an ML-based
hashing mechanism.

SCRUTINIZER: Detecting Code Reuse in Malware 135

Fig. 2. Overall architecture of Siamese network.

2.3 Encoding Clustering

The primary goal of our analysis pipeline is to provide insights on a previ-
ously unknown binary. To this end, we begin by incorporating a trained Siamese
network (see Sect. 2.2) to encode functions, and then, leverage an unsuper-
vised learning approach to cluster similar functions from different code samples
together. The generated clusters form our knowledge base to locate code reuse
in a previously unknown sample and reason about the potential behavior of the
sample. That is, the sample is converted to a set of encoded functions which are
compared against clusters of hundreds of thousands of encoded functions that
correspond to previously detected campaigns or malware families.

For each cluster, we generate a unique dictionary tag by maintaining the
occurrence frequency of each function observed in different decompiled code
samples. The tag of each cluster reveals the usage or popularity of the clustered
functions in malware samples used by one or more campaigns. We have also tags
for functions that were used mainly for benign code samples.

Malicious and benign binaries share significant volumes of code samples based
on our observations. For instance, statically-linked standard library functions,
global variable initialization code, and import resolution code are significantly
common in both types. Therefore, a function cannot be simply labeled as mali-
cious if it is observed in malware. Benign code samples could be identified as
malicious only because they share several lines of code with malicious binaries.
Thus, in this work, we rely on clusters of function encodings and automatically
tag new functions as noisy if they are assigned to a mixed cluster that contains

136 O. Mirzaei et al.

functions from both malicious and benign samples. We then discard all these
noisy functions before doing any further analysis.

To provide an example of how SCRUTINIZER performs automated code
reuse detection on an unknown sample, we extracted 534 functions with 45,902
LoC after running a sample in the sandbox and reconstructing its source code.
The system then generated the corresponding encoded functions using the
func2vec method for similarity testing via a trained SSN and a knowledge base
of approximately 1.7M function encodings from 44K benign and malicious pay-
loads. The system discarded 434 (81%) functions, which was equal to 36,957 LoC,
and identified 100 (29%) functions in previously seen malware binaries, most of
which were assigned to clusters with Turla tag – A Russian-based threat group
that has infected victims in over 45 countries. After further investigation, we
discovered that this sample was a Trojan package that was suspected by com-
puter security researchers and Western intelligence officers to be the product of
a Russian government agency of the same name.

3 Evaluation

In this section, we evaluate our system and discuss the results. In particular, we
will explain our experimental setting, the encoding mechanism used to cluster
similar functions. We will also provide details on the real-world deployment of
SCRUTINIZER and our results in malware campaign analysis.

3.1 Experimental Setting and Dataset

SCRUTINIZER is implemented in Python. We have leveraged a library for par-
allel computing, called Dask [15], to improve the execution speed of our scripts.
The experiments are conducted on a 2.2 GHz Intel Xeon Ubuntu server with
20 CPUs and 276 GB of RAM. We have used two distinct and non-overlapping
datasets for the modeling and testing phases (see Table 1). To create a model, we
have relied on 31,475 benign and 12,540 malware samples. Benign samples are
different versions of Windows DLL files crawled from a website [17] in around one
week. Table 1 shows the average size for each type of binary, and also, the average
Lines of Code (LoC) and cyclomatic complexity [45] of their decompiled codes.
Malicious samples (shown in Fig. 3) are both regular malware (12,253 samples)
and those that have been used in advanced (i.e., APT) attacks (287 samples)
according to the APT notes and threat intelligence of MITRE ATT&CK [50],
FireEye [22], Kaspersky [36] and ThreatMiner [66]1. To test our system, we have
increased the malware-to-benign ratio and have evaluated its performance on
unknown samples (See Sect. 3.4).

1 We plan to release a labeled dataset of malware binaries that have been used by
different APT campaigns that we have access to.

SCRUTINIZER: Detecting Code Reuse in Malware 137

Fig. 3. Distributions of malware in our dataset.

Table 1. Overview of the dataset used in this work. The size (in MB) and cyclomatic
complexity are given on average per sample. Avg LOC is the average lines of code per
sample and per function.

Phase Data type #Samples Size Avg LOC Complexity

Modeling Malware [39] 12,540 0.55 106.21 11.05

Benign [17] 31,475 0.31 35.73 5.80

Total 44,015

Testing Malware [39] 500 0.38 95.47 10.21

Benign [39] 2,500 0.29 33.25 5.76

Total 3,000

3.2 Function Encoding

This section particularly deals with answering two important questions: 1) How
is a model is trained to embed functions?, and 2) How can the system leverage
this encoding method to perform similarity testing? To perform training exper-
iments, we first decompile each binary using a Ghidra2 post-processing script
[64] as discussed in Sect. 2.1. We then leverage Clang3 to map each function to
a flattened AST vector. Our choice of Clang is motivated by the fact that it is
less sensitive to code artifacts commonly produced by decompilation tools. To
make our AST construction more precise, we replace each function or API call
(CALL EXPR node in AST) in the vector by the exact name of a function or API
call. This allows us to differentiate between calls to functions authored by the
coders and APIs.

We then train the MaLSTM network to identify pairs of similar and dissimilar
functions by mapping their AST vectors into an embedding space. We relied on
the MinHashing implementation of Locality Sensitive Hashing (LSH) [33], and
hashed functions based on the n-grams of their AST vectors. The parameters of
fuzzy hashing were chosen very loosely so that we could come up with as many

2 Version 9.1.2 with SHA-256: ebe3fa...ecac61.
3 Version 10.0.0: https://releases.llvm.org/10.0.0/tools/clang.

https://releases.llvm.org/10.0.0/tools/clang

138 O. Mirzaei et al.

similar functions as possible with different lengths. We followed two major steps
to discarded functions that were mistakenly identified as similar (i.e., false posi-
tives). First, we leveraged a post-processing script [64] to automatically discard
similar functions that do not share a common prototype (i.e., function name and
parameters) and output. Second, we hashed a subset of functions several times
to manually inspect and verify the integrity of results (i.e., created set of similar
and dissimilar functions). In total, we collected 1,105,000 pairs for similar and
dissimilar functions from both malicious and benign samples.

The accuracy of the trained network is evaluated via non-stratified 5-fold
cross-validation. In particular, the dataset was first split into 5 folds of approx-
imately equal size. Next, in each of the 5 iterations, we trained our system on
4 folds, and then, evaluated it on the remaining fold. The average, median and
standard deviation of prediction errors (shown in Table 2) are 0.082, 0.097, 0.056,
and 0.061 for malware and benign function vectors respectively that show our
system works well. Moreover, we have randomly selected 1,000 function encod-
ings and have manually checked the integrity of the results. Our manual inspec-
tion confirms the integrity and accuracy of the encoding mechanism and that
similar AST nodes are properly placed close to each other in the latent space.

Table 2. Prediction error statistics after 5-fold cross-validation using only malware,
only benign vectors, and a combination of both.

Type Mean Standard deviation Median

Malware 0.082 0.097 0.031

Benign 0.056 0.061 0.004

Both 0.058 0.071 0.017

We also leveraged cross-validation to confirm the optimal value of embed-
ding dimension and to tune the network’s hyper-parameters, and in particular,
the number of hidden layers. Due to time limit and the number of samples, we
evaluated the performance of our system with 5 different dimensions and 3 net-
works with different numbers of hidden layers. Our results confirmed that an
embedding size of 128 yields to higher F1 scores for all three settings.

3.3 Cluster Analysis

Equipped with a precise function-level encoding mechanism and similarity test-
ing, we now hash each function to an encoding of a particular dimension (i.e.,
Func2vec encoding). To achieve this goal, we process all samples in our dataset
and extract their functions and their AST vectors initially. We then generate
the encodings of the functions using one of the sub-networks (i.e., LSTM) of
our Siamese network (i.e., MaLSTM), cluster them into groups, and use these
clusters to discard noisy functions and keep the ones that had been seen mainly
in malware samples.

SCRUTINIZER: Detecting Code Reuse in Malware 139

We leveraged the HDBSCAN clustering algorithm [13,46] to group function
encodings in different clusters due to its superior performance over other algo-
rithms for big data [59]. This algorithm is a variant of a popular density-based
clustering algorithm, known as DBSCAN [20]. It requires no parameter tun-
ing, runs faster and consumes less memory compared to the regular DBSCAN
algorithm due to the way it has been implemented. To speed up the clustering
process, we have reduced the dimension of our function encodings from 128 to
8 using Principal Component Analysis (PCA). Also, we experimentally tested
and approved that reducing the dimension of the data would not significantly
impact the clustering result, and most specifically, the number of clusters.

Our system could find a total number of 1,734,992 clusters based on the above
parameters and clustering algorithm. Each cluster contains functions whose
encodings resemble each other. From this number, 91% of clusters are com-
pletely benign, 3.2% are completely malicious, and 5.88% of clusters are mixed.
The biggest cluster in our dataset has 14,406 similar function encodings, while
the average size of clusters is around 5.

After clustering similar functions together, we generate a dictionary tag for
each cluster based on the occurrence frequency of the observed functions in
decompiled code samples. The occurrence frequency of a function is shown in
Eq. 1. We maintain the occurrence frequency of each function during the model-
ing phase, and eventually, generate a dictionary tag of all the possible use cases
of the function. For instance, the function that we described in Sect. 2.3 was
automatically assigned to a cluster that had the following cluster tag:

tag = [benign = 12.5, Turla = 87.5] (1)

The cluster tags created during clustering are used later for filtering and code
reuse detection. To show the performance of SCRUTINIZER in these two tasks,
we have applied it on real-world data. Specifically, we first show the efficiency of
the filtering process, and then, we discuss how it can improve the accuracy of a
malware detection system. Finally, we show how the proposed system could be
leveraged to identify code reuse among malware samples that have been used by
APT campaigns.

3.4 Real-World Deployment

We received 3,000 previously unknown samples collected by a well-known anti-
malware company in the summer of 2020 to test the effectiveness of SCRUTI-
NIZER. Note that based on our empirical analysis, each sample contained on
average of 485 functions. This makes code similarity testing a significantly expen-
sive process. More importantly, malware and benign samples share large volumes
of standard code. This overlap could potentially introduce many false positives
in malware detectors. Thus, we first filter noisy functions that are common in
both malware and benign samples, and then, rely on the remaining functions
of each sample to perform similarity analysis. In the following, we provide more
details on each step as well as the summary of our experiments.

140 O. Mirzaei et al.

Filtering. The filtering process is applied by relying on cluster tags that are
created during the clustering process (see Sect. 3.3). After the cluster assignment,
the system discards functions if the cluster tag indicates that all or the majority
of the functions (enforced by δ) in the assigned cluster are observed in the
benign samples. It is worth mentioning that δ is customizable. Therefore, a
higher value would only discard functions that were seen in benign clusters. We
set the δ value to 0.5 to discard functions because this threshold value left us with
more functions in malicious clusters on average. The summary of the filtering
experiment is quite promising (See Fig. 4). The analysis shows that the samples
in the previously unknown dataset have a median of 199 functions where the
system was able to filter a median of 126 functions (63%) from those samples.
This was equal to removing approximately 11,476 (56%) lines of code from the
given code.

Fig. 4. The result of the filtering phase on the unknown sample set. Our analysis
suggests that the filtering mechanism works well in practice by filtering a median of
126 functions of the input samples.

The filtering process had a significant impact on the performance of our
system. To confirm this, we deployed SCRUTINIZER to detect unknown mal-
ware. Here, the system was tuned to label any incoming unknown sample as
malware when malicious functions outnumbered benign ones, and the similar-
ity of the sample to any previously known samples was more than a threshold,
ranging from 0 to 100%. The experimental results show that the true positive
rate increased from 82% to 92% after filtering the functions that were common
in both malware and benign samples. At the same time, the false positive rate

SCRUTINIZER: Detecting Code Reuse in Malware 141

decreased from 10% to around 1.2%. In other words, as shown in Fig. 5, the
Area Under the Curve (AUC) score, ranging from 0 (worst classifier) to 1 (per-
fect classifier), improved from 0.88 to 0.95 when the filtering was applied. In
Sect. 3.4, we explain how the output of this section helped us to conduct the
malware similarity analysis on this dataset.

Fig. 5. Classification performance before and after filtering process. The results suggest
that the applied filtering mechanism improves the TPR by 10% and decreases the FPR
by 8.8%.

Code Reuse Analysis on APT Campaigns. One of our motivations behind
developing SCRUTINIZER was to enhance contemporary techniques to per-
form malware similarity analysis on unknown samples. In this experiment, we
tested SCRUTINIZER by using all the 3,000 unknown samples we discussed
in Sect. 3.4. We followed the steps we described in Sect. 2 to perform this experi-
ment. In this Section, we discuss two case studies: 1) a scenario where chunks of
codes were identified by our system to be shared by malware samples that had
been used by one single APT campaign, and 2) a scenario were code was shared
and re-used by multiple APT campaigns.

Intra-campaign Code Reuse Analysis. In the first case study, we discuss
how SCRUTINIZER can incorporate function-level similarity testing and auto-
matically reason about code reuse in a given sample. In our analysis, we found
a case4 which was identified to have function-level similarities with malware
specimens attributed to OceanLotus Vietnamese APT campaign.

The very initial malicious operation of this cyber-theft and espionage APT
campaign dates back to 2014, where a European corporation was compro-
mised [55]. Since then, this campaign has been continuously active with the
maximum number of operations in 2018. The most recent and known activity of
4 MD5: fcd7227891271a65b729a27de962c0cb.

142 O. Mirzaei et al.

this campaign has been focused on targeting the Wuhan government and Chi-
nese ministry of emergency management to steal COVID-19 related findings via
sending phishing emails [54].

Our automated system found 377 different functions from this sample with
18,125 lines of code. From this amount, SCRUTINIZER could discard 247
noisy functions which were up to 8,720 lines of code - i.e., around 48% of the
original decompiled code. Next, the remaining functions were assigned to 109
different clusters, where in the best case, 4 functions were grouped in one single
cluster. Our results show that this sample contains 105 different functions similar
to those functions that were seen in malicious specimens of the OceanLotus
APT campaign that was observed in the modeling phase. We cross-checked these
results with major anti-malware service providers. The sample was recognized
as Ocean Buffalo by CrowdStrike [53], or APT32 by FireEye [22].

Inter-campaign Code Reuse Analysis. In the second case study, we iden-
tified a sample5 that had function-level similarities with malware specimens
attributed to the Barium and Turla APT campaigns – two well-known Chinese
and Russian state-sponsored campaigns that have cyber-espionage and informa-
tion theft motives [65].

The Barium campaign commonly begins its attacks by gathering informa-
tion of potential victims through social engineering techniques, especially via
online social media. Multimedia and online game companies were attacked more
frequently by this campaign. The Turla campaign, also known as Waterbug by
Symantec [70], has targeted a wider range of users and sectors in over 45 different
countries. The threat intelligence report also shows that this campaign is one of
the most sophisticated APT campaigns that relies on a wide range of tools to
deliver its attacks [65].

Our system found 971 functions from this sample with 74,309 lines of code
overall. Also, it discarded 767 noisy functions which corresponded to 59,976 lines
of code (≈81% of the original decompiled code). Next, the remaining 204 func-
tions were assigned to 163 different clusters. Experimental results show that
this sample has 22 functions that are syntactically similar to those of malware
samples attributed to both the Barium and Turla campaigns. After further inves-
tigation, we discovered that this sample contains an open-source hacking code
known as Mimikatz [49] that has not only been used by these two campaigns,
but also by a number of other advanced malware campaigns [65].

Summary. Table 3 shows the list of all binaries that our system reported to
have similarities with specimens that were known from each advanced malware
(i.e., APT) campaign that existed in our knowledge base. We could verify the
veracity of our results by consulting online AV scanners and threat intelligence
reports. Some of these binary hashes were already reported as IoCs of known
APT campaigns. Others were cross-checked by retrieving the name of the mali-
cious operation or malware family and consulting the recent APT threat ency-

5 MD5: 276c28759d06e09a28524fffc2812580.

SCRUTINIZER: Detecting Code Reuse in Malware 143

clopedia [65]. The results included in Table 3 confirm that our tool can reason
about code reuse in unknown samples by relying on function-level similarities.

Specifically, a similarity score presented for each sample by our tool shows
how many functions an unknown sample has in common with already known
malware instances. Moreover, this score represents how frequently a function is
observed in each campaign. A low similarity score for an unknown malicious
binary shows that it has less shared functions with known malware specimens of
a specific campaign. On the other hand, a high similarity score indicates that the
unknown binary has more functions in common with known malware samples
that have been used by a malware campaign. Thus, the proposed approach to
perform similarity testing can be used in different ways depending on the goal
of the analysis. That is, if a human analyst aims at locating new and emerging
trends in malware samples, a lower score is more preferable. If, however, the ana-
lyst is looking for code reuse in unknown samples, a higher score is an indicator
of more overlaps.

Table 3. Campaign analysis result for a subset of samples that we could manually
verify using online threat reports and AV scanners.

MD5 #Functions Discarded functions (%) Assigned campaign: similarity (%) Real campaign

22d01fa2725ad7a83948f399144563f9 763 81.9 Turla: 58.0 Turla [69]

0d67422ba42d4a548e807b0298e372c7 225 55.1 GazaCybergang: 73.9 GazaCybergang [51]

655f56f880655198962ca8dd746431e8 188 66.5 GazaCybergang: 64.0 GazaCybergang [51]

ff8d92dfbcda572ef97c142017eec658 144 70.1 Barium: 38.5 Barium [65,69]

c11dd805de683822bf4922aecb9bfef5 220 65.9 Barium: 38.4 Barium [65,69]

aae531a922d9cca9ddca3d98be09f9df 558 61.6 OilRig: 43.7 OilRig [65,69]

6a7bff614a1c2fd2901a5bd1d878be59 588 59.0 OilRig: 40.6 OilRig [65,69]

a921aa35deedf09fabee767824fd8f7e 44 68.2 GazaCybergang: 41.5 GazaCybergang [65,69]

0e441602449856e57d1105496023f458 73 61.6 Turla: 35.3 Turla [69]

7f05d410dc0d1b0e7a3fcc6cdda7a2ff 220 65.9 Barium: 38.4 Barium [65,69]

557ff68798c71652db8a85596a4bab72 144 70.1 Barium: 38.5 Barium [65,69]

b0877494d36fab1f9f4219c3defbfb19 144 70.1 Barium: 38.5 Barium [65,69]

4 Discussion

In this section, we discuss the accuracy, robustness and potential deployment
costs of our approach.

Accuracy. The very first step of our pipeline involves mapping memory regions
from snapshots taken during dynamic analysis into Ghidra’s virtual memory
space and use this tool to decompile the code found in memory. Thus, any issues
that may happen during this step could impact the accuracy of our tool. In
addition, like any other machine learning approach, the accuracy of SCRUTI-
NIZER depends on the quantity of the data that is used to build the detection
models. In particular, a prerequisite in training a Siamese network is the avail-
ability of a large number of function pairs from different binaries. This process
requires extracting the corresponding syntactical features after constructing the
decompiled version of the binary. However, collecting a large volume of relevant

144 O. Mirzaei et al.

data is a non-trivial task since binary decompilation is an error-prone process on
malware binaries, and it could contribute to lower accuracy. Furthermore, our
experiments show that the AST construction method we used in this project can
also produce false positives. In particular, we empirically found that in specific
cases, ASTs produced by Clang showed similarities that were false positives.
As a result, there might be noise in the training data and this might affect
the function encoding process. To cope with this problem, we leveraged a post-
processing mechanism to carefully inspect the result of the encoding process,
and we performed hyper-parameter tunings to prefilter false positives. We note
that in practice, the post-processing operation needs to be constantly visited
and updated to keep the false positive rate in a manageable range.

Analysis Costs and Potential Bottlenecks. Our analysis of the performance
overhead revealed three sources of potential bottlenecks in the process. Recall
that our analysis relies on dynamic analysis which is inherently an expensive
operation in code analysis. Common evasion techniques could even increase this
cost by inserting stalling code or logic bombs and make the dynamic analy-
sis significantly less effective. The analysis framework we used in this project
allowed us to record the actual malicious behavior even with the presence of
logic and time bombs. However, this is a best-effort approach, and requires con-
stant improvement to maintain effectiveness which outside of the scope of this
paper. The second expensive task in this process is related to constructing the
training data for the Siamese network. This phase requires performing pair-wise
similarity testing across all the decompiled code instances. The similarity testing
on all functions in 1,000 decompiled code samples required around 4 h. However,
note that this process needs to be performed once in order to build the training
dataset, and subsequent incremental updates would not introduce signification
overhead. The third potential computational cost is related to the training pro-
cess where several parameters such as hyper-parameters and epochs need to be
considered for constructing the model. In this work, each of the sub-networks
were trained in 5 epochs in parallel, and the training process on around 1M
pairs of functions took approximately 36 min. We observed that the processing
time can dramatically increase when we incorporated larger pairs of functions.
However, the results do suggest that a larger number of pairs (e.g., 10M) did
not necessarily contribute to significantly more accurate results.

Practical Deployment. We posit that a number of useful activities can be per-
formed with our tool such as approximating the prevalence of emerging advanced
malware threats, filtering previously known binaries, or identifying the adoption
of new attack techniques across different campaigns. The proposed approach
to perform code reuse analysis would allow human analysts to locate emerging
trends by looking for code samples with lower similarity scores. For instance,
we automatically identified several variants of OceanLotus campaign by simply
looking for code samples with similarity score less than 15%. Furthermore, by
applying a higher similarity score, it is possible to perform scalable unsupervised
learning and group more relevant code based on their function-level similarity.

SCRUTINIZER: Detecting Code Reuse in Malware 145

We empirically showed that this approach works well in practice by analyzing
3,000 previously unknown samples (see Sect. 3).

5 Related Work

Binary Code Similarity Detection. Binary code similarity detection has
been applied to many applications, including code plagiarism detection [43,62],
malware family and lineage analysis [6,34], and vulnerability analysis [10] to
name a few.

State-of-the-art BCSD solutions heavily rely on a specific syntactic feature
of binary code extracted via static analysis such as control flow graphs (CFGs)
[8,19,23,60]. The majority of these solutions have low accuracy, especially when
it comes to advanced malware that leverages several anti-analysis techniques to
circumvent the static analysis. On the other hand, few solutions are proposed
that are more resilient against anti-analysis techniques such as obfuscation and
have considered semantics of binary codes to identify possible similarities. Nev-
ertheless, they have not been applied to malicious binaries. Contrary to these
solutions, SCRUTINIZER relies on syntactic features that are extracted from
decompiled memory snapshots taken during dynamic analysis.

Authorship Attribution. Previous studies have also explored different ways
through which users can be deanonymized based on their coding styles. Two
broad categories of methods have been investigated in academia to address this
problem that work either at the binary-level [11,47,61] or at the source code level
[1,12,16]. Binary-level methods, while fast and useful, work under the assump-
tion that a toolchain provenance is used to generate the binary, including a
specific compiler, operating system and source language. In contrast, code-level
methods are more flexible, specifically because coding styles of authors at the
source code level are not lost during compilation. Recent works have relied on
coding style features and have leveraged machine learning to develop more robust
mechanisms for code authorship attribution. For example, Abuhamad et al. [1]
have proposed a system that attributes code at a large scale effectively using deep
neural networks. Caliskan-Islam et al. have relied on random forests and syn-
tactic features from ASTs to de-anonymize code authors based on their coding
styles [2,12]. While these approaches are effective in attributing code to specific
authors, they are less effective when dealing with adversarial code that has been
decompiled and where coding style features such as the naming conventions for
variables have been lost. In comparison to existing authorship attribution work,
our work fills the gap and addresses the code similarity detection problem in code
that is only available as binary, and where source code needs to be extracted.

Malware Clustering. Automated malware clustering has received well-
deserved attention in the past as it helps to identify the type and severity of
the threat that each malware specimen constitutes. Also, it is useful in tracing
new trends in malware samples and creating detection signatures and removal
procedures. These approaches can be categorized into three main groups depend-
ing on their feature extraction strategy. The first category of approaches rely on

146 O. Mirzaei et al.

features that are extracted statically before the binary is executed. For example,
MutantX-S [32] is an automated tool that relies on code instruction sentences to
cluster malware samples. The second category of approaches leverage features
that are extracted at run-time, normally by running the sample in an emulated
environment. As an example, Bayer et al. [6] run each binary in a sandbox and
cluster malware specimens based on their behavioral profiles and how they inter-
act with the operating system. Finally, the third category makes use of features
that are extracted before and after the execution time. An example includes
DUET [31], a tool that relies on both static and dynamic features to cluster
malware binaries. Note that these tools are primarily interested in automati-
cally identifying to what family an unknown, obfuscated (or encrypted) sample
belongs to. They are not focused on coding patterns to be able to determine
campaign similarity or potential attribution.

6 Conclusion

In this paper, we presented an automated system for malicious code similarity
identification and campaign attribution. The system decompiles binaries of both
malicious and benign applications and encodes their functions using Siamese
networks. It then clusters function encodings into different groups and leverages
cluster tags created during clustering to facilitate the analysis of new samples
that anti-malware companies receive every day. We deployed SCRUTINIZER
in a real-world setting and it proved to be useful in both function filtering (i.e.,
reverse engineering) and code reuse analysis on APT campaigns. Using this
system, we were able to identify 12 samples that were previously unknown to us
and that we were able to correctly assign to well-known APT campaigns.

Acknowledgement. This work was partially-supported by National Science Founda-
tion (NSF) under grant CNS-1703454, and the Office of Naval Research (ONR) under
the “In Situ Malware” project. This work was also partially-supported by Secure Busi-
ness Austria.

References

1. Abuhamad, M., AbuHmed, T., Mohaisen, A., Nyang, D.: Large-scale and language-
oblivious code authorship identification. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pp. 101–114 (2018)

2. Afroz, S., Islam, A.C., Stolerman, A., Greenstadt, R., McCoy, D.: Doppelgänger
finder: taking stylometry to the underground. In: 2014 IEEE Symposium on Secu-
rity and Privacy, pp. 212–226. IEEE (2014)

3. APT trends report Q1 2020 (2020). https://securelist.com/apt-trends-report-q1-
2020/96826/. Accessed 05 July 2020

4. Baker, B.S.: On finding duplication and near-duplication in large software systems.
In: Proceedings of 2nd Working Conference on Reverse Engineering, pp. 86–95.
IEEE (1995)

https://securelist.com/apt-trends-report-q1-2020/96826/
https://securelist.com/apt-trends-report-q1-2020/96826/

SCRUTINIZER: Detecting Code Reuse in Malware 147

5. Baxter, I.D., Pidgeon, C., Mehlich, M.: DMS/SPL REG: program transformations
for practical scalable software evolution. In: Proceedings of 26th International Con-
ference on Software Engineering, pp. 625–634. IEEE (2004)

6. Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable,
behavior-based malware clustering. In: NDSS, vol. 9, pp. 8–11. Citeseer (2009)

7. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient
descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

8. Bindiff: a comparison tool for binary files. https://www.zynamics.com/bindiff.html
(2020). Accessed 05 May 2020

9. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification
using a “siamese” time delay neural network. In: Advances in Neural Information
Processing Systems, pp. 737–744 (1994)

10. Brumley, D., Poosankam, P., Song, D., Zheng, J.: Automatic patch-based exploit
generation is possible: Techniques and implications. In: 2008 IEEE Symposium on
Security and Privacy (SP 2008), pp. 143–157. IEEE (2008)

11. Caliskan, A., et al.: When coding style survives compilation: de-anonymizing pro-
grammers from executable binaries. arXiv preprint arXiv:1512.08546 (2015)

12. Caliskan-Islam, A., et al.: De-anonymizing programmers via code stylometry. In:
24th USENIX Security Symposium (USENIX Security 2015), pp. 255–270 (2015)

13. Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-based clustering based on
hierarchical density estimates. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G.
(eds.) PAKDD 2013. LNCS (LNAI), vol. 7819, pp. 160–172. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37456-2 14

14. APT Groups Target Healthcare and Essential Services. https://us-cert.cisa.gov/
ncas/alerts/AA20126A (2020). Accessed 05 May 2020

15. Dask: A flexible library for parallel computing in python. https://docs.dask.org
(2018). Accessed 05 May 2020

16. Dauber, E., et al.: Git blame who?: stylistic authorship attribution of small, incom-
plete source code fragments. Proc. Privacy Enhanc. Technol. 2019(3), 389–408
(2019)

17. DLL Files. https://www.dll-files.com (2020). Accessed 14 Mar 2020
18. Ducau, F.N., Rudd, E.M., Heppner, T.M., Long, A., Berlin, K.: SMART: semantic

malware attribute relevance tagging. CoRR abs/1905.06262 (2019). http://arxiv.
org/abs/1905.06262

19. Eschweiler, S., Yakdan, K., Gerhards-Padilla, E.: discovre: efficient cross-
architecture identification of bugs in binary code. In: NDSS (2016)

20. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for
discovering clusters in large spatial databases with noise. KDD 96, 226–231 (1996)

21. Feng, C., Li, T., Chana, D.: Multi-level anomaly detection in industrial control sys-
tems via package signatures and LSTM networks. In: 2017 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pp. 261–
272. IEEE (2017)

22. Advanced Persistent Threat Groups. https://www.fireeye.com/current-threats/
apt-groups.html (2020). Accessed 14 Mar 2020

23. Gao, D., Reiter, M.K., Song, D.: BinHunt: automatically finding semantic differ-
ences in binary programs. In: Chen, L., Ryan, M.D., Wang, G. (eds.) ICICS 2008.
LNCS, vol. 5308, pp. 238–255. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-88625-9 16

24. Ghidra: A software reverse engineering (SRE) suite of tools developed by NSA’s
Research Directorate. https://ghidra-sre.org (2020). Accessed 14 Mar 2020

https://www.zynamics.com/bindiff.html
http://arxiv.org/abs/1512.08546
https://doi.org/10.1007/978-3-642-37456-2_14
https://us-cert.cisa.gov/ncas/alerts/AA20126A
https://us-cert.cisa.gov/ncas/alerts/AA20126A
https://docs.dask.org
https://www.dll-files.com
http://arxiv.org/abs/1905.06262
http://arxiv.org/abs/1905.06262
https://www.fireeye.com/current-threats/apt-groups.html
https://www.fireeye.com/current-threats/apt-groups.html
https://doi.org/10.1007/978-3-540-88625-9_16
https://doi.org/10.1007/978-3-540-88625-9_16
https://ghidra-sre.org

148 O. Mirzaei et al.

25. Graziano, M., et al.: Needles in a haystack: mining information from public
dynamic analysis sandboxes for malware intelligence. In: 24th USENIX Security
Symposium (USENIX Security 2015), pp. 1057–1072 (2015)

26. Guo, T., Xu, Z., Yao, X., Chen, H., Aberer, K., Funaya, K.: Robust online time
series prediction with recurrent neural networks. In: 2016 IEEE International Con-
ference on Data Science and Advanced Analytics (DSAA), pp. 816–825. IEEE
(2016)

27. Han, X., Pasquier, T., Bates, A., Mickens, J., Seltzer, M.: UNICORN: runtime
provenance-based detector for advanced persistent threats. In: NDSS (2020)

28. Hardy, S., et al.: Targeted threat index: Characterizing and quantifying politically-
motivated targeted malware. In: 23rd USENIX Security Symposium (USENIX
Security 2014), pp. 527–541 (2014)

29. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

30. Hossain, M.N., et al.: SLEUTH: real-time attack scenario reconstruction from
COTS audit data. In: 26th USENIX Security Symposium (USENIX Security 2017),
pp. 487–504 (2017)

31. Hu, X., Shin, K.G.: Duet: integration of dynamic and static analyses for malware
clustering with cluster ensembles. In: Proceedings of the 29th Annual Computer
Security Applications Conference, pp. 79–88 (2013)

32. Hu, X., Shin, K.G., Bhatkar, S., Griffin, K.: Mutantx-s: scalable malware clustering
based on static features. In: 2013 USENIX Annual Technical Conference (USENIX
ATC 2013), pp. 187–198 (2013)

33. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, pp. 604–613 (1998)

34. Jang, J., Woo, M., Brumley, D.: Towards automatic software lineage inference. In:
22nd USENIX Security Symposium (USENIX Security 2013), pp. 81–96 (2013)

35. Jiang, L., Misherghi, G., Su, Z., Glondu, S.: Deckard: scalable and accurate tree-
based detection of code clones. In: 29th International Conference on Software Engi-
neering (ICSE 2007), pp. 96–105. IEEE (2007)

36. Targeted Cyberattacks Logbook. https://apt.securelist.com/#!/threats/ (2018).
Accessed 14 Mar 2020

37. Komondoor, R., Horwitz, S.: Using slicing to identify duplication in source code.
In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 40–56. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-47764-0 3

38. Kornblum, J.: Identifying almost identical files using context triggered piecewise
hashing. Digit. Invest. 3, 91–97 (2006)

39. Lastline. https://www.lastline.com (2021). Accessed 04 May 2021
40. Le Blond, S., Uritesc, A., Gilbert, C., Chua, Z.L., Saxena, P., Kirda, E.: A look at

targeted attacks through the lense of an NGO. In: 23rd USENIX Security Sympo-
sium (USENIX Security 2014), pp. 543–558 (2014)

41. Li, Y., et al.: Experimental study of fuzzy hashing in malware clustering analy-
sis. In: 8th Workshop on Cyber Security Experimentation and Test (CSET 2015)
(2015)

42. Li, Z., Lu, S., Myagmar, S., Zhou, Y.: CP-miner: a tool for finding copy-paste and
related bugs in operating system code. OSdi 4, 289–302 (2004)

43. Luo, L., Ming, J., Wu, D., Liu, P., Zhu, S.: Semantics-based obfuscation-resilient
binary code similarity comparison with applications to software plagiarism detec-
tion. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 389–400 (2014)

https://apt.securelist.com/#!/threats/
https://doi.org/10.1007/3-540-47764-0_3
https://www.lastline.com

SCRUTINIZER: Detecting Code Reuse in Malware 149

44. Masci, J., Bronstein, M.M., Bronstein, A.M., Schmidhuber, J.: Multimodal
similarity-preserving hashing. IEEE Trans. Pattern Anal. Mach. Intell. 36(4), 824–
830 (2013)

45. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 4, 308–320 (1976)
46. McInnes, L., Healy, J.: Accelerated hierarchical density based clustering. In: 2017

IEEE International Conference on Data Mining Workshops (ICDMW), pp. 33–42.
IEEE (2017)

47. Meng, X., Miller, B.P., Jun, K.-S.: Identifying multiple authors in a binary pro-
gram. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS,
vol. 10493, pp. 286–304. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66399-9 16

48. Milajerdi, S.M., Gjomemo, R., Eshete, B., Sekar, R., Venkatakrishnan, V.: Holmes:
real-time apt detection through correlation of suspicious information flows. In: 2019
IEEE Symposium on Security and Privacy (SP), pp. 1137–1152. IEEE (2019)

49. Mimikatz: an open-source application for veiwing and saving authentication cre-
dentials (2014). https://github.com/gentilkiwi/mimikatz. Accessed 05 May 2020

50. MITRE ATT&CK: a globally-accessible knowledge base of adversary tactics and
techniques based on real-world observations (2020). https://attack.mitre.org/.
Accessed 14 Mar 2020

51. Moonlight - Targeted attacks in the Middle East (2016). https://tinyurl.com/
45m3jtx8. Accessed 05 July 2020

52. Mueller, J., Thyagarajan, A.: Siamese recurrent architectures for learning sentence
similarity. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

53. Meet the threat actors: List of APTs and adversary groups (2019). https://www.
crowdstrike.com/blog/meet-the-adversaries/. Accessed 05 May 2020

54. Vietnamese Threat Actors APT32 Targeting Wuhan Government and Chinese
Ministry of Emergency Management in Latest Example of COVID-19 Related
Espionage (2020). https://tinyurl.com/7whx7ecr. Accessed 05 May 2020

55. Cyber espionage is alive and well: Apt32 and the threat to global corporations
(2017). https://tinyurl.com/54eact6v. Accessed 05 May 2020

56. Oh Song, H., Jegelka, S., Rathod, V., Murphy, K.: Deep metric learning via facility
location. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5382–5390 (2017)

57. Oh Song, H., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted
structured feature embedding. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 4004–4012 (2016)

58. Oliver, J., Cheng, C., Chen, Y.: TLSH-a locality sensitive hash. In: 2013 Fourth
Cybercrime and Trustworthy Computing Workshop, pp. 7–13. IEEE (2013)

59. Benchmarking performance and scaling of python clustering algorithms (2020).
https://hdbscan.readthedocs.io/en/latest/performance and scalability.html.
Accessed 05 May 2020

60. Pewny, J., Garmany, B., Gawlik, R., Rossow, C., Holz, T.: Cross-architecture bug
search in binary executables. In: 2015 IEEE Symposium on Security and Privacy,
pp. 709–724. IEEE (2015)

61. Rosenblum, N., Zhu, X., Miller, B.P.: Who wrote this code? Identifying the authors
of program binaries. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol.
6879, pp. 172–189. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23822-2 10

62. Sæbjørnsen, A., Willcock, J., Panas, T., Quinlan, D., Su, Z.: Detecting code clones
in binary executables. In: Proceedings of the Eighteenth International Symposium
on Software Testing and Analysis, pp. 117–128 (2009)

https://doi.org/10.1007/978-3-319-66399-9_16
https://doi.org/10.1007/978-3-319-66399-9_16
https://github.com/gentilkiwi/mimikatz
https://attack.mitre.org/
https://tinyurl.com/45m3jtx8
https://tinyurl.com/45m3jtx8
https://www.crowdstrike.com/blog/meet-the-adversaries/
https://www.crowdstrike.com/blog/meet-the-adversaries/
https://tinyurl.com/7whx7ecr
https://tinyurl.com/54eact6v
https://hdbscan.readthedocs.io/en/latest/performance_and_scalability.html
https://doi.org/10.1007/978-3-642-23822-2_10
https://doi.org/10.1007/978-3-642-23822-2_10

150 O. Mirzaei et al.

63. Schleimer, S., Wilkerson, D.S., Aiken, A.: Winnowing: local algorithms for doc-
ument fingerprinting. In: Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, pp. 76–85 (2003)

64. Scrutinizer: Detecting code reuse in malware via decompilation and machine learn-
ing (2021). https://github.com/OMirzaei/SCRUTINIZER. Accessed 04 May 2021

65. THREAT GROUP CARDS: A threat actor encyclopedia (2019). https://tinyurl.
com/bb8mt23k. Accessed 05 Oct 2019

66. ThreatMiner: Data Mining for Threat Intelligence (2020). https://www.threat
miner.org/index.php. Accessed 14 Mar 2020

67. Upchurch, J., Zhou, X.: Variant: a malware similarity testing framework. In: 2015
10th International Conference on Malicious and Unwanted Software (MALWARE),
pp. 31–39. IEEE (2015)

68. Verizon’s 2020 data breach investigations report (2020). https://tinyurl.com/
56m7m9ym. Accessed 05 May 2020

69. VirusTotal (2020). https://www.virustotal.com/gui/home/search. Accessed 05
June 2020

70. Waterbug: Espionage Group Rolls Out Brand-New Toolset in Attacks Against
Governments (2020). https://tinyurl.com/92s76xdn. Accessed 05 May 2020

71. Xu, X., Liu, C., Feng, Q., Yin, H., Song, L., Song, D.: Neural network-based graph
embedding for cross-platform binary code similarity detection. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pp. 363–376 (2017)

https://github.com/OMirzaei/SCRUTINIZER
https://tinyurl.com/bb8mt23k
https://tinyurl.com/bb8mt23k
https://www.threatminer.org/index.php
https://www.threatminer.org/index.php
https://tinyurl.com/56m7m9ym
https://tinyurl.com/56m7m9ym
https://www.virustotal.com/gui/home/search
https://tinyurl.com/92s76xdn

SPECULARIZER: Detecting Speculative Execution
Attacks via Performance Tracing

Wubing Wang1, Guoxing Chen1, Yueqiang Cheng3, Yinqian Zhang2(B),
and Zhiqiang Lin1

1 The Ohio State University, Columbus, OH 43210, USA
wang.11488@osu.edu, chen.4329@osu.edu, zlin@cse.ohio-state.edu

2 Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
yinqianz@acm.org

3 NIO Security Research, San Jose, CA 95134, USA
yueqiang.cheng@nio.io

Abstract. This paper presents SPECULARIZER, a framework for uncovering
speculative execution attacks using performance tracing features available in
commodity processors. It is motivated by the practical difficulty of eradicating
such vulnerabilities in the design of CPU hardware and operating systems and
the principle of defense-in-depth. The key idea of SPECULARIZER is the use
of Hardware Performance Counters and Processor Trace to perform lightweight
monitoring of production applications and the use of machine learning techniques
for identifying the occurrence of the attacks during offline forensics analysis.
Different from prior works that use performance counters to detect side-channel
attacks, SPECULARIZER monitors triggers of the critical paths of the specula-
tive execution attacks, thus making the detection mechanisms robust to different
choices of side channels used in the attacks. To evaluate SPECULARIZER, we
model all known types of exception-based and misprediction-based speculative
execution attacks and automatically generate thousands of attack variants. Exper-
imental results show that SPECULARIZER yields superior detection accuracy and
the online tracing of SPECULARIZER incur reasonable overhead.

1 Introduction

Speculative execution attacks exploit micro-architectural design flaws and side channels
in modern processors and enable unprivileged processes to exfiltrate sensitive informa-
tion across security boundaries. These attacks have seriously undermined the fundamen-
tal security assumptionsmade in the design of the operating systems and have been in the
spotlight since their very first public disclosure in early 2018. Themost prominent exam-
ples of speculative execution attacks are Meltdown [27] and Spectre [23], and later vari-
ants, such as Foreshadow [41], Micro-architectural Data Sampling (MDS) [31,37,43],
Load Value Injection (LVI) [42] are also well-known examples of such attacks.

In this paper, we apply the principle of defense-in-depth and propose SPECULAR-
IZER1, a software framework for uncovering speculative execution attacks using hard-
ware performance tracing features available in commodity processors, i.e., hardware

1 SPECULARIZER is a portmanteau of “Speculative” and “Polarizer”.

Y. Cheng—This work was mainly done at Baidu Research.

c© The Author(s) 2021
L. Bilge et al. (Eds.): DIMVA 2021, LNCS 12756, pp. 151–172, 2021.
https://doi.org/10.1007/978-3-030-80825-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80825-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-80825-9_8

152 W. Wang et al.

performance counters (HPC) and processor trace (PT). SPECULARIZER complements
existing defenses against speculative execution attacks, by offering a capability of log-
ging both architectural and micro-architectural behaviors of the monitored software to
enable forensic analysis and offline attack detection.

In contrast to prior work that detects cache side channels to identify speculative
execution attacks [19], which can be easily circumvented by attacks using alternative
side channels, SPECULARIZER is inspired by the following key observations: Although
speculative execution attacks may leverage a variety of micro-architectural side chan-
nels (e.g., TLBs, caches) to leak secrets from speculatively executed instructions, the
invariant of these attacks is the method with which the speculative execution can be
triggered. In exception-based attacks, speculative execution is triggered by exceptions,
which are either handled or suppressed; in misprediction-based attacks, speculative
execution is triggered either by control-flow misprediction or by misprediction in the
memory disambiguation. Therefore, SPECULARIZER utilizes the inevitable execution
patterns of exceptions and mispredictions as signatures.

We identify PT packets and HPC events that can reveal crucial information neces-
sary for attack detection, such as control-flow transfers for exception handling and TSX
aborts, mispredicted branch instructions, machine clears due to memory order conflicts,
etc. While each type of PT or HPC record alone is insufficient for reconstructing all
attack activities, collectively they offer greater insight into the micro-architectural level
behavior of the monitored applications. Therefore, we develop techniques to combine
HPC and PT data to construct execution traces. With these traces, we build classifi-
cation models using the Long Short Term Memory (LSTM) network to perform the
classification of attack and benign programs.

SPECULARIZER consists of two components: an online trace collection component
that is integrated into the operating system of a production machine, on which the
monitored application runs, and an offline attack detection component that performs
HPC and PT records parsing, trace processing, and trace classification, which are time-
consuming and hard to finish in real-time. In fact, rarely do HPC or PT-based monitor-
ing systems perform real-time analysis [14,51]. As such, SPECULARIZER is best suited
for VM or container-based cloud systems, where suspicious workloads from untrusted
cloud tenants are monitored on cloud servers and forensic analyses are performed on
separate servers to detect attack activities. While deferred attack detection does not pre-
vent the attacks from happening, it can trigger further investigation of attacks to identify
their sources and assess their consequences.

We have implemented a prototype of SPECULARIZER and evaluated its effec-
tiveness and efficiency in a lab setting. Specifically, to evaluate SPECULARIZER, we
develop parameterized models for each type of the speculative execution attacks we
aim to detect, and then automatically generate thousands of attack variants by tuning
the parameters of these models. With the data sets collected from both benign and attack
samples, the evaluation of SPECULARIZER suggests it has promising detection accuracy
while inducing reasonable performance overhead. The evaluation results also indicate
that SPECULARIZER significantly raises the bar for performing speculative execution
attacks even if the attackers understand the detection mechanism.

SPECULARIZER: Detecting Speculative Execution Attacks 153

Contributions. The paper makes the following contributions: ➀ SPECULARIZER is the
software tool that detects speculative execution attacks, by their triggers of speculative
execution rather than specific covert channels. ➁ SPECULARIZER provides new insights
of combined use of multiple performance tracing hardware features, e.g., PT and HPCs,
in the context of offline attack detection. ➂ The paper presents parameterized models
of speculative execution attacks and methods to automatically generate attack variants
with varying attack success rates. ➃ The paper presents a prototype implementation of
SPECULARIZER and empirically evaluates its selection of parameters, its effectiveness,
and performance overhead.

2 Background

Speculative Execution Attacks. A speculative execution attack contains the following
components [3]: Speculation primitive triggers speculative execution of instructions.
Disclosure gadget transmits information through a side channel. Disclosure primitive
reads the side-channel information that was transmitted by the disclosure gadget. As
such, a speculative execution attack can be performed in the following steps: ➀ exe-
cutes the speculation primitive to trigger speculative execution of instructions. ➁ uti-
lizes the speculative instructions (including the speculation primitive itself) to access
secrets across the security boundary; ➂ speculatively executes the disclosure gadget to
encode the secret value into the cache states; ➃ uses the disclosure primitive to decode
the secret data from cache states.

According to the speculation primitives, we classify speculative execution attacks
into the following three categories [11]. Misprediction-based attacks leverage branch,
Store-To-Load (STL), and memory-order buffer mispredictions as the speculation prim-
itive and performs attacks before the correct target is resolved. Exception-based attacks
and assistance-based attacks use exceptions (e.g. Page fault, General Protection fault,
etc.) and microcode assists (e.g. line-fill buffer, store buffer, and load port conflict [1],
etc.) as speculation primitive, respectively, and speculatively execute instructions before
they are handled by the processor.

Performance Tracing Hardware. Intel PT is a hardware feature available in Intel pro-
cessors since Broadwell. It is designed to record the information regarding the control-
flow transfers of software programs with very low performance overhead. The PT
hardware generates PT packets to reconstruct the timestamped control flow for a pro-
gram [17,45]. HPCs are a set of model-specific registers that can be used to count user-
selected processor architectural or micro-architectural events. Each HPC register can be
configured to count a specific event supported by the processor. At runtime, when the
specified event happens, the corresponding HPC counter will be incremented.

The HPCs have two different approaches for software to collect event samples.
First, when the performance monitor interrupt (PMI) is enabled in a specific counter,
a PMI will be triggered when the counter overflows, which provides the software with
an opportunity to handle the HPCs data [7]. However, the large volume of interrupts
dramatically increases the performance overhead. Second, to address the performance
issues, Intel introduces Precise Event-Based Sampling (PEBS), which can store the
events in a buffer (dubbed Debug Store (DS) area). Only one interrupt is triggered when
the buffer is almost full (determined by a threshold).

154 W. Wang et al.

3 Threat Model and SPECULARIZER Overview

Threat Model. All misprediction-based and exception-based attacks are in-scope of
this paper. Our method detects these two types of attacks by monitoring its execution
of the speculation primitives, which are either a branch instruction that takes time to
resolve its target address or a memory load that accesses data across the security bound-
ary. We consider MDS and LVI attacks that are triggered by exceptions, which are
the most common cases in current state-of-the-art attack examples, as exception-based
attacks, and hence SPECULARIZER will detect those attacks.

SPECULARIZER Architecture. The overall architecture of SPECULARIZER is shown
in Fig. 1, which consists of two components:Online Trace Collection andOffline Attack
Detection. Online Trace Collection is an online component that runs on a production
system, running as system programs, which produces execution traces collected using
PT and HPC. Offline Attack Detection is a component that runs offline that includes two
parts (i.e. Trace Processing and Attack Detection), possibly on a separate machine, and
performs analysis of the collected traces to identify speculative execution attacks.

Fig. 1. Architectural of SPECULARIZER.

Online Trace Collection. To detect exception-based speculative execution attacks,
SPECULARIZER monitors exceptions using PT. When the attacks use TSX to suppress
exceptions, PT packets can record TSX aborts; when the attacks handle the exceptions
directly, PT packets can record control-flow transfers that correspond to exception han-
dling.

To detect misprediction-based attacks, SPECULARIZER needs to monitor the pat-
tern of mispredictions, which includes misprediction in control-flow predictors (branch
prediction units like BTB, PHT, and RSB) and data-flow predictors (the memory dis-
ambiguator in load/store buffers). However, PT is insufficient to monitor these micro-
architectural events. HPCs are utilized instead. The limitation of using HPCs to monitor
misprediction is that they are asynchronous with execution context, which is insufficient
for detecting misprediction-based attacks. To address this problem, SPECULARIZER uti-
lizes Intel PT to provide the execution contexts.

Offline Attack Detection. During the execution of benign programs, exceptions, TSX
transaction aborts, and misprediction in control-flow and data loading is normal. There-

SPECULARIZER: Detecting Speculative Execution Attacks 155

Fig. 2. Architectural and workflow of trace collection.

fore, we cannot simply detect speculative execution attacks using exception handling/-
suppressing and branch/data misprediction as signatures. Instead, patterns of exceptions
and mispredictions must be learned from both benign and attack programs and utilized
to detect attacks in the program to be monitored.

4 Trace Collection

The overall workflow of trace collection (shown in Fig. 2) is as follows: 1© SPECULAR-
IZER enables PT and HPC to monitor the execution of the target program and specify
the memory buffer to record the execution traces. 2© When the memory buffer is full, an
interrupt is triggered. 3© After replacing the full buffer with an empty one for the hard-
ware to continue recording data, the interrupt handler sends a signal to the userspace
data collector. 4© Upon receiving the signal, the data collector reads data from the full
buffer. 5© Finally, the data collector saves the collected data into files.

Collecting Traces from HPC. To gain visibility into micro-architectural events,
SPECULARIZER activates HPCs to monitor branch mispredictions (e.g. direct,
indirect branches) and machine clear events caused by memory order conflicts
by activating the events BR_MISP_RETIRED.ALL_BRANCHES and MACHINE_
CLEARS.MEMORY_ORDERING. SPECULARIZER uses the PEBS tomonitor the branch
misprediction event and PMI to monitor the memory order conflict event, as the mem-
ory order conflict event is not available in PEBS mode. These two events are monitored
simultaneously on different HPCs. When monitoring in the PMI mode, the overhead
mainly comes from PMI handling. When monitoring in the PEBS mode, although the
interrupts are significantly reduced, there are still two sources of overhead: First, writing
each PEBS record into the DS area takes about 200 ns [8]. Second, DS-area-overflow
interrupts need to be generated when the DS area is full (maximum size is 4 MB). Thou-
sands of interrupts need to be generated during trace collection for one application.

Two performance optimization were implemented: First, SPECULARIZER imple-
ments a ring buffer [51] to cache the data in the DS area. Specifically, SPECULARIZER

allocates two buffers for the DS area to reduce the overhead introduced by dumping data
inside the interrupt handler. When the data in one of the buffers reaches the threshold,

156 W. Wang et al.

SPECULARIZER switches the buffer used by the DS area upon receiving the interrupt.
A signal is sent to the user-space component of SPECULARIZER to dump data from the
full buffer. Second, to reduce the number of generated PEBS records, SPECULARIZER

tunes the PEBS sampling rate (ρ), which indicates the fraction of events (1/ρ) sampled
by PEBS to create PEBS records. ρ > 1 means PEBS are sampled less frequently with
a higher performance overhead and hence some branch misprediciton information is
missing. We will evaluate the impact of ρ on detection accuracy in Sect. 8.

Collecting Traces from PT. To collect control-flow transfer and timestamp informa-
tion, SPECULARIZER activates Intel PT by setting the following control bits of the
MSR IA32_RTIT_CTL: TraceEn (to enable PT), BranchEn (to generate control-
flow related packets, e.g., TNT, TIP & FUP), OS & User (to monitor both user-mode
processes kernel threads), TSCEn, MTCEn & CYCEn (to generate timestamp related
packets, e.g. TSC, MTC & CYC).

The overhead incurred in generating PT packets is negligible. The main overhead
comes from handling the memory buffer that stores the PT packets when it is full.
Unlike PEBS’s DS area, which has a fixed size (i.e., 4MB), the memory buffer used
by PT can vary. Specifically, PT uses a Table of Physical Addresses (ToPA) to store all
generated packets, which is a linked list that links multiple output regions. Therefore,
the total size of the ToPA is flexible, and the number of generated interrupts can be
controlled to decrease the runtime performance overhead.

5 Trace Processing

SPECULARIZER processes HPC events and PT packets offline, possibly on a machine
that is different from the host that implements the SPECULARIZER monitors. The
exception-based output sequences are generated using PT traces only, and the
misprediction-based output sequences are extracted with information from both PT
traces and HPC records.

5.1 Processing Exceptions

Among the three approaches to tackling exceptions in exception-based speculative exe-
cution attacks, namely handling exceptions, suppressing exceptions with TSX, and sup-
pressing exceptions with branch misprediction, the first two cases trigger an indirect
control-flow transfer. Therefore, SPECULARIZER extracts exception-triggered control
flow transfers in collected PT records. The third case is categorized as misprediction-
based and discuss later.

Extracting Addresses of Exceptions. When the exception is handled by exception
handlers, the control flow will transfer from user space to kernel space. With the PT
packets, we can extract all kernel traces—a sequence of instructions in the kernel space.
Afterwards, by comparing those traces with the kernel symbol table, the kernel traces
can be used to identify different types of exceptions.

When the exception is suppressed by TSX transactions, the exception type is not
revealed through kernel traces. Nevertheless, the exception is recorded by the MODE

SPECULARIZER: Detecting Speculative Execution Attacks 157

packet which has a field called TXAbort, with its value as 1. The addresses of the
instructions that trigger TXAbort are recorded by the FUP packet that follows.

Extracting Timestamps of Exceptions. PT can be used to recover the timestamp
of exceptions, as PT records the following time-related packets: Timestamp Counter
(TSC) packets provide the wall-clock time (wc); Mini Time Counter (MTC) packets
are generated periodically based on the core-crystal clock (ccc); a TMA packet is gen-
erated immediately after each TSC packet, with a common timestamp copy (ctc) value
in its payload; a Cycle Accurate (CYC) packet is generated immediately preceding TIP
packets and provides the accurate ctc value since the last CYC packet. To extract
exception timestamp, SPECULARIZER calculates ccc for each TIP packet based on the
relationship between these time-related packets [7], as PT generates a TIP packet when
an exception is raised.

Output. SPECULARIZER analyzes each PT trace offline, identifies and records all
exceptions, the virtual address of the instruction that triggers it, as well as the times-
tamps of the identified exceptions. Two parameters, δ and μ, were involved in the data
output: PT traces are segmented into windows of δ CPU cycles, and the attack detection
algorithm runs over the traces in each window.

The output of this step is a set of sequences of two tuples, which is denoted as
Xek = [(c1, t1), (c2, t2), · · · , (cn, tn)], where ek is the virtual address of the instruction
that triggers the exception, ci indicates whether exists an exception of the ith occurrence
of the virtual address ek, ti is the timestamp of its occurrence, and μ is the length of
each sequence, which is the input of attack detection model in Sect. 6. For each δ-cycle
window, one or multiple sequences are gathered: if the total number of exceptions is
greater than μ, a new sequence is created; a sequence less than μ is padded to μ with
(0, 0). We will evaluate the impact of different values of δ and μ on the effectiveness of
the detection algorithm in Sect. 8.

5.2 Identifying Branch and Data Misprediction

SPECULARIZER identifies branch and data misprediction from the recorded HPC
events. Particularly, SPECULARIZER first extracts the timestamp of each mispredic-
tion event from the HPC records, then extracts the timestamp of each branch instruc-
tion from the PT traces. Finally, by aligning the timestamp information from the HPC
records and PT traces, SPECULARIZER outputs traces of correctly predicted and mis-
predicted branches for attack detection.

HPC Records Parsing. SPECULARIZER parses the HPC records and identifies the
records that are related to either branch misprediction or data misprediction, and then
outputs a sequence of two tuples: [(c1, t1), (c2, t2), · · · , (cn, tn)], where ci is the event
(i.e., the branch misprediction or data misprediction) of the ith occurrence of the mis-
prediction and ti is its timestamp. The accuracy of misprediction information could
depend on the PEBS overflow threshold ρ discussed in Sect. 4.

PT Trace Reconstruction. SPECULARIZER first reconstructs the program execution
trace and the timestamp value of each branch with packets generated by the PT hard-
ware. Meanwhile, PT timestamp packets are used to reconstruct the timestamp of each

158 W. Wang et al.

branch instruction using the method described in Sect. 5.1. By combining program exe-
cution trace with the timestamp information, SPECULARIZER outputs a sequence of
two tuples: [(b1, t1), (b2, t2), · · · , (bn, tn)], where bi is the virtual address of the ith
occurrence of the branch and ti is the timestamp when the branch is executed.

HPC and PT Alignment. SPECULARIZER aligns HPC records with the control-flow
transfer information collected from PT to attribute HPC records to a specific branch
of the program. The alignment can be performed by matching the timestamp value ti
in the two sequences. Particularly, for each element (ck, tk) in the HPC sequence, we
search the PT sequence to find an element with index i that satisfies ti ≤ tk < ti+1.
Then we associate (ck, tk) with bi.

Output. For each δ-cycle window, each branch instruction bk, SPECULAR-
IZER outputs a set of sequences of two tuples, which is denoted as Xbk =
[(c1, t1), (c2, t2), · · · , (cn, tn)], where ti is the timestamp when the ith execution of the
branch bk, ci indicates whether there is a misprediction and the misprediction type (i.e.
branch or data) in the ith execution of this branch, and μ is the length of the sequences.

6 Attack Detection

Given the traces produced in the previous section, SPECULARIZER uses the LSTM to
extract the temporal information of the traces for attack detection. SPECULARIZER uses
four detection models to detect four different attack types, which are exception-based
attacks, misprediction-based attacks exploiting BTB/PHT, RSB, and memory disam-
biguator, respectively. These four detection models share the same layout: one LSTM
layer and one Dense layer. Particularly, the detection model inputs the traces to the
LSTM layer and outputs the likelihood for the trace to be an attack (between 0 and 1)
from the Dense layer.

An end-to-end construction of SPECULARIZER, therefore, works as follows: (1) for
every program monitored, both HPC and PT traces are collected and processed; (2) all
processed traces for the program are classified by all four models. If one of the models
classifies any of the traces as “attack” with a likelihood higher than a threshold α, the
program is labeled by SPECULARIZER as performing speculative execution attacks.

7 Attack Variants Generation

To systematically evaluate how accurate SPECULARIZER can detect speculative exe-
cution attacks, we produce a data set of attack variants. To do so, we first propose
parameterized models for speculative execution attacks and then systematically tuning
the parameters of these models to generate a set of attack variants.

7.1 Exception-Based Attack Variants

Modeling Attacks. The attack model of exception-based speculative execution attacks
is described in Fig. 3 (a), which depicts the timestamps of exceptions that happened at

SPECULARIZER: Detecting Speculative Execution Attacks 159

Fig. 3. Attack models for (a) exception-based attacks and (b) misprediction-based attacks.

Table 1. Relationship between Na and p in exception-based attacks.

Success Exception type

rate (p) US RW NM BR GP P LFB LP LVI

10% 1 1 17,000 1 10,000 300 3 1 4,000

30% 1 1 80,000 1 18,000 30,000 3 1 15,000

50% 2 1 130,000 1 58,000 60,000 3 1 28,000

80% 2 1 300,000 1 120,000 140,000 3 2 68,000

85% 3 1 400,000 1 140,000 180,000 3 2 86,000

90% 3 1 1,000,000 1 180,000 240,000 4 4 110,000

95% 4 1 1,300,000 1 300,000 400,000 8 6 140,000

a specific virtual address of the monitored program; each dot on the timeline represents
the occurrence of an exception. Na is the number of exceptions in a cluster that any two
consecutive exceptions are no more than La cpu cycles apart.

To understand the practical implication of Na and La, we performed an empirical
evaluation of these two parameters using the Proof-of-Concept (PoC) code provided by
Canella et al. [11]. We executed each of the PoC 10, 000 times when the system is idle
and report the relationship between minimum Na and the success rate (p) in Table 1.
When the system is busy, the Na increases for the same p. Therefore, we only present
the data when the system is idle in Table 1. As we see from the result, when utilizing
different speculation primitives, to have p ≥ 95%, Na ranges from 1 to 1,300,000.

We also measured the relationship between La and p. When FLUSH+RELOAD
is selected as the disclosure primitive, it takes at least 150, 000 CPU cycles to finish
reloading 255 elements (the minimum for encoding one byte). Therefore, with Na =
100, we select La from 150K, 250K, 350K, 450K, 550K, 650K, 750K cycles. The
experiment results suggest that the variation of La does not have an observable effect
on p.

Generating Attack Variants. For each type of speculation primitives (e.g. #PF, #GP,
etc.), we generate one attack variant for each of the following 23 value ranges for Na:
{[1, 1], [2, 2], [3, 3], [4, 4], [5, 5], [6, 6], [7, 7], [8, 8], [9, 9], [10, 10], [11, 20], [21,
30], [31, 40], [41, 50], [51, 60], [61, 70], [71, 80], [81, 90], [91, 100], [1,000, 10,000],
[10,001, 100,000], [100,001, 1,000,000], [1,000,001, 2,000,000]}. In all attack variants,

160 W. Wang et al.

La was chosen from 150K, 250K, 350K, 450K, 550K, 650K, 750K cycles. For each
variant, Na was chosen uniformly at random within the corresponding range.

Therefore, in total 9 × 7 × 23 = 1449 attack variants were generated. Then we
created 3 separate data sets from these samples. Specifically, we first selected three
thresholds (i.e., 85%, 90%, and 95%) for the attack success rate p, as attack variants
with low p are meaningless, which will be discussed in Sect. 8. Second, for each p and
each type of speculation primitives, we determine the minimum Na such that attack
variants with equal or greaterNa yield attack success rates larger than the corresponding
p (from Table 1). As such, the three data sets have 476, 448, and 399 attack variants,
respectively.

7.2 BTB/PHT Misprediction Variants

Modeling Attacks. To perform a successful misprediction-based speculative execution
attack against BTB (e.g., Spectre-BTB) and PHT (e.g., Spectre-PHT), one needs to train
(poison) the prediction unit in a loop multiple times before performing the attack to
retrieve one byte of data [23]. This training can be performed either from the same
address space or cross different address spaces [11]; moreover, the training can be per-
formed either in-place or out-of-place [11]. Our detection target is the process that per-

Table 2. The success rate of misprediction-based attacks.

BTB/PHT

Nt Lt Na La

350 450 550 650 750 150K 250K 350K 450K 550K

1 0.13 0.46 0.52 0.65 0.38 1 0.20 0.21 0.20 0.21 0.25

2 0.72 0.95 0.99 0.99 0.98 3 0.48 0.87 0.90 0.86 0.89

3 0.81 0.99 0.99 0.99 0.98 5 0.46 0.87 0.89 0.91 0.92

4 0.81 0.99 0.98 0.99 0.98 10 0.49 0.90 0.91 0.94 0.95

5 0.83 0.99 0.98 0.98 0.98 30 0.52 0.96 0.96 0.95 0.95

6 0.80 0.99 0.99 0.98 0.97 50 0.57 0.96 0.95 0.96 0.95

7 0.81 0.99 0.99 0.99 0.98 100 0.51 0.95 0.94 0.96 0.96

RSB STL

Na La Na La

150K 250K 350K 450K 550K 150K 250K 350K 450K 550K

10 0.00 0.00 0.00 0.00 0.00 10 0.00 0.00 0.00 0.00 0.00

100 0.00 0.00 0.00 0.05 0.06 100 0.00 0.00 0.01 0.01 0.02

1,000 0.13 0.25 0.30 0.33 0.33 1,000 0.07 0.17 0.14 0.05 0.05

10,000 0.47 0.81 0.94 0.96 0.96 10,000 0.19 0.30 0.62 0.67 0.74

20,000 0.83 0.96 0.97 0.98 0.98 20,000 0.72 0.86 0.90 0.90 0.91

30,000 0.91 0.97 0.98 0.98 0.98 30,000 0.90 0.95 0.97 0.97 0.96

50,000 0.97 0.98 0.98 0.98 0.97 50,000 0.98 0.99 0.99 0.98 0.98

SPECULARIZER: Detecting Speculative Execution Attacks 161

forms the training, regardless of whether it aims to perform same-address-space/cross-
address-space or in-place/out-of-place attacks.

Therefore, the attack model of different types of misprediction-based speculative
execution attacks is described in Fig. 3(b), which depicts the timestamps of branch/data
prediction happened at a specific virtual address of the monitored program; each dot on
the timeline represents the occurrence of one prediction. There are four parameters: Na

is the total number of attack attempts, La is the time interval between an attack attempt
and the next training phase (in cpu cycles),Nt is the number of training attempts in each
training phase, and Lt is the time interval between two consecutive training attempts.

To measure the parameters of the model, we used the PoC from Kocher et al. [23]
and Canella et al. [11]. First, we tested the relationship between the occurrence of
branch misprediction when the “attack” is performed and the success rate of the attack
by leveraging the HPC event. The result shows that whenever the branch mispredic-
tion occurs, the attack can always have a 100% attack success rate. This is because the
speculative window caused by BTB/PHT misprediction is large enough to load secret
into the microarchitecture [52]. Therefore, an occurrence of a branch misprediction is
equivalent to a successful attack.

Next, we evaluate how Nt and Lt affect the success rate of triggering branch mis-
prediction. In the experiments described below, Na = 1 and La = 150K cycles, and the
result is shown in the BTB/PHT portion of Table 2. Each Lt is the CPU cycles (starting
from the minimum value 350) and Nt enumerates each integer between 1 and 7 (inclu-
sive). Each number in the table is the attack success rate in 10, 000 trials. As we see
from the table, when Lt ≥ 450 and Nt ≥ 2, p is greater than 95%.

Finally, we evaluated how Na and La affect the attack success rate (p). In these
experiments, we set Nt = 1 and Lt = 350 cycles, because this pair of Nt and Lt has
the worst p, which is the best scenario for analyzing the effects of Na and La. The result
in Table 2 shows that larger Na has greater p. La has very little impact on p: For La

between 250k and 550k CPU cycles, p is greater than 95% when Na > 30. When La is
large enough (e.g. La > 450k CPU cycles), La has no observable effect on p.

Generating Attack Variants. For each type of speculation primitives (e.g., BTB sa-ip,
PHT ca-ip, etc.), we generate one attack variant for each combination of Nt, Na, Lt,
and La. The values of Nt and Na are sampled uniformly at random from the following
14 value ranges: {[1, 1], [2, 2], [3, 3], [4, 4], [5, 5], [6, 6], [7, 7], [8, 8], [9, 9], [10, 10],
[11, 20], [21, 30], [31, 50], [51, 100]}; The values of Lt are chosen from {350, 450,
550, 650, 750} CPU cycles; and the values of La are chosen from: {150K, 250K, 350K,
450K, 550K} CPU cycles. Therefore, in total 14× 14× 5× 5× 2× 4 = 39, 200 attack
variants were generated. With the similar approach described in Sect. 7.1, we created 3
separate data sets with 37,904, 37,544, and 36,968 attack variants, respectively.

7.3 RSB and STL Misprediction Variants

Modeling Attacks. Spectre-RSB [11] and spectre-STL [11] exploits RSB and the mem-
ory disambiguator to trigger misprediction. In these two attacks, because RSBs can be
poisoned by push and pop instructions, which is difficult to monitor using HPC and
PT, and the memory disambiguator can be triggered simply by load instructions, which

162 W. Wang et al.

does not need training phase. Therefore, we use the model described in Fig. 3(a) to
model these attacks.

To measure the impact of the parameters of the model on the success rate of the
attacks, we used the PoC released with the published paper [11]. Using HPC events, we
tested the relationship between p with Na and La, respectively. Tested La and Na start
from the minimum ones, 150K and 1, respectively. The results are shown in Table 2.
For Spectre-RSB, the value of Na must be greater than 10, 000 for p to be larger than
90%. For Spectre-STL, the value ofNa must be greater than 20, 000 to achieve a similar
success rate. For both attacks, La does not seem to play a significant role.

Generating Attack Variants. For each of RSB and memory disambiguator, we gen-
erated one attack variant for each of the following 15 value ranges for Na:{[1, 10],
[11, 100], [101, 1,000], [1,001, 2,000], [2,001, 3,000], [3,001, 4,000], [4,001, 5,000],
[5,001, 6,000], [6,001, 7,000], [7,001, 8,000], [8,001, 9,000], [9,001, 10,000], [10,001,
20,000], [20,001, 30,000], [30,001, 50,000]} and 5 values for La: {150K, 250K, 350K,
450K, 550K}. In each variant, Na was chosen uniformly at random during run-time
with the corresponding value range. Therefore, in total 15×5×2 = 150 attack variants
were generated. With the similar approach described in Sect. 7.1, we created 3 separate
data sets with 21, 20 and 14 attack variants, respectively.

8 Evaluation

In this section, we evaluate the detection accuracy and performance of SPECULARIZER.
The data sets used in the evaluation are collected in the following approaches: The
benign programs are selected from GNU Binutils2 and SPEC benchmark 2006. The
attack samples are drawn from the attack variants discussed in Sect. 7. The experiments
were conducted on desktops with Intel Core i7-7700 Processors and 32GB RAMs. 64-
bit Ubuntu 16.04.6 LTS operating systems with the kernel version 5.4.0 were installed
on the desktops.

8.1 Evaluation of SPECULARIZER’s Parameters

There are a few parameters that can be tuned for SPECULARIZER: ➀ In the collec-
tion phase, the PEBS sampling rate (ρ) specifies the accuracy of branch misprediction
records. We collected traces with 4 different ρ values: 1, 3, 5, 10. ➁ In the trace pro-
cessing phase, the window size δ and trace length μ determine how the collected HPC
and PT data are segmented for the LSTM algorithm to work on. We particularly picked
two window sizes δ, 10 million CPU cycles and 100 million CPU cycles, and two trace
lengths, 500 and 1000 data points. ➂ The parameter we use to select training data set
is the success rate p of the attack variants, which can be chosen from 85%, 90%, and
95%.

2 https://www.gnu.org/software/binutils/.

https://www.gnu.org/software/binutils/

SPECULARIZER: Detecting Speculative Execution Attacks 163

Table 3. Data sets for parameter evaluation.

Index Window size δ Trace length μ Sample ρ Success rate p

1 10M 1000 1 95%

2 100M 1000 1 95%

3 100M 500 1 95%

4 100M 1000 3 95%

5 100M 1000 5 95%

6 100M 1000 10 95%

7 100M 1000 1 90%

8 100M 1000 1 85%

In this section, we analyze how these parameters affect the detection results. We
created 8 data sets, whose parameter configuration is shown in Table 3. Each data set
contains four groups of traces; each group is used to evaluate one LSTM model, as
specified in Sect. 6. In each group, around 30, 000 benign traces and 30, 000 attack
traces were collected. Then the traces in each group are randomly split into the training
set (80%) and a testing set (20%).

By running the LSTM classification, the algorithm outputs a class label (“benign”
or “attack”) for each trace together with the likelihood between 0 and 1. We selected
a threshold α of the likelihood, such that SPECULARIZER alerts the detection of an
“attack” trace when the LSTM classifier outputs “attack” with a likelihood greater than
α. Two values were selected for α, 0.5 and 0.75. The accuracy is evaluated using the
F1 scores when α = 0.5 and when α = 0.75. A high F1 score suggests a balanced
precision and recall. Here recall is defined as the percentage of detected attack traces in
all attack traces and precision is defined as the percentage of correctly detected attack
traces in all detected attack traces.

PEBS Sampling Rate ρ. We only evaluated ρ for misprediction-based attacks, because
the detection of exception-based attacks does not need HPC. The data sets we used
in this test are (2), (4), (5), and (6) (as shown in Table 3), where the window size (δ)
is selected as 100 million cycles, trace size (μ) is selected as 1000, and p > 95% for
attack variants selected in the training/testing set. The result is shown in Table 4. We see
from the table that ρ only affects the detection of BTB/PHT-based attacks. Specifically,
only when ρ ≤ 3, F1 scores yield good detection accuracy (F1 score greater than 90%).
In contrast, regardless of the ρ value, the detection accuracy for RSB and STL-based
attacks is high. This is because losing branch misprediction information due to larger ρ
values is more critical to detecting attacks that require training.

Window Size δ. To evaluate the effect of δ, we used data set (1) and (2), where for both
data sets ρ = 1, p > 95%, and μ = 1000. For each window size (δ), we evaluate the
F1 score when the threshold is 0.5 and 0.75 and the result is shown in Table 5, which
suggests δ does not have a strong impact on the detection accuracy.

164 W. Wang et al.

Table 4. Impact of PEBS sample rate ρ.

Misprediction-based PEBS sampling rate ρ

1 3 5 10

F1 (0.5) F1 (0.75) F1 (0.5) F1 (0.75) F1 (0.5) F1 (0.75) F1 (0.5) F1 (0.75)

BTB/PHT 0.977 0.977 0.910 0.909 0.716 0.715 0.593 0.593

RSB 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

STL 0.993 0.991 0.974 0.971 0.955 0.954 0.913 0.911

Table 5. Impact of window size δ, trace length μ and threshold of attack success rate p.

Window Size δ (CPU Cycles) Trace length μ (elements) Attack Success Rate Threshold p

10M 100M 500 1000 0.85 0.90 0.95

F1 (0.5) F1 (0.75) F1 (0.5) F1 (0.75) F1 (0.5) F1 (0.75) F1 (0.5) F1 (0.75) F1 (0.5) F1 (0.75) F1 (0.5) F1 (0.75) F1 (0.5) F1 (0.75)

Misprediction-based BTB/PHT 0.963 0.962 0.977 0.977 0.969 0.970 0.977 0.977 0.976 0.976 0.976 0.975 0.977 0.977

RSB 0.992 0.992 1.0 1.0 0.997 0.997 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

STL 0.992 0.993 0.993 0.991 0.994 0.995 0.993 0.991 0.991 0.991 0.990 0.989 0.993 0.991

Exception-based 0.945 0.937 0.960 0.955 0.936 0.938 0.960 0.955 0.961 0.960 0.959 0.956 0.960 0.955

Trace Length μ. The evaluation utilized data set (2) and (3), with ρ = 1, p ≥ 95%
and δ = 100M cycles. The result is presented in Table 5, which means μ = 500 or
μ = 1000 does not affect the detection accuracy dramatically.

Success Rate Threshold p. The data sets used in this evaluation are (2), (7), and (8),
with ρ = 1, μ = 1000 and δ = 100M cycles. The result shown in Table 5 suggests that
p does not have much impact on the detection accuracy.

Classification Likelihood Threshold α. The result shown in Table 4 and Table 5 sug-
gests that α = 0.5 or α = 0.75 does not affect F1 score. Thus, we chose α = 0.5 for
the following evaluation.

Summary: In parameters ρ, δ, μ, p, and α; only ρ has a significant impact on detec-
tion accuracy of attacks that exploit BTB/PHT.

8.2 Evaluation of Detection Accuracy

We evaluated the detection accuracy of the LSTM models trained using data set (4)
in Table 3. Using these parameters, in the following experiments, we evaluate the mod-
els’ capability of detecting various attack variants. Because the traces that are classified
as benign all have a precision that is close to 100%, the F1 score does not provide more
information than recall, or true positive rate (TPR). Therefore, we use TPR as the metric
for evaluating detection accuracy, which is defined as the percentage of correctly clas-
sified traces among all traces that are classified as attacks. The results are represented
in Fig. 4, while the blue line is the TPR and the red line is the attack success rate p. In
the cases where TPR > p means the probabilistic to detect the attack is higher than the
secret been leaked.

Exception-Based Attacks. We collected 11, 700 traces from all types of exception-
based variants we generated and split them into separate groups according to their Na

SPECULARIZER: Detecting Speculative Execution Attacks 165

value. Then we perform classification on each of the groups and show the results in
Fig. 4(a). In this figure, the X-axis is the value of Na, the red line is the attack success
rate p and the blue line is the TPR. When Na = 4, TPR = 99.1%; when Na > 10,
TPR ≥ 99.9%; but when Na ≤ 3, TPR drops to 0, which means we were not able to
detect exception-based attacks with fewer than 4 attempts within a time window of 100
million CPU cycles.

