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Abstract

A layman may laugh at you when you say that a rock feels
the pinch of a force imposed on it! Yes, it does feel
irrespective of the amount of force. In fact, the rock gets
disturbed when a force is imposed upon it. The distur-
bance thus developed in a rock is called stress which is
expressed as the force acting per unit area of a rock. If the
applied stress persists uniformly till its amount exceeds
the strength of the rock, the latter undergoes deformation,
thus developing strain. Depending upon the specific
conditions in the earth’s crust, stress can be of various
types such as hydrostatic stress, differential stress,
deviatoric stress and lithostatic stress. The stress that is
locked in the rocks when they were formed in the geologi-
cal past is called palaeostress that has implications for the
amount of deformation (strain) in rocks as well as for the
directions in which the stresses had acted upon the rocks.
Precise knowledge of the present-day state of stress inside
the earth’s surface is important in geology and in engi-
neering geology, especially for various engineering and
mining projects as well as for our preparedness for
earthquakes. This chapter highlights some aspects of
stress as relevant to structural geology.
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3.1 Introduction

Rocks in the earth’s crust are under the burden of the
overlying rocks as well as of their own weight. A rock mass
is thus always being affected by externally applied forces.
These forces develop stress within the rock. If the amount of
stress developed in a rock exceeds its strength, the rock then
yields and undergoes deformation; that is, it changes its shape
and/or size to accommodate the induced stress. Although the
rock deforms due to stress, the primary cause of stress is the
forces that have acted upon the body. So, any study on stress
should also take into account the nature of forces that act
upon a body. Estimation of stress in rocks is a complicated
subject. Although estimation of stress in rocks located below
the ground surface up to depths of a few hundreds of metres is
possible, it would give the present-day or contemporary
stress only and not the actual stress that was operative when
the rock was formed or deformed. Study of stress is important
especially for getting an idea of direction of application of
forces during deformation as well as in the estimation of

strain in rocks. In this chapter, we shall discuss some basic
concepts of stress in rock that are necessary for structural
studies.

3.2 Force

A force is that which changes or tends to change the state of
rest or of uniform motion of a body. The force that acts upon a
body is applied from some external agency that either makes
or tends to make the body move from its original position or
stops or tends to stop a moving body. In the first case, the
body is said to have been affected by an acceleration, which
is measured as the force acting per unit time and tends to
increase the motion of the body. A force is best expressed by
Newton’s second law of motion, i.e.

F ¼ ma ð3:1Þ

where F is a force, m is the mass of a body and a is the
acceleration produced in the body due to the force F. In the
second case, the body is said to have been affected by a
retardation, which is the force acting per unit time and tends
to decrease, and finally stops, the motion of the body. A force
is a vector quantity, while the mass is a scalar quantity. A
vector quantity has a magnitude and a direction such as
weight, velocity and gravity, while a scalar quantity has a
magnitude only such as mass, speed and heat.

Considering a rock mass as a deformable solid or fluid, the
forces acting upon it can be of two types, body forces and
surface forces.

1. Body forces act upon a body and are therefore given by
the volume or size of the body. Such forces act on every
point of the body and are therefore measured in three
dimensions. Thus, the bigger a body is, the larger its
body force is such as the planetary bodies. Common
examples of body forces include gravity and magnetic
force. Effect of gravity produces weight to a body.

2. Surface forces act upon the boundaries of a body,
i.e. along the area where the forces are in contact with
the body. If we push a small wooden block by hand, the
block moves for a distance. The distance moved is depen-
dent upon the forces that the block has received along the
contact area only. Further, instead of being displaced, a
body, say a rock mass, may get deformed. In this case, the
external forces have developed stress in the rock mass, and
in order to accommodate the internally developed stress,
the rock mass gets deformed. The deformation is thus an
expression of the stress that the rock mass has developed.
Surface forces are therefore relevant to structural geology
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because rocks deform by the application of some external
forces along a contact plane.

3.3 Types of Force

In structural geology, contact forces are more common, while
the direct role of force at a distance has not yet been signifi-
cantly highlighted and can thus be considered negligible.
Balanced forces cause stress, while unbalanced forces pro-
duce stress plus displacement. The common types of forces
(Fig. 3.1) are briefly described below.

Confining pressure (Fig. 3.1a) at a point is one that is
exerted equally from all sides. In the earth’s crust, the confin-
ing pressure is the lithostatic pressure developed due to the
load of the overlying rocks. Since this pressure is equal on all
sides of a body, it can be compared with the hydrostatic
pressure produced by fluids. In the context of the rocks in
the earth’s crust, use of confining pressure is more common.
Shear (Fig. 3.1b) can be compared to the effect produced
when the cards in a pack are displaced past each other.
Development of shear in a rock takes place by the formation
of a couple, also called shear couple, caused by relative
movement of rock material past one another. Shear can be
produced by a shear stress. Bending (Fig. 3.1c) involves
deformation of a beam when a load is applied across it. The
beam deforms plastically. Bending occurs when the bending
stress exceeds the yield strength of the material but below the
ultimate strength. Because of the bending load, both com-
pressive and tensile stresses develop in the beam. These

stresses are of opposing nature (depending on, say, whether
a fold is an anticline or a syncline), and as such there is a
neutral surface in the beam where there is no bending stress.
Depending upon the direction and location of the transverse
stress, the beam assumes a variety of shapes after deforma-
tion. In structural geology, bending mainly has implications
for fold mechanics. Some of the folds in crustal rocks have
been interpreted to have formed by bending (see Chap. 8).
Torsion (Fig. 3.1d) involves deformation of a body when it is
twisted by applying a stress in one direction at one end while
the other end remains either motionless or twisted in opposite
direction. In other words, torsion involves application of
couples that act in parallel planes but in opposite directions
and about the same longitudinal axis of rotation. In crustal
rocks, situations favouring the development of torsion practi-
cally do not exist. As such, torsion as a stress in rocks is an
unlikely process. A torque (Fig. 3.1e) is a force that tends to
rotate a body. A torquemay increase or decrease the speed of
rotation of the body. Since rotational forces seldom develop
in rock masses of the earth, application of torque in structural
geology is therefore negligible to absent.