Misprediction-Based Attacks on BTB/PHT. We collected 980, 000 traces from the
BTB/PHT attack variants. To evaluate SPECULARIZER with varying Nt, Na, Lt, and
La values, we split the traces accordingly. The results are shown in Fig. 4 (b), Fig. 4 (d),
Fig. 4 (c) and Fig. 4 (d), respectively. As we see from these figures, SPECULARIZER can
detect attack variants with Nt ≥ 2, Na ≥ 3, 350 ≤ Lt ≤ 750 CPU cycles, and 150K ≤
La ≤ 550K CPU cycles with TPR ≥ 90%.

Misprediction-Based Attacks on RSB and Memory Disambiguator. We collected
7, 500 traces from attack variants exploiting RSB and memory disabmiguators. To eval-
uate SPECULARIZER with varying La and Na values, we split the traces accordingly.
The results are presented in Fig. 4 (g), Fig. 4 (i), Fig. 4 (f), and Fig. 4 (h), respectively.
As we see from these figures, SPECULARIZER can detect attack variants with 150K
≤La ≤ 550K cpu cycles with TPR > 80%. TPR increases almost monotonically when
Na increases. SPECULARIZER can detect attack variants when Na > 3000 with TPR
> 80%. It is worth noting that when TPR < 80% for both attacks, the success rate of
these attacks goes below 30%, which suggests that the adversary needs to balance the
attack efficiency with the risk of detection.

Summary: With the selected parameters, SPECULARIZER can detect most of the
attack traces we collected from the generated attack variants with high recalls. How-
ever, In cases where the detection is less accurate, p of these attack variants is also
low.

8.3 End-to-End Evaluation

In practice, SPECULARIZER monitors the execution of a program and raises alarms if
any of the traces collected from the program is detected as “attacks”. To perform end-
to-end evaluation, we use the same model as trained using data set (4).

The data set we used has 26 benign programs collected from GNU Binutils and
SPEC benchmark 2006, and randomly selected 160 attack variants we generated (i.e.
40 variants for each attack type). Each of the 186 programs was examined using all
the four LSTM models. Among the 41 benign programs, only one (gobmk) is falsely
classified as BTB/PHT misprediction attacks and four benign programs (i.e., ld, perl-
bench, sophlex, and gobmk) were misclassified as exception-based attacks. However, in
all these misclassified cases, less than 3 traces (out of over 1000 traces) extracted from
each program were indeed misclassified, which means these false detections can be
prevented if SPECULARIZER only raises alarms when multiple traces (e.g., > 3) were
detected as attacks, which can be another parameter the user of SPECULARIZER could
tune. Nevertheless, all attack variants are successfully detected by their corresponding
LSTM classifier. The BTB/PHT classifier also detects 117 out of 120 other attack vari-
ants, because these attack variants also exhibit this type of branch misprediction.

166 W. Wang et al.

Fig. 4. Accuracy of attack detection (recall). (a) Na in exception-based attacks, (b) Nt in
BTB/PHT misprediction attacks, (c) Lt in BTB/PHT misprediction attacks, (d) Na in BTB/PHT
misprediction attacks, (e) La in BTB/PHT misprediction attacks, (f) Na in RSB misprediction
attacks, (g) La in RSB misprediction attacks, (h) Na in STL attacks, (i)La in STL attacks. (Color
figure online)

8.4 Performance Analysis

Fig. 5. The performance overhead of online trace collection.

Overhead of Online Trace Collection. In our experiments, SPECULARIZER enabled
trace collection of both HPC and PT, with the HPC events and MSR configurations

SPECULARIZER: Detecting Speculative Execution Attacks 167

Fig. 6. Running time of offline attack detection.

specified in Sect. 4. The ρ was set to 3. The experiments on LMbench [29] show the
runtime overhead on I/O is negligible. The results of the SPEC benchmark are shown
in Fig. 5. The runtime overhead was introduced from 0.038% to 231.42%, with a geo-
metric mean of 14.36%. Some of the benchmark programs (e.g.mcf, gobmk, and sjeng)
had high performance overhead; as their execution triggers a lot of branch mispredic-
tion. We note that the performance can be reduced with Intel’s new feature that redirects
PEBS’s sampling output to PT packets [7], as PT packet generation introduces much
less overhead [16]. We leave this evaluation to future work.

Running Time of Offline Attack Detection. Figure 6 shows the running time of offline
attack detection. The number above each bar is the average running time (of 1000 trials)
of the offline analysis for each SPEC benchmark (in seconds), which ranges from 3 s
to 1709 s with PT trace files between 13M bytes and 13G bytes. More specifically, the
offline analysis includes three phases: trace loading, trace processing, and attack detec-
tion. On average, they account for 70.01%, 29.85%, and 0.14% of the entire running
time. One reason for the long-running time for trace loading/processing (99.86%) is
that PT generates a large number of packets, which takes a long time to parse and ana-
lyze. The attack detection phase typically takes less than 1s. Finally, it is worth noting
our offline analyses were performed within a single thread with limited memory, which
can be further optimized using multi-threading and larger memory. And for applications
such as forensics, the overhead of offline analysis is not critical.

9 Discussion

Detecting Assistance-Based Attacks. Microcode assist was exploited in some recent
works [31,37,42,43]. However, there is no systematic study of these microcode assists
yet. It is not clear how many methods can trigger microcode assists and how many of
them can be exploited in speculative execution attacks by unprivileged programs. With-
out such systematic exploration, an ad-hoc detection technique is likely to be bypassed.
We leave the detection of assistance-based attacks to future work.

168 W. Wang et al.

Completeness of the Attack Data Sets. We could hardly claim that our generated
attack data sets cover all possible attack variants. However, as the models used for
attack variants generation only specify the patterns of misprediction and exception, they
are general enough for modeling attacks that use different types of disclosure gadgets
and disclosure primitives. Moreover, the parameters in the attack models can be tuned
to alter specific properties of an attack variant, which in combination can be used to
approximate most attack methods one could think of.

Using Simpler Classification Models for Attack Detection. One might think deep
learning algorithms like LSTM are too heavyweight for our scenarios. In fact, we have
also tested multiple alternatives, such as decision trees, K-means, random forest, etc.
However, we found those models very fragile for any practical use. In contrast, LSTM
offers an automated selection of parameters and thresholds, greatly reducing the sub-
jectivity in the selection of classification models.

Adversarial Machine Learning (AML). SPECULARIZER is vulnerable to AML-based
techniques that generate carefully crafted attack variants to evade detection. As shown
in Fig. 4, in general, attack code that evades detection is likely to have a lower success
rate. In that sense, SPECULARIZER makes speculative execution attacks harder to per-
form, but may not eliminate the threats. However, we note this arms race is common in
all machine-learning-based defense systems [14,32].

Real-Time Attack Detection. Ideally, attack detection should be performed in real-
time and for all programs. However, as parsing PT packets and processing the traces are
time-consuming (as shown in Fig. 6), it is very challenging to do so in practice. More-
over, enabling whole system monitoring with PT will drastically increase the overhead
of trace parsing and analysis. These are common issues for PT/HPC-based monitoring
systems [39,51].

10 Related Work

Detecting Speculative Execution Attacks. Prior works on detecting speculative exe-
cution attacks mainly focus on the detection of disclosure primitives, such as the
Flush+Reload cache side channels [19]. In contrast, SPECULARIZER detects the specu-
lative execution attacks by monitoring its root cause—the speculation primitives. Close
to our work is due to [25,44] who also leverages HPC to detect speculative execution
attacks. However, as their approach only uses HPC, it omits the context of program
execution in the detection of attacks. Therefore, their approach is less accurate and only
applicable to simple proof-of-concept attacks.

Mitigating Speculative Execution Attacks. Software solutions provide temporary mit-
igation of the threats, which are reactive to only known attacks and ad hoc. For instance,
page table isolation (e.g., KPTI of Linux) PTE inversion, and L1d flush [5], compiler-
based mitigation [12,23,30,40] provides generic solutions for exception-based and
misprediction-based speculative execution attacks. SPECCFI [24], ConTExT [36] miti-
gates a specific type of speculative attack. Furthermore, many works focus on detecting
the code gadget of speculative execution attacks [13,18,20,28,33,47].

SPECULARIZER: Detecting Speculative Execution Attacks 169

Proposals from the computer architecture research community mitigate speculative
execution attacks with more dramatic revision on the micro-architectural level [2,4,
6,9,10,15,21,22,26,34,35,38,43,46,48–50]. While these approaches may be efficient
in addressing the targeted problems, however, it may take a longer time before these
academic proposals can be adopted by the industry.

11 Conclusion

In this paper, we present SPECULARIZER, a software tool for uncovering speculative
execution attacks using performance tracing hardware features (PT and HPCs). SPEC-
ULARIZER monitors the execution of the inspected applications in an online mode,
introducing modest runtime performance overhead, and then performs attack detection
in an offline analysis using LSTM networks. Empirical evaluation of SPECULARIZER

suggests that the proposed approach leads to high detection accuracy with reasonable
overhead, particularly suitable for offline forensic analysis.

References

1. Deep dive: Intel analysis of microarchitectural data sampling (2019). https://software.intel.
com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-
sampling

2. Intel analysis of speculative execution side channels. Revision 4.0. Accessed July 2018
3. Mitigating speculative execution side channel hardware vulnerabilities (2018). https://msrc-

blog.microsoft.com/2018/03/15/%20mitigating-%20speculative-%20execution-%20side-
%20channel-%20hardware-%20vulnerabilities/

4. Speculative execution side channel mitigations (2018). http://kib.kiev.ua/x86docs/SDMs/
336996-001.pdf. Revision 1.0, January 2018

5. Deep dive: Intel analysis of l1 terminal fault (2019). https://software.intel.com/security-
software-guidance/insights/deep-dive-intel-analysis-l1-terminal-fault

6. Engineering new protections into hardware (2019). https://www.intel.com/content/www/us/
en/architecture-and-technology/engineering-new-protections-into-hardware.html

7. Intel R© 64 and IA-32 architectures software developer’s manual (2019). https://software.
intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf. January
2019

8. Akiyama, S., Hirofuchi, T.: Quantitative evaluation of intel PEBS overhead for online
system-noise analysis. In: 7th International Workshop on Runtime and Operating Systems
for Supercomputers (ROSS). ACM (2017)

9. Barber, K., Bacha, A., Zhou, L., Zhang, Y., Teodorescu, R.: SpecShield: shielding speculative
data from microarchitectural covert channels. In: 28th International Conference on Parallel
Architectures and Compilation Techniques (PACT). IEEE (2019)

10. Bourgeat, T., Lebedev, I., Wright, A., Zhang, S., Devadas, S.: Mi6: secure enclaves in a
speculative out-of-order processor. In: 52nd Annual IEEE/ACM International Symposium
on Microarchitecture (2019)

11. Canella, C.: A systematic evaluation of transient execution attacks and defenses. In: 28th
USENIX Security Symposium (2019)

12. Carruth, C.: Speculative load hardening (2018)

https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://msrc-blog.microsoft.com/2018/03/15/%20mitigating-%20speculative-%20execution-%20side-%20channel-%20hardware-%20vulnerabilities/
https://msrc-blog.microsoft.com/2018/03/15/%20mitigating-%20speculative-%20execution-%20side-%20channel-%20hardware-%20vulnerabilities/
https://msrc-blog.microsoft.com/2018/03/15/%20mitigating-%20speculative-%20execution-%20side-%20channel-%20hardware-%20vulnerabilities/
http://kib.kiev.ua/x86docs/SDMs/336996-001.pdf
http://kib.kiev.ua/x86docs/SDMs/336996-001.pdf
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-l1-terminal-fault
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-l1-terminal-fault
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://www.intel.com/content/www/us/en/architecture-and-technology/engineering-new-protections-into-hardware.html
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf

170 W. Wang et al.

13. Chen, G., Chen, S., Xiao, Y., Zhang, Y., Lin, Z., Lai, T.H.: Stealing intel secrets from SGX
enclaves via speculative execution. In: IEEE European Symposium on Security and Privacy,
June 2019

14. Chen, L., Sultana, S., Sahita, R.: HeNet: a deep learning approach on intel R© processor
trace for effective exploit detection. In: IEEE Security and Privacy Workshops (SPW). IEEE
(2018)

15. Fustos, J., Farshchi, F., Yun, H.: SpectreGuard: an efficient data-centric defense mechanism
against Spectre attacks. In: 56th Annual Design Automation Conference (2019)

16. Ge, X., Cui, W., Jaeger, T.: GRIFFIN, guarding control flows using intel processor trace.
ACM SIGPLAN Not. (2017)

17. Gu, Y., Zhao, Q., Zhang, Y., Lin, Z.: PT-CFI: transparent backward-edge control flow viola-
tion detection using intel processor trace. In: 7th ACM on Conference on Data and Applica-
tion Security and Privacy (2017)

18. Guarnieri, M., Köpf, B., Morales, J.F., Reineke, J., Sánchez, A.: Spectector: principled detec-
tion of speculative information flows. In: IEEE Symposium on Security and Privacy (SP)
(2020)

19. Gulmezoglu, B., Moghimi, A., Eisenbarth, T., Sunar, B.: FortuneTeller: predicting microar-
chitectural attacks via unsupervised deep learning (2019). arXiv preprint arXiv:1907.03651

20. Guo, S.: SpecuSym: speculative symbolic execution for cache timing leak detection (2019).
arXiv preprint arXiv:1911.00507

21. Khasawneh, K.N., Koruyeh, E.M., Song, C., Evtyushkin, D., Ponomarev, D., Abu-Ghazaleh,
N.: SafeSpec: banishing the spectre of a meltdown with leakage-free speculation (2018).
arXiv preprint arXiv:1806.05179

22. Kiriansky, V., Lebedev, I.A., Amarasinghe, S.P., Devadas, S., Emer, J.: DAWG: a defense
against cache timing attacks in speculative execution processors. IACR Cryptology ePrint
Archive (2018)

23. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. In: 40th IEEE Sympo-
sium on Security and Privacy (S&P) (2019)

24. Koruyeh, E.M., Shirazi, S.H.A., Khasawneh, K.N., Song, C., Abu-Ghazaleh, N.: SPEC-
CFI: mitigating Spectre attacks using CFI informed speculation (2019). arXiv preprint
arXiv:1906.01345

25. Li, C., Gaudiot, J.-L.: Detecting malicious attacks exploiting hardware vulnerabilities using
performance counters. In: 43rd Annual Computer Software and Applications Conference
(COMPSAC). IEEE (2019)

26. Li, P., Zhao, L., Hou, R., Zhang, L., Meng, D.: Conditional speculation: an effective app-
roach to safeguard out-of-order execution against Spectre attacks. In: IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE (2019)

27. Lipp, M., et al.: Meltdown: reading kernel memory from user space. In: 27th USENIX Secu-
rity Symposium (2018)

28. Mambretti, A., Neugschwandtner, M., Sorniotti, A., Kirda, E., Robertson, W., Kurmus, A.:
Speculator: a tool to analyze speculative execution attacks and mitigations. In: 35th Annual
Computer Security Applications Conference (2019)

29. McVoy, L.W., Staelin, C., et al.: lmbench: portable tools for performance analysis. In:
USENIX Annual Technical Conference (1996)

30. Miller, M.: Mitigating speculative execution side channel hardware vulnerabilities. Microsoft
Security Response Center (MSRC) (2018)

31. Minkin, M., et al.: Fallout: reading kernel writes from user space (2019)
32. Moosavi-Dezfooli, S.-M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturba-

tions. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)
33. Oleksenko, O., Trach, B., Silberstein, M., Fetzer, C.: SpecFuzz: bringing spectre-type vul-

nerabilities to the surface. In: 29th USENIX Security Symposium (2020)

http://arxiv.org/abs/1907.03651
http://arxiv.org/abs/1911.00507
http://arxiv.org/abs/1806.05179
http://arxiv.org/abs/1906.01345

SPECULARIZER: Detecting Speculative Execution Attacks 171

34. Saileshwar, G., Qureshi, M.K.: CleanupSpec: an “undo” approach to safe speculation. In:
52nd Annual IEEE/ACM International Symposium on Microarchitecture (2019)

35. Sakalis, C., Kaxiras, S., Ros, A., Jimborean, A., Själander, M.: Efficient invisible speculative
execution through selective delay and value prediction. In: 46th International Symposium on
Computer Architecture. ACM (2019)

36. Schwarz, M., Lipp, M., Canella, C., Schilling, R., Kargl, F., Gruss, D.: ConTexT: a generic
approach for mitigating Spectre. In: Network and Distributed System Security Symposium
(NDSS) (2020)

37. Schwarz, M., et al.: ZombieLoad: cross-privilege-boundary data sampling (2019).
arXiv:1905.05726

38. Taram,M., Venkat, A., Tullsen, D.: Context-sensitive fencing: securing speculative execution
via microcode customization. In: 24th International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM (2019)

39. Thalheim, J., Bhatotia, P., Fetzer, C.: INSPECTOR: data provenance using intel processor
trace (PT). In: 36th International Conference on Distributed Computing Systems (ICDCS).
IEEE (2016)

40. Turner, P.: Retpoline: a software construct for preventing branch-target-injection (2018).
https://support.google.com/faqs/answer/7625886

41. Van Bulck, J: Foreshadow: extracting the keys to the Intel SGX kingdom with transient out-
of-order execution. In: 27th USENIX Security Symposium (2018)

42. Van Bulck, J.: LVI: hijacking transient execution through microarchitectural load value injec-
tion. In: 41th IEEE Symposium on Security and Privacy (S&P) (2020)

43. van Schaik, S.: RIDL: rogue in-flight data load. In: IEEE Symposium on Security and Privacy
(S&P) (2019)

44. Wang, H., Sayadi, H., Rafatirad, S., Sasan, A., Homayoun, H.: SCARF: detecting side-
channel attacks at real-time using low-level hardware features. In: 26th International Sym-
posium on On-Line Testing and Robust System Design (IOLTS). IEEE (2020)

45. Wang, W., Zhang, Y., Lin, Z.: Time and order: towards automatically identifying side-
channel vulnerabilities in enclave binaries. In: 22nd International Symposium on Research
in Attacks, Intrusions and Defenses (RAID) (2019)

46. Weisse, O., Neal, I., Loughlin, K., Wenisch, T.F., Kasikci, B.: Nda: preventing speculative
execution attacks at their source. In: 52nd Annual IEEE/ACM International Symposium on
Microarchitecture (2019)

47. Xiao, Y., Zhang, Y., Teodorescu, R.: Speechminer: a framework for investigating and mea-
suring speculative execution vulnerabilities. In: Network and Distributed System Security
Symposium (NDSS) (2020)

48. Yan, M., Choi, J., Skarlatos, D., Morrison, A., Fletcher, C.W., Torrellas, J.: InvisiSpec: mak-
ing speculative execution invisible in the cache hierarchy. In: International Symposium on
Microarchitecture (2018)

49. Yu, J., Hsiung, L., Hajj, M.E., Fletcher, C.W.: Data oblivious ISA extensions for side
channel-resistant and high performance computing. In: Network and Distributed System
Security Symposium (NDSS) (2019)

50. Yu, J., Yan, M., Khyzha, A., Morrison, A., Torrellas, J., Fletcher, C.W.: Speculative taint
tracking (STT) a comprehensive protection for speculatively accessed data. In: 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (2019)

51. Zhang, T., Jung, C., Lee, D.: ProRace: practical data race detection for production use. ACM
SIGOPS Oper. Syst. Rev. 51(2), 149–162 (2017)

52. Zhang, Z., Cheng, Y., Zhang, Y., Nepal, S.: GhostKnight: breaching data integrity via spec-
ulative execution (2020). arXiv preprint arXiv:2002.00524

http://arxiv.org/abs/1905.05726
https://support.google.com/faqs/answer/7625886
http://arxiv.org/abs/2002.00524

172 W. Wang et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Aion Attacks: Manipulating Software
Timers in Trusted Execution

Environment

Wei Huang1(B), Shengjie Xu1, Yueqiang Cheng2, and David Lie1

1 University of Toronto, Toronto, Canada
{wh.huang,shengjie.xu}@mail.utoronto.ca, lie@eecg.toronto.edu

2 NIO, San Jose, USA
yueqiang.cheng@nio.io

Abstract. Side-channel attacks are a threat to secure software run-
ning in a Trusted Execution Environment (TEE). To protect Intel SGX
applications from these attacks, researchers have proposed mechanisms
to detect cache-probing and repeated interrupts that these attacks rely
on. These defenses often rely on high-resolution timers. However, since
there is no trusted high-resolution timer hardware module, developers
have resorted to software timers, which unfortunately underestimate the
scope of possible attacks. In this paper, we propose Aion attacks that
manipulate the speed of a reference software timer to subvert defensive
mechanisms against SGX side-channel attacks. Specifically, we introduce
a CPU thermal attack that leverages the thermal management mecha-
nism to change the execution speed of the timer thread, and a cache
eviction attack that evicts the target timer counters and forces the sys-
tem to load them from memory instead of cache. We evaluated the above
Aion attacks and introduced an analytical model and show that software
timers cannot be improved to fit the defenders under our attacks.

1 Introduction

The threat model of Intel SGX assumes that only CPUs are trustworthy, placing
code and data of protected applications in a secure enclave isolated from other
system software. However, the protection guaranteed by SGX does not take into
account an attacker who monitors information leakage via side-channels. As a
result, various defense mechanisms have been proposed [5,17] to defend against
side-channel attacks on SGX applications [1,3,4,7,8,10,15,19,25].

Many of these defenses rely on the ability to measure the frequency and
duration of certain events, such as cache access and code execution time, or the
number of asynchronous enclave exits. Since SGX does not provide a trusted
hardware timer, these defenses instead use high-resolution software timers to
measure the passage of time. All software timers make assumptions about the
processor they are executing on: They assume that 1) CPU instructions exe-
cute at a relatively constant speed, and that 2) the clock frequency the CPU
operates at stays within a well-defined range. For example, they acknowledge
c© Springer Nature Switzerland AG 2021
L. Bilge et al. (Eds.): DIMVA 2021, LNCS 12756, pp. 173–193, 2021.
https://doi.org/10.1007/978-3-030-80825-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80825-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-80825-9_9

174 W. Huang et al.

that SGX must defend against an adversary who might modify the processor
clock frequency. Thus, they are resilient to an adversary who can slow down the
clock frequency by a factor of 3.25–4.25×, as this is the typical ratio between
the maximum and minimum operating clock frequency of modern processors.

In this paper, we show that both of these assumptions can be broken by a
significant margin. We present Aion attacks, which can be mounted by both
privileged and unprivileged attackers, and enable an adversary to tamper with
software timer accuracy by 2.5–202×. We also build a model of software timers
and show empirically that secure software timers are not possible on current
architectures. This renders all current software-timer-based SGX side-channel
defenses useless.

Our Aion attacks use two mechanisms to break the assumptions made by
software timers. The first attack manipulates the thermal management facilities
of the processor to cause execution slowdown below that of the lowest supported
clock frequency of the processor, violating the assumption that slowdowns are
bounded by the lowest clock frequency. As far as we are aware, this is the first
instance of a security attack that abuses CPU thermal management, and does
not actually need to physically overheat or damage the CPU in any way. Instead,
we trigger thermal management features using software-only attacks. The second
attack generates cache evictions to slow down the execution of instructions in
the software timer, violating the assumption that the execution time of instruc-
tions is relatively constant. We show these attacks can compromise the secu-
rity properties of applications running in SGX enclaves, and can allow existing
side-channel attacks to evade detection by existing defenses. We implement a
prototype of Aion attacks and evaluate them in a real-world environment. We
make the following contributions in this paper:

• We propose an analytical model which suggests that no existing software
timers used in SGX enclaves are reliable, meaning that current SGX side-
channel defences are ineffective if timers are manipulated by attackers.

• We present two generic Aion attacks and show that they are able to effec-
tively exploit all existing SGX software timers, invalidating current defense
mechanisms.

• We evaluate two prototypes of Aion attacks on two different CPUs. Exper-
imental results indicate that both are able to consistently break the desired
properties of the software timers. With our mechanism, an end-to-end attack
is demonstrated where existing side-channel attacks can evade detection.

• We prove that, under our attack model, it is impossible to build a software
timer immune to Aion attacks, motivating the need for hardware support.

The remainder of this paper includes: Sect. 2 provides related backgrounds.
We propose our analytical system model in Sect. 3 and describe our attack design
in Sect. 4, implementation in Sect. 5, and evaluations in Sect. 6. We finally con-
clude the paper in Sect. 7.

Aion Attacks: Manipulating Software Timers 175

2 Background and Related Work

2.1 Intel SGX and TSX

Intel Software Guard Extensions (SGX) [6,11] is an instruction set extension
introduced in 2015 to the Intel architecture. SGX is designed for security and
system properties such as confidentiality, execution isolation, memory integrity,
and verifiability. It provides a trusted execution environment (TEE) for user-
level applications to securely run in a shielded environment called an enclave.
Security properties are guaranteed by putting application code and data into
the processor reserved memory (PRM) which is isolated from the main memory
and transparently encrypted by the memory encryption engine (MEE). Secure
applications in enclaves can be interrupted by other applications outside the
enclave, triggering an asynchronous enclave exit (AEX) event.

Intel Transactional Synchronization Extensions (TSX) [11] is an Intel ISA
extension for hardware transactional memory. It ensures that when a sequence
of instructions is executed, either the execution is completed without interruption
or memory read-write conflicts (i.e., concurrent access to the same data where
at least one access is a write) with other threads, or the transaction is aborted
and the execution is rolled back. The original purpose of TSX was to speed up
multi-threaded applications by reducing locking, while recent work has leveraged
it to notify secure enclaves about interruptions by other threads [20] and protect
cryptographic keys against memory disclosure attacks [9].

2.2 Power and Thermal Management of Intel CPU

Recent CPUs have power and thermal management features for energy efficiency
and protection of the processors from overheating. For example, Intel has sev-
eral digital thermal sensors (DTS) in each CPU package to monitor processor
temperature [11], and the results can be retrieved from model-specific registers
(MSRs) or the platform environment control interface (PECI). When a certain
temperature limit is reached, a thermal control circuit (TCC) will be activated
and it may take following three actions: 1) Reducing core frequencies so the
clock runs slower, 2) Reducing the core voltages to make the processors use less
power and generate less heat, and 3) Forcing one or more cores to enter a hard-
ware duty cycling (HDC) mode, in which the processor forces its components
in the physical package into the idle state for a certain fraction of time. The
TCC can be configured by privileged system administrators to automatically
activate under certain circumstances. Such thermal events can also be triggered
by software, trapping the CPU into a mode where processors reduce their power
consumption by clock modulation.

To the best of our knowledge, our attack is the first academic work to use
CPU thermal management features for SGX defence exploitation. We point out
that if this thermal management feature is maliciously used, CPU execution
speed can be a target that is easily manipulated without being detected by
threads running on the controlled core.

176 W. Huang et al.

2.3 Cache-Based Side-Channel Attacks and Defences in SGX

Cache-based side-channel attacks on SGX are based on general timing attacks on
cache like Prime+Probe [16] and Flush+Reload [26]. The basic idea is to measure
the access times to a series of specific addresses, and use the information to
infer whether or not the victims have accessed data in related addresses. With
this knowledge of the victim’s memory access patterns, attackers can retrieve
confidential data like private keys. General defence mechanisms have also been
proposed for detection and prevention of side-channel attacks like CacheD [23],
CaSym [2] and CEASER [18].

Cache-based attack methods have been commonly used in exploiting SGX
applications. Malware Guard Extension [19] and CacheZoom [15] develop Prime-
+Probe type of attacks with the help of a high-resolution timer to distinguish
cache hits and misses, and uses the LLC cache channel. Other side-channel
attacks [1,7,8,24] are based on similar methods, with the common strategy of
using a high-resolution timer to measure the access latency when probing the
victim enclave application’s cache and infer secret data from the enclave.

Defensive mechanisms against side-channel SGX attacks also depend on high-
resolution software timers inside the SGX enclave. Varys [17] defends cache-based
side-channel attacks by enforcing that security-sensitive threads be reserved on
the same CPU physical cores and detecting attacker threads that attempt to
access shared CPU resources. Déjà Vu [5] measures application execution time
with a more complex software timer using Intel TSX, but not all of the timer
thread is under TSX’s protection because some parts of the timer need to be
shared across threads. Vulnerabilities in these designs will be further discussed
in Sect. 3 and 4.

3 System Model

3.1 Model of Software Timers

To establish a software timer model, we first define a concept of wall time,
denoted Tw, as an imaginary clock that is always accurate and up-to-date with
physical time in the real world. We assume that all software timer designs should
serve the same purpose: to track the wall time as accurately as possible and
provide the current time to software that needs it. Since there is no dedicated
hardware available in the enclaves for time, we assume that any software timer
would need to use a sequence of instructions to track wall-time and use them
to mimic an ordinary clock’s behavior. To achieve this, a software timer should
maintain a clock time Tc, and make it available to other threads that need to
learn what the current time is.

In the ideal case, the wall time is proportional to clock time by some constant
factor, so the clock time can emulate the wall time by executing a sequence of
instructions, and the constant factor is decided by how much time the sequence
of instructions take to run. This is the best that a software timer could do since
a program inside an SGX enclave has no access to a high-resolution hardware

Aion Attacks: Manipulating Software Timers 177

timer that can directly provide wall time. We measure its margin of error from
wall-time, and define a measure Mt that indicates how accurate the software
timer is comparing with the absolute time:

|Δtc − Δtw|
Δtw

< Mt (1)

In the above form, the clock-time at t1 and t2 are Tc1 and Tc2, the wall-times
are Tw1 and Tw2, with the times passing by Δtc and Δtw respectively. Mt is
generally assumed to be so small in practice that Δtc ≈ Δtw, and is affected by
the execution speed of the sequence of instructions, which is in turn affected by
CPU execution speed and memory/cache access speed, so the timer model can
take this into account by adjusting the measure Mt.

We can now construct a generalized software timer with the above concepts,
and use a global variable VG to simulate the clock ticks. We call VG the “clock
variable”. As different machines have different micro-architectures and speed of
operations and accesses to cache, for the same timer algorithm, we use a varying
parameter Ic to reflect the relation between variable increase and the clock time.
Ic represents how much the clock time increases per tick of VG in average. With
this model, the problem of simulating a dedicated timer is transformed to the
problem of using an increasing clock variable to indicate the current time, where
the parameter Ic makes it generally adaptable under different settings of different
machines.

In this way, when a user or an application needs to measure some Δtw and
since Δtc ≈ Δtw (previously assumed due to small Mt), then they can just
measure Δtc to learn how much time it passes in the clock-time and will get the
result in the form of:

Δtc = Tc2 − Tc1

= Ic · (VG2 − VG1)
(2)

Where VG1 and VG2 are the value of VG at time t1 and t2. In this software model,
the key problem for system developers is how to determine the value of Ic, and
all current software timer approaches assume the value to be relatively stable
as it would result in a small accuracy measure Mt. From our previous empirical
findings, we have:

Ic ∝ TInc(VG)

FCPU
(3)

Thus, the value Ic is proportional to TInc(VG), the time taken to increment VG,
and reciprocal to FCPU , the CPU speed, which we may estimate to be the
average clock frequency of the CPU during the time measured.

To summarize, the software timer model measures the accuracy Mt of a
software timer by comparing the clock time it generates with the wall time.
The accuracy is affected by an intermediate parameter Ic, which depends on the
execution speed of the CPU (FCPU) and the time TInc(VG) it needs to increment
a global variable. To slow down a software timer, Eq. 2 says the adversary should
make Ic larger, so that it takes longer to increment the clock variable by some
amount. To increase Ic, Eq. 3 tells us that the adversary may either make the
execution of instructions take longer, or reduce the speed of the CPU.

178 W. Huang et al.

With these components modeled, we next need to take a look at the victims:
The enclave applications and defenders, and how they use the software timers.

3.2 Defender Model

The goal of an SGX side-channel defender is to recognize attacks. A number
of defenses do this by measuring the rates or latency of certain events, so they
depend on a software timer. As an example, we here consider two strategies taken
by previous work [5,17] that use the rate or the execution time of a measured
event as a component of an SGX side-channel defense:

– Cache hit time: The Prime+Probe cache channel attacks on SGX enclaves
require the adversary code to run on the same physical core with the victim
thread [17], because they have to share the L1/L2 cache to perform the probe.
Thus, one method for preventing this attack is filling a core entirely with
the application’s own threads. To confirm that two threads share the same
physical core, we can measure and compare the time that the two threads take
to access a shared variable in the L1/L2 cache: if it is an L1/L2 cache hit,
the access time should be within around 10 cycles, which implies they share
a physical CPU core. A software timer must be used for this measurement.

– Counting Asynchronous Enclave Exits (AEXs): To perform the Prime+Probe
cache channel attacks, which give the adversary a fine-grained cache channel
for probing, the adversary actively and frequently preempts the target SGX
enclave using, for example, the high-precision Advanced Configuration and
Power Interface (ACPI) or the High Precision Event Timer (HPET). The
preemptions trigger an AEX every time they interrupt the victim enclave,
which is an indicator of side-channel attacks if it happens too frequently. The
defensive mechanisms can count the number of AEX events during a period
of time or measure the time that a certain known sequence of executions
takes [5,17] and decide whether the rate of AEX events is too high to raise
an alert of side-channel attacks.

In general, these methods all attempt to measure the delay or frequency of
some phenomenon. For example, they may monitor whether there is an irregular
rate of events NEv (such as AEXs) that happen during a certain period of time.
Similarly, the delay of a variable access can be viewed as just the inverse of the
number of times the variable is accessed within some period of time. Thus, all
tests essentially compare some measured rate of events, NEv, against a threshold,
NTh to detect whether an attack is taking place or not in one of the possible
scenarios:

NEv > NTh : attack = true (4)

One dilemma that the defender faces is the choice of threshold: Setting NTh

too high will result in missed attacks or false negatives, while setting NTh too
low will result in false alarms or false positives. The usual solution is to set it
according to a calibration run, during which the system is assumed to not be
under the influence of an attacker.

Aion Attacks: Manipulating Software Timers 179

Enter TSX Zone

Exit TSX Zone

Update Global Var

Add Random Delay

Start

Software Timer Thread Application Thread

Global
Var

Get Current Time

Some_Event()

Get Current Time

Calculate Interval

Start

Fig. 1. A model of how a software timer works and is used by an application thread.

However, even then, the defense mechanism must still account for the fact
that the measured rate of events NEv is dependent on both the true rate of
events and the ratio between the wall clock and the rate of increment of the
clock variable:

NEv =
Δtw
Δtc

· REv (5)

where REv is the true rate of events according to the wall clock. Normally, we
expect that Δtw ≈ Δtc, so NEv ≈ REv. However, recall that Δtc is proportional
to Ic in Eq. 3. Even under benign conditions, there is some variability to Ic, which
may result in some number of false positives and false negatives—typically NTh

is set slightly higher so as to bias the detection method for fewer false positives.
However, so long as Ic is similar to the value of Ic during calibration when NTh

is set, this will constrain REv to be roughly NEv. Since REv corresponds to
how fast an attacker is able to read a side-channel, constraining REv effectively
slows the rate of information leakage to the attacker. However, if the attacker
is able to arbitrarily increase Ic, then she can also arbitrarily increase the true
rate of events REv without being detected. This allows her to probe the side-
channel faster and thus reduces the time taken for the attack to extract sensitive
information from the enclave.

With this general model of a software timer thread, we now discuss why a
best-effort software timer design is still vulnerable to attacker manipulation.

3.3 Timer Countermeasures

We illustrate the general structure of a software timer in Fig. 1. A software timer
thread updates a global clock variable, which is read by application threads to
the current time.

An attacker that wants to tamper with the timer might attempt to interrupt
the timer so as to make the difference between Δtc and Δtw arbitrarily large.
To defend against this, both Déjà Vu and Varys use TSX to detect if the timer

180 W. Huang et al.

tag set offsetPhysical Address

35 17 16 6 5 0

Hash Function

30 bits

11 bits

2-4 bits

...

Cache Slice 0 Cache Slice 1 Cache Slice N

set 0

set 1
set 2

set 0

set 1
set 2

set 0

set 1
set 2

Fig. 2. Illustration of Intel cache slice and cache set structure.

has been interrupted. However, TSX can only protect the component of the loop
that generates the delay Δtc, and can not protect the update of the global clock
variable, as the clock variable is simultaneously accessed by both the timer thread
and application threads. As a result, the update of the global clock variable must
be outside the TSX-protected region.

To prevent an attacker from interrupting and delaying the thread as it
updates the global variable, TSX is combined with a randomized delay func-
tion inside the TSX region, and the global clock variable is updated with the
randomized delay. This makes it hard for an attacker to guess when the timer
thread is outside of the TSX region and can be interrupted without detection.
Thus, we summarize that a secure timer that provides a timing service to other
secure application threads needs to include at least the following parts:

1. A global clock variable VG inside the secure enclave that records the current
clock time. The clock time can be read from the clock variable by other
threads in the same enclave.

2. A timer loop that increments the clock variable by an amount assumed to be
proportional to the amount of time that has passed.

3. A protection mechanism that can either prevent the timer loop from being
interrupted or detect if the loop has been interrupted. An example of such a
mechanism is TSX.

4. If the entire loop cannot be protected from interruption, a random delay ele-
ment such that the attacker cannot predict when the timer is in the unpro-
tected region of execution, i.e., right before the clock variable is incremented.

As we can see, a TSX-protected timer should ideally spend a minimal amount
of time outside the TSX region. In other words, the only action taken outside of
the TSX region should be to increment the clock variable.

With the extra protection of the software timer loop, trivial attacks
that manipulate the software timer by interrupting it frequently and/or de-
prioritizing the timer thread in an OS thread scheduler to make the software

Aion Attacks: Manipulating Software Timers 181

timer deviate from the wall clock would not work. Such scheduler attacks that
have OS-level privilege would attempt to preempt the timer thread, which
requires interrupting into it. This interruption would be easily caught by the
TSX mechanism and the interrupted transaction would be aborted and detected
by the defender.

4 Attack Design

4.1 Aion-1: CPU Thermal and Frequency Attack

The Aion-1 attack manipulates the rate of increase of the clock variable indi-
cating the internal time in the software timer thread, i.e., the FCPU in Eq. 3 of
our software timer model in Sect. 3.1. Intuitively, this can be done by changing
the CPU working frequency via the CPU power management modules of the
operating system kernel, such that the clock variable increases out of sync with
wall time. The strawman method of simply changing CPU frequencies has been
described [5], where procfs is used to control the CPU frequency from userspace
in on-demand mode, and its effect was generally considered to be bounded by
CPU frequency scaling. Taking the Intel i7-6600U as an example: The processor
base frequency (PBF) is 2.6 GHz; the max turbo frequency (MTF) is 3.4 GHz.
If the attacker obtains control of a CPU power management module, the mini-
mum controllable frequency of a single core is 800 MHz. Thus, it was generally
believed that the maximum achievable scale-down of CPU frequency Δtw/Δtc
was between 3.25× and 4.25×, a value that most previous defenses could tolerate
and still prevent an adversary from mounting an effective attack.

However, our attack can break the above assumptions using CPU thermal
management features. As mentioned in Sect. 2, Intel CPU thermal management
is controlled by a thermal control circuit, whose settings are controlled by a soft-
ware adaptive thermal monitor. We find that an attacker with root privileges can
trigger a thermal event on the CPU thermal control circuit using only software.
This not only causes the CPU core frequency and voltage to be throttled down,
but can also force the processor into the HDC mode where CPUs are paused for
part of the clock duty cycle. Thus, while the clock frequency does not change
in HDC mode, the effective execution speed of the CPU is lowered below that
of the minimum clock speed, as the CPU is effectively idle for a fraction of the
clock cycles. By doing this, we can make the effective execution speed of a CPU
approximately equivalent to that of a 100 MHz CPU.

According to our software timer model in Sect. 3, the accuracy of a soft-
ware timer depends on the execution speed of the CPU core that the software
timer thread runs on. In side-channel defensive mechanisms, the defenders need
to make sure the secure enclave has occupied both hyper-threads on the same
physical core, such that they do not share L1/L2 cache with other, potentially
malicious threads. They do this by measuring the access latency of a shared
variable to see if it hits the L1/L2 cache, since if both threads can hit the cache
of the same clock variable within around 10 cycles, they must share the same
physical core. To evade detection, the Aion-1 attacker only needs to slow down

182 W. Huang et al.

the software timer to make the tester believe that the cache hit time is within
10 cycles in its calibration run, even if it actually hits LLC and takes around 40
cycles or more. It can also do the reverse, depending on which thread the attacker
wants to slow down. In this way, any secure application that uses the software
timer will read values inconsistent with wall time. This tricks the defender into
thinking that the variable access has hit in the L1 cache when it could have hit
in the L2 or higher.

The effectiveness of this attack depends on the highest and lowest possible
processor execution speed on a single CPU core. The processor execution speed
can be regarded as equivalent to the average core frequency during a period of
time. When the attack is being mounted, the core that the software timer thread
runs on should be set to the lowest possible running speed, and other threads,
including the attacker threads, should be set to the highest running speed (or
the other way around, when needed). Without the ability to know its own clock
speed reliably, the software timer can unknowingly run slower or faster than the
original settings. This type of attack also has some limitations, including:

– The attack can only happen if the attackers are able to access CPU MSRs,
requiring kernel privileges. In SGX applications on a multi-tenant cloud sce-
narios, an attacker may not be able to get such privileges as they would need
to compromise the hypervisor.

– The attack also assumes the CPU should support thermal control features
including clock modulation via MSRs to issue a software signal that activates
the TCC. Most of the Intel CPUs available on the market support these
features, but not all of them do.

Due to these limitations of privilege and feature availability, we present
another attack that uses cache eviction to achieve the goal of manipulating the
software timer, possibly as an unprivileged attacker.

4.2 Aion-2: Cache Eviction Attack

The Aion-2 attack directly targets the clock variable used in the secure soft-
ware timer thread using an attacker thread in user space. We call this a cache
eviction attack, as it slows down the speed of the reference software clock by
evicting the clock variable from the CPU cache to DRAM. According to the
software timer model in Sect. 3, this attack exploits the stability assumption of
the cache/memory access speed of the clock variable, i.e., the TInc(VG) in Eq. 3.

Intel L1/L2 caches are shared by two logical threads on the same physical
core, and all threads share the LLC. Because most Intel CPUs use an inclusive
cache policy between different levels of cache, evicting the cache line containing
the clock variable from LLC would also evict it from L1 and L2 cache. In this
way, whenever the software timer thread needs to increment the clock variable,
the thread has to wait for extra cycles to complete the request because it has
to be served from DRAM. From our experimental results, it takes almost the
same number of clock cycles (though not the same wall time) for accessing the

Aion Attacks: Manipulating Software Timers 183

same level of cache, and the DRAM access time is about 150 cycles on average,
which means the attacker knows how much she can slow down the increment of
the clock variable by each eviction. For the rest, the only job that the attacker
threads in the user space need to do is to evict the cache line where the clock
variable is located. Note that since the clock variable indicating the internal time
in the software timer thread is not protected by TSX transactions, access to the
clock variable does not trigger a transaction abort, regardless of whether it hits
cache or DRAM.

To perform the attack, the attacker threads need a minimum cache eviction
set. A minimum cache eviction set is a set of virtual addresses with which a
user thread can make sure the target cache line is evicted out of the cache. For
example, if the virtual address of the clock variable address on a CPU with 4-
way associative LLC is 0x00007E30, then the attacker could find an eviction
set of addresses that shares the same cache set: {0x00013D30, 0x00026A30,
0x000E2730, 0x0009AB30}, and according to the Intel cache structure, this
means they should also reside on the same LLC cache slice. The allocation of
LLC matters because cache entries on different cache slices do not belong to the
same cache set. After finding the eviction set, to make sure that the clock vari-
able is evicted from all levels of cache, one just needs to access all the addresses
in the eviction set. Once the cache entry is successfully evicted, the secure timer
thread needs to hit the DRAM to read or write to the clock variable, which slows
down the increment speed of the software timer ticks.

We now explain how the cache eviction set can be found. As in Fig. 2, the
physical address of each memory request is decomposed into three parts when
mapping the address to an LLC cache line. The part with the lowest bits of the
address indicates the offset in the line, and the set bits decide which cache set
it is mapped to. In recent Intel CPUs, LLC are further divided into slices, and
an undocumented hash function maps the set and tag bits of the addresses to a
specific LLC cache slice. While the hash function itself is undocumented, there
have been attempts [14] to reverse-engineer it. Alternatively, other methods [22]
can successfully find a minimum eviction set with user-level programs with high
probability. We adopt existing methods for finding an LLC eviction set and use
them for our attack.

After finding a cache eviction set, as shown in Fig. 3, the attacker thread can
then access all the virtual addresses in the eviction set of the clock variable in
the software timer thread, so that the clock variable is evicted from the cache
and the incrementing speed is much slower. The attacker can repeatedly access
the eviction set and keep evicting the clock variable in a loop, so that whenever
the software timer thread accesses the clock variable again and makes it cached,
the cache entry will actively be evicted by the attacker again.

Because the attacker thread runs concurrently with the software timer thread,
the eviction of the cache line containing the clock variable is probabilistic without
the knowledge of the exact hardware cache replacement algorithm used by the
CPU. However, the attacker can also improve the chance of cache eviction by
parallelizing the accesses to the cache eviction set. The attackers can distribute
the elements of the cache eviction set to different threads that are controlled by

184 W. Huang et al.

Enter TSX

Exit TSX

Update var

Random delay

Start

Software Timer Thread

Global
Var

Get time

Get time

Calc interval

Event()

Application Thread

L1 and L2 Cache

L3 Cache

Evict cache

Start

Attacker Thread

Target Address

Eviction Addresses

Start

Fig. 3. Illustration of Aion-2: Cache eviction attack.

the attacker, preferably filling all the rest of available CPU cores with attacker
threads. This approach turns the single-threaded attack into a multi-threaded
coordinated attack and gives the attacker a better chance to evict the target
victim cache entry more efficiently.

The attacker achieves the maximum timer slow-down effect by ideally forcing
every increment of the clock variable to miss all levels of cache and hit DRAM.
In this way, the software timer runs slower in comparison with the wall time at
the maximum limit, which is the theoretical worst case for the reference timer.
However, due to the nature of multi-core and scheduler, it is difficult for an
attacker with only user-level privilege, to achieve this guarantee. We will show
in the evaluation section how practical the attack is and describe our results.

To summarize, the target of both types of the Aion attacks is to manipulate
the accuracy of the software timer, either to slow it down or speed it up without
being noticed by the victim system. According to our software timer model, it
is the accuracy measure Mt that the attacker focuses on. To attack Mt, the
malicious party may either change the execution speed of CPU FCPU , or the
time TInc(VG) needed to increase the global clock variable.

5 Implementation

5.1 Reference Software Timer

In our experiments on Aion attacks, we use a real-world software timer as an
implementation of the general model described in Sect. 3. We choose the software
timer implementation from Déjà Vu [5], because (1) it has high accuracy for
event rate measurement, and (2) it can detect repeated interruptions and protect

Aion Attacks: Manipulating Software Timers 185

itself from malicious preemptions from privileged threads. It not only includes
an essential loop that increments the clock variable, but also additional defense
code using Intel TSX that protects the software timer threads from frequent
interruptions by malicious attackers as shown in Listing 1.1:

1 while (i n f i n i t e l o o p f l a g) {
i f (xbeg in () == XBEGIN STARTED) { /∗ TSX beg in s ∗/

3 asm volat i le {
” rdrand %0\n\ t ”

5 : ”=r ” (rand)
} ;

7 rand = (rand & 0x7) + 1 ;
for (i = 0 ; i < rand ; i++) {

9 for (k = 0 ; k < 5 ; k++)
my udelay (1) ;

11 }
xend () ; /∗ TSX ends ∗/

13 } else {
i n t f l a g++;

15 }
cur r en t t ime = cur r ent t ime + rand ;

17 }
Listing 1.1: Reference Timer Thread Implementation in C

L1: The timer thread starts an infinite loop from an SGX enclave.

L2: It enters into a TSX-protected zone, where any interruption to the middle
of the TSX zone will fall into a trap, generate an exception, and rollback to the
beginning of the entry point.

L3–7: It generates a random integer number between 1 and 8. Here the random-
ness is provided by rdrand as the original authors use it, while other pseudo-
random functions could also work.

L8–11: This is a loop creating a delay proportional to the generated random
value, so it is harder for attackers to guess when TSX protection covers the
thread execution.

L12 and L16: The code leaves the TSX-protected region and the clock variable
is updated. As mentioned in Sect. 4, the reason for ending the TSX zone before
the timer tick number is updated is that the clock variable is intended to be
read from other threads concurrently. If the update is in TSX zone then any
concurrent read will abort the transaction and roll back the timer thread.

The clock variable (current time in L16) is exposed to both the timer thread
and the application threads. With some randomness, the timer thread period-
ically increment the clock variable. When the application thread needs to take
a high-resolution time measurement of a particular event, it first retrieves the
clock variable’s value before the event and reads the same variable again after-
ward to calculate the interval. In this standard procedure, the TSX protection

186 W. Huang et al.

does not apply to the clock variable. Thus, theoretically, anyone can access it
without triggering the TSX or SGX trap as long as they are in the enclave. How-
ever, the accuracy of the timer is questionable for two reasons. First, the thread
execution speed is relevant to the CPU clock speed, because the real-world time
of instructions being processed by the CPU and on which the clock speed is not
known or controlled by the enclave applications. Secondly, the time of access of
the clock variable, whether from the timer thread or any other thread, cannot
be assumed to be constant because there is no guarantee of which level of cache
or memory it may hit. Therefore, the software timer is not as reliable and secure
as was thought, even if it is running in an SGX enclave.

5.2 Implementing Aion-1: CPU Thermal and Frequency Attack

This type of attack focuses on changing the speed of targeted CPU cores. The
two methods manipulating CPU core speed include triggering thermal events
to force a core into HDC mode, and adjusting CPU frequency directly via the
power control module of the OS. Because HDC mode stops a CPU core from
running in a certain percentage of the time, and therefore both methods can be
regarded equivalent to making a CPU core running at a certain frequency, we
refer to it as the “equivalent frequency” later in this section.

The thermal management attack needs to be implemented in a thread
with root privilege. We trigger thermal events by changing the respective
MSRs: IA32 CLOCK MODULATION and operate on the programmable bits
of [3:1]. For direct frequency adjustment, there are three kernel modules we can
use for scaling the CPU core frequencies: intel pstate, acpi-cpufreq, and
p4-clockmod. We have tested them all and found that 1) intel pstate as a
new power management module cannot achieve per-core frequency scaling, and
2) p4-clockmod as a relative last-generation kernel driver has dependency on
the Intel speedstep-lib driver which is not compatible with our test CPUs. We
therefore chose acpi-cpufreq as the driver that facilitates the attacker thread.

We set the kernel driver to use a “userspace” power governor, so that a user-
level application with root privilege can configure any CPU core to run at a
specified frequency. In this case, it is the attacker thread that controls the CPU
core frequency of the software timer thread and other threads. Many methods
can be used to trigger CPU thermal events, such as configuring TCC offset of
CPU, increasing CPU workloads to stress out the cores, blocking physical airflow
or stopping case fan from working, and sending software signal to CPU to force
clock modulation. We choose the last approach that only requires a write to an
MSR register 0x19A for implementation, however, we believe that an attacker
can use various creative approaches to generate thermal events.

In the attacker thread, we set the target execution speed for the software
timer thread to Fc and other threads to Fx. The attacking thread first gets the
information of which CPU core the software timer thread executes on, and then
runs in a loop while Loop Flag is TRUE to set the frequencies of the software
timer thread and other threads. The attacker thread stops when Loop Flag is
changed to FALSE.

Aion Attacks: Manipulating Software Timers 187

5.3 Implementing Aion-2: Cache Eviction Attack

The cache eviction attack needs the address of the timer variable used in the
software timer thread to find the cache eviction set. We here assume that the
image of the victim SGX application is openly available to all, which makes sense
because it is supposed to be loaded by the OS into an SGX enclave. The address
can be determined by doing a binary analysis on the application image.

Once the address Addr t is found after loading the SGX application, the
attack can start to slow down the software timer: First, the attacker thread
finds a cache eviction set for Addr t. This can be done by an unprivileged user-
level process using a group reduction algorithm [22], or like in our experiment
for the ease of implementation, use the page map and get the physical address
Addr p of Addr t to find the cache eviction set directly.

As is shown in Listing 2, with the physical address, the undocumented hash
function is required to determine which LLC cache slice an address belongs
to. We obtain the hash function by reverse engineering using the algorithms
mentioned in previous work [14]. Then, with the cache eviction set EV t in hand,
the attacker thread can loop accessing the addresses in the eviction set to keep
evicting the software timer thread’s clock variable out of all levels of cache. This
will then slowing down the timer because every time it increments the clock
variable, it should hit DRAM instead of the cache.

We have optimized the attack by parallelizing the attacking loop: the
addresses in the eviction set EV t can be further divided and assigned to multi-
ple threads. The attacker threads can keep accessing the addresses in the same
eviction set and evicting the target clock variable from the cache faster, because
the multithreaded attacker still shares the same LLC and it should take less time
for all addresses in EV t to be accessed to evict the target address Addr t.

6 Evaluation

6.1 Purpose and Experiment Setup

We conduct all experiments on two machines with different CPUs: (1) Intel
i7-6700K with 4 cores; and (2) Intel Xeon E3-1230 v6 with 4 cores. For the
system software environment setup, we use Intel SGX v2.11 SDK on top of
Linux with kernel v5.4, and all of the machines have hyper-threading enabled.
The experiments in this section are conducted to demonstrate the following:

• Software timers in SGX enclaves are vulnerable to Aion attacks, which can
manipulate the reported clock time from outside the enclave.

• Without compromising the software timer of the defender, a representative
cache-based side-channel attack will be detected and prevented from exploit-
ing the victim applications.

• With the help of Aion attacks, the same side-channel attacks can evade detec-
tion by the defender.

188 W. Huang et al.

Table 1. Results of software timer readings affected by the Aion attacks.

Random Func
(+CPU Thermal)

Xeon E3-1230v6 i7-6700K

RD RD+TA TF TF+TA RD RD+TA TF TF+TA

Baseline 256.3 7.0 (37×) 337.4 8.7 (39×) 225.9 5.8 (39×) 302.5 7.9 (38×)

Single-thread
(Cache Eviction)

156.2 (1.6×) 5.2 (49×) 181.5 (1.9×) 6.1 (55×) 148.9 (1.5×) 4.7 (48×) 148.1 (2.0×) 4.1 (73×)

Multi-thread
(Cache Eviction)

94.3 (2.7×) 2.3 (111×) 54.6 (6.2×) 1.8 (187×) 90.6 (2.5×) 1.9 (120×) 41.7 (7.3×) 1.5 (202×)

In the remaining parts of this section, we first demonstrate experiments and
results that show that Aion attacks can successfully manipulate software timers
in SGX enclaves. We then present an end-to-end attack to show that our attacks
can facilitate an existing cache-based side-channel attack on SGX enclaves, evad-
ing the detection of a defender based on a software timer.

6.2 Aion Attack Evaluation

Both types of Aion attacks have the same goal of manipulating the running speed
of the software timer, and their effectiveness will be evaluated in this section.
As we previously analyzed, Aion attacks can assist the side-channel attackers in
evading the detection of existing defensive mechanisms that rely on the software
timer to be accurate. We evaluate the extent to which our attacks can speed up
or slow down the software timer, as this determines the probability of a successful
side-channel attack.

We combine the two types of Aion attacks and demonstrate their effectiveness
in manipulating the software timer as a unit test. We test the reduction rate (how
much the attack can slow down the software timer) by the CPU thermal attack
and cache eviction attack under different settings.

The baseline workload runs in an SGX enclave as a simple loop that runs
operations from AES encryption. We compare the time intervals under different
scenarios in Table 1, including: a) the baseline scenario where the timer is not
under attack, and only affected by the thermal attack at the row of “baseline”;
b) a single-thread attacker scenario where only one attacking thread of Aion-2
attack is running; and c) a multi-thread attackers scenario where the number
of Aion-2 attacking threads is the (# of total hyper threads - 2), and the
other two threads are taken by the software timer thread and the application
thread.

Another variant we are comparing in the evaluation shown in Table 1 is the
different random functions used in the software timer thread. Because random-
ness is not free of cost, all random number generators take different amounts of
execution time which may affect how much time the software timer thread spends
in a loop to increment the clock variable. We use four different sets of functions
for randomness generation and combined them with or without CPU core exe-
cution speed manipulation by the thermal attack: (1) RD: RDRAND instruction;
(2) RD+TA, which combines CPU thermal attack and use it under (1)’s settings

Aion Attacks: Manipulating Software Timers 189

of RDRAND instruction; (3) TF, which is a simple pseudo-random number gener-
ator called T-Function [12]; and (4) TF+TA, which combines the CPU thermal
attack and uses it under the same settings of (3) for the evaluation. We note
here that since the T-Function() is so cheap in execution costing less than 30
cycles after optimization, that we did not repeat a separate evaluation with no
randomness generated, which also makes sense in the scenario of real defence.
Again, we make sure that the software timer thread, the application thread, and
the attacking thread(2) in our evaluation do not share the same core to avoid
them from competing for the same processor resource. After each number, the
number in a bracket (e.g., 202×) indicates its slow-down factor comparing with
the baseline.

From the above results, we can see that under various settings, the CPU
thermal attack is powerful and can achieve 30–40× slow-down on its own. Also,
both single-threaded and multi-threaded attacking methods can effectively slow
down the software timer via the cache eviction attack, and in all but the RD
case, achieve a slow down that exceeds the range of slowdowns that previous
systems claim to be able to defend. Moreover, when combined with the core
frequency manipulation attack, the effectiveness is further improved, in total
slowing down the software timer by a factor greater than 200 for software timer
using T-function() under both types of Aion attacks, and by a factor about 120
for software timer using RDRAND instruction under both types of Aion attacks.

6.3 End-to-End Attack Evaluation

We previously showed how much the Aion attacks can slow down the software
timer, but the timer slow-down ratio alone may not be enough evidence to prove
that the software timer slow-down rate can effectively assist other side-channel
attacks to go undetected by SGX side-channel defenders. Therefore, for a full
evaluation, we have mounted an end-to-end attack to demonstrate the complete
procedure, combining the traditional SGX side-channel attack and our Aion
attacks to defeat the software timer that defenders rely on. The end-to-end
attack experiments consist of three parts: (1) a known side-channel attack on
SGX; (2) a defender used to detect the side-channel attack in (1); and (3) our
Aion attacks that can compromise the defensive mechanism in (2).

In our experiments, the side-channel attack is implemented based on the
SGX-Step framework [21] and uses a Prime+Probe [13] type cache-based side-
channel attack to extract an AES key that is used to do encryption operations
repeatedly inside an SGX enclave. We use the OpenSSL 0.9.7a library, which is
known to be vulnerable against cache timing attacks and is also known to work
in the environment of SGX, as a proof-of-concept demonstration. The ratio of
successful key extractions of the attack on our Intel i-7 6700K machine is above
98.4% under 100K rounds of victim encryption operations.

For the defender, we have tested our implementation of SGX side-channel
attack defender based on the defense paper [5]. Our results are comparable to
the evaluation data shown in the original work: the defender can successfully

190 W. Huang et al.

Table 2. End-to-end evaluation of Aion attacks against existing defences.

Benchmark Baseline defence Defence under Aion attack

Threshold Acc % FP% Threshold Acc % (E3) Acc % (i7)

Numeric sort 4 100 97 4 95 94

40 100 40 40 17 15

80 95 3 80 2 2

160 87 2 160 1 0

320 40 0 320 0 0

640 9 0 – – –

1280 3 0 – – –

Fourier 4 100 98 4 95 92

40 100 46 40 19 18

80 96 4 80 2 1

160 74 2 160 0 0

320 30 0 320 0 0

640 10 0 – – –

1280 2 0 – – –

detect at least 95% of the basic SGX side-channel attacks under a trained thresh-
old value δ. The threshold value is gathered and calculated by running normal
applications in SGX enclaves without being attacked, so it counts and tracks the
normal number of AEX events happening and decides to trigger the alarm when
there is a burst of an abnormal amount of such events. The results with the Intel
i7-6700K machine environment are shown in the column of Baseline Defence in
Table 2 with the randomness generator of RDRAND in its software timer loop.

Distinct from the previous evaluation that shows the effect of Aion attacks
on the software timer, the evaluation with end-to-end attacks combines our two
types of Aion attacks with the basic side-channel attacks, and the SGX side-
channel attack defender. We measure how effectively our attacks can assist the
base side-channel attack to evade detection of the defender. Experiments run on
two of the machines with SGX with the defender using RDRAND as the randomness
generator, using both types of Aion attacks combined, and results are shown in
Table 2. From the results, we can see that under Aion attacks, the defender
identifies less than 2% of the side-channel attacks in its normal setting of the
threshold value 80. For the threshold value of 40, the accuracy is less than 15–
19%, however, without the knowledge of the ongoing Aion attacks, the defender
would not choose to use a low threshold value by taking the risk of a high
false-positive rate. The results demonstrate that the combined Aion attacks can
effectively assist the base side-channel SGX attack to make it undetectable by
the SGX defensive software that is based on a software timer.

To summarize our findings, software timer-based defenses are not viable in
the face of tampering of timers from Aion attacks. Comparing the left part of

Aion Attacks: Manipulating Software Timers 191

Table 2, which shows false positive rates under benign conditions at various Eth

thresholds, with the right part of Table 2, which shows detection accuracy after
tampering with the Aion attack, we can see that the detection rate is on the
order of the false positive rate. At threshold 80, both of the false positive rates
in benign conditions are 3–4% while the detection rates under attack are 1–2%.
Even if we decrease the threshold to 40, the detection rates only range from
14–19% while the false positive rates have increased to 40–46%. As a result, it is
not possible for the defender to select a threshold that permits good detection
when under attack, but still keeps false positives at acceptable levels. We see this
trend holds for all thresholds. As a result, our empirical analysis shows that it
is not possible to use a software timer in any defense due the adversary’s ability
to manipulate the timer.

7 Conclusion

Side-channel attacks are major threats that TEEs currently face, including Intel
SGX. Although software-based defences have been proposed for detection and
prevention of cache-based side-channel attacks, the lack of a reliable hardware
timer for secure applications to use inside the enclave makes such solutions vul-
nerable against Aion attacks. In this paper, we design and implement two types
of Aion attacks, one based on manipulating the software timer thread execution
speed by triggering CPU thermal events, and the other focusing on cache evic-
tion to slow down the rate at which the target timer is increased, both of which
can effectively change the how fast the software timer in an SGX enclave runs
and invalidate the defensive approaches that rely on accurate high-resolution
software timers. We also argue that in our general software timer model, there
is no way to design a reliable timer purely in software that makes the defense
usable and effective in detecting side-channel attacks, unless the defence can
tolerate up to 200x slowdown of their timer, but this is unlikely.

The core of the problem we show through our model analysis is that when
system designers use a software timer to measure the time certain critical events
take, they made an invalid assumption: That the increment speed of the variable
used in the software timer is nearly constant, and can not be significantly altered
by an adversary. However, this fails to account for dramatic changes in execution
speed when accessing a global variable that can occur when the CPU frequency
varies or when cache behaviour is manipulated. By breaking the high-resolution
measurement of time, Aion attacks are able to exploit existing defences.

Acknowledgement. We would like to thank Professor Yinqian Zhang, Dr. Sanchuan
Chen and Oleksii Oleksenko for their help in SGX defensive frameworks. We appreciate
Dr. Lianying Zhao, Tony Liao and colleagues from Baidu Research for their valuable
advice on this paper.

192 W. Huang et al.

References

1. Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., Sadeghi, A.R.:
Software grand exposure: SGX cache attacks are practical. In: Proceedings of
USENIX WOOT, Vancouver, Canada (2017)

2. Brotzman, R., Liu, S., Zhang, D., Tan, G., Kandemir, M.: CaSym: cache aware
symbolic execution for side channel detection and mitigation. In: Proceedings of
IEEE S&P, San Fransico, USA (2019)

3. Bulck, J.V., et al.: Foreshadow: extracting the keys to the intel SGX kingdom with
transient out-of-order execution. In: Proceedings of USENIX Security, Baltimore,
USA, August 2018

4. Bulck, J.V., Weichbrodt, N., Kapitza, R., Piessens, F., Strackx, R.: Telling your
secrets without page faults: stealthy page table-based attacks on enclaved execu-
tion. In: Proceedings of USENIX Security, Vancouver, Canada (2017)

5. Chen, S., Zhang, X., Reiter, M.K., Zhang, Y.: Detecting privileged side-channel
attacks in shielded execution with Déjà Vu. In: Proceedings of ASIA CCS, Abu
Dhabi, UAE (2017)

6. Costan, V., Devadas, S.: Intel SGX explained. Cryptology ePrint Archive, Report
2016/086 (2016). https://ia.cr/2016/086

7. Dall, F., et al.: CacheQuote: efficiently recovering long-term secrets of SGX EPID
via cache attacks. In: Proceedings of CHES, Amsterdam, Netherlands (2018)

8. Gözfried, J., Eckert, M., Schinzel, S., Müller, T.: Cache attacks on Intel SGX. In:
Proceedings of EuroSec, Belgrade, Serbia (2017)

9. Guan, L., Lin, J., Luo, B., Jing, J., Wang, J.: Protecting private keys against
memory disclosure attacks using hardware transactional memory. In: Proceedings
of IEEE S&P, San Jose, USA (2015)

10. Hähnel, M., Cui, W., Peinado, M.: High-Resolution side channels for untrusted
operating systems. In: Proceedings of USENIX ATC, Santa Clara, USA (2017)

11. Intel Corporation: Intel 64 and IA-32 Architectures Software Developer’s Manual
(2021)

12. Klimov, A., Shamir, A.: A new class of invertible mappings. In: Proceedings of
CHES, San Francisco Bay, CA, USA (2002)

13. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: Proceedings of IEEE S&P, San Jose, USA (2015)

14. Maurice, C., Scouarnec, N., Neumann, C., Heen, O., Francillon, A.: Reverse engi-
neering intel last-level cache complex addressing using performance counters. In:
Proceedings of RAID, Kyoto, Japan (2015)

15. Moghimi, A., Irazoqui, G., Eisenbarth, T.: CacheZoom: how SGX amplifies the
power of cache attacks. In: Proceedings of CHES, Taipei, Taiwan (2017)

16. Neve, M., Seifert, J.P.: Advances on access-driven cache attacks on AES. In: Pro-
ceedings of SAC Workshop, Montreal, Canada, pp. 147–162 (2006)

17. Oleksenko, O., Trach, B., Krahn, R., Martin, A., Fetzer, C., Silberstein, M.: Varys:
protecting SGX enclaves from practical side-channel attacks. In: Proceedings of
USENIX ATC, Boston, USA (2018)

18. Qureshi, M.K.: CEASER: mitigating conflict-based cache attacks via encrypted-
address and remapping. In: Proceedings of IEEE MICRO, Fukuoka, Japan (2018)

19. Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S.: Malware guard
extension: using SGX to conceal cache attacks. In: Proceedings of DIMVA, Bonn,
Germany (2017)

https://ia.cr/2016/086

Aion Attacks: Manipulating Software Timers 193

20. Shih, M.W., Lee, S., Kim, T., Peinado, M.: T-SGX: eradicating controlled-channel
attacks against enclave programs. In: Proceedings of NDSS, San Diego, USA (2017)

21. Van Bulck, J., Piessens, F., Strackx, R.: SGX-Step: a practical attack framework
for precise enclave execution control. In: Proceedings of SysTEX, Shanghai, China
(2017)

22. Vila, P., Kopf, B., Morales, J.F.: Theory and practice of finding eviction sets. In:
Proceedings of IEEE S&P, San Francisco, USA, pp. 39–54 (2019)

23. Wang, S., Wang, P., Liu, X., Zhang, D., Wu, D.: CacheD: identifying cache-based
timing channels in production software. In: Proceedings of USENIX Security, Van-
couver, Canada (2017)

24. Wang, W., et al.: Leaky cauldron on the dark land: understanding memory side-
channel hazards in SGX. In: Proceedings of CCS, Dallas, USA (2017)

25. Xu, Y., Cui, W., Peinado, M.: Controlled-channel attacks: deterministic side chan-
nels for untrusted operating systems. In: Proceedings of IEEE S&P, San Jose, USA
(2015)

26. Yarom, Y., Falkner, K.: Flush+Reload: a high resolution, low noise, L3 cache side-
channel attack. In: Proceedings of USENIX Security, San Diego, USA (2014)

THIRD-EYE: Practical and Context-Aware
Inference of Causal Relationship
Violations in Commodity Kernels

Chuhong Yuan, Dong Du, and Haibo Chen(B)

Shanghai Jiao Tong University, Shanghai, China
{chyuan,Dd nirvana,haibochen}@sjtu.edu.cn

Abstract. A causal relationship implies that a function call should fol-
low another function call. However, causal relationships can be implicit
in practice and therefore often missed and violated by developers, caus-
ing many serious risks such as memory leaks and crashes. Although a
set of works are proposed to mitigate the issue, they fall short in solving
two main challenges: the contradiction between bugs in specific paths
and intra-function path-explosion, and missing contextual constraints of
causal relationships, which leads to high performance cost or failing to
detect context-related bugs.

This paper proposes Third-Eye, a practical static analysis tool that
infers causal relationship violations for commodity kernels like Linux.
Third-Eye leverages the intersection-based call sequence building algo-
rithm to cope with intra-function path-explosion, which can reduce the
number of paths while collecting callee information as much as possi-
ble. Besides, Third-Eye detects causal relationship violations context-
sensitively based on a statistical method. Our experiments show Third-
Eye is effective and efficient—successfully identified 60 bugs in Linux 5.3.
Of them, 41 have been confirmed and fixed by Linux developers (The
accepted patches are in https://ipads.se.sjtu.edu.cn:1312/opensource/
third-eye.).

Keywords: Static analysis · Operating system kernel · Causal
relationship

1 Introduction

The causal relationship is a programming pattern that means b() must follow
a(). A well-known example from Linux is that spin unlock() should be called
after spin lock(). Violating causal relationships in kernels will lead to severe
consequences like memory leaks, DoS, and even crashes.

However, causal relationships are often implicit because of the lack
of documentation or comments. For example, alloc workqueue() and
destroy workqueue() have a causal relationship but neither of their comments

c© Springer Nature Switzerland AG 2021
L. Bilge et al. (Eds.): DIMVA 2021, LNCS 12756, pp. 194–214, 2021.
https://doi.org/10.1007/978-3-030-80825-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80825-9_10&domain=pdf
https://ipads.se.sjtu.edu.cn:1312/opensource/third-eye
https://ipads.se.sjtu.edu.cn:1312/opensource/third-eye
https://doi.org/10.1007/978-3-030-80825-9_10

Third-Eye 195

mentions the relationship with the other [1,2]. Also, causal relationships usu-
ally have contextual constraints, which makes the patterns more complex. For
example, in a function, kfree() should be called after a successful kmalloc()
if the caller fails. Hence, here the successful kmalloc() and the failure are the
contextual constraints of this causal relationship. Due to the two reasons, many
violations of causal relationships pop up in commodity kernels.

Since violations of causal relationships in commodity kernels may cause
fatal errors, many works tried to detect them. First, static analysis tools, e.g.,
APISan [29] and PR-Miner [16], utilize the statistical method [11] to infer causal
relationships but face a tradeoff between performance and accuracy. For example,
APISan [29] can infer causal relationships where the second function’s invocation
relies on the first function’s return value. However, it needs to search through all
intra-function paths, and then it suffers from intra-function path-explosion
with large performance cost (14 h with 32-core CPU and 256 GB RAM) [29].
PR-Miner [16] discards intra-function path information for better performance,
but it achieves worse accuracy—cannot detect the bugs that exist in specific
paths, i.e., some paths in a function violate causal relationships while others do
not. Moreover, it does not consider contextual constraints.

Besides, dynamic analysis tools like Perrocotta [28] mine causal relationships
from execution traces while the dynamic methods fall short in achieving high code
coverage. Furthermore, works like PF-Miner [19], PairMiner [17], and PairDyn [3]
only focus on specific scopes like error handlers and driver interfaces. Other works
like WoodPecker [10], IMChecker [13], and WYSIWIB [14] need known causal pat-
terns, while the patterns are often implicit.

To overcome the implicitness of causal relationships and achieve high code
coverage, we use static analysis based on a statistical method, which needs no
previous knowledge by regarding major patterns as rules. Here, to avoid search-
ing through the call graph, we only perform intra-procedural analysis. However,
by summarizing the limitations of previous works, we face two main challenges
in inferring causal relationship violations in commodity kernels.

C1: Contradiction Between Bugs in Specific Paths and Intra-function
Path-Explosion. Since every path needs to satisfy causal relationships, we have
to traverse each path in functions to learn causal relationships and detect vio-
lations. Also, there are indeed bugs in specific paths as our example (Sect. 2.1)
and survey (Sect. 2.2) show, so keeping path information is necessary. Unfortu-
nately, commodity kernels have severe intra-function path-explosion. According
to our study (Sect. 2.1), there are about 3000 functions with more than 5000
internal execution paths (after unrolling loops) in Linux. Hence, without reduc-
ing the number of paths, it took us 25 min to consume all 32 GB memory and
only analyze 0.27% of functions in Linux. For a static analysis tool, a large time
cost caused by intra-function path-explosion will both delay tests of kernels and
the evolution of the tool, while the tool needs to collect path information in
functions. Moreover, as we do not know the causal patterns in the beginning,
previous methods [10,12,13] that use known patterns to remove unrelated paths
are not applicable. Thus, the contradiction is a crucial challenge for our work.

196 C. Yuan et al.

C2: Missing Contextual Constraints. Causal relationships often exist
depending on contextual constraints such as failed checks. Therefore, tools need
to be context-aware to identify such constraints, otherwise, we will obtain both
false positives and false negatives because of imprecise learned rules. Unfortu-
nately, few previous tools consider contextual constraints when inferring vio-
lations of causal relationships. APISan [29] considers one case of contextual
constraints—the return value of the first function in a causal relationship, but
it will miss other kinds of contextual constraints, like failures in a process.

In this paper, we develop Third-Eye, an effective and context-sensitive
static analysis tool based on LLVM to detect violations of causal relationships in
commodity kernels. We use two novel techniques to address the two challenges.

T1: Intersection-Based Call Sequence Building. To address the first chal-
lenge (C1), we utilize two observations. First, for a causal relationship A() and
B(), if A() is called, then in all paths after A()’s call, B() should be called. There-
fore, the intersection of callees in the paths after A()’s call should still contain
B(). Hence, we can merge the paths to their intersection to mitigate intra-
function path-explosion. However, paths with different execution results may
need to satisfy different causal relationships so we cannot merge them directly.
Hence, we use the second observation that paths with different execution results
can be distinguished by the exits that they end with. For example, normal paths
return zero while failed paths return error codes.

Based on the two observations, we develop the intersection-based call graph
building. This method merges paths leading to the same exit to their inter-
section and preserves paths with different exits. It can both eliminate intra-
function path-explosion and collect path information as much as possible. Also,
this method of removing paths does not rely on known patterns.

T2: Context-Sensitive Statistical Analysis. Considering that causal rela-
tionships are usually implicit and context-related, we propose the context-
sensitive statistical analysis to learn causal relationships and detect violations
within kernels. Our algorithm extracts contextual constraints from conditional
statements and attaches them to the learned causal relationships. Then, when
detecting violations, we only apply the causal relationships when all attached
contextual constraints are satisfied.

We use Third-Eye to statically analyze the Linux kernel 5.3. We find 60 bugs
in total and 41 fixes have been accepted by Linux maintainers. It takes 34 min
to analyze Linux 5.3, which is much faster than the 14 h cost by APISan [29].
Furthermore, we find 18 bugs under contextual constraints other than the return
value of the first function in a causal relationship. These bugs will be missed by
APISan [29]’s strategy of mining contextual constraints.

In short, our contributions are:

– We study intra-function path explosion in Linux and find the problem is
severe. Moreover, we study the patterns of causal relationships’ violations in
kernels to show their major characteristics. (Sect. 2)

– We develop Third-Eye, a novel static analysis tool to infer violations of
causal relationships in kernels. (Sect. 3)

Third-Eye 197

– We design two new techniques to cope with the challenges in inferring
violations of causal relationships. In particular, the intersection-based call
sequence building algorithm allows detecting bugs in specific paths without
severe intra-function path-explosion when collecting callees in paths. Context-
sensitive statistical analysis can mine causal relationships with their contex-
tual constraints and infer violations under certain contexts (Sect. 4).

– We detect 60 bugs in total. Of them, 41 fixes have been accepted by the Linux
community. (Sect. 6)

2 Motivation

In this part, we motivate our work based on a typical bug example and a study
on violations of causal relationships in the Linux kernel.

To simplify our illustration, we define several terminologies. We name two
functions with a causal relationship pair functions while naming the function
called earlier pre-function, the later one post-function.

2.1 An Example of Violating Causal Relationship

Listing 1.1 shows an example of violating a causal relationship in Linux 5.3 to
illustrate our motivation. This bug is detected by our tool.

198 C. Yuan et al.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

5000 4500 4000 3500 3000 2500 2000 1500 1000 500

N
um

be
r

of
 fu

nc
tio

ns

Threshold of path number

Fig. 1. Number of functions with path number beyond certain thresholds.

Here, err block (line 28) forgets to release the memory resource acquired by
register pernet subsys() (line 10) with unregister pernet subsys() when
cma init() fails, which can lead to memory leak and DoS. The causal relation-
ship between the two functions relies on two contextual constraints – a successful
registration and a failure after it, like the failure of ib register client() (line
16). Therefore, if the registration fails or there is no failure after the successful
registration, cma init() does not need to release the resources.

This example illustrates two features of violations of causal relationships.
First, it shows that some bugs exist in specific paths. The bug in the

example only exists in the paths which contain the err (line 28) block. Thus,
we need to collect path information of all paths to detect the bug. Hence, the
strategy of PR-Miner [16], which ignores path information, is insufficient.

Nonetheless, collecting path information has the problem of intra-function
path-explosion. We study the severity of intra-function path-explosion
in the Linux kernel by an LLVM pass. We use the DFS algorithm to traverse all
paths after unrolling loops in Linux 5.3. To avoid too much time cost from path-
explosion, we search until the branch depth reaches 14. As shown in Fig. 1, about
3000 functions have more than 5000 paths. As we count, the total number of
intra-function paths is over 2 billion. Therefore, the severe issue of intra-function
path-explosion makes tracing all paths infeasible.

Based on the result of this study and the pattern shown by the example, we
confirm that the contradiction between intra-function path-explosion and bugs
in specific paths indeed exists (C1).

Also, the example indicates that some bugs relate to contextual con-
straints. In the example, if we miss the contextual constraints of the violated
causal relationship, we will regard the normal path (line 24) as a violation then
get a false positive. Moreover, as the statistical method regards major patterns as
causal relationships, without considering contextual constraints, we will confuse
cases under different contexts. Then the causal relationships with certain contex-
tual constraints may not reach the majority and therefore they are missed. As a
result, we will get a false negative in the err block (line 28). Besides, this exam-
ple has two constraints, so only considering the return value of the pre-function
as a contextual constraint like APISan [29] is not sufficient.

Third-Eye 199

2.2 Study of Violations in the Linux Kernel

To check whether the patterns shown in Sect. 2.1 are common in kernels and
to further learn the patterns of causal relationships’ violations, we collected
the commits from Linux 4.19 to 5.4 and used keywords like “Merge” to filter
unrelated commits, then we manually picked out the commits of fixing causal
relationship violations. We found 92 commits in total.

60 violations (65.2%) exist only in specific paths. 57 violations (62%) only
exist under certain contexts. Moreover, we find 54 bugs (58.7%) that both exist
in specific paths and under certain contextual constraints.

Then we get two conclusions based on the major characteristics of the bugs.
First, it is important to collect callee information in paths to detect bugs in
specific paths, while intra-function path-explosion is severe (C1). Also, context-
sensitive analysis is necessary for detecting context-related bugs (C2).

3 Overview

Figure 2 shows the structure of Third-Eye, which takes IR files of a kernel as
its input, and analyzes the files through three phases: preparation, analysis, and
post-processing. In the end, Third-Eye outputs bug reports.

Fig. 2. The structure of Third-Eye. It has three phases: preparation phase, analysis
phase, and post-processing phase. In the analysis phase, it has two key techniques:
intersection-based call sequence building and context-sensitive statistical analysis.

We briefly introduce the three phases here. First, in the preparation phase,
Third-Eye collects necessary information, e.g. targets of indirect calls, for later
analysis. We will discuss the details in Sect. 5.

In the analysis phase, we use two key techniques to infer violations of causal
relationships. We first leverage the intersection-based call sequence building to
build call sequences. This algorithm merges paths with the same exit while
keeping paths with different exits, which both eliminates intra-function path-
explosion and records path information as much as possible. Then we perform
the context-sensitive statistical analysis to infer causal rules with their contextual
constraints and detect violations. We illustrate the key techniques in Sect. 4.

Last, in the post-processing phase, we filter the result to mitigate false posi-
tives and rank the bug reports. The details of this phase are shown in Sect. 5.

200 C. Yuan et al.

4 Key Techniques

4.1 Intersection-Based Call Sequence Building

Main Ideas. We observe that for pair functions A() and B(), if A() is called,
then in all subsequent paths B() should be called. Therefore, if no violation
exists, the intersection of all paths after A()’s call should still contain B(). Oth-
erwise, at least one violation exists. Hence, we can merge paths within a
function to their intersection to reduce the number of paths for mitigating
intra-function path-explosion. Additionally, to record more information in paths,
when one path is the other path’s subset, we use the superset path as the result.

However, we cannot merge all paths within a function because different paths
can have different execution results, so they need to obey different rules. For
example, failed paths in functions usually call error handlers, while the nor-
mal paths do not. Thus, we will lose the error handlers if we merge the two
kinds of paths together. If so, we cannot detect the causal relationships between
failed functions and their error handlers like the example in Listing 1.1. To cope
with this problem, we observe that exits of functions usually represent execution
results. For example, normal paths can return zero while failed paths return error
codes. Therefore, we can merge paths with the same exit, while preserv-
ing paths with different exits. By this, we can both eliminate intra-function
path-explosion and keep path information as much as possible. Also, this method
does not rely on known rules as it only utilizes a feature of causal relationships.

We implement this based on LLVM IR (intermediate representation). In IR,
to reach the return block (the block with a return instruction) of a function,
one of its predecessors must be reached first. We find that each predecessor
usually corresponds to one exit of the function in the source code. Based on this
observation, we merge paths that reach the same predecessor of the return block,

Third-Eye 201

Fig. 3. Part of the process of the intersection-based call sequence building on List-
ing 1.1. ib reg() = ib register client(), cma() = cma configfs init(), ib unreg()

= ib unregister client(), unreg net() = unregister netdevice notifier(), and
destroy() = destroy workqueue().

while preserving paths that end with different predecessors. Listing 1.2 shows
the compiled IR of Listing 1.1, here the three predecessors of the return block
exactly correspond to the three exits in the source code.

Process. For a function, the algorithm firstly uses DFS from the head block to
visit all basic blocks (after unrolling loops and it visits each block only once)
and records callees of the blocks. Then it merges branches from the end block,
appends the result to the predecessor blocks until the head block so that it gets
a complete list of callees and contextual constraints of the function.

Figure 3 shows part of the process of intersection-based call sequence build-
ing for Listing 1.1. Due to the space limitation, we simplify the functions’ names
as the caption shows. In Listing 1.1, after ib register client() (line 16), two
failed paths exist. One fails immediately after a failed check (line 18), and the
other fails after cma configfs init()’s failure (line 22). Figure 3(a) shows the
two paths. Since they have the same exit, the tool merges them together. Because
one path is the other’s subset, the result is the superset. In comparison, Fig. 3(b)
shows the two paths after cma configfs init() (line 20), while one is a nor-
mal path and the other is a failed one. Since they have different exits, the tool
preserves both. Also, for paths with different exits, the tool records their pre-
conditions as contextual constraints.

In this process, we discard some branches which have no benefit for us, such
as BUG ON() failure which leads to panic. For a loop, we unroll it by first merging
paths within the body of the loop, then appending the merged exit paths.

Furthermore, we collect function calls’ arguments and return values during
the process. We use the alias analysis provided by LLVM to check whether the
values are aliases, if so (all results except NoAlias), we mark the values with the
same ID. We also check whether two values are loaded from the same variable,
if so, we also mark them with the same ID.

202 C. Yuan et al.

4.2 Context-Sensitive Statistical Analysis

With the call sequences, we perform the context-sensitive statistical analysis.
The analysis has three main steps: pair candidates collection, pair mining, and
violation detection.

Pair Candidates Collection. We first collect all possible pairs as candidates
for causal relationships. We traverse every function’s callees from the beginning
to the end. Each time we meet a call, we match it with previously collected
called functions to get function pairs. The matching has six rules:

– RM1: A function cannot match itself.
– RM2: A post-function cannot match one pre-function more than once.
– RM3: A pre-function cannot match one post-function more than once.
– RM4: A post-function prefers to match a nearer pre-function.
– RM5: The resulted pair includes all contextual states of the pre-function.
– RM6: The post-function should share arguments or return values with the

pre-function.

RM1 is to prevent self-matched pairs. RM2 and RM3 are because multiple
identical causal relationships cannot share pre-functions or post-functions. For
example, one check function cannot check multiple return values. RM4 is because
pair functions usually obey a LIFO pattern (e.g. lock/unlock) or a post-function
should be called as soon as a pre-function returns (e.g. checking a return value).
RM5 is to get all possible contextual constraints for the collected pairs. RM6
is because functions with causal relationships usually share arguments or return
values (e.g. use the same lock, check the pre-function’s return value).

Each time we meet a contextual constraint, we append it to the visited func-
tions’ contextual states. The appending has three rules.

– RA1: The process keeps all existed states.
– RA2: If a new constraint is the same as the last one in the opcode and the
operand, do not append it.

– RA3: If a new constraint’s checked value is not returned by the pre-function,
delete the returned by which function field.

We use RA1 to get all possible contextual constraints of pre-functions. RA2
is since the same constraints usually have the same meaning (e.g. less than zero
usually represents error) and therefore they are duplicated. RA3 is because the
returned by which function field can be unnecessary if it is not the pre-function.
For example, in Listing 1.1, the causal relationships do not care which function
causes an error (denoted by a failed check), but only care whether there is a
failure. However, if the checked value is returned by the pre-function, it may
represent whether the pre-function succeeds, so it is necessary.

We use the path which has an error handler in Listing 1.1 to show the process,
which is shown in Table 1. We simplify the path to make the illustration clearer.
Also, due to the space limitation, we simplify the functions’ names as the caption

Third-Eye 203

Table 1. The simplified process of collecting pair candidates in Listing 1.1’s error path.
alloc() = alloc ordered workqueue(), reg per() = register pernet subsys(),
cma() = cma configfs init(), destroy() = destroy workqueue(). Callees with the
same argument ID have shared arguments or return values, otherwise have no shared
argument nor return value.

illustrates. Furthermore, we use numbered IDs to represent the arguments and
return values. Calls that have the same ID share arguments or return values,
otherwise no such sharing. Each row in the table represents a step in the analysis.

Each time we meet a function, we add it to visited functions (column Func
of Current State in Table 1). Each time we meet a contextual constraint, we
append it to visited functions’ contextual states (column Context of Current
State in Table 1) based on RA1–RA3.

In row #0, we append the contextual constraint to alloc(). Because of
RA1, alloc() gets two states. In row #1, we match reg par() with alloc().
However, alloc() does not share arguments or return value with it, so due
to RM6, we get no candidate. In row #2, we have got one candidate. Besides,
because of RA3, we delete the returned by which function field of cma() != 0 for
reg per(). Also, considering RA2, since cma() != 0 is the same as alloc()’s
last condition (alloc() != 0) in opcode and operand, we do not append it.
Although this seems wrong since the two conditions do not have the same seman-
tics, we get fewer false negatives comparing to the strategy of appending the
new constraint. We guess this is because the constraints after the pre-function’s
success are more critical for causal relationships, and the pre-functions’ return
values are not checked in many cases. In row #3, because of RM6, we can match
destroy() with alloc(), so we get two candidates with different contextual
constraints as RM5. Finally, we get three candidates from this path.

204 C. Yuan et al.

Pair Mining. We use a statistical method to determine whether a candidate
pair has a causal relationship so that we do not need kernel-specific knowledge.
The formula is shown as Formula (1). Npair means the number of a pair’s appear-
ances. Npre means the number of appearances of the pre-function in the pair. If
Formula (1) is satisfied for a pair, it is regarded as a causal relationship.

Npair

Npre
≥ threshold(Npre) (1)

A constant threshold is inappropriate for all pairs since for a frequently called
function, the proportion of correct cases should be higher because normally, vio-
lations will not increase linearly with the total number. Therefore, the threshold
should be higher for functions with more invocations. Hence, we use the Logistic
Function to calculate the threshold as Formula (2).

threshold(x) =
1

1 + e−alog2x−b
(2)

a and b can be set to adjust the threshold. To get a and b, in practice, we
first set two points in Formula 2, then calculate the parameters by solving binary
linear equations. To set proper parameters, users can adjust the two points until
getting ideal results. Section 6.4 shows this process for evaluation.

The Logistic Function is suitable since, first, it increases with the total num-
ber’s increasing. Second, it increases slower when the total number is larger, as
if the number of violations is invariable, the increasing of the matched pairs’
ratio gets slower when the total number grows. We study the effect of different
parameters and compare Formula (2) with constant thresholds in Sect. 6.4.

After mining pairs, we refine the constraints by removing them one by one
from back to front. If after removing a constraint, the pair still exists, we delete
the original one. Otherwise, if no simpler form of the pair exists, we keep it.

Violations Detection. To detect violations in paths, we match function pairs
in each path with the mined causal relationships.

To begin with, we introduce the concept of mutual exclusion . If the post-
function of a pair cannot share multiple causal relationships simultaneously, this
pair is mutually exclusive (ME), otherwise non-mutually exclusive (NME). For
example, a check function cannot check multiple return values, so it cannot be
shared. Hence, the causal relationships are mutually exclusive here. However, in
a workflow which has several allocation and releasing functions, each releasing
function can match several allocation functions, so the causal relationships are
non-mutually exclusive. If we do not distinguish these two kinds of causal rela-
tionships, we will get false negatives or false positives. For example, if we regard
return value checking as non-mutually exclusive, we will match one check with
several functions, so if one function lacks checking, we will miss that.

We run two rounds for violations detection.
In the first round, we decide whether each pair is mutually exclusive.

We firstly assume all pairs are mutually exclusive, then for each pair, we check
whether the pair is satisfied in each path where it exists. If the pair can be

Third-Eye 205

Table 2. The simplified process of detecting violations in Listing 1.1’s error path.
alloc() = alloc ordered workqueue(), reg per() = register pernet subsys(),
cma() = cma configfs init(), destroy() = destroy workqueue(), unreg per() =

unregister pernet subsys().

satisfied beyond a certain threshold of the paths, it will be identified as mutually
exclusive, otherwise non-mutually exclusive. For simplicity, the threshold is also
calculated by Formula (2) and the parameters are unchanged.

In the second round, we match pairs in each path and detect unmatched
pre-functions as violations. We match pairs under six rules. RM1 to RM3
are the same as RM2 to RM4 in collecting candidates, so we do not list them
here. Moreover, since when collecting candidates, we only consider pairs that
share arguments or return values, we do not have mined pairs that do not have
such matching. Therefore, we discard arguments and return values here.

– RM4: Matched mutually exclusive pairs stop matching.
– RM5: Mutually exclusive pairs cannot share post-functions.
– RM6: Only apply a causal relationship when the pre-function has a state

which is the same as the contextual constraints.

Since mutually exclusive pairs cannot share post-functions with others, if
a post-function has been matched to a mutually exclusive pair, it cannot be
matched to other pre-functions, so the match will stop as RM4. If a post-function
has been matched to a causal relationship, even if the pair is non-mutually
exclusive, other mutually exclusive pairs cannot use this post-function, so we
have RM5. To make the analysis context-sensitive, we only apply a rule if all its
contextual constraints have been satisfied by a pre-function, so we have RM6.

206 C. Yuan et al.

Appending contextual constraints has the same rules as collecting candidates
(RA1 to RA3), so we do not list them here.

Table 2 illustrates the process of detecting violations with the same path in
Table 1. The simplification of functions’ names is shown in the caption. Each row
represents a step in the process. We visit the callees in a path from beginning to
end like collecting candidates.

In row #0, we meet reg per() and two pre-functions exist, but no rule is
applicable, so there is no result. In row #1, we meet cma(), but no rule is appli-
cable, too. In row #2, we meet destroy(), and we can match it with alloc().
According to RM6, we demand the pre-function to satisfy the contextual con-
straints, and a suitable one exists, so we match destroy() with the alloc()
which has the contextual constraint, alloc() != 0. Moreover, when finishing
the match, we find that the reg per() which has a contextual constraint !=
0 is a pre-function in the mined rules, but it fails to match any post-function.
Therefore, we record it as a violation.

5 Implementation

We implement Third-Eye as LLVM passes with clang 9.0. Since Sect. 4 has
introduced the analysis phase, we now focus on the implementation details in
the preparation phase and the post-processing phase.

5.1 Preparation Phase

To provide needed data for filters (Sect. 5.2), we collect field information of global
variables and analyze targets of indirect calls. For global variable analysis, we col-
lect global variables’ fields which are function pointers, then record their indices
and the functions which are assigned to the fields. For indirect call analysis, we
adopt a simplified version of the two-layer type analysis proposed by CRIX [20]
and finally output the targets of indirect calls.

5.2 Post-processing Phase

Customized Filters. After analysis, the tool generates initial inferred viola-
tions. A violation report consists of the unmatched pre-function, the missed
post-function, and the function where the violation appears (we call it bug place).
Since statistical analysis uses major patterns as rules and the analysis limits to
intra-procedural, there are many non-violation reports. To prune these reports,
users can implement customized filters to filter the result.

As Listing 1.3 shows, to write a new filter, users need to define a subclass of
Filter, then implement the interface filterViolation(). The filter can utilize
the methods and data provided by the analysis passes. We have implemented
two filters as Table 3 shows. Both filters do not need kernel-specific knowledge
since they only contain general program analysis or string analysis.

Third-Eye 207

Table 3. Implemented customized filters.

Filter Description

LayerFilter Look for the missed post-function in the callees of three directions:
the bug place’s Callees, the bug place’s callers, and the bug place’s
callers’ callees

MacroFilter Filter the mined pairs which are caused by macros

Ranking. To help manual verification of bug reports, we rank all reported poten-
tial bugs in the result. A report with a lower ratio of bugs in the unmatched
pre-function’s appearances will rank higher. A lower ratio of bugs means the vio-
lated pattern appears more in all uses of the pre-function, so the confidence that
the pattern is a real one is higher. Therefore, the confidence that the violations
of the pattern are real also becomes higher.

6 Evaluation

We perform the evaluation on a machine with Intel i7-8700 CPU (3.2 GHz, 6
cores), 32 GB RAM, Ubuntu 20.10. The used LLVM version is LLVM 9.0. To
evaluate the effectiveness and scalability of Third-Eye, we run it on Linux
kernel 5.3.0 (configured with allyesconfig while debug options are unchecked).

As for the threshold, based on the result of Sect. 6.4, we use a = 0.02948 and
b = 1.6072 (see Formula (2)) (x = 20, threshold = 0.85; x = 1000, threshold =
0.87). The threshold is used for evaluating mining pairs (Sect. 6.1) and the final
bug reports (Sect. 6.2, Sect. 6.3, Sect. 6.5, Sect. 6.6).

6.1 Mine Pair Functions

One important stage of Third-Eye is to mine pair functions. Therefore, we
evaluate our tool on the identified 59 pairs in the 92 studied commits (Sect. 2.2)
to check whether it can mine these pairs.

We run our tool on Linux 5.3 and successfully find 16 pairs of the 59 identified
ones. In the remaining 43 pairs, 4 are not in our compiled IR code. So we find
16/55 = 29.1% pairs in the compiled kernel. The undetected 39 pairs’ intra-
procedural appearances are not often enough, so our statistical method cannot
identify them. In comparison, APISan [29] detected 37 of 187 causal relationships
(19.8%) in OpenSSL, which is comparable with us.

208 C. Yuan et al.

6.2 Detect Bugs

We have identified 60 bugs during our process of development. This does not
represent all bugs in the reports since we only checked about 33% of the final
reports due to time limitation. Besides the 9 ones that have been fixed or removed
in the upstream, we reported 51 ones to the Linux community, and 41 of them
have been confirmed. Furthermore, we have got 1 CVE assigned (CVE-2019-
20810, severity is medium).

Features. In the bugs, 26 (43.3%) are in specific paths (so they cannot be
detected by the path-insensitive tool, PR-Miner [16]) and 21 (35%) are context-
related (18 ones have contextual constraints other than the return value of the
pre-function, so they cannot be detected by APISan [29]), which proves the
effectiveness of our design.

Security Impact. 19 (31.7%) bugs may lead to memory leaks due to missing
freeing memory, 29 (48.3%) may cause a crash because of missing checks, and
7 (11.7%) bugs can cause DoS because of missing releasing resources, which
shows their criticalness. The average time length of the bugs’ existence is about
4.25 years and even 6 bugs have existed for more than 10 years.

6.3 False Positive and False Negative

We rank the final reports and select the top 300 bugs in the final report to
measure false positives. It cost one researcher about 2 h to manually check the
reports. We choose the top 300 reports because prior works like APISan [29] and
PR-Miner [16] both use the top reports to evaluate, so only the top reports’ data
is comparable to theirs. The result is shown in Table 4.

Table 4. False positives in the top 300 ranked bug reports.

Num Ratio Reason Num (Ratio)

Bugs 21 7% – –

Specifications 166 55.3% Inter-procedure 53 (31.9%)

Alternative pattern 49 (29.5%)

Missed context 42 (25.3%)

Mutual exclusion 5 (3%)

Others 17 (10.2%)

False positives 113 37.7% Statistical method 113 (100%)

Total 300 100% – –

Although filters have pruned a lot of non-violation reports, such reports still
exist. However, the result is acceptable as comparing with previous tools. Since
we do not have PR-Miner [16]’s source code and we fail to run APISan [29]

Third-Eye 209

on Linux 5.3 due to compatibility problems, we use the data in their papers
here. PR-Miner [16] has 44 non-violation reports in top 60 (73.3%), and it only
mines pairs which appear more than 15 times, while we do not have such a
limitation. Also, it cannot detect context-related bugs and bugs in specific paths.
APISan [29] has 391 non-violation reports in the top 445 (87.9%). Although this
data is from detecting missing-check bugs, as all bugs are found by the same
method, we think the result of causal relationship violations is similar to this
value. Therefore, considering our method is more general and it can find more
complex bugs, we think that our result is comparable with previous tools.

Although non-violation reports cannot directly lead to bug fixes, as suggested
by PR-Miner [16], some of them are still meaningful because they reflect the right
causal patterns and then they can be used as specifications for the development
of other tools, such as filters for our tool and automatic checkers. Because of the
benefits of these reports, we separate them from meaningless false positives as
PR-Miner [16] does. We use specifications in Table 4 to represent them.

Table 4 lists the reasons for non-violations reports. Inter-procedure means
that the post-function exists outsides the pre-function’s caller and our filter’s
search depth is insufficient. Alternative pattern means that the post-function is
replaced by another function with a similar functionality. Missed context means
that the post-function is only called under certain context but we do not detect it.
This is mainly due to the refinement of contextual constraints. Mutual exclusion
means that we incorrectly regard some causal relationships as mutually exclu-
sive, so they prevent other pre-functions to match, which leads to non-violation
reports. Others include minor reasons like assert functions that break paths,
continue statements that break loops, etc. Statistical method means that these
cases have no specific reason to be mined besides their frequent appearances.

Moreover, we randomly selected 200 reports from all ones (12859 in total)
and checked them, while 167 (83.5%) are false positives and 1 bug (0.5%) exists,
which reflects the whole situation and shows the efficiency of ranking.

False Negatives. Some false negatives can be caused by not mined pairs as
Sect. 6.1 shows. Furthermore, in the bugs found in our development, some of
them are missed in the final bug report due to the thresholds or some techs of
our tool. We count these cases and analyze the causes of them.

8 bugs in the found 60 (13.3%) are missed in the final report. The high
threshold leads to 7 of them. Merged post-function makes the pair missed and
then causes 1 false negative. This post-function relates to debugging and we
discard it since paths with the same exit can have different debugging functions,
while this method may break subset relations and lead to the lost of callees.

6.4 Result Variation

The values of parameters in Formula (2) affect pair mining largely, so we test
the results with different a and b, then see their variation. To make the results
more intuitive, we set two points of Formula (2), calculate a and b, then test the
results. The two points are (x1 = 20, y1) and (x2 = 1000, y2). With different y1

210 C. Yuan et al.

and y2, we use the total number of bug reports, the number of false positives,
and the number of false negatives in the found 60 bugs to evaluate the efficiency.
Since the bug reports are too many, we randomly select 200 reports to evaluate
false positives and false negatives. Figure 4 shows the results.

Fig. 4. Result variation with different thresholds.

We have two findings. First, by comparing different lines, when the threshold
is higher, the total number and the false positives are less while the false negatives
become more. Furthermore, by comparing points in each line, the difference
between y1 and y2 significantly affects the results. When the difference is larger,
the threshold of x which is smaller than 20 becomes lower. Therefore, the tool
mines more minor pairs and leads to more bug reports and false positives. As
for the false negatives, it increases as the threshold gets higher.

Furthermore, we compare all points and find the threshold under (20,0.85)
and (1000, 0.87) has relatively fewer bug reports and false positives/negatives,
so we use it for the final report. Also, we compare this threshold with constant
thresholds including 0.8, 0.85, and 0.9 (by setting y1 and y2 the same value). As
the figures show, 0.8 and 0.85 have more reports and false positives, while 0.9
has too many false negatives, so the Logistic Function is better.

6.5 Sensitivity Analysis

Intersection-Based Call Sequence Building. We write a pass to build call
sequences for all functions while it does not merge paths into their intersections.
After 25 min, the pass only analyzed 1,126 functions and it has consumed all
memory (32 GB), so it was blocked. In comparison, the original pass only needs
13 m 30 s to analyze 422,318 functions and it only uses 8.6 GB of memory. Hence,
the intersection-based call sequence building can both save space and time.

Context-Sensitive Statistical Analysis. To show the importance of context-
sensitive analysis, we remove all contextual constraints in the call sequences, then
do the statistical analysis. The context-insensitive analysis misses 25 bugs in the
found 60 ones, which is worse than the context-sensitive version (8 ones in the
final report). Therefore, context-sensitive analysis is necessary.

Third-Eye 211

Also, we test without checking mutual exclusion. When regarding all pairs
as mutually exclusive, the tool has 176,902 reports before filtering, while the
final report only has 27,106 without filters, so there should be too many false
positives. When regarding all pairs as non-mutually exclusive, the result has 2
more false negatives. Hence, distinguishing mutual exclusion is meaningful.

Filters. Without filters, there are 18,158 bug reports after merging the same
ones (12,859 with filters), and only 14 bugs exist in the top 300 (21 with filters),
so filters are useful.

6.6 Performance

The tool uses eight threads for mining pairs, checking violations, and filtering,
while a single thread for other works. The total time cost is 34m34s and it is
acceptable considering the size of the Linux kernel.

Besides, the analysis costs 7.5 GB RAM for statistical analysis for call
sequences (6 million lines) and collected candidates (3 million). The cost is due
to using complicated map data structures to accelerate the process.

In comparison, PR-Miner [16] runs on Linux 2.6.11 (3 million LoC). It costs
1 m 26 s and 441 MB for detecting violations without recording path information.
However, we work on Linux 5.3 (18 million LoC counted by cloc) and detect vio-
lations on paths with different exits, which has more workload. APISan [29] runs
on Linux 4.5-rc4 (11 million LoC counted by cloc). It costs 14 h and generates a
300 GB database for detection with a 32-core CPU and 256 GB RAM, which is
worse than us.

7 Discussion and Related Work

Limitation Discussion. We have four limitations: (1) merging branches will
lead to the loss of callees, which can cause false negatives; (2) the lack of inter-
procedural analysis will miss causal relationships and fail to filter non-violation
reports; (3) the high non-violation report rate; and (4) the lack of dynamic
verification of the detected bugs. We will address them in our future work.

Violations of Causal Relationships Detection. Without the knowledge of
rules, previous works use various methods to mine rules and detect violations.
Static analysis [4,11,16,18,19,23,26], including symbolic execution [29] is widely
used, while they fail to cope with the two main challenges.

Dynamic methods analyze runtime traces to get rules [7,8,28]. However,
dynamic methods meet difficulties in code coverage and hardware requirements
(like drivers), while static methods can cover most subsystems in kernels.

Some tools use known rules to check violations [3,10,13,14], while we use a
statistical method to mine implicit rules, so we do not need specific knowledge.

Bug Detection in Kernels. Various projects aim to detect bugs in kernels.
Methods, like static analysis [5,6,11,13–17,19,21,22,25], dynamic analysis [3,4,
7,8,18,28], fuzzing [9,24] and symbolic execution [27,29] are involved.

212 C. Yuan et al.

CRIX [20] develops the two-layer type analysis to find targets of indirect
calls, which we adopt in our tool. Also, it uses the types of opcode and operand
to represent conditional statements, which inspires us in mining contextual con-
straints. Dr. Checker [21] performs a soundy general bug finding in Linux kernel
drivers with pointer and taint analysis, but it will miss improper API usage bugs
like violations of causal relationships. K-Miner [12] uses partitioning to analyze
only a part of the kernel to avoid path-explosion, while we need to analyze the
whole kernel and we do not have known rules, so the method is not applicable.

8 Conclusion

This paper presents Third-Eye, a novel, practical, and context-sensitive static
analysis tool to detect causal relationship violations (41 fixes accepted) in com-
modity kernels. The tool utilizes the intersection-based call sequence building
to deal with the contradiction between bugs in specific paths and intra-function
path-explosion, performs context-sensitive statistical analysis to mine pairs with
contextual constraints, and successfully detects context-related violations.

Acknowledgment. We thank the anonymous reviewers for their insightful comments.
This work is supported by the National Natural Science Foundation of China (No.
61925206).

References

1. Code of include/linux/workqueue.h in linux 5.3. https://git.kernel.org/pub/scm/
linux/kernel/git/torvalds/linux.git/tree/include/linux/workqueue.h?h=v5.3

2. Code of kernel/workqueue.c in linux 5.3. https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/tree/kernel/workqueue.c?h=v5.3

3. Bai, J., Liu, H., Wang, Y., Hu, S.: Runtime checking for paired functions in device
drivers. In: 2014 21st Asia-Pacific Software Engineering Conference, vol. 1, pp.
407–414, December 2014. https://doi.org/10.1109/APSEC.2014.66

4. Bai, J., Wang, Y., Liu, H., Hu, S.: Automated resource release in device drivers.
In: 2015 IEEE 26th International Symposium on Software Reliability Engineer-
ing (ISSRE), pp. 172–182, November 2015. https://doi.org/10.1109/ISSRE.2015.
7381811

5. Bai, J.J., Lawall, J., Tan, W., Hu, S.M.: DCNS: automated detection of con-
servative non-sleep defects in the Linux kernel. In: Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS 2019, New York, NY, USA, pp. 287–
299. ACM (2019). https://doi.org/10.1145/3297858.3304065. http://doi.acm.org/
10.1145/3297858.3304065

6. Bai, J.J., Wang, Y.P., Lawall, J., Hu, S.M.: DSAC: Effective static analysis of sleep-
in-atomic-context bugs in kernel modules. In: 2018 USENIX Annual Technical
Conference (USENIX ATC 2018), Boston, MA, pp. 587–600. USENIX Association,
July 2018. https://www.usenix.org/conference/atc18/presentation/bai

7. Bai, J.J., Wang, Y.P., Liu, H.Q., Hu, S.M.: Mining and checking paired functions in
device drivers using characteristic fault injection. Inf. Softw. Technol. 73, 122–133
(2016)

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/inclu de/linux/workqueue.h?h=v5.3
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/inclu de/linux/workqueue.h?h=v5.3
https://git.kernel.org/pub/scm/linux/ker nel/git/torvalds/linux.git/tree/kernel/workqueue.c?h=v5.3
https://git.kernel.org/pub/scm/linux/ker nel/git/torvalds/linux.git/tree/kernel/workqueue.c?h=v5.3
https://doi.org/10.1109/APSEC.2014.66
https://doi.org/10.1109/ISSRE.2015.7381811
https://doi.org/10.1109/ISSRE.2015.7381811
https://doi.org/10.1145/3297858.3304065
http://doi.acm.org/10.1145/3297858.3304065
http://doi.acm.org/10.1145/3297858.3304065
https://www.usenix.org/conference/atc18/presentation/bai

Third-Eye 213

8. Bai, J.J., Wang, Y.P., Yin, J., Hu, S.M.: Testing error handling code in device
drivers using characteristic fault injection. In: 2016 USENIX Annual Techni-
cal Conference (USENIX ATC 2016), Denver, CO, pp. 635–647. USENIX Asso-
ciation, June 2016. https://www.usenix.org/conference/atc16/technical-sessions/
presentation/bai

9. Corina, J., et al.: Difuze: interface aware fuzzing for kernel drivers. In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, New York, NY, USA, pp. 2123–2138. ACM (2017). https://doi.org/10.
1145/3133956.3134069. http://doi.acm.org/10.1145/3133956.3134069

10. Cui, H., Hu, G., Wu, J., Yang, J.: Verifying systems rules using rule-directed sym-
bolic execution. In: Proceedings of the Eighteenth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASP-
LOS 2013, New York, NY, USA, pp. 329–342. ACM (2013). https://doi.org/10.
1145/2451116.2451152. http://doi.acm.org/10.1145/2451116.2451152

11. Engler, D., Chen, D.Y., Hallem, S., Chou, A., Chelf, B.: Bugs as deviant behavior:
a general approach to inferring errors in systems code. In: Proceedings of the
Eighteenth ACM Symposium on Operating Systems Principles, SOSP 2001, New
York, NY, USA, pp. 57–72. ACM (2001). https://doi.org/10.1145/502034.502041.
http://doi.acm.org/10.1145/502034.502041

12. Gens, D., Schmitt, S., Davi, L., Sadeghi, A.R.: K-miner: Uncovering memory cor-
ruption in Linux. In: NDSS (2018)

13. Gu, Z., Wu, J., Li, C., Zhou, M., Jiang, Y., Gu, M., Sun, J.: Vetting API usages
in c programs with imchecker. In: 2019 IEEE/ACM 41st International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion), pp. 91–94,
May 2019. https://doi.org/10.1109/ICSE-Companion.2019.00046

14. Lawall, J.L., Brunel, J., Palix, N., Hansen, R.R., Stuart, H., Muller, G.: Wysiwib:
a declarative approach to finding API protocols and bugs in linux code. In: 2009
IEEE/IFIP International Conference on Dependable Systems Networks, pp. 43–52,
June 2009. https://doi.org/10.1109/DSN.2009.5270354

15. Lawall, J.L., Muller, G., Palix, N.: Enforcing the use of API functions in linux
code. In: Proceedings of the 8th Workshop on Aspects, Components, and Pat-
terns for Infrastructure Software, ACP4IS 2009, New York, NY, USA, pp. 7–
12. ACM (2009). https://doi.org/10.1145/1509276.1509279. http://doi.acm.org/
10.1145/1509276.1509279

16. Li, Z., Zhou, Y.: PR-Miner: automatically extracting implicit programming rules
and detecting violations in large software code. In: Proceedings of the 10th Euro-
pean Software Engineering Conference Held Jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ESEC/FSE-13,
New York, NY, USA, pp. 306–315. ACM (2005). https://doi.org/10.1145/1081706.
1081755. http://doi.acm.org/10.1145/1081706.1081755

17. Liu, H., Bai, J., Wang, Y., Bian, Z., Hu, S.: PairMiner: mining for paired func-
tions in kernel extensions. In: 2015 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pp. 93–101, March 2015. https://doi.
org/10.1109/ISPASS.2015.7095788

18. Liu, H., Bai, J., Wang, Y., Hu, S.: BP-Miner: mining paired functions from the
binary code of drivers for error handling. In: 2014 21st Asia-Pacific Software Engi-
neering Conference, vol. 1, pp. 415–422, December 2014. https://doi.org/10.1109/
APSEC.2014.67

https://www.usenix.org/conference/atc16/technical-sessions/presentation/bai
https://www.usenix.org/conference/atc16/technical-sessions/presentation/bai
https://doi.org/10.1145/3133956.3134069
https://doi.org/10.1145/3133956.3134069
http://doi.acm.org/10.1145/3133956.3134069
https://doi.org/10.1145/2451116.2451152
https://doi.org/10.1145/2451116.2451152
http://doi.acm.org/10.1145/2451116.2451152
https://doi.org/10.1145/502034.502041
http://doi.acm.org/10.1145/502034.502041
https://doi.org/10.1109/ICSE-Companion.2019.00046
https://doi.org/10.1109/DSN.2009.5270354
https://doi.org/10.1145/1509276.1509279
http://doi.acm.org/10.1145/1509276.1509279
http://doi.acm.org/10.1145/1509276.1509279
https://doi.org/10.1145/1081706.1081755
https://doi.org/10.1145/1081706.1081755
http://doi.acm.org/10.1145/1081706.1081755
https://doi.org/10.1109/ISPASS.2015.7095788
https://doi.org/10.1109/ISPASS.2015.7095788
https://doi.org/10.1109/APSEC.2014.67
https://doi.org/10.1109/APSEC.2014.67

214 C. Yuan et al.

19. Liu, H., Wang, Y., Jiang, L., Hu, S.: PF-Miner: a new paired functions mining
method for android kernel in error paths. In: 2014 IEEE 38th Annual Computer
Software and Applications Conference, pp. 33–42, July 2014. https://doi.org/10.
1109/COMPSAC.2014.10

20. Lu, K., Pakki, A., Wu, Q.: Detecting missing-check bugs via semantic- and context-
aware criticalness and constraints inferences. In: 28th USENIX Security Sym-
posium (USENIX Security 2019), Santa Clara, CA, pp. 1769–1786. USENIX
Association, August 2019. https://www.usenix.org/conference/usenixsecurity19/
presentation/lu

21. Machiry, A., Spensky, C., Corina, J., Stephens, N., Kruegel, C., Vigna, G.:
Dr. checker: a soundy analysis for linux kernel drivers. In: Proceedings of the
26th USENIX Conference on Security Symposium, SEC 2017, Berkeley, CA,
USA, pp. 1007–1024. USENIX Association (2017). http://dl.acm.org/citation.cfm?
id=3241189.3241268

22. Min, C., Kashyap, S., Lee, B., Song, C., Kim, T.: Cross-checking semantic correct-
ness: the case of finding file system bugs. In: Proceedings of the 25th Symposium
on Operating Systems Principles, SOSP 2015, New York, NY, USA, pp. 361–
377. ACM (2015). https://doi.org/10.1145/2815400.2815422. http://doi.acm.org/
10.1145/2815400.2815422

23. Monperrus, M., Mezini, M.: Detecting missing method calls as violations of the
majority rule. ACM Trans. Softw. Eng. Methodol. 22(1), 7:1–7:25 (2013). https://
doi.org/10.1145/2430536.2430541. http://doi.acm.org/10.1145/2430536.2430541

24. Schumilo, S., Aschermann, C., Gawlik, R., Schinzel, S., Holz, T.: KAFL: hardware-
assisted feedback fuzzing for OS kernels. In: Proceedings of the 26th USENIX
Conference on Security Symposium, SEC 2017, Berkeley, CA, USA, pp. 167–182.
USENIX Association (2017). http://dl.acm.org/citation.cfm?id=3241189.3241204

25. Wang, W., Lu, K., Yew, P.C.: Check it again: detecting lacking-recheck bugs
in OS kernels. In: Proceedings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2018, New York, NY, USA, pp. 1899–
1913. ACM (2018). https://doi.org/10.1145/3243734.3243844. http://doi.acm.org/
10.1145/3243734.3243844

26. Wu, Q., Liang, G., Wang, Q., Xie, T., Mei, H.: Iterative mining of resource-releasing
specifications. In: Proceedings of the 2011 26th IEEE/ACM International Con-
ference on Automated Software Engineering, ASE 2011, Washington, DC, USA,
pp. 233–242. IEEE Computer Society (2011). https://doi.org/10.1109/ASE.2011.
6100058

27. Xu, M., Qian, C., Lu, K., Backes, M., Kim, T.: Precise and scalable detection
of double-fetch bugs in OS kernels. In: 2018 IEEE Symposium on Security and
Privacy (SP), pp. 661–678, May 2018. https://doi.org/10.1109/SP.2018.00017

28. Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta: mining tem-
poral API rules from imperfect traces. In: Proceedings of the 28th International
Conference on Software Engineering, ICSE 2006, New York, NY, USA, pp. 282–
291. ACM (2006). https://doi.org/10.1145/1134285.1134325. http://doi.acm.org/
10.1145/1134285.1134325

29. Yun, I., Min, C., Si, X., Jang, Y., Kim, T., Naik, M.: APISan: sanitizing API usages
through semantic cross-checking. In: Proceedings of the 25th USENIX Conference
on Security Symposium, SEC 2016, Berkeley, CA, USA, pp. 363–378. USENIX
Association (2016). http://dl.acm.org/citation.cfm?id=3241094.3241123

https://doi.org/10.1109/COMPSAC.2014.10
https://doi.org/10.1109/COMPSAC.2014.10
https://www.usenix.org/conference/usenixsecurity19/presentation/lu
https://www.usenix.org/conference/usenixsecurity19/presentation/lu
http://dl.acm.org/citation.cfm?id=3241189.3241268
http://dl.acm.org/citation.cfm?id=3241189.3241268
https://doi.org/10.1145/2815400.2815422
http://doi.acm.org/10.1145/2815400.2815422
http://doi.acm.org/10.1145/2815400.2815422
https://doi.org/10.1145/2430536.2430541
https://doi.org/10.1145/2430536.2430541
http://doi.acm.org/10.1145/2430536.2430541
http://dl.acm.org/citation.cfm?id=3241189.3241204
https://doi.org/10.1145/3243734.3243844
http://doi.acm.org/10.1145/3243734.3243844
http://doi.acm.org/10.1145/3243734.3243844
https://doi.org/10.1109/ASE.2011.6100058
https://doi.org/10.1109/ASE.2011.6100058
https://doi.org/10.1109/SP.2018.00017
https://doi.org/10.1145/1134285.1134325
http://doi.acm.org/10.1145/1134285.1134325
http://doi.acm.org/10.1145/1134285.1134325
http://dl.acm.org/citation.cfm?id=3241094.3241123

Find My Sloths: Automated Comparative
Analysis of How Real Enterprise

Computers Keep Up with the Software
Update Races

Omid Setayeshfar1, Junghwan “John” Rhee2(B), Chung Hwan Kim3,
and Kyu Hyung Lee1

1 University of Georgia, Athens, GA 30605, USA
{omid.s,kyuhlee}@uga.edu

2 University of Central Oklahoma, Edmond, OK 73034, USA
jrhee2@uco.edu

3 University of Texas at Dallas, Richardson, TX 75080, USA
chungkim@utdallas.edu

Abstract. A software update is a critical but complicated part of soft-
ware security. Its delay poses risks due to vulnerabilities and defects of
software. Despite the high demand to shorten the update lag and keep
the software up-to-date, software updates involve factors such as human
behavior, program configurations, and system policies, adding variety
in the updates of software. Investigating these factors in a real envi-
ronment poses significant challenges such as the knowledge of software
release schedules from the software vendors and the deployment times
of programs in each user’s machine. Obtaining software release plans
requires information from vendors which is not typically available to pub-
lic. On the users’ side, tracking each software’s exact update installation
is required to determine the accurate update delay. Currently, a scalable
and systematic approach is missing to analyze these two sides’ views
of a comprehensive set of software. We performed a long term system-
wide study of update behavior for all software running in an enterprise
by translating the operating system logs from enterprise machines into
graphs of binary executable updates showing their complex, and individ-
ualized updates in the environment. Our comparative analysis locates
risky machines and software with belated or dormant updates falling
behind others within an enterprise without relying on any third-party
or domain knowledge, providing new observations and opportunities for
improvement of software updates. Our evaluation analyzes real data from
113,675 unique programs used by 774 computers over 3 years.

1 Introduction

Updating software in general and applying software patches in a more specific
sense is a very crucial part of maintaining an ecosystem of computers safe [6];
although regular updates alone do not guarantee complete safety, falling behind
c© Springer Nature Switzerland AG 2021
L. Bilge et al. (Eds.): DIMVA 2021, LNCS 12756, pp. 215–236, 2021.
https://doi.org/10.1007/978-3-030-80825-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80825-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-80825-9_11

216 O. Setayeshfar et al.

for sure poses security risks [46]. Research has shown a security patch might take
months to create once a vulnerability is found; it even can come after the public
disclosure of the vulnerability [25], and even after the vulnerability is publicly
disclosed, many users may still use older versions. These delays open the chance
for attackers to exploit those vulnerabilities; For large enterprises, such risks may
lead to a significant financial loss, and a negative impact on their reputation [43].

In the recent Equifax breach case, the personal information of 143 million
Americans were stolen [7], and the attacker exploited a known vulnerability,
whose patch was available a few months before the incident. It could have been
prevented if the software was updated in time. Another study [45] shows that
more than 99% of exploited vulnerabilities were used by attackers more than
one year after the vulnerabilities were publicly disclosed (e.g., CVE [15]). The
WannaCry ransomware also shows how missed or delayed security updates can
affect enterprises, as well as individuals [6].

Having all the users keep all the programs on their computer up to date at all
times is ideal, but as shown in our probe as well as [18,25], we are very far from
it in the real world; even in cases where an update is installed with minimal user
involvement [18]. Numerous attempts have been made to quantify how up to
date a computer is, mainly by focusing on a small set of programs [49].

The software update is a complicated process that involves multiple parties
and decision factors to occur such as the availability of the machine or the
connection to deliver the software update (e.g., a computer isolated with an
air-gap is not updated), the system-wide policy to control update behavior in
an enterprise, and each machine’s or software’s configuration (e.g., a user can
stop updater due to its annoyance of notifications). We summarize the currently
unsolved challenges to understand this problem as follows.

(1) First, understanding when each software’s update is created and released is
important by setting the reference on the sender’s side to determine how long
the update takes or it has been delayed in each client machine (i.e., on the
receiver’s side). This is a real challenge due to the lack of standard channels.
Several prior works [20,27,48] utilized this information by a connection to cer-
tain software companies [18,20]. Other works used a third party vendor, which
attempts to collect this information using binaries’ properties. This method
typically relies on the user (or software vendors) submission of the binary
executable, and thus it might not provide such information for less popular
or homebrew software. Our study of a large group of 774 machines shows that
only 14.2% of installed software information is available on National Software
Reference Library (NSRL) [4] and 75.3% on VirusTotal [47]. There is no sys-
tematic way to obtain this information for a comprehensive set of software
for general usage.

(2) Second, knowing exactly when the released software has landed in a machine
is a piece of crucial information to evaluate the update process of a program in
each machine. Software vendors (e.g., Google) may estimate the deployment
statistics if they use update management software that reports the instal-
lation timestamps or by the usage of the software (e.g., Google Chrome) if

Find My Sloths: Automated Comparative Analysis 217

it uses network and reports its version on usage. However, many programs
do not have such mechanisms implemented to evaluate the update processes.
They may not use dedicated update management software relying on users
to download and execute the installation package program manually. Also,
programs may not use the network or do not use telemetry functions. Given
numerous software programs being used in an enterprise, we observe many
programs in the shadow without automated well-designed update manage-
ment. Their updates solely depend on each user’s alertness or the enterprise
administration to initiate checks and updates. A systematic method to track
the update occurrences for a comprehensive list (ideally all) of software is
highly desired but missing.

(3) After all, there is no standard on how each software should be updated.
Therefore, software vendors perform updates with their own ways and own
schedules as we show in Sect. 3.2. Also, there are multiple reasons why soft-
ware is incapable of updating features; legacy software (designed without
updates), the programs made by a limited resource (e.g., small vendors or
indie software), and the terminated or outdated programs support. All these
symptoms illustrate the demand for a systematic study on how our current
software is doing with updates and guidelines suggested regarding how each
software should be managed and how an update management software should
be designed.

In this work, we attempt to fill these gaps by creating a systematic approach
to measure the update behavior of a comprehensive set of programs from all
machines in an enterprise starting with individual records and summing up to
show the overall patterns. This work solves the aforementioned challenges by
automatically estimating (1) the release time of software and (2) the landing
time of the software with a fine granularity of individual programs and individual
machines in an enterprise. From these data, we could estimate how much behind
the latest version each software in each machine is without relying on domain
knowledge of developers’ channels or third-party information specialized with
software analysis. We take (3) multiple observations out of the real data from a
real enterprise environment and provide suggestions on what would be desired
properties of an update management software. Also, we deep dive on the sloths,
that we refer to the individual software and machine behind their peers in the
progress of updates inside the enterprise environment. We attempt to measure
their risk in terms of the delay based on our inferred software versions that are
available for all programs in our observation.

To achieve these goals, we develop FMS1, a tool that autonomously ana-
lyzes update patterns from the collected data, detects outdated programs and
machines, and produces timely notifications to administrators. Our evaluations
show FMS can infer version orders with 85% accuracy. Using FMS, we have iden-
tified more than 14,690 outdated programs from 774 computers and 2,705 more
programs engaged in risky behaviors.
1 FMS is an acronym of Find My Sloths, which refer to enterprise applications showing

undesirable delayed update behavior.

218 O. Setayeshfar et al.

We make the following unique contributions in the analysis of software update
behaviors in a real enterprise environment.

– Systematic study of software update behavior based on real-world enterprise
data; Covering a total of 113,675 programs in multiple platforms observed in
an enterprise with 248 people. This result brings new observations of real-
world factors in software updates.

– We propose a method to estimate software release time and update delay with
only data collected inside the enterprise, without relying on software vendors’
release notes or 3rd party (e.g., VirusTotal, NSRL). We enable the estimation
of these information for all observed software to determine the update delay
of all programs. We found the first appearance of software in a fairly large
group of 774 machines can approximate software release time. We present the
closeness of these two data in Sect. 3.3.

– Our approach estimates the update delay of an individual binary executable
by subtracting the release time from the landing time of software update
being tracked 24/7. This needs to be done individually for each software in
each machine so that we can determine the delay of individual instances of
software updates. It is enabled by tracking operating system (OS) events (e.g.,
system calls, Windows API) that access and execute each binary executable
in all machines. This data enables a drill-down approach to determine the
sloth in multiple layers: starting from the machine with a large update delay,
we can nail down the identification of the slowest software in that machine
with our fine grained individualized monitoring.

2 Observations on Enterprise Software Deployment

This research collects binary executable update records from 774 PCs and servers
in an enterprise with 248 employees. This section summarizes observations from
the data we collected over three years between Feb. 2017 and Feb. 2020.

Observation 1: (Complexity of Update Transitions) Software update
state transitions are more complex at the client sides than the developers’
views. N versions of program binary distributions can cause up to N2 possible
transitions depending on the availability and activation of updates.
Implications: Even though developers release a linear sequence of binaries,
extra non-linear transitions appear in the software update graph that defy the
versioning sequences of development due to diverse situations at the client side.

After a particular version of the software is installed, the next installed ver-
sion varies depending on various factors such as the updater configuration of a
particular machine, the machine’s availability, connectivity, and the enterprise’s
policy. When there is a gap between the installed version and the new version
to be installed, some software allow a direct transition of a version to another
version (e.g., 1.0 to 3.0) while some other software go through the applications

Find My Sloths: Automated Comparative Analysis 219

of all intermediate versions (e.g., 1.0–2.0–3.0). We have analyzed these behaviors
of software in our observation in Sect. 4.

Observation 2: (Unusual Update Transitions) Rollbacks or regressions
are not uncommon.
Implications: Counter-intuitive transitions such as rolling back to older ver-
sions may occur in multiple software and machines due to various situations
at the client side like compatibility and functionalities.

We have observed multiple software from major vendors such as Adobe Flash
and Mozilla Firefox frequently show unusual transitions. We have analyzed this
observation of counter-intuitive transitions in Sect. 4.

Observation 3: (Various Update Deployment Time) Updates released
get installed at clients after various delays from less than 10 minutes to several
years.
Implications: In software updates, clients’ roles are as important as the devel-
opers’ release schedule because their configuration and choices decide whether
and when updates get installed.

We have performed fine-grained analysis on these software delays running in
an enterprise, individually measuring the delay of an individual software program
in each machine. This result is presented in Sect. 4.

Observation 4: (Various Support Period of Software Update) Depend-
ing on products and vendors, we observe that the updates could be provided
from no update in years to 1441 updates in three years. On average, we observe
6.4 updates for each product in our environment.
Implications: Users should be aware of the risk of end-of-support software.

We have analyzed this observation in Sect. 4. Software gets updates from
developers, but its degree highly varies depending on the vendor and products.
Large software vendors tend to have more extended support (presumably due to
their resources). Adobe Acrobat and Microsoft Office 2010 have been supported
for 11 and 9.5 years so far, respectively. Software without support poses a serious
risk as vulnerabilities are discovered over time.

Observation 5: (A Long Term Software Usage) Some software gets used
for a long time. Multiple programs are used as an outdated version even after
when the update support is no longer provided.
Implications: Like any commodity, the software is used as far as it can per-
form its function. However, unlike hardware commodity, software gets vulner-
abilities and becomes riskier to operate over time. Combined with the fourth
observation, the software usage after the terminated support poses a high risk.

We have analyzed this usage period of software in Sects. 4 and 6.1.

220 O. Setayeshfar et al.

3 Design of Find My Sloths

In this section, we present FMS’s design, which automatically tracks and analyzes
software update patterns in a real enterprise environment. FMS is composed of
three main components: (1) Automated tracking of software binary information,
(2) Software update inference, and (3) Software risk analysis.

3.1 Automated Tracking of Software Binary Information

Package management systems provide automated installation, upgrade, config-
uration, and removal of computer programs. There exist various package man-
agement systems such as Linux Advanced Package Tool [1], RPM Package Man-
ager [38], zypper [42], portage [19], yum [8], pacman [44], Home Brew [2], MacOS
App Store [12], and Microsoft Store [32], that can possibly eliminate the user’s
effort towards manual installs and updates.

However, prior study shows the limitations of update managers [27]. Although
convenient to use, they do not provide full coverage of programs used on an
everyday machine, nor do they guarantee the timely installation of updates,
mainly due to inconveniences caused for the user during and after the update
process. In addition, there exist software types that package managers cannot
support, such as direct drop-in of a binary without an installer, custom installers
that do not work with package managers, programs’ self-updates, downloads of
related binaries or libraries, and local compilation of programs.

In this work, we do not aim to provide yet another automated updated sys-
tem, but we develop an automated and unified method to monitor software
updates by leveraging OS event monitoring techniques. OS event monitoring
techniques have been widely used for security analysis [9,24] or software execu-
tion diagnosis (e.g., fault diagnosis, debugging, root cause analysis) [11,16]. Our
monitoring agents utilize the OS event monitoring systems, which are currently
available in mainstream operating systems. In Microsoft Windows systems, we
use Event Tracing for Windows (ETW) [29]. We use the Auditd system [3] for
Linux operating systems. Specifically, we monitor the events regarding process
execution and file modification to binary executables (e.g., executable and library
files). The following table summarizes the events that we use.

Platform Operating system events

Windows (ETW) WinExec, WriteFile, WriteFileEx, WriteFileGather

Linux (Audit) execve, write, writev, pwrite, pwritev, pwrite64

We install the OS event tracking system (we call them monitoring agents) in
hosts, including servers, desktops, and laptops, in the organization. Our agents
cover various OSes and their versions—over 30 kinds—including Windows (e.g.,
Windows 7, 10) and Linux (e.g., Ubuntu, Redhat, CentOS) in our prototype.

Find My Sloths: Automated Comparative Analysis 221

Other operating systems such as MacOS can be also supported by our system
by utilizing their OS event function. Once the events are collected, the rest of
the process is agnostic to the operating system itself. Tracking these OS events
provides the history of execution and modification (e.g., update, patch) of all
software binaries on a computer in a heterogeneous manner.

Fig. 1. Architecture of Find My Sloths (FMS).

The tracking system streams the collected events to the backend server as
shown in Fig. 1. These events are stored in a database, which we use to analyze
the data. Next, we explain how we use this information to infer software updates.

3.2 Software Update Inference with Binary Update Lineage Graph

Lineage Graph Generation. To track the binary update information for each
software installed, we develop a lineage tracking algorithm that analyzes OS
events collected by our tracking module. We identify file write events applied
into binary executables and construct a binary update graph for each executable
files. A file path for an executable file, which is executed, becomes a candidate
for an update check. Whenever we observe a file write event applied this file
candidate, this event is inferred as an update of the program.

Specifically, we first generate a graph to represent the lineage of binary
updates, G(V,E) where V is a set of vertices which represent the information of
program binaries, including both execution history and metadata. We call this
graph a Lineage Graph. We use a SHA256 hash of the binary, S, as the identifier
of each vertex. E is a set of directed edges where each edge shows how a binary
has been updated as U(Sold → Snew). Each edge contains a timestamp of the
update as well as the identifier of the computer that it was observed on.

Interestingly, we have observed unusual binary modification patterns in some
applications, including Mozilla Firefox. To support the update without com-
pletely terminating the application, Firefox partially updates the image, reloads
it in a running process, and updates the next portion of the image. It generates
many bogus vertices and edges in the graph. To avoid this, we defined a time
threshold, and if the sequence of binary updates happens within the threshold,
we merge them in the graph and only keep the first image information. In this
work, we use 99.9 percentile of the time between updates, 180 s, as an empirical
threshold.

222 O. Setayeshfar et al.

Algorithm 1. Graph Creation
Input: oldSig, newSig, comInfo, path
V = [], E = []
for each item in dataList do

u = null, v = null
if (oldSig ∈ V) then

u = V .getItem(oldSig)
add comInfo and path to u

else
u = new Node(oldSig); V .add(u)

if (newSig ∈ V) then
v = V .getItem(newSig)
add comInfo and path to v

else
v = new Node(newSig); V .add(v)

if ((u, v) = e ∈ E) then
add comInfo and date to e

else
E.add (new Edge(u, v))

Fig. 2. Simplified graph from Mozilla
Firefox demonstrates how we construct
a global view of update patterns.

Global Lineage Graphs as an Enterprise Level Update Summary. We
then generate the graphs for all hosts in the central server to create a collective
graph and comparatively measure the risk factors for each host. We use a binary
signature, S, to identify the same binary in different hosts and construct a global
update graph for each application to visualize binary update patterns across
hosts. It allows us to have a bird’s eye view of how each program is updated,
and similarities and differences of update patterns across hosts. Algorithm 1
presents how we construct global graphs.

Figure 2 demonstrates a simplified example of how we construct a global view
of update patterns. In this scenario, we have four hosts that have the execution
or modification history of a particular application. The application has three
distinct binary signatures, the version 64.0 (S64.0)2, S65.0, and S65.0.1. Host 1
has execution and update history where the binary has updated at t1 from
S64.0 to S65.0 and updated to S65.0.1 at timestamp t2. The binary in Host 2 has
updated to v65.0 at t1 but never updated to S65.0.1. Host 3 only has an execution
history of S65.0, and Host 4 does not have any sign of S65.0, but the binary has
directly updated from S64.0 to S65.0.1 at t2. Note that this is simplified graphs to
demonstrate, but original nodes contain metadata and execution history (e.g.,
timestamps when the binary has executed).

We collect graphs from each host and construct a global graph aggregating
update patterns from all hosts. The global graph shows how the binary has
updated, who have out-dated binary executables, and how frequently out-dated
binaries have executed (we elide an execution history). We discuss how we mea-
sure the risk factors for each host using the global view in the next section.

Tracking Binary and Library Update. We detect updates based on over-
writing of the binary files. These can be either by a write event or an execution
2 This version number 64.0 is presented only for an illustration purpose. A lineage

graph is constructed using binary hashes and their appearance orders without using
the software’s specific version numbers, which may not always available or accurate.

Find My Sloths: Automated Comparative Analysis 223

event which shows a new signature for the executable image. Note that not every
program update changes the main executable. It is possible to update library
files while the main executable stays unchanged. Most Windows applications
developed by .NET framework update the manifest in the main executable even
if the update is only applied to a library file [30,31], and thus FMS can detect it.
However, if the update is solely through the dynamic library without updating
the manifest, or main program FMS cannot detect it, and we leave it as our
future work. We further discuss this issue in Sect. 9.

Table 1. NSRL Program and Version Coverage. Latest versions available for four
popular programs as of the date of the writing and their corresponding records in the
latest NSRL [4] release (RDS Version 2.71 - Dec. 2020) showing NSRL release is not
up-to-date for several actively developed software programs.

Program name Latest NSRL versions Program name Latest NSRL versions

Mozilla FireFox 73.0 72.0, 68.0, 61.0.1 Acrobat Reader DC 21.001.20138 N/A

Google Chrome 80.0 76.0, 49.0, 47.0 Sublime 3.2.2 N/A

Limited Reference Services. We have considered using reference libraries for
software such as National Software Reference Library (NSRL) [4] or VirusTotal
File Search [47] that can retrieve information of application by a hash value.
They often provide known-vulnerabilities (e.g., CVE [15]) and it can be directly
used for the risk prediction. Table 1 shows version information for 4 popular
programs in NSRL. As shown, these references can be used with some main-
stream applications, however, they often fail to provide information on less-
known applications or free software distributed via source code.Also the fact that
less popular programs have less disclosed vulnerabilities [5] does not mean they
are more secure and they still should be monitored. We submitted all executable
files installed in our enterprise to NSRL and VirusTotal database, and we found
that only 14.2% of installed binary information is provided by NSRL and 75.3%
of binary information is available in VirusTotal.

3.3 Software Risk Inference

In order to estimate the risk each computer or software imposes on the enterprise
environment, the state of software on individual computers, as well as, the overall
enterprise status as a whole have to be quantified with a score; we introduce a
metric based on the delay in update time, that is defined as the estimated delay
of the installation time behind the latest version in its software distribution.

FMS monitors the process and file events and creates lineage graphs as intro-
duced in Sect. 3.2. From the data stream, we catch new updates as they emerges.
These updates are correlated and aggregated over all the enterprise to construct
the global update graph of a program. To give the administrators a better per-
spective, we also provide them with information on how common each program

224 O. Setayeshfar et al.

is in the enterprise and the update patterns for that particular program. Here is
how FMS estimates the risk caused by the software update delay.

Inferred Versions. Relying on software vendor’s release schedules or third-
party services’ information does not scale to cover the majority of software.
Therefore, our approach determines the risk estimated by only using the mea-
sured metrics in our environment. In this scheme, the versions are determined
by temporal appearance order of signatures relative to the prior edge nodes in
an enterprise. We found that the statistical data collected from 774 machines
approximate the actual order of versions with 85% accuracy. We calculate accu-
racy by counting the number of versions found in the correct order by FMS as
compared to their respective compilation timestamp in a test set of programs
related to 16,273 updates chosen randomly from Windows binary files.

Let us define a program p has a set of its signatures Vp = {Sp,v,m} where
v is a version and m is a host index in an organization. Among multiple signa-
tures observed, we can find the one leading the version transitions that appear
most recently compared to other versions and transitioned from one or more
edge nodes of the graph. We call this version the head v̂, and its signature is
represented as Sp,v̂,m′ where m′ is the host having this version. This signature
is determined from the graph structure.

Estimated Release Time, Head Arrival Time, and Arrival Time of
Updates. To estimate the update delay, we need to determine three types of
timestamps. The first one is the release time, r(Sp,v,m), when the software vendor
begins to distribute a new version of the software. This information is hard to
obtain with comprehensive coverage of the majority of software. We estimate
this information with the first appearance time of a signature, Sp,v,m, in an
enterprise. The second metric is the deployment time of the latest estimated
version, d(Sp,v̂,m′), that is the installation time of the most desirable version
where the function d(s) gives the installation time of a signature s. This is
determined after the head signature is found from the topology of the graph.
The third timestamp is the actual installation time, d(Sp,v,m), that is a specific
time stamp when the software binary signature, Sp,v,m is installed. Its absolute
installation time since the release is d(Sp,v,m) − r(Sp,v,m).

Update Delay Metric. The update delay of software p of the current version
v in a machine m behind the head v̂ is defined as the following formula.

Dp,v,m = |d(Sp,v̂,m′) − d(Sp,v,m)|
This value measures a relative delay compared to the installation of the latest
version within an enterprise. Since this is calculated only by using our measure-
ments, we can generate this risk score without any domain knowledge require-
ment, such as the release date and time, which is only available by developers.
Such wide applicability to all programs is a unique strength of our approach.
We present interesting comparative statistics showing how each software in a
particular machine is doing compared to all other software instances within an
organization in Sect. 4. To this end, FMS generates a daily report that outlines

Find My Sloths: Automated Comparative Analysis 225

Fig. 3. Histogram over the number of
computers for each unique program
appearing.

Fig. 4. Number of unique software prod-
ucts and unique versions observed for each
vendor, each dot represents one vendor.

the state of the risk across the enterprise and the list of machines that contain
outdated programs with detailed risk information.

4 Characteristics of Software Updates

Data Set. We collect binary access history (i.e., execution and modification
history) from a Fortune 500 Tech company. The company has 248 full-time
employees in multiple divisions, including research and technological develop-
ment (RTD), maintenance, financial, and human resources. We have installed our
binary monitoring module (Sect. 3.1) on 774 computers comprising 591 Microsoft
Windows and 183 Linux machines to monitor binary execution and modifications
over three years. In total, we observed 113,675 unique programs with an average
of 305 observed on a computer and a total of 40,971 updates.

Binary Distribution. To better characterize the distribution of programs on
computers, Fig. 3 shows a histogram for the number of unique programs in each
computer. There is an average of 305 programs executed on each computer in
the period of our observation.

Figure 4 shows the number of binary executables published by different pub-
lishers. We leverage the metadata from the Windows binaries to identify the
publisher for each binary. We only count images that contain publisher infor-
mation. This shows the imbalance between popular companies and companies
with less popularity in our sample enterprise. This figure shows a sample of the
meta information shown on the system’s user interface. It also shows how diverse
vendors are and how each one’s dominance differs from the other. In this graph
Microsoft followed by Adobe and Google have the highest number of programs.

Binary Updates. We have observed 40,971 updates of binary executables
from 774 Windows and Linux computers we monitored during this study. These
updates collectively introduced 11,948 new binaries to the enterprise. Updates
once released are not always installed within the same period on all computers,
Fig. 5 shows how each update is installed on different computers.

226 O. Setayeshfar et al.

Fig. 5. CDF for the time over which each update has been applied to different com-
puters. Multiple products are shown along with the overall list.

Fig. 6. Percentage of in-order and out-of-order updates for 5 different products. The
number in the parentheses shows the number of updates.

Update Order Patterns. We call any update that does not follow the release
order an out of order update, e.g., going from 1.0 to 3.0, skipping a known inter-
mediate version 2.0. Furthermore, as mentioned in Sect. 2, there are a noticeable
amount of downgrades observed in our dataset as well. We consider them risky
behavior. Although they might have happened for reasons like a downgrade after
a feature has been removed from the new version or user’s choice, they could
pose a risk to the enterprise. Figure 6 shows how common these out of order
updates and downgrades are among some well known products. The programs
in this figure observe a total of 55 downgrades. They took programs to versions
with 19.7 CVEs on average at the time of downgrade.

Product Lifecycle. We study the lifecycle of programs in our observation
period by their compilation timestamps which show how spread the versions
we have observed are. Figure 7 characterizes each program’s behaviors in terms
of the number of days in which we have observed updates and the number of
unique versions we have observed in our data collection. The highlighted nodes
represent (0) Microsoft Malware Protection, (1–3) executable binaries included
in Microsoft Windows Operating System.

Find My Sloths: Automated Comparative Analysis 227

Fig. 7. The length of support and released versions. Highlighted nodes represent: 0)
Microsoft Malware Protection, 1–3) Executable binaries included in Microsoft Windows
Operating System.

Another part of the lifecycle is the delivery of the product to users. We
observe the delay between the programs’ installations and their releases in our
dataset varies significantly by vendor and product. Figure 8 shows some famous
vendors and their delivery performance. For example, Google has a short delay
updating 89% of installations within 18 days while Mozilla has a long deployment
time where some versions got installed after several months. This may have to
do with the popularity of the software.

Fig. 8. CDF of days between compilation and our first observation for different vendors
(left). Distance between compilation and signing date with our (middle) and Virus-
Total’s (right) first observation. Plots have been capped at 2000 days for readability.

Update Propagation. Updates are not installed on all computers at the same
speed. The speed at which the update is installed across computers in the net-
work depends on multiple factors such as the application, the user, configura-
tions, and the vendor’s delivery method. Figure 5 shows how the updates of four
programs are installed compare to the overall distribution. We can see ‘Microsoft
Malware Protection’ updates are distributed faster on the computers compared
to ‘Mozilla Firefox’. The vertical bars of each color represents the time when the
maximum is reached.

5 Evaluation of Software Update Risk

This section presents the estimated risk determined by the delay in updates
compared to peers in an enterprise environment. Figure 9 presents the estimated
software update risk in our environment with three scopes from the broad view
across all hosts (top) to the programs in a specific machine (bottom two).

228 O. Setayeshfar et al.

Fig. 9. Risk analysis on computers (top) shows average delays (dots) and the short
horizontal bars show the maximum delay for each computer. Expanded views show
how programs on a computer stand against the enterprise distribution (numbers show
total computers the program has been observed on). Plots marked by 1,2 show the
details of computers marked with corresponding numbers on the top plot.

Enterprise-Level View. The top figure in Fig. 9 shows the risk scores esti-
mated for all host machines, which show an aggregated risk score for each
machine. This view highlights the uniqueness of our approach making the risk
score available for all observed machines because our approach is agnostic to
OS and programs. Each vertical bar (I) shows the maximum and minimum risk
scores as the top and bottom marks and the average risk score of all software
within each machine as a dot in the middle. We can observe many machines
have one or more highly risky programs indicated by the maximum value far
away from the average, which serves a comparable score across peers. We placed
a blue box to show where the averages of most machines stay. We select one
sample standing out with high risk shown as a higher average (noted with the
red 1 sign), and another sample of a lower risk score which stays together with
peers within a blue box (noted with the red 2 sign). We provide drill-down views
of these two machines with a comparison next. These two particular machines
are chosen to illustrate a contrast with a comparable set of programs.

Machine-Level View. The next two figures in Fig. 9 present the views of par-
ticular hosts regarding all software programs running in them. Again, this high-
lights our unique view of a comprehensive coverage of all programs’ risk scores

Find My Sloths: Automated Comparative Analysis 229

Fig. 10. Software update management of Google Chrome browser updating 75 Google
Chrome versions over the period of 35 months. The top plot shows the version tran-
sitions via the deployment of each version of Chrome with respect to the number of
computers. The bottom plot shows the number of CVEs discovered for each version.

because we do not rely on developers’ or third-party’s program metadata (e.g.,
reputation) to determine the risk score. Each bar represents the update status of
one software in all machines. The total number of machines having this software
executed is written on top of the bar. Each machine has a score of delay showing
how much its version is behind the head (the latest version in an enterprise).
First, the average of all delays is calculated. The number of machines having
the delay shorter than the average is shown as an empty bar, and the machine
having the delay longer than the average is shown as a bar with the hatches. The
red horizontal lines indicate where this machine is among multiple peers. The
first graph (note 1) in the middle indicates multiple red lines are placed inside
the hatch bars meaning that such software has its version more than the average
delay among peers. For instance, multiple programs such as Adobe Flash player,
AMD External Events, Microsoft Edge, Microsoft Outlook, and .NET framework
show high risks. Administrators can use this view to spot vulnerable software.
The second graph (note 2) in comparison shows most software programs are
up-to-date by having the red horizontal lines at the bottom.

6 Case Study

This section presents an instance of desirable software management and an unde-
sirable example of a software product. These examples show how different ven-
dors’ software management policies are, highlighting what needs to be done.

6.1 An Example of a Desirable Software Management

In Sects. 4 and 5, we presented our observation on numerous shortcomings in
how vendors design the software distribution policies and actions to protect
their customers. We present Google Chrome as a desirable example with the
speedy delivery of software ensuring that most of the computers are updated to
the latest version in the shortest time.

Figure 10 illustrates how 75 different versions of Google Chrome have been
updated. The top figure shows the deployment of each version over time. While

230 O. Setayeshfar et al.

several versions have lingered around over the maximum period of 10 months,
a package was replaced by a next version after less than a day in the minimum
case and after 26 days on average.

The bottom figure shows the number of CVEs accumulated for each version
over time. For this case study, we manually collect reported CVEs between April
2017 and April 2019 for Google Chrome and cross-match them with versions we
observed in our dataset. The total number of CVEs grows to more than five
hundred for version 52.0. This data illustrates that the only solution to operate
software safely is to update it with the version whose vulnerabilities are not yet
discovered for the time being (although it would end up with a similar situation
as the prior version). While more and more vulnerabilities have been disclosed,
we can observe Google has been proactively producing new versions that replaced
most of the vulnerable installations promptly.

6.2 An Example Undesirable Software Management

An opposite situation happens in another software called Viber. Viber is a com-
munication app that has a desktop version. Unlike the previous case, this soft-
ware vendor does not follow up with the management of software. In fact, this
software is not shipped with its own updater. Therefore, a user will need to down-
load and install the updated version by herself manually. This is a very ineffective
way to manage software because of multiple reasons. First, most users are not
likely to check new versions of software (e.g., by visiting the software website,
etc.) with concerns about vulnerabilities. Second, even though the users may
become aware of a new version (e.g., registration and a newsletter), they may
not be capable of downloading a newer version and installing it.

We observe Viber installed on 4 machines, and they have been consistently
executed during our observation period. Of these installations, only one machine
was updated twice until Jan 2018, which leaves the machine out-dated for more
than 2 years in which the application has been used regularly. During this time,
2 CVE have been disclosed that directly affected Viber Desktop and 4 more that
indirectly affect the Viber platform.

Some vendors seem to improve behaviors with time, as shown in Fig. 11
for instance, Skype begins with versions not being updated and some versions
lingering on for a long time in 2017, but in 2019 turns to a desirable update
behavior where a majority of computers receive their updates in time. On the
other hand, however, Firefox, also shown in Fig. 11 maintains bad update habits
to the extent where in no time more than 10 of our sampled machines have
the same version installed. Microsoft Edge has the worst performance among
observed browsers. Edge versions maintain their dominant presence for more
than 10 months and we observe major activity from them on these machines.

7 Lessons Learned and Our Suggestions

This section summarizes what we learned from observations and analysis of the
real-world enterprise data, and we made a few suggestions for better security.

Find My Sloths: Automated Comparative Analysis 231

Fig. 11. Version history for Mozilla Firefox, Microsoft Skype, and Microsoft Edge from
top to bottom respectively.

Minimizing Update Deployment Time. One important issue in updates is
deployment time. In the end-to-end point of view, collective effort is necessary to
minimize the deployment time by multiple parties including developers, system
administrators, and end users.

Reliable Update Transitions. Given N versions (sn ∈ S = {s1, ..., sN}), N2

transition patterns may occur depending on current and next versions. When
there is a gap, a direct transition to the latest can ease deployment regarding
compatibility and time in subsequent updates if the update is stand-alone. If it
has to be incremental, developers should thoroughly test every transition.

Software Downgrading. We have observed a considerable number of version
downgrading in our data set. This is also in line with findings of [27] that users
partially steer away from updates due to the issues with compatibility or features.

Automated, Enforced, Silent Delivery. We observe the effectiveness of silent
delivery that the user has no interaction with the download and installation of
the update. Google Chrome shows a successful practice of silent delivery.

Retirement Plan and the End of Support Notice. Proper announcement
and communication of product support (e.g., a good example is the Ubuntu’s
LTS plan) is important to know the software’s managed period. We believe that
an automated method to query a program’s lifespan would help the user avoid
end-of-support programs.

8 Related Work

Risk Prediction and Vulnerability Assessment. RiskTeller [13] creates
computer profiles based on file appearances and the general use of the machine
and predicts each machine’s risk based on its installed software and the usage
history. RiskTeller uses external information, including VirusTotal and CVSS

232 O. Setayeshfar et al.

Table 2. Comparison of FMS and related work. Cov∀: Applicable to all programs, No
D.K.: No third-party domain knowledge (e.g., VirusTotal, Symantec) required, Appli-
cability: the data can be generated from an enterprise and the method is applicable.

Name Prediction Cov∀ No D.K Data period Applicability

RiskTeller [13] Machine risk � ✗ 1 year ✗ (Symantec data)

Xiao et al. [49] Vul. exploitation ✗ ✗ 1.5 years ✗ (Botnet, patches)

Sharif et al. [39] Security incident ✗ ✗ 3 months ✗ (Cellular provider)

Ovelgönne et al. [35] Infection ✗ ✗ 8 months ✗ (Symantec data)

Tiresias [40] Security event ✗ ✗ 27 days ✗ (Symantec data)

ASSERT [34] Intrusion ✗ � Test data ✗ (Test data)

Liu et al. [26] Security incident ✗ � 2 years ✗ (Network data sets)

Kang et al. [22] Malware infection ✗ ✗ 640 days ✗ (Symantec WINE)

RiskWriter [10] Security posture ✗ ✗ 1 year ✗ (Symantec data)

Find My Sloths Vul. program risk � � 3 years �(General OS log)

score [15], to enable an accurate prediction. Other studies infer the risk of a
computer (or mobile device) by using user behaviors of web sessions [39], dis-
tribution of binary files on the computer, the user’s mobility between different
ISPs [35], modeling the security-related decision-making process of users [37],
and permission and internal activities of Android applications [41,50].

RiskWriter [10] and Liu et al. [26] measure the risk for an enterprise based
on its externally measurable metrics such as DNS misconfigurations. Kang et al.
[22] predict malware infection epidemics based on antivirus software telemetry
information. Another direction of risk prediction [34,40] is to predict future
security incidents based on the history of the past security-related events.

Kotzias et al. [23] studies patching landscape for the enterprise; however, the
set of programs they tracks is limited to 124 well-known server and host programs
for which they obtain hash and version information for the main executable.
Nappa et al. [33], also studied effects of patching, threats of multiple installations
of a software and the shared libraries from 10 popular programs at scale.