3.4 Stress

Force acting upon a body or a rock develops stress within
it. The body is then said to be under stress due to the applied
force. If F is the amount of force acting upon a unit area A of a
body, then the stress (σ) developed in the body due to this
force is given by

Fig. 3.1 Common types of
forces. (a) Confining pressure.
(b) Shear. (c) Bending.
(d) Torsion. (e) Torque.
(See text for details)
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σ ¼ F=A ð3:2Þ

Unlike force, a stress has no directional significance but
has a point of application. The stress developed in a rock
interacts with the constituents of rock and tends to develop
physical change or deformation (Fig. 3.2) to the rock, which
we call strain. Thus, stress causes strain in a rock. If stress is
the cause, then strain is the effect. Obviously, if a rock is not
subjected to any stress, it continues to remain in its original
shape and volume (Fig. 3.2a). If the body is under the influ-
ence of equal amount of stress acting from all sides, it is said
to be under stress (Fig. 3.2b). If on the other hand the stress
overcomes the strength of the rock, the latter succumbs to the
stress and shows changes in its shape or volume, and we then
say that the rock is strained or deformed. A stress will cause a
change in shape as shown in Fig. 3.2c (compressive stress)
and in Fig. 3.2d (tensile stress).

In the above definition of stress, we have assumed that
the distribution of stress is uniform within the body. In
practical sense, it is generally not so, and the stress developed
in a body due to a force F may vary from cross section to
cross section. In such case, the stress at a point can be
given as

σ ¼ lim
ΔA!0

ΔF=ΔA ð3:3Þ

It may be noted here that although the above two
equations, i.e. Eqs. (3.2) and (3.3), provide values of stress,
there are subtle differences. The former equation provides the
value of stress developed in a body due to a force F assuming
that the distribution of stress is uniform within the body. The
latter, on the other hand, gives value of stress at a point
assuming that the distribution of stress, in practical sense, is
not uniform.

The stress that causes deformation to a rock can be
estimated for many minerals via experimental mechanics.
The study and analysis of stress help in throwing light,
among others, on the directions of the applied forces and
explaining the geometry, stages and pattern of deformation
of a rock mass. Stress analysis helps in the designing of
structures such as dams and tunnels. It is also used in several
geological phenomena such as plate tectonics, earthquakes,
volcanism and landslides.

3.5 Units of Stress

The unit of stress can be derived from the unit of force. In the
International System of Units (SI), the unit of force is newton
(N). One newton is defined as the force required to produce
an acceleration of 1 m/s to a mass of 1 kg. In the CGS system,
the unit of force is dyne; 1 dyne ¼ 10�5 N. The most
commonly used unit of pressure is bar and that of stress is
megapascal (MPa). Atmospheric pressure is expressed in
pascal. On the surface of the earth, 1 atmospheric pressure
is equal to 100,000 Pa, which for the sake of simplicity is
taken to be equal to 1 bar. 1 MPa is equal to 10 bars, and so
100 MPa is equal to 1000 kilobars or kba. Thus, any further
conversions can be easily made.

3.6 Tensile Stress and Compressive Stress

In stress analysis, it is important to know the orientation of
stress with respect to the body. We can imagine a plane upon
which a stress is being applied at a point. This enables us a
two- or three-dimensional study of stress, which can be of
three important types (Fig. 3.3): (a) Tensile stress (Fig. 3.3a)
that develops when the stress acts along a plane in opposite
directions when the body is in equilibrium: as a result, the

Fig. 3.2 Stress acting upon a body as explained diagrammatically. (a)
A body without any externally applied stress continues to remain in its
original shape. (b) The body under the influence of equal amount of
stress acting from all sides develops stress within it. (c) If the applied
stress persists uniformly and its amount exceeds the strength of the

body, the latter undergoes dilatation. Since the stress is compressive,
the body shows reduction of volume, which in two dimensions causes
reduction in area as shown in c. (d) If the applied stress is tensile, the
body would show increase of volume, which in two dimensions causes
increase in area as shown in d
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body gets stretched. Tensile stress is assigned a negative (�)
sign in structural geology. (b) Compressive stress (Fig. 3.3b)
that develops when the stress acts perpendicular to the plane
when the body is in equilibrium: it means that an equal and
opposite stress has been active. As a result, the body gets
shortened. Compressive stress is assigned a positive (+) sign
(because in geology tensile stress is least likely to exist in
nature). Since each of the above two types of stresses,
i.e. compressive and tensile, acts perpendicular to the plane
of the body, each is called direct stress or normal stress.
(c) Shear stress (Fig. 3.3c) that develops when the stress
acts in opposite directions but not along the same plane
or line: as a result, the body shows angular changes of its
original planes and thus changes its shape. A square for
example is changed to a rhomb, while a rectangle is changed
to a parallelogram.

3.7 Principal Stress Axes

Analysis of stress becomes easy if we imagine that all the
stresses acting upon a body are represented by only three
stress components acting parallel to each of the coordinate
axes x, y and z (Fig. 3.4). The normal stress acting parallel to
each axis is called a principal stress. The principal stress is
normal stress acting on a plane that has zero shear stress. Of

Fig. 3.3 Diagrammatic sketches
to show the three common types
of stresses. (a) Tensile stress
acting in opposite direction; the
body gets stretched in the
direction of stress. (b)
Compressive stress acting towards
each other; the body gets
shortened. (c) Shear stress. A
square changes to a rhomb

Fig. 3.4 Principal stress axes. Assuming that the cube is under stress
from all directions, we can imagine that all the stresses are represented
by only three stresses acting parallel to each of the coordinate axes
x, y and z. Each of these stresses is called a principal stress. Thus, the
stress acting parallel to x-axis is designated as X, while the others are Y
and Z
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these three stresses, one is considered to take a maximum
value, while others take a minimum and an intermediate
value. The coordinate axes along which the stresses act are
called principal axes of stress. The stress acting parallel to x-
axis is designated as X, while the other two stresses are
designated as Y and Z. This convention enables to know
the orientation of any principal stress in the coordinate sys-
tem. It is also assumed that shear stresses acting along each of
these principal axes of stress are zero. As such, each principal
stress represents the normal stress.

3.8 Uniaxial Stress

If a stress acts along a linear body (Fig. 3.5a), say a rod or a
bar, we say that the body is subjected to forces that act along
one direction only, i.e. along its length. In this case, two of
the three principal stresses are not acting and can therefore be
considered to be of zero value. This type of stress is called a
uniaxial stress, and the bar is said to be under uniaxial stress.
If σ1 is the principal stress acting along the length of the body,
then σ1 6¼ 0, σ2 ¼ 0 and σ3 ¼ 0. If the amount of force is
F and the cross-sectional area of the rod is A, the uniaxial
stress thus developed in the rod is given by σ ¼ F/A. If the

forces act in opposite directions along the length of the rod,
the latter is said to be under uniaxial tensile stress (Fig. 3.5b)
that causes increase of length of the rod. With forces acting
towards each other, the rod is said to be under uniaxial
compressive stress (Fig. 3.5c) that causes shortening of
length of the rod. In structural geology, according to the
convention of sign as mentioned above, the tensile stress is
assigned a negative (�) sign while the compressive stress a
positive (+) sign.

3.9 Stress Ellipse

It is possible to know the two-dimensional stress at a point if
the normal stress (σn) and shear stress (τ) are known. In this
case, these two stress components act on a plane of any
orientation passing through the point. An infinite number of
planes are thus possible. We can however consider a simpler
case in which all the normal stresses acting on the planes are
represented by either a compressive stress or a tensile stress.
In such case, if we represent all the stresses acting on the
body by lines, the longest and shortest lines trace an ellipse
(Fig. 3.6) called the stress ellipse. This ellipse can be traced if
two of the stresses acting perpendicular to each other are

Fig. 3.5 Uniaxial stress showing stress acting along the length of a bar.
(a) Original length (lo). (b) The bar is under uniaxial tensile stress
causing increase of its length. (c) The bar is under uniaxial compressive
stress causing shortening of its length

Fig. 3.6 Stress ellipse. The long and short axes represent the maximum
stress and the minimum stress, respectively. The stresses are compres-
sive in this case but can be tensile also
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known. A stress ellipse is thus a graphic method of showing
relationships between the maximum and the minimum
stresses.

3.10 Biaxial Stress

When all the stresses act upon a body, the state of stress is
known as biaxial stress or two-dimensional stress. A biaxial
stress system is represented in two directions: a normal stress
and a shear stress. Therefore, of the three principal stresses,
one is equal to zero, and as such the biaxial stress is
represented by

σ1 6¼ 0, σ2 6¼ 0, σ3 ¼ 0

A biaxial stress state in a body is thus developed when it is
subjected to only two stresses σ1 and σ2 acting on its plane
while the normal stress σ3 is zero. Since all the stresses act in
one plane, the biaxial stress is also called plane stress.

Application of biaxial stress in crustal rocks is as yet a
matter of debate. As such, the concept of biaxial stress in
structural geology is limited to geomechanics only,
i.e. laboratory testing of materials mainly for engineering
purposes.

3.11 Biaxial Stress on a Plane

We now consider a case when a force (F) acts at an angle to
the plane (Fig. 3.7a). In this case, the force can be resolved
into two components: (a) direct or normal stress that acts
perpendicular to the plane and is denoted by σ (sigma) and
(b) shear stress that acts parallel to the surface and is denoted
by τ (tau) (Fig. 3.7b). Since the body is in equilibrium, we can
imagine that σ is being affected by an equal and opposite
component N. The shear stress τ can further be resolved into
two components τ1 and τ2 at right angles to each other but in
the same plane (Fig. 3.7c). Thus, we have resolved a force
F acting on a plane at a point P into three stresses σ, τ1 and τ2.

Fig. 3.7 Biaxial stress acting on a plane. (a) A force F acting at some
angle to the plane is resolved into two stresses: one acting perpendicular
to the plane, called normal or direct stress (σ), and the other acting
parallel to the plane, called shear stress (τ). On the plane, τ can further be
resolved into two mutually perpendicular stresses τ1 and τ2. (b) Another
way to show the perpendicular position of the normal stress to the plane
while the two shear stresses τ1 and τ2 remain along the plane. If the body
is in equilibrium, the normal stress σ is subjected to an equal and

opposite stress N acting at the same point. (c) The shear stress τ can
be resolved into two mutually perpendicular stresses τ1 and τ2 by the law
of parallelogram. Thus, the force F has been resolved into three mutually
perpendicular stresses σ, τ1 and τ2. (d) The stress system shown in B is
reproduced in a simple way on a horizontal plane. The force F acting on
the plane is resolved in two mutually perpendicular stresses: normal
stress (σ) and shear stress (τ)
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Let us consider the above stress system in a rather simple
way. The normal stress (σ), shear stress (τ) and applied force
(F) are shown in Fig. 3.7d. From any point Q along the line of
applied force, a perpendicular can be drawn on the line of
stress to meet at R. In the triangle QRP, length QR then
represents the shear stress (τ) while the lengths QP and RP
represent the applied force (F) and the normal stress (σ),
respectively. From the triangle QRP, we thus get the
following:

sin θ ¼ τ
F

cos θ ¼ σ
F

tan θ ¼ τ
σ

ð3:4Þ

Geometrical representation of 2D stress on a plane thus
helps in getting values of some unknown parameter if other
two parameters are known.