Unlike previous studies (Table 2), we infer update delay using only data col-
lected inside the enterprise, without relying on external information, such as
software vendors’ release notes, third party metadata of software, or known vul-
nerabilities.

Update Development. There exist works that focus on the development side
of updates that study how well developers respond to the needs for updates,
including security vulnerability disclosure [25]; or the response speed of develop-
ers to new requirements of ever-changing platforms. Code change analysis [28],
commit message analysis [28,36], vulnerability disclosure analysis [36,49], and
versioning analysis [14] techniques have been used in these studies.

Update Deployment. Software development companies often have their solu-
tions to deploy updates and patches effectively and promptly. For instance,
Microsoft’s On-Premises Update Server provides a unified interface, and it tries

Find My Sloths: Automated Comparative Analysis 233

to minimize the network traffic by caching the update [20]. Google applies silent
and automatic updates [17] to their products, including the Google Chrome web-
browser. There exist studies [27,48] that evaluate the effectiveness of software
update deployment models. They use a mix of user studies and monitoring a
small set of programs to find the challenges stopping an effective update pro-
cess. A recent study [21] identifies design flaws or malicious installations in the
automated software deployment systems.

9 Discussion and Future Work

This section discusses the limitations of our work and possible improvements.

Reasons Behind Update Behaviors. In this study, we focus on identifying
software update behaviors and estimating risk; however, understanding why a
certain update behavior happens is a remaining challenge beyond our scope. For
instance, we detect software downgrade or rollback from the lineage graph, but
the reason why that decision has been made is unknown. In the future, we will
conduct a comprehensive user study and a deep analysis of update management
platforms to understand the reasons behind unusual update behaviors.

Grouping Updates Installed in Varied Paths. The current version of FMS
detects an update of software individually based on the path where the update
is installed. However, we rarely observe software that installs the update in a
separate path while keeping the previous versions of the binary. It then modifies a
symbolic link file to point the binary to execute. Currently, we may not correctly
detect such update behaviors. We plan to implement a merging mechanism to
automatically find updates in separate paths to address this limitation.

Updates By Library Modification. The current FMS cannot detect updates
that only modify the library but not the main executable. We plan to improve
FMS’s monitoring module to enable tracking library import information at run-
time. Then we will track all updates to those library files.

Leveraging Security Information. We plan to optionally incorporate stan-
dardized security information, such as code signing, to further enhance the risk
estimation in FMS for certain programs whose metadata are available.

10 Conclusion

Software lifecycle management is a complex and costly process that needs the
dedication of a software vendor. When it is not properly done, we find that
it directly leads to risk for every software as vulnerabilities are discovered over
time. We propose an automated approach to analyze the entire software updates
in an organization comprehensively achieved by utilizing only observed metrics
instead of relying on developers’ or third-party software release information and
metadata. Our evaluations shed light on the current industry practices on how
they manage software due to high coverage of update risk assessment on total

234 O. Setayeshfar et al.

113,675 programs’ 40,971 updates in 774 machines used by real people daily.
We organized our comprehensive evaluations on the current software updates
practices, which suggest a list of desired design decisions on update management
software to operate software securely.

Acknowledgment. We thank the anonymous reviewers and our shepherd, Juan
Caballero, for their helpful feedback. This material is supported, in part, by the
National Science Foundation, under grant No. OAC-1909856 and SaTC-1909856. Any
opinions, findings, and conclusions, or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the NSF.

References

1. APT (Advanced Package Tool). https://ubuntu.com/server/docs/package-manage-
ment. Accessed 14 May 2021

2. Homebrew. https://brew.sh/. Accessed 14 May 2021
3. Linux Audit. https://people.redhat.com/sgrubb/audit/. Accessed 14 May 2021
4. National Software Reference Library. https://www.nist.gov/software-quality-

group/national-software-reference-library-nsrl. Accessed 14 May 2021
5. Top 50 Vendors by Total Number of “Distinct” Vulnerabilities. https://www.

cvedetails.com/top-50-vendors.php. Accessed 14 May 2021
6. What Are Security Patches and Why Are They Important? https://www.

idtheftcenter.org/Cybersecurity/what-are-security-patches-and-why-are-they-
important.html. Accessed 20 May 2018

7. Why Software Updates Are So Important. https://securingtomorrow.mcafee.
com/consumer/consumer-threat-notices/software-updates-important/. Accessed
14 May 2021

8. Yum. http://yum.baseurl.org/. Accessed 14 May 2021
9. Abu Odeh, M., Adkins, C., Setayeshfar, O., Doshi, P., Lee, K.H.: A novel AI-based

methodology for identifying cyber attacks in honey pots. In: IAAI (2021)
10. Aditya, K., Grzonkowski, S., Le-Khac, N.A.: Riskwriter: predicting cyber risk of

an enterprise. In: ICISSP (2018)
11. Ahmad, A., Saad, M., Bassiouni, M., Mohaisen, A.: Towards blockchain-driven,

secure and transparent audit logs. CoRR (2018)
12. Apple: iTunes store. https://itunes.apple.com/us/. Accessed 14 Nov 2018
13. Bilge, L., Han, Y., Dell’Amico, M.: Riskteller: predicting the risk of cyber incidents.

In: CCS (2017)
14. Corley, C.S., Kraft, N.A., Etzkorn, L.H., Lukins, S.K.: Recovering traceability links

between source code and fixed bugs via patch analysis. In: TEFSE (2011)
15. Corporation, T.M.: Common vulnerabilities and exposures (cve R©). https://cve.

mitre.org/. Accessed 13 June 2019
16. Du, M., Li, F., Zheng, G., Srikumar, V.: DeepLog: anomaly detection and diagnosis

from system logs through deep learning. In: CCS (2017)
17. Duebendorfer, T., Frei, S.: Web browser security update effectiveness. In: CRITIS

(2009)
18. Duebendorfer, T., Frei, S.: Why silent updates boost security. TIK (2009)
19. Gentoo Foundation, I.: Portage. https://wiki.gentoo.org/wiki/Handbook:X86/

Working/Portage. Accessed 14 May 2021

https://ubuntu.com/server/docs/package-manage-ment
https://ubuntu.com/server/docs/package-manage-ment
https://brew.sh/
https://people.redhat.com/sgrubb/audit/
https://www.nist.gov/software-quality-group/national-software-reference-library-nsrl
https://www.nist.gov/software-quality-group/national-software-reference-library-nsrl
https://www.cvedetails.com/top-50-vendors.php
https://www.cvedetails.com/top-50-vendors.php
https://www.idtheftcenter.org/Cybersecurity/what-are-security -patches-and-why-are-they-important.html
https://www.idtheftcenter.org/Cybersecurity/what-are-security -patches-and-why-are-they-important.html
https://www.idtheftcenter.org/Cybersecurity/what-are-security -patches-and-why-are-they-important.html
https://securingtomorrow.mcafee.com/consumer/consumer-threat-notices/software-updates-important/
https://securingtomorrow.mcafee.com/consumer/consumer-threat-notices/software-updates-important/
http://yum.baseurl.org/
https://itunes.apple.com/us/
https://cve.mitre.org/
https://cve.mitre.org/
https://wiki.gentoo.org/wiki/Handbook:X86/Working/Portage
https://wiki.gentoo.org/wiki/Handbook:X86/Working/Portage

Find My Sloths: Automated Comparative Analysis 235

20. Gkantsidis, C., Karagiannis, T., VojnoviC, M.: Planet scale software updates. In:
CCR (2006)

21. Han, X., et al.: SIGL: securing software installations through deep graph learning.
arXiv (2020)

22. Kang, C., Park, N., Prakash, B.A., Serra, E., Subrahmanian, V.: Ensemble models
for data-driven prediction of malware infections. In: WSDM (2016)

23. Kotzias, P., Bilge, L., Vervier, P.A., Caballero, J.: Mind your own business: a
longitudinal study of threats and vulnerabilities in enterprises (2019)

24. Lee, K.H., Zhang, X., Xu, D.: High accuracy attack provenance via binary-based
execution partition. In: NDSS (2013)

25. Li, F., Paxson, V.: A large-scale empirical study of security patches. In: CCS (2017)
26. Liu, Y., et al.: Cloudy with a chance of breach: forecasting cyber security incidents.

In: USENIX Security (2015)
27. Mathur, A., Engel, J., Sobti, S., Chang, V., Chetty, M.: “They keep coming back

like zombies”: improving software updating interfaces. In: SOUPS (2016)
28. Meneely, A., Srinivasan, H., Musa, A., Tejeda, A.R., Mokary, M., Spates, B.: When

a patch goes bad: exploring the properties of vulnerability-contributing commits.
In: ESEM (2013)

29. Microsoft: About Event Tracing. https://docs.microsoft.com/en-us/windows/
win32/etw/about-event-tracing. Accessed 14 May 2021

30. Microsoft: Assemblies in .NET. https://docs.microsoft.com/en-us/dotnet/stand-
ard/assembly/#assembly-manifest. Accessed 14 May 2021

31. Microsoft: Assembly Manifest. https://docs.microsoft.com/en-us/dotnet/stand-
ard/assembly/manifest. Accessed 14 May 2021

32. Microsoft: Microsoft Store. https://www.microsoft.com/en-us/store/b/home.
Accessed 14 May 2021

33. Nappa, A., Johnson, R., Bilge, L., Caballero, J., Dumitras, T.: The attack of the
clones: a study of the impact of shared code on vulnerability patching. In: S&P
(2015)

34. Okutan, A., Yang, S.J.: ASSERT: attack synthesis and separation with entropy
redistribution towards predictive cyber defense. Cybersecurity 2, 1–8 (2019)

35. Ovelgönne, M., Dumitraş, T., Prakash, B.A., Subrahmanian, V., Wang, B.: Under-
standing the relationship between human behavior and susceptibility to cyber
attacks: a data-driven approach. TIST 8, 1–25 (2017)

36. Perl, H., et al.: VCCfinder: finding potential vulnerabilities in open-source projects
to assist code audits. In: CCS (2015)

37. Redmiles, E.M., Mazurek, M.L., Dickerson, J.P.: Dancing pigs or externalities?:
measuring the rationality of security decisions. In: EC (2018)

38. RPM: RPM package manager. https://rpm.org/. Accessed 14 May 2021
39. Sharif, M., Urakawa, J., Christin, N., Kubota, A., Yamada, A.: Predicting impend-

ing exposure to malicious content from user behavior. In: CCS (2018)
40. Shen, Y., Mariconti, E., Vervier, P.A., Stringhini, G.: Tiresias: predicting security

events through deep learning. In: CCS (2018)
41. Shrivastava, G., Kumar, P.: SensDroid: analysis for malicious activity risk of

android application. MTA 78(24), 35713–35731 (2019)
42. SUSE: Zypper. https://en.opensuse.org/Portal:Zypper. Accessed 14 May 2021
43. Symantec: Internet security threat report 2017. https://www.symantec.com/

content/dam/symantec/docs/reports/gistr22-government-report.pdf
44. Team, P.D.: Pacman. https://www.archlinux.org/pacman/. Accessed 14 May 2021

https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/dotnet/standard/assembly/#assembly-manifest
https://docs.microsoft.com/en-us/dotnet/standard/assembly/#assembly-manifest
https://docs.microsoft.com/en-us/dotnet/stand-ard/assembly/manifest
https://docs.microsoft.com/en-us/dotnet/stand-ard/assembly/manifest
https://www.microsoft.com/en-us/store/b/home
https://rpm.org/
https://en.opensuse.org/Portal:Zypper
https://www.symantec.com/content/dam/symantec/docs/reports/gistr22-government-report.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/gistr22-government-report.pdf
https://www.archlinux.org/pacman/

236 O. Setayeshfar et al.

45. Verizon: 2015 data breach investigations report. https://iapp.org/media/pdf/
resource center/Verizon data-breach-investigation-report-2015.pdf. Accessed 14
May 2021

46. Verizon: 2017 data breach investigations report. https://www.ictsecuritymagazine.
com/wp-content/uploads/2017-Data-Breach-Investigations-Report.pdf. Accessed
14 May 2021

47. VirusTotal. https://www.virustotal.com. Accessed 14 May 2021
48. Wash, R., Rader, E., Vaniea, K., Rizor, M.: Out of the loop: how automated

software updates cause unintended security consequences. In: SOUPS (2014)
49. Xiao, C., Sarabi, A., Liu, Y., Li, B., Liu, M., Dumitras, T.: From patching delays

to infection symptoms: using risk profiles for an early discovery of vulnerabilities
exploited in the wild. In: USENIX Security (2018)

50. Xiao, J., Chen, S., He, Q., Feng, Z., Xue, X.: An android application risk evalua-
tion framework based on minimum permission set identification. JSS 163, 110533
(2020)

https://iapp.org/media/pdf/resource_center/Verizon_data-breach-investigation-report-2015.pdf
https://iapp.org/media/pdf/resource_center/Verizon_data-breach-investigation-report-2015.pdf
https://www.ictsecuritymagazine.com/wp-content/uploads/2017-Data-Breach-Investigations-Report.pdf
https://www.ictsecuritymagazine.com/wp-content/uploads/2017-Data-Breach-Investigations-Report.pdf
https://www.virustotal.com

FP-Redemption: Studying Browser
Fingerprinting Adoption for the Sake

of Web Security

Antonin Durey1(B), Pierre Laperdrix1,2, Walter Rudametkin1,
and Romain Rouvoy1,3

1 University of Lille/Inria, Lille, France
antonin.durey@univ-lille.fr

2 CNRS, Paris, France
3 IUF, Paris, France

Abstract. Browser fingerprinting has established itself as a stateless
technique to identify users on the Web. In particular, it is a highly crit-
icized technique to track users. However, we believe that this identifica-
tion technique can serve more virtuous purposes, such as bot detection
or multi-factor authentication. In this paper, we explore the adoption
of browser fingerprinting for security-oriented purposes. More specifi-
cally, we study 4 types of web pages that require security mechanisms
to process user data: sign-up, sign-in, basket and payment pages. We
visited 1, 485 pages on 446 domains and we identified the acquisition
of browser fingerprints from 405 pages. By using an existing classifica-
tion technique, we identified 169 distinct browser fingerprinting scripts
included in these pages. By investigating the origins of the browser finger-
printing scripts, we identified 12 security-oriented organizations who col-
lect browser fingerprints on sign-up, sign-in, and payment pages. Finally,
we assess the effectiveness of browser fingerprinting against two poten-
tial attacks, namely stolen credentials and cookie hijacking. We observe
browser fingerprinting being successfully used to enhance web security.

Keywords: Browser fingerprinting · Web security · Cookies ·
Multifactor authentication

1 Introduction

As web usage continues to grow, web security continues to be challenged. By
exploiting vulnerabilities, such as credential leaks1 from previous hacks or phish-
ing [10] to obtain new credentials, hackers can log into websites and harvest users’
data. Additionally, websites may be vulnerable to cookie hijacking, which con-
sists of extracting cookies from a user session to access their accounts. These
attacks can lead to data leaks, such as username, email, physical addresses or
search history [28], but also to account hijacking. Given the growth of such

1 https://haveibeenpwned.com/.

c© Springer Nature Switzerland AG 2021
L. Bilge et al. (Eds.): DIMVA 2021, LNCS 12756, pp. 237–257, 2021.
https://doi.org/10.1007/978-3-030-80825-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80825-9_12&domain=pdf
https://haveibeenpwned.com/
https://doi.org/10.1007/978-3-030-80825-9_12

238 A. Durey et al.

attacks, Multi-Factor Authentication (MFA) is perceived as a reliable protection
to increase web security. MFA consists in combining multiple security factors to
check the identity of an authorized user. Such factors not only include user cre-
dentials, but also physical tokens, SMS codes, or dedicated mobile apps. These
MFA solutions vary in price, level of security, and intrusiveness.

Among these alternatives, browser fingerprinting is a stateless identification
technique [7,17] that accesses attributes exposed by the browser and its envi-
ronment to build a unique identifier. Over the years, studies have focused on
exploring new attributes, and increasing the uniqueness of browser fingerprints.
More specifically, several contributions studied browser fingerprinting for track-
ing purposes [1,8,32], while others focused on defending against it [16,23,31].
Some contributions proposed using browser fingerprinting as a new factor in
MFA solutions [2,15,29], but have not evaluated the benefits to secure online
websites. Moreover, given its identification potential, browser fingerprinting is
useful for bot detection [14,33], demonstrating its ability to detect undesired
visitors.

In this paper, we investigate the adoption of browser fingerprinting to rein-
force security on the web. Through our experiment, we intend to detect if fin-
gerprinting is used to strengthen web security, and in which specific contexts
this occurs. In particular, we target 4 types of web pages that store and pro-
cess sensitive user information, namely sign-up, sign-in, basket and payment
pages. Investigating these pages is a challenge as it is very hard to automate
their exploration because of the sheer diversity of forms and payment processes.
As such, we manually visited 1, 485 pages from 446 websites belonging to 14
different categories with the aim of detecting fingerprinting scripts. By using
an existing classification technique [6], we identified 169 fingerprinting scripts
being used on all the secured types of pages we study, with 12 of them belong-
ing to security-focused organizations. Finally, we study the resilience of websites
adopting browser fingerprinting for security purposes by simulating two classes
of attacks: stolen credentials and cookie hijacking.

The key contributions of this paper are:

– Evidence of the adoption of browser fingerprinting for security on 4 types of
secure pages across various categories of websites, and a study of the browser
fingerprints they extract.

– A dataset of 1, 485 pages, obtained from 446 websites that include 169 distinct
fingerprinting scripts;2

– A study of the resilience of websites that use fingerprinting to protect users
from stolen credentials and hijacked cookies. In particular, we show no empiri-
cal evidence of its active use nor success in defending against stolen credentials
or cookie hijacking.

The remainder of this paper is organized as follows. We give an overview of
the state of the art and its limitations in Sect. 2. We introduce our dataset in
Sect. 3. We analyse our results on browser fingerprinting adoption in Sect. 4. We

2 https://zenodo.org/record/3872144.

https://zenodo.org/record/3872144

FP-Redemption: Studying Browser Fingerprinting Adoption 239

define our attack models and evaluate them in Sect. 5. We discuss our results
and its limitations in Sect. 6, before concluding in Sect. 7.

2 Background and Related Work

2.1 Browser Fingerprinting

Browser fingerprinting is a technique to identify a user by leveraging the unique
combination of software configurations (e.g., browser, operating system) and
hardware characteristics of their device. It was first mentioned as a potential
identification technique and studied in 2010 [7]. It combines a set of discrim-
inating attributes mostly accessible from HTTP headers and JavaScript [17].
Commonly accessed attributes are the navigator and screen properties [7,18],
font enumeration [22], canvas [20], audio [8], and WebGL rendering [5].

Studies. Most of the literature has focused on studying the uniqueness and
stability of browser fingerprints. They report that browser fingerprinting is a
powerful and stateless identification technique [7,9,18] to track users for poten-
tially long periods of time [32]. Other studies aimed at estimating the adoption of
browser fingerprinting by websites for tracking purposes. They highlighted that
3–5% of the Top Alexa 1M [1,8,22] embed browser fingerprinting scripts. How-
ever, all these studies only crawled home or random pages, thus lacking deeper
insight on more sensitive pages, such as sign-up or payment pages, which demand
higher security, but may require more complex user interactions to reach.

Security Usages. Bursztein et al. [4] argue that canvas fingerprinting can dis-
tinguish different families of browsers and uncover the use of PhantomJS to
attack a website. Jonker et al. [14] studied the “fingerprintability” surface of
bots, revealing discriminating attributes to protect websites against web scrap-
ing. They also observed that such bot fingerprinting attributes were collected
by 15% of the Top Alexa 1M. Vastel et al. [33] mention that this technique is
already used by websites to block bots. About multifactor authentication, sev-
eral approaches focused on increasing web session security with browser finger-
printing [2,15,27,29]. However, these studies only cover the methodology and
implementation steps, but fail to evaluate their effectiveness in production.

2.2 Multi-factor Authentication and Session Hijacking

New authentication factors are regularly proposed to secure user accounts [25].
However, studies show their adoption is slow [3], leading to compromised
accounts if attacks targeting passwords are successful. Sivakorn et al. [28] uncov-
ered another attack on user accounts by using cookie session hijacking to log into
accounts and steal user sensitive data.

Synthesis. To the best of our knowledge, the state of the art stops either at
studying browser fingerprinting from a tracking perspective or for bot detection
purposes. It does not deliver any contribution to the adoptions and usages of

240 A. Durey et al.

browser fingerprinting on more sensitive pages, dealing with personal or payment
data. The following sections, therefore, propose to address these limits by deliv-
ering a new study focusing on the adoption of browser fingerprinting to increase
web security. Our contribution advances the state of the art by considering a
dataset of 1, 485 real-world sensitive pages collected from 446 domains. Unlike
previous studies, we obtain this dataset by manually performing an in-depth
exploration of a carefully selected set of domains, thus going beyond the surface
of websites to study these sensitive web pages.

3 A Dataset of Secure Web Pages

This section reports on our methodology to build a dataset of secured web pages
to study the use of browser fingerprinting for security purposes.

3.1 Websites Under Study

Secured Pages. All pages of a website are not equal when it comes to user secu-
rity. While most web pages do not process sensitive data, some require careful
design to deal with user personal information (e.g., emails, credentials, personal
details, payment card numbers). On sensitive web pages, any security breach can
quickly lead to privacy leaks for the end-users and seriously affect the reputation
of the website. We decided to focus on 4 types of web pages requiring personal
information or requesting personal data:

1. Sign-up, which may require email, name, password, and additional personal
information depending on the website.

2. Sign-in usually requests user credentials (email/pseudonym and password).
3. Payment is a page containing a specific form requesting the user to input their

payment information (e.g., credit card, wallet, banking information).
4. Basket refers to any page related to a shopping basket or shopping cart

process, starting from adding an item up to, but not including, payment.
Such pages may also request additional information, such as billing/delivery
addresses.

We call these 4 types of web page secured web pages. To assess our results, we
also collected samples from other types of pages. From these, we isolated home
pages as it has been reported they might fingerprint 25% less [30]. We consider
pages that are neither secured nor home pages to be content pages.

Website Categories. Previous studies crawled the Top Alexa with automated
tools, thus studying a large set of homepages and resources reachable by bots. We
decided to avoid the bias introduced by bots, preferring to manually browse the
websites and reach deeper pages that require user interaction. Moreover, we are
interested in studying the adoption of browser fingerprinting on secured pages. In
this context, the diversity of websites indexed by the Top Alexa —or other ranking
lists— proved to be unsatisfactory. Thus, we decided to consider a list of website
categories that we estimate to be more relevant for the purpose of our study. To
build this list of relevant categories, we adopted the following methodology:

FP-Redemption: Studying Browser Fingerprinting Adoption 241

– We targeted websites focused on gambling, credit card, financial and money
services.

– We focused on different retail websites, such as event tickets, games, flights
and transports, and accommodation booking websites.

– Finally, we added to our list job search, social network, adult, dating, insti-
tutional and governmental websites as they often request detailed personal
information when creating an account.

The complete list of keywords we used to reach the websites is available in
Appendix A. We mainly entered a combination of country name, category and
the word ‘website’ into the Google search engine, and visited the websites given
on the first page of the results. We also translated the search terms into the main
language of the country when we were not getting suitable results according to
the country and the category, as for example, was the case for Russian websites.

3.2 Web Page Acquisition

Past studies used automated crawls to observe browser fingerprinting at
scale [1,8,22]. However, relying on bot crawls introduces bias in the collected
data [11,14,34] as more and more websites use defenses to block bot access [33].
Automating the registration and payment processes is also a challenge because of
the high variability that can be found in related forms [13]. No unique or universal
standard exists and the number of required fields can strongly differ. The coding
practices may be different with obfuscated code and custom attributes, mak-
ing it hard for a bot to automatically match a field with the right information.
Security requirements are also different, including diverse password constraints
and security questions. As the scope of this paper is not to develop a bot to
automatically test these websites, we manually visited them and collected the
required data via a custom web extension we developed. This strategy allows us
to appropriately locate interesting secured pages and reduces the bias of being
blocked by the security mechanisms in place.

3.3 Fingerprinted Page Attributes

This paper does not intend to discover new browser fingerprinting techniques, but
rather to investigate the adoption of existing ones in the context of web security.
As part of our data acquisition campaign, we thus focused on collecting the values
of all existing attributes reported in the literature. Thus, we consider navigator
& screen properties [7,18,21,22,24], fonts enumeration via span’s width and
height measurement [22], canvas [20], audio [8] and WebGL rendering [5] and
parameters [18], WebRTC [8] and bots detection attributes, including window
properties that were considered by Jonker et al. [14]. Our web extension monitors
access to the attributes by overriding getters of selected properties and functions.
Whenever one of these attributes is accessed, the web extension collects the
function or property name, the list of arguments passed if it is a function, the

242 A. Durey et al.

property’s value or the function’s return value, the script accessing the property
or function, and the page’s URL.

We manually visited the selected websites and we used a single identity we
created on a popular email provider. For each visited page, we stayed at least
10 s, and manually filled each form. When asked for proof of identity, such as
a valid phone number, an ID or a credit card, we provided one of the phone
numbers used to create the email account. As our identity was fake, we were
not able to provide a real ID (e.g., a passport) when required by some websites.
Given that payment pages require filling out credit card information, we used
a fake credit card generator3 to be able to validate online payment forms and
make sure that we trigger most of the scripts embedded in the page. Even though
the generated cards were fake and the payment processes were not completed,
we bypassed many client-side verifications thanks to this technique. Yet, using
fake payment data raises several issues, such as, our account could be consid-
ered suspicious and prevented from performing additional actions, and our IP
address could be blacklisted and blocked for the rest of our experiment. Finally,
to reduce suspicion, we used several residential IP addresses during our data col-
lection. Although we provided websites with fake payment data, we believe the
low number of payment attempts we performed on each website has had mini-
mal impact on their operations. We did not try to harm them in any way and
we canceled our baskets if any information received after the payment attempt
indicated the website could validate the basket and ask for a future payment.

3.4 Resulting Dataset Description

We performed our data collection campaign from December 2019 to Jan-
uary 2020. We used a fresh install of Chrome 79 on Ubuntu 19.04. We always
accepted the default cookie settings for pop-ups, but refused all other types of
solicitations, such as geolocation, notifications, or newsletters. In total, we visited
1, 485 pages across 446 websites.

Website Category and Ranking. We used the category keyword we put into
the search engine to categorize the website. We specifically targeted bank and
money-related services because of the sensitivity of the data they manipulate,
visiting 85 of these websites (see Fig. 1). The country tag represents the main
country the website operates in. We assign the country tag by following the
result of two observations:

1. Is the website available in English or in multiple languages and translated
into the user’s preferred language?

2. Are the services proposed by the website available in a single country or
geographic zone?

If the website is available in multiple languages or served in English, and if the
website provides services to multiple countries, we use the International tag.

3 https://www.creditcardvalidator.org/.

https://www.creditcardvalidator.org/

FP-Redemption: Studying Browser Fingerprinting Adoption 243

Fig. 1. Distribution of the 446 visited websites per country & category.

Otherwise, we specify the country. If the website does not operate in a listed
country, we use the Other tag. With these rules, we tagged 142 International
websites. The resulting distribution of visited websites per country and category
is depicted in Fig. 1.

We did not aim to build an exhaustive manual dataset. However, we checked
the Top Alexa rankings of the websites in our dataset. We find that our dataset
is relatively well balanced across the less-than-1k (18%), 1k-10k (29%), 10k-100k
(27%) and higher-than-100k (26%) Top Alexa rankings.

Page Type. We also tagged each page according to its type. By default, a
page is associated to a single tag, with the exception of home or content pages
that have a sign-up or sign-in embedded form that allows creating an account or
authenticating without going to a specific page (44 occurrences in our dataset),
and single pages that handle both account creation and authentication processes
(3 occurrences in our dataset). In the case of pages containing both basket-like
content and a payment form, we tagged the page as payment. If no tag matched,
we used the content tag. Our dataset is well-balanced between secure (44%) and
non-secure (56%) pages. The basket, sign-up and sign-in pages are equally present
(12−13%) while payment pages represent 6% of our dataset.

Script Classification. Several studies exist to classify a real-world dataset of
scripts into fingerprinters and non-fingerprinters [12,26]. All rely on both auto-
matic and manual classification to combine efficiency and reliability. However,
none of these studies provide their implementation, making them difficult to be
reused. We designed and implemented an algorithm to classify the scripts of our

244 A. Durey et al.

dataset. We have made its implementation freely available [6]. The algorithm
relies on a incremental process to build similarities between scripts based on the
attributes they access and proposes a manual step to reinforce the fingerprinting
process. When the algorithm is unable to reach a decision on a script, the user
can step in to guide the algorithm and provide the correct label. Out of 4, 665
scripts, the algorithm provided a label to 4, 296 scripts. We manually analyzed,
over several iterations, 359 of them. Overall, this classification process found
169 browser fingerprinting scripts included in 405 web pages of our dataset. The
information concerning the fingerprinting scripts, their URL and the domains
they were found on are available in our public dataset.

The remainder of this paper builds on this dataset of secure pages to identify
scripts that collect browser fingerprints and evaluate the additional security layer
provided by the browser fingerprinting technique.

4 Analysis of Secure Web Pages

4.1 Browser Fingerprinting Attributes

Fig. 2. Distribution of attributes families across fingerprinters.

Of the 169 browser fingerprinting scripts we classified, we observed 132 distinct
fingerprinting attributes that we organized into 8 families. The family of an
attribute is the parent JavaScript object calling the attribute; except for the
bot attributes where we used Jonker et al.’s list [14]. Figure 2 reports on the
distribution of the attributes per script grouped by family, showing that all
attribute families are exploited in the wild. The most accessed attributes are
the User-Agent, screen width and height, plugins list, and timezone. Even

FP-Redemption: Studying Browser Fingerprinting Adoption 245

if it would be tempting to rely on these to detect fingerprinting scripts, they
can be used for many other purposes, such as analytics or adjusting a website’s
UI to the device. In our dataset, these attributes are used by 81%, 20%, 19%,
6% and 13% of non-browser fingerprinting scripts, respectively. This illustrates
the difficulty of identifying reliable attributes to detect browser fingerprinting
scripts.

We analyzed the scripts that use canvas or WebGL fingerprinting. 120 scripts
fingerprint browsers using canvas drawing primitives, using between 2 and 14
different drawing instructions. We found 44 different drawing sequences. Con-
cerning WebGL fingerprinting, 54 scripts draw with WebGL primitives, using
between 17 and 20 distinct drawing instructions. Only 7 drawing instruction
sequences are different. Moreover, one sequence is used by 46 scripts. 54 finger-
printers enumerate fonts. The number of fonts tested ranges from 66 to 594,
with 19 different sets of fonts. We observe 2 sets of fonts being largely checked
by fingerprinters: a set of 82 fonts tested by 17 scripts, and a set of 66–69 fonts
used by 18 scripts. Thus, even though there is a potentially unlimited combina-
tion of testable fonts, a majority of scripts use similar sets. We believe this is
due to these font sets being copied from one script to another, as well as, being
sufficient to capture enough uniqueness. We observed 107 fingerprinters collect
at least one bot attribute. The average number of bot attributes is 5. PhantomJS
attributes are the most collected (41% of all scripts), followed by those that
detect Headless Chrome (18–33%) and Selenium (12–16%).

Finally, we observed that the most used attributes belong to the earliest
identified for browser fingerprinting, like the navigator and screen properties
(Eckersley et al. [7] in 2010) and the canvas (Mowery et al. [20] in 2012). More
recent attributes are less present in our dataset, such as audio and WebRTC
(Englehardt et al. [8] in 2016). We also found one fingerprinting script accessing
9 unpublished attributes from the WebGL2RenderingContext object which is
part of the WebGL2 APIs.

4.2 Origins of Browser Fingerprinting Scripts

Regarding the adoption of browser fingerprinting for security purposes, we ana-
lyzed the scripts hosted by domains whose main goal is security. We analyzed
their target markets and their presence in our dataset and identified 14 finger-
printing scripts from 12 security-focused organizations. For each of the organi-
zations, we extracted their main purpose, and analyzed the presence of their
scripts on the sensitive page types we defined. Table 1 reports on these results.
All of these security scripts are present in at least one of our 4 sensitive page
types.

We analyzed the attribute families collected by these browser fingerprint-
ing scripts. All major techniques are being actively used. The navigator and
screen properties are the most collected (included in 14 scripts), followed by can-
vas (12), bot (11), WebGL parameters (10), WebGL drawing (6), audio and font
enumeration via span (5), canvas font enumeration and WebRTC (3). Access
to navigator.userAgent, navigator.platform and navigator.vendor was

246 A. Durey et al.

Table 1. Summary of security organizations, with the accessed attributes and the
presence in the web pages of our dataset.

Organization goal Organization name Script # of Script presence on

attributes # domains # pages sign-up sign-in basket payment

Payment platform Adyen 47 1 1 �
CentroBill 14 1 1 �
Probiller 29 1 4 � �
Razorpay 10 1 1 �
Secured Touch 73 1 6 �

Fraud prevention Iovation 8 1 1 �
Nudata Security 29 2 3 � �
Sift Science 26 10 26 � � � �
Simility 49 2 3 �

Bot protection Datadome 33 1 1 �
Geetest 64–65 4 7 � �
PerimeterX 69 1 3 �

found in 13 scripts. These navigator attributes overlap, we believe that they are
used to detect spoofing. Moreover, we observed 13 scripts where screen.width,
screen.height, screen.availWidth, and screen.availHeight are collected.
These attributes can also be used to detect spoofing, as the available sizes should
be smaller than the width and height. Jonker shows this invariant can detect
bots [14]. The 3 organizations that claim to protect against bots naturally collect
bot attributes. PerimeterX collects 10 of them, and Datadome 5, both covering
all major bot types. However, Geetest only collects 2 bot attributes, both for
detecting PhantomJS.

4.3 Secured vs Non-secured Web Pages

We analysed the ratio of webpage types that include a browser fingerprinting
script. We found browser fingerprinting scripts on all types of web pages. Basket
(33.8%) and Sign-up (31.1%) pages fingerprint more than the average, followed
by content (25.6%), Payment (25.3%), Sign-in (23.4%), and home pages (23.0%).
Other studies have not targeted these specific page types and have generally
relied only on home pages. Consequently, we are—to the best of our knowledge—
the first study to observe the prevalence of browser fingerprinting in sensitive
and secure web pages. We compared fingerprinting in secured to non-secured
pages. We found 54 scripts exclusive to secured pages, 68 scripts exclusive to
non-secured pages, and 47 in both.

We counted the number of fingerprinting scripts included on a page. Out of
405 pages that fingerprint, 339 pages include 1 script, 51 pages had 2 scripts,
and 15 pages had 3 scripts. Out the 66 multi-script pages, (i.e., 51+15), 10
had first-party fingerprinting scripts, 27 served fingerprinting scripts from a dif-
ferent domain, and 29 served fingerprinting scripts from both first and third-
party domains. We make several hypotheses based on our observations. First,

FP-Redemption: Studying Browser Fingerprinting Adoption 247

the browser fingerprinting scripts have different purposes, such as advertising
or security services, and likely do not share the fingerprints they collect. Next,
in the case of pages from websites being developed by several teams, they may
integrate multiple browser fingerprinting scripts unintentionally. A majority of
the pages with multiple fingerprinting scripts are secured pages, (35 secured ver-
sus 31 non-secure pages), although secured pages represent only 44.2% of our
dataset. This result supports the statement that secured pages fingerprint more
aggressively than non-secured pages.

4.4 Additional Security Mechanisms

During our data acquisition, we also marked the usage of any MFA mechanisms
or bot detection techniques we found. We observed 38 pages with an MFA mech-
anism, the majority being sign-up pages. 3 distinct mechanisms were used during
our collection: an email code or confirmation (used 19 times), an SMS code (17),
and a phone call (2) in which the code to enter on the website consists of the
last x digits of the calling number. The usage of an MFA mechanism for sign-
up pages implies a stronger requirement for proof of identity. Because browser
fingerprinting could fulfil this requirement, we compare the average number of
fingerprinting attributes on these pages to other pages. We observe only 1 sign-up
page that contains an MFA mechanism also embedded a browser fingerprinting
script. Moreover, this webpage also included a bot detection mechanism. This
means that they used both an authentication confirmation and a verification
for bots. Thus, the presence of a browser fingerprinting script might be used to
serve either of these purposes, as we are only observing from the client-side, we
cannot conclude.

Regarding bot detection, we found 51 scripts using bot detection mechanisms:
41 ReCaptcha, 6 Geetest puzzles,4 and 4 textual captchas. As for the MFA
mechanisms, they were mainly observed in sign-up pages. 2 pages were using 2
bot detection techniques: a sign-in page on an adult website and a sign-up page
on an event ticket website. Half of the pages with a bot detection mechanism
embed a browser fingerprinting script. This shows the interest of websites in
using bot detection techniques based on browser fingerprinting.

Synthesis. In this section, we explored the browser fingerprinting scripts of
our dataset, their presence on the different page types we considered and the
adoption of fingerprinting in combination with additional security mechanisms.
More specifically, we show that browser fingerprints are effectively accessed for
all the types of web pages covered by our study. We finally observed that browsers
are fingerprinted slightly more aggressively on secured pages.

5 Attack Models

This section introduces two attack models we used to assess the security benefits
of browser fingerprinting.
4 https://www.geetest.com/en/demo.

https://www.geetest.com/en/demo

248 A. Durey et al.

5.1 Stolen Credentials

Extracting the Protected Websites. We observed in Sect. 4 that browser
fingerprints are collected by websites during the authentication process. We
are interested in observing any security improvements brought by fingerprint-
ing in the case of stolen credentials. We assume that a hacker steals a user’s
credentials—through a data leak, a phishing page, or any other technique—
and tries to authenticate into the targeted website. We reproduced this attack
behaviour by trying to log into the accounts we created for this experiment. It is
worth mentioning that we used a phone number or any additional information
needed to create the account, but we skipped anything that was not manda-
tory. We assume that the attacker may use a different browser instance on a
different OS, with different cookies than the victim’s browser, while browsing
from a different network than the network associated with the original accounts.
We assume that the attacker can solve Captchas when using stolen credentials.
Therefore, bot detection mechanisms are not a reliable protection in this con-
text. We ran this attack on the 42 websites we were able to create accounts
on—12 of them use a browser fingerprinting script on the sign-in page. The 42
websites are well balanced concerning the Country tag we defined, and mainly
concern cryptocurrencies, money transfer, e-commerce, adult, event and sport
tickets content. Among these websites, 16 of them belong to the Top 1k Alexa,
8 between 1k and 10k, 11 between 10k and 100k, and 7 above the Top 100k.
We expect websites that collect browser fingerprints to use it them protect the
accounts from stolen credentials. Our attempts to log in to the accounts with
different fingerprints fell into the following 3 cases:

1. We were able to log into 37 websites without facing additional multi-factor
authentication mechanisms or security warnings.

2. Three websites sent a warning message about an unknown connection to our
account. These messages contained the IP address, the OS and the browser
we tried to connect with.

3. Two websites asked for additional proof of identity. The first one sent an
email code with additional information about the ongoing connection. The
other sent an SMS code to enter to validate the connection attempt. Those 2
websites also proposed a security panel where the user can check their trusted
devices.

We observe that only 5 out of the 42 websites react in a manner that strongly
suggests fingerprint-based detection of known devices and browsers is being used
to secure the account, namely Google, WeTransfer, (files transfer service) Skrill,
Crypto and Binance (cryptocurrencies, finances or money transfer websites). 4 of
them have a security panel with the authorized devices with their characteristics
and all the connection attempts to log into the account.

Isolating the Triggering Characteristics. As we noticed during our previ-
ous experiment, several details, including the OS, browser and IP address, were

FP-Redemption: Studying Browser Fingerprinting Adoption 249

Table 2. Parameters and results concerning the reauthentication experiment. Different
IP, browser, device indicates the IP address, the browser and the device were different
from the ground truth respectively. * indicates the cookies from step 5 were reused in
step 6 (but they differ from the ground truth cookies).

Website MFA on FP on Authentication attempt combinations

sign-up sign-up sign-in n◦1 n◦2 n◦3 n◦4 n◦5 n◦6

pages ground truth different IP different IP same IP

different IP different IP diff browser diff browser

no cookies diff browser diff device diff device

no cookies no cookies same cookies*

Google SMS OTP connection connection SMS OTP SMS OTP connection connection

+ alert + alert

Skrill connection connection SMS OTP SMS OTP SMS OTP SMS OTP

Crypto SMS OTP � � connection connection connection connection connection connection

+ alert + alert + alert + alert + alert + alert

WeTransfer connection connection connection connection connection connection

+ alert + alert + alert + alert

Binance Email OTP � � connection connection connection + Email OTP Email OTP connection +

specific alert specific alert

provided to the user to explain the warnings or requirements for additional infor-
mation to authenticate. The IP address can be used to extract the approximate
geolocation of the user and to detect connections from unusual networks (e.g.,
through a cloud provider). Although not indicated, we believe the presence of
previous login cookies might also be used by the website to decide to authenticate
the users more easily. Their absence might reveal a device or browser change.
For the 5 websites of our previous results, we tried to isolate the set of elements
that trigger an additional security authentication mechanism or warning. To do
so, we tried the following 6 combinations:

1. We re-authenticated with the same conditions as the ones the account was
created with, to get the ground-truth.

2. We signed-in with the same browser but using a different IP address than the
one used for the account creation and previous login attempt.

3. On a different IP address, using the same browser, we logged in using the
browser’s private mode to navigate without reusing any cookies.

4. On the same device but using a different browser, with a different IP address.
5. We then tried to reauthenticate with a different device and browser, and a

different IP address.
6. Finally, we tried to log again on the same device and the same browser as the

previous combination, without deleting cookies or any other stateful data,
but we changed our IP address to reuse the original IP address used to create
the account and log in for the ground truth combination.

We ran the above combinations in order. Browser and OS changes make the
fingerprint different, contrary to IP address and cookies that do not affect the
browser fingerprint. If fingerprinting is used to secure the account, we expect to
observe different behaviors on the combinations where the fingerprint changes,
namely combinations n◦4, n◦5 and n◦6.

250 A. Durey et al.

Table 2 summarizes up the results we observed according to the changes we
applied to the browsing characteristics. Google, Skrill, and WeTransfer seem to
be based on cookies. When they are not present, the first 2 ask for a One Time
Password (OTP), while WeTransfer sends an alert. Crypto always has the same
behavior: it allows the connection, but sends an alert. Finally, Binance have the
most advanced system. First, it sends an alert about the IP address when we
changed it, when browsing without cookies (combination n◦3). The message did
not contain any reference to device or browser changes, so we believed the website
knew we were on the same device and browser. The behavior changed when we
used another browser on the same device: Binance sent us an email containing
an OTP and basic information about the new browser used (combination n◦4).
It also sent an email with an OTP when using a different device (combination
n◦5). When staying on the browser chosen on this second device and using the
same IP address as the one used, we received an alert (combination n◦6). Based
on this last experiment, we make 2 observations:

– The alert message is different from the one when we changed the IP address.
The message now mentions a change in the browser and device.

– We received an email alert, but we were still able to sign in. We believe this
is because the cookies set by the browser were the same as the ones in the
previous combination when we needed to provide an email OTP to validate
the connection.

In our dataset, we see browser fingerprinting being used only once, in com-
bination with other identifying techniques, to resist stolen credentials. As this
attack is similar to a user trying to login from a fresh browser, it also illustrates
the additional steps users needs to complete to sign in with a new browser.

5.2 Cookie Hijacking

Attack Design. Cookie hijacking can lead to account compromise and data
leaks [28]. As browser fingerprinting can be used to identify a browser, we make
the hypothesis it can be used to help tell if a cookie has been hijacked and used
by a different browser. Our goal is not to study the existing ways to perform a
cookie hijacking. In our attacks, we assume an attacker was able to steal cookies,
no matter the method used—XSS vulnerability, insecure network exchanges,
malicious JavaScript injection. Instead, we aim at studying the resilience to
cookie hijacking by websites in our dataset if browser fingerprinting is used to
protect the accounts. We designed 2 attacks to study cookie hijacking.

Our first attack is session cookie hijacking. It consists in trying to authenti-
cate using cookies stolen from an existing user session. We log in to the target
site on a first browser, then we extract the cookies and login page URL and
insert these into a second browser. If the attack works, the second browser will
be authenticated and the session will be in the same state as on the first browser.
If not, the second browser will be stuck on the login page.

Our second cookie hijacking attack focuses on basket workflows. The goal is
to obtain the same basket as a user by hijacking their cookies. We fill a basket

FP-Redemption: Studying Browser Fingerprinting Adoption 251

with a commercial item, and visit the page summarizing the basket and its
content. Similarly to the session hijacking cookie attack, we then extract the
URL and cookie, and put them in another browser. If the basket content is the
same on the 2 browsers, the attack is successful.

Methodology. For each website, we automated the browsing to the required
pages with a Puppeteer instance. We automate the insertion of cookies and
the navigation to the URL with a second Puppeteer instance. We lower the
possibility to be detected as a bot by changing the fingerprint of the Puppeteer
instances for them to look like Chrome 84. To do so, we reused the value of
each attribute collected by fingerprinters during our manual data collection and
integrated them into an extension in the Puppeteer instance that returns the
corresponding value when an attribute is accessed. We also added a delay of at
least one second between each action on a page.

Before studying the impact of fingerprint modification, we performed a pre-
liminary run with and without the collected cookies to make sure that sessions
could be stolen from the Puppeteer instance and that no other parameters, like
localStorage or a hidden parameter in the URL, would impact our measure-
ment. This way, we created a subset of websites where our attacks are successful.
Finally, we ran our attack on all the websites of this subset and collected the
cookies and URLs. We used different parameters and configurations of the second
Puppeteer instances by running them on a different device on a different net-
work with a different IP address. We also changed all the fingerprint attributes
we monitored during our data collection by giving them values from a Firefox
72 instance with the same extension as described earlier in this section. Should
a website be protected and detect the different fingerprint, we rerun the attack
by modifying parts of the fingerprint to detect which attributes or combinations
trigger the defense mechanism.

Table 3. Number of websites involved in
each step of the validation for the session
and basket cookies attacks, and results of
the attack on the validated subset

websites
Session Basket
FP no FP FP no FP

Dataset 12 30 33 51
Cannot automate 0 5 8 8
Anti-bot triggered 2 1 3 3
Impacted by other params 3 5 6 6
Nothing sold 0 0 7 16
Validated subset 7 19 9 18

Attack works 7 19 9 18

Results. We ran these experiments
in July and August 2020. We used the
42 websites we were previously able to
create an account on for the session
hijacking cookie. Concerning the bas-
ket hijacking cookie attack, we used
the 84 websites of our dataset con-
taining at least a basket page—33 of
them contain at least one fingerprinter
on a basket page. We then ran each
step of our validation process to make
sure the cookies were the only variable
needed to retrieve the basket or ses-
sion state. The results are presented
in Table 3. Because of the time gap
between this experiment and the one described in Sect. 4, we were unable to fill

252 A. Durey et al.

baskets for several websites with a single item as some of them were not sell-
ing anything anymore. We believe this is likely due to the economic and societal
restrictions following the Covid-19 pandemic. We ended up with a validated sub-
set of respectively 26 and 27 websites for our session and basket cookies attacks.
As explained in the methodology section, we then ran our attack and inserted
the cookies on a different device on a different network with a different finger-
print and HTTP headers. With these parameters, the attacks worked on every
website of our validated subset. These behaviors imply no defense mechanism
was being used. Thus, browser fingerprinting is not used to protect against a
session or basket cookie hijacking on the websites of our dataset.

As we did not detect any usage of additional security mechanisms, we studied
the way HTTPS and HSTS are deployed and how cookies are configured to
observe if their settings were secure enough to protect against traffic sniffing.
If these elements are properly set, it lowers the attack surface on cookies by
complicating their extraction via JavaScript and avoiding their theft from HTTP
requests [28]. Over the 53 websites we tested our cookie hijacking attacks on, 52
were redirecting their traffic through HTTPS and 30 of these 52 websites were
setting the Strict Transport Security response header in the browser. During
the experiments, we collected and injected 1, 080 cookies, 198 (18%) and 305
(28%) were HTTPOnly and Secure, respectively. We also looked at the SameSite
parameter, observing 11 (1%) and 109 (10%) cookies have a Strict and Laxist
SameSite policy, respectively. Even if the SameSite parameter is now set by
default to Laxist since Chrome 80/Firefox 69, few websites were setting it to
a secure value, indicating they were added before to all requests because of the
default None SameSite policy.

Based on these observations, we conclude that developers put a lot of trust
in cookies as their presence alone in our tests lead to direct user authentication.
This trust is only possible thanks to strong security mechanisms in browsers that
have grown and matured a lot in the past decade. The rise of HTTPS coupled
with a lot of control over what can be executed on a webpage (through CSP,
CORS and all their derivatives) have changed the way we come to reason about
cookie hijacking and how much harder it is to pull off such an attack today.
Yet, our experiment shows that if indeed cookies are stolen, none of the tested
websites have any mechanisms in place to detect any irregularities. We can only
hypothesize at this point that this may not be in the scope of their threat model.

Synthesis. In this section, we designed 2 attack models and tested them to
measure the effectiveness of fingerprinting to protect users on web pages in our
dataset. We observed fingerprinting being successfully used to improve security
in our first attack using credentials to log in. Concerning our second attack, we
did not detect any website in our dataset that used browser fingerprinting to
protect against cookie hijacking.

FP-Redemption: Studying Browser Fingerprinting Adoption 253

6 Discussion

Understanding the Intent of a Fingerprinting Script is Hard. In the
case of browser fingerprinting, analyzing why a script is included in a web page
and why it’s accessing specific attributes is complex as there is little indication
of what will be done with the collected data once it has left the device. Still, it
is possible to rely on some signs to capture the intent behind a fingerprinting
script, such as:

– Accessed APIs: depending on the goal of the script, some APIs may be
picked over others. For example, anti-bot companies access well-identified
bot attributes, while others interested in cross-browser fingerprinting access
OS and hardware-specific attributes.

– Number of collected attributes: while a very high number of attributes
can often be linked to a fingerprinting behavior, the numbers vary. As seen
in Table 1, some third parties, like Iovation, build on only 8 attributes, while
others, like Secured Touch, collect up to 73. As a lot of the state of the art in
fingerprinting is interested in either uniquely identifying devices or detecting
inconsistencies, it makes sense to collect as many attributes as possible. Yet,
as seen with Iovation, if you have a clear goal in mind, collecting very few
attributes can be enough for your purpose.

– Execution context: where the fingerprinting script is located can show
intent. If a fingerprinting script is included in all web pages, it is proba-
bly linked with an anti-bot system but, if it is only present on a payment
page, then it is likely used for fraud prevention.

Considering the above signals, it is possible to estimate how the collected
information will be used, but it does not provide certainty without having access
to the backend where the browser fingerprints are analyzed.

Fingerprinting is Not Being Used to Protect Individual Accounts. In
Sect. 4.2, we identified third-party actors who collect a wide range of data to
implement bot protection and fraud prevention. They protect a website globally
against external threats. Yet, when looking at what is offered to protect users’
accounts, the story seems very different. Based on our experiments detailed in
Sect. 5, there is little evidence that fingerprinting is currently being used to pro-
tect individual accounts. As we detected fingerprinting scripts delivered by 12
security-oriented organizations, we would have expected them to add an addi-
tional security layer to protect users. This raises the question of the relevance
of using such a script from a security organization if the final usage is not secu-
rity. More generally, we tested the defenses of 42 websites by creating accounts
and logging with several contexts and parameters. Apart from some warning
messages with few details on the new connecting device, we found only a single
website blocked access to their services when the browser fingerprint did not
match. Moreover, we have not detected any usage of browser fingerprinting to
protect against our second attack, the cookie hijacking. We believe these are
negative results of our paper and deserves further discussion.

254 A. Durey et al.

First, theses results raise the question of why we observed such behaviors.
One concern could be the accuracy of the browser fingerprinting algorithm. While
cookies and IP addresses send strong signals that websites have relied on for
years, a fingerprint is, in contrast, more volatile. It can change due to a minor
modification to the browser’s configuration or an update. Some attributes may
be deemed too unstable to be included for verification while others are much
more reliable and even predictable. As detailed by Vastel et al. [32], browser
fingerprinting techniques require constant adaptation to maintain their robust-
ness. Another concern is user experience, as having an overly sensitive algorithm
could prompt for additional checks too often, even if the user did not change
their device or browser.

Deficiencies in the State of the Art. As we identify concerns about the use
of browser fingerprinting in a multifactor authentication system, we believe the
state of the art currently lacks studies to measure the effectiveness and reliability
of MFA with browser fingerprinting. First, users would need a way to add a new
fingerprint to their account to be able to connect with another device. Websites in
our dataset seem to use a OTP email. We believe other options should be studied
because each authentication system is different and has its own trade-offs. Also,
fingerprints evolve over time, and a multifactor authentication system would
must be able to tell if a fingerprint is an evolution of an already registered one or
not. While solutions have been proposed to compute a fingerprint evolution [32],
it has been shown to not be fast enough when confronted with a large dataset [19].
Used in an authentication context, it would require a quick decision to have
negligible impact on the user experience. An interesting study has been proposed
by Alaca et al. [2] about the requirements of a such a system, but due to the
rapid evolution of the web ecosystem, the study might be outdated. Finally,
the state of the art lacks an evaluation of the user experience, satisfaction and
confidence when using this kind of system.

Benefits Provided by Our Dataset. We believe our manual dataset is inter-
esting for the community for future research on browser fingerprinting. In combi-
nation with a study about the origin and causality of a change in the browser fin-
gerprint, it could be used to better understand what information the websites is
looking for. They could be interested in an attribute that concerns some specific
hardware or the software detail of the device, for example, to determine whether
the fingerprint is consistent. An inconsistency could reveal a possible identity
theft or a fraudster. Thus, it could help understand the purpose of browser
fingerprinting collection on sensitive pages. Moreover, the automated detection
of multi-factor authentication mechanisms suffers from the same biases as the
automated detection of browser fingerprinting, and much of the same reasoning
behind this study would apply. As explained in Sect. 2, the literature lacks a
study on multi-factor authentication adoption on the web. Our dataset provides
information about such mechanisms and could be used as a starting point for
an in-depth study on these security systems.

FP-Redemption: Studying Browser Fingerprinting Adoption 255

7 Conclusion

In this paper, we studied the adoption of browser fingerprinting for security appli-
cations. More specifically, we analyzed 4 types of secured web pages—sign-up,
sign-in, basket, and payment—that process sensitive personal data. We consid-
ered the state-of-the-art JavaScript attributes and developed an extension to
monitor browser fingerprinting attribute accesses. To avoid biases introduced by
automated crawlers and bots, we manually visited 1, 485 pages published by 446
websites, and created accounts, logged in to verify authentication procedures,
and went through the payment processes where available. We labeled 169 dis-
tinct fingerprinters using an existing technique. We publicly share our secured
web page dataset and the detected fingerprinters we found.5 We observed these
fingerprinters being served by all types of secured pages and various website
categories. We analyzed the script providers and found 12 security-focused orga-
nizations that use browser fingerprinting in secured web pages. We measured
the use of MFA systems and bot detection, showing fingerprinting is used in
combination with other identification techniques. We defined 2 attack models,
stolen credentials and cookies hijacking, and evaluate websites in our dataset
against them. Finally, we did not observe fingerprinting being actively used to
secure websites against these 2 attacks.

A Selected Search Keywords

We used the following list of keywords to get specific website types: –Bank –Money
transfer service –Stock trading –Financial –Cryptocurrency –Social insurance –Taxes
–Healthcare – Job search –News – Email –Adult –Dating –Metro/train/flight tickets
– Flight companies – Travel agencies – Airlines – Event ticket – Sport ticket – Social
network – Ecommerce – Shopping – TV channel – Streaming – Bet games – Poker –
Online game.

We used the following list of countries for our experiment: – United States –
Japan – Germany – France – Russia – Spain – United Kingdom – India – China

References

1. Acar, G., Eubank, C., Englehardt, S., Juarez, M., Narayanan, A., Diaz, C.: The
web never forgets: persistent tracking mechanisms in the wild. In: CCS 2014 (2014)

2. Alaca, F., van Oorschot, P.C.: Device fingerprinting for augmenting web authenti-
cation: classification and analysis of methods. In: ACSAC 2016 (2016)

3. Bursztein, E.: The bleak picture of two-factor authentication adoption in
the wild (2018). https://elie.net/blog/security/the-bleak-picture-of-two-factor-
authentication-adoption-in-the-wild/

4. Bursztein, E., Malyshev, A., Pietraszek, T., Thomas, K.: Picasso: lightweight
device class fingerprinting for web clients. In: SPSM 2016 (2016)

5 https://zenodo.org/record/3872144.

https://elie.net/blog/security/the-bleak-picture-of-two-factor-authentication-adoption-in-the-wild/
https://elie.net/blog/security/the-bleak-picture-of-two-factor-authentication-adoption-in-the-wild/
https://zenodo.org/record/3872144

256 A. Durey et al.

5. Cao, Y., Li, S., Wijmans, E.: (Cross-)browser fingerprinting via OS and hardware
level features. In: NDSS 2017 (2017)

6. Durey, A., Laperdrix, P., Rudametkin, W., Rouvoy, R.: An iterative technique to
identify browser fingerprinting scripts (2021)

7. Eckersley, P.: How unique is your web browser? In: Atallah, M.J., Hopper, N.J.
(eds.) PETS 2010. LNCS, vol. 6205, pp. 1–18. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14527-8 1

8. Englehardt, S., Narayanan, A.: Online tracking: a 1-million-site measurement and
analysis. In: CCS 2016 (2016)

9. Gómez-Boix, A., Laperdrix, P., Baudry, B.: Hiding in the crowd: an analysis of the
effectiveness of browser fingerprinting at large scale. In: WWW 2018 (2018)

10. Anti-Phishing Working Group: Phishing activity trends report (2019). https://
docs.apwg.org/reports/apwg trends report q3 2019.pdf

11. Invernizzi, L., Thomas, K., Kapravelos, A., Comanescu, O., Picod, J., Bursztein,
E.: Cloak of visibility: detecting when machines browse a different web. In: S&P
2016 (2016)

12. Iqbal, U., Englehardt, S., Shafiq, Z.: Fingerprinting the fingerprinters: learning to
detect browser fingerprinting behaviors (2021)

13. Jonker, H., Kalkman, J., Krumnow, B., Sleegers, M., Verresen, A.: Shepherd:
enabling automatic and large-scale login security studies (2018)

14. Jonker, H., Krumnow, B., Vlot, G.: Fingerprint surface-based detection of web bot
detectors. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS,
vol. 11736, pp. 586–605. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-29962-0 28

15. Laperdrix, P., Avoine, G., Baudry, B., Nikiforakis, N.: Morellian analysis for
browsers: making web authentication stronger with canvas fingerprinting. In:
Perdisci, R., Maurice, C., Giacinto, G., Almgren, M. (eds.) DIMVA 2019. LNCS,
vol. 11543, pp. 43–66. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
22038-9 3

16. Laperdrix, P., Baudry, B., Mishra, V.: FPRandom: randomizing core browser
objects to break advanced device fingerprinting techniques. In: Bodden, E., Payer,
M., Athanasopoulos, E. (eds.) ESSoS 2017. LNCS, vol. 10379, pp. 97–114. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-62105-0 7

17. Laperdrix, P., Bielova, N., Baudry, B., Avoine, G.: Browser fingerprinting: a survey.
In: TWEB 2020 (2020)

18. Laperdrix, P., Rudametkin, W., Baudry, B.: Beauty and the beast: diverting mod-
ern web browsers to build unique browser fingerprints. In: S&P 2016 (2016)

19. Li, S., Cao, Y.: Who touched my browser fingerprint?: A large-scale measurement
study and classification of fingerprint dynamics (2020)

20. Mowery, K., Shacham, H.: Pixel perfect: fingerprinting canvas in HTML5. In:
W2SP 2012 (2012)

21. Mulazzani, M., et al.: Fast and reliable browser identification with Javascript engine
fingerprinting. In: W2SP 2013 (2013)

22. Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, C., Piessens, F., Vigna, G.:
Cookieless monster: exploring the ecosystem of web-based device fingerprinting.
In: S&P 2013 (2013)

23. Nikiforakis, N., Joosen, W., Livshits, B.: Privaricator: deceiving fingerprinters with
little white lies. In: WWW 2015 (2015)

24. Olejnik, �L., Acar, G., Castelluccia, C., Diaz, C.: The leaking battery. In:
Garcia-Alfaro, J., Navarro-Arribas, G., Aldini, A., Martinelli, F., Suri, N. (eds.)

https://doi.org/10.1007/978-3-642-14527-8_1
https://doi.org/10.1007/978-3-642-14527-8_1
https://docs.apwg.org/reports/apwg_trends_report_q3_2019.pdf
https://docs.apwg.org/reports/apwg_trends_report_q3_2019.pdf
https://doi.org/10.1007/978-3-030-29962-0_28
https://doi.org/10.1007/978-3-030-29962-0_28
https://doi.org/10.1007/978-3-030-22038-9_3
https://doi.org/10.1007/978-3-030-22038-9_3
https://doi.org/10.1007/978-3-319-62105-0_7

FP-Redemption: Studying Browser Fingerprinting Adoption 257

DPM/QASA -2015. LNCS, vol. 9481, pp. 254–263. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-29883-2 18

25. Ometov, A., Bezzateev, S.V., Mäkitalo, N., Andreev, S., Mikkonen, T., Kouch-
eryavy, Y.: Multi-factor authentication: a survey. Cryptography (2018)

26. Rizzo, V., Traverso, S., Mellia, M.: Unveiling web fingerprinting in the wild via
code mining and machine learning. In: PETS 2021 (2021)

27. Rochet, F., Efthymiadis, K., Koeune, F.A., Pereira, O.: SWAT: seamless web
authentication technology. Association for Computing Machinery (2019)

28. Sivakorn, S., Polakis, I., Keromytis, A.D.: The cracked cookie jar: http cookie
hijacking and the exposure of private information. In: S&P 2016 (2016)

29. Unger, T., Mulazzani, M., Frühwirt, D., Huber, M., Schrittwieser, S., Weippl, E.:
SHPF: Enhancing http(s) session security with browser fingerprinting. In: AReS
2013 (2013)

30. Urban, T., Degeling, M., Holz, T., Pohlmann, N.: Beyond the front page: Measuring
third party dynamics in the field (2020)

31. Vastel, A., Laperdrix, P., Rudametkin, W., Rouvoy, R.: Fp-scanner: the privacy
implications of browser fingerprint inconsistencies. In: USENIX 2018 (2018)

32. Vastel, A., Laperdrix, P., Rudametkin, W., Rouvoy, R.: FP-STALKER: tracking
browser fingerprint evolutions. In: S&P 2018 (2018)

33. Vastel, A., Rudametkin, W., Rouvoy, R., Blanc, X.: FP-crawlers: studying the
resilience of browser fingerprinting to block crawlers. In: MADWeb 2020 (2020)

34. Zeber, D., et al.: The representativeness of automated Web crawls as a surrogate
for human browsing. In: WWW 2020 (2020)

https://doi.org/10.1007/978-3-319-29883-2_18
https://doi.org/10.1007/978-3-319-29883-2_18

Introspect Virtual Machines Like
It Is the Linux Kernel!

Ahmed Abdelraoof(B), Benjamin Taubmann, Thomas Dangl,
and Hans P. Reiser

University of Passau, Passau, Germany
abdelr02@ads.uni-passau.de, {bt,td,hr}@sec.uni-passau.de

Abstract. Virtual machine introspection (VMI) allows a monitoring
application, usually running in a separate virtual machine on the same
host, to peek into another guest virtual machine running on the same
host, check and modify both registers and memory state of the guest. It
has gained popularity in malware analysis, software reverse engineering,
and intrusion detection systems. However, VMI comes with a huge over-
head, which not only is a waste of resources but also can tip malware
that VMI is being used.

In this paper, we present an approach to significantly enhance the per-
formance of VMI. Our work eliminates a large number of context switches
between the monitored guest system, the hypervisor, and the monitor-
ing application. Our approach implements the management of tracing
directly into the hypervisor and uses asynchronous events between hyper-
visor and monitoring process to minimize the performance impact of
tracing without losing functionality. We show that our approach reduces
the main bottlenecks of introspection by more than an order of mag-
nitude compared to the popular approach using LibVMI and the Xen
hypervisor.

Keywords: Virtual machine · Introspection · Tracing · Operating
system · Debugging

1 Introduction

Virtual machine introspection (VMI) is the process of monitoring and possibly
modifying the inner workings of a virtual machine (VM) execution at run-time.
The hypervisor isolates the monitoring application from the monitored VM.
The monitoring application typically runs in a separated VM and usually sets
code breakpoints or data watchpoints in the monitored VM. When one of these
interception points triggers, the monitoring application takes control of the mon-
itored VM. In recent years, VMI has been shown to be useful for a broad range
of purposes, including debugging [7], intrusion detection [10,17], malware anal-
ysis [11,16], honeypots [19], and digital forensics [24].

However, in many cases the advantage of strong isolation between monitoring
application and monitored VM comes at the cost of high overheads that severely

c© Springer Nature Switzerland AG 2021
L. Bilge et al. (Eds.): DIMVA 2021, LNCS 12756, pp. 258–277, 2021.
https://doi.org/10.1007/978-3-030-80825-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80825-9_13&domain=pdf
http://orcid.org/0000-0002-2815-5747
https://doi.org/10.1007/978-3-030-80825-9_13

Introspect Virtual Machines Like It Is the Linux Kernel! 259

degrade the performance of the monitored VM. Each hit of an interception point
on code or data means that the control flow is diverted from the monitored VM
to the monitoring application via the hypervisor and the operating system, caus-
ing multiple context switches. If the monitoring application observes frequently
executed code or accessed data, this overhead becomes prohibitively expensive.
Another factor that contributes to the performance degradation is the time spent
on synchronous processing while handling the interception point.

In this paper, we present novel approaches to mitigating this severe limita-
tion of VMI. In particular, for malware detection and analysis, minimizing the
noticeable overhead also increases the stealthiness of the monitoring. Our main
contribution is designing a VMI system that is flexible, secure, and fast. We do
that by analyzing the main sources of overhead in current VMI implementations
and eliminating them from their roots. For the purposes of this paper, we will
be using the Xen hypervisor [4], as it has advanced support for VMI out of the
box [2]. However, the techniques we developed can be applied to any hypervisor
with sufficient VMI support. Our contributions can be summarized as follows:

1. Identifying context switches between guests and hypervisor during hypercalls
and VMI events as an overhead source in VMI.

2. Identifying complex analysis in the monitoring process as another overhead
source in VMI.

3. Fixing the first overhead source by creating in-hypervisor coarse-grained
primitives for handling both data accesses (memory access tracers) and code
execution (breakpoints).

4. Fixing the second overhead source by making the memory access tracers and
breakpoints handled asynchronously using a wait-free/lock-free queue.

5. Evaluate the performance and reliability of our system when compared to
other VMI implementations.

The rest of this paper is structured as follows: First, Sect. 2 surveys related
prior work. In Sect. 3, we lay out all the needed background knowledge. We
explain the Xen infrastructure and discuss the inner-workings of a typical VMI
implementation. Section 4 analyzes in detail the causes of VMI overhead, using
for illustration an infrastructure based on LibVMI. LibVMI is one of the most
popular libraries for VMI, used by many introspection applications. In Sect. 5, we
propose in-hypervisor tracing primitives that mitigate the shortcomings of Lib-
VMI. Section 6 extends our design to be able to execute the vast majority of trac-
ing algorithms without the need for doing context switches. In Sect. 7, we put our
system to test. We verify the effectiveness of our proposed system in improving
system performance. We show that utilizing asynchronous in-hypervisor tracing
primitives can reduce performance overhead orders of magnitude.

2 Related Work

Use Cases. The use cases for which VMI has been successfully employed range
from debugging over intrusion detection and prevention to malware analysis and
digital forensics.

260 A. Abdelraoof et al.

VMI can be used for debugging even if other approaches are unavailable.
Normally, user-space debugging (or even kernel debugging) requires the avail-
ability of suitable interfaces and support. Mechanisms like Windows PatchGuard
[22] protect the kernel from being monitored, turning debugging to be extremely
complicated [18]. Bhatt et al. [7] have demonstrated that VMI may be very
successful in introspecting Windows PatchGuard.

VMI has also been used to implement intrusion detection systems (IDS). For
example, Wishra et al. [17] use VMI to trace system calls and apply a “bag of n-
grams” approach integrated with “term frequency-inverse document frequency”
to distinguish between normal and malicious activities. VMI has also been used
to do real-time memory analysis as a new kind of IDS [10].

Another popular application for VMI is dynamic malware analysis. There
have been multiple system designs and implementations for a complete mal-
ware analysis pipeline using VMI technology. For example, VMI can be used
to classify malware families based on Windows API call traces [11], to capture
the running processes of malware, detect rootkits, and analyze the sequence of
system calls [16], and for building high-interaction honeypots [19].

Limitations and Performance Issues. With that being said, virtual machine
introspection (VMI) has a wide range of applications in computer security. With
the current implementations, the performance impact is the main issue why
industry might shy away from VMI technology. It is not possible to use VMI for
IDS or malware analysis in environments with real-time requirements, or when
resources are scarce.

Zhao et al. proposed using hardware-assisted shadow MMU for introspection
in a system which they called ImEE. They had an initial overhead for setting up
the shadow page table. Their evaluations show that replacing LibVMI with an
in-kernel framework improves VMI performance by around between 15x and 70x
when compared to LibVMI [23]. However, in their benchmarking, the overhead
is not clear when compared to not using introspection.

Taubmann et al. showed that compared to not using VMI, LibVMI can have
overhead that goes up to around 2800% when monitoring read, write, open,
close, and exec system call system-wide. They reduced the impact to around
60% [21] by selectively enabling system call tracing only when the right process
is running. This was done by monitoring CR3 register and using it to fingerprint
processes.

This is still considered a huge overhead from the industry’s point of view.
The main problem with the system-wide approach is that it is extremely slow.
Tracing open, read, write and exec is not uncommon in endpoint security or
anti-ransomware software. Having an overhead of 60% is unacceptable by some
endpoint security software. When tracing more system calls, which is usually the
case, the overhead of current solutions can be expected to be even higher.

On the other hand, having a per-process tracer might be useful in some cases,
but it is to be expected to reach the same overhead levels when being used to
implement a system-wide IDS.

Introspect Virtual Machines Like It Is the Linux Kernel! 261

3 Background

3.1 Xen Infrastructure

Xen [4] is a bare-metal hypervisor. On top of the physical hardware, there is
the light hypervisor. Its main job is to schedule the guest’s access to CPU and
various other resources. On top of that hypervisor, there are the guests that act
as virtual machines. In Xen’s terminology, these guests are called DomU. One
of these guests is special compared to the rest. It is called Dom0. That specific
guest has more capabilities than a normal DomU guest. In a typical DomU, the
operating system can request resources from the hypervisor just the same way
it would deal with normal hardware. That is also possible in Dom0.

However, in Dom0, there are special communication channels that allow the
operating system to do more privileged functionalities. For example, only Dom0
is capable of creating new virtual machines or managing the physical resources
allocated per virtual machine.

There are mainly two communication channels between guests and the Xen
hypervisor. The first communication channel is via hypercalls [3]. Informally
speaking, the relation between guests and hypervisor when it comes to hypercalls
is like the relation between user-space processes and operating system kernel
when it comes to system calls. Naturally, hypercalls are synchronous. In Xen,
hypercalls are used to do many things ranging from configuring events down to
assisting with memory management.

The other communication channel is Xenstore [6], Xenstore is a shared stor-
age between all guests including Dom0. The interaction between guests and
Xenstore is synchronous just like a normal hypercall. However, Xenstore can be
used to construct asynchronous communication channels between guests. It also
provides support for transactional safety with multi-readers and multi-writers
channels through Xenbus [5].

3.2 VMI Mechanics

The basic idea behind VMI is to have an introspection virtual machine that
runs a monitoring application and has access to the internal state (memory,
CPU, etc.) of a monitored VM as its target. For the sake of drawing a clear dis-
tinction and simplicity, we will always assume that Dom0 is monitoring DomU,
although it does not always have to be the case. For example, CloudPhylactor
demonstrates how to move the monitoring application to a separate, isolated
monitoring DomU [20].

VMI can use synchronous and asynchronous mechanisms [12]. Asynchronous
VMI means that the monitoring application reads and analyzes the state (in
particular the main memory) of the target system without direct synchroniza-
tion with the target’s control flow. Nevertheless, the monitor often requires a
consistent view of the (concurrently executing) target system, so it is common
to pause the target VM during memory access. Memory snapshots and copy-on-
write (COW) techniques [9,13] can contribute to pausing the execution of the
introspected DomU for the least possible period of time.

262 A. Abdelraoof et al.

In synchronous VMI, introspection is based on events triggered by the mon-
itored DomU. These events can range from invoking system calls, reading, writ-
ing, or executing certain memory addresses, accessing the CPU’s model-specific
register (MSRs), to accessing a memory-mapped IO device (MMIO). The mon-
itoring application sets up event handlers targeting one of the running DomU s.
As soon as an interesting event occurs within DomU, this event causes an inter-
ruption of the execution and a context switch to the hypervisor. Then the hyper-
visor switches control to Dom0. This technique has, for example, been utilized
by LibVMI [2] and by Taubmann et al. [21].

4 Dissecting the LibVMI Hypervisor Interface

In this section, we analyze the code base of LibVMI1 and the related parts in
Xen hypervisor2. LibVMI is the de facto standard for introspection. It has full
support for introspection in Xen-based virtual machines and limited support for
KVM-based virtual machines. LibVMI is used to integrate introspection into
Volatility3, which is a memory forensics framework. LibVMI is also used by
DRAKVUF [15], which is a dynamic malware analysis pipeline. From a top-level
view, LibVMI provides APIs for virtual machine introspection. These APIs are
used to configure event-based triggering mechanisms, access/modify memory,
and control memory mapping (altp2m), as shown in Fig. 1.

Fig. 1. Relation between LibVMI and Xen

1 https://github.com/libvmi/libvmi.
2 https://xenbits.xen.org/gitweb/?p=xen.git.
3 https://github.com/volatilityfoundation/volatility.git.

https://github.com/libvmi/libvmi
https://xenbits.xen.org/gitweb/?p=xen.git
https://github.com/volatilityfoundation/volatility.git

Introspect Virtual Machines Like It Is the Linux Kernel! 263

Fig. 2. Context switching when setting a breakpoint

LibXC is a thin low-level wrapper for Xen hypercalls. The motivation behind
its existence is that hypercalls are vendor and configuration specific [1]. LibXC
provides an abstraction over all the different configurations. In the set of API
we are interested in, almost any call to LibVMI would have a 1-to-1 mapping to
a Xen hypercall. The problem is that on almost every LibVMI call, there is at
least one context switch from Dom0 to the Xen hypervisor and back.

The performance overhead from these context switches can be an acceptable
cost for requesting features from the hypervisor. The real problem is that inter-
cepted events in DomU trigger a context switch from DomU to Xen, then to
Dom0. DomU will have at least one (if not all) CPU cores suspended until Dom0
finishes its introspection subroutine. That will require two context switches per
CPU (pause and resume). Only after that, there will be a context switch back
to the Xen hypervisor, which in turn will do a context switch back to DomU.

This leads to the rise of a few issues: First, introspection is slow, due to the
large number of context switches. Second, any operation done in Dom0 is not
necessarily time-bounded, so there is no guarantee that DomU will resume after
a fixed amount of time.

Aside from having performance issues, managing introspection completely
from Dom0 incurs a risk commonly ignored by research work on VMI: Should
the monitoring process in Dom0 crash for any reason, it would inevitably cause
the crash of DomU once a monitored event is triggered, as the (synchronous)
event handler is no longer available. While the main motivation behind our
work is to address the first two problems, it also provides an elegant solution for
mitigating the latter problem.

For the purposes of this paper, we will assume that we are dealing with a
single CPU core per guest. See Dangl et al. [8] for details on how to handle
additional challenges caused by multi-core guests.

264 A. Abdelraoof et al.

Fig. 3. Context switching when a breakpoint hits

4.1 Setting a Breakpoint

One good demonstration for the sheer amount of context switching involved per
operation is by examining how breakpoints work in VMI as shown in Fig. 2.
Dom0 will first pause our DomU (context switches happen here) then we mod-
ify the memory content of DomU to replace the instruction at the address we
want to break on with an INT3, then we configure an event listener inside the
hypervisor to catch INT3 in DomU (another context switching to Xen and back).
After that, we resume out DomU. So just to configure a DomU breakpoint it was
required to do four context switches, all during which DomU is being suspended.

If we take into consideration that all the operations mentioned above are
hypercalls, that would imply even more context CPU cycles while DomU is
suspended, which would be a huge performance loss.

4.2 Hitting a Breakpoint

Figure. 3 visualizes the process of processing a breakpoint hit.4 When a break-
point hits, Xen interrupts DomU and triggers the appropriate event handler
in Dom0 (two context switches). After the event handler does its arbitrarily
complex introspection analysis, it would next rewrite the original data that was
replaced by INT3, set up another event handler for single-stepping (two context
switches), and resume DomU (2 more context switches). DomU only executes
one instruction before it re-triggers another event for single-stepping that will
be forwarded by Xen to Dom0 (two context switches). Then Dom0 rewrites the
previously removed INT3 and disables the single-stepping event handler (two
context switches). Finally, DomU gets to resume its execution until another
breakpoint hits.