In the coordinate system, the 2D stress can be represented
by abscissa (x) and ordinate ( y) as shown in Fig. 3.8. In the
case of a normal stress (σ), each face of the plane can be
considered to be represented by a set of two equal and
opposite stresses, σxx and σyy (Fig. 3.8a), while in the case
of a shear stress, the plane can be considered to be under the
influence of two equal stresses, σxy and σyx (Fig. 3.8b), acting
on the sides of the plane. The 2D stress σij acting on the plane
can then be represented by four components as shown by the
following matrix:

σij ¼
σxx σxy

σyx σyy

� �
ð3:5Þ

The state of two-dimensional stress acting on a plane such
that there are only four components, as expressed above, and

of which there are only three independent components, is
called plane stress.

If, instead of designating the two orthogonal axes as
x and y, we represent them by x1 and x2, the state of 2D
stress at a point can be expressed by the following simple
matrix:

σij ¼
σ11 σ12

σ21 σ22

� �
ð3:6Þ

This matrix has only four components. Since σ12 ¼ σ21,
the matrix has only three independent components.

3.12 Mohr Two-Dimensional Stress Diagram

Christian Otto Mohr, a German engineer, developed a graph-
ical method in 1882 that represents in two dimensions the
relationship between shear stress and normal stress. From the
graph, it is possible to compute the values of shear stress,
normal stress and angle of failure at the point when a crack is
developed, i.e. when failure occurs. Mohr’s theory can thus
be applied to predict the failure of brittle materials.

In a Mohr diagram, the normal stress σn and shear stress
τs are represented by the abscissa and ordinate of a graph. The
known values of the greatest principal stress σ1 and the least
principal stress σ3 are plotted on the axis of normal stress.
According to Mohr’s theory, it is possible to represent the
state of failure by paired values of normal stress and shear
stress on any plane with any orientation within the body by
constructing a circle passing through σ1 and σ3. This is called
Mohr circle (Fig. 3.9). It is also known as Mohr stress
diagram. A circle is drawn passing through the values of
the greatest principal stress (σ1) and the least principal stress
(σ3) along the x-axis. The difference between the greatest and
the least principal stresses, i.e. (σ1 – σ3), is called differential

Fig. 3.8 Representation of
two-dimensional stress on a plane
in the coordinate system.
(a) Normal stress, (b) shear stress
(see text)
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stress and is represented by the diameter of the circle. If the
angle between the shear fracture and the axis of normal stress
is plotted on the circle, a point P where a fracture occurs is
obtained on the circle. This is also known as the fracture
criterion.

According to Mohr’s theory, the coordinates of this point
(σn, τs) should give the values of σ3, normal stress and shear
stress at the time of failure. 2θ is double the angle between σ3
and the plane. From P, perpendiculars are drawn on the axes
of τs and σn. Graphically, the values of normal stress and
shear stress can be represented by lengths of PE and PB,
which can be computed as below.

The diameter of the circle is (σ1 – σ3) so that its radius PC
is 1/2 (σ1 – σ3). The centre C is {1/2 (σ1 – σ3), 0}. In the
triangle PBC:

PB ¼ τs ¼ PC sin 2θ ¼ 1=2 σ1 � σ3ð Þ sin 2θ

Further, the x-coordinate of P is

OB ¼ OC� BC ¼ 1=2 σ1 � σ3ð Þ � PC cos 2θ

¼ 1=2 σ1 þ σ3ð Þ � 1=2 σ1 � σ3ð Þ cos 2θ

The x-coordinate of C should give the value of confining
pressure at failure, i.e.

C ¼ 1=2 σ1 þ σ3ð Þ ð3:7Þ

Thus, at the point of failure, the values of shear stress,
normal stress and confining pressure are given by

τs ¼ 1=2 σ1 � σ3ð Þ sin 2θ ð3:8Þ

σn ¼ 1=2 σ1 þ σ3ð Þ � 1=2 σ1 � σ3ð Þ cos 2θ
C ¼ 1=2 σ1 þ σ3ð Þ ð3:9Þ

The Mohr circle, thus, gives a relationship between shear
stress, normal stress and orientation of any plane. Accord-
ingly, if the values of any two variables are known, the value
of the third variable can easily be known.

From above, the radius r and the centre (C) of the circle σc
are

r ¼ 1=2 σ1 � σ3ð Þ ð3:10Þ

σc ¼ 1=2 σ1 þ σ3ð Þ ð3:11Þ

With these values, the equation for the Mohr circle is

σn � σcð Þ2 þ τ2s ¼ r2

σn � 1=2 σ1 þ σ3ð Þf g2 þ τ2s ¼ 1=2 σ1 � σ3ð Þf g2
ð3:12Þ

On solving Eq. (3.12) for τs, we get

τs ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σn σ1 þ σ3ð Þ � σ2n � σ1σ3

q
ð3:13Þ

The positive and negative signs of Eq. (3.13) represent the
top and bottom half of the Mohr circle, respectively; the top
will represent right-lateral and the bottom left-lateral shear
stress.

Fig. 3.9 The Mohr circle or the
Mohr stress diagram. See text for
details
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3.13 Three-Dimensional Stress

Stress that can be geometrically expressed and analysed in
three dimensions is called three-dimensional stress. Since
rocks exposed on the surface of the earth extend at depth,
use of three-dimensional stress helps us interpret the forces
acting at a particular point of the earth.