4 While there is a hypercall in Xen to toggle single stepping, Xen also offers the
possibility to piggy-back that operation in the return (“Resume”) from Dom0 to Xen.
Our baseline measurements for LibVMI in Sect. 7 make use of that optimization, but
nevertheless are significantly slower than our proposed optimized method.

Introspect Virtual Machines Like It Is the Linux Kernel! 265

If we are setting breakpoints on a sendto or recvfrom system calls to monitor
suspicious behavior on a server, we will experience severe performance degrading
because any processing on the system call (who issued the system call, or what is
the data stored there) is always done by Dom0. So all accesses to that particular
system call shall be funneled into Dom0. And only after that large amount of
context switches, it would be possible to isolate the system calls of interest.

4.3 Memory Access Tracers as Opposed to Breakpoints

Tracing memory access (tracepoints) using LibVMI has a lot in common with
setting breakpoints. They both share the general outline and the number of
context switches. However, they differ in the nature of work done during each
context switch. Instead of injecting INT3 breakpoints, memory access tracers
manipulate the memory access permissions in the hypervisor’s page table.

LibVMI provides an API for switching the guest-physical-to-machine mem-
ory mapping (altp2m). This mechanism is the basis for memory tracing, as it
allows creating multiple memory mapping configurations for the same guest
physical memory page, with different access permissions. The memory tracer
can use this to create a copy of DomU’s guest physical to machine physical
(p2m) map, restrict memory access on pages to be traced, and instruct Xen to
use the restricted map instead of the original map.

Once a tracepoint is hit, the memory access tracer in the monitoring appli-
cation would restore the original p2m table. After doing a single-step operation
(for which the memory access will be enabled), the tracer would again inject the
modified p2m table with restricted access.

4.4 Summary of Identified Problems

To summarize the observations from this chapter: (1) VMI as used by LibVMI
(and other implementations as well) results in a significant number of context
switches per monitoring action and per observed event; (2) The analysis done
by the VMI monitoring application is done within the synchronous handling of
events, while to monitored DomU is suspended, causing potentially long exe-
cution delays; (3) Essential state management required for handling monitoring
events (such as breakpoints) is contained in the monitoring application (in Dom0
in our figures), causing the failure of a monitored Dom0 in case the monitoring
application fails.

5 Hypervisor Tracers (HVT)

In Sect. 4, we demonstrated that one of the major issues of synchronous VMI is
the large number of context switches between DomU, Xen, and Dom0. The goal
of this section is to present our HVT architecture that minimizes the context
switches as much as possible.

266 A. Abdelraoof et al.

Fig. 4. HVT and asynchronous channel

Completely eliminating all context switching would remove all costs of con-
text switching, but that is not feasible if we want to benefit from the isolation
between the virtual machines and have a monitoring application in a virtual
machine isolated from the introspection target by the hypervisor. So instead, our
ambition is to reduce the context switches to a minimum of (a) a single inter-
action from monitoring application in Dom0 to the hypervisor for configuring
tracing mechanisms, and (b) a single interaction from DomU to the monitoring
application in Dom0 via the hypervisor for each event we want to trace in DomU.

5.1 Hypervisor Tracers Architecture

Our solution to avoid context switches creates a set of coarse-grained hypercalls
for the purpose of tracing. We refer to them as Hypervisor Tracers (HVT). They
achieve the right balance between reducing the number of hypercalls and being
flexible enough for any introspection task by handling selected core parts of
the introspection in the hypervisor itself. Figure 4 shows HVT and the way it
interacts with the rest of Xen and LibVMI.

Figure 5 shows the context switching pattern in HVT. As demonstrated in
Fig. 5a, we have only two context switches in one hypercall, which is the one
needed for Dom0 to express its interest in somehow introspecting a virtual
machine using some of the tracers. Figure 5b shows that when a tracer event
gets triggered, there will be only six context switches that are required to trans-
fer control from DomU to Dom0, do single stepping and transfer control back.

Introspect Virtual Machines Like It Is the Linux Kernel! 267

Fig. 5. Context switching in Hypervisor Tracers

We propose two tracers, each of which can be represented by a hypercall, one
is the general-purpose memory access tracer, and the other is the breakpoint
tracer, both of which follow the same context switching model in Fig. 5. They
are described in detail in the following paragraphs.

5.2 Memory Access Tracer

The goal of the memory access tracer is to trace read/write access to main
memory in the guest physical address space. When Dom0 requests a watchpoint
on a certain memory address, the hypervisor would first pause the appropriate
DomU, then it creates alternative guest physical to machine physical mapping
(altp2m) [14]. Then it sets the memory page equivalent to the memory address
in question to more constraining protection. For example, a read tracer would
prevent read operations on the whole memory page, and a write tracer would
prevent all write operations on that page. Finally, the hypervisor resumes DomU.

And when memory access happens, the Memory Management Unit (MMU)
triggers a page fault that is handled by the hypervisor. The hypervisor fault
handler switches context to Dom0. After Dom0 is done, the hypervisor will
proceed with flipping the alt2pm protection to be less constrained, single step,
and then re-flip the alt2pm restriction to be more constrained.

5.3 Guest Physical Breakpoint

This tracer is very similar to LibVMI ’s original breakpoint technique, except
that it follows the HVT rule of six context switches.

For setting a breakpoint Dom0 would send a request to Xen via a hypercall.
Xen would then pause DomU and overwrite the data in our guest physical
address with an INT3, sets the appropriate interrupt event handler, and resumes
the execution of DomU all in one hypercall.

268 A. Abdelraoof et al.

Then when the breakpoint in question hits, the hypervisor would take control
and switch context to Dom0. After Dom0 is done, the hypervisor will proceed
with resetting the original data that was overwritten with INT3, single step, and
then inject INT3 again.

6 Using Ring Buffers for Asynchronous Tracing

In Sect. 4 we analyzed LibVMI thoroughly. We demonstrated that two major
performance bottlenecks, namely that a) the simplest of introspection techniques
requires a large number of context switching, and b) introspection may take an
arbitrarily long time. In Sect. 5, we addressed the former by redesigning the basic
VMI primitives. In this section, we will address the latter issue.

In this section, our goal is to maximize DomU performance independent of
the complexity of Dom0 introspection. This way, we can implement arbitrarily
complex introspection without degrading the performance. In order to guaran-
tee independence, we designed an asynchronous data channel between Xen and
Dom0. The asynchronous channel is a circular queue (we might also refer to as
ring buffer) data structure that is shared between Xen and Dom0. That queue
has a few basic properties:

1. It has a single producer (Xen) and a single consumer (Dom0).
2. It has a fixed-size buffer that is initialized at creation time.
3. The enqueue operation, which is performed by the hypervisor, is lock-free

and wait-free. It will not be delayed for any reason.
4. The dequeue operation, which is performed Dom0, is lock-free as well. How-

ever, it is not wait-free and it might be busy-looping waiting for the hypervisor
to finish writing the current entry.

5. Both enqueue/dequeue are guaranteed to store/retrieve non-corrupted data.
6. The dequeue operation guarantees event order but does not support reliability

(events might be dropped). If two subsequent calls to dequeue returned two
events Ei and Ej respectively, it is guaranteed that either there are no events
enqueued between Ei and Ej , or if there were events enqueued between Ei

and Ej , then they are dropped forever.

Listing 1 shows the most fundamental Item data structure used in our queue,
representing any monitored DomU event. Aside from holding event-specific data,
it holds an event-specific number seq. This sequence number monotonically
labels events per slot in the queue. The sequence number is incremented to
an odd number before an entry is modified, and incremented again to an even
number after modifications have finished. All event slots in the ring buffer are
initialized with seq==0, after adding events to all slots they all will have the
value seq==2, and so on. This implies that each event has seq that is bigger
than or equal to that of events triggered before it. If the sequence number is
odd, the current event slot is in the middle of being overwritten and must no be
read. If seq is even, it would imply that the current event can be read.

Introspect Virtual Machines Like It Is the Linux Kernel! 269

Listing 1. Shared data structure
1: struct Item {
2: uint64 t seq;
3: struct event data data;
4: };

First Dom0 initializes its own ring buffer by calling DInitialize described
in Fig. 3. During this process, it requests the shared memory from Xen via hyper-
calling XInitialize described in Fig. 2. This way both Dom0 ’s and Xen’s ring
buffers are initialized.

As one might notice, both ring buffers share a lot in common. The itms
member is the shared memory created by Xen and accessed by both Xen and
Dom0. In both versions of the ring buffer, count refers to the storage capacity of
the ring buffer. In Xen, idx is the index at which the next event will be written
to. However, in Dom0, idx refers to the index at which an already registered
event can be read.

Dom0 ’s ring buffer has an extra member, namely prev. It is used to store the
seq of previously successfully read event. Although it could have been possible
to calculate it at run-time, we thought it would be more convenient to just store
it.

In Xen, as shown in Listing 2, there is the enqueue operation that would
save triggered events. It simply increments the seq number at the current itm
element to be written. Then it stores the event data and again increments seq.
Since at initialization all seq numbers are set to zero, it is always guaranteed
that after an enqueue, the seq number will always be even while it would be
odd during the enqueue operation.

As opposed to Xen’s enqueue, Dom0 has a dequeue operation that is slightly
more involved as shown in Listing 3. First we would wait until seq at itm number
idx is greater than or equal to prev which is the seq of last read event. Then
we read the event data. But we read the seq before and after reading the event
data, if the seq is an even number and did not change during copying the event
data, we assume that the ring buffer did not overflow and that no race condition
happened. Then we update the prev value as well as the idx.

7 System Evaluation and Benchmarking

In this section, we evaluate the performance of virtual machine tracers as well
as our asynchronous channels. As memory access tracers and breakpoint tracers
are conceptually very similar, we use our implementation of the HVT breakpoint
tracer in this evaluation, in combination with our asynchronous event channel.

In our tests, we use the breakpoint tracer to trace the invocation of selected
system calls in the introspection target (DomU). Breakpoints are placed on
the system call handler function of DomU’s operating system. We measure the
impact on the performance of the system running within DomU. As baseline

270 A. Abdelraoof et al.

Listing 2. Xen’s side of the ring buffer
1: struct XRingBuffer {
2: uint64 t idx;
3: uint64 t count;
4: struct Item *itms; // shared memory data structure
5: };
6: Global struct XRingBuffer xrb
7: procedure XInitialize(uint64 t count)
8: xrb.count ← count
9: xrb.itms ← Allocate count × sizeof(struct Item)

10: Fill xrb.itms with Zeros
11: xrb.idx ← 0
12: return xrb.itms to Dom0
13: procedure enqueue(textbfstruct event data data)
14: xrb.itms[xrb.idx].seq += 1
15: xrb.itms[xrb.idx].data = data
16: xrb.itms[xrb.idx].seq += 1
17: xrb.idx ← (xrb.idx + 1) mod xrb.count

Listing 3. Dom0 ’s side of the ring buffer
1: struct DRingBuffer {
2: uint64 t idx;
3: uint64 t count;
4: uint64 t prev;
5: struct Item *itms; // shared memory data structure, allocated by Xen
6: };
7: Global struct DRingBuffer drb
8: procedure DInitialize(uint64 t count)
9: drb.count ← count

10: drb.itms ← XINITIALIZE(count)
11: drb.idx ← 0
12: drb.prev ← 1

13: procedure try read
14: while drb.itms[drb.idx].seq mod 2 �= 0 do
15: sleep

16: data ← drb.itms[drb.idx].data
17: seq ← drb.itms[drb.idx].seq
18: return (data, seq)

19: procedure dequeue
20: while drb.prev > drb.itms[drb.idx].seq do
21: sleep

22: do
23: old ← drb.itms[drb.idx].seq
24: (data, new) ← try read()
25: while old �= new or old mod 2 �= 0
26: drb.prev = old
27: drb.idx ← (drb.idx + 1) mod drb.count
28: return data

Introspect Virtual Machines Like It Is the Linux Kernel! 271

for our evaluation, we use two measurements: first, a system that does not use
any tracing at all (ideally, we want to be close to that performance), and sec-
ond, a system that uses standard LibVMI API for placing INT3 breakpoints and
single-stepping controlled by the monitoring application.

Our test environment is based on Xen 4.14.0 and an Intel core i7-6700K
CPU running at about 3.9 GHz, with 2 cores and 4 GB RAM for Dom0 and 1
core and 2 GB RAM for DomU. Dom0 is running Debian 10, with Linux Kernel
5.4.68, and DomU is running Ubuntu 20.04.1 LTS unmodified.

We evaluated the system performance in several different use cases: first, we
used the invocation of the getpid system call and a network ping to localhost
as microbenchmarks; second, we used the Unix Benchmark5 for a more detailed
performance evaluation with a well-known standard tool; third, we used three
additional test cases that resemble two mixed CPU/IO intensive use cases (com-
piling the Linux kernel and extracting a .tar.gz archive) and a disk IO-bound
use case (copying a large file).

We ran each of our own benchmark tests 11 times, ignored the first run, and
calculated the average of the remaining 10 runs. We also calculated the standard
deviation to show that the overhead is consistent. The reason we ignored the
first measurement is that because in many cases it might be inaccurate. For
example, in CPU intensive applications it would take some time before the CPU
reaches maximum heat and starts throttling. At that point, it starts throttling
down and the performance degrades. For IO-intensive applications, we wanted
to avoid situations where we have unsynchronized IO buffers, and by ignoring
the first measurement we would guarantee that the IO buffer would be full so
the operating system would probably have to synchronize IO at each run at least
once. For the Unix Benchmark suite, we used the average of five executions of
the complete test suite in its default configuration (which internally runs each
sub-benchmark multiple times).

In all our tests, the asynchronous tracer was in a league of its own when it
comes to speed, consistently faster than both HVT tracing and basic tracing
using standard LibVMI. The HVT tracer was also consistently faster than using
LibVMI in all our tests.

7.1 Microbenchmarks: getpid() and ping localhost

First, we wanted to measure the raw overhead of the various VMI approaches
with a very simple and deterministic test, without requiring the test to have
meaningful computation. We created a simple program that looped 100,000 times
doing a getpid system call and nothing else. To make sure that the real system
call gets called instead of some user space implementation, we wrote the whole
getpid test in assembly.

Our results are shown in Fig. 6a. Although measurements from this test do
not necessarily reflect performance in real-world scenarios (when compared to
the rest of our evaluation), it still provides clear insights on by how far is our

5 https://github.com/kdlucas/byte-unixbench (accessed 2021-05-10).

https://github.com/kdlucas/byte-unixbench

272 A. Abdelraoof et al.

Fig. 6. VMI impact on performance for simple microbenchmarks

architecture superior to that of when introspection uses standard LibVMI. While
our asynchronous tracer still has some overhead compared with the no VMI case
(19 ms vs 410 ms), it is more than 25 times faster than standard LibVMI.

In a second microbenchmark, we wanted to measure the impact on a sim-
ple situation that is more realistic for real-world applications than iteratively
invoking getpid(), while still minimizing measurement noise. As such, we bench-
marked our system by observing ping time to localhost while having a breakpoint
tracer placed on the sendto system call in the DomU guest.

As shown in Fig. 6b, breakpoints and single-stepping (which is the current
implementation in libVMI) had the worst performance. Our HVT tracer yielded
better performance than libVMI. Our asynchronous channel had the best per-
formance out of all other VMI implementations, having an advantage of almost
factor 40 compared to standard LibVMI, and less than factor 2 penalty compared
to no tracing at all (NoVMI).

It is also worth mentioning that the ping test has one of the highest overhead
ratios among all our test suites. That is because out of the two main operations
done by the ping utility, which are sendto and recvfrom, one of them is being
introspected. Other measurements that we discuss later either execute CPU-
intensive tasks in the user application or perform more complex work in the
Linux kernel when executing the system call. In both cases, the relative impact
of system call tracing becomes smaller.

7.2 Unix Benchmark Results

For a more detailed performance evaluation, we used the Unix benchmark suite6

in its default configuration. The suite executes 12 different benchmarks, stress-
testing different parts of the system. Our detailed results (average of 5 runs)
can be found in the Appendix. The numbers indicate operations executed in a

6 https://github.com/kdlucas/byte-unixbench (accessed 2021-05-10).

https://github.com/kdlucas/byte-unixbench

Introspect Virtual Machines Like It Is the Linux Kernel! 273

Fig. 7. Unix benchmark results (performance relative to the NoVMI case)

fixed time interval, i.e., higher values are better. For visualization in Fig. 7, we
normalized all measurements relative to the NoVMI case. Relative performance
is shown on a logarithmic scale.

The first two measurements (Dhrystone and Whetstone) are pure CPU mea-
surements that (except for periodic statistics output during the benchmark run)
do not make use of system calls. As expected, VMI tracing has no noticeable
performance impact.

The Syscall benchmark is very similar to our previous getpid test, with the
main difference being that it uses a mixture of multiple system calls, each with
low computational complexity (dup2, close, getuid, umask): Our async tracer
outperforms standard LibVMI by a factor of 23, while still a factor of 14 slower
than a system without VMI tracing.

The file copy (FCxxxx) benchmarks as well as the pipe throughput (PipeTh)
benchmarks show a performance behavior very similar to the Syscall benchmark.
FCxxxx first writes, then reads data from a file, with several block sizes (xxxx),
with the total file size such that can fully be handled by the operating system’s
buffer cache; PipeTh transfers data between two processes. In all cases, the
benchmark measures basically the performance of read and write system calls;
within those system calls, the actual operation is copying a block of memory

274 A. Abdelraoof et al.

Fig. 8. Benchmarking with real-world applications

between user space and kernel space, which takes only a very short time. A
performance very similar to Syscall is thus no big surprise.

The remaining benchmarks (PipeCS, Excel, Proc, Shell1, Shell2) use more
heavy-weight operations (context switches between processes, process creation,
program execution, etc.). As a result, the relative impact of the tracing overhead
is small compared to the total work done in the benchmark. Our asynchronous
tracer outperforms standard LibVMI by a factor of between 4.2 (for process
creation) to 19.5 (for pipe-based context switching).

7.3 Performance of Real-World Applications

For an additional evaluation of performance in workloads the resemble tasks of
real-world applications, we used three additional use cases: compiling the Linux
kernel, extracting a large compressed file, and copying a huge file.

Compiling the Linux kernel is a mixture of IO intensive operations and CPU
intensive operations. In our case, we used kernel 5.8.13. We compiled the kernel
using make tinyconfig. We set breakpoints on 3 system calls execve, read, and
write. Figure 8a shows that both of our approaches (HVT and async) are superior
to libVMI. Compared to previous microbenchmarks, one can note that having
a use-case for which parts of the workload are not being introspected (CPU
workload of the compiler) did counter the overhead coming from the fact that
we traced three system calls.

The experiments show that in such real-application benchmarks, the actual
overhead of VMI is much smaller than in the previous benchmarks, because only
a fraction of the activities in DomU are affected by the tracing. Nevertheless,
the three system calls selected are system calls frequently invoked when com-
piling the Linux kernel. The results show that the overall overhead is down to
4% compared to the no VMI baseline, a value that should easily acceptable in
most use cases, while the about 100% slowdown caused by the standard LibVMI
approach will be prohibitively expensive in many situations such as continuous
monitoring of production systems.

Introspect Virtual Machines Like It Is the Linux Kernel! 275

Another measurement we did with a CPU/IO mixed workload was extract-
ing a compressed folder, using the Linux kernel 5.8.13 source code as example
(compressed file size 170 MB). This task is composed of CPU intensive workload,
that is decompressing the gzip compressed file, as well as a more IO intensive
workload, which is extracting the tar file. For this test, we set breakpoints on
all system calls that are executed by tar. The results we captured, as shown
in Fig. 8b, was very similar to those we captured while testing the Linux kernel
compilation process.

Finally, we wanted to verify that IO intensive applications would not have
a huge problem with VMI. For that our last test was a pure IO process that is
copying a huge file (1 GB) on disk using cp. As we can see in Fig. 8c, the same
expected pattern emerges, HVT is faster than LibVMI and the asynchronous
channel is the most efficient of them all.

Note that these results are somewhat different from those obtained using the
Unix benchmark suite. For example, the difference between no tracing at all and
tracing with our async tracer in the cp test is as small as 15%. In the FC1024
benchmark, the corresponding difference is a factor of about 10 (i.e., 1000%).
This difference can be explained by the fact that the file size in the cp is large,
forcing the system to use real IO to the disk.

8 Conclusion

In this paper, we have examined sources for significant performance penalties
when using virtual machine introspection. Using the popular LibVMI library in
combination with Xen, two major bottlenecks in VMI operations can be iden-
tified: First, reconfiguring VMI operation as well as handling VMI events incur
a significant amount of context switches. Second, the synchronous processing of
observed events in the introspection target in application-level monitoring code
can cause long delays in the execution of the target VM.

We reduced the impact of context switches by designing our Hypervisor Trac-
ers (HVT). The use of HVT significantly reduces the overhead compared to stan-
dard LibVMI, but still the slowdown caused by VMI might be too large for some
applications.

We further integrate asynchronous channels for event tracing in HVT that
almost completely eliminate the tracing overhead of VMI. There is one limi-
tation to the asynchronous channels: They can be used only for asynchronous
observing what happens in the target domain (based on information included in
the asynchronous events), but not for synchronous reactions to an event, as for
example required for some intrusion prevention mechanisms. But for the vast set
of applications for which that kind of asynchronous monitoring is sufficient, the
VMI overhead is reduced to just a few percent of performance reduction, and
more than an order of magnitude faster than running standard LibVMI .

Acknowledgements. This work has been funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) – 361891819 (ARADIA).

276 A. Abdelraoof et al.

Appendix

See Table 1.

Table 1. Unix benchmark results (average of 5 runs in default configuration, results
scaled by /1000

Benchmark No VMI LibVMI HVT Async

Dhrystone 2 using register variables 54107 54048 54145 52976

Double-precision Whetstone 9.01 8.99 9.00 8.76

System call overhead 1089 3.35 13.4 77.9

File copy 1024 bufsize 2000 maxblocks 1102 4.94 19.0 109.7

File copy 256 bufsize 500 maxblocks 287 1.23 4.81 27.6

File copy 4096 bufsize 8000 maxblocks 2890 19.7 76.7 413

Pipe throughput 1500 4.95 19.8 114

Pipe-based context switching 278 2.46 9.27 48.0

Excel throughput 5.37 0.340 1.10 3.25

Process creation 13.8 2.60 6.09 10.9

Shell scripts (1 concurrent) 11.7 0.785 2.530 7.25

Shell scripts (8 concurrent) 1.54 0.105 0.340 0.960

References

1. Xen Hypercall ABI. http://xenbits.xenproject.org/docs/sphinx-unstable/guest-
guide/x86/hypercall-abi.html#. Accessed 11 June 2020

2. LibVMI: Simplified virtual machine introspection (2020). https://github.com/
libvmi/libvmi/blob/master/README.rst. Accessed 7 June 2020

3. Xen Hypercalls (2020). https://wiki.xenproject.org/wiki/Hypercall. Accessed 7
June 2020

4. Xen Project Software Overview (2020). https://wiki.xen.org/wiki/Xen Overview.
Accessed 7 June 2020

5. XenBus (2020). https://wiki.xen.org/wiki/XenBus. Accessed 7 June 2020
6. XenStore (2020). https://wiki.xen.org/wiki/XenStore. Accessed 7 June 2020
7. Bhatt, M., Ahmed, I., Lin, Z.: Using virtual machine introspection for operating

systems security education. In: Proceedings of the 49th ACM Technical Symposium
on Computer Science Education, pp. 396–401 (2018)

8. Dangl, T., Taubmann, B., Reiser, H.P.: RapidVMI: fast and multi-core aware active
virtual machine introspection. In: Proceedings of the 16th International Conference
on Availability, Reliability and Security (ARES) (2021)

9. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: malware analysis via hard-
ware virtualization extensions. In: Proceedings of the 15th ACM Conference on
Computer and Communications Security (CCS), pp. 51–62 (2008)

10. Harrison, C., Cook, D., McGraw, R., Hamilton Jr., J.A.: Constructing a cloud-
based IDS by merging VMI with FMA. In: IEEE 11th International Conference
on Trust, Security and Privacy in Computing and Communications (TrustCom),
pp. 163–169 (2012)

http://xenbits.xenproject.org/docs/sphinx-unstable/guest-guide/x86/hypercall-abi.html#
http://xenbits.xenproject.org/docs/sphinx-unstable/guest-guide/x86/hypercall-abi.html#
https://github.com/libvmi/libvmi/blob/master/README.rst
https://github.com/libvmi/libvmi/blob/master/README.rst
https://wiki.xenproject.org/wiki/Hypercall
https://wiki.xen.org/wiki/Xen_Overview
https://wiki.xen.org/wiki/XenBus
https://wiki.xen.org/wiki/XenStore

Introspect Virtual Machines Like It Is the Linux Kernel! 277

11. Hsiao, S., Sun, Y.S., Chen, M.C.: Virtual machine introspection based malware
behavior profiling and family grouping. CoRR arXiv:1705.01697 (2017)

12. Jain, B., Baig, M.B., Zhang, D., Porter, D.E., Sion, R.: SoK: introspections on
trust and the semantic gap. In: 2014 IEEE Symposium on Security and Privacy,
pp. 605–620 (2014)

13. Klemperer, P., Jeon, H.Y., Payne, B.D., Hoe, J.C.: High-performance memory
snapshotting for real-time, consistent, hypervisor-based monitors. IEEE Trans.
Dependable Secure Comput. 17, 518–535 (2018)

14. Lengyel, T.K.: Stealthy monitoring with Xen altp2m, April 2016. https://
xenproject.org/2016/04/13/stealthy-monitoring-with-xen-altp2m/. Accessed 11
June 2020

15. Lengyel, T.K., Maresca, S., Payne, B.D., Webster, G.D., Vogl, S., Kiayias, A.:
Scalability, fidelity and stealth in the DRAKVUF dynamic malware analysis sys-
tem. In: Proceedings of the 30th Annual Computer Security Applications Confer-
ence (ACSAC 2014), pp. 386–395. ACM (2014). https://doi.org/10.1145/2664243.
2664252

16. Li, C., Xiang, Y., Shi, J.: A model of dynamic malware analysis based on VMI. In:
Wang, G., Zomaya, A., Perez, G.M., Li, K. (eds.) ICA3PP 2015. LNCS, vol. 9532,
pp. 465–475. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27161-
3 42

17. Mishra, P., Varadharajan, V., Pilli, E., Tupakula, U.: VMGuard: a VMI-based
security architecture for intrusion detection in cloud environment. IEEE Trans.
Cloud Comput. 8, 957–971 (2018)

18. Reginato, L.: Updated analysis of PatchGuard on Microsoft Windows 10 RS4
(2019). https://blog.tetrane.com/downloads/Tetrane PatchGuard Analysis RS4
v1.01.pdf

19. Sentanoe, S., Taubmann, B., Reiser, H.P.: Sarracenia: enhancing the perfor-
mance and stealthiness of SSH honeypots using virtual machine introspection. In:
Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 255–271. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03638-6 16

20. Taubmann, B., Rakotondravony, N., Reiser, H.P.: CloudPhylactor: harnessing
mandatory access control for virtual machine introspection in cloud data centers.
In: The 15th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications (IEEE TrustCom-16) (2016)

21. Taubmann, B., Reiser, H.P.: Towards hypervisor support for enhancing the per-
formance of virtual machine introspection. In: Remke, A., Schiavoni, V. (eds.)
Distributed Applications and Interoperable Systems, pp. 41–54. Springer, Cham
(2020)

22. Windows Vista Security Team: An introduction to kernel patch pro-
tection (2006). https://web.archive.org/web/20061124094344/http://blogs.msdn.
com/windowsvistasecurity/archive/2006/08/11/695993.aspx. Accessed 7 June
2020

23. Zhao, S., Ding, X., Xu, W., Gu, D.: Seeing through the same lens: introspect-
ing guest address space at native speed. In: 26th USENIX Security Sympo-
sium (USENIX Security 17), Vancouver, BC, pp. 799–813. USENIX Associa-
tion,August 2017. https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/zhao

24. Zillner, T.: Memory forensics using virtual machine introspection for cloud com-
puting. Presented at Black Hat USA (2016)

http://arxiv.org/abs/1705.01697
https://xenproject.org/2016/04/13/stealthy-monitoring-with-xen-altp2m/
https://xenproject.org/2016/04/13/stealthy-monitoring-with-xen-altp2m/
https://doi.org/10.1145/2664243.2664252
https://doi.org/10.1145/2664243.2664252
https://doi.org/10.1007/978-3-319-27161-3_42
https://doi.org/10.1007/978-3-319-27161-3_42
https://blog.tetrane.com/downloads/Tetrane_PatchGuard_Analysis_RS4_v1.01.pdf
https://blog.tetrane.com/downloads/Tetrane_PatchGuard_Analysis_RS4_v1.01.pdf
https://doi.org/10.1007/978-3-030-03638-6_16
https://web.archive.org/web/20061124094344/
http://blogs.msdn.com/windowsvistasecurity/archive/2006/08/11/695993.aspx
http://blogs.msdn.com/windowsvistasecurity/archive/2006/08/11/695993.aspx
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/zhao
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/zhao

Calibration Done Right: Noiseless Flush+
Flush Attacks

Guillaume Didier1,3,4(B) and Clémentine Maurice2

1 Direction Générale de l’Armement, Paris, France
2 Univ Lille, CNRS, Inria, Lille, France

clementine.maurice@inria.fr
3 DIENS, École normale supérieure, CNRS, PSL University, Paris, France

4 Univ Rennes, CNRS, IRISA, Rennes, France
guillaume.didier@inria.fr

Abstract. Caches leak information through timing measurements and
side-channel attacks. Several attack primitives exist with different require-
ments and trade-offs. Flush+Flush is a stealthy and fast one that uses the
timing of the clflush instruction depending on whether a line is cached.
We show that the CPU interconnect plays a bigger role than previously
thought in these timings and in Flush+Flush error rate.

In this paper, we show that a naive implementation that does not
account for the topology of the interconnect yields very high error rates,
especially on modern CPUs as the number of cores increases. We therefore
reverse-engineer this topology and revisit the calibration phase of Flush+
Flush for different attacker models to determine the correct threshold for
clflushhits andmisses. We show that ourmethod yields close-to-noiseless
side-channel attacks by attacking the AES T-tables implementation of
OpenSSL, and by building a covert channel. We obtain a maximal capac-
ity of 5.8 Mbit/s with our method, compared to 1.9 Mbit/s with a naive
Flush+Flush implementation on an Intel Core i9-9900 CPU.

1 Introduction

The cache hierarchy is a key component of modern CPUs, and relies on the
principle of making the common case fast [3,13]. Caches have been extensively
studied with respect to side-channel attacks, resulting in several primitives such
as Prime+Probe, Evict+Time [24], Flush+Reload [35], and Flush+Flush [10].
These can be used to build covert channels and side-channel attacks, e.g., on
cryptographic libraries. Flush+Reload is a popular choice due to ease of imple-
mentation, reliability, and reasonable requirements on x86 platforms: for exam-
ple, a variety of transient execution attacks [9,15,17] used it as a covert channel.

These primitives aim to observe memory accesses from other processes,
through cache timings. Flush+Reload resets the state using the x86 64 clflush
instruction, which ensures that the latest value of a cache line is flushed back to
memory, with no copy remaining in the cache hierarchy. It then makes a costly
reload to check if the line is cached. Flush+Flush is a variant that uses the exe-
cution time of the clflush instruction itself to do the check. Flush+Flush is thus
faster and stealthier, as it causes no memory accesses by the attacking process.
c© Springer Nature Switzerland AG 2021
L. Bilge et al. (Eds.): DIMVA 2021, LNCS 12756, pp. 278–298, 2021.
https://doi.org/10.1007/978-3-030-80825-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80825-9_14&domain=pdf
https://doi.org/10.1007/978-3-030-80825-9_14

Calibration Done Right: Noiseless Flush+Flush Attacks 279

Calibration is a critical step of the attack where an attacker chooses a thresh-
old between clflush hits (timing of the clflush instruction when the line is
present in the cache) and clflush misses (timing when the line is absent). A
sub-optimal threshold leads to errors in a covert channel or a side-channel attack.
The main source of Flush+Flush noise comes from the fact that the median exe-
cution time of clflush hits is close to the median value for misses, whereas the
distributions of load execution time for hits and misses are more separated.

Our experiments show that the timing of the clflush instruction actually
suffers from multiple sources of variability, which impairs the threshold and the
subsequent attacks. A careful analysis of these execution timings unmasks a
major culprit: the CPU interconnect. We uncover the various contributions of
the CPU interconnect between the attacker, the cache slice, the victim core, and
the system agent accessing the main memory, and propose a method to find
the topology of recent Intel CPUs. Accounting for this topology, we significantly
reduce this noise, making Flush+Flush a low-noise attack primitive that remains
both fast and stealthy, and, thus, a realistic alternative to Flush+Reload. Our
evaluation shows that a higher number of cores and larger caches distributed in
more slices increases Flush+Flush noise on modern single-socket machines.

We show that our calibration improvements to Flush+Flush improve covert
channel capacity. A naive Flush+Flush implementation has a 20% error rate
while our improved Flush+Flush has a negligible error rate and a bandwidth 3×
higher. The latter’s bandwidth is also 3 to 4% higher than Flush+Reload.

In summary, we thus make the following key contributions1:

1. We present a method to uncover the interconnect topology of Intel CPUs,
and apply it on Coffee Lake CPUs. We explain the variation of the execution
time of clflush caused by topology on single-socket systems (Sect. 5).

2. We measure the resulting error rate depending on the location of the attacker,
victim, and cache slice accessed on single-socket machines, and analyze the
differences with dual-socket machines (Sect. 6).

3. We benchmark the improved covert channel ideal capacity that results, com-
pared with Flush+Reload and a naive implementation of Flush+Flush. We
show how these improvements make Flush+Flush a reliable side-channel
primitive, on par with Flush+Reload (Sect. 7).

2 Background

In this section, we describe some necessary background on CPU caches and
the CPU uncore and interconnect, multi-socket systems, and cache side-channel
attacks. We focus on Intel CPUs in the remainder of this paper.

2.1 CPU Caches

DRAM-based main memory is slow compared to the CPU frequency. Caches are
smaller but faster SRAM-based memories placed in front of the main memory
1 Code: https://github.com/MIAOUS-group/calibration-done-right.

https://github.com/MIAOUS-group/calibration-done-right

280 G. Didier and C. Maurice

to speed up accesses, applying the “make the common case fast” principle [13].
Caches exploit access locality to keep blocks of memory that are likely to be
accessed soon. An access to a block currently in the cache is a cache hit, a fast
access. Otherwise, the request gets served at the next level, until main memory.

Modern Intel CPUs typically have a three-level hierarchy. At the first level,
on each core, the instruction and data memory access paths each hit their own
small caches in 4–5 cycles (L1-D and L1-I). At the second level, each core has
an L2 cache, that serves the L1 misses in 15–20 cycles. At the last level, the chip
has a shared L3, which acts as the last-level cache and answers in 50–100 cycles,
while memory takes over 200 cycles.

Cache Associativity and Eviction Policy. Caches store fixed-size chunks of
contiguous memory called cache lines, typically 64 bytes in size. The 6 least sig-
nificant bits of the address determine the offset within the line, while the remain-
der gives the location of the line. Caches are generally organized, from an abstract
interface point of view, as an array of cache sets. Addresses are assigned to a deter-
ministic set by a hash function that usually corresponds to a few bits of the address,
next to the offset bits. Each set is composed of a fixed number of ways, each con-
taining a cache line, along with metadata identifying the line cached in the way.
This metadata usually comprises the coherence state (see below) and a tag, corre-
sponding to the address bits that are not used for index and offset. The tag, index
and offset can be used together to check whether the requested address is cached
in this way. The number of ways is called associativity. A direct-mapped cache has
an associativity of 1, while a fully-associative cache has a single set with as many
ways as the number of lines in the cache. Most large caches associativity is of the
order of 10, and a large number of sets [13].

In each set, the eviction policy determines what to do when a new line needs
to be inserted in a set full of valid lines. Modern CPUs usually use a variant of
the least recently used policy, that evicts the line whose last use is the furthest
in the past, but the exact policy is undocumented [29].

Cache Coherence. Due to the cache hierarchy, the same memory location may
be simultaneously stored in several different places. It is thus important to ensure
all these locations store the same value. This is achieved using a cache coherence
protocol, which enforces a Single Writer or Multiple Reader invariant. Intel uses
a variation of the MESI cache coherence protocol [14], in which a line can be:

– Invalid (I): The cache does not store a valid value, accesses are misses and
require making a request to the next level.

– Shared (S): The cache holds a clean copy of the correct value, matching the one
in memory, but other caches may also own one. The line can be read with no
further request, but a write requires communicating with the other caches.

– Exclusive (E): The cache holds the correct value, as in the shared case, but it is
additionally the only cache to do so. The line can be modified (and can transi-
tion to the Modified state) without any further request to the hierarchy.

– Modified (M): The cache holds exclusively a modified value. The stale value
in memory must be updated before this dirty line can be evicted from the
cache.

Calibration Done Right: Noiseless Flush+Flush Attacks 281

This protocol guarantees that, for a given cache line, all cores will see the
same sequence of values, but it offers no guarantee about the order in which each
core sees changes to different locations. This ordering is governed by the memory
consistency model. In non-server Intel CPUs, an inclusive L3 cache maintains
cache coherence. It includes a copy of all lines cached in lower-level caches, and
keeps track of the coherency state of each line.

Cache Slicing. The bigger SRAM is, the slower it is to access. Moreover, more
cores mean higher request traffic to the cache hierarchy. To make the last-level
cache scale properly with multiple cores, it is split into several slices, each asso-
ciated with a core. Chips with more cores have proportionally more slices, which
can proportionally serve a greater number of requests.

Physical addresses are mapped to a single slice, using a hash function. The
first sliced caches simply used specific bits of addresses, similar to set indexes.
However, as uncovered by Maurice et al. [20], modern Intel CPUs use a com-
plex function, which uses the XOR of several bits of the physical address to
generate each bit of the output. This was introduced in the Sandy Bridge micro-
architecture, and is still present in client Skylake derivatives such as Coffee Lake.
Examples of such functions are given in Appendix A. On CPUs whose number
of cores is a power of two, the resulting function is linear, otherwise, a non-linear
component is required [36].

clflush Instruction. The x86 ISA includes an instruction to flush a cache line,
clflush. Executing this instruction causes the cache hierarchy to make sure the
memory contains the latest value and evicts the cache line from all levels of
cache. Such an instruction is privileged in many ISAs as its main use is in device
drivers using DMA. However, x86 also allows it in user mode, where it can be
used to manually evict lines from the cache in the unlikely case manual cache
management improves performance. This instruction can thus be used in cache
side-channel attacks. A significant property of clflush is that calling clflush
on one core evicts it from the all of the coherency domain, usually all the cores.

2.2 CPU Uncore and Interconnect

Modern CPUs tend to have several distinct clock domains. Each core can vary
its frequency independently, but there is also a significant part of the system that
is not part of a core. A common clock domain is needed for the interconnection
network in between the cores, the GPU, the memory, and I/O systems. This
part of the core, i.e., everything that is not a specific core, is called the uncore.

Prominent in the uncore is the core interconnect, which is not well docu-
mented by Intel apart from stating it is a bidirectional ring ([14], Section 2.4.5.3).
This leaves room for several interpretations and topologies. The last-level cache
is distributed among the nodes of the interconnect network, with each slice being
associated with a core. While it was usually assumed that each core had exactly
one slice, it no longer the case on some recent Intel systems [30].

Figure 1a is a die shot, annotated by WikiChip [1] of the 8 core Coffee Lake
CPUs, this layout is used to produce among others the Intel Core i9-9900 CPU.

282 G. Didier and C. Maurice

2.3 Multi-socket Systems

A multi-socket system is a system where several multi-core CPUs, each with
its cache system, share a single physical memory space with an interconnect
between the two packages. In multi-socket systems, there is no single last-level
cache ensuring the coherence between the caches of the two cores. It appears that
some of the ECC bits inside the DRAM are used to maintain some coherency
metadata, and requests may need to flow in between the two sockets [14,22].

2.4 Cache Side-Channel Attacks

The cache hierarchy contains a global state that is shared among processes.
The cache impacts timing but not the correctness of code since its memory
permissions are enforced and the value it stores is preserved whether a line is
cached or not. However, the time it takes to access a line leaks information to the
party that performs the measurement. There are two common scenarios. First,
in a covert channel, two processes can cooperate to communicate when they
are monitored on other channels or simply when not allowed to. Second, in a
side-channel attack, an attacker process measures which cache line an unwitting
victim accesses, leaking access pattern information.

There exist two main techniques of cache attacks: Prime+Probe [18,24] and
Flush+Reload [12,35]. In Prime+Probe, the attacker fills a set with her cache
lines, and the victim accesses a line within that set. This causes an eviction of
one of these lines, which the attacker then measures. Prime+Probe has the least
requirements, as the attacker does not need to share memory with her victim,
and does not require any specific instruction to evict cache lines.

However, in many settings, the attacker and victim can share read-only mem-
ory, in which case the attacker can probe a specific shared cache line. The Flush+
Reload attack uses the clflush instruction to flush a line that may or may not
be accessed by the victim, and then times how long it takes to reload it. The
attacker therefore detects whether the victim accessed this line.

Flush+Flush [10] is a variant of Flush+Reload, in which the attacker times
a cache line flush instead of a reload. Indeed, clflush takes a different time
depending on whether the line is cached or not. This is however a very small
variation of time, around 10 cycles, and the measurements have a large standard
deviation, leading to a significant amount of noise. This attack is noisier than
Flush+Reload, but faster and stealthier, as it avoids costly misses, and cannot
be detected using performance counter to monitor suspicious cache misses.

One of the sources of timing variation is the scaling of the CPU frequency,
for which Saxena and Panda [28] have proposed a solution.

3 Motivation

Using clflush as the measurement, such as in Flush+Flush, has the potential
of monitoring several addresses with less interference than Flush+Reload, as

Calibration Done Right: Noiseless Flush+Flush Attacks 283

flushing does not trigger the prefetcher. It is also fast, as a reload operation is
slower than a flush on a miss, which Flush+Reload attacks cause frequently.

However, one point that has been overlooked for this attack is the choice of
the threshold to distinguish between a flush hit and a flush miss. This threshold
is crucial to avoid noise. When looking at the timings for a single address and
on a single run, it appears that there is a good separation between the hits
(slower) and the misses (faster), for a single-socket system. However, from one
run to another, the exact threshold may change, even with a fixed frequency.
The threshold also differs for different addresses.

We hypothesize that the variability is due to the complex topology of sliced
caches, and that accounting for these sources of variability improves significantly
the quality of the channel, especially as the number of cores grows. Our experi-
ments show that ignoring CPU topology can result in very poor error rates, e.g.,
in some cases, a 45% error rate for a covert channel using a naive method for
choosing the threshold. In the remainder of the paper, we show that taking into
account the topology and slices to compute tailored thresholds allows us to build
a side channel with an error rate well under 0.01%. Flush+Flush is therefore,
contrary to what was thought before, not a noisy attack when crafted carefully.

4 Experimental Setup

We run experiments on two single socket systems:

– 4-core machine: a Dell Latitude 7400 machine with an Intel Core i5-8365U
CPU (Whiskey Lake, 4 cores, 8 threads). We have validated that it uses the
cache slicing functions that were previously reverse-engineered from Sandy
Bridge to Skylake [20] (see Appendix A). It runs Fedora 30.

– 8-core machine: a Dell Precision 3630 machine with an Intel Core i9-9900
CPU (Coffee Lake, 8 cores, 16 threads). We have reverse-engineered its last-
level cache hash functions (see Appendix A). It runs Ubuntu 18.04.5 LTS.

We enable hyper-threading, but disable turbo boost on those machines. The
intel pstate driver is set to performance mode on all cores, to stabilize the core
frequencies. Additionally, we write a non-null value in each page before use, this
prevents any optimization and involuntary page sharing involving the zero-page.

5 Topology Modeling

In this section, we investigate the factors that influence the execution time of
clflush to improve the Flush+Flush attack, and propose a mathematical model
with an associated ring topology. The only information we have from the Intel
documentation is that the interconnect is a “bidirectional ring”.

A clflush miss occurs when a cache line is not validly cached, which cor-
responds to a line in the I state. A line that has just been flushed is in the I
state—the cache may have an entry in the I state or no entry at all, but it is

284 G. Didier and C. Maurice

Fig. 1. Core i9-9900 die shot and topology. (Color figure online)

equivalent at the cache coherency protocol level. A clflush hit occurs when the
line is in any valid state. However, in practice in a Flush+Flush attack, the cache
line of interest transitions from an I to an E state when the single victim core
loads the line that has just been flushed. Therefore, the two relevant timings are
clflush of a line in the E state for a hit, and in the I state for a miss. We study
these timings depending on three parameters:

1. A: the attacker core that executes clflush on an address,
2. V : the victim core that accesses the address and caches it in its L1 or L2,
3. S: the core that contains the last-level cache slice that this address maps to.

V doesn’t contribute to miss timing as invalid lines are not cached in any L1/L2.

Measurements and Topology. For each attacker core, Fig. 2a shows the time
it takes to execute a clflush instruction on a cache line in the I state, depending
on the slice. The first finding is that all 8 cores have a distinct timing pattern,
which implies that the ring has no symmetry.2 For each attacker, we notice that
slices with a lower core number than the attacker all have the same timing, while
for slices with a higher number the time increases with the distance between the
attacker and the slice. Such a pattern only makes sense if the nodes are aligned
in a linear fashion, and if the attacker sends a message to the slice, which then
sends a message to the system agent, and then back to the slice and finally to
the attacker. Consequently the miss time is more variable for attackers closer to
the system agent than for one further away.

Figure 2b shows the time it takes to execute a clflush instruction on a
cache line in the E state. Here, we notice an asymmetry in the core, which can
be explained if the recall request is always sent by the slice in the same direction
without knowing in which core the line is cached. We omit the graphs for other
A as they only show a simple linear offset depending on |A − S|.

Given that the topology is described as a ring, given the die shot in Fig. 1a
and our results, we thus propose the topology in Fig. 1b, with 8 cores aligned in
a linear graph with forward and backward links. For a 4-core machine, similar
measurements lead to a similar topology with only cores 0–3.
2 Unlike the figure in Intel documentation [14] and the figure by WikiChip [1].

Calibration Done Right: Noiseless Flush+Flush Attacks 285

Fig. 2. Median timings of clflush on the 8-core machine depending on the victim
core V , the slice S, and the attacker A, along with the fitted model according to our
proposed topology, which corresponds to our measurements.

Mathematical Model. The above timing measurements can be interpreted
within the proposed topology as follows, leading to a mathematical model that
can be fitted and compared with the measurements. Misses result in a request
to be sent on the ring from the core requesting the flush to the slice, which then
sends a message to the memory, and then answers the same path in reverse,
using each time the shortest path. The eviction time in state I, tI(A,S) is thus:

tI(A,S) = C + h × |A − S| + h × |S − M |,

in which:

– C is a constant base timing,
– h is a constant corresponding to the time a round-trip hop on the ring takes,
– M corresponds to the system agent location, which is −1.

Upon receipt of a request to flush a line in the E state, the slice sends a single
message along the ring, in one privileged direction. For core numbered from 0
to ncore

2 included, this is towards the higher numbered cores (and the GPU),

286 G. Didier and C. Maurice

otherwise, it is towards the lower numbered cores. This message is passed around
the ring until the victim core V that has the line cached in its lower level cache
(L1/L2) receives it. If the core is not in the initial direction, the message will
follow the ring back in the other direction until it reaches the victim core. The
victim core then discards the line, which is clean, and sends a reply to the slice,
along the shortest path. The eviction time in state E, tE(A,S, V) is thus:

tE(A, V, S) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C′ + h × |A − S| + h × |R − (V − M)| if S � N
2

and V < S

C′ + h × |A − S| + h × |S − V | if S � N
2

and V � S

C′ + h × |A − S| + h × |S − V | if S > N
2

and V � S

C′ + h × |A − S| + h × |M − V | if S > N
2

and V > S,

where:

– C ′ is a different base time constant,
– h is a constant, roughly how long a round-trip hop on the ring takes,
– N is the number of cores,
– R is the ring diameter in hops, corresponding to how many hops there are

between the system agent and the GPU, and thus, in our case, R = N + 1.

In addition to our measurements, Fig. 2a and Fig. 2b present the fitted model
for the 8-core machine, which appears to explain the behavior consistently.

Summary. We have uncovered that while CPUs appeared to be arranged sym-
metrically in Intel’s bidirectional ring, they are in fact aligned one after the other
in a linear graph, with the system agent at an end and the GPU at the other
end. First, the clflush instruction timing is always influenced by the distance
between the core requesting the flush and the slice where the address lives in the
last-level cache. Second, in the I state the timing will depend on the distance
between the slice and the system agent, whereas in the E state, it will depend on
how long a message sent along the ring will need to reach the core that currently
has the line, and then go back to the slice. These finding are consistent with
those by Paccagnella et al. [25].

6 Improving Error Rate Accounting for Topology

6.1 Attacker Models

We define different attacker models depending on attacker capabilities. We mea-
sure the error rate that can be achieved for each triple consisting of an attacker
core, a victim core, and a slice. We also compute the average over all triples.

The attacker core can be set using the sched set affinity Linux system
call. We therefore assume that the attacker always chooses the core with the
lowest error rate. In some cases, the attacker may also control the victim core,
e.g., if she launches the process. The victim core can always be found using the
/proc/pid file system that gives the core affinity and the last core used.

Calibration Done Right: Noiseless Flush+Flush Attacks 287

The slice can be found using the physical address but this information is
usually unavailable to an unprivileged attacker. However, when the hash function
is linear, it is possible to define an equivalence class of addresses within a page
that belong to the same slice. It is not possible to know which equivalence class
corresponds to which physical slice a priori, but the pair of page and result of
the hash function defines an equivalence class of virtual address with the same
timing impact. We name this equivalence class S̃. Using timing measurements,
each equivalence class can be, a posteriori, attributed to a precise physical slice,
on a per page basis, but we do not use this attribution for our attacks.

If the attacker launches a covert channel, she can pick the addresses used
to communicate, and therefore the optimal equivalence class. In a side-channel
attack, the attacker cannot pick the addresses to monitor, but usually knows
the equivalence class, as she knows both addresses and hash functions. We still
present models where the attacker has no knowledge of the slices to compare the
previous naive models with the ones that yield the best attacks.

– Global Threshold (GT): The simplest model, using a single threshold that
minimizes the average error rate over all triples of attacker, victim, and slice.
This is a topology oblivious attacker, as in the initial Flush+Flush attack [10].

– Best A, Known V : The attacker knows on which core the victim is running
and chooses the attacker core it runs on. The attacker computes a single
threshold for all addresses, therefore ignoring the impact of cache slices.

– Best AV : The attacker can pick the cores both the victim and the attacker
are running on, e.g., in the case of a covert channel or a side-channel attack
in which the attacker launches the victim process. It ignores the impact of
slices.

– Known S̃: The attacker does not know on which core she or her victim runs,
but takes into account the slices, using per-slice thresholds. We use this model
for comparison with the GT model.

– Best A, Known S̃V : The attacker pins her process to the best core, knows
the victim core and takes into account the slices. This is a realistic attacker
model. To be compared with Best A, Known V model.

– Best AV , Known S̃: This is the most powerful side-channel attacker, that
can pin both the attacker and victim.

– Best AV S̃: This is the best covert channel attack model, where the attacker
chooses the cores and an address in a slice that yields the best results.

6.2 Experimental Results on Error Rate

For each (A, V , S̃) we make 220 measurements, 219 hits (in E state), and 219

misses (in I state). We time how long clflush takes to execute in each case using
the rdtsc instruction and build a histogram of the execution time distribution.
From these histograms, we can evaluate the number of hits and misses that
would be correctly or incorrectly classified using a threshold, and determine
thresholds that minimize the average error rate for each model, along with the
corresponding average error rate. We present three such histograms above:

288 G. Didier and C. Maurice

Fig. 3. Histograms for both machines of hit (outlined, red) and miss (filled, blue)
clflush timing distributions for: – a, b: the superposition of all possible (A, V, S̃)
triples (Average in the GT model). – c, d: the best possible (A, V, S̃) choice (Best
AV S̃ model) – e, f: the worst possible (A, V, S̃) choice. (Color figure online)

– In Fig. 3a and 3b the histograms for all attackers, victim, and slices.
– In Fig. 3c and 3b the histograms on the best choice of attacker, victim, and

slice equivalence class in the Best AV S̃ attacker model.
– In Fig. 3e and 3f the histograms on the most unfavorable choice of attacker,

victim, and slice, with severe overlap between the two distributions.

Table 1 shows the results for the 4-core and 8-core machines, indicating for
A, V and S̃ whether they are unknown, known or chosen in each case. For the
8-core machine, we observe a staggering difference between the 25% error rate
of the GT attacker model, to the close to 0% error rate of the Best AV S̃ model
(less than 1 error per 220 measures).

Summary. Choosing the attacker and victim locations significantly improves
the accuracy over the very unreliable global threshold. On top of that, using a
per-slice threshold provides a further boost. However, when the victim cannot

Calibration Done Right: Noiseless Flush+Flush Attacks 289

Table 1. Results for each attacker model on the 4-core and 8-core machines. U. means
Unknown, and K. Known.

4-core machine 8-core machine

Error rate A V S̃ Error rate A V S̃

GT 14.0% U. U. U. 25.1% U. U. U.

Best A, Known V 6.07% 3 K. U. 10.5% 7 K. U.

Best AV 0.176% 7 0 U. 0.115% 7 8 U.

Known S̃ 11.6% U. U. K. 22.8% U. U. K.

Best A, Known S̃V 3.16% 5 K. K. 7.18% 7 K. K.

Best AV , Known S̃ 0.103% 7 0 K. 0.0174% 1 0 K.

Best AV S̃ 4.96 × 10−3% 3 3 3 0 (<2−20) 2 7 14

Fig. 4. Histograms of hit (red) and miss (blue, around 340) clflush timing distribu-
tions, for two different (A, V) pairs on a 2x Intel Xeon E5-2630 v3 machine. (Color
figure online)

be chosen, accounting for slices gives a much greater boost. Lastly, choosing the
best combination of attacker, victim, and slice gives close-to-perfect error rates.

6.3 The Case of Dual-Socket Machines

In dual-socket machines, there is no cache shared between all of the coherency
domain. Coherence is maintained using bus snooping and using ECC bits in the
DRAM to store some coherency information [14,22]. Thus, clflush behavior
differs significantly from single-socket systems, depending on the attacker and
victim location. The slice is not attached to a specific socket as each socket has
its own last-level cache, and thus its contribution here was not studied in detail.

Figure 4a shows that when the victim is in the same socket, we observe that
a hit is faster than a miss. This makes sense if the socket last-level cache has the
coherency info of the accessed line in the E state, whereas it needs to reach out to
the DRAM directory on a miss. However, when the victim is located in the other
socket, a hit is slower than a miss as shown by Fig. 4b. This can probably be
explained because more communication is required in the former case, to cause
the remote core to evict and then update the DRAM directory.

290 G. Didier and C. Maurice

Overall, if the sockets on which the attacker and victim reside are not con-
trolled, a simple threshold model will give poor results. A dual threshold model
may give good quality results, separating same-socket hits, misses and remote-
socket hits, or a detailed model accounting for attacker and victim location.

7 Evaluation

In this section, we evaluate our improved Flush+Flush primitive on a covert
channel and on a side-channel attack on the AES T-tables implementation.

7.1 Building a Better Channel

Protocol. We implement a framework to benchmark covert channel ideal band-
width with different primitives. We use the same protocol for each primitive. The
benchmark uses two threads in the same process, and an optimized synchroniza-
tion primitive. Such an ideal synchronization is unlikely to exist in real-world
implementation but it allows us to measure theoretical limits of the channel itself.
Real-world channels are likely to observe a lower bit-rate, and a corresponding
decrease in true capacity, but with similar error rates.

In practice, we use several shared pages, and within each, we pick an address
in the optimal S̃. We also synchronize on a per page basis indicating which
thread can currently access the page (to transmit or receive), using mutable
shared memory, as the ideal synchronization primitive. Once done with a page,
threads hand the page over to the other threads by flipping the per-page bit.

Implementation. We implement three covert channels with different primi-
tives: 1. a single threshold naive Flush+Flush, with no core pinning (GT model),
2. a single threshold Flush+Reload that doesn’t need to account for topology,
and 3. a topology-aware Flush+Flush using the Best AV S̃ attacker model.

Evaluation. For each channel and machine, we evaluate its raw bit rate C, error
rate p, and true capacity T = C × (1 + p log2 p + (1 − p) log2(1 − p)) [23].

Results. We run our experiments on both machines mentioned in Sect. 4.
Figure 5 shows statistics on the performance of the covert channels depending
on the number of pages used, for each machine: the average error rate, the raw
bit rate, and the true capacity of the resulting channel.

As shown by table Table 2, our carefully calibrated Flush+Flush yields a
threefold increase in bandwidth on both machines compared to the naive Flush+
Flush, and provides a bandwidth higher than Flush+Reload by 3 to 4 %. We
conclude that Flush+Flush is now a compelling alternative to Flush+Reload.

7.2 AES T-Tables Attack Using Flush+Flush

AES T-Tables Implementation. The AES T-tables implementation is well-
known to be vulnerable to side-channel attacks, we, therefore, use it as a bench-
mark to compare our Flush+Flush implementation [2,4,5,7,11,12,24,31]. We

Calibration Done Right: Noiseless Flush+Flush Attacks 291

Fig. 5. Covert channel performance depending on the number of pages used.

compare our improved Flush+Flush implementation with per-slice thresholds to
the naive version of Flush+Flush and to the Flush+Reload attack. We attack
the OpenSSL 1.1.1g library, compiled with no-asm and no-hw to enable T-tables.
For this experiment, prefetchers are enabled on both machines.

T-tables are an implementation of an AES round using lookups in tables. The
lookup in the first round is Tj [pi ⊕ ki], where 0 ≤ i ≤ 16 and j is the remainder
of i divided by 4 (j = i & 0x3). With 4-byte elements and 64-byte cache lines,
there are 16 entries per cache line, and a cache attack can only monitor the
upper 4 bits of pi ⊕ ki. See Osvik et al. [24] for the detailed explanation.

292 G. Didier and C. Maurice

Table 2. Result of covert channel benchmarking

4-core machine 8-core machine

Channel Capacity Bit rate Err. rate Capacity Bit rate Err. rate

Naive F+F 1.01Mbit/s 2.96Mbit/s 20% 1.88Mbit/s 5.89Mbit/s 23%

Opt. F+F 2.99Mbit/s 3.03Mbit/s 0.1% 5.81Mbit/s 5.81Mbit/s 0.005%

F+R 2.88Mbit/s 2.91Mbit/s 0.1% 5.57Mbit/s 5.57Mbit/s 0.0005%

Attacking the T-Tables. We run the attack using all three side channels with
the attacker and the victim in the same thread. For the naive Flush+Flush and
Flush+Reload, the core is chosen randomly. For our improved Flush+Flush, we
chose the best core according to Sect. 6, with the model Best AV , Known S̃.

We run the experiment with two different keys. One of them is the null key,
and the other is a key with k0 = 0x51. In this chosen-plaintext attack, a byte of
the plaintext is set to fixed values (0x00, 0x10, 0x20, by increment of +0x10),
while the remainder is chosen randomly. In this case, one of the cache lines
(depending on the fixed byte value) of the T-table is deterministically accessed,
while the other ones are not always accessed, and have a higher number of misses.
Plotting the misses, such cache lines show distinctive pattern that identifies a
byte of the key. Notably, the null-key pattern is diagonal.

Results. We observe that a naive Flush+Flush attack will show some lines with
all hits or all misses, due to the threshold depending on the slice (see Figs. 6a, 6b,
6c and 6d). Using a per-slice threshold (see Figs. 6e, 6f, 6g and 6h) allows us to
achieve an accuracy similar to Flush+Reload (see Figs. 6i, 6j, 6k and 6l). Again,
accounting for the contribution of slices and CPU interconnect to clflush timing
variations makes an optimized Flush+Flush channel competitive with Flush+
Reload, and improves the reliability over naive Flush+Flush.

8 Related Work

Cache attacks are a rich field, with several primitives extensively studied and new
emerging ones. The AES T-tables implementation is well-known to be vulnerable
to side channels, with various ways of exploiting it. Moreover, reliable covert
channels are one of the key elements for transient microarchitectural attacks.

8.1 Cache Attacks Primitives

The first cache-based attacks were published around 2005. Percival [26] attacked
RSA while Osvik et al. [24] attacked AES and were the first to define the Prime+
Probe primitive. The “high resolution [and] low noise” Flush+Reload primitive
was defined by Yarom et al. [35], which was then automated by Gruss et al.
[11] with Cache Template Attacks. Gruss et al. [10] then introduced the stealthy
Flush+Flush primitive, a variant of Flush+Reload.

Calibration Done Right: Noiseless Flush+Flush Attacks 293

Fig. 6. Results of the T-table attack using a Naive Flush+Flush, Optimized Flush+
Flush and Flush+Reload side channels. Each column represents an address and each
row corresponds to a different value of the first byte of the chosen plaintext, with the
remaining bytes filled randomly. The color scale cuts off lines with too many misses,
T-tables that are deterministically accessed have very few misses and reveal key bits.

Cache attacks on cloud computing and virtualized environments [27,32,33],
were shown to be a practical threat [18,19]. Maurice et al. [21] also studied
protocols that could obtain a reliable channel on top of various primitives.

In recent years, various other primitives have been developed to adapt to evo-
lutions in modern CPUs. Yan et al. [34] reverse-engineered non-inclusive caches
directories to mount an attack on CPUs with non-inclusive caches, while Saxena

294 G. Didier and C. Maurice

et al. [28] tackled dynamic frequency scaling, and pointed out a first difference
between same core and different core attackers. Briongos et al. [8] uncovered the
replacement policy of some Intel CPUs and built an attack that avoids causing
misses to the victim, whereas Flush+Flush avoids causing for the attacker.

Since 2018, transient microarchitectural attacks, such as Meltdown [17], Spec-
tre [15] and Fallout [9] make extensive use of reliable cache-based covert channels.

In concurrent work, Paccagnella et al. [25] have built a contention-based
channel on the ring interconnect, reversing in detail the protocol for memory
loads and the finer structure of the interconnect.

8.2 Attacking AES T-Tables

Koeune and Quisquater [16] uncovered an implementation issue in AES that
caused a timing attack. Bernstein [6] also developed a timing-based attack and
uncovered various sources of variability including caches. Osvik et al. [24] then
published the first attack based on monitoring the T-tables accesses. Many
related publications [2,4,5,7,11,12,31] now use the AES T-tables as a bench-
mark.

9 Future Work

We have explored the timing of clflush for two coherence states, but using our
framework, it should be possible to set-up lines in other coherence states, such
as shared (S) and modified (M), that do not impact side-channel research, but
can help to better understand CPU memory hierarchy and performance.

The impact of frequency on timing channels, especially those relying on small
differences is significant. Most attacks are described at a steady frequency, but in
a real setting, frequency scaling can severely hamper them. A model instruction
execution time depending on the frequency could mitigate this variability.

Intel large server CPUs starting with Skylake Scalable Processors (SP) no
longer use inclusive caches. However the ISA still requires that clflush flushes
a cache line from all the coherency domain. It should thus be possible to use the
clflush instruction to attack such systems, an approach that [34] has not cov-
ered. These systems also use a different topology that warrants further inquiry.

clflush also behaves differently on multi-socket systems, as shown in
Sect. 6.3, in a way that is not always tractable with a simple global thresh-
old model. Further work could evaluate the benefits of dual-threshold versus per
A, V, S̃ threshold models, and the performance of channels built in this way.

Calibration Done Right: Noiseless Flush+Flush Attacks 295

10 Conclusion

The interconnect topology of Intel CPU plays a larger role than was previously
known in cache attacks, and in particular Flush+Flush. A naive Flush+Flush
implementation that does not account for the topology yields poor error rates,
especially as the number of cores increases. We reverse-engineer this topology
and study its timing impact on the clflush instruction. Using these insights, we
significantly enhance the Flush+Flush primitive by accounting for the topology
during the calibration step. Consequently, we recommend taking into account
these findings into the calibration step, measuring timings for all possible com-
binations of attacker, victim, and home slice location, and then determining the
best thresholds depending on the attacker model. Our results therefore demon-
strate that the Flush+Flush primitive is as reliable as Flush+Reload, with the
further advantages in stealth and being less affected by prefetcher noise.

Acknowledgements. This work has been partly funded by the French Direction
Générale de l’Armement, and by the ANR-19-CE39-0007 MIAOUS. Some experiments
presented in this paper were carried out using the Grid’5000 test-bed, supported by a
scientific interest group hosted by Inria and including CNRS, RENATER and several
Universities as well as other organizations (see https://www.grid5000.fr).

A Cache slicing functions uncovered

Our research relies on having prior knowledge of the cache slicing functions.
We have updated the code base used by Maurice et al. [20] to support newer
architectures and used it to uncover the slicing functions of the i9-9900 (Coffee
Lake R, 8 cores) and the older i7-4980HQ (Crystal Well, 4 core Haswell with
an eDRAM L4 cache), which differ from the previously known functions (see
Table 3) that applied to most CPUs from Sandy Bridge to Broadwell. The CPU
in our 4-core machine also uses those well known functions. The most significant
bits of the functions uncovered are limited by the available memory.

This method uses performance counters located in a per physical core struc-
ture called CBox. The uncovered functions map addresses onto each CBox. How-
ever, it is suspected that starting with Skylake there are two slices within the
same CBox [30], which we cannot detect with this method.

https://www.grid5000.fr

296 G. Didier and C. Maurice

Table 3. Functions from [20] for the 2-, 4- and 8-core Xeon and Core CPU and new
functions for the Intel Core i7-4980HQ and i9-9900.

Address Bit

3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0

7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

Sandy o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Bridge o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
& later [20] o2 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
(New) o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
i7-4980HQ o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
(New) o0 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

o1 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
i9-9900 o2 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

References

1. Coffee Lake - Microarchitectures - Intel - WikiChip (2020). https://en.wikichip.
org/w/index.php?title=intel/microarchitectures/coffee lake&oldid=97412#Octa-
Core. Last edited 3 July 2020

2. Aciiçmez, O., Koç, Ç.K.: Trace-driven cache attacks on AES (short paper). In:
Information and Communications Security, ICICS (2006)

3. Amdahl, G.M.: Validity of the single processor approach to achieving large scale
computing capabilities. In: Proceedings of the 18–20 April 1967, Spring Joint Com-
puter Conference, p. 483–485. AFIPS 1967 (Spring). ACM (1967)

4. Apecechea, G.I., Inci, M.S., Eisenbarth, T., Sunar, B.: Fine grain cross-VM attacks
on Xen and VMware are possible! IACR Cryptol. ePrint Arch. 2014, 248 (2014).
http://eprint.iacr.org/2014/248

5. Irazoqui, G., Inci, M.S., Eisenbarth, T., Sunar, B.: Wait a minute! A fast, cross-
VM attack on AES. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID 2014.
LNCS, vol. 8688, pp. 299–319. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11379-1 15

6. Bernstein, D.J.: Cache-timing attacks on AES (2005)
7. Bogdanov, A., Eisenbarth, T., Paar, C., Wienecke, M.: Differential cache-collision

timing attacks on AES with applications to embedded CPUs. In: Pieprzyk, J. (ed.)
CT-RSA 2010. LNCS, vol. 5985, pp. 235–251. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11925-5 17

8. Briongos, S., Malagón, P., Moya, J.M., Eisenbarth, T.: RELOAD+REFRESH:
abusing cache replacement policies to perform stealthy cache attacks. In: USENIX
Security Symposium (2020)

9. Canella, C., et al.: Fallout: leaking data on meltdown-resistant CPUs. In: CCS
(2019)

10. Gruss, D., Maurice, C., Wagner, K., Mangard, S.: Flush+flush: a fast and stealthy
cache attack. In: DIMVA (2016)

11. Gruss, D., Spreitzer, R., Mangard, S.: Cache template attacks: automating attacks
on inclusive last-level caches. In: USENIX Security Symposium (2015)

12. Gullasch, D., Bangerter, E., Krenn, S.: Cache games - bringing access-based cache
attacks on AES to practice. In: S&P (2011)

https://en.wikichip.org/w/index.php?title=intel/microarchitectures/coffee_lake&oldid=97412#Octa-Core
https://en.wikichip.org/w/index.php?title=intel/microarchitectures/coffee_lake&oldid=97412#Octa-Core
https://en.wikichip.org/w/index.php?title=intel/microarchitectures/coffee_lake&oldid=97412#Octa-Core
http://eprint.iacr.org/2014/248
https://doi.org/10.1007/978-3-319-11379-1_15
https://doi.org/10.1007/978-3-319-11379-1_15
https://doi.org/10.1007/978-3-642-11925-5_17
https://doi.org/10.1007/978-3-642-11925-5_17

Calibration Done Right: Noiseless Flush+Flush Attacks 297

13. Hennessy, J.L., Patterson, D.A.: Computer Architecture - A Quantitative App-
roach, 6th edn. Morgan Kaufmann (2019)

14. Intel Corporation: Intel 64 and IA-32 Architectures Optimization Reference
Manual (2018). https://software.intel.com/sites/default/files/managed/9e/bc/64-
ia-32-architectures-optimization-manual.pdf

15. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. In: S&P (2019)
16. Koeune, F., Koeune, F., Quisquater, J.J., Jacques Quisquater, J.: A timing attack

against rijndael. Technical report (1999)
17. Lipp, M., et al.: Meltdown: reading kernel memory from user space. In: USENIX

Security (2018)
18. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel

attacks are practical. In: S&P (2015)
19. Maurice, C., Neumann, C., Heen, O., Francillon, A.: C5: cross-cores cache covert

channel. In: Almgren, M., Gulisano, V., Maggi, F. (eds.) DIMVA 2015. LNCS,
vol. 9148, pp. 46–64. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
20550-2 3

20. Maurice, C., Le Scouarnec, N., Neumann, C., Heen, O., Francillon, A.: Reverse
engineering intel last-level cache complex addressing using performance counters.
In: Bos, H., Monrose, F., Blanc, G. (eds.) RAID 2015. LNCS, vol. 9404, pp. 48–65.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26362-5 3

21. Maurice, C., et al.: Hello from the other side: SSH over robust cache covert channels
in the cloud. In: NDSS (2017)

22. Molka, D., Hackenberg, D., Schöne, R., Nagel, W.E.: Cache coherence protocol and
memory performance of the intel Haswell-EP architecture. In: 44th International
Conference on Parallel Processing, ICPP (2015)

23. Okhravi, H., Bak, S., King, S.T.: Design, implementation and evaluation of
covert channel attacks. In: 2010 IEEE International Conference on Technologies
for Homeland Security (HST), pp. 481–487 (2010). https://doi.org/10.1109/THS.
2010.5654967

24. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006). https://doi.org/10.1007/11605805 1

25. Paccagnella, R., Luo, L., Fletcher, C.W.: Lord of the ring(s): side channel attacks
on the CPU on-chip ring interconnect are practical. In: S&P (2021)

26. Percival, C.: Cache missing for fun and profit. In: Proceedings of BSDCan 2005
(2005)

27. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: CCS (2009)

28. Saxena, A., Panda, B.: DABANGG: time for fearless flush based cache attacks.
IACR Cryptology ePrint Archive (2020)

29. Vila, P., Ganty, P., Guarnieri, M., Köpf, B.: CacheQuery: learning replacement
policies from hardware caches. In: PLDI (2020)

30. Vila, P., Köpf, B., Morales, J.F.: Theory and practice of finding eviction sets. In:
S&P (2019)

31. Weiß, M., Heinz, B., Stumpf, F.: A cache timing attack on AES in virtualization
environments. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 314–328.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3 23

32. Wu, Z., Xu, Z., Wang, H.: Whispers in the hyper-space: high-bandwidth and reli-
able covert channel attacks inside the cloud. IEEE/ACM Trans. Netw. 23(2), 603–
615 (2015)

https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://doi.org/10.1007/978-3-319-20550-2_3
https://doi.org/10.1007/978-3-319-20550-2_3
https://doi.org/10.1007/978-3-319-26362-5_3
https://doi.org/10.1109/THS.2010.5654967
https://doi.org/10.1109/THS.2010.5654967
https://doi.org/10.1007/11605805_1
https://doi.org/10.1007/978-3-642-32946-3_23

298 G. Didier and C. Maurice

33. Xu, Y., Bailey, M., Jahanian, F., Joshi, K.R., Hiltunen, M.A., Schlichting, R.D.:
An exploration of L2 cache covert channels in virtualized environments. In: Cloud
Computing Security Workshop, CCSW, pp. 29–40. ACM (2011)

34. Yan, M., Sprabery, R., Gopireddy, B., Fletcher, C.W., Campbell, R.H., Torrellas,
J.: Attack directories, not caches: side channel attacks in a non-inclusive world. In:
S&P (2019)

35. Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high resolution, low noise, L3 cache
side-channel attack. In: USENIX Security Symposium (2014)

36. Yarom, Y., Ge, Q., Liu, F., Lee, R.B., Heiser, G.: Mapping the intel last-level
cache. IACR Cryptology ePrint Archive (2015)

Zero Footprint Opaque Predicates:
Synthesizing Opaque Predicates from

Naturally Occurring Invariants

Yu-Jye Tung(B) and Ian G. Harris

Department of Computer Science, University of California, Irvine, USA
yujyet@uci.edu, harris@ics.uci.edu

Abstract. A popular control-flow obfuscation approach used to protect
software is inserting opaque predicates. However, recent research has
questioned the usefulness of opaque predicates with the realization that
simple heuristic attacks can effectively detect them. In this paper, we
introduce a novel approach to construct opaque predicates that prevents
both heuristic attacks and automated attacks by having opaque predi-
cates syntactically and semantically resemble real predicates.

Our approach uses abstract interpretation to infer variables’ value
sets. From each value set, we synthesize an opaque predicate that 1)
evaluates all items in its value set to the same truth value and 2) shares
real predicates’ common syntactic features.

Our opaque predicates syntactically resemble real predicates because
they share real predicates’ common syntactic features and their invari-
ants are naturally occurring as they are inferred from the program’s
semantics. Previous approaches to constructing opaque predicates are
susceptible to heuristic attacks because they use synthetic invariants that
can inadvertently introduce unnatural code.

Our opaque predicates semantically resemble real predicates because
the naturally occurring invariants they use are based on value sets. Like
real predicates’ variables, our opaque predicates’ variables can also take
on different values during runtime. From our evaluation, we show promis-
ing results that our opaque predicates can withstand automated attacks.
Current state-of-the-art deobfuscation, dynamic symbolic execution, can
only detect 41% of our opaque predicates.

Keywords: Opaque predicates · Obfuscation · Software protection

1 Introduction

The capability to obfuscate an executable binary with opaque predicates is
prevalent, readily available in many software protection tools [9,11,12,20,24].
An opaque predicate is a disguised conditional branch instruction that uses an
invariant to always evaluate to the same truth value at runtime in order to intro-
duce a dead branch (i.e., non-executable branch). The dead branch obfuscates
control-flow by pointing to non-executable code. Since an opaque predicate only
c© Springer Nature Switzerland AG 2021
L. Bilge et al. (Eds.): DIMVA 2021, LNCS 12756, pp. 299–318, 2021.
https://doi.org/10.1007/978-3-030-80825-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80825-9_15&domain=pdf
https://doi.org/10.1007/978-3-030-80825-9_15

300 Y.-J. Tung and I. G. Harris

needs an invariant to achieve the conditional branch disguise, it can be con-
structed in a multitude of ways. As a result, Collberg et al. [33] developed a list
of criteria to evaluate the quality of an opaque predicate: potency (obfusca-
tion’s strength w.r.t. manual analysis), resilience (obfuscation’s strength w.r.t.
automated analysis), stealth (obfuscation’s strength w.r.t. detection), and cost
(obfuscation’s incurred overhead on execution speed).

1.1 Problem

Recent research [32,42] has questioned the usefulness of opaque predicates with
the realization that simple heuristic attacks can effectively detect them. In other
words, opaque predicates constructed using existing approaches cannot achieve
high potency. For example, Sheridan et al. [32] dismiss the use of opaque predi-
cates because they are able to construct highly resilient opaque predicates based
on 3SAT instances that are NP-complete in the average case to detect, a sig-
nificant improvement over aliased-based opaque predicates [33] which are only
NP-hard in the worst case to detect [19]. However, regardless of their resilience,
the opaque predicates they constructed can still be easily detected by heuristic
attacks due to low potency [32].

1.2 Insight

Heuristic attacks are effective because, for opaque predicates, detection and
deobfuscation are tightly coupled. Even though successful heuristic attacks do
not entail deobfuscation, an opaque predicate is simple to deobfuscate once
it is detected—the deobfuscation process is simply removing the dead branch
from the control-flow, which subsequently removes the obfuscation (i.e., non-
executable code that the dead branch points to).