3.13.1 Stress Ellipsoid

A stress ellipsoid is a convenient way of graphically
representing the state of three-dimensional stress acting at a
point. If we assume that the normal stress acting upon the
three planes of a body is represented by the lengths of the
axes of a triaxial ellipsoid such that the shear stresses acting
upon all the planes are zero, the ellipsoid thus constructed is
called a stress ellipsoid (Fig. 3.10). The three mutually per-
pendicular planes in the ellipsoid are called the principal
greatest normal stress axis (σ1), principal intermediate nor-
mal stress axis (σ2) and principal least normal stress axis (σ3)
such that σ1 � σ2 � σ3. The state of stress acting at a point is
then completely given by the directions and the sizes of the
principal stresses.

The plane that contains each of these axes is called a
principal plane. Along the principal planes, normal stresses
have greatest values while shear stress is zero. Each plane
consists of two principal normal stresses. The difference
between any two stresses gives the differential stress along
that plane. Since σ1 and σ3 are the greatest and least stresses,
(σ1 – σ3) gives the maximum differential stress. All planes
other than the principal planes in the stress ellipsoid are shear
planes because along such planes there is always a compo-
nent of shear. Thus, we have only three planes along which
the value of shear stress is zero.

3.13.2 Three-Dimensional Stress at a Point

We now consider three-dimensional stress acting at a point.
For this, we imagine an infinitesimally small cube, i.e. one
whose further smaller size is not visible. Let the cube be
under stress by the action of a system of forces that can be
represented by a single force F acting at the centre of the
body. Let us now consider this cube on a three-dimensional
coordinate system (Fig. 3.11) in which the three faces are
parallel to each of the orthogonal axes x, y and z. Each of the
six faces of the cube can thus be considered to be under the
influence of the force. If we assume that the body is homoge-
neous and the effect of stress is also homogeneous, and also
that the body is in equilibrium, the effect of each stress on a
particular face is counterbalanced by an equal and opposite
stress acting on the opposite face.

As we have explained earlier, a force acting at an angle to
a plane would develop stresses that can be resolved into three
components, one normal stress acting perpendicular to the
plane and two shear stresses that are perpendicular to each
other but act in the same plane. Thus, for the face, say ABCD,
the force F will develop a normal stress σy and two shear
stresses τyx and τyz. For another face CDEG, the stresses will
be a normal stress σz and two shear stresses τzy and τzx.
Likewise for the face ADEH, there will be a normal stress
σx and shear stresses τxz and τxy. Since the body is in equilib-
rium, the stresses acting on each of these three faces will
be counterbalanced by equal and opposite stresses acting
on the opposite three faces of the cube. Thus, the state of
stress σij acting on the cube has been resolved into nine
components and can be given by the following matrix or
tensor form:

σij ¼
σx τxy τxz

τyx σy τyz

τzx τzy σz

2
64

3
75 ð3:14Þ

Each of the above stresses is called stress components.
These nine components completely define the state of stress

Fig. 3.10 Stress ellipsoid that represents the three-dimensional state of
stress at a point that is represented by the infinitesimal cube located at
the centre of the ellipsoid. σ1, σ2 and σ3 are three mutually perpendicular
surface stresses acting on the three principal planes. These are called the
principal greatest normal stress axis, principal intermediate normal stress
axis and principal least normal stress axis, respectively. Along these
planes, normal stress has the greatest value while shear stress is zero.
The stresses σ1, σ2 and σ3 can be compressive (+ve sign) or tensile (�ve
sign)
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in the cube in three dimensions. Since the cube is in equilib-
rium, each of the shear stresses acting on either side of an
edge must balance each other and therefore there is no rota-
tional movement, and therefore

τxy ¼ τyx

τyz ¼ τzy

τzx ¼ τxz

ð3:15Þ

Thus, there are only six independent components—three
normal stresses σx, σy and σz and three shear stresses τxy, τyz
and τzx—that completely define the three-dimensional stress
acting at a point.

If we rotate the cube so that the coordinate system (x, y and
z axes) gets aligned parallel, respectively, to the greatest,
intermediate and least principal stresses, there will be no
shear stress on the faces of the cube (τ ¼ 0 for all faces),
and the stress tensor (i.e. Eq. 3.14) takes the form

σx 0 0

0 σy 0

0 0 σz
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75 ð3:16Þ

Equation (3.16) represents a stress tensor with zero shear
stresses and contains only three normal stresses, called prin-
cipal stresses, acting perpendicular to the faces along which
shear stresses are zero.

3.14 States of Stress

Depending upon the specific conditions, stress can be of vari-
ous types; some common types are briefly described below.

3.14.1 Hydrostatic Stress

A state of hydrostatic stress develops when all the principal
stresses are equal, i.e. σ1 ¼ σ2 ¼ σ3. In this case, all the
principal stresses are compressive (Fig. 3.12), and there is no
shear stress as is the case with fluids. Since all the stresses
are compressive, hydrostatic stress tends to reduce the volume.

3.14.2 Differential Stress

In a system with three unequal stresses, σ1, σ2 and σ3, the
difference between the greatest and the least stresses is called
differential stress, σd, given by

σd ¼ σ1 � σ3 ð3:17Þ

Crustal rocks are under the effect of differential stress,
which plays a great role in rock deformation. A rock gets
deformed when the amount of differential stress exceeds its
strength.