To withstand removal, an opaque predicate must be stealthy as preventing
detection is of the utmost importance. Of the criteria that make up the quality
of an opaque predicate, stealth should be combined with potency and resilience
since it is tightly coupled to both: potency (obfuscation’s stealth w.r.t. manual
analysis) and resilience (obfuscation’s stealth w.r.t. automatic analysis). From
hereon forward, any mention of either potency or resilience is w.r.t. stealth.

High potency prevents detection by manual analysis. To achieve high potency,
we study the work by Votipka et al. [36], who perform observational studies on
professional reverse engineers in order to understand the manual analysis pro-
cess. Votipka et al. found that during earlier phases of manual analysis a reverse
engineer commonly scans through the code—instead of attempting to under-
stand each individual instruction—to identify beacons, or features in code that
expose a program’s functionality. A heuristic attack performs detection by pat-
tern matching against beacons indicating the opaque predicates. To achieve high
potency and prevent heuristic attacks, opaque predicates need to syntactically
resemble real predicates so they do not end up as easily identifiable beacons. Syn-
tactical resemblance to real predicates also allows opaque predicates to remain

Zero Footprint Opaque Predicates 301

potent in clearly obfuscated code (i.e., layered with various obfuscation tech-
niques) if the opaque predicates are applied prior to any other obfuscation tech-
niques.

High resilience prevents detection by automated analysis. To achieve high
resilience, we study prior research on automated opaque predicates detection.
We found that the current state-of-the-art automated analysis approach is
dynamic symbolic execution [5,27]. Dynamic symbolic execution detects opaque
predicates by proving the existence of the invariant property. To achieve high
resilience, opaque predicates need to semantically resemble real predicates such
that the invariant property is nontrivial to identify.

1.3 Solution

In this paper, we introduce a novel approach to construct high-quality opaque
predicates that are potent, resilient, and low cost. Our opaque predicates’ invari-
ants are naturally occurring as they are based on variables’ value sets buried
within the program’s semantics. A value set for a variable contains all possible
values that variable can be assigned to at a specific line of code. We use abstract
interpretation [14] to infer correct value sets (i.e., zero false negative but possibly
containing false positives). Based on correct value sets, our invariants have the
following property: values that can be assigned to an opaque predicate’ variable
must exist in the variable’s corresponding value set. From each value set, we
synthesize an opaque predicate that 1) evaluates all values in its value set to
the same truth value and 2) shares real predicates’ common syntactic features.
Because the value set is correct in that it does not contain false negatives, even
if it contains false positives, the synthesized output will be an opaque predicate
as it evaluates all actual possible values to the same truth value.

Our opaque predicates syntactically resemble real predicates and therefore
ensure high potency because their invariants are naturally occurring—which
avoid inadvertently introducing unnatural code—and they share real predicates’
common syntactic features. In Sect. 2, we empirically identify real predicates’
common syntactic features from a set of real world programs. Section 7 explains
how we synthesize opaque predicates that share the common syntactic features
we identified in Sect. 2.

Our opaque predicates semantically resemble real predicates and therefore
ensure high resilience because the naturally occurring invariants they use are
based on value sets. Behaviorally, a real predicate’s variable can take on dif-
ferent values during runtime. With our opaque predicates’ invariants based on
value sets, our opaque predicates’ invariant property becomes harder to identify
since their variables also can take on different values during runtime like real
predicates’ variables. Section 6.1 explains why value sets we infer using abstract
interpretation at the source-level (obfuscation-time) will likely not be inferred
at the binary-level (analysis-time). Section 8 empirically justifies our claim for
resiliency.

302 Y.-J. Tung and I. G. Harris

Lastly, our opaque predicates are low cost since their invariants are natu-
rally occurring—so they introduce zero additional execution overheads—unlike
synthetic invariants that introduce additional code to execute.

The main limitation of our approach is scalability. We rely on Frama-C’s
implementation of abstract interpretation [22] to infer value sets. Frama-C along
with other static analysis tools in general will have difficulty performing whole-
program analysis on a large codebase. This is discussed further in Sect. 9.1.

1.4 Contributions

The followings are our key contributions:

– We present a novel approach to construct high-quality opaque predicates that
are potent w.r.t. stealth, resilient w.r.t. stealth, and low cost. By achieving
potency, we are also able to prevent heuristic attacks that existing opaque
predicates are vulnerable to.

– We show that our approach to construct high-quality opaque predicates is
practical by providing a corresponding automated tool1 to insert our opaque
predicates in C source code.

2 Identifying Features of Real Predicates

To prevent heuristic attacks, we synthesize opaque predicates that share real
predicates’ common syntactic features. The common syntactic features that con-
stitute our synthesis requirement are empirically identified from a set of real
world programs: all 109 programs in Coreutils2 (101254 predicates), SQLite3
database3 (27339 predicates), Nginx web server4 (12660 predicates), and Bluefish
text editor5 (5942 predicates). Although Coreutils are made up of 109 programs,
the majority of them share part of the same codebase and hence can lead to bias
[2]. This is why we also evaluate other real-world programs. Additionally, since
the evaluation is based on a finite set of real-world programs, the features of real
predicates identified in this evaluation might not generalize to all programs. We
discuss this in Sect. 9.2 and suggest a possible remedy to further investigate in
the future.

Figure 1 shows the result of our analysis to identify the features of real pred-
icates. The analysis is performed automatically using BinaryNinja’s APIs [35]
on our set of real world programs’ corresponding executable binaries instead of
their respective source code because we want our analysis to reflect how reverse
engineers perceive predicates. Since Votipka et al. [36] found that reverse engi-
neers commonly scan the code prior to performing in-depth analysis, features of

1 https://github.com/yellowbyte/zero-footprint-opaque-predicates.
2 https://ftp.gnu.org/gnu/coreutils/coreutils-8.32.tar.gz.
3 https://www.sqlite.org/2020/sqlite-amalgamation-3330000.zip.
4 https://nginx.org/download/nginx-1.18.0.tar.gz.
5 https://www.bennewitz.com/bluefish/stable/source/bluefish-2.2.11.tar.gz.

https://github.com/yellowbyte/zero-footprint-opaque-predicates
https://ftp.gnu.org/gnu/coreutils/coreutils-8.32.tar.gz
https://www.sqlite.org/2020/sqlite-amalgamation-3330000.zip
https://nginx.org/download/nginx-1.18.0.tar.gz
https://www.bennewitz.com/bluefish/stable/source/bluefish-2.2.11.tar.gz

Zero Footprint Opaque Predicates 303

Fig. 1. Features of real predicates

code in close proximity to the invocation of the conditional branch will represent
the features of real predicates as perceived by reverse engineers. As a result, we
only perform analysis on basic blocks that end with a conditional branch.

Overall, our analysis at the basic block level shows that real predicates have
the following common syntactic features:

F1. Zero or few logical and arithmetic operations. 80.25%
(118120/147195) of our benchmark’s total predicates contains zero logical
and arithmetic operation (Fig. 1a), with the lowest percentage by Coreutils
at 78.83% (79820/101254) and the highest percentage by Bluefish at 86.89%
(5163/5942). From predicates with zero to one operation, the percentage of
our benchmark’s total predicates drops to 14.27% (21003/147195). The trend
captured by Fig. 1a is that percentage of predicates decreases as the number
of operations increases.

304 Y.-J. Tung and I. G. Harris

F2. Comparison with a constant of the value 0, −1, 1, or 2. 82.51%
(121458/147195) of our benchmark’s total predicates compared with a con-
stant (Fig. 1b). Across our benchmark, each program has at least 80% of their
predicates compared with a constant, with the highest percentage by Blue-
fish at 90.44% (5374/5942). Furthermore, when a predicate compares with a
constant, the top four constants (which make up 79.08% of predicates with
constant comparison (96049/121458)) are 0, −1, 1, and 2 (Fig. 1c).

3 Motivating Example

1 #include <stdio.h>

2

3 int fib(int n){

4 int a=0, b=1, c, i;

5

6 if (n==0) return a;

7

8 for (i=2; i<=n; i++) {

9 c = a+b;

10 a = b;

11 b = c;

12 }

13

14 return b;

15 }

16

17 int main (){

18 printf("%d", fib (3));

19 return 0;

20 }

Listing 1.1. C program to calculate Fibonacci Sequence

To demonstrate how we construct opaque predicates using naturally occurring
invariants, we explain the process using an implementation of the Fibonacci
Sequence (Listing 1.1).

The naturally occurring invariants we use are based on variables’ value sets.
A variable can have different value set at different lines of code. For example,
variable c at line 9, or more precisely after the execution of code at line 9 but
prior to the execution of code at line 10, has a value set of {1,2}. However, at
line 13, or after the execution of the for loop, variable c has a value set of {2}.
An opaque predicate that shares real predicate’s common syntactic features (F1
and F2) for variable c’s value set at line 9 is c<=0. The opaque predicate c<=0
satisfies the constraint that items in c’s value set at line 9 are equivalent when
evaluated since both 1 and 2 will evaluate to Boolean false. The corresponding
opaque predicate in the compiled x86 code as perceived by reverse engineers is
shown in Fig. 2.

Figure 2a is the disassembly of Listing 1.1’s for loop body, whereas Fig. 2b is
the disassembly of the same for loop body but with the opaque predicate c<=0

Zero Footprint Opaque Predicates 305

Fig. 2. Listing 1.1’s for loop body with and without the opaque predicate

inserted. As shown in the disassembly (Fig. 2b), by satisfying F1 and F2 our
opaque predicate consists of just a CMP instruction to set the flag for conditional
branch and the conditional branch instruction JG. Note that in Fig. 2b the com-
piler compiles the opaque predicate c<=0 to its inverse (c>0) so the Boolean true
branch will point to the rest of the for loop body. The obfuscation is performed
by the non-executable code that follows the Boolean false branch.

4 Threat Model

In our work, we provide defenses against both manual and automated attacks.
The assumption we make in our threat model is that when an attacker analyzes
the code, the attacker will only have access to the binary executable. In other
words, we assume the original source code is not leaked. Our opaque predicates’
resilience can be compromised if this assumption is not held because our app-
roach to infer value sets takes advantage of abstract interpretation performing
better analysis at the source-level (obfuscation time) than at the binary-level
(analysis time) to achieve high resilience. Section 6.1 explains why value sets we
inferred at the source-level (obfuscation time) will likely not be inferred at the
binary-level (analysis time). In Sect. 8, we also empirically justify our claim for
resilience under the condition that the original source code is not leaked.

There have been research on generic deobfuscation based on execution traces
[7,41]. Those approaches can successfully deobfuscate our opaque predicates, or
any other opaque predicates, since opaque predicates’ obfuscation will never be
part of the execution traces. However, the resulting deobfuscated program can
be unreliable. There is no guarantee that the execution traces will represent

306 Y.-J. Tung and I. G. Harris

all behaviors of the obfuscated program because the execution driver used to
produce the execution traces may not exercise all control-flow paths.

5 System Overview

Fig. 3. Obfuscation tool overview

Figure 3 shows a global overview of how we construct opaque predicates.
In the Value Sets Identifier step, we identify the value sets for our opaque

predicates’ invariants. As a conditional branch disguise, each opaque predicate
needs exactly one invariant to inject non-executable code from a dead branch.
The invariants we use are based on variables’ value sets at a specific line of
code. We use the source-level program analysis tool Frama-C [22], particularly
its value analysis plugin implemented using abstract interpretation [10], to infer
correct value sets.

In the Opaque Predicates Builder step, we synthesize the opaque predi-
cates using Rosette’s synthesis engine [34]. For each value set, we synthesize an
opaque predicate that satisfies the syntactic requirement imposed by F1 and F2
and the semantic requirement imposed by the value set.

6 Value Sets Identifier

To identify value sets, we use abstract interpretation because it can reason about
all possible program behaviors statically to infer correct value sets. In general,
statically analyzing a program to identify any interesting program property such
as is variable x constant? using program’s concrete operational semantics is the-
oretically undecidable and practically intractable [28]. Abstract interpretation
makes analysis decidable and tractable while maintaining correctness by reason-
ing about program behavior in a less precise abstract domain.

Zero Footprint Opaque Predicates 307

6.1 Source-Level vs Binary-Level Analysis

Abstract interpretation infers more precise value sets at the source-level than at
the binary-level due to the lack of signedness information at the binary-level.
Furthermore, the value sets inferred at the binary-level can also be incorrect
due to the lack of complete code. Therefore, the invariants we infer at the
source-level (obfuscation time) will likely not be inferred by the same analy-
ses at the binary-level (analysis time). This distinction is particularly important
to assure resilience since future deobfuscation tools may adapt a deobfuscation
approach based on the way we use abstract interpretation for identifying invari-
ants to detect opaque predicates instead. We also empirically justify our claim
for resilience in Sect. 8.

Lack of Signedness Information. Signedness information is not preserved
through the compilation process. The lack of signedness information at the
binary-level significantly hinders the possible choice of abstract domains. The
original work [3] that uses abstract interpretation on binary code to infer value
sets uses an abstract domain called strided-intervals. However, strided-intervals
require the signedness of a variable. Navas et al. [29] and Redini et al. [31] both
use an abstract domain based on wrapped intervals that is signedness-agnostic.
However, wrapped intervals-based abstract domains do not have a lattice struc-
ture since it lacks both a least upper bound (lub) � and greatest lower bound
(glb) � for any two wrapped intervals. To alleviate the lack of lub � and glb �,
Navas et al. and Redini et al. [29,31] create a biased pseudo-join ˜� and a biased
pseudo-meet ˜�, but the biased pseudo-join ˜� is not monotonic and therefore
cannot be used to compute a least fixed point. In summary, a fixed-point seman-
tics cannot be achieved as is with abstract interpretation on non-lattice abstract
domains like wrapped intervals. A solution is to use the widening operation, but
each widening operation makes the analysis more imprecise by roughly doubling
the wrapped intervals [29].

Lack of Complete Code. At the binary-level, we are also not guaranteed to
have access to the complete code as retrieving it is an undecidable problem
[38]. The lack of complete code means that the inferred value set can contain
false negatives (i.e., not guaranteed to contain all possible items). One major
reason hindering the retrieval of complete code at the binary-level is indirect
control-flow such as x86’s JMP EAX. Indirect control-flow makes retrieval of code
difficult at both intraprocedural and interprocedural levels. Furthermore, current
capabilities to identify function boundaries are lacking [1]. The retrieved code can
be incorrect or incomplete if where the function ends is not correctly identified.
Even though abstract interpretation guarantees no false negative, the inferred
value set can still contain false negatives when the analysis is performed on
incomplete or incorrect code.

308 Y.-J. Tung and I. G. Harris

In BinTrimmer’s SASI [31], the authors assume the retrieval of a complete
and precise control-flow graph. In the original implementation of abstract inter-
pretation on binary code [3], the authors assume IDA Pro will correctly iden-
tify all stack and global variables. However, those assumptions will not always
hold as they require complete code and complete code is not guaranteed to be
retrievable. Even though binary disassembly has improved considerably in recent
years [6,18,21,26], which can improve abstract interpretation on binary code, the
underlying problem of a lack of complete code is still present.

7 Opaque Predicate Builder

We use program synthesis to synthesize opaque predicates that share the syn-
tactic features of F1 and F2 to resemble real predicates while satisfying the
constraints imposed by the invariants.

7.1 Program Synthesis Implementation

Fig. 4. Our opaque predicates’ grammar

Program synthesis involves automated techniques for generating programs
from a specification [8]. The specification is defined with respect to the syntactic
and semantics requirements of the program we want to synthesize. The syntactic
requirement defines the space of programs to search in. Whereas the semantic
requirement defines the behavior of the program to search for in the search space.
Once both the syntactic and semantic requirements are specified, a search can
be performed to find a program that satisfies both requirements.

We perform program synthesis with the solver-aided language Rosette [34]
since it allows us to represent the syntactic and semantic requirements expres-
sively in the programming language Racket. Once represented in Racket, Rosette
then translates the requirements into logical formulae using a combination of

Zero Footprint Opaque Predicates 309

symbolic execution and bounded model checking. With the syntactic and seman-
tic requirements represented as logical formulae, the search for a satisfying pro-
gram is performed with the Z3 SMT solver [16].

Fig. 5. Sketch of the opaque predicate grammar

Fig. 6. Interpreter for the sketch

Syntactic Requirement . Features F1 and F2 constitute our syntactic require-
ment since the program we want to synthesize is an opaque predicate that share
the syntactic features of F1 and F2. We define our syntactic requirement in
formal grammar using Backus-Naur Form (BNF) notation (Fig. 4). The gram-
mar shown in Fig. 4 represents the program search space. Rosette allows us to
specify the syntactic requirement expressively by providing synthesis language
constructs (e.g., ‘choose’, ‘??’). Those synthesis language constructs allow us to
write a partial program, or sketch, that defines the program search space instead.
The sketch that represents our grammar is shown in Fig. 5. As shown, we use
the synthesis language construct, ‘choose’, to specify all possible terminal values
at the corresponding position. The identifier in our sketch is fixed to the string
“x” since the identifier can be easily substituted with the actual identifier after
synthesis. By writing an interpreter that can execute our sketch (Fig. 6), our
Rosette program can then reason about the semantic requirement that defines
the behavior of the completed program we want as the synthesis output.

Semantic Requirement. Our semantic requirement is the constraint imposed
by the invariant, which can be described formally as followed:

Let {x1, x2, x3...xn} or {xi}ni=1 be a finite sequence representing the value
set for a specific variable at a particular line of code where i is the index and

310 Y.-J. Tung and I. G. Harris

Fig. 7. Specification of the semantic requirement

xi is the i-th term in the sequence. We want the following logical formula to be
satisfiable:

P (x1) ⇔ ... ⇔ P (xn)

P is a program constrained by our syntactic requirement (i.e., a syntactically
correct program under the grammar shown in Fig. 4). The logical connective, ⇔,
represents “if and only if.” For this formula to be satisfiable, every interpreta-
tion of P using items from the same value set, {xi}ni=1, needs to evaluate to
the same truth value. A synthesized P that satisfies both our syntactic and
semantic requirements is essentially an opaque predicate since it always evalu-
ates to Boolean true or always evaluates to Boolean false for every item it can be
assigned to from its value set. To impose the semantic requirement in Rosette,
we iterate over each item in the value set twice (Fig. 7). In one iteration, we use
Racket’s ‘assert’ construct to impose the semantic requirement that every item
in the value set needs to evaluate to Boolean true (‘always-true-expr’) by our
sketch. In the next iteration, we impose the semantic requirement that every
item in the value set needs to evaluate to Boolean false (‘always-false-expr’)
instead. If either ‘always-true-expr’ or ‘always-false-expr’ is satisfiable, it means
that Rosette successfully synthesized an opaque predicate.

8 Evaluation

We did not evaluate with existing obfuscation approaches since we already dif-
ferentiate from them by not introducing any beacon to enable heuristic attacks.
Our opaque predicates are potent and free from heuristic attacks because they
resemble real predicates by satisfying F1 and F2. In this section, we evaluate our
opaque predicates w.r.t. the other two criteria for evaluating opaque predicates’
quality: resilience and cost.

We have also identified two additional criteria useful for determining the
practicality of our approach: 1) the quantity of opaque predicates we can con-
struct and 2) the obfuscation time required to construct our opaque predicates.
The quantity of opaque predicates is a potential issue since the invariants our

Zero Footprint Opaque Predicates 311

opaque predicates rely on are based on the number of value sets that can be
inferred. The obfuscation time is another potential issue due to our multistage
pipeline for constructing opaque predicates.

8.1 Benchmark Programs

We use a set of single file programs contained in the Frama-C open source case
studies repository6. We use these programs as a benchmark because each of
them already contains the suitable Frama-C harness [25] that enables Frama-C
to analyze the program. The reason we choose single file programs is to simplify
the coordination in our obfuscation pipeline. In total, our benchmark consists
of 21 programs. 17 of the 21 programs belong to a case study called “bench-
moerman2018” while the rest belongs to their own case study. There are more
single file programs in “bench-moerman2018,” however we chose a representative
set of 17 programs since the other programs in the benchmark have similar code.

8.2 Evaluation Setup

Setup for Cost. To evaluate our opaque predicates’ cost, we compare the
execution time of the programs in our benchmark pre- and post- obfuscation.
The execution time is calculated using the CPU time spent within the programs
in both kernel and user modes.

Setup for Quantity and Obfuscation Time. To measure quantity, we sim-
ply count the number of opaque predicates inserted by our tool. It is possible for
the opaque predicates we synthesized at the source-level to be removed by the
compiler. To ascertain the number of opaque predicates in the compiled code, we
purposely make our opaque predicates’ obfuscation a deterministic and impos-
sible instruction sequence, so each occurrence of the instruction sequence in the
compiled code indicates one of our opaque predicates. We use the disassem-
bler BinaryNinja to search for the instruction sequence. To measure obfuscation
time, we keep track of the clock before and after the execution of our obfuscation
pipeline. The obfuscation time is the difference between the two.

Setup for Resilience. To evaluate our opaque predicates’ effectiveness w.r.t.
resilience, we evaluate our opaque predicates against current state-of-the-art
automated deobfuscation technique dynamic symbolic execution. In particu-
lar, we evaluate against BINSEC’s implementation of dynamic symbolic exe-
cution to deobfuscate opaque predicates [5]. Additionally, we evaluate against
another automated deobfuscation technique based on abstract interpretation
that is implemented in BinaryNinja’s OpaquePredicatePatcher [23]. Opaque-
PredicatePatcher detects opaque predicates by using abstract interpretation to
identify predicates whose corresponding variable’s value set only contains one
item.

6 https://git.frama-c.com/pub/open-source-case-studies.

https://git.frama-c.com/pub/open-source-case-studies

312 Y.-J. Tung and I. G. Harris

Although Sect. 6.1 already explains why abstract interpretation performs
better at the source-level (during obfuscation time) than at the binary-level
(during analysis), we also want to empirically justify that claim since future
deobfuscation tools may adapt a deobfuscation approach based on the way we
use abstract interpretation for constructing opaque predicates to instead detect
opaque predicates. Note that this is different from OpaquePredicatePatcher’s
usage of abstract interpretation. To detect opaque predicates in the way we use
abstract interpretation requires evaluating each item in a variable’s value set
against the predicate that uses the variable. If all items in the value set evalu-
ate to the same truth value, then the predicate is an opaque predicate. We use
BinaryNinja’s implementation of abstract interpretation, also used by Opaque-
PredicatePatcher, to implement the aforementioned new deobfuscation approach
in a tool called BinValueSetEval and evaluate our opaque predicates against it.

8.3 Results

Table 1. Cost, quantity, and obfuscation time of our opaque predicates.

Program LOC‡ Value Sets
Quantity

Opaque
Predicates
Quantity

Frama-C
Runtime
(min:sec)

Obfuscation
Time
(min:sec)

Cost§

Pre- Obfus-
cation
(seconds)

Post-
Obfusca-
tion
(seconds)

2048¶ 390 232 202 0:51 6:44 0.32 0.33

Solitaire 270 70 58 1:23 3:39 0.01 0.01

Tweetnacl-usable 858 118 111 0:06 2:52 0.09 0.09

Kilo¶ 1045 272 54 0:42 2:57 0.43 0.43

Bench-moerman2018� 924 119 63 0:17 2:54 0.04 0.04
� The statistics for bench-moerman2018 is the accumulation of 17 programs from it.
¶ Kilo and 2048 are both GUI programs. To calculate cost, we automate user interaction
with pyautogui.
‡ The LOC for a program does not account for spaces and code comments.
§ The cost for each program is the average over 3 runs.

Results for Cost, Quantity, and Obfuscation Time. Aside from cost,
quantity, and obfuscation time, Table 1 additionally shows lines of code (LOC)
to help put the 3 aforementioned metrics into perspective. The opaque predicates
quantity shown in Table 1 is the quantity found in the compiled binary. Out of
the 490 opaque predicates synthesized, only two opaque predicates are removed
by the compiler—program kilo and the programs in bench-moerman2018 orig-
inally synthesized 55 and 64 opaque predicates, respectively. The reason the
“Value Sets Quantity” and “Opaque Predicate Quantity” columns are not equal
is because not all inferred value sets satisfy the syntactic requirement imposed by
F1 and F2. Furthermore, we choose not to synthesize an opaque predicate when
the corresponding value set only contains a zero since Frama-C will mis-identify
pointer as an integer with a value set of just a zero. The reason in the program
kilo we identified 272 value sets but only synthesized 54 opaque predicates is
because 210 of the value sets only contain zero. Overall, we are still able to

Zero Footprint Opaque Predicates 313

construct a sizable number of opaque predicates, with the program 2048 having
the highest ratio of opaque predicates to LOC at 202 opaque predicates to 390
LOC. On the other hand, the program kilo has the lowest ratio at 54 opaque
predicates to 1045 LOC due to the aforementioned reason. Even though our
current tool will only construct one opaque predicate from one invariant, there
is no limitation on creating multiple opaque predicates from the same invariant;
this is further discussed in Sect. 9.1. Whole-program static analysis can be time-
consuming. To put into perspective Frama-C’s contribution to the obfuscation
time, we provide statistics on Frama-C’s runtime alongside the total obfusca-
tion time. Overall, our tool’s obfuscation time is acceptable as the maximum
obfuscation time is less than 7 min. Lastly, our cost, or execution overheads,
are nonexistent as the pre-obfuscation and post-obfuscation runtime are effec-
tively the same. This makes sense intuitively since our opaque predicates are
constructed from naturally occurring invariants that introduce zero additional
code to execute in contrast to synthetic invariants.

Table 2. Resilience of our opaque predicates.

Program Opaque predicates
quantity

BINSEC¶ OpaquePredicatePatcher BinValueSetEval

(#FP, #FN, #TP) (#FP, #FN, #TP) (#FP, #FN, #TP)

2048 202 (5, 47, 155) (12, 200, 2) (32, 12, 190)

Solitaire 58 (0, 55, 3) (6, 58, 0) (6, 58, 0)

Tweetnacl-usable 111 (20, 82, 29) (7, 109, 2) (8, 95, 16)

Kilo 54 (1, 53, 1) (7, 54, 0) (22, 48, 6)

Bench-moerman2018� 63 (5, 50, 13) (102, 59, 4) (103, 55, 8)

Totals 488 (31, 287, 201) (134, 480, 8) (171, 268, 220)
� The statistics for bench-moerman2018 is the accumulation of 17 programs from it.
¶ BINSEC’s parameter, bound k, relies on user chosen value. We experimented with k =
12, 16, 20, 24 as BINSEC’s paper [5] states that their tool achieves favorable detection
results at those bounds. In our experiment, at k = 12, 16, 20, 24 the corresponding F1
accuracy are 0.536, 0.558, 0.532, and 0.521, respectively. The table shows the statistics
for BINSEC at its highest F1 accuracy when k = 16.

Results for Resilience. Table 2 shows our experimental results in respect to
resilience (i.e., stealth w.r.t. automated deobfuscation). OpaquePredicatePatcher
only identified 8 out of 488 opaque predicates and with false positives. For each
program, OpaquePredicatePatcher always identified at least 6 false positives
since 6 false positives occurred within functions inserted by the compiler. Specif-
ically, they occur within the CRT startup functions that execute before and
after the main function. This is why bench-moerman2018 contains significantly
more false positives since it is made up of 17 programs where each has at least
6 false positives. BINSEC, on the other hand, performed better than Opaque-
PredicatePatcher but still only identified 201 out of 488 opaque predicates—41%.
The last column of Table 2 shows the result of a new deobfuscation approach we
implemented in the tool called BinValueSetEval by using abstract interpretation
in the way we use it to construct opaque predicates to instead detect opaque pred-
icates. BinValueSetEval identified significantly more opaque predicates in pro-
gram 2048 (190/202 opaque predicates). However, for the other 20 programs in

314 Y.-J. Tung and I. G. Harris

our benchmark, BinValueSetEval only identified 30/286 opaque predicates. Bin-
ValueSetEval also results in the highest number of false positives (171). Although
OpaquePredicatePatcher and BinValueSetEval both use abstract interpretation,
which guarantees an inferred value set will be correct (i.e., no false negative),
an inferred value set can still be incorrect since at the binary-level the analysis
could be performed on incomplete code (Sect. 6.1). With an incorrect value set,
a real predicate can be falsely identified as an opaque predicate. This explains
why OpaquePredicatePatcher and BinValueSet both contain false positives even
though the underlying analysis is guaranteed to be correct.

9 Discussion

9.1 Limitation

Since our benchmark is small scale and part of the Frama-C open source case
studies repository, it is potentially favorable for inserting our opaque predicates.
For large codebases, Frama-C and static analysis in general will have difficulty
performing whole-program analysis so the number of value sets we can infer from
them can be significantly less than what is shown by the codebases used in our
evaluation.

Overall, we are limited by the number of opaque predicates that we can con-
struct since it is based on the number of value sets we can infer with Frama-C.
One approach to alleviate the problem is to synthesize multiple opaque pred-
icates from one value set. Currently, our obfuscation tool will only synthesize
one opaque predicate from one value set. For example, if variable x will always
contain a value from the set {1, 2, 3, 4}, we can construct multiple opaque pred-
icates from the set, such as x == 0, x > 0, etc. One area of caution is that the
stealthiness of our opaque predicates might be compromised if we overly use the
same invariant to construct opaque predicates.

Another limitation is due to our approach of inserting opaque predicates
prior to compilation since it is possible that the compiler will detect the opaque
predicates and remove them accordingly from the compiled binary. In our eval-
uation (Sect. 8), out of 490 opaque predicates inserted at the source-level, two
opaque predicates are removed by the compiler.

9.2 Future Work

Currently, the features of real predicates we identified (F1 and F2) are based
on a predetermined set of real-world programs (Sect. 2), but they might not
characterize all programs. Future work will identify features of real predicates
based on analyzing the program being obfuscated instead of generalizing the
features from a predetermined set of programs.

Our mention of potency throughout this paper is w.r.t. stealth. Since early
phases of manual analysis rely on beacons [36], we believe potency can be
achieved by syntactically resembling real predicates so the opaque predicates

Zero Footprint Opaque Predicates 315

avoid introducing beacons indicating the opaque predicates. However, we did not
perform evaluation on potency. Another direction for future work is to employ
human studies to assess our approach’s potency.

10 Related Works

Preda et al. [15] have previously suggested using static analysis to construct
opaque predicates from a theoretical point of view. Unlike our work, achieving
resilience or potency is not their goal.

The work by Zobernig et al. [42] is the one closest to our work. Theirs is
the only other work that shares the same sentiment that opaque predicates
need to syntactically and semantically resemble real predicates. To address the
resemblance problem, Zobernig et al. transform real predicates to resemble their
injected opaque predicates using hash functions. Real predicates that compare
with a constant are replaced to compare with the constant’s hash value (with
the predicate’s variable also transformed by the hash function before the com-
parison). With high probability, a transformed real predicate will only evaluate
to Boolean true if the original predicate evaluates to Boolean true. Opaque pred-
icates are constructed by comparing a variable after transformation with a hash
function against a random constant with the same length as the hash value. With
high probability, an opaque predicate will always evaluate to Boolean false.

However, Zobernig’s et al. approach is only able to transform real predicates
that use equality comparison (==) on a constant since hash functions are not
monotonic. To achieve potency, this approach needs to transform as many real
predicates as possible. So Zobernig’s et al. approach is only stealthy if the code
contains many predicates with equality comparison (==) on random constants;
if the constants used are not random, frequency analysis can be used to identify
the original constant. As seen by our empirical study identifying features of
real predicates (Fig. 1c), although real predicates are commonly compared with
constants, majority of the constants are −1, 0, 1, or 2.

Christian Collberg, a pioneer on opaque predicates [13,33], suggests achieving
potency with code diversity where multiple variants of the inserted code are
created [33]. However, the practicality of that approach is in question since new
variants need to be continuously developed to avoid opaque predicates inserted
in the future to be identified. Furthermore, diversity introduced non-organically
can inadvertently manifest beacons for heuristic attacks.

There are many works on constructing opaque predicates that primarily focus
on achieving resilience. Many of those works [4,37,40] are on preventing detection
by dynamic symbolic execution since dynamic symbolic execution has shown
to be the most effective in automatically detecting opaque predicates [4,5,27].
Other works achieve resilience by constructing opaque predicates without the
invariant constraint by allowing both branches of the opaque predicates to be
reachable [17,30,39]; however, the obfuscation they can perform is limited since
the basic blocks pointed to by either branch have to be semantically equivalent.

316 Y.-J. Tung and I. G. Harris

11 Conclusion

We introduce a novel approach to construct high-quality opaque predicates that
are potent w.r.t. manual analysis, resilient w.r.t. automated analysis, and low
cost. We achieve high potency by constructing opaque predicates that resemble
real predicates. We achieve low cost by using naturally occurring invariants that
introduce zero additional execution overhead. We also achieve high resilience
since the naturally occurring invariants we use are value sets inferred by abstract
interpretation at the source-level (obfuscation time) and the same value sets
will likely not be inferred by abstract interpretation at the binary-level (analysis
time) due to obstacles particular to binary-level analysis. Our opaque predicates’
resilience is also justified empirically in our evaluation section by evaluating
our opaque predicates against abstract interpretation and the current state-of-
the-art deobfuscation technique dynamic symbolic execution. By achieving high
potency, our opaque predicates are immune to heuristic attacks that existing
opaque predicates are vulnerable to.

Acknowledgments. This research was supported by a generous gift from the Herman
P. & Sophia Taubman Foundation. We would also like to thank the anonymous reviewers
for their helpful comments and our shepherd, Sam L. Thomas, for guiding us through the
revision process.

References

1. Andriesse, D., Chen, X., Van Der Veen, V., Slowinska, A., Bos, H.: An in-depth
analysis of disassembly on full-scale x86/x64 binaries. In: 25th USENIX Security
Symposium (USENIX Security 16), pp. 583–600 (2016)

2. Andriesse, D., Slowinska, A., Bos, H.: Compiler-agnostic function detection in bina-
ries. In: 2017 IEEE European Symposium on Security and Privacy (EuroS&P), pp.
177–189. IEEE (2017)

3. Balakrishnan, G., Reps, T.: Analyzing memory accesses in x86 executables. In:
Duesterwald, E. (ed.) CC 2004. LNCS, vol. 2985, pp. 5–23. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24723-4 2

4. Banescu, S., Collberg, C., Ganesh, V., Newsham, Z., Pretschner, A.: Code obfus-
cation against symbolic execution attacks. In: Proceedings of the 32nd Annual
Conference on Computer Security Applications, pp. 189–200 (2016)

5. Bardin, S., David, R., Marion, J.Y.: Backward-bounded DSE: targeting infeasibility
questions on obfuscated codes. In: 2017 IEEE Symposium on Security and Privacy
(SP), pp. 633–651. IEEE (2017)

6. Bauman, E., Lin, Z., Hamlen, K.W.: Superset disassembly: Statically rewriting x86
binaries without heuristics. In: NDSS (2018)

7. Blazytko, T., Contag, M., Aschermann, C., Holz, T.: Syntia: synthesizing the
semantics of obfuscated code. In: 26th USENIX Security Symposium (USENIX
Security 17), pp. 643–659 (2017)

8. Bod́ık, R., Jobstmann, B.: Algorithmic program synthesis: introduction. Int. J.
Softw. Tools Technol. Transfer 15, 397–411 (2013)

https://doi.org/10.1007/978-3-540-24723-4_2

Zero Footprint Opaque Predicates 317

9. Brunet, P., Creusillet, B., Guinet, A., Martinez, J.M.: Epona and the obfuscation
paradox: transparent for users and developers, a pain for reversers. In: Proceedings
of the 3rd ACM Workshop on Software Protection, pp. 41–52 (2019)

10. Canet, G., Cuoq, P., Monate, B.: A value analysis for c programs. In: 2009 Ninth
IEEE International Working Conference on Source Code Analysis and Manipula-
tion, pp. 123–124. IEEE (2009)

11. Collberg, C.: The tigress c diversifier/obfuscator (2015). Accessed 14 Aug 2015
12. Collberg, C., Myles, G., Huntwork, A.: Sandmark-a tool for software protection

research. IEEE Secur. Privacy 1(4), 40–49 (2003)
13. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transforma-

tions. Technical report, Department of Computer Science, The University of Auck-
land, New Zealand (1997)

14. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pp. 238–252 (1977)

15. Dalla Preda, M., Giacobazzi, R.: Control code obfuscation by abstract interpreta-
tion. In: Third IEEE International Conference on Software Engineering and Formal
Methods (SEFM 2005), pp. 301–310. IEEE (2005)

16. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

17. Drape, S.: Intellectual property protection using obfuscation (2010)
18. Flores-Montoya, A., Schulte, E.: Datalog disassembly. In: 29th USENIX Security

Symposium (USENIX Security 20), pp. 1075–1092 (2020)
19. Horwitz, S.: Precise flow-insensitive may-alias analysis is NP-hard. ACM Trans.

Program. Lang. Syst. (TOPLAS) 19(1), 1–6 (1997)
20. Junod, P., Rinaldini, J., Wehrli, J., Michielin, J.: Obfuscator-LLVM-software pro-

tection for the masses. In: 2015 IEEE/ACM 1st International Workshop on Soft-
ware Protection, pp. 3–9. IEEE (2015)

21. Kinder, J., Veith, H.: Jakstab: a static analysis platform for binaries. In: Gupta,
A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 423–427. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-70545-1 40

22. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015)

23. LaFosse, P.: Automated opaque predicate removal (2017). https://binary.ninja/
2017/10/01/automated-opaque-predicate-removal.html

24. Madou, M., Van Put, L., De Bosschere, K.: LOCO: an interactive code
(De)obfuscation tool. In: Proceedings of the 2006 ACM SIGPLAN Symposium
on Partial Evaluation and Semantics-Based Program Manipulation, pp. 140–144.
ACM (2006)

25. Maroneze, A.: Parsing realistic code bases with Frama-C (2018). https://blog.
frama-c.com/index.php?post/2018/07/06/Parsing-realistic-code-bases-with-
Frama-C

26. Miller, K., Kwon, Y., Sun, Y., Zhang, Z., Zhang, X., Lin, Z.: Probabilistic disassem-
bly. In: 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pp. 1187–1198. IEEE (2019)

27. Ming, J., Xu, D., Wang, L., Wu, D.: Loop: logic-oriented opaque predicate detection
in obfuscated binary code. In: Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pp. 757–768. ACM (2015)

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-70545-1_40
https://binary.ninja/2017/10/01/automated-opaque-predicate-removal.html
https://binary.ninja/2017/10/01/automated-opaque-predicate-removal.html
https://blog.frama-c.com/index.php?post/2018/07/06/Parsing-realistic-code-bases-with-Frama-C
https://blog.frama-c.com/index.php?post/2018/07/06/Parsing-realistic-code-bases-with-Frama-C
https://blog.frama-c.com/index.php?post/2018/07/06/Parsing-realistic-code-bases-with-Frama-C

318 Y.-J. Tung and I. G. Harris

28. Møller, A., Schwartzbach, M.I.: Static program analysis. Notes, pp. 3–7 (2012)
29. Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: Signedness-agnostic pro-

gram analysis: precise integer bounds for low-level code. In: Jhala, R., Igarashi, A.
(eds.) APLAS 2012. LNCS, vol. 7705, pp. 115–130. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-35182-2 9

30. Palsberg, J., Krishnaswamy, S., Kwon, M., Ma, D., Shao, Q., Zhang, Y.: Experi-
ence with software watermarking. In: Proceedings 16th Annual Computer Security
Applications Conference (ACSAC 2000), pp. 308–316. IEEE (2000)

31. Redini, N., Wang, R., Machiry, A., Shoshitaishvili, Y., Vigna, G., Kruegel, C.:
BinTrimmer: towards static binary debloating through abstract interpretation. In:
Perdisci, R., Maurice, C., Giacinto, G., Almgren, M. (eds.) DIMVA 2019. LNCS,
vol. 11543, pp. 482–501. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-22038-9 23

32. Sheridan, B., Sherr, M.: On manufacturing resilient opaque constructs against
static analysis. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.)
ESORICS 2016. LNCS, vol. 9879, pp. 39–58. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-45741-3 3

33. Thomborson, C., Collberg, C., Low, D.: Manufacturing cheap, resilient, and
stealthy opaque constructs. In: Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 184–196. ACM (1998)

34. Torlak, E., Bodik, R.: Growing solver-aided languages with rosette. In: Proceedings
of the 2013 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software, pp. 135–152 (2013)

35. Vector 35: Binary Ninja: A New Type of Reversing Platform. https://binary.ninja/
36. Votipka, D., Rabin, S., Micinski, K., Foster, J.S., Mazurek, M.L.: An observational

investigation of reverse engineers’ processes. In: 29th USENIX Security Symposium
(USENIX Security 20), pp. 1875–1892 (2020)

37. Wang, Z., Ming, J., Jia, C., Gao, D.: Linear obfuscation to combat symbolic execu-
tion. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 210–226.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23822-2 12

38. Wartell, R., Zhou, Y., Hamlen, K.W., Kantarcioglu, M., Thuraisingham, B.: Differ-
entiating code from data in x86 binaries. In: Gunopulos, D., Hofmann, T., Malerba,
D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6913, pp. 522–
536. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23808-6 34

39. Xu, D., Ming, J., Wu, D.: Generalized dynamic opaque predicates: a new control
flow obfuscation method. In: Bishop, M., Nascimento, A.C.A. (eds.) ISC 2016.
LNCS, vol. 9866, pp. 323–342. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45871-7 20

40. Xu, H., Zhou, Y., Kang, Y., Tu, F., Lyu, M.: Manufacturing resilient bi-opaque
predicates against symbolic execution. In: 2018 48th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN), pp. 666–677.
IEEE (2018)

41. Yadegari, B., Johannesmeyer, B., Whitely, B., Debray, S.: A generic approach to
automatic deobfuscation of executable code. In: 2015 IEEE Symposium on Security
and Privacy, pp. 674–691. IEEE (2015)

42. Zobernig, L., Galbraith, S.D., Russello, G.: When are opaque predicates useful?
In: 2019 18th IEEE International Conference On Trust, Security And Privacy
In Computing And Communications/13th IEEE International Conference On Big
Data Science And Engineering (TrustCom/BigDataSE), pp. 168–175. IEEE (2019)

https://doi.org/10.1007/978-3-642-35182-2_9
https://doi.org/10.1007/978-3-030-22038-9_23
https://doi.org/10.1007/978-3-030-22038-9_23
https://doi.org/10.1007/978-3-319-45741-3_3
https://doi.org/10.1007/978-3-319-45741-3_3
https://binary.ninja/
https://doi.org/10.1007/978-3-642-23822-2_12
https://doi.org/10.1007/978-3-642-23808-6_34
https://doi.org/10.1007/978-3-319-45871-7_20
https://doi.org/10.1007/978-3-319-45871-7_20

PetaDroid: Adaptive Android Malware
Detection Using Deep Learning

ElMouatez Billah Karbab(B) and Mourad Debbabi

Concordia Security Research Center, Montreal, Canada
{elmouatez.karbab,mourad.debbabi}@concordia.ca

Abstract. Android malware detection is a significant problem that
affects billions of users using millions of Android applications (apps) in
existing markets. Thiss paper proposes PetaDroid, a framework for accu-
rate Android malware detection and family clustering on top of static
analyses. PetaDroid automatically adapts to Android malware and benign
changes over time with resilience to common binary obfuscation tech-
niques. The framework employs novel techniques elaborated on top of
natural language processing (NLP) and machine learning techniques to
achieve accurate, adaptive, and resilient Android malware detection and
family clustering. We extensively evaluated PetaDroid on multiple refer-
ence datasets. PetaDroid achieved a high detection rate (98–99% f1-score)
under different evaluation settings with high homogeneity in the produced
clusters (96%). We conducted a thorough quantitative comparison with
state-of-the-art solutions MaMaDroid, DroidAPIMiner, MalDozer, in which
PetaDroid outperforms them under all the evaluation settings.

1 Introduction

Android OS’s popularity has increased tremendously since the last decade. It
is undoubtedly an appropriate choice for smart mobile devices such as phones
and tablets or the internet of things devices such as TVs due to its open-source
license and the massive number of useful apps developed for this platform (about
4 Million apps in 2019 [2]). Nevertheless, malicious apps target billions of Android
users through centralized app markets. The detected malicious apps increased by
40% in 2018-Q3 compared to the same period in 2017 [1]. Google Play employs
a vetting system named Bouncer to detect malicious apps through static and
dynamic analyses. Despite these analyses, many malicious apps1 were able to
bypass Bouncer and infect several hundred thousand devices2. Therefore, there
is a dire need for accurate, adaptive, yet resilient Android malware detection
systems for the app market scale.

1.1 Problem Statement

In this paper, we identify the following gaps in the state-of-the-art solutions for
Android malware detection:
1 https://tinyurl.com/y4qdtuy9.
2 https://tinyurl.com/y4mckwxm.

c© Springer Nature Switzerland AG 2021
L. Bilge et al. (Eds.): DIMVA 2021, LNCS 12756, pp. 319–340, 2021.
https://doi.org/10.1007/978-3-030-80825-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80825-9_16&domain=pdf
https://tinyurl.com/y4qdtuy9
https://tinyurl.com/y4mckwxm
https://doi.org/10.1007/978-3-030-80825-9_16

320 E. B. Karbab and M. Debbabi

P1: The accuracy of Android malware detection systems tends to decrease
over time due to different factors: (1) variations in existing malware family, (2)
new malware families, (3) and new Android APIs in benign and malicious apps.
These factors are mostly reflected in the changes in Android API call sequences in
malicious and benign apps. Nevertheless, these changes are incremental in most
cases compared to the existing apps. In this context, we consider two problems:
(1) The resiliency of the detection systems that use machine learning models
[31] to changes over time, (2) and the possibility of automatic adaptation to the
new changes [40].

P2: Android malware family attribution is an important problem in the
realm of malware detection. The malware family attribution could be impor-
tant essential to define the threats3 of the detected malware [28]. However, few
existing solutions [7] provide Android malware family attribution. Furthermore,
these solutions rely on supervised learning where prior knowledge of the families
is required [12]. However, such knowledge is hard to get and not realistic in many
cases, especially for new malware families4.

P3: Malware developers employ various obfuscation techniques to thwart
detection attempts. Obfuscation resiliency is a key requirement in modern mal-
ware fingerprinting that applies static analyses. Few solutions address the obfus-
cation issue [36,40] in the context of Android malware detection, more specifi-
cally, the resiliency to common obfuscations and binary code transformations.

1.2 Proposed Solution

In this paper, we propose PetaDroid, an accurate, adaptive, resilient, and yet
efficient Android malware detection and family clustering using natural language
processing (NLP) and deep learning techniques on top of static analysis features.
In PetaDroid, we aim to address the previously mentioned problems as follows:

1. Our fundamental intuition for time resiliency and adaptation is that
Android apps are changing over time incrementally. Benign apps embrace new
Android APIs, deprecations, and components gracefully to do not disturb the
user experience. Malware developers aim to target the maximum devices by
employing stable and cross-Android version APIs. We argue that PetaDroid can
fingerprint malicious apps within a time window with high confidence because
the application still contains enough patterns of similarity to known samples.

2. PetaDroid goes a step further in the detection process by clustering the
detected samples into groups with high similarity. We exclusively group highly
similar samples, most likely of the same malware family. PetaDroid family attri-
bution is found upon the assumption that malicious applications tend to have
similar characteristics in the Android Dalvik bytecode code. We leverage this
assumption to build an automatic and unsupervised malware family tagging
system using deep neural network auto-encoder for sample digest generation on
top of InstNGram2Bag features (based on NLP bag of words). Using the DBScan

3 https://tinyurl.com/yydg5vew.
4 https://tinyurl.com/y8rc6q89.

https://tinyurl.com/yydg5vew
https://tinyurl.com/y8rc6q89

PetaDroid: Adaptive Android Malware Detection Using Deep Learning 321

[11] clustering algorithm, we cluster the most similar samples from the detected
malicious apps.

3. PetaDroid introduces code fragments randomization during training and
deployment phases to enhance the obfuscation resiliency. We artificially apply
random permutations to change the order of code basic-blocks without alter-
ing the basic-block instructions. We consider a code basic-block as a possible
micro-action in the app execution flows. Therefore, we randomize the app exe-
cution flows without affecting the micro-actions within the flow to emulate code
transformation during the training and deployment phases. Code fragment ran-
domization strengthens the obfuscation robustness of PetaDroid, as shown in
Sect. 4.3.

1.3 Contributions and Outline

The main contributions of this paper are:

(1) We propose a novel adaptation technique for Android malware detection
to automatically adapt the detection system. The proposed techniques rely
on the confidence probability of the detection ensemble to collect extension
training datasets from received samples during the deployment (Sect. 2.2).

(2) We propose a novel fragment randomization technique to boost the detec-
tion system resiliency to common code-obfuscation techniques. In this tech-
nique, we randomize the order of code basic-blocks without affecting the
basic-blocks instructions during the training and the deployment phases
(Sect. 2.2).

(3) We propose PetaDroid, an accurate and efficient malware detection and clus-
tering framework based on code static analyses, NLP, and machine learning
techniques. In PetaDroid, we propose an ensemble of CNN models on top
of a code embedding model, namely Inst2Vec, to accurately detect mal-
ware with probability confidence (Sect. 2.2). We released the source code of
PetaDroid to the community in https://github.com/mouatez/petadroid.

(4) We extensively evaluate PetaDroid to assess its effectiveness and efficiency
on different reference datasets of PetaDroid under various evaluation set-
tings (Sect. 2.1).

2 PetaDroid

In this section, we detail PetaDroid methodology and its components.

2.1 Android App Representation

In this section, we present the preprocessing of Dalvik code and its representation
into a canonical instructions sequence. We seek the preservation of the maximum
information about apps’ behaviors while keeping the process very efficient. The
preprocessing begins with the disassembly of an app bytecode to Dalvik assembly
code, as depicted in Fig. 1.

https://github.com/mouatez/petadroid

322 E. B. Karbab and M. Debbabi

Fig. 1. Android assembly from a malware sample

We model the Dalvik assembly code as code fragments where each fragment
is a class’s method code in the Dalvik assembly. It is a natural separation because
Dalvik code D is composed of a set of classes D = {C1, C2, . . . Cs}. Each class Ci

contains a set of methods C = {M1,M2, . . . Mk}, where we find actual assem-
bly code instructions. We preserve the order of Dalvik assembly instructions
within methods while ignoring the global execution paths. Method execution is
a possible micro-behavior for an Android app, while a global execution path is
a likely macro-behavior. An Android app might have multiple global execution
paths based on external events. In contrast, Android malware tends to have one
crucial global execution path (malicious payload) and other ones to distract mal-
ware detection systems. The malware could produce variations for the payload
global execution path. However, it still depends on the micro-behavior to pro-
duce another global one. PetaDroid assembly preprocessing produces a multiset
of sequences P = {S1, S2, . . . Sh} where each sequence S contains an ordered
instruction sequence S = 〈I1, I2, . . . Iv〉 of a class’s method. In other words, P
contains instruction sequences P = {〈I1, I2, . . . 〉1, 〈I1, I2, . . . 〉2, . . . 〈I1, I2, . . . 〉h}
where the order is only preserved inside individual sequences Si (the methods
instructions). Thus, a sequence S defines a possible micro-execution (or behav-
ior) from the Android app’s overall runtime execution.

As shown in Fig. 1, the Dalvik assembly is too sparse. We want to keep
the assembly instruction skeleton that reflects possible runtime behaviors with
less sparsity. In PetaDroid, we propose a canonical representation for Dalvik
assembly code, as shown in Fig. 2. The key idea is to keep track of the Android
platform APIs and objects utilized inside the method assembly. To fingerprint

PetaDroid: Adaptive Android Malware Detection Using Deep Learning 323

Fig. 2. Canonical representation of Dalvik assembly

malicious apps, the canonical representation will mostly preserve the actions
and the manipulated system objects, such as sending SMS action or getting
(setting) sensitive information objects. PetaDroid canonical representation covers
three types of Dalvik assembly instructions, namely: Method invocation, object
manipulation, and field access, as shown in Fig. 2. In the method invocation,
we focus on the method call, Package.ClassName.MethodName, the parameters
list, Package.ClassName, and the return type, Package.ClassName. In object
manipulation, we capture the class object, Package.ClassName, that is being
used. Finally, we track the access to system fields by capturing the field name,
Package.ClassName.FieldName, and its type, Package.ClassName. Our manual
inspections of Dalvik assembly for hundreds of malicious and benign samples
shows that these three forms cover the essential of Dalvik assembly instructions.

PetaDroid instruction parser keeps only the canonical representation and
ignores the rest. For example, our experiments show that Dalvik opcodes add a
lot of sparsity without enhancing the malware fingerprinting performance. On
the contrary, it could negatively affect overall performance, which is shown in
previous solutions [29]. The final step in preprocessing a method M (see Fig. 1)
is to flatten the canonical representation of a method into a single sequence S.

We keep only the Android platform related assets like API, classes, and
system fields in the final method’s sequence S. We maintain a vocabulary dic-
tionary (key: value) in the form of (Androidassets : identifier) (for example
(Android/telephony/TelephonyManager : 439)) of all Android OS assets (all
versions) to filter and map Android assets to unique identifiers (unique integer
for a given Android assets) for the method instruction sequence during the pre-
processing. The output of the app representation phase is a list of sequences
P̂ = {Sc,1, Sc,2, . . . Sc,h}. Each sequence is an ordered canonical instruction rep-
resentation of one method. In the following, we summarize the notations used
in the rest of the paper (Table 1):

2.2 Malware Detection

In this section, we present the PetaDroid malware detection process using CNN
on top of Inst2Vec embedding features. The detection process starts from a

324 E. B. Karbab and M. Debbabi

Table 1. Notation summary

Notation Description Format

D Dalvik assembly code of one Android App Raw text

C Dalvik Java Class Raw text

M Dalvik Java Method Raw text

S Sequence of extracted instructions of one Dalvik Java

Method M

List of Dalvik raw text instructions

P Multiset of methods’ sequences S Multiset of sequences

Sc Sequence of canonical instructions generated from S

using V

List of canonical instruction IDs

P̂ Multiset of methods’ sequences Sc Multiset of sequences

Pc The result of shuffling and concatenating of all Sc Sequence of canonical instructions

F Fragment is a truncated portion from Pc List of canonical instructions

CNNModel Classification model based on Convolutional Neural

Network (CNN)

Deep learning model

Φ Ensemble of classification models

Φ = {CNNModel1, CNNModel2, . . . CNNModelφ}
Set of deep learning models

y Dataset label Malware or not

ŷ Prediction likelihood of the classification models

ŷ = Φ(F)

Probability

ζ Detection threshold for the general decision strategy Probability threshold

η Detection threshold for the confidence decision strategy Probability threshold

multiset of discretized canonical instruction sequences P̂ = {Sc,1, Sc,2, . . . Sc,h}.
Notice that P̂ is a multiset and not a set since it might contain duplicated
sequences. The duplication comes from having the same Dalvik method’s code
in two (or more) distinct Dalvik classes. PetaDroid CNN ensemble produces a
detection result together with maliciousness and benign detection probabilities
for a given sample. To achieve automatic adaptation, we leverage the detec-
tion probabilities to automatically collect an extension dataset that PetaDroid
employs to build new CNN ensemble models.

Fig. 3. Example of fragment generation

PetaDroid: Adaptive Android Malware Detection Using Deep Learning 325

Fragment Detection. Fragment-based detection is a key technique in
PetaDroid. A fragment F is a truncated portion from the beginning of the
concatenation Pc of P̂ = {Sc,1, Sc,2, . . . Sc,h} as shown in Fig. 3. The size |F |
is the number of canonical instructions in the fragment F , and it is a hyper-
parameter in PetaDroid. Our grid search for the best |F | hyper-parameter result
|F | = 10k for the current version of PetaDroid. For a sequence Sc,i, the order of
canonical instructions is preserved within a method. In other words, we guar-
antee the preservation of order inside the method sequence or what we refer
to as a micro-action. However, no specific order is assumed between meth-
ods’ sequences or what we refer to as macro-action (or behavior). On the con-
trary, before we truncate Pc into size |F |, we apply random permutations on
P̂ to produce a random order in the macro-behavior. The randomization hap-
pens in every access, whether it is during training or deployment phases. Each
Android sample has h!

(h−k)! possible permutations for the methods’ sequences

P̂ = {Sc,1, Sc,2, . . . Sc,h}, where h is the number of methods’ sequence in a given
Android app, and k is the number of sampled sequences. The concatenation of
the sampled k sequences must be greater than |F |.

Inst2Vec Embedding. Inst2Vec is based on word2vec [30] technique to pro-
duce an embedding vector for each canonical instruction in our sequences.
Inst2Vec is trained on instruction sequences to learn instruction semantics from
the underlying contexts. This means that Inst2Vec learns a dense representation
of a canonical instruction that reflects the instruction co-occurrence and context.
The produced embeddings capture the semantics of instructions (interpreted by
geometric distances). Furthermore, embedding features show high code finger-
printing accuracy and resiliency to common obfuscation techniques [10].

Classification Model. Our single CNN model takes Inst2Vec features, which
are a sequence of embeddings; each embedding captures the semantics of an
instruction. The temporal CNN [23], or 1-dimensional CNN [42], is the work-
ing core component in the PetaDroid single classification model. We choose to
build our classification models based on CNN architecture over recurrent neural
networks (RNN) such as LSTM or GRU. Due to the efficiency of CNN during
the training and the deployment compared to RNN. In the training phase,
the CNN models take on average 0.05 s per batch (32 samples), which is five
times faster than RNN models in our experiments. The CNN model converges
early (starting from 10 epochs) compared to the RNN model (starting from 30
epochs). In the deployment phase, the CNN model’s inference is, on average,
five times faster than RNN models. Both neural network architecture gives very
similar detection results in our experiments. However, our automatic adaptation
technique will benefit from the efficiency of CNN models to rapidly build new
models using large datasets. The non-linearity used in our model employ the rec-
tified linear unit (ReLUs) h(x) = max{0, x}. We used Adam [13] optimization
algorithm with a 32 mini-batch size and a 3e − 4 learning rate for 100 epochs

326 E. B. Karbab and M. Debbabi

in all our experiments. The chosen hyper-parameters are the results of empirical
evaluations to find the best values.

Detection Ensemble. PetaDroid detection component relies on an ensemble
Φ = {CNNModel1, CNNModel2, . . . , CNNModelφ}. Ensemble Φ is composed
of φ single CNN models. The number of single CNN models in the ensemble φ
is a hyper-parameter. We choose to be φ = 6, which is a trade-off of between
maximum effectiveness on malware detection with the highest efficiency possible
base on our evaluation experiments.

As mentioned previously, PetaDroid trains each CNN model for the number
of epochs (epochs = 100). In each epoch, we compute LossT and LossV , the
training and validation losses, respectively, and save a snapshot of the single
CNN model parameters. LossT and LossV are the log loss across training and
validation sets:

p = CNNModelθ(y = 1|F)

loss(y, p) = −(y log(p) + (1 − y) log(1 − p)),

LossT =
−1

mtrain

mtrain∑

i=1

loss(yi, pi),

LossV =
−1

mvalid

mvalid∑

i=1

loss(yi, pi),

Where p is the maliciousness likelihood probability given a fragment F (a trun-
cated concatenation of canonical instructions Pc) and model parameters θ (Sect.
2.1). PetaDroid selects the top φ models automatically from the saved model
snapshots that have the lowest training and validation losses LossT and LossR,
respectively.

ŷ = Φ(x) =
1
φ

(
φ∑

i

CNNModeli(x)

)
(1)

PetaDroid CNN ensemble Φ produces a maliciousness probability likelihood
by averaging the likelihood probabilities of multiple CNN models, as shown in
Eq. 1.

Confidence Analysis. PetaDroid ensemble computes the maliciousness prob-
ability likelihood ProbMal given a fragment F , as follows:

ŷ = Φ(F), P robMal = ŷ, P robBen = (1 − ŷ)

Previous Android malware detection solutions, such as [18,31], utilize a sim-
ple detection technique (we refer to it as a general decision) to decide on the
maliciousness of Android apps. In the general decision, we compute the gen-
eral threshold ζ ∈ [0, 1] that achieves the highest detection performance on the
validation dataset Xvalid. In the deployment phase (or evaluation in our case

PetaDroid: Adaptive Android Malware Detection Using Deep Learning 327

on Xtest), The general decision Dζ utilize the computed threshold ζ to make
detection decisions:

Dζ =

{
Malware ProbMal > ζ

Benign ProbMal <= ζ

PetaDroid employs f1-score as a detection performance metric to automati-
cally select ζ and to report the general detection performance on the test set
Xtest during our evaluation, in Sect. 4. We choose f1-score as our detection
performance metric due to its simplicity, and its measurement reflects the real-
ity under unbalanced datasets. The general decision provides a firm decision for
every sample. However, security practitioners might prefer dealing with decisions
that have associated confidence values and filter out less-confident decisions for
further investigations. In a real deployment, we want as many detection decisions
with high confidence and filter out the few uncertain apps with low confidence
probability. Unfortunately, the general decision strategy that has been used by
most previous solutions does not provide such functionality. For this purpose,
we propose the confidence decision strategy, a mechanism to automatically
filter out apps with uncertain decisions. PetaDroid computes a confidence thresh-
old η that achieves a high detection performance (f1-score) and a negligible error
rate (false negative and false positive rates) in the validation dataset. In other
words, we add the error rate constraint to the system that computes the detec-
tion threshold η from Xvalid. In the deployment, we make the confidence-based
decision as follow:

Dη =

⎧
⎪⎨

⎪⎩

Uncertain ProbMal < η ∧ ProbBen < η

Malware ProbMal >= η ∧ ProbMal > ProbBen

Benign ProbBen >= η ∧ ProbBen > ProbMal

Automatic Adaptation. In this section, we describe our mechanism to
adapt to Android ecosystem changes over time automatically. The key idea
is to re-train the CNN ensemble on new benign and malware samples peri-
odically to learn the latest changes. To enhance the automatic adaptation, we
leverage the confidence analysis to collect an extension dataset that captures
the incremental change over time. Initially, we train PetaDroid ensemble using
Xbuild = {Xtrain +Xvalid}. Afterward, PetaDroid leverages the confidence detec-
tion strategy to build an extension dataset Xexten from test dataset Xtest from
high-confidence detected apps. In a real deployment, Xtest is a stream of Android
apps that needs to be checked for maliciousness by the vetting system. The
test dataset Xtest = {XCertain,XUncertain} is composed of apps having a high-
confidence decision (XCertain or Xexten) and apps having uncertain decisions
XUncertain. In the deployment, PetaDroid accumulates from high-confidence apps
over time to form Xexten dataset. Periodically, PetaDroid utilizes the extension
dataset Xexten to extend the original Xbuild and later updates the CNN ensem-
ble models. In our evaluation, and after updating the CNN ensemble, we report

328 E. B. Karbab and M. Debbabi

updated general performance and updated confidence-based perfor-
mance, respectively the general and confidence-based performance of the new
trained CNN ensemble on Xtest. These metrics answer the question: what would
be the detection performance on Xtest = {XCertain,XUncertain} after we build
the ensemble on XNewBuild = {XCertain,Xbuild}? In other words, PetaDroid
reviews previous detection decisions using the new CNN ensemble and drives
new general and confidence-based performance.

2.3 Malware Clustering

In this section, we detail the family clustering system. PetaDroid clustering aims
to group the previously detected malicious apps (Sect. 2.2) into highly similar
malicious apps groups, which are most likely part of the same malware fam-
ily. PetaDroid clustering process starts from a multiset of discretized canonical
instruction sequences P = {Sc,1, Sc,2, . . . Sc,h} of the detected malicious apps. We
introduce the InstNGram2Vec technique and deep neural network auto-encoder
to generate embedding digests for malicious apps. Afterward, we cluster malware
digests using the DBScan [11] clustering algorithm to generate malware family
groups. Notice that our clustering system (DBScan [11]) requires to represent
malware samples by one feature vector for each sample instead of a list of embed-
dings as in Inst2Vec for PetaDroid classification. For this reason, we introduce
InstNGram2Vec technique that automatically represents malware samples as fea-
ture vectors without an explicit manual feature selection. InstNGram2Vec is a
technique that maps concatenated instruction sequences to fixed-size embeddings
employing NLP bag of words (N-grams) and feature hashing [35] techniques.

Auto-Encoder. We develop a deep neural auto-encoder through stacked neural
layers of encoding and decoding operations The proposed auto-encoder learns the
latent representation of Android apps in an unsupervised way. The unsupervised
learning of the auto-encoder is done through the reconstruction of the unlabeled
hashing vectors HV = {hv0, hv1, . . . hvDMal} of random Android apps. Notice
that we do not need any labeling during the training of PetaDroid auto-encoder,
off-the-self Android apps are sufficient.

Family Clustering. PetaDroid clusters the detected malware digests Z = {z0,
z1, . . . ,zDMal} into groups of malware with high similarity and most likely
belonging to the same family. In PetaDroid clustering: First, we use an exclu-
sive clustering mechanism. The clustering algorithm only groups highly similar
samples and tags the rest as non-clustered. This feature could be more con-
venient for real-world deployments since we might not always detect malicious
apps from the same family, and we would like to have family groups only if there
are groups of the sample malware family. To achieve this feature, we employ
the DBScan clustering algorithm. Second, as an optional step, we find the best
cluster for the non-cluster samples, from the clusters produced previously by
computing the euclidean similarity between a given non-cluster sample and a

PetaDroid: Adaptive Android Malware Detection Using Deep Learning 329

given cluster samples. We call this step the family matching. In the evaluation,
we report homogeneity and coverage metric for the clustering before and after
applying this optional step. DBScan, in contrast with clustering algorithms such
as K-means, produces clusters with high confidence. The most important metrics
in PetaDroid clustering is the homogeneity of the produces clusters.

3 Dataset

Our evaluation dataset contains 10 million Android apps as sampling space for
our experiments (over 100 TB) collected across the last ten years from August
2010 to August 2019, as depicted in Table 2. The extensive coverage in size (10
M), time range (06-2010 to 08-2019), and malware families (+300 family) make
the result of our evaluation quite compelling.

In Sect. 4.1 and 4.2, to evaluate PetaDroid detection and family clustering, we
leverage malware from reference Android malware datasets, namely: MalGenome
[44], Drebin [6], MalDozer [18], and AMD [38]. Also, we collected Android mal-
ware from VirusShare5 malware repository. In addition, we use benign apps from
AndroZoo [4] dataset (randomly sampling ≈ 100k apps from 7.4 Million benign
samples in each experiment). In the family clustering evaluation (Sect. 4.2), we
use only malware samples from the reference datasets.

Table 2. Evaluation datasets

Name #Samples #Families Time

MalGenome [44] 1.3K 49 2010–2011

Drebin [6] 5.5k 179 2010–2012

MalDozer [18] 21k 20 2010–2016

AMD [38] 25k 71 2010–2016

VirusShare8 33k / 2010–2017

MaMaDroid [31] 40k / 2010–2017

AndroZoo [4] 9.5M / 2010–Aug 2019

In the comparison (Sect. 5) between PetaDroid, MaMaDroid [27,31], and
DroidAPIMiner [3], we apply PetaDroid on the same dataset (benign and mal-
ware) used in MaMaDroid evaluation9 to measure the performance of PetaDroid
against state-of-the-art Android malware detection solutions.

To assess PetaDroid obfuscation resiliency (Sect. 4.3), we conduct an obfus-
cation evaluation on PRAGuard dataset10, which contains 11k obfuscated mali-
cious apps using common obfuscation techniques [26]. Besides, we generate over

5 https://VirusShare.com.
9 https://bitbucket.org/gianluca students/mamadroid code/src/master/.

10 http://pralab.diee.unica.it/en/AndroidPRAGuardDataset.

https://VirusShare.com
https://bitbucket.org/gianluca_students/mamadroid_code/src/master/
http://pralab.diee.unica.it/en/AndroidPRAGuardDataset

330 E. B. Karbab and M. Debbabi

100k benign and malware obfuscated Android apps employing DroidChameleon
obfuscation tool [33] using common obfuscation techniques and their combina-
tions.

To assess the adaptation of PetaDroid (Sect. 4.4), we employ the whole Andro-
Zoo11 [4] dataset (until August 2019), which contains 7.4 million benign apps
and 2.1 million malware apps (at least detected as malicious by three vendors),
by randomly sampling a dataset (100k malware and benign) in each experiment.
We rely on VirusTotal detection of multiple anti-malware vendors in (metadata
provided by AndroZoo repository) to label the samples. The dataset covers more
than ten years span of Android benign and malware apps [4].

4 Evaluation

In this section, we evaluate PetaDroid framework through a set of experiments
and settings involving different datasets.

4.1 Malware Detection

In this section, we report the detection performance of PetaDroid and the effect
of hyper-parameters on malware detection performance.

Detection Performance. Table 3 shows PetaDroid general and confidence-
based performance in terms of f1-score, recall, and precision metrics on the ref-
erence datasets. In the general performance, PetaDroid achieves a high f1-score
96–99% with a low false-positive rate (precision score of 96.4–99.5% in the gen-
eral detection). The detection performance is higher under confidence settings.
The f1-score is 99% and a very low false-positive rate (≈100k benign apps) with
a recall score of 99.8% on average. The confidence-based performance causes the
filtration of 1–8% low confidence samples from the testing set. In all our experi-
ments, the confidence performance flags ≈6% on average, as uncertain decisions,
which is a small and realistic value in a deployment with low false positives.

Table 3. General and confidence performances on various reference datasets

Name General (%) Confidence (%)
F1 - P - R F1 - P - R

Genome 99.1 - 99.5 - 98.6 99.5 - 100. - 99.0
Drebin 99.1 - 99.0 - 99.2 99.6 - 99.6 - 99.7
MalDozer 98.6 - 99.0 - 98.2 99.5 - 99.7 - 99.4
AMD 99.5 - 99.5 - 99.5 99.8 - 99.7 - 99.8
VShare 96.1 - 96.4 - 95.7 99.1 - 99.7 - 98.6

11 https://androzoo.uni.lu/.

https://androzoo.uni.lu/

PetaDroid: Adaptive Android Malware Detection Using Deep Learning 331

4.2 Family Clustering

In this section, we present the results of PetaDroid family clustering on refer-
ence datasets (only malware apps). Malware family clustering phase comes after
PetaDroid detects a considerable number of malicious Android apps. The num-
ber of detected apps could vary from 1k (MalGenome [44]) to +20k (Maldozer
[18]) samples depending on the deployment. We use homogeneity [34] and cov-
erage metrics to measure the family clustering performance. The homogeneity
metric scores the purity of the produced family clusters. A perfect homogeneity
means each produced cluster contains samples from only one malware family. By
default, PetaDroid clustering aims only to generate groups with confidence-based
while ignoring less certain groups. The coverage metrics score the percentage of
the clustered dataset with confidence. We also report the clustering performance
after applying the family matching (optional step) to cluster all the samples in
the dataset (100% coverage).

Table 4. The performance of the family clustering

Clustering metrics DBSCAN clustering After family matching

Homogeneity—Coverage Homogeneity—Coverage

Genome 90.00%—37% 79.67%—100%

Drebin 92.28%—49% 80.48%—100%

MalDozer 91.27%—55% 81.58%—100%

AMD 96.55%—50% 81.37%—100%

Table 4 summarizes the clustering performance in terms of homogeneity and
coverage scores before and after applying the family matching. First, PetaDroid
can produce clusters with high homogeneity 90–96% while keeping an accept-
able coverage, 50% on average. At first glance, 50% coverage seems to be a
modest result, but we argue that it is satisfactory because: (i) we could extend
the coverage, but this might affect the quality of the produced clusters. In the
deployment, high confidence clusters with minimum errors and acceptable cov-
erage might be better than perfect coverage (in the case of K-Means clustering
algorithm) with a high error rate. (ii) The evaluation datasets have long tail
malware families, meaning that most families have only a few samples. This
makes the clustering very difficult due to the few samples (less than five sam-
ples) in each malware family in the detected dataset. In a real deployment, we
could add non-cluster samples to the next clustering iterations. In this case, we
might accumulate enough samples to cluster for the long tail malware families.
Second, after applying the family matching, PetaDroid clusters all the samples
in the dataset (100% coverage) and homogeneity decreased to 80–82%, which is
acceptable.

332 E. B. Karbab and M. Debbabi

4.3 Obfuscation Resiliency

In this section, we report PetaDroid detection performance on obfuscated
Android apps. We experiment on: (1) PRAGuard obfuscation dataset [26]
(10k) and (2) obfuscation dataset generated using DroidChameleon [33] obfus-
cation tool (100k). In the PRAGuard experiment, we combine PRAGuard
dataset with 20k benign Android apps randomly sampled from the benign
apps of AndroZoo repository. We split the dataset equally into build dataset
Xbuild = {Xtrain,Xvalid} and test dataset Xtest. Table 5 presents the detection
performance of PetaDroid on different obfuscation techniques. PetaDroid shows
high resiliency to common obfuscation techniques by having an almost perfect
detection rate, 99.5% f1-score on average.

Table 5. PetaDroid obfuscation resiliency on PRAGuard dataset

ID Obfuscation techniques General performance (%)

F1 (%) P (%) R (%)

1 Trivial 99.4 99.4 99.4

2 String Encryption 99.4 99.3 99.4

3 Reflection 99.5 99.5 99.5

4 Class Encryption 99.4 99.4 99.5

5 (1) + (2) 99.4 99.4 99.4

6 (1) + (2) + (3) 99.4 99.3 99.5

7 (1) + (2) + (3) + (4) 99.5 99.4 99.6

Overall 99.5 99.6 99.4

In the DroidChameleaon experiment, we evaluate PetaDroid on other obfus-
cation techniques, as shown in Table 6. The generated dataset contains obfus-
cated benign (5k apps randomly sampled from AndroZoo) and malware samples
(originally from Drebin). In the building process of CNN ensemble, we only
train with one obfuscation technique (Table 6) and make the evaluation on the
rest of the obfuscation techniques. Table 6 reports the result of obfuscation
resiliency on DroidChameleon generated dataset. The results show the robust-
ness of PetaDroid. According to this experiment, PetaDroid is able to detect
malware obfuscated with common techniques even if the training is done on
non-obfuscated datasets. We believe that PetaDroid obfuscation resiliency comes
from the usage of (1) Android API (canonical instructions) sequences as features
in the machine learning development. Android APIs are crucial in any Android
app. A malware developer cannot hide API access, for example SendSMS, unless
the malicious payload is downloaded at runtime. Therefore, PetaDroid is resilient
to common obfuscations as long as they do not remove or hide API access calls.
(2) The other factor is fragment-randomization, which makes PetaDroid models

PetaDroid: Adaptive Android Malware Detection Using Deep Learning 333

robust to code transformation and obfuscation in general. We argue that train-
ing machine learning models on dynamic fragments enhances the resiliency of
the models against code transformation.

Table 6. Obfuscation resiliency on DroidChameleon dataset

Obfuscation techniques General performance

F1 (%) P (%) R (%)

No Obfuscation 99.7 99.8 99.6

Class Renaming 99.6 99.6 99.5

Method Renaming 99.7 99.7 99.7

Field Renaming 99.7 99.8 99.7

String Encryption 99.8 99.8 99.7

Array Encryption 99.8 99.8 99.7

Call Indirection 99.8 99.8 99.7

Code Reordering 99.8 99.8 99.7

Junk Code Insertion 99.8 99.8 99.7

Instruction Insertion 99.7 99.8 99.7

Debug Information Removing 99.8 99.8 99.7

Disassembling and Reassembling 99.8 99.8 99.7

4.4 Automatic Adaptation

PetaDroid automatic adaptation goes a step further beyond time resiliency (100k
benign and malicious apps every year). PetaDroid employs the confidence perfor-
mance to collect an extension dataset Xextend during the deployment. PetaDroid
automatically uses Xextend in addition to the previous build dataset as a new
build dataset Xbuild(t) = Xbuild(t−1) ∪ Xextend to build a new ensemble at every
new epoch. Table 7 depicts PetaDroid performance with and without auto-
matic adaptation. PetaDroid achieves very good results compared to the pre-
vious section. PetaDroid maintains an f1-score in the range of 83–95% during
all years. Without adaption, PetaDroid f1-score drops considerably starting from
2017. Table 7 shows the performance of revisiting detection decisions on previ-
ous Android apps Xtest (benign and malware) after updating PetaDroid ensemble
using Xbuild ∪Xextend,Xextend ⊆ Xtest, where the samples in Xextend have been
removed from Xtest. The update performance is significantly enhanced in the
overall detection during all years. Revisiting malware detection decisions is com-
mon practice in app market, (periodic full or partial scan the market’s apps),
which empowers the use case of PetaDroid automatic adaptation feature and the
update metric.

334 E. B. Karbab and M. Debbabi

Table 7. Performance of PetaDroid automatic adaptation

Year No update (F1%) General (F1%) Confidence (F1%) Update (F1%)

2014 98.2 97.0 97.9 99.7

2015 96.1 95.8 96.7 97.5

2016 93.0 93.3 94.8 96.4

2017 70.6 83.9 84.2 95.4

2018 54.8 87.6 91.6 93.8

2019 55.6 96.3 98.7 99.1

5 Comparative Study

In this section, we conduct a comparative study between PetaDroid and state-
of-the-art Android malware detection systems, namely: MaMaDroid [27,31],
DroidAPIMiner [3], and MalDozer [18]. Our comparison is based on applying
PetaDroid on the same dataset (malicious and benign apps) and settings that
MaMaDroid used in the evaluation (provided by the authors in [31]). The dataset
is composed of 8.5K benign and 35.5K malicious apps in addition to the Drebin
[6] dataset. The malicious samples are tagged by time; malicious apps from 2012
(Drebin), 2013, 2014, 2015, and 2016 and benign apps are tagged as oldbenign
and newbenign, according to MaMaDroid evaluation.