Fig. 3.11 Three-dimensional
stress acting on an infinitesimally
small cube. Note that on each
face, a force F is resolved into
three mutually perpendicular
stresses of which one is a normal
stress acting perpendicular to the
plane while the other two are shear
stresses acting parallel to the
plane. Thus, with three stresses
acting along each face, the three
faces of the cube constitute a
system of nine stresses (see text
for further details)
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3.14.3 Deviatoric Stress

Consider a system where all the principal stresses are
unequal, i.e. σ1 6¼ σ2 6¼ σ3, and all are compressive. In such
a case, we can imagine a mean stress, σm, which is given by

σm ¼ σ1 þ σ2 þ σ3ð Þ=3 ð3:18Þ

Now, the body can be considered to be under the influence
of three unequal principal stresses (Fig. 3.13)—(σ1 – σm),
(σ2 – σm) and (σ3 – σm)—the average of which constitutes a
mean stress (σm). The actual principal stresses thus mark
departure under the influence of a system of these three
stresses. Each of these is known as deviatoric stress. A
deviatoric stress is thus a component of a stress that
expresses the difference between a normal stress and the
mean stress. It can be both a two-dimensional stress and a
three-dimensional stress. Deviatoric stresses tend to change
the shape of a body, which is then said to have undergone
distortion.

Fig. 3.12 Hydrostatic stress. All the principal stresses are equal and
compressive that tend to reduce the volume of the body

Fig. 3.13 Hydrostatic stress and
deviatoric stress in two
dimensions. (a) A hydrostatic
stress (σ) causes a change
(reduction) in volume but no
change in shape of a body. (b)
Deviatoric stresses σ1 – σm and
σ3 – σm cause a change in shape of
a body
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Box 3.1 What Is a Tensor?
A tensor in general represents a set of numerical
quantities that can describe the physical state of a
material. A tensor relates the various geometrical
vectors that, when related to a coordinate system,
constitutes an organized frame for a set of physical
properties of the body. Although tensors are individu-
ally independent of a coordinate system, they can be
expressed in a coordinate system during a computa-
tional work. Tensors thus constitute geometric objects
that relate the vector and scalar quantities of an object
and can be represented as a multidimensional array of
numbers. It may be noted that vectors and scalars
are also tensors. Study of tensor is based on the use
of a fixed reference frame, which is the coordinate
system that uses indices for its notation. In the context
of a tensor, a dimension represents the range of the
indices.

In structural geology, tensors are important in
providing a mathematical framework in relation to
certain physical properties of rocks such as stress and
strain in particular and rock mechanics in general.

Ranks of Tensors
Since a tensor represents a multidimensional

array of numbers, it is often required to specify the
number(s) by which this multidimensionality is
represented. A rank (or order or degree) of a tensor
represents the number of dimensions or indices
required to define the multidimensionality of an array.
A rank describes the tensor’s dimensions. These num-
bers are called components of the tensor. The rank of a
tensor is therefore equal to the total number of
dimensions or indices that are needed to define each
component. A tensor of rank zero is one that has only a
single number of dimensions, e.g. a scalar quantity that
is unrelated to any axes of reference. A scalar has no
indices at all. A tensor of rank one is one that has only
one dimension, e.g. a vector. A vector requires one axis
of reference, and with each axis three numbers or
components are associated. A tensor of rank two is
one that needs two components to define the array of
its multidimensionality, e.g. stress and strain. A stress
requires two axes of reference, and with each axis nine
numbers or components are associated. If the two
components σij of a stress are related to two vectors li

(continued)

Box 3.1 (continued)

and kj in a linear manner, then the components σij form
a matrix as given below:

σij ¼
σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

2
64

3
75 ð3:19Þ

In general, a rank of a tensor represents the number
of indices required to determine the components. As we
have indicated above, a rank of zero is represented by a
scalar, a rank of one by a vector, a rank of two by matrix
(stress), a rank of three by hyper-matrix and so on.

Box 3.2 Concept of Traction
Traction implies the distribution of forces acting
on any specific surface of a solid substance, say a
rock mass. The concept of traction appears to have
not yet been widely used in structural geology, though
there are several situations where the concept finds
its utility. Pollard and Fletcher (2005) have used this
concept to elucidate deformation in rocks. They
highlighted the role of a traction vector that gives the
distribution of forces, or lack of it, acting on any
arbitrary surface within a rock mass. Traction vector
can explain several geological situations efficiently
such as what were the forces distributed on the surfaces
of a fault that would cause it to slip or what were the
forces distributed on the surfaces of a dike that would
cause it to open. In the concept of traction, the earth’s
surface has been recognized as a traction-free surface.

Let us come back to a rock which represents a
material continuum as its space is filled up with some
material. A rock can be considered heterogeneous
as well as homogeneous depending upon the scale
of our observation. On a smaller scale, it may show
several constituents, say rock fragments, large grains
or grain aggregates, so that it looks heterogeneous.
On a larger, say outcrop, scale, the same rock may
look homogeneous apparently with no discontinuities,
thus reflecting a material continuity. The concept of
traction vector, which also presupposes a material con-
tinuum, can thus be extended to rocks also.
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3.14.4 Lithostatic Stress

Rocks in the earth’s crust are always under stress caused by
the weight of the overlying burden that gives rise to
lithostatic stress. Since these rocks are in equilibrium,
i.e. physically stable, we can assume that at each point the
stress is acting uniformly from all sides. In other words, the
principal stresses are equal, all the principal stresses are
compressive and there is no shear stress.

3.15 Palaeostress

3.15.1 Nature of Palaeostress

Palaeostress refers to the stress locked in the rocks in the
geologic past. It is a branch of structural geology whose
target is characterizing stress systems acting in the past
from their record in deformation structures, singularly from
fault-slip data (Simón 2019, p. 124). Palaeostress analysis is
concerned with the directions along which stresses were
active during rock deformation and, in certain cases, gives
the magnitude of stress of the geologic past. With a beginning
in France in the 1970s, this branch is nowadays practised all
over the world. Excerpts from a review by Simón (2019) on
40 years of palaeostress analysis are highlighted below.

Palaeostress analysis is based on four basic models
of relationships between brittle structures and stress/strain
axes (Fig. 3.14): (a) conjugate faults, (b) overall discon-
tinuous deformation, (c) Wallace-Bott’s principle and
(d) orthorhombic or ‘biconjugate’ fault pattern.

The conjugate fault model (Fig. 3.14a) is based on the
conceptual relationship between conjugate fault systems and
stress axes, as was established by Anderson (1951). The
overall discontinuous deformation model (Fig. 3.14b) is

based on inferring the strain axes from an assembly of faults,
stylolites and tension gashes that jointly represent the bulk of
deformation of a rock body (Arthaud 1969). Wallace-Bott’s
principle assumes that fault slip parallels the maximum
resolved shear stress, which depends on the attitude of the
fault plane and the stress ratio R ¼ (σz – σx)/(σy – σx), where
σz is the vertical principal stress and σy > σx (Fig. 3.14c).
From slip data on a minimum of four independent faults, the
four parameters that define the reduced stress tensor (three
Euler angles for the orientation of stress axes, and R) can
be obtained. Orthorhombic or ‘biconjugate’ fault pattern
(Fig. 3.14d) is based on the analysis of faulting in three-
dimensional strain fields (Reches 1978). Considering all the
above models, palaeostress analysis is based on a number of
assumptions (Simón 2019, p. 126):

(a) The stress state is homogeneous within the studied
rock body.

(b) All fault slips are related to a single stress tensor.
(c) All deformation is accommodated by discrete slip on

faults, i.e. blocks bounded by the fault planes are rigid
and show no significant rotation.

(d) Slip accumulates on randomly oriented pre-existing
fractures.

(e) The studied rock volume is large compared to the scale
of each individual fault, and fault displacements are
small with respect to fault dimensions.

(f) Movement on each fault is independent of the other
ones, i.e. either they are not coeval or they do not
interact to each other.

Simón’s review emphasizes that palaeostress is a powerful
tool for understanding ancient stress fields recorded in rocks,
and as such it has implications for lithospheric dynamics and
present-day plate kinematics.

Fig. 3.14 Relationships between brittle structures and strain/stress axes
have been explained by four models. From left to right, these are (a)
conjugate faults, (b) overall discontinuous deformation, (c) Wallace-
Bott’s principle and (d) orthorhombic or ‘biconjugate’ fault pattern. See

text for details. (Reproduced from Simón 2019, Fig. 1 with permission
from Elsevier Copyrights Coordinator, Edlington, U.K. Submission ID:
1193025)
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3.15.2 Estimation of Palaeostress

Estimation of palaeostress is sometimes also called
palaeopiezometry. The features/signatures in rocks that help
in estimating the palaeostress are called palaeopiezometers.
Palaeostress has been estimated by various workers by devis-
ing several methods. The various methods use both macro-
scopic (folds, faults, fractures, joints, veins) and microscopic
(grain size in dynamically recrystallized rocks, calcite twins,
deformation lamellae in quartz, pressure solution, micro-
fractures, etc.) features of rocks. Estimation of palaeostress
has been done by several workers (see Srivastava et al. 1998;
Simón 2019, and the references therein) using different
methods. Although description of all the methods is not
possible here, some common tools or features used in
palaeostress estimation are highlighted.

3.15.2.1 Faults
Faults are common structures used in palaeostress analysis.
Movement on fault planes occasionally gives rise to slicken-
side lineations that help in reconstructing the orientation of
the fault slip. The stress-slip relationship for the fault could be
established by applying the Wallace-Bott hypothesis that
states that slip along a fault plane should be parallel to the
direction of the greatest shear stress. It is thus possible to
establish the orientation of all the principal stress axes. It is
assumed that most large faults have signatures on small
scales or outcrop scales. The above hypothesis can be applied
for a population of smaller faults, and the results thus
obtained can be generalized for the larger faults. Although
the Wallace-Bott hypothesis provides an important tool for
palaeostress analysis, it has some limitations. For example,
the hypothesis requires that the fault has undergone only one
phase of deformation and that it has undergone no rotation.
Field evidences, however, reveal that many fault planes show
more than one set of slickensides and evidence of rotation.
Despite this, the hypothesis stands as a reliable tool for
investigating the stress-slip relation of faults.

3.15.2.2 Grain Size
Deformation of rocks under certain conditions promotes
recrystallization. When recrystallization takes place during
concurrent deformation, it is called dynamic recrystalliza-
tion. Recrystallization in the absence of deformation is called
static recrystallization. During dynamic recrystallization, a
strained grain releases its internal strain energy by the forma-
tion of smaller, strain-free grains. As deformation continues,
smaller, strain-free grains form more in number and the rock
ultimately becomes finer grained. The process of recrystalli-
zation is accentuated by increase of temperature.

Dynamic recrystallization involves appearance of new
dislocation densities, and the degree of recrystallization
depends much on the differences in dislocation density across

the grain boundaries. Thus, dynamic recrystallization is a
stress-sensitive process. In fact, it is the differential stress
that dominates during concurrent deformation. This in turn
suggests that the size of the subgrains formed due to dynamic
recrystallization is a function of the differential stress. The
size of the dynamically recrystallized subgrains is related to
the flow stress by the following equation:

σ ¼ Ad�m ð3:20Þ

where σ is the differential stress in megapascals, d is the grain
size in μm and A andm are constants for the material (Mercier
et al. 1977; Twiss 1977; Ord and Christie 1984).

The above relation implies that during dynamic recrystal-
lization, the average grain size undergoes reduction with
increase in differential stress. Thus, the grain size of a
dynamically recrystallized rock can serve as a means to
estimate palaeostress in such rocks. The method as such
demands further refinement. For example, the values of the
flow stress for a given grain size have been found to be
different by different workers. Also, we are not sure whether
the grain size reduction is due to differential stress only;
several other factors may also play their part. Despite all
these shortcomings, the method is significant especially in
the absence of any other technique available at hand.