5.1 Detection Performance Comparison

Table 8 depicts the direct comparison between MaMaDroid and PetaDroid differ-
ent dataset combinations. In PetaDroid, we present the general and the confidence
performance in terms of f1-score. For MaMaDroid and DroidAPIMiner, we present
the original evaluation result [31] in terms of f1-score, which are equivalent to
the general performance in our case. Notice that we present only the best results
of MaMaDroid and DroidAPIMiner as reported in [31].

Table 8. Performance of MaMaDroid, PetaDroid, and DroidAPIMiner

Peta (F1%) MaMa (F1%) Miner (F1%)

General-Confidence

drebin& oldbenign 98.94–99.40 96.00 32.00

2013& oldbenign 99.43–99.81 97.00 36.00

2014& oldbenign 98.94–99.47 95.00 62.00

2014& newbenign 99.54–99.83 99.00 92.00

2015& newbenign 97.98–98.95 95.00 77.00

2016& newbenign 97.44–98.60 92.00 36.00

PetaDroid: Adaptive Android Malware Detection Using Deep Learning 335

As depicted in Table 8, PetaDroid outperforms MaMaDroid and
DroidAPIMiner in all datasets in the general performance. The detection per-
formance gap increases with the confidence-based performance. Notice that the
coverage in the confidence-based settings is almost perfect for all the experiments
in Table 8.

5.2 Efficiency Comparison

In Table 9, we report the required average time for MaMaDroid and PetaDroid
to fingerprint one Android app. PetaDroid takes 03.58 ± 04.21 s on average for
the whole process (DEX disassembly, assembly preprocessing, CNN ensemble
inference). MaMaDroid, compared to PetaDroid, tends to be slower due to the
heavy preprocessing. MaMaDroid preprocessing [31] is composed of the call graph
extraction, sequence extraction, and Markov change modeling, which require
25.40 ± 63.00, 1.73 ± 3.2, 6.7 ± 3.8 s respectively for benign samples and 09.20 ±
14.00, 1.67 ± 3.1, 2.5 ± 3.2 s respectively for malicious samples. On average,
PetaDroid (3.58 s) is approximately eight times faster than MaMaDroid.

Table 9. MaMaDroid and PetaDroid runtime

PetaDroid (seconds) MaMaDroid (seconds)

Malware 02.64 ± 03.94 09.20 ± 14.00 + 1.67 ± 3.1 + 2.5 ± 3.2

Benign 05.54 ± 05.12 25.40 ± 63.00 + 1.73 ± 3.2 + 6.7 ± 3.8

Average 03.58 ± 04.21 ≈23 s

5.3 Time Resiliency Comparison

MaMaDroid evaluation emphasizes the importance of time resiliency for modern
Android malware detection. Table 10 depicts the performance with different
dataset settings, such as training using an old malware dataset and testing on a
newer one. PetaDroid outperforms (or obtains a very similar result in few cases)
MaMaDroid and DroidAPIMiner in all settings. Furthermore, the results show
that PetaDroid is more robust to time resiliency compared to MaMaDroid [31].

Table 10. Time Resiliency of MaMaDroid, PetaDroid, DroidAPIMiner.

Testing Sets drebin & oldbenign 2013 & oldbenign 2014 & oldbenign 2015 & oldbenign 2016 & oldbenign

Training Sets Miner MaMa Peta Miner MaMa Peta Miner MaMa Peta Miner MaMa Peta Miner MaMa Peta
drebin&oldbenign 32.0 96.0 99.4 35.0 95.0 98.6 34.0 72.0 77.5 30.0 39.0 44.0 33.0 42.0 47.0
2013&oldbenign 33.0 94.0 97.8 36.0 97.0 99.6 35.0 73.0 85.4 31.0 37.0 59.3 33.0 28.0 56.6
2014&oldbenign 36.0 92.0 95.8 39.0 93.0 98.6 62.0 95.0 99.4 33.0 78.0 91.4 37.0 75.0 88.9

drebin & newbenign 2013 & newbenign 2014 & newbenign 2015 & newbenign 2016 & newbenign

Training Sets Miner MaMa Peta Miner MaMa Peta Miner MaMa Peta Miner MaMa Peta Miner MaMa Peta
2014&newbenign 76.0 98.0 99.3 75.0 98.0 99.7 92.0 99.0 99.8 67.0 85.0 91.4 65.0 81.0 82.1
2015&newbenign 68.0 97.0 97.1 68.0 97.0 97.8 69.0 99.0 98.9 77.0 95.0 99.0 65.0 88.0 95.4
2016&newbenign 33.0 96.0 95.6 35.0 98.0 98.2 36.0 98.0 97.9 34.0 92.0 95.2 36.0 92.0 98.3

336 E. B. Karbab and M. Debbabi

5.4 PetaDroid and Maldozer Comparison

In this section, we compare PetaDroid with MalDozer [18] to check the effec-
tiveness of the proposed approach. Specifically, we evaluate the performance of
both detection systems on raw Android datasets without any code transforma-
tion. Afterward, we evaluate the systems on randomization transformation (Sect.
2.2). Table 11 shows the effectiveness comparison between the detection systems.
First, PetaDroid outperforms MalDozer in all the evaluation dataset without
code transformation. One major factor to this result is the usage of the machine
learning model ensemble to enhance the detection performance. Second, this
gap significantly increases when we use code transformation in the various eval-
uation datasets. PetaDroid preserves the high detection performance due to the
fragment randomization technique used in the training phase. As depicted in
Table 11, the evaluation result shows the enhancement that the fragment ran-
domization technique adds to the Android malware detection overall to enhance
the resiliency.

Table 11. PetaDroid and MalDozer Comparison

PetaDroid (F1 %) MalDozer (F1 %)

Raw-Randomization Raw-Randomization

MalGenome 99.6-99.3 98.1-92.5

Drebin 99.2-99.1 97.4-91.6

MalDozer 98.5-98.6 95.2-89.3

AMD 99.4-99.5 96.1-90.1

VShare 95.8-96.0 94.2-88.1

6 Related Work

The Android malware analysis techniques can be classified to static analysis,
dynamic analysis, or hybrid analysis. The static analysis methods [5,6,20,39]
use static features that are extracted from the app, such as: requested per-
missions and APIs to detect malicious app. The dynamic analysis methods
[8,16,21,36] aim to identify behavioral signature or behavioral anomaly of the
running app. These methods are more resistant to obfuscation. The dynamic
methods offer limited scalability as they incur additional cost in terms of process-
ing and memory. The hybrid analysis [15,25], combine between both analyses to
improve detection accuracy, which costs additional computational cost. Assum-
ing that malicious apps of the same family share similar features, some methods
[17,19,22], measure the similarity between the features of two samples (similar
malicious code). The deep learning techniques are more suitable than conven-
tional machine learning techniques for Android malware detection [41]. Research

PetaDroid: Adaptive Android Malware Detection Using Deep Learning 337

works on deep learning for Android malware detection are recently getting more
attention [18,43]. These deep learning models are more venerable to common
machine learning adversarial attacks as described in [9]. In contrast, PetaDroid
employs the ensemble technique to mitigate such adversarial attacks [37] and to
enhance the overall performance. In DroidEvolver [40], the authors use online
machine learning techniques to enhance the time resiliency of the Android mal-
ware detection system. In contrast, PetaDroid employs batch training techniques
instead of online training, which means that in each epoch t PetaDroid builds
new models using the extended dataset at once. We argue that batch learning
could generalize better since the training system has a complete view of the app
dataset. It is less venerable to biases that could be introduced by the order of
the apps in online training.

PetaDroid provides Android malware detection and family clustering
using advanced natural language processing and machine learning techniques.
PetaDroid is resilient to common obfuscation techniques due to code randomiza-
tion during the training. PetaDroid introduces a novel automatic adaption tech-
nique inspired from [24] that leverages the result confidence to build a new CNN
ensemble on confidence detection samples. Our automatic adaptation technique
aims to overcome the issue of new Android APIs over time, while other meth-
ods could be less resilient and might require updates with a manually crafted
dataset. The empirical comparison with state-of-the-art solutions, MaMaDroid
[31] and MalDozer [18], shows that PetaDroid outperforms MaMaDroid and Mal-
Dozer under the various evaluation settings in the malware detection effectiveness
and efficiency.

7 Limitation

Although the high obfuscation resiliency of PetaDroid showed in Sect. 4.3,
PetaDroid is not immune to complex obfuscation techniques. Also, PetaDroid
most likely will not be able to detect Android malware that downloads the pay-
load during runtime. PetaDroid focuses on the fingerprinting process on DEX
bytecode. Therefore, Android malware, which employs C/C++ native code, is
less likely to be detected because we do not consider native code in our fin-
gerprinting process. Covering native code is a possible future enhancement for
PetaDroid. We consider including selective dynamic analysis for low confidence
detection as future work. The latter will empower PetaDroid against sophisti-
cated obfuscation techniques. Also, PetaDroid system needs more validation on
real world deployments to check the performance as proposed in previous inves-
tigations [14,32]. Also, we need to check the correctness of the dataset split to
prevent bias results as a result of spatial bias and temporal bias [32]. In Sect. 5.3
and 7, we partially addressed this issues by (1) evaluating the system on tem-
poral splits from AndroZoo dataset and (2) employing collected samples dataset
(VirusShare) in addition to multiple references datasets.

338 E. B. Karbab and M. Debbabi

8 Conclusion

In this paper, we presented PetaDroid, an Android malware detection and family
clustering framework for large scale deployments. PetaDroid employs supervised
machine learning, an ensemble of CNN models on top of Inst2Vec features, to
fingerprint Android malicious apps accurately. DBScan clustering on top of Inst-
NGram2Vec and deep auto-encoders features, to cluster highly similar malicious
apps into their most likely malware family groups. In PetaDroid, we introduced
fragment-based detection, in which we randomize the macro-action of Dalvik
assembly instructions while keeping the inner order of methods’ sequences. We
introduced the automatic adaption technique that leverages confidence-based
decision making to build a new CNN ensemble on confidence detection samples.
PetaDroid achieved high detection (98–99% f1-score) and family clustering (96%
cluster homogeneity) performance. Our comparative study between PetaDroid,
MaMaDroid [31] and MalDozer shows that PetaDroid outperforms state-of-the-art
solutions on various evaluation settings.

References

1. Cyber attacks on Android devices on the rise (2018). https://www.gdatasoftware.
com/blog/2018/11/31255-cyber-attacks-on-android-devices-on-the-rise

2. Mobile OS market share (2019). http://gs.statcounter.com/os-market-share/
mobile/worldwide

3. Aafer, Y., Du, W., Yin, H.: DroidAPIMiner: mining API-level features for robust
malware detection in Android. In: Zia, T., Zomaya, A., Varadharajan, V., Mao, M.
(eds.) SecureComm 2013. LNICST, vol. 127, pp. 86–103. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-04283-1 6

4. Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y.: AndroZoo: collecting millions of
android apps for the research community. In: Proceedings of the 13th International
Conference on Mining Software Repositories (2016)

5. Amira, A., Derhab, A., Karbab, E.B., Nouali, O., Khan, F.A.: Tridroid: a triage
and classification framework for fast detection of mobile threats in android markets.
J. Ambient Intell. Humaniz. Comput. 12, 1731–1755 (2021)

6. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., et al.: DREBIN: effective and
explainable detection of Android malware in your pocket. In: Symposium Network
and Distributed System Security (2014)

7. Bai, Y., Xing, Z., Ma, D., Li, X., Feng, Z.: Comparative analysis of feature repre-
sentations and machine learning methods in android family classification. Comput.
Netw. 184, 107639 (2021)

8. Canfora, G., Medvet, E.: Acquiring and analyzing app metrics for effective mobile
malware detection. In: Proceedings of the 2016 ACM on International Workshop
on Security and Privacy Analytics (2016)

9. Chen, X., et al.: Android HIV: a study of repackaging malware for evading machine-
learning detection. IEEE Trans. Inf. Forensics Secur. 15, 987–1001 (2020)

10. Ding, S.H.H., Fung, B.C.M., Charland, P.: Asm2Vec: boosting static represen-
tation robustness for binary clone search against code obfuscation and compiler
optimization. In: Security and Privacy (2019)

https://www.gdatasoftware.com/blog/2018/11/31255-cyber-attacks-on-android-devices-on-the-rise
https://www.gdatasoftware.com/blog/2018/11/31255-cyber-attacks-on-android-devices-on-the-rise
http://gs.statcounter.com/os-market-share/mobile/worldwide
http://gs.statcounter.com/os-market-share/mobile/worldwide
https://doi.org/10.1007/978-3-319-04283-1_6

PetaDroid: Adaptive Android Malware Detection Using Deep Learning 339

11. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering
clusters in large spatial databases with noise. AAAI Press (1996)

12. Garcia, J., Hammad, M., Malek, S.: Lightweight, obfuscation-resilient detection
and family identification of Android malware. ACM Trans. Softw. Eng. Methodol.
26, 1–29 (2018)

13. Goodfellow, I., Bengio, Y., et al.: Deep Learning. MIT Press, Cambridge (2016)
14. Jordaney, R., et al.: Transcend: detecting concept drift in malware classification

models. In: 26th USENIX Security Symposium, USENIX Security 2017, Vancou-
ver, BC, Canada, August 16–18, 2017 (2017)

15. Karbab, E.B., Debbabi, M.: ToGather: automatic investigation of android mal-
ware cyber-infrastructures. In: Proceedings of the 13th International Conference
on Availability, Reliability and Security, ARES (2018)

16. Karbab, E.B., Debbabi, M.: Maldy: portable, data-driven malware detection using
natural language processing and machine learning techniques on behavioral anal-
ysis reports. Digit. Investig. 28, S77–S87 (2019)

17. Karbab, E.B., Debbabi, M., Derhab, A., Mouheb, D.: Cypider: building
community-based cyber-defense infrastructure for Android malware detection. In:
ACM Computer Security Applications Conference (ACSAC) (2016)

18. Karbab, E.B., Debbabi, M., Derhab, A., Mouheb, D.: MalDozer: automatic frame-
work for Android malware detection using deep learning. Digit. Investig. 24, S48–
S59 (2018)

19. Karbab, E.B., Debbabi, M., Derhab, A., Mouheb, D.: Scalable and robust unsuper-
vised android malware fingerprinting using community-based network partitioning.
Comput. Secur. 97, 101965 (2020)

20. Karbab, E.B., Debbabi, M., Mouheb, D.: Fingerprinting Android packaging: gen-
erating DNAs for malware detection. Digit. Investig. 18, S33–S45 (2016)

21. Karbab, E.M.B., Debbabi, M., Alrabaee, S., Mouheb, D.: DySign: dynamic finger-
printing for the automatic detection of Android malware. In: International Con-
ference on Malicious and Unwanted Software (2016)

22. Kim, J., al. Structural information based malicious app similarity calculation and
clustering. In: Proceedings of the 2015 Conference on Research in Adaptive and
Convergent Systems (2015)

23. Kim, Y.: Convolutional neural networks for sentence classification. CoRR (2014)
24. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive

uncertainty estimation using deep ensembles. In: Annual Conference on Neural
Information Processing Systems (2017)

25. Lindorfer, M., Neugschwandtner, M., et al.: Andrubis-1,000,000 apps later: a view
on current Android malware behaviors. In: Building Analysis Datasets and Gath-
ering Experience Returns for Security (BADGERS). IEEE (2014)

26. Maiorca, D., Ariu, D., Corona, I., Aresu, M., Giacinto, G.: Stealth attacks: an
extended insight into the obfuscation effects on Android malware. Comput. Secur.
51, 16–31 (2015)

27. Mariconti, E., Onwuzurike, L., Andriotis, P., De Cristofaro, E., Ross, G., Stringh-
ini, G.: MaMaDroid: detecting Android malware by building Markov chains of
behavioral models. In: NDSS (2017)

28. Massarelli, L., Aniello, L., Ciccotelli, C., Querzoni, L., Ucci, D., Baldoni, R.:
Android malware family classification based on resource consumption over time. In:
12th International Conference on Malicious and Unwanted Software, MALWARE
2017, Fajardo, PR, USA, October 11–14, 2017 (2017)

29. McLaughlin, N., et al.: Deep Android malware detection. In: CODASPY (2017)

340 E. B. Karbab and M. Debbabi

30. Mikolov, T., Sutskever, I., et al.: Distributed representations of words and phrases
and their compositionality. In: NIPS Neural Information Processing Systems (2013)

31. Onwuzurike, L., Mariconti, E., Andriotis, P., Cristofaro, E.D., Ross, G.J., Stringh-
ini, G.: MaMaDroid: Detecting Android malware by building Markov chains of
behavioral models (extended version). ACM Trans. Priv. Secur. 22, 1–34 (2019)

32. Pendlebury, F., Pierazzi, F., Jordaney, R., Kinder, J., Cavallaro, L.: TESSERACT:
eliminating experimental bias in malware classification across space and time. In:
USENIX (2019)

33. Rastogi, V., Chen, Y., Jiang, X.: DroidChameleon: evaluating android anti-
malware against transformation attacks. In: 8th ACM Symposium on Information,
Computer and Communications Security, ASIA CCS 2013 (2013)

34. Rosenberg, A., Hirschberg, J.: V-measure: a conditional entropy-based external
cluster evaluation measure. In: EMNLP-CoNLL (2007)

35. Shi, Q., et al.: Hash kernels. In: International Conference on Artificial Intelligence
and Statistics (AISTATS) (2009)

36. Suarez-Tangil, G., et al.: DroidSieve: fast and accurate classification of obfuscated
Android malware. In: Proceedings of the 7th ACM Conference on Data and Appli-
cation Security and Privacy (CODASPY 2017), pp. 309–320 (2017)

37. Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I.J., Boneh, D., McDaniel,
P.D.: Ensemble adversarial training: attacks and defenses. In: 6th International
Conference on Learning Representations, ICLR 2018 (2018)

38. Wei, F., Li, Y., Roy, S., Ou, X., Zhou, W.: Deep ground truth analysis of current
Android malware. In: Polychronakis, M., Meier, M. (eds.) DIMVA 2017. LNCS,
vol. 10327, pp. 252–276. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-60876-1 12

39. Wu, Y., Li, X., Zou, D., Yang, W., Zhang, X., Jin, H.: MalScan: fast market-
wide mobile malware scanning by social-network centrality analysis. In: 34th
IEEE/ACM International Conference on Automated Software Engineering (2019)

40. Xu, K., Li, Y., Deng, R., Chen, K., Xu, J.: DroidEvolver: self-evolving android
malware detection system. In: IEEE European Symposium on Security and Privacy
(2019)

41. Yuan, Z., Lu, Y., Wang, Z., Xue, Y.: Droid-Sec: deep learning in android malware
detection. In: ACM SIGCOMM Computer Communication Review (2014)

42. Zhang, X., Zhao, J.J., LeCun, Y.: Character-level convolutional networks for text
classification. In: Advances in Neural Information Processing Systems (2015)

43. Zhang, Y., et al.: Familial clustering for weakly-labeled Android malware using
hybrid representation learning. IEEE Trans. Inf. Forensics Secur. 15, 3401–3414
(2020)

44. Zhou, Y., Jiang, X.: Dissecting Android malware: characterization and evolution.
In: IEEE Symposium on Security and Privacy (SP) (2012)

https://doi.org/10.1007/978-3-319-60876-1_12
https://doi.org/10.1007/978-3-319-60876-1_12

Spotlight on Phishing: A Longitudinal
Study on Phishing Awareness Trainings

Florian Quinkert(B), Martin Degeling, and Thorsten Holz

Ruhr-Universität Bochum, Bochum, Germany
{florian.quinkert,martin.degeling,thorsten.holz}@rub.de

Abstract. Phishing is in practice one of the most common attack vec-
tors threatening digital assets. An attacker sends a legitimate-looking
e-mail to a victim to lure her on a website with the goal of tricking the
victim into revealing credentials. A phishing e-mail can use both techni-
cal (e.g., a forged link) and psychological vectors (e.g., an authoritarian
tone) to persuade the victim.

In this paper, we present an analysis of more than 420,000 phishing
e-mails sent over more than 1.5 years by a consulting company offering
awareness trainings. Our data set contains detailed information on how
users interact with the e-mails, e.g., when they click on links and what
psychological vectors are used in the e-mails to convince the recipient of
its legitimacy. While previous studies often used lab environments, the e-
mails in our data set are sent to real users during their day-to-day work
so that we can study their behavior in a genuine setting. Our results
indicate a continually decreasing click rate (from 19% to 10%) with pro-
gressing awareness training. We also found some psychological vectors,
including an authoritative tone and curiosity, to be more effective than
others to trick a user into falling for this type of scam e-mails.

Keywords: Phishing · Measurement study · Awareness training

1 Introduction

For businesses [18] and private persons [21], phishing is still one of the most com-
monly used attack vectors. In phishing, an attacker sends a legitimate-looking
message (often via e-mail) to a victim in order to lure her on a website under
the attacker’s control [11]. These e-mails have both technical (e.g., a forged link
or a spoofed sender address) and psychological characteristics (e.g., an author-
itarian tone or a luxurious offer) to convince victims of the message’s legiti-
macy [14,38]. If a victim enters sensitive information (e.g., passwords or credit
card information) on the attacker’s website, the adversary can use it for malicious
purposes, such as identity theft or financial fraud. The Anti-Phishing Working
Group (APWG) announced the detection of about 147.000 phishing websites
in the second quarter of 2020 [2], an increase of about 25,000 compared to the
fourth quarter of 2018 [1]. Due to the popularity of this attack technique, it is
crucial to understand why users fall for phishing and study methods that help
us to educate them accordingly.
c© Springer Nature Switzerland AG 2021
L. Bilge et al. (Eds.): DIMVA 2021, LNCS 12756, pp. 341–360, 2021.
https://doi.org/10.1007/978-3-030-80825-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80825-9_17&domain=pdf
https://doi.org/10.1007/978-3-030-80825-9_17

342 F. Quinkert et al.

Previous research in this area already studied users’ susceptibility to phish-
ing [5,11] and proposed different education methods [7,26,27]. Multiple stud-
ies analyzed how psychological and technical vectors are used in phishing
attacks [6,12,13,34]. These studies rely on experiments with a limited number
of participants (typically students), often in a (potentially artificial) lab environ-
ment. As a result, we argue that existing work is limited in its generalizability,
and it remains unclear which factors influence a victim’s likelihood of falling for
this type of scam e-mails in a real-world setting.

In this paper, we present a comprehensive analysis of phishing e-mails sent
by a consulting company. In this paper, we refer to it as PhishCo as pseudonym.
Clients hire PhishCo to send phishing e-mails to their employees to raise security
awareness within the company. A key aspect of PhishCo’s approach is to create
phishing e-mails that are as close as possible to real-world phishing e-mails.
For that purpose, they analyze real-world phishing e-mails and use the same
techniques in their own e-mails. In particular, they use a combination of 14
different psychological and technical characteristics and customize the phishing
e-mails to fit the hiring company’s business.

PhishCoprovided us with a data set consisting of 429,418 e-mails sent over
almost 1.5 years to employees of 77 different clients. For each e-mail, the data
set contains detailed information about both the sent e-mail (e.g., used psy-
chological and technical vectors) and the employees’ interaction with it (e.g.,
when the provided link was clicked). The data set is anonymized and does not
contain any personally identifiable information (PII) related to the employees’
interaction. Unlike previous studies, the e-mails were sent to actual employees
of companies belonging to a variety of industrial sectors during their day-to-day
routine instead of a lab environment. Furthermore, the sent e-mails are close
to real-world phishing e-mails so that we firmly believe employees likely behave
similarly to when they receive a real phishing e-mail. In addition, the number
of analyzed e-mails in our data set is substantially larger than previous studies,
further improving the generalizability of our results.

In our analysis, we discovered an improving click rate over time. That is,
employees clicked less often on the provided links in phishing e-mails in later
phases, demonstrating that sending phishing e-mails to employees over a long
time can be helpful to counter carelessness. Moreover, we found that the psycho-
logical vector authority has the most significant positive influence, i.e., employees
were more likely to click on a link in an e-mail if this vector was used.
In summary, we make the following key contributions in this paper:

– We analyze a data set that is magnitudes larger than ones used in previous
studies and consists of (fake) phishing e-mails that use both technical and
psychological vectors to deceive users, enabling us to empirically study their
influence on a large scale.

– In contrast to the majority of previous publications, we do not rely on an arti-
ficial lab environment, but gain insights into user’s behavior when receiving
(fake) phishing e-mails during their day-to-day routine over about one year.

A Longitudinal Study on Phishing Awareness Trainings 343

– Our results show a constantly improving click rate over time, indicating that
long-lasting awareness training can help users to better identify phishing e-
mails.

The remaining of this paper is structured as follows: in Sect. 2, we intro-
duce background information and present related work. Afterwards, we explain
PhishCo’s approach and the workflow in Sect. 3, and then present the measure-
ment results in Sect. 4. Finally, we discuss lessons learned, limitations, and ethical
considerations of our work in Sect. 5 and conclude along with recommendations
in Sect. 6.

2 Background and Related Work

In this section, we describe related work which dealt with technical and psycho-
logical vectors. In addition, we present related phishing surveys.

2.1 Technical Vectors

An attacker creates a phishing e-mail that imitates a legitimate message ide-
ally so that a victim might expect such an e-mail. For example, an attacker
uses actual e-mails from the targeted company as templates, generates a simi-
lar layout, and includes company logos to let the e-mail look believable [29,35].
Moreover, an attacker can try to mimic the writing style and tone of the targeted
companies’ e-mails [40]. Many recipients judge incoming e-mails based on the
sender’s e-mail address so that spoofing this address is a preferred method to
persuade victims [19]. PhishCouses comparable techniques (e.g., layout similar-
ity, writing style, and spoofed e-mail addresses) to create believable e-mails and
convince clients’ employees to open the sent e-mails.

Furthermore, an attacker needs plausible domains to lure victims on web-
sites under the attackers’ control. Previous publications studied multiple tech-
nical attack techniques for that purpose, which are often referred to as domain
squatting techniques. In typosquatting, an attacker creates a domain which dif-
fers from a well-known domain only by a typical typing error, e.g., paypl.com
or paypaal.com [3]. A combosquatting domain consists of a well-known domain
with added suitable terms so that the resulting domain still looks believable, e.g.,
bankofamerica-security.com or secure-paypal.com [23]. A domain cannot
only contain Latin letters but also letters from other alphabets, such as Cyril-
lic. An attacker can replace one or multiple characters in well-known domain
with similar looking characters from other alphabets, e.g., bankofámerica.com,
which is referred to as homograph domain [33]. Registering a domain which
sounds similar to a well-known domain, e.g., guaranty-bank.com instead of
guarantee-bank.com, is called soundsquatting [30]. PhishCoregistered a set of
domains using such techniques to use them in their e-mails sent to clients’
employees as part of the awareness campaigns.

344 F. Quinkert et al.

2.2 Psychological Vectors

Attackers do not only use technical vectors but also psychological ones, e.g.,
to create pressure or letting the victim feel important. Eventually, psycholog-
ical vectors aim at convincing a victim to click on a link or open a provided
attachment so that the attacker can, for example, collect personal information.
Cialdini et al. introduce the six principles of persuasion and provide multiple
examples of successful applications [9]. Similarly, Gragg analyzes triggers used
to perform successful social engineering attacks and derives multiple defenses to
counter these triggers [16]. Stajano et al. present principles based on real-life
scams and conclude that security designers have to remember these principles in
the development process [36]. Ferreira et al. combine the vectors of Cialdini et
al., Gragg, and Stajano et al. to five principles of persuasion in social engineer-
ing attacks [12]. In a follow-up study, they extract the most effective elements
of phishing e-mails and analyze them with regard to the previously introduced
principles [13]. Van der Heijden et al. use the principles introduced by Cialdini
et al. to build a classifier estimating how likely a human will fall for a certain
phishing mail so that response teams in companies can prioritize incoming phish-
ing e-mails [17]. Williams et al. conduct studies to analyze the effects of urgency
and authority in e-mails [39]. PhishCouse a subset of these psychological vectors
identified in prior publications for use in e-mails sent to clients’ employees.

2.3 Phishing Surveys

Dhamija et al. present a user study in a lab environment with 22 participants,
who classify 20 websites into legitimate and malicious [11]. Kumaraguru et al.
introduce an embedded training method and a game to teach users how to iden-
tify phishing e-mails and malicious URLs [26]. In a follow-up study, Kumaraguru
et al. use their training method and conduct a study with 515 faculty, staff, and
students from Carnegie Mellon University, who received 10 e-mails within 28
days [25]. Caputo et al. send three phishing e-mails to 1,359 participants, show
training material to a subset of them, and analyze whether it prevents partici-
pants from clicking on links in phishing e-mails [8]. Butavicius et al. ask 121 uni-
versity students to classify 12 e-mails into legitimate, phishing, and spearphish-
ing [6]. Rajivan et al. perform a two-phase experiment in which 105 partici-
pants first create phishing e-mails, which are classified in a second phase along
with legitimate e-mails by 340 other participants [34]. Oliviera et al. conduct
an experiment with 158 participants to understand whether younger persons
or older persons have a different susceptibility for phishing attacks [31]. For
that purpose, they sent spearphishing e-mails to the participants on 21 consec-
utive days in their day-to-day life. They concluded that older women were most
prone to phishing attacks. Petelka et al. analyze the effect of different positions
for suspicious URL warnings (close to suspicious URL, display on hovering the
suspicious URL, deactivating the original URL and let user click it in the warn-
ing) [32]. 701 participants recruited via Mechanical Turk opened e-mails in a
lab environment and answered questions about the e-mails. Wash et al. explore

A Longitudinal Study on Phishing Awareness Trainings 345

the influence of training users with facts about phishing or stories of previous
victims to reduce the users’ susceptibility for phishing [37]. They sent phishing
e-mails to 2,000 faculty members out of which 26,8% clicked on a link in an e-
mail. Afterwards, these participants got one form of the aforementioned phishing
training. The authors inferred that facts about phishing is the more convincing
form of phishing training.

While some of the previously mentioned publications already sent e-mails to
actual users in their day-to-day business, they still often rely on artificial lab
environments and a comparably small number of participants. In contrast, we
base our survey on a much larger data set, not collected in artificial lab envi-
ronments, but during day-to-day business. Hence, we believe that the observed
user reaction for our data set is likely very similar to actual phishing attacks.
Furthermore, PhishCo’s fake phishing campaigns last for one year which is a
lot longer than previous studies, enabling long-term observations. In addition,
our data set covers more employees from a wider variety of industry sectors
and does not focus on employees/students from one company/university. We are
convinced that this aspect further improves the generalizability of our results.

3 PhishCo’s Approach

In the following, we describe PhishCo’s approach and how our data set is gen-
erated. We first characterize how PhishCocreates e-mail templates, followed by
a description of the process when a company hires PhishCo.

3.1 E-Mail Generation

PhishCo offers awareness training and educational material in combination with
sending (fake) phishing e-mails for one year. To avoid copyright infringements,
the e-mails do not contain content from well-known companies, i.e., PhishCodoes
not send, for example, a fake Paypal or Amazon e-mail. Instead, PhishCoanalyzes
real-world phishing e-mails and creates e-mail templates which replicate typical
content of phishing e-mails. PhishCocreates templates for different industrial
sectors, such as finance or education, and customizes the templates for each
client with respect to e-mail signatures and senders. Furthermore, each template
utilizes a combination of psychological and technical vectors to convince victims
of its legitimacy. PhishCo uses 14 different psychological and technical vectors
in the templates, following publications on phishing and behavioral psychology
discussed above. The psychological vectors include phrases drawing the victim’s
interest (curiosity) or flattering the recipient (praise/flattering). The technical
vectors contain, for example, the use of a spoofed e-mail address (mail address
spoofing) or domains similar to a well-known one (domain squatting). Table 1
provides a full list of the used vectors, which we will analyze in detail in Sect. 4.4.
The majority of templates use two or three of these vectors, which we will analyze
in more detail in the next section.

346 F. Quinkert et al.

Fig. 1. Sample e-mail which has been sent to an employee of a client using the vectors
pressure/anxiety, trust/intimacy, and input mask

Figure 1 shows an example of an e-mail that was sent to an employee as
part of a campaign. The e-mail claims that the employee’s account was com-
promised and requests a change of the corresponding password. It provides a
link along with information on how to pick a new password and uses three of
the aforementioned psychological and technical vectors. First, pressure/anxiety
by pretending the employee’s account was compromised and suggesting a possi-
ble data breach as a consequence. Second, the e-mail utilizes trust/intimacy by
addressing the employee with his/her name (redacted in the example e-mail),
appearing to be helpful, and pretending to be from an official security provider
of the client. Third, the e-mail uses the technical vector input mask when the
employee clicks on the change password link. That is, it will show input fields,
asking the employee for his current password and a new one. PhishCoprevents
data leakage by disabling input fields if a user actually tries to enter a password
or, in other cases, similar private information. The URL uses the scheme client-
company.example.com, i.e., a vigilant employee could detect that it is not the
client’s website.

Figure 2 shows a second example e-mail, which appears to be a job applica-
tion. The job description is rather generic, so that most companies will likely
search for applicants in this area. The e-mail uses the vector curiosity because
the receiving employee is tempted to take a look at the documents in the attach-
ment or dropbox (especially if the employee is working in the HR department).
The vectors attachment and link execution refer to the attached documents and
the link in the e-mail. The URL uses the scheme dropbox.example.com so that
a careful employee could identify it as a link that does not lead to the actual
dropbox website.

Analyzing real-world phishing e-mails and using them as basis for the sent
e-mails along with using psychological and technical vectors ensures that the
e-mails sent to clients’ employees are close to real-world phishing e-mails. We

A Longitudinal Study on Phishing Awareness Trainings 347

Fig. 2. Second sample e-mail which has been sent to an employee of a client using the
vectors curiosity, attachment, and link execution

argue that analyzing the interaction of employees with these e-mails allows us
to make conclusions about how users understand real-world phishing e-mails.

3.2 Workflow with Client

Clients hire PhishCo to train their employees on how phishing works, enabling
them to identify malicious phishing e-mails in their day-to-day routine. Each
training campaign consists of two phases (called P1 and P2 in the following)
and usually runs for at least one year:

– In phase P1, which only lasts a couple of weeks, each employee receives less
than five phishing e-mails.

– In phase P2, PhishCo sends less than 15 phishing e-mails to each employee
distributed over the remainder of the year-long campaign.

The shorter phase P1 informs employees about the general problem of phish-
ing, raises awareness, and allows teaching them not to fall for phishing. The
longer phase P2 enables both reviewing and deepening employees’ phishing
understanding and knowledge. Before a campaign starts, the client notifies its
employees that a phishing training will be conducted. The whole process is per-
formed in accordance with data privacy laws, and both the data protection
officer and the workers’ council are made aware of the training. To ensure that
the phishing e-mails reach the targeted employees, the client whitelists incoming
e-mails from PhishCo.

Each e-mail sent to an employee contains a link to draw the employee’s
interest. If an employee clicks a link, he/she is notified that the e-mail was sent
by PhishCo. Furthermore, PhishCo notes when an e-mail was sent and whether
and when the link in the e-mail was clicked. Additionally, the e-mails contain a
tracking pixel so that PhishCocan also log when an e-mail is opened by a client’s
employee.

For data protection, the collected data does not contain any information
about the employee so that no personally identifiable information is stored.

348 F. Quinkert et al.

Fig. 3. Number of sent and clicked e-mails as a function of the weekday. The figure
uses a logarithmic scaling on the y-axis to show that at least a small number of e-mails
are clicked on Saturdays and Sundays.

Hence, neither we nor the client can link multiple e-mails to the same employee
and measure the employee’s performance. That is, a client cannot use collected
data for disciplinary punishments or releases of employees.

4 Results

Next, we present the results of our data analysis. We start with a short descrip-
tion of the data set, followed by an analysis of the send and click times, the
distribution among clients, the psychological and technical vectors, the click
rate, and the effect of the psychological vectors.

4.1 Data Set

The data set we use for this study covers a period between November, 19th
2018, and April, 10th 2020. It consists of 429,418 e-mails sent in campaigns for
77 distinct clients. All 77 campaigns finished phase one (P1), and 14 campaigns
already completed the full phase two (P2). On average, P1 lasts 20.22 days
(standard deviation 9.67, minimum of 2, and a maximum of 73 days). P2 of
the 14 finished campaigns lasted, on average, 285.29 days (standard deviation
115.53, minimum of 54 days, and a maximum of 372 days). The definite number
of days in P1 and P2 depends on the agreement between PhishCo and the client,
which explains the differences in the time periods.

4.2 Send and Click Times

Figure 3 depicts the number of sent and clicked e-mails per weekday. Note that
the y-axis uses a logarithmic scaling. About 86.000 phishing e-mails are sent

A Longitudinal Study on Phishing Awareness Trainings 349

Fig. 4. Number of sent and clicked e-mails as a function of the hours of the day.

on average on a weekday. Thursday is the weekday with the lowest number
of sent e-mails (85,494 e-mails), while Tuesday is the weekday with the highest
number of sent e-mails (86,418). A chi-square test against a uniform distribution
shows that e-mails are evenly distributed among the weekdays (p-value < 0.01).
Usually, PhishCo does not send e-mails on the weekend, besides a few ones on
Saturdays for testing purposes. At the beginning of the week, employees click
PhishCo’s e-mails more often, with numbers decreasing from Monday to Friday.
Overall, the number of clicked e-mails remains in the same magnitude. Most
employees work from Monday to Friday and regularly check their e-mails so
that the similar distribution among workdays is not surprising. On the weekend,
only a few employees click e-mails because most employees do not work during
the weekend. Furthermore, PhishCo only sends a minimal number of e-mails on
the weekend.

Figure 4 shows the number of sent and clicked e-mails as a function of
the hours of the day. Similar to the previous analysis, we added a table to
Appendix A, which contains more detailed information on the sending and click-
ing times of the day. E-mails are sent during working hours from 8 AM to 8 PM.
Employees interact with the e-mails especially in the morning and after lunch,
with clicks decreasing during the night because most employees are likely asleep.

The observed days and times are similar to the interaction with marketing
e-mails reported by multiple analyses [4,20,28] and show a typical diurnal pat-
tern. Our data set suggests that sending e-mails early in the morning and after
lunch as well as earlier during the week could further improve the effectiveness of
the phishing e-mails because employees handle their e-mails especially at these
times. In addition, clicking e-mails at the weekend or late in the evening can have
multiple reasons. For example, employees can be in a different time zone than
PhishCo, which sent the e-mails, or they are working long hours. Moreover, it can
indicate that e-mails are opened outside the company’s infrastructure. Using pri-
vate, not properly secured devices can pose a security threat. Late in the evening

350 F. Quinkert et al.

and at night, we find only a few interactions because most employees are likely
asleep. Interaction with e-mails starts already at 6 AM when the first employees
start working. Therefore, our data suggest that starting to send e-mails already
at 6 AM could reach many employees while they start their workday. Further-
more, customizing the sending times closer to times, reflecting the interaction
times, could further improve the effectiveness of the phishing e-mails.

4.3 Distribution Among Clients

Our data set contains campaigns for 77 clients. On average, 5,576 e-mails are
sent to employees of each client (standard deviation 8752.45, minimum 103, and
maximum 42,268). The high standard deviation, along with the minimum and
maximum of e-mails per client, indicates a large difference in e-mails per client.
The number of e-mails per client highly depends on the number of employees
and the point of time in the campaign, e.g., our data set contains only very few e-
mails for a small client in an early stage of a campaign. In contrast, a client with
many employees will account for a lot more e-mails. The top three clients are
responsible for about 25% of all sent e-mails, and the top eight clients for about
50% of all sent e-mails. The results indicate that our data set contains both big
and small companies, which improves the generalizability of our analysis.

4.4 Psychological and Technical Vectors

PhishCo uses the psychological and technical vectors in e-mails with different
frequencies. In some cases, clients request the usage of specific vectors, e.g.,
because they have been targeted with a similar vector before. Additionally,
PhishCo gained experience over time, which vectors result in higher click rates.
Table 1 depicts the number of sent and clicked e-mails per psychological and
technical vector. Each vector was used in at least 10,000 e-mails. The most used
psychological vector is trust/intimacy, followed by curiosity, and pressure. In case
of technical vectors, domain squatting, sender spoofing, and attachment are most
common. We will analyze how successful and promising the different vectors are
along with the best combinations of vectors in Sect. 4.7. Usually, PhishCouses
not only one vector in an e-mail but also combines multiple vectors to get a
convincing e-mail. Table 2 shows the distribution of co-occurrences of vectors.
The most common one is pressure and trust/intimacy.

4.5 E-Mail Timeline

We now analyze how fast employees click on a link after they opened an e-mail.
We argue that a prolonged time between opening and clicking from P1 to P2
indicates that employees think longer about whether it is a legitimate e-mail or
not. Even though the employee eventually clicked on the link, it can indicate a
better understanding of how phishing works and lead to a correct decision for
future e-mails.

A Longitudinal Study on Phishing Awareness Trainings 351

Table 1. Overview of psychological (P) and technical (T) vectors used in e-mails sent
to participants.

Vector Description Sent Clicked

Pressure (P) Urges victim to act, e.g., by giving short time
to reply

178,946 14.31%

Curiosity (P) Appealing to the recipient’s curiosity, e.g.,
using a catchy subject

203,790 13.76%

Financial appeal (P) Pretends a fiscal advantage for the victim,
e.g., by offering a discount

35,536 7.34%

Trust/intimacy (P) Pretends to be from a known person, e.g., by
using the victim’s name

280,773 9.21%

Praise/flattering (P) Flattens the recipient, e.g., by addressing her
as valuable resource

148,645 9.21%

Helpfulness (P) Asks recipient to help, e.g., by taking part in a
survey

64,288 15.15%

Authority (P) References hierarchies e.g., pretending to be
from a superior

38,616 14.13%

Attachment (T) Contains an attachment 156,939 16.31%

Input mask (T) Website behind link in e-mail contains an
input field

104.399 17,24%

Link (T) Tries to motivate a victim to open a link 96,538 19.40%

Bulk mailing (T) Addressed to a larger audience, e.g., all tax
consultants

12,822 9.43%

Reply/forward (T) Forwards another e-mail, e.g., offering
discounts

10,750 6.84%

Sender spoofing (T) Pretends to be from different sender than it is,
e.g., a co-worker

203,353 11.90%

Domain squatting (T) Contains domain similar to well-known one 79,458 8.15%

As explained earlier, the opening of an e-mail is only recorded if a tracking
pixel is triggered. Therefore, it is possible that employees opened e-mails but
their systems blocked the tracking pixel. In such cases, we can still understand
whether an e-mail was opened when a link in the e-mail was clicked. However,
in the following, we focus on e-mails for which we have the opened and the
clicked times to have a consistent data set. We identified 33,265 e-mails which
were opened and clicked. Calculating the time between opening and clicking
revealed that 753 e-mails were clicked after more than one week and 166 even
after more than a month. This is noteworthy because it shows that employees
sometimes click on links in phishing e-mails even after a long time has passed. As
a countermeasure, companies should blacklist URLs of known phishing e-mails
to prevent harm from later clicked e-mails and already handled phishing cases.

17,161 e-mails belong to P1 and 13,674 e-mails to P2. In the following, we
focus on the first five minutes after opening an e-mail because we consider it to
be most likely that employees did not interrupt handling the particular e-mail
when the link is clicked in this time frame. In P1, 12,243 e-mails (71.34%) and in

352 F. Quinkert et al.

Table 2. Co-occurences of vectors in the dataset

Pressure Curiosity Financial Trust Flattering Help Authority

Pressure 65,581 14,399 169,990 189 50,883 31,357

Curiosity 10,969 131,613 4174 15,353 18,890

Financial 8379 504 773 419

Trust 3979 43,283 16,960

Flattering 0 0

Help 13,043

Table 3. Summary of sent and clicked e-mails along with click rate in relation to total,
phase 1 (P1), and phase 2 (P2) numbers.

Total Phase 1 (P1) Phase 2 (P2)

Sent 429,418 168,859 260,559

Clicked 59,689 32,188 27,501

Click rate 13.90% 19.06% 10.55%

P2, 9,810 e-mails (71.74%) were clicked within the first five minutes. On average,
it took 1.26 min in P1 and 1.34 min in P2 from opening to clicking. That is, even
though the employees eventually took a wrong decision, they spent, on average,
more time on assessing the e-mails. A t-test of the average processing times in
P1 and P2 led to a test statistic of −6.42 and a p-value below 0.01. Hence, the
difference is significant.

In summary, our results show that links in phishing e-mails are opened even
after a long time. Furthermore, constantly sending phishing e-mails leads to more
time spent on a single e-mail.

4.6 Click Rate

The click rate is the percentage of e-mails in which the receiving employee clicked
on the provided link. In particular, we focus on the differences between phase
one (P1) and phase two (P2). We are interested in how the click rate changes
between P1 and P2 because a lower click rate in P2 indicates that the employees
of a client gained a better understanding of how phishing e-mails look like. Note
that we cannot make a statement about the performance of single employees,
as this data is not collected. Table 3 summarizes the number of sent and clicked
e-mails along with the click rate for both total numbers and split between P1
and P2. In summary, it shows a decreasing click rate. In this section, we use all
sent e-mails, regardless of whether the tracking pixel worked and indicated an
opening of a particular e-mail because we focus on clicked e-mails to calculate
the click rate. Therefore, the numbers for clicked e-mails in P1 and P2 differ
from the numbers in the previous section, in which we used only e-mails which
have been opened, indicated by the tracking pixel.

A Longitudinal Study on Phishing Awareness Trainings 353

In total, PhishCo sent 429,418 e-mails to clients’ employees, out of which
59,689 e-mails were clicked. Hence, the click rate is 13.90%. Due to the absence
of large-scale academic studies analyzing such numbers for real-world phishing,
it is difficult to compare the click rate with other publications. The security
company KnowBe4 reported a click rate of 27% for an initial phishing test,
even though it remains unclear how the click rate is calculated in that particular
case [24]. The Canadian government presented an infographic saying that in 10%
of phishing e-mails a link is clicked [15]. When we take into consideration that
PhishCo sends highly targeted phishing e-mails where the sender is whitelisted,
an overall click rate close to real-world phishing e-mails is what we expected.

Out of the 429,418 e-mails in the data set, 168,859 were sent as part of P1
and 260,559 in P2. The number of sent e-mails in P2 is higher because it lasts
up to 49 weeks compared to a couple of weeks in P1. In P1, links were clicked in
32,188 (19.06%) e-mails. The click rate in P1 is (as would be expected) higher
as it is an initial test of the employees’ phishing awareness.

In P2, the links in 27,501 e-mails were clicked, which leads to a click rate of
10.55%. Hence, the click rate improves by about eight percentage points or 42%
for e-mails sent in P2 compared with P1. A possible explanation for this drop is
a familiarization with the concept of phishing and this type of scam e-mails.

In addition to the improvement from P1 to P2, we expected an ongo-
ing improvement during P2, based on the assumption that additional e-mails
increase employees’ understanding of phishing. Figure 5 shows the click rate
improvement as a function of three months long intervals in P2. For each e-mail,
we calculated the interval in which the e-mail was sent to an employee based on
the start date of P2 for the corresponding client. Afterwards, we calculated the
click rate as described previously and the click rate improvement compared to
P1 (for the first interval) or the previous interval (for intervals two to n). Since
not all clients have already finished P2, the number of clients decreases from
interval to interval. Over time the click rate not only decreases, but this positive
trend intensifies over time. This effect emphasizes the importance of long term
training, showing that raising awareness over a long-time is helpful. There is a
positive (r = 0.21) significant correlation (p = 0,002) between the improvement
and the interval.

Besides analyzing the overall click rate, it is interesting to see how the click
rate differs per client, which we further analyze in the following. Our data set
contains 77 unique clients, which have an average click rate of 12.49% with a
standard deviation of 4.81. In P1, the 77 clients reach an average click rate of
15.65% (standard deviation 7.18) and in P2 an average click rate of 10.37%
(standard deviation 4.97). The mean values for P1 and P2 again indicate an
improvement. Comparing the average click rates of both phases, we found 61
clients who improved their click rate from P1 to P2 (minimum improvement
−0.1%, and maximum improvement −26.22%). In contrast, 16 clients did not
improve or decrease their click rate (minimum deterioration 0.59% and maximum
deterioration 7.12%). Figure 6 shows a scatter plot with each dot representing a
client. The clients’ position is defined by their click rate in P1 (x-axis) and P2

354 F. Quinkert et al.

Fig. 5. Improvement compared between intervals

(y-axis). Clients below the line improved their click rate from P1 to P2. Besides
the already discussed result that most clients improved their click rate, it shows
that clients who did not improve their click rate are close to the line, i.e., they
did not decrease their click rate much.

Our results reveal a decreasing click rate from P1 to P2. In addition, the click
rate further decreases within P2, which emphasizes the importance of long-term
awareness training. Finally, the sending of fake phishing e-mails proofed to be
useful for the majority of clients, as 61 out of 77 improved their click rate.

4.7 Effect of Psychological Vectors

Fig. 7 shows the click rate for templates with specific vector combinations. A chi-
square test shows that the clickrate and the vector combinations are statistically
independent. The template with the highest click rates was comprised of text,
including the psychological vectors pressure, curiosity, trust, and authority (34%
click rate) as well as curiosity, trust, and authority. These e-mails all pretend to
contain company internal information like updated emergency plans or training
for IT security incidents as well as CEO Fraud [10] style e-mails. Those e-mails
with the combination of curiosity, financial, trust, flattering (3%), or curiosity
and help (6%) had low click rates. They mostly came from external contacts and
either contained flattering invitations, e.g., for TV interviews or pretended to be
customer e-mails.

Our results show a trend that confirms previous work that also found e-mails
that claim to come from an “authority” to increase the click rate [39]. At the
same time, our data shows that financial incentives – offering money or lucrative
deals – often lead to lower click rates.

A Longitudinal Study on Phishing Awareness Trainings 355

Fig. 6. Click rate in phase one (P1) (x-axis) and phase two (P2) (y-axis). Clients below
the line improved their click rate.

5 Discussion

Compared to other publications, our data set is magnitudes larger than ones used
in previous studies, covers longer time periods, and characterizes how employees
react to phishing in their day-to-day business. In this section, we discuss our
main results and compare them with previous publications.

We can confirm the results of Butavicius et al. that an authoritative tone
increases the susceptibility of users to fall for phishing e-mails [6]. However,
Butavicius et al. tested only authority, scarcity (similar to the vector “trust” in
our data set), and social proof, which we do not have in our data set. The fact
that “trust” also has a positive impact on the click rate can explain why CEO
Fraud [10] has become so “successful” in practice. Coaxing users into giving away
their information or offering financial gain, which is common in certain types of
scams, is less successful in comparison. In contrast to e-mails using authority
and trust, those which appear to offer financial benefits are less common in
typical office situations and might, therefore, be easier to identify for many users.
Furthermore, users often associate scam with a financial gain, e.g., the so-called
Nigerian scam [22], so that they are more cautious. Even though some vectors
led to higher click rates, we consider the variety of used vectors beneficial. Users
are exposed to a wide range of phishing e-mails they might face in real world,
which improves the chances that they do not click on an actual phishing e-mail
when they receive it.

Additionally, our results show an improved click rate from P1 to P2 and
further within P2. We did not observe an increasing click rate in later phases
of P2, which could be an indicator of declining awareness. Hence, PhishCo’s
approach has a long-lasting effect on an employee’s ability to identify phishing
e-mails. Therefore, raising awareness by regularly sending phishing e-mails helps

356 F. Quinkert et al.

Fig. 7. Clickrates for various vector combinations

to educate employees. In contrast to our work, Oliviera et al. could not determine
a connection between the day in their 21 days long study and a click on a link [31].
The time period of only 21 days might be too short to already see an increased
understanding of how phishing works.

5.1 Limitations

Our data set has several constraints that limit our analysis. First, we cannot
evaluate the performance on a per-employee basis because PhishCo does not
provide information to connect e-mails sent to the same employee. While this
could potentially lead to interesting insights, data privacy concerns outweigh the
benefits. In our study, we can still examine the changing performance on a per-
client basis and deduce the overall improving performance. Second, our data set
contains only phishing e-mails so that we cannot infer whether employees evalu-
ate legitimate e-mails differently, such as spending more time to decide whether
it is legitimate. Third, our data set contains only e-mails sent by PhishCo,
i.e., no real-world phishing e-mails. Therefore, we cannot assess the influence
of PhishCo’s e-mails on employees’ ability to identify actual phishing e-mails.
However, PhishCo replicates real-world phishing e-mails they identify in the wild
so that the e-mails in our data set are as close to real phishing e-mails as possible
without using actual phishing e-mails.

A Longitudinal Study on Phishing Awareness Trainings 357

5.2 Ethical Considerations

Our research institution does not have an IRB for computer science so that we
could not get an IRB review to perform this study. However, as noted above,
the data set we received from PhishCo does not contain any personal informa-
tion about single employees or clients, but only technical information about the
sent e-mails and meta data about when an e-mail was opened or a link in an
e-mail clicked. Additionally, PhishCoprevented the accidental collection of pri-
vate information by blocking employees from entering information in input fields
on landing pages. Furthermore, due to the absence of personal information, it
is not possible to identify an employee receiving an e-mail or identify multiple
e-mails received by the same employee. That is, neither a client nor we can assess
the performance of single employees based on the collected data. While we do
not have the employees’ consent for our analysis, the clients in advance notify
their employees that a phishing awareness training will take place. Furthermore,
PhishCo informs the employee that it was a phishing e-mail sent by them imme-
diately after the employee clicked on a link. In summary, ethical concerns were
considered during our study as the data set provided by PhishCobecause is fully
pseudonymized and it is not possible to make statements about employees or
clients. Employees who received fake phishing e-mails had no disadvantage but
got an opportunity to better understand how phishing works.

6 Conclusion and Recommendations

In this paper, we presented a detailed analysis of more than 420,000 phishing
e-mails sent during more than 1.5 years as part of phishing awareness trainings
performed in 77 companies. Compared to other publications, our data set is
magnitudes larger than those used in other studies. Furthermore, the sent e-
mails use 14 different technical and psychological vectors to create believable
e-mails as close as possible to actual phishing e-mails. In contrast to multiple
other studies, the e-mails were sent during employees day-to-day business instead
of a lab situation. This leads to several unique insights into how people interact
with phishing e-mails.

Employees continuously improve their click rate according to our results so
that we recommend long-lasting awareness training instead of short-term ones.
Similar to other publications, we identified the concept of authority as being the
most successful and hence empirically confirmed this insight. Sending a variety
of phishing e-mails that use different psychological and technical vectors proved
to be useful so that employees are aware of different possible phishing schemes.
Hence, we suggest using a diverse set of phishing e-mails, combined with current
phishing trends, and phishing e-mails observed at the own institution to conduct
successful phishing awareness trainings. An analysis of the interaction times
revealed that employees especially interact with the sent e-mails at the beginning
of the week, early in the morning, and after lunch. Therefore, we recommend
focusing on these days and times to perform awareness trainings.

358 F. Quinkert et al.

A Detailed Information

Table 4 provides more detailed numbers on the e-mails per hour with reference
to the categories sent and clicked.

Table 4. Total number of sent and clicked e-mails along with the numbers and per-
centages per hour of the day.

Total # of e-mails Sent Clicked

429,418 59,689

Hour 0 164 (0.04%) 307 (0.59%)

Hour 1 173 (0.04%) 406 (0.68%)

Hour 2 123 (0.03%) 366 (0.61%)

Hour 3 0 (0.00%) 257 (0.43%)

Hour 4 0 (0.00%) 212 (0.36%)

Hour 5 0 (0.00%) 533 (0.89%)

Hour 6 0 (0.00%) 1744 (2.92%)

Hour 7 540 (0.13%) 3926 (6.58%)

Hour 8 36246 (8.44%) 5955 (9.98%)

Hour 9 36026 (8.39%) 6058 (10.15%)

Hour 10 35684 (8.31%) 5191 (8.70%)

Hour 11 36515 (8.50%) 4673 (7.83%)

Hour 12 37511 (8.74%) 4429 (7.42%)

Hour 13 35836 (8.35%) 4708 (7.89%)

Hour 14 36040 (8.39%) 4694 (7.86%)

Hour 15 36217 (8.43%) 4091 (6.85%)

Hour 16 34557 (8.05%) 3317 (5.56%)

Hour 17 34642 (8.07%) 2520 (4.22%)

Hour 18 35266 (8.21%) 1880 (3.15%)

Hour 19 33208 (7.73%) 1629 (2.73%)

Hour 20 182 (0.04%) 1051 (1.76%)

Hour 21 158 (0.04%) 765 (1.28%)

Hour 22 156 (0.04%) 602 (1.01%)

Hour 23 174 (0.04%) 375 (0.63%)

References

1. Aaron, G.: Phishing activity trends report - 4th quarter 2019 (2019). https://docs.
apwg.org/reports/apwg trends report q4 2019.pdf

2. Aaron, G.: Phishing activity trends report - 2nd quarter 2020 (2020). https://docs.
apwg.org/reports/apwg trends report q2 2020.pdf

https://docs.apwg.org/reports/apwg_trends_report_q4_2019.pdf
https://docs.apwg.org/reports/apwg_trends_report_q4_2019.pdf
https://docs.apwg.org/reports/apwg_trends_report_q2_2020.pdf
https://docs.apwg.org/reports/apwg_trends_report_q2_2020.pdf

A Longitudinal Study on Phishing Awareness Trainings 359

3. Agten, P., Joosen, W., Piessens, F., Nikiforakis, N.: Seven months’ worth of mis-
takes: a longitudinal study of typosquatting abuse. In: Network and Distributed
System Security Symposium (NDSS) (2015)

4. Bauer, E.: The 2017 email marketing field guide: the best times and days to send
your message and get it read. https://www.propellercrm.com/blog/2017-email-
marketing-field-guide

5. Blythe, M., Petrie, H.L., Clark, J.A.: F for fake: four studies on how we fall for
phish. In: Conference on Human Factors in Computing Systems (CHI) (2011)

6. Butavicius, M., Parsons, K., Pattinson, M., McCormac, A.: Breaching the human
firewall: social engineering in phishing and spear-phishing emails. In: Australian
Conference of Information System (2015)

7. Canova, G., Volkamer, M., Bergmann, C., Reinheimer, B.: NoPhish app evaluation:
lab and retention study. In: Workshop on Usable Security and Privacy (USEC)
(2015)

8. Caputo, D.D., Pfleeger, S.L., Freeman, J.D., Johnson, M.E.: Going spear phishing:
exploring embedded training and awareness. IEEE Secur. Priv. 12(1), 28–38 (2013)

9. Cialdini, R.B., Goldstein, N.J.: The science and practice of persuasion. Cornell
Hotel Restaur. Adm. Q. 43(2), 40–50 (2002)

10. Cidon, A., Gavish, L., Bleier, I., Korshun, N., Schweighauser, M., Tsitkin, A.: High
precision detection of business email compromise. In: Usenix Security Symposium
(2019)

11. Dhamija, R., Tygar, J.D., Hearst, M.: Why phishing works. In: Conference on
Human Factors in Computing Systems (CHI) (2006)

12. Ferreira, A., Coventry, L., Lenzini, G.: Principles of persuasion in social engineering
and their use in phishing. In: Tryfonas, T., Askoxylakis, I. (eds.) HAS 2015. LNCS,
vol. 9190, pp. 36–47. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
20376-8 4

13. Ferreira, A., Lenzini, G.: An analysis of social engineering principles in effective
phishing. In: Workshop on Socio-Technical Aspects in Security and Trust (STAST)
(2015)

14. Fette, I., Sadeh, N., Tomasic, A.: Learning to detect phishing emails. In: World
Wide Web Conference (WWW) (2007)

15. Government, C.: Phishing: how many take the bait? https://www.getcybersafe.gc.
ca/cnt/rsrcs/nfgrphcs/nfgrphcs-2012-10-11-en.aspx

16. Gragg, D.: A Multi-Level Defense Against Social Engineering. SANS Institute -
Information Security Reading Room (2003)

17. van der Heijden, A., Allodi, L.: Cognitive triaging of phishing attacks. In: Usenix
Security Symposium (2019)

18. Ho, G., et al.: Detecting and characterizing lateral phishing at scale. In: 28th
USENIX Security Symposium (USENIX Security 2019) (2019)

19. Ho, G., Sharma, A., Javed, M., Paxson, V., Wagner, D.: Detecting credential spear
phishing attacks in enterprise settings. In: Usenix Security Symposium (2017)

20. Hodgekiss, R.: What our data told us about the best time to send email cam-
paigns. https://www.campaignmonitor.com/blog/email-marketing/2019/01/best-
time-to-send-email-campaigns-by-device/

21. Hong, J.: The state of phishing attacks. Commun. ACM 55(1), 74–81 (2012)
22. Isacenkova, J., Thonnard, O., Costin, A., Francillon, A., Balzarotti, D.: Inside the

scam jungle: a closer look at 419 scam email operations. EURASIP J. Inf. Secur.
2014, 1–8 (2014)

23. Kintis, P., et al.: Hiding in plain sight: a longitudinal study of combosquatting
abuse. In: Conference on Computer and Communications Security (CCS) (2017)

https://www.propellercrm.com/blog/2017-email-marketing-field-guide
https://www.propellercrm.com/blog/2017-email-marketing-field-guide
https://doi.org/10.1007/978-3-319-20376-8_4
https://doi.org/10.1007/978-3-319-20376-8_4
https://www.getcybersafe.gc.ca/cnt/rsrcs/nfgrphcs/nfgrphcs-2012-10-11-en.aspx
https://www.getcybersafe.gc.ca/cnt/rsrcs/nfgrphcs/nfgrphcs-2012-10-11-en.aspx
https://www.campaignmonitor.com/blog/email-marketing/2019/01/best-time-to-send-email-campaigns-by-device/
https://www.campaignmonitor.com/blog/email-marketing/2019/01/best-time-to-send-email-campaigns-by-device/

360 F. Quinkert et al.

24. KnowBe4: Report: 2018 phishing by industry benchmarking report (2018).
https://www.ciosummits.com/KnowBe4-Phishing-By-Industry-Benchmarking-
Report.pdf

25. Kumaraguru, P., et al.: School of phish: a real-world evaluation of anti-phishing
training. In: Symposium on Usable Privacy and Security (SOUPS) (2009)

26. Kumaraguru, P., Sheng, S., Acquisti, A., Cranor, L.F., Hong, J.: Teaching Johnny
not to fall for phish. ACM Trans. Internet Technol. (TOIT) 10(2), 1–31 (2010)

27. Lin, E., Greenberg, S., Trotter, E., Ma, D., Aycock, J.: Does domain highlighting
help people identify phishing sites? In: Conference on Human Factors in Computing
Systems (CHI) (2011)

28. Mailchimp: Insights from Mailchimp’s send time optimization system. https://
mailchimp.com/resources/insights-from-mailchimps-send-time-optimization-
system/

29. Mao, J., Li, P., Li, K., Wei, T., Liang, Z.: BaitAlarm: detecting phishing sites
using similarity in fundamental visual features. In: International Conference on
Intelligent Networking and Collaborative Systems (INCoS) (2013)

30. Nikiforakis, N., Balduzzi, M., Desmet, L., Piessens, F., Joosen, W.: Soundsquat-
ting: uncovering the use of homophones in domain squatting. In: Chow, S.S.M.,
Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 291–
308. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13257-0 17

31. Oliveira, D., et al.: Dissecting spear phishing emails for older vs young adults: on
the interplay of weapons of influence and life domains in predicting susceptibility
to phishing. In: Conference on Human Factors in Computing Systems (CHI) (2017)

32. Petelka, J., Zou, Y., Schaub, F.: Put your warning where your link is: improv-
ing and evaluating email phishing warnings. In: Conference on Human Factors in
Computing Systems (CHI) (2019)

33. Quinkert, F., Lauinger, T., Robertson, W., Kirda, E., Holz, T.: It’s not what it
looks like: measuring attacks and defensive registrations of homograph domains.
In: Conference on Communications and Network Security (CNS) (2019)

34. Rajivan, P., Gonzalez, C.: Creative persuasion: a study on adversarial behaviors
and strategies in phishing attacks. Front. Psychol. 9, 135 (2018)

35. Rosiello, A., Kirda, E., Kruegel, C., Ferrandi, F.: A layout-similarity-based app-
roach for detecting phishing pages (2007)

36. Stajano, F., Wilson, P.: Understanding scam victims: seven principles for systems
security. Commun. ACM 54(3), 70–75 (2011)

37. Wash, R., Cooper, M.M.: Who provides phishing training? Facts, stories, and peo-
ple like me. In: Conference on Human Factors in Computing Systems (CHI) (2018)

38. Whittaker, C., Ryner, B., Nazif, M.: Large-scale automatic classification of phish-
ing pages. In: Network and Distributed System Security Symposium (NDSS) (2010)

39. Williams, E.J., Hinds, J., Joinson, A.N.: Exploring susceptibility to phishing in the
workplace. Int. J. Hum. Comput. Stud. 120, 1–13 (2018)

40. Wright, R., Jensen, M., Thatcher, J., Dinger, M., Marett, K.: Research note–
influence techniques in phishing attacks: an examination of vulnerability and resis-
tance. Inf. Syst. Res. 25, 385–400 (2014)

https://www.ciosummits.com/KnowBe4-Phishing-By-Industry-Benchmarking-Report.pdf
https://www.ciosummits.com/KnowBe4-Phishing-By-Industry-Benchmarking-Report.pdf
https://mailchimp.com/resources/insights-from-mailchimps-send-time-optimization-system/
https://mailchimp.com/resources/insights-from-mailchimps-send-time-optimization-system/
https://mailchimp.com/resources/insights-from-mailchimps-send-time-optimization-system/
https://doi.org/10.1007/978-3-319-13257-0_17

Extended Abstract: A First Large-Scale
Analysis on Usage of MTA-STS

Dennis Tatang(B), Robin Flume, and Thorsten Holz

Ruhr-Universität Bochum, Bochum, Germany
dennis.tatang@rub.de

Abstract. Nowadays, email is still the most popular communication
channel of the Internet. It is based on Simple Mail Transfer Protocol
(SMTP), which lacks basic security properties such as confidentiality and
authenticity despite its ever-growing importance. This results in spam
and frequent phishing attacks, often with spoofed sender email addresses
to appear more trustworthy, as well as non-encrypted transmissions by
default. To address these known problems, additional protocols such as
STARTTLS have been developed. STARTTLS enables transport encryp-
tion with Transport Layer Security (TLS) for SMTP sessions between
two email servers. However, an attacker can take advantage of the fact
that the encryption is opportunistic and the STARTTLS command is
sent in plain. Therefore, it can be stripped out of the communication,
resulting in an inevitable plaintext transmission of the email message
itself. This attack is referred to as TLS downgrade. The new Mail Trans-
fer Agent Strict Transport Security (MTA-STS) protocol targets the pre-
vention of TLS downgrades for incoming SMTP sessions. In this paper,
we conduct the first large-scale, longitudinal measurement study on the
adoption of MTA-STS. We show that it is activated by 0.0124% out
of 1.76 million scanned domains, with a lower bound of 45.4% for the
growth of the adoption rate within five months.

Keywords: Internet measurement · DNS · MTA-STS

1 Introduction

Email usage in private and commercial everyday life has increased continuously
since its invention in 1971. Studies showed that besides information not worthy of
protection, sensitive documents and data (e.g., business documents, passwords,
private photos, etc.) are exchanged via this communication medium [2,19].
The foundation builds is the Simple Mail Transfer Protocol (SMTP). However,
despite the ever-increasing popularity of email, it does not provide any secu-
rity mechanisms (neither for the verification of communication partners nor the
protection of privacy). Accordingly, emails are exchanged between email servers
via SMTP unauthenticated and unencrypted by default. Increasing concerns in
recent years came along with this. A solution is provided by protocols such
as OpenPGP or S/MIME, which can encrypt emails end-to-end. However, this
c© Springer Nature Switzerland AG 2021
L. Bilge et al. (Eds.): DIMVA 2021, LNCS 12756, pp. 361–370, 2021.
https://doi.org/10.1007/978-3-030-80825-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80825-9_18&domain=pdf
https://doi.org/10.1007/978-3-030-80825-9_18

362 D. Tatang et al.

requires users to take active steps when sending emails to ensure that the con-
tent of the messages is encrypted. Another limitation is that both participants
must comply with all technical requirements. Therefore, Domain Name System
(DNS)-based SMTP extensions such as SPF, DMARC, or DKIM are of par-
ticular importance for secure email transmission. Another SMTP extension is
STARTTLS, which can be used to initiate transport encryption using Transport
Layer Security (TLS) after the connection has been established. This ensures
the integrity of the messages, at least during their direct transmission between
the servers of the sender and recipient domain. The problem is that STARTTLS
only offers opportunistic encryption: If one of the two communication partners
does not support TLS or if an error occurs in the TLS handshake, the email
is transmitted in plain text. Furthermore, TLS encryption can be prevented
by actively intervening in the correspondence. Ultimately, an end-user cannot
determine whether or not a given email is encrypted during transport. For sev-
eral years now, domain operators can use DNS-based Authentication of Named
Entities (DANE) to store the fingerprints of the X.509 certificates used by their
mail servers in the DNS. This allows the servers to be authenticated and their
TLS support to be implied. However, DANE requires Domain Name System
Security Extensions (DNSSEC). Therefore, a new protocol called Mail Transfer
Agent Strict Transport Security (MTA-STS) was standardized at the end of 2018
(RFC 8461 [14]). It aims at being able to require TLS encryption of incoming
SMTP connections on the domain’s mail servers. In this way, attacks on TLS
encryption (TLS downgrades) as well as plain text transmissions due to lack of
TLS support by the sender should be prevented. Given these shortcomings, an
empirical study can shed light on the actual deployment in practice.

In this paper, we measure the distribution and relevance of the still new
protocol for the first time. According to a blog post by SocketLabs, it is already
widely used [20]. SocketLabs and also Google’s Gmail service [12] support it since
April and May 2019, respectively. For our measurement study, we implement
a crawler with which the required data is gathered. The number of domains
that have MTA-STS activated is also compared with the number of domains
that have SPF and DMARC protocols installed. Furthermore, we examined in
more detail the MTA-STS settings used in practice. Although it is possible to
activate the protocol with a few simple settings, misconfigurations may occur,
limiting or eliminating the desired security. In the course of the measurements,
the mail servers used by the top one million domains are also examined for their
STARTTLS support, which is a necessity for the use of MTA-STS. In summary,
we make the following main contributions:

– We present the first large-scale study on the adoption of MTA-STS.
– We gather and analyze protocol configurations used in practice in detail.
– We discuss issues of MTA-STS itself and argue that it might be already

obsolete before ever widely in use.

2 Security-Related Extensions for E-Mail

In order to solve the problems of SMTP (confidentiality as well as authentication
and integrity), many different protocols have been developed in recent years.

Extended Abstract: A First Large-Scale Analysis on Usage of MTA-STS 363

Encryption. Encryption is used to ensure the confidentiality of transmitted data.
A distinction is made between transport encryption (e.g., STARTTLS) and
end-to-end encryption (OpenPGP, S/MIME). Transport encryption is relevant
to our work. The standard for transport encryption is the TLS protocol. An
extension that TLS uses for transport encryption of SMTP traffic is START-
TLS. It attempts a TLS handshake between the communication partners. If the
handshake fails, the communication is performed without transport encryption.
Therefore, it is opportunistic encryption that protects against passive attackers
only. As soon as we consider active attackers, a so-called STARTTLS downgrade
attack is possible. In the context of email communication, this attack becomes
particularly important, as the opportunistic encryption achieved by STARTTLS
is being circumvented, and as a result, messages can be read by third parties.
It is known that this attack is used in practice by intelligence agencies, Inter-
net service providers, and mobile phone operators [5,6]. Another extension is
SMTPS. In this case, data is only exchanged after a successful TLS handshake.

Mail Transfer Agent Strict Transport Security (MTA-STS). This protocol is
used to indicate support for STARTTLS. It also defines how MTA-STS com-
pliant senders must behave if encrypted communication fails. Thus, the goal of
MTA-STS is to prevent the STARTTLS downgrade attack. MTA-STS essentially
consists of two components. These are a TXT resource record in the DNS and
a MTA-STS policy. Both consist of key/value pairs separated by semicolons,
which are used to configure the protocol for a given domain. The MTA-STS
record is used to inform the sending MTA that MTA-STS is basically activated
and thus a policy is available for retrieval. It consists of at least two mandatory
parameters: (i) the protocol version used and (ii) an identifier (ID). It is crucial
that the ID for a domain must be unique. This is because the ID enables senders
to find out with a single DNS query whether their cached policy for the target
domain needs to be updated. The MTA-STS policy consists of four defined keys
(version, mode, mx, max age). So far, only STSv1 version is supported. The
possible values for the mode are: enforce, testing, none.

The key mx indicates that the corresponding mail server supports the
STARTTLS command in principle. The numeric value of max age indicates in
seconds the maximum time a policy may be cached by the sender. The pol-
icy should not exceed the maximum size of 64 kilobytes. It must be delivered
via web server using the .well-known path defined in RFC 8615 as media type
text/plain. The generic Uniform Resource Identifier (URI) of the policy is mta-
sts.[domain].[tld]/.well-known/mta-sts.txt.

Authentication. Integrity and authenticity are two other important protection
goals, neither of which are met by SMTP. Especially against the background
of possible sender spoofing and spam, not only the authenticity of the sender
is important within the email infrastructure, but also that of the mail server.
Protocols for authentication of the sender domain are SPF, DKIM, and DMARC.
Another protocol is DNS-based Authentication of Named Entities (DANE). This
prevents the impersonation of mail or web servers by fake PKIX certificates.

364 D. Tatang et al.

Reporting. The TLS-RPT protocol is defined in RFC 8460 and was developed
to extend MTA-STS and DANE with a reporting mechanism [13]. The mes-
sages listed in the report can help to identify misconfigurations or even active
attacks on the TLS sessions between the MTAs of both parties. In doing so, the
report covers errors that occur in the areas of routing, DNS name resolution,
STARTTLS parameter negotiation, or policy validation. To enable TLS-RPT,
an administrator needs to set another TXT record for the policy domain at
smtp. tls.[domain].[tld].

3 Measurement Approach

Crawler. Our crawler implements the following two main functions: (i) the verifi-
cation of the existence of MTA-STS components (by requesting the correspond-
ing DNS TXT records), as well as, (ii) their validation (by gathering via HTTPS
accessible MTA-STS policies). We store the error handling and altering of MTA-
STS and, if available, we also parse the MTA-STS policy for further analysis. In
addition to crawling MTA-STS information, we also crawl STARTTLS support.
For this, we also save the TLS certificates. We publish our crawler implemen-
tation after publication so that the analyses from this paper can be continued.
We use for all our measurements the Tranco Top 1 Million Domain list [11] from
2019/06/21 with the ID 93J2. This means that fluctuations in the measurement
results as a result of different crawled lists can be excluded.

Measurements Description. In total, we performed six regular measurements
(M1-M6) and two special measurements (S1, S2) in the process of this work.
We conducted the regular measurements every four weeks between June 26,
2019 and November 13, 2019. In S1, we measure a more recent Tranco list from
2019/10/27 as comparison to our list for the regular measurements. In S2, we
use a Alexa list from 2019/10/31 as a basis for a further comparison.

4 MTA-STS on the Sender Side

First, we look at the extent to which MTA-STS is used by the sender, because
even a high number of domains with correctly configured MTA-STS only really
contributes to increased security in e-mail traffic if the sender evaluates the
MTA-STS policies of the target domains in the first place. Gmail and SocketLabs
are the first email service providers to support MTA-STS for both inbound and
outbound email [12,20]. Since there was no information about MTA-STS support
for other email providers after Internet research, we considered popular MTA
software [16] and checked if MTA-STS is supported. Table 1 summarizes the
results of our measurement study.

5 Empirical Measurement Results

Over all measurements, a total of 1,764,703 domains were examined for the
adoption of MTA-STS. In the course of this study, all mail servers specified in

Extended Abstract: A First Large-Scale Analysis on Usage of MTA-STS 365

Table 1. Popular MTA-software and their MTA-STS support (✓ native; ✻ with exter-
nal plugin; ✗ none). *) MTA-software does not belong to popular software from [16].
**) Minimal version is not explicitly stated.

Exim Postfix Sendmail MailEnable MDaemon Microsoft

Exchange

Courier* Hurricane*

MTA-STS ✻ ✻ ✗ ✗ ✗ ✗ ✓ ✓

Min. Version 4** 2.10 1.0.7 Unknown

OS Linux Linux Linux Windows Windows Windows Linux Windows

the MX records of the domains were queried to test their STARTTLS support.
In total, we collected STARTTLS data from 1,397,412 mail servers (79.2%).

5.1 All Domains with MTA-STS Support

We found a total of 221 domains with MTA-STS support. For verification, we
crawled them for a second time. For two domains, an error occurred when fetch-
ing the policy, leaving 219 domains supporting MTA-STS. This makes up a total
of only 0.0124%. This finding contradicts a statement from SocketLabs, which
states that MTA-STS is already widely supported [20]. TLS-RPT is used by 191
(87.2%) of the MTA-STS domains. Among the Tranco Top 10 domains, there
is only google.com (1) with MTA-STS support. Four further domains are in the
Top 100: yahoo.com (14), live.com (16), office.com (69), and office365.com (81).

TLDs of MTA-STS Domains. Overall, we discovered 38 different TLDs among
the MTA-STS domains. The largest share with almost 38% is .com.

Geoinformation of Policy Hosts. Using the geoinformation collected during the
measurements for the IP addresses of the policy hosts, the domains supporting
MTA-STS can be assigned to individual countries. In total, we localized policy
hosts from 27 countries across four continents. However, it needs to be restricted
here that this does not necessarily mean that the corresponding domain was also
registered in that country, as the server could only be hosted by a provider based
there. Nevertheless, the assignment provides an overview of how, among other
things, international TLDs are globally distributed and in which countries not a
single MTA-STS policy server could be identified. Most are located in the USA
with 106 hosts followed by Germany with 33 hosts.

MTA-STS Configuration Issues. We discovered two different configuration issues.
On the one hand, invalid policy modes, on the other hand, incorrect mail server
entries. In case of two Austrian domains (fro.at and servus.at), we identified the
invalid enforced policy mode1. In case of four other domains, we found incorrect
mail server entries in the MTA-STS policies. Table 2 provides details about the
domains with incorrect mail server entries in their MTA-STS policies.

1 We informed the domain operators and the issue was solved for both.

366 D. Tatang et al.

Table 2. Domains with wrong mailserver entries in their MTA-STS policy

Domain MX in DNS MX in Policy Modus TLS-RPT

con.com blackhole.con.com

mail.tobit.com

toma.horph.com testing yes

tobit.com mail2.tobit.com

mforward.dtag.de

mail.tobit.com testing yes

valnetinc.com aspmx.l.google.com

alt[1-4].aspmx.l.google.com

*.google.com

*.googlemail.com

testing yes

zerobounce.net aspmx.l.google.com

alt[1-4].aspmx.l.google.com

aspmx.l.google.com

.aspmx.l.google.com

testing yes

Comparison with SPF and DMARC. 215 of 219 set an SPF record, 182 set a
DMARC record. 180 activated both, SPF, DMARC, and MTA-STS.

5.2 Most Recent Measurement (M6)

Next, we focus on our most recent measurement M6. For about a quarter
of the crawled 1 million domains, no MX record exists. Of the remaining
domains, 31.4% operate their own mail servers and 68% use external email ser-
vice providers. For the remaining domains, no information could be determined
(SERVFAIL error). By far the most popular external e-mail provider is Google
with its domains google.com and googlemail.com (share of 28.3% based on the
505,609 domains that do not host their mail servers on their own). The second
most popular external e-mail provider is Microsoft Outlook with the domain out-
look.com and a share of 13.8%. The third most popular is secureserver.com with
only 4.2%. With regard to MTA-STS, this is an important finding, as Google
already implements the protocol for outgoing e-mails. In total, based on the total
top 1 million domains, up to 14.3% are protected by MTA-STS, assuming the
receiver domains have activated it as well.

5.3 Trend Analysis of Measurements

In the following, we consider the last three measurements and two special mea-
surements in relation to the development of the adoption rate of MTA-STS.
Figure 1 illustrates the numerical count of domains that implement MTA-STS
with and without the TLS-RPT reporting protocol. An increase between M4
and M6 is clearly visible. Between the two measurements, 42 domains (+28.2%)
were added. However, we checked with a t-test whether this change is a signif-
icant increase. The result was that there was no significant increase. Thus, we
can argue that an increase could be seen over the last three measurements, but
it is not significant and thus MTA-STS has currently not significantly increased
(over the measurement period).

Next, we examine the changes in the policy modes used. Figure 2 summarizes
these. Between the measurements, the number of domains using the enforce
mode increased by 16 domains (+22.5%). However, their share decreased at the
same time, as new domains were added with the testing mode.

Extended Abstract: A First Large-Scale Analysis on Usage of MTA-STS 367

Fig. 1. Trend of M4 - M6 and compari-
son with S1 and S2.

testing none enforce

M4 76 (51.0%) 2 (1.3%) 71 (47.7%)
M5 94 (53.4%) 3 (1.7%) 79 (44.9%)
M6 107 (54.6%) 2 (1.0%) 87 (44.4%)
S1 98 (56.3%) 3 (1.7%) 73 (42.0%)
S2 77 (61.1%) 0 (0%) 49 (38.9%)

Fig. 2. Configured policy modes distri-
bution.

Although the adoption of MTA-STS is increasing only very slowly and not
significantly, it is nevertheless positive that the number of domains protected by
the enforce mode is improving.

E-mail Provider. The list of e-mail providers to be examined was compiled from
an online provider list and a study [5,18]. In total we identified 111 providers
with 21 different TLDs. Expectedly, the share of MTA-STS domains is the high-
est among the examined e-mail providers at 18.9%. Of all 111 crawled provider
domains, 21 supported MTA-STS. Table 3 lists the policy configurations of the
MTA-STS providers. The rank refers to our Tranco list for our regular measure-
ments. Only 12 providers use MTA-STS in enforce mode. Half of them have a
sufficiently long TTL of at least two weeks.

Table 3. Comparison of the MTA-STS configurations of popular e-mail service
providers.

Domain Rank Policy TTL TLS-RPT

yahoo.com 14 testing 1 day yes

outlook.com 220 testing 1week yes

gmail.com 376 enforce 1 day yes

comcast.net 1,098 enforce 1month no

hotmail.com 1,159 testing 1week yes

web.de 1,197 testing 1week yes

mail.com 2,686 testing 1week yes

protonmail.com 4,332 enforce 1week no

gmx.com 5,476 testing 1week yes

riseup.net 18,770 enforce 1 day yes

posteo.de 32,870 testing 5min yes

mail.de 51,330 enforce 1month yes

runbox.com 103,773 testing 1 day no

mailfence.com 264,111 enforce 1 day yes

disroot.org 322,179 testing 1 day yes

systemli.org 896,786 enforce 1month yes

systemausfall.org 985,615 enforce 1 quarter no

dismail.de – enforce 1month yes

mailjunky.de – enforce 1 quarter yes

5x2.de – enforce 1 day yes

schokokeks.org – enforce 1week error

368 D. Tatang et al.

5.4 STARTTLS

With the last measurement, we collected all the mail servers used. Additionally,
we used mail servers from two other separate Alexa top 1 million lists. Thus,
the following results do not only refer to the MX hosts for the domains of the
regular measurements. In total, we crawled about 1.4 million mail servers. For
43.6% of these servers, an SMTP connection could not be established. A success-
ful connection was established for the remaining 787,616 servers. All requested
servers supported the EHLO command and, therefore, ESMTP. Compared to
the results of Foster et al. [7] from 2015, the number of servers that did not
offer ESMTP options STARTTLS declined by 69.6% (from 45% to 13.7%). This
shows that awareness of the insecurity of the email infrastructure has improved
in recent years and enhancements were implemented. The majority (86.3%) now
support the STARTTLS command.

6 Discussion

Lessons Learned. Our results shows that the adoption rate increased by 28.2%
in the last two measurements and by at least 45.4% over our entire measurement
period. This increase looks impressive, but only 219 (0.0124%) of the approxi-
mately 1.76 million domains that were crawled in the course of this work use the
protocol. 87.2% use the recommended reporting protocol TLS-RPT. In addi-
tion to this very low adoption rate, about half of the MTA-STS domains use
the protocol only in test mode. Additionally, several domains with incorrect or
incomplete settings could be identified. Our measurements also show that email
providers implement MTA-STS significantly more often than normal domains.
The customers of email service providers benefit from the adaption. The biggest
problem is the server-side adaption of the protocol. It seems that so far, only
Gmail and SocketLabs evaluate the MTA-STS policy of the target domain. In
addition, only the MTA software Courier and Hurricane provide proprietary
native support for MTA-STS. MTA-STS was developed to be used by domains
for which DANE is not available. This may be the case, for example, due to
a lack of DNSSEC availability. In January 2015 (three years after specification
by DANE), the protocol had implemented only 128 of the then Top 1 million
domains for their mail servers [22]. Between March 2018 and June 2019, an
increase of 293% of DANE supported domains was identified. While in 2018,
about 300,000 domains were still secured by DANE, by mid-2019, the number
had already reached 1.18 million [3,4]. If a domain implements both DANE and
MTA-STS, DANE must be given priority. Given the shallow adoption rate of
MTA-STS and the drastic increase of DANE, the question now arises whether
MTA-STS might not become obsolete shortly after its specification in 2018.

Threats to Validity and Ethical Considerations. Noe that the data is about 1.5
years old at the time of writing, but we argue that it is sufficient to show that the
use of MTA-STS is low as we observed only a marginal increase. Additionally,
we analyzed only a selection based primarily on one top list. However, this is

Extended Abstract: A First Large-Scale Analysis on Usage of MTA-STS 369

always the case with measurement studies of this sort. We do not collect any
personal or private data in the context of our work. All data gathered by our
crawler is publicly accessible.

7 Related Work

Durumeric et al. [5] conducted a study similar to this one between January 2014
and April 2015. The authors examined the implementation of the SMTP exten-
sions STARTTLS, SPF, DKIM, and DMARC. Also from 2015 is the study by
Foster et al. [7]. Here the authors evaluated email providers in terms of TLS,
SPF, and DKIM. We extend this research by the new protocol MTA-STS, which
has not been analyzed yet. In a work by Holz et al. [9], SMTP servers were ana-
lyzed, among others. Google also provides current statistics on TLS encryption
of SMTP connections as part of their transparency report [8]. In 2016, Hu and
Wang [10] analyzed the behavior of 35 popular email providers in terms of the
detection of email spoofing. Chung et al. [1] evaluated the DNSSEC infrastruc-
ture from 2014 to 2016, discovering various misconfigurations and shortcomings
in key management. Schulmann and Waidner [17] confirmed the results in 2017.
However, this study shows a positive development regarding DNSSEC-validating
resolvers. Wander [21] quantified the DNSSEC adoption of second-level domains
in the period from 2013 to 2017. Overall, a positive trend in the use of DNSSEC
can be observed over the last decade. This is relevant not only for DNS secu-
rity in general but also for security of email traffic, since DANE, e.g., requires
DNSSEC. In a blog post from early 2015, only 128 domains are listed that sup-
ported DANE [22]. Between March 2018 and June 2019, Dukhovni and Hardaker
noticed an enormous increase in DANE support [3,4]. This growth is also in line
with the statistics available online from secspider.net [15]. We join this research
field with our work and present the first study on the adoption of MTA-STS.

8 Conclusion

In this work, we measured the distribution of a young security protocol (MTA-
STS) for the first time. We showed that usage is rather low, configuration errors
occur, and discussed that MTA-STS is probably already obsolete due to the
comparatively widespread use of DANE. For future work, the adoption of MTA-
STS should be further pursued and compared with the distribution of DANE.

References

1. Chung, T., et al.: A longitudinal, end-to-end view of the {DNSSEC} ecosystem.
In: USENIX Security Symposium (2017)

2. Clark, J.W., Snyder, P., McCoy, D., Kanich, C.: “I saw images i didn’t even know i
had” understanding user perceptions of cloud storage privacy. In: ACM Conference
on Human Factors in Computing Systems (2015)

370 D. Tatang et al.

3. Dukhovni, V.: Real World DANE Inter-domain email transport. https://static.
ptbl.co/static/attachments/169319/1520904692.pdf

4. Dukhovni, V., Hardaker, W.: DANE/SMTP Usage Report. https://www.isi.edu/
∼hardaker/presentations/2019-06-DANE-hardaker-dukhovni.pdf

5. Durumeric, Z., et al.: Neither snow nor rain nor MITM... an empirical analysis
of email delivery security. In: ACM SIGCOMM Internet Measurement Conference
(IMC) (2015)

6. EFF: NSA Spying. https://www.eff.org/nsa-spying
7. Foster, I.D., Larson, J., Masich, M., Snoeren, A.C., Savage, S., Levchenko, K.:

Security by any other name: on the effectiveness of provider based email security.
In: ACM Conference on Computer and Communications Security (CCS) (2015)

8. Email encryption in transit. https://transparencyreport.google.com/safer-email/
overview

9. Holz, R., Amann, J., Mehani, O., Wachs, M., Kaafar, M.A.: Tls in the wild: an
internet-wide analysis of TLS-based protocols for electronic communication. In:
Symposium on Network and Distributed System Security (NDSS) (2016)

10. Hu, H., Wang, G.: End-to-end measurements of email spoofing attacks. In: USENIX
Security Symposium (2018)

11. Le Pochat, V., Van Goethem, T., Tajalizadehkhoob, S., Joosen, W.: Tranco: a
research-oriented top sites ranking hardened against manipulation. In: Symposium
on Network and Distributed System Security (NDSS) (2019)

12. Lidzborski, N., Kardas, N.: Gmail making email more secure with MTA-STS stan-
dard. https://security.googleblog.com/2019/04/gmail-making-email-more-secure-
with-mta.html

13. Margolis, D., Brotman, A., Ramakrishnan, B., Jones, J., Risher, M.: SMTP
TLS Reporting. RFC 8460, September 2018. https://doi.org/10.17487/RFC8460.
https://rfc-editor.org/rfc/rfc8460.txt

14. Margolis, D., Risher, M., Ramakrishnan, B., Brotman, A., Jones, J.: SMTP MTA
Strict Transport Security (MTA-STS). RFC 8461, September 2018. https://doi.
org/10.17487/RFC8461. https://rfc-editor.org/rfc/rfc8461.txt

15. Osterweil, E., Massey, D., Zhang, L.: Deploying and monitoring DNS security
(DNSSEC). In: Annual Computer Security Applications Conference (ACSAC)
(2009)

16. Mail (MX) Server Survey, 1 November 2019. http://www.securityspace.com/s
survey/data/man.201910/mxsurvey.html

17. Shulman, H., Waidner, M.: One key to sign them all considered vulnerable: evalua-
tion of {DNSSEC} in the internet. In: USENIX Symposium on Networked Systems
Design and Implementation (NSDI) (2017)

18. Sieg, S.: Serverlist. https://dismail.de/serverlist.html
19. Snyder, P., Kanich, C.: Cloudsweeper: enabling data-centric document manage-

ment for secure cloud archives. In: ACM Workshop on Cloud Computing Security
Workshop (2013)

20. SocketLabs Becomes the First Email Service Provider to Embrace MTA-STS
Encryption. https://www.socketlabs.com/press/socketlabs-becomes-the-first-
email-service-provider-to-embrace-mta-sts-encryption/

21. Wander, M.: Measurement survey of server-side DNSSEC adoption. In: Network
Traffic Measurement and Analysis Conference (TMA) (2017)

22. Zorz, J.: More DANE/DNSSEC/TLS Testing From Go6lab. https://www.
internetsociety.org/blog/2015/06/more-dane-dnssec-tls-testing-from-go6lab/

https://static.ptbl.co/static/attachments/169319/1520904692.pdf
https://static.ptbl.co/static/attachments/169319/1520904692.pdf
https://www.isi.edu/~hardaker/presentations/2019-06-DANE-hardaker-dukhovni.pdf
https://www.isi.edu/~hardaker/presentations/2019-06-DANE-hardaker-dukhovni.pdf
https://www.eff.org/nsa-spying
https://transparencyreport.google.com/safer-email/overview
https://transparencyreport.google.com/safer-email/overview
https://security.googleblog.com/2019/04/gmail-making-email-more-secure-with-mta.html
https://security.googleblog.com/2019/04/gmail-making-email-more-secure-with-mta.html
https://doi.org/10.17487/RFC8460
https://rfc-editor.org/rfc/rfc8460.txt
https://doi.org/10.17487/RFC8461
https://doi.org/10.17487/RFC8461
https://rfc-editor.org/rfc/rfc8461.txt
http://www.securityspace.com/s_survey/data/man.201910/mxsurvey.html
http://www.securityspace.com/s_survey/data/man.201910/mxsurvey.html
https://dismail.de/serverlist.html
https://www.socketlabs.com/press/socketlabs-becomes-the-first-email-service-provider-to-embrace-mta-sts-encryption/
https://www.socketlabs.com/press/socketlabs-becomes-the-first-email-service-provider-to-embrace-mta-sts-encryption/
https://www.internetsociety.org/blog/2015/06/more-dane-dnssec-tls-testing-from-go6lab/
https://www.internetsociety.org/blog/2015/06/more-dane-dnssec-tls-testing-from-go6lab/

Centy: Scalable Server-Side Web Integrity
Verification System Based on Fuzzy

Hashes

Lizzy Tengana(B) , Jesus Solano , Alejandra Castelblanco ,
Esteban Rivera , Christian Lopez , and Martin Ochoa

Appgate, Inc., Bogota, Colombia
{lizzy.tengana,jesus.solano,alejandra.castelblanco,

esteban.rivera,christian.lopez,martin.ochoa}@appgate.com

Abstract. Providing integrity guarantees for websites rendered on a
user’s browser is a crucial security property for web applications. There
are several ways to tamper with data being received or rendered on
the client side, including browser hijacking, malicious plugins, cross-site
scripting attacks and manipulation of data in transit. Detecting such
attacks is important for content providers in order to generate alerts
and prevent further attacks. Detection of website integrity is a chal-
lenging task, due to the heterogeneity of possible attacks. In this work
we present an approach to detect integrity attacks that is designed to
scale to millions of clients while offering high accuracy. Our approach
is based on a fine grained analysis of website internal components and
a clustering technique. Such clustering allows for an efficient automatic
and semi-automatic classification of client-side content (such as scripts,
forms, iframes, etc.). This approach is partially implemented in a pro-
ductive system and is evaluated on a real-world dataset belonging to a
sample of tens of thousands unique visits. We show that we can achieve
up to 98.7% accuracy on real data based on a labelled prefix, and up to
99.4% compression ratio on incoming to-be-classified client-side content.
To the best of our knowledge, we are the first study to show a scalable
and practical clustering system for web integrity detection.

Keywords: Web integrity · Clustering · Fuzzy hashes

1 Introduction

Modifying a website with the objective of tricking a victim into performing spe-
cific malicious actions (for instance a transaction that benefits an attacker) or to
steal private information (session IDs or login credentials) are examples of pop-
ular attacker goals [18,19]. Different attack techniques achieve these purposes,
such as malware attacking browsers, tricking victims into installing malicious
plugins and cross-site scripting, among others. As a consequence, browser ven-
dors are constantly updating and patching their software to prevent some of the
c© Springer Nature Switzerland AG 2021
L. Bilge et al. (Eds.): DIMVA 2021, LNCS 12756, pp. 371–390, 2021.
https://doi.org/10.1007/978-3-030-80825-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80825-9_19&domain=pdf
http://orcid.org/0000-0003-2275-5298
http://orcid.org/0000-0002-2742-0641
http://orcid.org/0000-0002-1147-758X
http://orcid.org/0000-0002-1068-0623
http://orcid.org/0000-0001-5399-4326
http://orcid.org/0000-0002-7816-5775
https://doi.org/10.1007/978-3-030-80825-9_19

372 L. Tengana et al.

above mentioned attacks, and web-developers must strive to prevent vulnerabil-
ities in their software to avoid possible attack vectors.

Current solutions designed to deal with web application content integrity
are thus scattered and prevent particular attack vectors, in a cat-and-mouse
fashion. Client-side solutions, such as plugins that check for cross-site script-
ing [23,27] cannot be enforced at large by a service provider, since they rely on
user’s individual responsibility and security awareness. In a similar fashion, older
browser versions might be vulnerable to browser-hijacking or drive-by-download
attacks [9,26]. Techniques to minimize server-side vulnerabilities usually do not
provide strong guarantees and hidden vulnerabilities might remain exploitable
by attackers [21]. Moreover, users might use outdated or vulnerable browsers
without their knowledge, which lies outside of the enforcement capabilities of a
service provider. In this scenario, a generic approach that is not tailored to any
particular attack vector would have the advantage of coping better with novel
attacks, while helping to enforce the fundamental integrity requirement.

Request domain.com

Integrity alert

Credentials

Attacker Client Server

Block
user

Fig. 1. Example of integrity attack.

To motivate our approach, con-
sider the sequence diagram in Fig. 1.
A client, authenticated to a service,
requests a given URL to the ser-
vice provider. The server replies with
the intended content, which essentially
will be interpreted as a tree structure
(DOM, for Document Object Model).
This content is altered by an attacker,
using an arbitrary integrity attack vec-
tor (such as manipulation in transit,
cross-site scripting, or an attack to
the victim’s browser). For instance, an
attacker may add a malicious script,
which will be a new leaf to the DOM tree. The attacker might have differ-
ent objectives, a common one is credentials (session) filtration for harvesting
and reselling or to carry other attacks subsequently. If the integrity attack is
detected in real time, the service provider might take the preventive action of
blocking the victim’s account to avoid attacks. Note that this is a race condition,
and the attacker might be successful at carrying out further malicious activity
before any action can be taken. On the other hand, swift preventive measures
will prevent many attacks from happening.

In this work we propose Centy, a centralized system to detect integrity
attacks on web applications that is designed to be scalable and agnostic to any
concrete attack vector. We achieve this by placing a monitor on the client side,
which sends back the rendered DOM into a verification module on the server.
There, the web-atoms (i.e., forms, scripts, iframes and other elements in the
DOM) are compared against the intended content sent by the service provider.
This is challenging since modern sites are often very dynamic, so there are poten-
tially some minor differences (IDs, variable names, regions, language). The ver-
ification system must thus be resilient to small changes while also being able to

Centy: Centralized Web-Integrity Verification System 373

detect malicious injections or modifications. We tackle this problem by creat-
ing an online clustering system that efficiently find similarities among HTML-
nodes using Local Sensitive Hashing and HTML-node structural signatures (i.e.,
Abstract Syntax Trees). The goal of our work is thus to make the process of
semi-automatically label atoms cost-efficient.

Our system is evaluated on a productive environment serving various cus-
tomers and hundreds of thousands of users. We are able to measure the effec-
tiveness and scalability of our approach on real-life data. We show that we can
achieve up to 98.7% accuracy on real data based on a labelled prefix, and up to
a 99.4% compression ratio (Eq. 1) on incoming to-be-classified web-atoms.

In sum, we make the following novel contributions:

– We propose an integrity verification system that labels similar DOM con-
tents and detects possible threat clusters, regardless of the attack vector, or
technique used to break the integrity of a website.

– We evaluate our approach on realistic data containing over 300K DOMs.
– We show that this approach scales in terms of computational and classification

resources while providing a high accuracy.

The rest of the paper is organized as follows. In Sect. 2 we review fundamental
definitions of browser internals, fuzzy hashes and abstract syntax tree. We outline
our approach in Sect. 3. In Sect. 4, our implementation is evaluated in terms of
classification accuracy, work-load compression and system overhead. Finally, we
discuss related work in Sect. 5 and conclude in Sect. 6.

2 Background

2.1 Document Object Model (DOM) Integrity

The document object model consist of a standard interface for the representation
of objects in a tree-structured document, mainly used for HTML, allowing the
use and manipulation of these objects. Through this interface it is possible to
access the structure of the document and make modifications in both its form
and content [31].

Any illegitimate DOM alteration can be considered an integrity attack ulti-
mately threatening user security. With the DOM sitting on the client-side, a
web server is powerless to defend a user from these attacks as the completeness
and accuracy of the data cannot be assured on an infected browser. The user
keeps unwittingly performing genuine interactions with an otherwise trustworthy
interface, only to encounter a deceiving form prompting the user to input the
login credentials, for instance, or to download malware to the user’s machine.

A compromised DOM may be due to man-in-the-browser attacks [11],
browser hijacking [23], any flavor of cross-site scripting [20,21], or manipula-
tion of data in transit [28]. In terms of integrity, plenty of sources could provoke
changes on a DOM, thus analyzing DOM variations may lead to the charac-
terization of their sources. In fact, knowing all possible legitimate states of a
DOM in an authentic client/server communication, any unrecognized alteration
represents an anomaly.

374 L. Tengana et al.

2.2 Abstract Syntax Tree (AST)

An AST is a graph representing the syntax structure of a given source code. Each
node of this tree structure contains the construction objects within the source
code such as loops, conditional statements, binary operations, etc. ASTs are gen-
erated through a parsing process usually during the translation and compiling
stages. This type of structuring is useful when performing semantic analysis of
source code. In addition to allowing the analysis of code operation, ASTs reduce
possible ambiguities always present in the syntax of the source code, mainly due
to the behavior of the component elements in function of the context in which
they are used. For instance, binary operators that act differently depending on
the type of variables on which they are executed. Furthermore, AST representa-
tions are then useful for the comparison between two given source codes, because
it is able capture the overall logic of the operations in both codes independently
of the context and the programming language used for each one.

2.3 MinHashing and LSH

One of the most used approaches to determine the similarity between two or
more documents, including HTML documents and source code, is achieved by
measuring its Jaccard similarity. This is defined for two sets as the size of
intersection divided by the total number of elements in their union, meaning:
J(C1, C2) = |C1 ∩C2|

|C1 ∪C2| for a pair of sets C1 and C2.
Then, in order to compare a pair of documents, a process known as MinHash-

ing can be applied to them to determine if they are similar, but not necessarily
identical. The first step consists in transforming these documents into their set
representations or k− shingles, where sliding windows of substrings of length k
are taken from a document and grouped into a set. A MinHash is an indepen-
dent permutation of the set representation of a document. A MinHash signature
over a document a fixed size vector of MinHash functions on its k − shingles
such that if the Jaccard similarity between the document signatures is high, the
documents themselves are likely to be similar as well.

As for the LSH [17], it enables a sub-linear search for similar documents
using a technique that approximates the Jaccard similarity of two documents.
The LSH indexes MinHash signatures in a process that maps them into buckets
containing documents with high probability of being similar. More details can
be found in [25].

2.4 DOM Monitoring

Monitoring changes in the DOM can be made through tools such as the Muta-
tionObserver API [5] (provided in most modern web browsers [1]) which analyzes
a DOM tree and sends an alert through a callback function according to estab-
lished parameters in the DOM observer method. When changes occur to the
scripts, forms and other DOM nodes, they can be collected and analyzed with
our approach in order to determine whether the alterations are malicious or not.

Centy: Centralized Web-Integrity Verification System 375

Other tools based on the MutationObserver API, such as DOM observer [2],
add more features to enhance the change detection performance; these kind of
tools are even able to create alerts against potentially dangerous changes in the
DOM and thus take reactive measures against them. However, the previously
mentioned tools require third-party software to be installed on the client-side,
which makes them virtually impossible to enforce at large scale.

2.5 System and Attacker Model

Centy can be integrated in any client/server web architecture. It assumes a
JavaScript monitor can be shipped to the client tied to a legitimate web page,
and communicated to the verification system on the server, monitoring only the
website it is attached to. We also assume that if a web page is served but its
monitor does not send the DOM back, the monitor has been attacked (heart-
beat functionality). Besides, we assume the monitor relies on software protection
mechanisms that make tampering with the monitor logic difficult (such as obfus-
cation and software protection methods).

We assume an attacker wants to manipulate the way a victim renders a
target website, thus compromising the page integrity. For instance, if the vic-
tim interacts with a banking application, an attacker wants to trick the user to
perform apparently legitimate transactions or wants to harvest authentication
credentials. We assume that although an attacker might be aware of our DOM
monitoring mechanism, they cannot tamper with its logic or disable it without
the verification server noticing. We acknowledge there could be advanced attack-
ers in a position to bypass this mechanism but we argue that the cost/benefit
of doing so might deter them to do it. Also, recent efforts in trusted computing
can more effectively protect this type of logic on the client side, such as SGX for
Javascript [15], Fidelius [12] and ProtectIOn [10].

3 Approach

Our main goal is to minimize the complexity of inspecting every client’s DOM for
integrity attacks when analyzed on the server-side. Thus, we don’t want to build
a classifier for every possible threatening scenario, but instead, we seek to lever-
age the collection of rendered versions of the same web page to detect integrity
attacks. We aim at reducing the problem into one of distinguishing legitimate
DOM components with small tailored changes (majority) from unknown risky
components (minority). Therefore, we are interested in answering the following
general research question GRQ: Can collective analysis of DOMs gen-
erated from the same web source be suitable for detecting integrity
attacks as they occur? In order to reach better understanding of the perfor-
mance of our approach we propose a set of result-oriented research questions
which lead to valuable insights about the research problem.

– RQ1: Could a centralized system accurately detect integrity attacks given
the evolving nature of threats?

376 L. Tengana et al.

– RQ2: How to design a centralized system that efficiently manages the search
and classification of HTML elements?

– RQ3: Is it possible to guarantee the scalability and sustainability of such
system over time?

In order to answer our research questions we propose a framework to effi-
ciently abstract, analyze and classify the independent rendered versions of the
same web page source code. To accomplish this, we send a client-side DOM
monitor to collect web page information when the service is requested by a user.
We design a DOM Parser which not only extracts the relevant elements from
the DOM, but it can also add information about their context. The elements
generated by the DOM Parser feed the core module of our integrity verifier.
This module is a clustering system that enables the efficient search of similar
web atoms and the prioritization of unknown elements for classification.

In this way, the effort required to perform fine-grained detection of integrity
attacks on a certain DOM can benefit several other users who encounter similar
threats. Our approach was conceived to handle real-life data (i.e. millions of
entries per day) in an effective and scalable procedure.

An overview of the proposed system to detect integrity attacks (e.g. cross-site
scripting, defacement) from the server-side is depicted on Fig. 2 and explained
in detail throughout this section.

Fig. 2. Outline of Centy: an integrity verification system’s design. Centy is designed to
efficiently classify web-atoms from a client’s DOM as ‘safe’ (green), ‘malicious’ (red)
or ‘unknown’ (gray) by taking advantage of the knowledge gained from previously
classified web atoms. In the end, the server will be able to take further actions if some
DOM element is compromising the integrity of the service request. (Color figure online)

Centy: Centralized Web-Integrity Verification System 377

3.1 DOM Monitor

The rendered version a user has on a web page at any given time is represented
by its HTML DOM. Since we would like to verify if a specific web page was
rendered without being compromised on the client-side, we collect the DOM
directly from the user by sending a JavaScript function appended to the legiti-
mate web page. This function acts as a DOM monitor sending back the user’s
DOM when triggered. The monitor follows customizable rules to decide when to
collect a DOM, such as every t seconds and/or due to reactive DOM changes.

From a privacy perspective, the client-side monitor is concerned only with
the website which it is attached to (that is, the one that includes the JavaScript
function described above). The monitor cannot collect the DOM from the other
websites the user visits. Furthermore, as the monitor acts as a security supple-
ment on a website, the service provider is already in possession of any sensitive
information being served to client.

3.2 HTML DOM Parser

The DOM Parser works by simply traversing the HTML DOM tree structure.
When a collected DOM enters the centralized system, each relevant node is
extracted as well as its context and assembled into what we call a web-atom. A
web-atom represents one of the following HTML DOM nodes: a script, a form,
an iframe or a single HTML element (input tag, button tag, etc.). Our system
focuses on these node types because unintended changes on them can actually
pose a threat to the user. We also extract additional contextual elements from
the DOM, that is, metadata such as the timestamp and the source URL in which
the HTML node was collected (Fig. 3).

Web Atom

HTML-node
attributes:

∗ Content.
∗ Structural feature.
∗ MinHash signature

over content.

Context attributes:

∗ URL protocol and
domain.

∗ Timestamp.

Fig. 3. Web-atom structure.

To find commonalities among web atoms, we
craft what we call structural features. A struc-
tural feature is meant to abstract a core prop-
erty of some HTML node type which will be used
as a similarity criteria when grouping web-atoms
together. Examples of these features can be the
AST for script elements, domain name for URLs,
action field for forms or input description (i.e.
‘Username’, ‘Password’) for input tags.

For every web-atom, the appropriate struc-
tural feature is computed and the atom’s content
field is serialized in a way that allows to take a
literal MinHash signature over it. A script tag
with JavaScript code, for instance, will have its
AST as the structural feature and its MinHash
signature will be generated by extracting the shingles from the code string (con-
tent).

378 L. Tengana et al.

3.3 Online Clustering System

The clustering algorithm is permanently receiving all sorts of web-atoms and
determining whether they are known to the system. To perform this task effi-
ciently, the clustering system aims to generate a small number of clusters exhibit-
ing common characteristics among HTML-nodes and their features while pro-
viding a righteous classification to its matches, hence, maximizing cluster cohe-
siveness and minimizing the execution time of the overall classification.

Cluster

* Web-atom representa-
tive.

– Content.
– Structural feature.
– MinHash signature.

* URL scheme and do-
main.
* Classification.

– Safe.
– Malicious.
– Unknown.

* Match counter.
* Timestamp.

Fig. 4. Cluster structure.

As web-atoms arrive in an online fashion,
each of them can be similar to a previously seen
one and therefore, match with a pre-existing
cluster or, if a web-atom is sufficiently different
(by certain threshold), it can start a new cluster
on its own right.

The first web-atom in a cluster is automati-
cally taken as the cluster representative, mean-
ing this web-atom will encompass key charac-
teristics to be matched by future incoming web-
atoms according to a predefined similarity crite-
rion. To deem a fresh web-atom similar to a clus-
ter representative, the following two conditions
must be met: they must have the same struc-
tural feature and the similarity between their
MinHash signatures must exceed a given thresh-
old.

The selection of structural features is not trivial. These features need to
represent distinctive characteristics among web-atoms of the same type and be
broad clustering criteria as well. In this way, the number of different features
remains small over time in the context of our integrity verification system. A
good example of such feature is the tree representation of the abstract syntactic
structure of source code (AST) because two scripts with the same AST are likely
to have the same behavior even though their literal source code may differ (e.g.
different values for the same variables). In case of monitoring a web application,
the clients receive mostly the same scripts with some expected customizations,
which means the ASTs of the scripts collected afterwards will be resilient to
those changes and consequently, the number of different ASTs in the system is
expected to remain low.

Structural features can vastly abstract web-atom content and are powerful
patterns for clustering highly dissimilar elements. However, they can be overly
coarse when it comes to classifying web-atoms as safe or malicious. Then a sub-
clustering stage is added to make sure web-atoms with the exact same structural
feature, but with substantially different syntax are not grouped together. This
additional stage is necessary to counterbalance possible biases introduced by
structural features when handling edge cases. Hence, the subclustering consists
on leveraging the capabilities of Locality-Sensitive Hashing (LSH) to parameter-
ize the similarity matching, thus, tailoring the clustering criteria to any special
case as needed.

Centy: Centralized Web-Integrity Verification System 379

LSH Clusters

a) No pre-existing
 LSH for certain
 structural feature.

b) Pre-existing LSH,
 but no matching
 cluster.

c) Pre-existing LSH
 and matching
 cluster.

New LSH, new 'unknown'
cluster and web-atom
classified as 'unknown'.

Scenario Result

New 'unknown' cluster
and web-atom classified
as 'unknown'.

Web-atom classified with
the existing cluster's label.

Labels
Unknown
Safe
Malicious

Fig. 5. Clustering scenarios for each web-atom in a DOM. LSHsf is the LSH indexing
all cluster representatives that share the same structural feature (sf).

As explained in Sect. 2.3, an LSH indexes MinHash signatures over the tar-
get elements to support efficient querying of similar items based on a specified
threshold. Hence, to enable the MinHashing on web atoms, the next step is to
serialize them in such a way that they can be easily compared with others that
share the same structural feature. An LSH per structural feature is built to pro-
vide enough room for optimizing individual parameters (e.g. similarity threshold,
number of permutations, number of buckets etc.) depending of the characteris-
tics of the HTML node to be analyzed, as a one-size-fits-all LSH configuration
is unlikely to suit enough cases in this static analysis.

In short, this system receives web-atoms and outputs one of three labels:
‘unknown’, ‘safe’ or ‘malicious’. In detail, the main clustering scenarios are
depicted in Fig. 5. Scenario a occurs when there is no LSH for an incoming
web-atom’s structural feature, then, such LSH is created to index a new cluster
representative (i.e. the incoming web-atom) while both the new cluster and web-
atom are labelled as ‘unknown’. Notice this is the case in the beginning, when
the very first web-atom arrives. In this manner, the system does not require any
previous knowledge to be initialized as it is able to group and classify web-atoms
as they come.

Scenario b occurs when there is an LSH corresponding to the incoming web-
atom’s structural feature but none of its indexed cluster representatives is similar

380 L. Tengana et al.

enough to the new arrival, then, a new ‘unknown’ cluster is created, the web-atom
is taken as the cluster representative and the output label for that web-atom
will be ‘unknown’. Scenario c involves an incoming web-atom with a structural
feature that corresponds to a pre-existing LSH and that is similar enough to an
existing cluster representative; in this case the incoming web atom will get the
label of the matching cluster.

3.4 Labeling Cluster Representatives

All clusters start with an ‘unknown’ classification as they keep accumulating
matches. Then, a trusted classification system asynchronously decides whether
the cluster is of safe or malicious nature and this new label will be assigned to
future matches. Here, it is important to consider the trade-off between how sim-
ilar two elements need to be to get classified with the same label (which impacts
the accuracy of the system) and the proper amount of elements the trusted asyn-
chronous classification system can manage to label individually (which impacts
the time taken to review the resulting representatives). Regarding integrity
attacks, a rigorous method is needed to decide if certain element is malicious
or not, which can be done automatically (e.g. signature based services) or, fail-
ing that, by human experts. The key idea is that whether done by an automated
classifier or manually, it should be avoided to perform one classification twice
for similar elements and thus, setting the right threshold to balance efficiency
and accuracy is crucial to prevent system overload.

One advantage of our approach is that we can choose the scope of the classi-
fication to be on a cluster-by-cluster basis (fine-grained) or by grouping clusters
sharing the same structural feature (coarse-grained). That is, there are cases
where the structural feature fairly determines the maliciousness of web-atoms,
then it is not necessary to classify the clusters individually, but to extend the
structural feature classification to all of them will suffice.

Finally, the outcome of the integrity verification system is the vector of
labeled web-atoms for every single DOM. If any web-atom from a client’s DOM is
labeled as malicious, an alert is raised to the server so it can take further actions
to protect the user from the specific attack. The appropriate server response
could be to ask the user for a one time password, to send a notification of sus-
picious activity by email, to terminate the user session, etc.

3.5 System Limitations

Centy can detect if web atoms have slight content or structure variations, but it
cannot determine whether a never-before-seen web-atom is an attack attempt or
a benign entry. However, in our approach, unknown web-atoms are automatically
clustered. Moreover, automatic clustered items are easier to be reviewed and
classified by either an algorithm or a human experts. If a cluster happens to be
an attack, an alert will be raised for each previous occurrence. Notice that those
alerts could have a delay, after a particular client has been affected. Centy does
not have a way to immediately respond to these never-before-seen attacks that

Centy: Centralized Web-Integrity Verification System 381

are not similar to anything the system encountered in the past, but it will surely
be able to detect unknown inputs and produce timely alerts to the server once
the attack cluster has been classified as such, by an automated system or by
human experts.

The syntactic analysis performed by Centy is better suited for modifications
involving several characters because, despite the LSH parameters being config-
urable, aiming to catch small but potentially malicious modifications (i.e. 1 byte)
would lead to an explosion in the cluster number and the benefits of clustering
would vanish. Moreover, there is a wide range of web attacks which may have no
impact on the DOM such as phishing, cross-site request forgery (CSRF), clip-
board hijacking, and social engineering. Web attacks leaving no footprints on
the DOM are out of the scope of this work.

4 Evaluation

To evaluate how our approach answers our research questions, we implemented
a centralized system based on a subset of all relevant HTML nodes: script tags.
We picked script tags for the evaluation because malicious code injections can
easily alter a client’s DOM. Nevertheless, the same evaluation can be extended
to any other HTML node. Script tags can contain either source code (usually
in JavaScript) or a URL pointing to an external scripting file. In the former
case, the structural feature chosen was the abstract syntax tree (AST), which is
expected to have minor variations among clients and to be relatively stable in
the same web page over time. In the latter case, the concatenation of protocol
and domain name was selected as the structural feature because it facilitates the
identification of cross-origin threats.

4.1 Datasets

We use four datasets to evaluate our approach. Three of them belong to real
banking environments that were accessible in virtue of a partnership with the
data owners and where sensitive information was properly anonymized before-
hand. The first dataset is a manually labeled set of HTML script tags collected
from users of ‘bank A’ web service for over 2 years. The human experts in charge
of the labelling considered criteria such as if a script was a legitimate bank
resource, if it contained adware, if it was reported in malware search engines like
VirusTotal, if the source domain was reported as malicious in public records, if
the code was obfuscated and the nature of the resources fetched or the informa-
tion sent by any script request.

The next two datasets consist of a sample of raw DOMs collected from users
of two highly visited web services respectively in the span of a year. Specifi-
cally, we sampled up to 100 DOMs per hour from users navigating to login and
transactional pages from each web service throughout 2020. The last dataset
contains malicious JavaScript samples obtained from public repositories: Hynek
Petrak [24], GeeksOnSecurity [14], and additional samples were downloaded from
VirusTotal [30]. The details of the datasets are summarized in Table 1.

382 L. Tengana et al.

Table 1. Summary of the datasets for evaluation.

Classification

Dataset Content Labeled Time frame Size Safe Malicious

Bank A Script tags Yes 2.5 years 60, 375 53,311 7,064

Bank B DOMs No 1 year 133, 940 – –

Bank C DOMs No 1 year 142, 627 – –

Malicious JavaScripts Yes - 41, 819 – 41,819

4.2 Performance Metrics

Addressing RQ1 about the accuracy of our solution and RQ2 about its efficiency
and scalability, the following metrics are used on the available datasets:

– Classification accuracy when testing incoming web-atoms against a
labeled dataset.

– Average processing time to analyze DOMs and web-atoms.
– Compression is the fraction of incoming web-atoms that were clusterized

and represented by a single web-atom in system with respect to the total
amount of web-atoms (Eq. 1).

Compression =
|Web Atoms| − |Clusters|

|Web Atoms| (1)

Where |Clusters| is the number of clusters created in a particular time period
by the system (i.e. the final number of relevant HTML instances to be classified),
and |Web Atoms| is the initial number of HTML nodes incoming to the system
(i.e. before being clustered by Centy).

In Eq. 1, if all web-atoms were different from each other structurally and
content-wise, the number of clusters would be equal to the number of atoms,
hence the Compression would be 0%, and consequently all incoming atoms
would have to be individually evaluated. On the other hand, if there were simi-
larities among the incoming atoms, the number of clusters would be smaller than
the number of incoming atoms, the Compression would increase, and therefore
fewer atoms would have to be evaluated, which is the goal of our system. The
effectiveness of the our approach is given by the incoming web-atoms’ compres-
sion ratio accomplished, in other words, how much the workload decreases after
the original workload is processed by the integrity verification system.

Additionally, the clusters are labeled into three categories: safe, malicious
and unknown. The unknown label is assigned to clusters which have not been yet
classified. In that sense, for the first two known labels, namely safe and malicious,
if an incoming web atom is similar enough to fit into one of them, its classification
is straightforward. But for clusters with unknown label, a web-atom representing
the cluster must be sent to an asynchronous classifier. Henceforth, our results
include clusters with unknown label as a measure of how many clusters represent
the classification workload remaining for the asynchronous classifier.

Centy: Centralized Web-Integrity Verification System 383

4.3 Accuracy and Efficiency

There is a trade-off between accuracy and efficiency of the integrity verification
system. The higher the similarity threshold, the less web-atoms will be match
together in clusters, therefore the accuracy of each cluster label propagated to
its highly similar matches will increase at the expense of having to classify more
of those smaller clusters. In Fig. 6 we have depicted an illustration of cluster’s
distribution for different similarity thresholds.

Fig. 6. Illustration of cluster distribution on the labeled dataset using Fruchterman-
Reingold force algorithm. Green and red circles represent safe and malicious clusters
respectively. The size of the circles represent the quantity of web-atoms that matched
with the cluster representatives. The number inside the circles is the average similarity
between each incoming web-atom and its cluster representative. (Color figure online)

Notice that in a real scenario each cluster needs to be asynchronously clas-
sified, and a flood of requests could exceed an acceptable response latency from
the classifier. Hence, it is crucial to find the balance between the strictness of the
similarity threshold and the amount of clusters the asynchronous classifier can
handle. In the best case, there are automated tools that can be rapidly queried
for safe or malicious coincidences (e.g. VirusTotal), on the contrary, a human
expert could investigate an occurrence and assess its threatening potential in a
time-consuming, but highly reliable operation.

To gain insights about the effect of parameter selection in our use case, we
performed a sensitivity analysis on the similarity threshold using the labeled
dataset from bank A. Figure 7 shows the system performance and the clusters
created for different similarity thresholds. Given the fact that there are ostensibly
more safe samples (negative class) than malicious samples (positive class), we
highlighted in Fig. 7 the probability that a positive sample is marked as such
(recall). Moreover, it can also be observed how moving along the threshold axis
impacts the number of clusters in the system. In both graphs it is evident how the
performance of the system dramatically increases when grouping similar items

384 L. Tengana et al.

together beyond their structural feature (threshold > 0.0). Notice, however,
that for the HTML script tags containing JavaScript (Fig. 7a), the recall swings
between 0.77 and 0.95 for low similarity thresholds, which calls into question the
selection of such low thresholds to be a reasonable similarity requirement when
comparing source code, despite their apparent good performance. Delving into
this fluctuation, it could seem that a similarity threshold of 0.2 works better
than others, but its performance explainability borders on luck rather than the
effectiveness of this measure. Now, zooming into the higher thresholds, an steady
increase in accuracy can be observed from 0.6 on, which are much more reliable
thresholds. This search for robustness comes with the corresponding cost of a
higher number of clusters in the system and produces the trade-off between
accuracy and efficiency.

On the other hand, for HTML script tags pointing to an external source
file (Fig. 7b) the recall rises marginally up to 0.96. In this scenario, the selected
structural feature (scheme and domain name) seems to provide a highly accurate
decision boundary of what is considered safe or threatening within our use case.

(a) JavaScript content. (b) Source URL.

Fig. 7. Accuracy, recall and the number of clusters over time in the classification of
HTML script tags in the labeled dataset of Bank A.

4.4 Scalability

For testing the scalability of our approach and its sustainability over time (RQ3),
we used the datasets from bank B and bank C (both unlabeled). The goal is to
evaluate the performance of all of the modules of the integrity verification system
from a sample of the real flow of client sessions in highly visited websites. In order
to make our evaluation more realistic, a set of malicious JavaScript dataset was
included into the system at initialization. Each malicious JavaScript file was
considered as if its source code came in an script tag from the monitored web
service, thus, the 41819 scripts in the dataset were condensed in 24306 unique
artificial web-atoms which formed 10370 clusters with malicious label.

Centy: Centralized Web-Integrity Verification System 385

Then, the DOMs from the banking web services were loaded into the system
in the order indicated by their reported timestamp. A fixed similarity threshold
of 0.6 was established for comparing the MinHash signatures when querying the
different LSHs for simplicity. Figure 8 shows that for both banks B and C, as
DOMs timely arrive in the system, the amount of clusters remains steadily low
relative to the amount of unique web-atoms identified. Specifically, the compres-
sion rate of incoming web-atoms to clusters exceeds 97% for both banks after
25 days (Fig. 9). As mentioned, it is interesting to see not only the incoming
web-atom compression rate, but also the rate relative to unique web-atoms iden-
tified by the system because it highlights the variety of scripts present in clients’
DOMs; this compression rate exceeds 87% for both banks after 25 days.

(a) Bank B (b) Bank C

Fig. 8. Number of elements in the system over time.

Another interesting compression rate is the one from web-atoms into struc-
tural features, which indicates how many web-atoms share the same underlying
structure. The compression rate of incoming web-atoms to structural features
exceeds 94% for both banks after 25 days, and the compression rate for unique
web-atoms to structural features exceeds 70% for both banks after 25 days.
These results confirm the intuition that even in real dynamic web pages, most
of the HTML nodes from client DOMs can be grouped into few structural rep-
resentations, meaning it is possible to separate the known safe elements from
the unknown ones that could pose a threat to the integrity of a client’s rendered
version of a legitimate web page.

Now the question is, how feasible it is for an asynchronous classifier to label
the remaining unknown clusters in a timely manner? At the end of the cluster-
ing phase, bank B and C had 28 and 30 massive clusters (>30,000), which can
be considered as a semi-automatic heuristic to label them as safe. Both banks
had 10370 malicious clusters at initialization from which none of the banks
reported coincidences. Finally, for the unknown clusters left to be classified,

386 L. Tengana et al.

Bank B formed 14778 and Bank C formed 15131. In the most time-consuming
scenario, human experts are required to manually inspect cluster representatives
for possible integrity threats. Based on the experience of the labeled dataset from
Bank A, we estimate an analyst would take between 30 s to 10 min to classify a
web-atom as safe or malicious. To put it in perspective, if a team of 10 analyst
were to review the remaining 15131 clusters of bank C, assuming they work 8 h
per day, they would finish the classification of the unknown clusters in around
16 days.

Regarding the cost of DOM collection, the DOM monitor on the client-side
runs in the background after all the regular web page elements are loaded and
thus, it doesn’t interfere with the user experience. As for the average web-atom
processing time, regardless of the similarity thresholds, it was 0.02 s with a
standard deviation of 0.02 s, which aligns with the expected sublinear query
time to an LSH.

Fig. 9. Compression of web-atoms over time.

4.5 Discussion and Threats to Validity

In this section we have evaluated our proposed approach on various datasets
containing data of the real flow of user session in banking environments. We
have evaluated two scenarios: (1) a dataset containing manually labeled data by
experts, in which we were able to measure labelling accuracy (safe vs malicious)
and its relation to the number of clusters formed; (2) two unlabeled datasets of
DOMs from real user sessions to evaluate the full workflow of Centy in terms
of the compression ratio reached by our approach. As shown throughout this
section, after our approach is applied the workload for semi-automatic analysis
becomes manageable since Centy could greatly decrease it by up to 99.4%. This
fosters quality in the analysis as well as an improved cost-benefit ratio.

Centy: Centralized Web-Integrity Verification System 387

In regard to validity, first, our approach is constrained by the same drawbacks
of static analysis since LSH does not capture the semantics of the elements of
the DOM. For instance, Centy is better suited for detection of modifications
involving several characters, rather than detection of special cases where small
modifications (i.e. 1 byte) can be considered malicious, because setting the LSH
parameters to such fine-grained detection may lead to an explosion in the number
of clusters and therefore diminish the benefits of clustering. Second, the accuracy
of the system is highly dependant on the manually devised structural features
which oftentimes require expert knowledge as well as trial an error for them to
be as scalable as the ones shown for this evaluation. Third, in case some cluster
gets missclassified, the error could propagate faster to the subsequent web-atoms
than in individual evaluation. Fourth, our system is not able to predict the
classification of unknown web-atoms, only to detect if an incoming one is similar
to a previously classified cluster. This means zero-day attacks could bypass this
detection. However, our system is still able to single out the attack as its own
cluster and an analyst can have a chance to actually unveil it, which can be an
advantage rather than a severe limitation. The prediction of malicious web-atoms
based on the classified ones is going to be considered in future work.

5 Related Work

The rise of defaced or malicious injections to legitimate websites in the past
decades has motivated the development of systems that detect significant changes
to website content integrity [8,13,33]. Such systems employ diverse methodolo-
gies to detect attacks such as cross-site scripting and malicious plugins. Multiple
resources can be monitored to extract insights from the integrity of the web
applications, in this review we focus on systems that perform DOM based anal-
ysis as a complement or an alternative to other analysis such as network-traffic
analysis, text-based analysis, visual similarity or manual black-listing, among
other approaches [29,32]. Considering that the analysis of website similarities
is crucial for the phishing detection problem, even more with the rise of asyn-
chronous and dynamic content technologies [4], previous studies have proposed
varied methods for near-duplicate recognition.

Xiang et al. [32] proposed a method called CANTINA+, where they filter
website duplicates by comparing the SHA1 hashes of a pre-processed HTML
input against a previously known list of phishing sites, they report a 99.64%
accuracy for near duplicate detection in a set of 2219 sites, however, one to one
comparison could compromise scalability of the method. In the work performed
by Bagban et al. [7] the web-pages DOM are extracted, then MinHash and LSH
algorithms are applied to the DOM shingles in order to assign a cluster for each
document, and based on that cluster. They determine if the corresponding web-
page is related to a given web template or is not, computing their similarity in
a method that works even for heterogeneous web sites. In the best setting, they
achieved a recall of 0.6 and a f1-score of 0.75, different from them, our system
is centralized and could benefit from DOMs observed in other users.

388 L. Tengana et al.

Similarly, Ben-bassat et al. [4] presented a methodology where MinHash and
LSH are used to analyze DOM similarity and accelerate the duplicate content
search between web pages. The method extracts the DOM tree of the web page
in a particular state s, the accuracy of detecting similar states in real world
applications such as Github, Facebook and Netflix were in the range of 78% to
82%. This approach was proposed for website testing purposes rather than for
phishing detection. For security purposes Abed et al. [6] proposed a method in
which a MinHash technique is used as a data integrity check between a sender
and a receiver of a message by using the MinHash function to generate public
and private keys in RSA and AES data encryption protocols.

Also, Hunt et al. [16] presented a method using MinHashing and LSH to
determine the similarity between DOM objects, compression or accuracy are
not disclosed. Different from those studies, our work presents a methodology to
monitor client-side website integrity from the server-side. The proposed method
integrates a structural signature (i.e. AST) analysis with a clustering system, to
generate a scalable, efficient process and detect malicious activity from thousands
of users.

Regarding the classification module that determines new cluster labels for
unknown inputs, the use of machine learning algorithms to classify unknown
malicious websites, based on individual DOM features, is widely addressed in
literature. The CANTINA+ method [32] defined three groups of high-level web-
page and DOM features to train a classifier, the 15 HTML-based features are
based on pre-defined rules that detect bad forms, bad action fields, non-matching
URLs and out of position domain strings. They achieved an accuracy of 93.47%
for phishing detection of unknown inputs with Bayesian Networks.

Also, Gangi et al. [22] trained a random forest classifier that achieved a
balanced classification accuracy of 90.2% for a total of 100 infected pages and
92.4% for 693 clean pages. Finally, Zhuang et al. [3] also presented a phishing
model that integrates URL and DOM features, several classifiers for each feature
(e.g. Naive Bayes and SVMs) are integrated with a hierarchical clustering system,
they validated their approach with a large dataset comprising around 204000
websites from a production environment, accuracy was in the range of 96.4 to
98.7%. Notice that our approach achieved a classification accuracy of 98.7% over
in-the-wild data.

In sum, to the best of our knowledge, our work is the first to show an accurate,
scalable and practical clustering system for web integrity compromise detection
evaluated on production data.

6 Conclusions

In this paper we present a system design, Centy, that allows a system provider
to check for integrity of an intended web site on the client’s end. This app-
roach generalizes to diverse attack types, since it is not tailored to a particu-
lar attack technique. Furthermore, we show that Centy (using a combination
of fuzzy hashes and abstract syntax trees, scales for semi-automatic analysis)

Centy: Centralized Web-Integrity Verification System 389

achieves up to 98.7% accuracy while compressing incoming web-atoms up to
99.4%. This is obtained by evaluating our approach on production data belong-
ing to two different sites from the banking domains. Finally, we show that our
approach offers a good trade-off between classification accuracy and scalability.

References

1. Can I use... Support tables for HTML5, CSS3, etc. https://caniuse.com/. Accessed
28 Nov 2020

2. DOM-observer: An abstraction for Mutation Observer with some extra features.
https://github.com/jstoolkit/dom-observer

3. Zhuang, W., Jiang, Q., Xiong, T.: An intelligent anti-phishing strategy model for
phishing website detection. In: 2012 32nd International Conference on Distributed
Computing Systems Workshops. 51–56 (2012). IEEE

4. Ben-Bassat, I., Rokah, E.: Locality-sensitive hashing for efficient web application
security testing. arXiv.2001.01128 (2020)

5. MutationObserver - Web APIs—MDN. https://developer.mozilla.org/en-US/
docs/Web/API/MutationObserver

6. Abed, S., Waleed, L., Aldamkhi, G., Hadi, K.: Enhancement in data security and
integrity using minhash technique. Indones. J. Electr. Eng. Comput. Sci. 21(3),
1739–1750 (2021)

7. Bagban, T.I., Kulkarni, P.J.: Template based clustering of web documents using
locality sensitive hashing (LSH). In: Iyer, B., Deshpande, P.S., Sharma, S.C., Shi-
urkar, U. (eds.) Computing in Engineering and Technology. AISC, vol. 1025, pp.
567–584. Springer, Singapore (2020). https://doi.org/10.1007/978-981-32-9515-
5 54

8. Chen, Q., Snyder, P., Livshits, B., Kapravelos, A.: Improving web content blocking
with event-loop-turn granularity Javascript signatures. arXiv (May 2020)

9. Cova, M., Kruegel, C., Vigna, G.: Detection and analysis of drive-by-download
attacks and malicious Javascript code. In: Proceedings of the 19th International
Conference on World Wide Web, pp. 281–290 (2010)

10. Dhar, A., Ulqinaku, E., Kostiainen, K., Capkun, S.: Protection: root-of-trust for IO
in compromised platforms. In: Proceedings 2020 Network and Distributed System
Security Symposium. Internet Society (2020)

11. Dougan, T., Curran, K.: Man in the browser attacks. Int. J. Ambient Comput.
Intell. (IJACI) 4(1), 29–39 (2012)

12. Eskandarian, S., et al.: Fidelius: protecting user secrets from compromised
browsers. In: 2019 IEEE Symposium on Security and Privacy (SP), pp. 264–280.
IEEE (2019)

13. Fajardo, I., Deiro, C.: Systems and methods for detecting and addressing html
modifying malware - US.9798875 (2017)

14. GeeksOnSecurity: Malicious Javascript Dataset. https://github.com/
geeksonsecurity/js-malicious-dataset. Accessed 3 Jan 2021

15. Goltzsche, D., Wulf, C., Muthukumaran, D., Rieck, K., Pietzuch, P., Kapitza, R.:
TrustJS: trusted client-side execution of Javascript. In: Proceedings of the 10th
European Workshop on Systems Security, pp. 1–6 (2017)

16. Hunt, A.: Using hash signatures of DOM objects to identify similarity - US.9686283
(2017)

https://caniuse.com/
https://github.com/jstoolkit/dom-observer
http://arxiv.org/abs/2001.01128
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://doi.org/10.1007/978-981-32-9515-5_54
https://doi.org/10.1007/978-981-32-9515-5_54
https://github.com/geeksonsecurity/js-malicious-dataset
https://github.com/geeksonsecurity/js-malicious-dataset

390 L. Tengana et al.

17. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, pp. 604–613 (1998)

18. Kapravelos, A., Grier, C., Chachra, N., Kruegel, C., Vigna, G., Paxson, V.: Hulk:
eliciting malicious behavior in browser extensions. In: 23rd USENIX Security Sym-
posium (USENIX Security 14), pp. 641–654 (2014)

19. Kirda, E., Kruegel, C., Vigna, G., Jovanovic, N.: Noxes: a client-side solution for
mitigating cross-site scripting attacks. In: Proceedings of the 2006 ACM Sympo-
sium on Applied Computing, pp. 330–337 (2006)

20. Klein, A.: Dom based cross site scripting or XSS of the third kind. Web Appl.
Secur. Consort. Artic. 4, 365–372 (2005)

21. Lekies, S., Stock, B., Johns, M.: 25 million flows later: large-scale detection of
DOM-based XSS. In: Proceedings of the 2013 ACM SIGSAC Conference on Com-
puter & Communications Security, pp. 1193–1204 (2013)

22. Moniruzzaman, M., Bagirov, A., Gondal, I., Brown, S.: A server side solution for
detecting webinject: a machine learning approach. In: Ganji, M., Rashidi, L., Fung,
B.C.M., Wang, C. (eds.) PAKDD 2018. LNCS (LNAI), vol. 11154, pp. 162–167.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04503-6 16

23. Nikiforakis, N., Meert, W., Younan, Y., Johns, M., Joosen, W.: SessionShield:
lightweight protection against session hijacking. In: Erlingsson, Ú., Wieringa, R.,
Zannone, N. (eds.) ESSoS 2011. LNCS, vol. 6542, pp. 87–100. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19125-1 7

24. Petrak, H.: Javascript Malware Collection. https://github.com/HynekPetrak/
javascript-malware-collection. Accessed 3 Jan 2021

25. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University
Press, Cambridge (2011)

26. Rieck, K., Krueger, T., Dewald, A.: Cujo: efficient detection and prevention of
drive-by-download attacks. In: Proceedings of the 26th Annual Computer Security
Applications Conference, pp. 31–39 (2010)

27. Sun, F., Xu, L., Su, Z.: Client-side detection of XSS worms by monitoring payload
propagation. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp.
539–554. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04444-
1 33

28. Tekli, G.: A survey on semi-structured web data manipulations by non-expert
users. Comput. Sci. Rev. 40, 100367 (2021)

29. Varshney, G., Misra, M., Atrey, P.K.: A survey and classification of web phishing
detection schemes. Secur. Commun. Netw. 9(18), 6266–6284 (2016). https://doi.
org/10.1002/sec.1674

30. VirusTotal: Malware Querying Service. https://www.virustotal.com. Accessed 3
Jan 2021

31. w3 schools: JavaScript HTML DOM. https://www.w3schools.com/js/js htmldom.
asp

32. Xiang, G., Hong, J., Rose, C.P., Cranor, L.: Cantina+: a feature-rich machine
learning framework for detecting phishing web sites. ACM Trans. Inf. Syst. Secur.
(TISSEC) 14(2), 1–28 (2011)

33. Zhang, M., Meng, W.: Detecting and understanding JavaScript global identifier
conflicts on the web. In: ESEC/FSE 2020 - Proceedings of the 28th ACM Joint
Meeting European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering, pp. 38–49. Association for Computing Machinery
Inc., New York (November 2020)

https://doi.org/10.1007/978-3-030-04503-6_16
https://doi.org/10.1007/978-3-642-19125-1_7
https://github.com/HynekPetrak/javascript-malware-collection
https://github.com/HynekPetrak/javascript-malware-collection
https://doi.org/10.1007/978-3-642-04444-1_33
https://doi.org/10.1007/978-3-642-04444-1_33
https://doi.org/10.1002/sec.1674
https://doi.org/10.1002/sec.1674
https://www.virustotal.com
https://www.w3schools.com/js/js_htmldom.asp
https://www.w3schools.com/js/js_htmldom.asp

Author Index

Abdelraoof, Ahmed 258
Arshad, Elham 21

Benolli, Michele 21
Berndt, Sebastian 88

Castelblanco, Alejandra 371
Chen, Guoxing 151
Chen, Haibo 194
Cheng, Yueqiang 151, 173
Crispo, Bruno 1, 21

Dangl, Thomas 258
Debbabi, Mourad 319
Degeling, Martin 341
Didier, Guillaume 278
Du, Dong 194
Durey, Antonin 237

Eisenbarth, Thomas 88

Flume, Robin 361

Harris, Ian G. 299
Holz, Thorsten 68, 341, 361
Huang, Wei 173

Innocenti, Tommaso 1

Karbab, ElMouatez Billah 319
Kharraz, Amin 1, 130
Kim, Chung Hwan 215
Kirda, Engin 1, 130
Konte, Maria 42

Laperdrix, Pierre 237
Lee, Kyu Hyung 215
Lie, David 173
Lin, Zhiqiang 151
Lopez, Christian 371
Lu, Long 130

Mantu, Radu 106
Maurice, Clémentine 278
Mirheidari, Seyed Ali 1, 21
Mirzaei, Omid 130

Nikolić, Ivica 106

Ochoa, Martin 371

Perdisci, Roberto 42
Pott, Claudius 88

Quinkert, Florian 68, 341

Reiser, Hans P. 258
Rhee, Junghwan “John” 215
Rivera, Esteban 371
Rouvoy, Romain 237
Rudametkin, Walter 237

Saxena, Prateek 106
Setayeshfar, Omid 215
Shen, Shiqi 106
Solano, Jesus 371
Subramani, Karthika 42

Tatang, Dennis 68, 361
Taubmann, Benjamin 258
Tengana, Lizzy 371
Tung, Yu-Jye 299

Vasilenko, Roman 130

Wang, Wubing 151
Wichelmann, Jan 88

Xu, Shengjie 173

Yuan, Chuhong 194

Zhang, Yinqian 151

	 Preface
	 Organization
	 Contents
	You've Got (a Reset) Mail: A Security Analysis of Email-Based Password Reset Procedures
	1 Introduction
	2 Related Work
	3 Background
	3.1 OWASP Guidelines
	3.2 Attack Scenarios

	4 Methodology
	4.1 Measurement Setup
	4.2 Data Collection Infrastructure
	4.3 Password Reset Testing Methodology
	4.4 Limitations
	4.5 Ethical Considerations

	5 Security Measurement
	5.1 Account Recovery Implementation
	5.2 Recovery Procedure Analysis
	5.3 Weakness Analysis
	5.4 Attack Scenarios

	6 Conclusions
	References

	The Full Gamut of an Attack: An Empirical Analysis of OAuth CSRF in the Wild
	1 Introduction
	2 Background
	2.1 OAuth
	2.2 Login CSRF
	2.3 State Parameter

	3 OAuth Cross Site Request Forgery
	3.1 Threat Model
	3.2 Impact
	3.3 Enabling Factors

	4 Related Work
	5 Methodology
	5.1 Phase 1: Target Selection
	5.2 Phase 2: Measurement Setup
	5.3 Phase 3: OCSRF Discovery
	5.4 Ethical Consideration

	6 Analysis
	6.1 Measurement Overview
	6.2 state Parameter
	6.3 Case Studies
	6.4 Notable Observations
	6.5 Limitations

	7 Mitigation
	8 Conclusions
	References

	Detecting and Measuring In-The-Wild DRDoS Attacks at IXPs
	1 Introduction
	2 Background on IXPs
	3 IXmon System
	3.1 Aggregate Traffic Statistics
	3.2 Online Time Series Anomaly Detection
	3.3 Attack Detection

	4 Analysis of In-the-Wild Attacks
	4.1 IXmon Implementation and Setup
	4.2 Data Collection at SoX
	4.3 Attack Measurements and Analysis
	4.4 Attack Mitigation

	5 Related Work
	6 Conclusion
	References

	Digging Deeper: An Analysis of Domain Impersonation in the Lower DNS Hierarchy
	1 Introduction
	2 Background and Related Work
	2.1 Structure of Domains
	2.2 Certificate Transparency Logs (CTLs)
	2.3 Related Work

	3 Measurement Setup
	3.1 Input Data
	3.2 Analysis Pipeline

	4 Measurement Study
	4.1 Reference Domain Evaluation
	4.2 Analysis of Phishing Feeds
	4.3 Other Domain Squatting Techniques
	4.4 Certificate Transparency Logs (CTLs)

	5 Limitations
	6 Conclusion and Recommendations
	References

	Help, My Signal has Bad Device!
	1 Introduction
	1.1 Our Contribution
	1.2 Responsible Disclosure

	2 Background
	2.1 Post-Compromise Security

	3 The Signal Protocol
	3.1 X3DH ch5signalprotocolspsx3dh
	3.2 Double Ratchet ch5signalprotocolspsdr
	3.3 Sesame ch5signalprotocolspssesame

	4 Signal Implementation in the Signal Messenger
	4.1 Reverse Engineering the Protocol Implementation
	4.2 Device Registration
	4.3 Registering a Malicious Device
	4.4 Implications for Post-compromise Security

	5 Countermeasures
	5.1 UI Changes
	5.2 Alternative Multi-device Protocols

	6 Conclusion
	References

	Refined Grey-Box Fuzzing with Sivo
	1 Introduction
	2 Problem
	3 Overview of Sivo
	4 Design
	4.1 The Parametrize-Optimize Paradigm
	4.2 Fast Approximate Taint Inference
	4.3 Solving System of Intervals
	4.4 More Accurate Coverage
	4.5 Design of the Whole Fuzzer Sivo
	4.6 Limitations of Sivo

	5 Evaluation
	5.1 Experimental Setup
	5.2 Coverage
	5.3 Vulnerabilities
	5.4 Performance of Refinements
	5.5 The Cause of Observed Benefits

	6 Related Work
	7 Conclusion
	References

	SCRUTINIZER: Detecting Code Reuse in Malware via Decompilation and Machine Learning
	1 Introduction
	2 Approach
	2.1 Decompilation
	2.2 Func2vec Encoding
	2.3 Encoding Clustering

	3 Evaluation
	3.1 Experimental Setting and Dataset
	3.2 Function Encoding
	3.3 Cluster Analysis
	3.4 Real-World Deployment

	4 Discussion
	5 Related Work
	6 Conclusion
	References

	SPECULARIZER: Detecting Speculative Execution Attacks via Performance Tracing
	1 Introduction
	2 Background
	3 Threat Model and SPECULARIZER Overview
	4 Trace Collection
	5 Trace Processing
	5.1 Processing Exceptions
	5.2 Identifying Branch and Data Misprediction

	6 Attack Detection
	7 Attack Variants Generation
	7.1 Exception-Based Attack Variants
	7.2 BTB/PHT Misprediction Variants
	7.3 RSB and STL Misprediction Variants

	8 Evaluation
	8.1 Evaluation of SPECULARIZER's Parameters
	8.2 Evaluation of Detection Accuracy
	8.3 End-to-End Evaluation
	8.4 Performance Analysis

	9 Discussion
	10 Related Work
	11 Conclusion
	References

	Aion Attacks: Manipulating Software Timers in Trusted Execution Environment
	1 Introduction
	2 Background and Related Work
	2.1 Intel SGX and TSX
	2.2 Power and Thermal Management of Intel CPU
	2.3 Cache-Based Side-Channel Attacks and Defences in SGX

	3 System Model
	3.1 Model of Software Timers
	3.2 Defender Model
	3.3 Timer Countermeasures

	4 Attack Design
	4.1 -1: CPU Thermal and Frequency Attack
	4.2 -2: Cache Eviction Attack

	5 Implementation
	5.1 Reference Software Timer
	5.2 Implementing -1: CPU Thermal and Frequency Attack
	5.3 Implementing -2: Cache Eviction Attack

	6 Evaluation
	6.1 Purpose and Experiment Setup
	6.2 Attack Evaluation
	6.3 End-to-End Attack Evaluation

	7 Conclusion
	References

	Third-Eye: Practical and Context-Aware Inference of Causal Relationship Violations in Commodity Kernels
	1 Introduction
	2 Motivation
	2.1 An Example of Violating Causal Relationship
	2.2 Study of Violations in the Linux Kernel

	3 Overview
	4 Key Techniques
	4.1 Intersection-Based Call Sequence Building
	4.2 Context-Sensitive Statistical Analysis

	5 Implementation
	5.1 Preparation Phase
	5.2 Post-processing Phase

	6 Evaluation
	6.1 Mine Pair Functions
	6.2 Detect Bugs
	6.3 False Positive and False Negative
	6.4 Result Variation
	6.5 Sensitivity Analysis
	6.6 Performance

	7 Discussion and Related Work
	8 Conclusion
	References

	Find My Sloths: Automated Comparative Analysis of How Real Enterprise Computers Keep Up with the Software Update Races
	1 Introduction
	2 Observations on Enterprise Software Deployment
	3 Design of Find My Sloths
	3.1 Automated Tracking of Software Binary Information
	3.2 Software Update Inference with Binary Update Lineage Graph
	3.3 Software Risk Inference

	4 Characteristics of Software Updates
	5 Evaluation of Software Update Risk
	6 Case Study
	6.1 An Example of a Desirable Software Management
	6.2 An Example Undesirable Software Management

	7 Lessons Learned and Our Suggestions
	8 Related Work
	9 Discussion and Future Work
	10 Conclusion
	References

	FP-Redemption: Studying Browser Fingerprinting Adoption for the Sake of Web Security
	1 Introduction
	2 Background and Related Work
	2.1 Browser Fingerprinting
	2.2 Multi-factor Authentication and Session Hijacking

	3 A Dataset of Secure Web Pages
	3.1 Websites Under Study
	3.2 Web Page Acquisition
	3.3 Fingerprinted Page Attributes
	3.4 Resulting Dataset Description

	4 Analysis of Secure Web Pages
	4.1 Browser Fingerprinting Attributes
	4.2 Origins of Browser Fingerprinting Scripts
	4.3 Secured vs Non-secured Web Pages
	4.4 Additional Security Mechanisms

	5 Attack Models
	5.1 Stolen Credentials
	5.2 Cookie Hijacking

	6 Discussion
	7 Conclusion
	A Selected Search Keywords
	References

	Introspect Virtual Machines Like It Is the Linux Kernel!
	1 Introduction
	2 Related Work
	3 Background
	3.1 Xen Infrastructure
	3.2 VMI Mechanics

	4 Dissecting the LibVMI Hypervisor Interface
	4.1 Setting a Breakpoint
	4.2 Hitting a Breakpoint
	4.3 Memory Access Tracers as Opposed to Breakpoints
	4.4 Summary of Identified Problems

	5 Hypervisor Tracers (HVT)
	5.1 Hypervisor Tracers Architecture
	5.2 Memory Access Tracer
	5.3 Guest Physical Breakpoint

	6 Using Ring Buffers for Asynchronous Tracing
	7 System Evaluation and Benchmarking
	7.1 Microbenchmarks: getpid() and ping localhost
	7.2 Unix Benchmark Results
	7.3 Performance of Real-World Applications

	8 Conclusion
	References

	Calibration Done Right: Noiseless Flush+Flush Attacks
	1 Introduction
	2 Background
	2.1 CPU Caches
	2.2 CPU Uncore and Interconnect
	2.3 Multi-socket Systems
	2.4 Cache Side-Channel Attacks

	3 Motivation
	4 Experimental Setup
	5 Topology Modeling
	6 Improving Error Rate Accounting for Topology
	6.1 Attacker Models
	6.2 Experimental Results on Error Rate
	6.3 The Case of Dual-Socket Machines

	7 Evaluation
	7.1 Building a Better Channel
	7.2 AES T-Tables Attack Using Flush+Flush

	8 Related Work
	8.1 Cache Attacks Primitives
	8.2 Attacking AES T-Tables

	9 Future Work
	10 Conclusion
	A Cache slicing functions uncovered
	References

	Zero Footprint Opaque Predicates: Synthesizing Opaque Predicates from Naturally Occurring Invariants
	1 Introduction
	1.1 Problem
	1.2 Insight
	1.3 Solution
	1.4 Contributions

	2 Identifying Features of Real Predicates
	3 Motivating Example
	4 Threat Model
	5 System Overview
	6 Value Sets Identifier
	6.1 Source-Level vs Binary-Level Analysis

	7 Opaque Predicate Builder
	7.1 Program Synthesis Implementation

	8 Evaluation
	8.1 Benchmark Programs
	8.2 Evaluation Setup
	8.3 Results

	9 Discussion
	9.1 Limitation
	9.2 Future Work

	10 Related Works
	11 Conclusion
	References

	PetaDroid: Adaptive Android Malware Detection Using Deep Learning
	1 Introduction
	1.1 Problem Statement
	1.2 Proposed Solution
	1.3 Contributions and Outline

	2 PetaDroid
	2.1 Android App Representation
	2.2 Malware Detection
	2.3 Malware Clustering

	3 Dataset
	4 Evaluation
	4.1 Malware Detection
	4.2 Family Clustering
	4.3 Obfuscation Resiliency
	4.4 Automatic Adaptation

	5 Comparative Study
	5.1 Detection Performance Comparison
	5.2 Efficiency Comparison
	5.3 Time Resiliency Comparison
	5.4 PetaDroid and Maldozer Comparison

	6 Related Work
	7 Limitation
	8 Conclusion
	References

	Spotlight on Phishing: A Longitudinal Study on Phishing Awareness Trainings
	1 Introduction
	2 Background and Related Work
	2.1 Technical Vectors
	2.2 Psychological Vectors
	2.3 Phishing Surveys

	3 PhishCo's Approach
	3.1 E-Mail Generation
	3.2 Workflow with Client

	4 Results
	4.1 Data Set
	4.2 Send and Click Times
	4.3 Distribution Among Clients
	4.4 Psychological and Technical Vectors
	4.5 E-Mail Timeline
	4.6 Click Rate
	4.7 Effect of Psychological Vectors

	5 Discussion
	5.1 Limitations
	5.2 Ethical Considerations

	6 Conclusion and Recommendations
	A Detailed Information
	References

	Extended Abstract: A First Large-Scale Analysis on Usage of MTA-STS
	1 Introduction
	2 Security-Related Extensions for E-Mail
	3 Measurement Approach
	4 MTA-STS on the Sender Side
	5 Empirical Measurement Results
	5.1 All Domains with MTA-STS Support
	5.2 Most Recent Measurement (M6)
	5.3 Trend Analysis of Measurements
	5.4 STARTTLS

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Centy: Scalable Server-Side Web Integrity Verification System Based on Fuzzy Hashes
	1 Introduction
	2 Background
	2.1 Document Object Model (DOM) Integrity
	2.2 Abstract Syntax Tree (AST)
	2.3 MinHashing and LSH
	2.4 DOM Monitoring
	2.5 System and Attacker Model

	3 Approach
	3.1 DOM Monitor
	3.2 HTML DOM Parser
	3.3 Online Clustering System
	3.4 Labeling Cluster Representatives
	3.5 System Limitations

	4 Evaluation
	4.1 Datasets
	4.2 Performance Metrics
	4.3 Accuracy and Efficiency
	4.4 Scalability
	4.5 Discussion and Threats to Validity

	5 Related Work
	6 Conclusions
	References

	Author Index