3.15.2.3 Calcite Twins
Some minerals such as calcite develop twins due to deforma-
tion. If simple shearing takes place parallel to twin planes in a
calcite crystal, the mechanism is called twin gliding. The
calcite twins thus developed are the result of stress that
produces bends in the crystal lattice structure. Twin gliding
can take place at very low shear stress of 10 MPa (Twiss and
Moores 2007, p. 500). By geometric construction of the twin
plane and the shear direction, it is possible to infer the
orientation of the principal stresses that gave rise to twin
gliding.

Yamaji (2015) pointed out that although mechanical
twinning along calcite e-planes is used for palaeostress
analyses, the orientations of twinned and untwinned e-planes
are known to constrain not only stress axes but also differ-
ential stress, D. The orientations lose the resolution of
D if the twin lamellae were formed at D greater than
50–100 MPa. This can have distortive effects on palaeostress
analysis.

3.15.2.4 Veins
Veins are commonly used for palaeostress estimation. Veins
represent hydrothermal fluids, which under high fluid pres-
sure result in dilation of pre-existing anisotropy/flaws in a
rock, thus forming hydrothermal veins (Yardley 1986; GDH
Simpson 1998). Veins are often associated with mineral
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deposits, some of which are of high commercial value such
as gold.

Recently, Lahiri et al. (2020) used quartz veins for
estimating palaeostress in mineralized and non-mineralized
zones of Gadag, falling in a part of Dharwar craton of South
India. The mineralized zones show occurrences of gold.
The authors collected data on orientation and spacing of
veins. By plotting the orientation data for every outcrop,
the authors obtained two types of distributions: cluster
distribution (when Pf < σ2) and girdle distribution (when
Pf > σ2), where Pf is fluid pressure. Their palaeostress analy-
sis reveals that the veins were emplaced when fluid pressure
(Pf) varied from Pf > σ2 (intermediate principal stress) to
Pf < σ2.

3.16 Stress Tensor

Use of tensor (see also Box 3.1) can be extended to our
understanding of stress (see Means 1976; Oertel 1996, for
details). Stress is a tensor of rank 2. Since stress is a force
per unit area, we can assume that a unit cube of material is
affected by forces acting on it in three dimensions (Fig. 3.15).
We know the surface area of each face. If we know the value of
the force acting on the body, we can calculate the amount of
stress acting on the cube in three dimensions. The state of
stress acting on the cube can be resolved into nine components
that form a tensor, i.e. stress tensor.

If we use eigenvalues σij for stress notation, then σ1,
σ2 and σ3 represent the principal axes of stress representing
the maximum, intermediate and minimum principal stress
axes. The 3D stress tensor (in the coordinate system x, y, z)
can then be given by the following expression:

σij ¼
σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

2
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3
75 ð3:21Þ

If we choose coordinates x1, x2 and x3, the state of stress
acting on the cube can be resolved into nine components as
shown in Fig. 3.16. The 3D stress matrix in this case takes the
following form:

σij ¼
σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

2
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3
75 ð3:22Þ

Since the body is in equilibrium and there is no shear
stress on principal planes,

σ12 ¼ σ21, σ13 ¼ σ31 and σ23 ¼ σ32,

and therefore the number of independent stress components
is six.

If σ13 ¼ σ31 ¼ σ23 ¼ σ32 ¼ σ33 ¼ 0, the stress tensor can
then be expressed in 2D in the following form:

σij ¼
σ11 σ12

σ21 σ22

� �
ð3:23Þ

A stress tensor is taken to be symmetric, i.e.

σij ¼ σji:

Further, a symmetric matrix can be diagonalized, i.e.

Fig. 3.16 The state of stress acting on a cube as represented in coordi-
nate system x1, x2, x3

Fig. 3.15 Representation of stress tensor acting on a cube with
eigenvectors on Cartesian coordinates X, Y, Z
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σij ¼
σ1 0 0

0 σ2 0

0 0 σ3

2
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3
75 ð3:24Þ

In this matrix, the off-diagonal terms of stress tensor are
zero and the diagonal elements of the tensor, i.e. σ1, σ2 and
σ3, represent the three principal stresses (note that shear
stresses are equal to zero).

3.17 Stress Field

As highlighted earlier, the state of stress in a rock mass inside
the earth’s surface is compressive and by nature it is hydro-
static, i.e. equal in all directions. This seems to be an over-
simplification as the stresses are not always of equal amount
in all directions. A generalized state of stress in rocks is called
stress field. In fact, it is the stress field that determines what
types of deformation the rock mass should show. Knowledge
on stress field thus throws light on the deformation behaviour
of the crust at any particular time.

Several workers have attempted estimation of stress field
in some selected parts of the crust. Here, we present an
example of the regional stress field of the Indo-Australian
plate highlighting the results of the work of Cloetingh and
Wortel (1986). The authors considered the Indian plate as
elastic with a nominal thickness of 100 km and divided the
spherical surface of the Indian plate in grids with the maxi-
mum grid size of 5 degrees. The results suggest a high level
of regional stress field in the Indo-Australian plate. There is a
concentration of compressive stresses of the order of 3–5 kbr
in the Ninetyeast Ridge area. The maximum compression
acts horizontally in NW-SE-oriented direction. The areas
west of the Indian peninsula have an approximately N-S-
directed tensional and E-W-oriented compressional stress
field. There is more symmetric distribution of stress and
deformation in the oceanic lithosphere with respect to the
Indian peninsula. The Indian plate is undergoing a consider-
able net resistance at the Himalayan collision zone, and the
exceptionally high level of the present-day regional stress
field of the Indian plate is a transient feature that results
from the unique dynamic situation in which the Indian plate
now finds itself.

3.18 Stress History

In any sedimentary terrain, rocks have a long history from the
time of sedimentation and burial to the time when they are
seen exposed on the surface of the earth as a lithified, and
may be deformed, rock. Accordingly, the stress condition

also changes all through the long history of the rock from
burial to the present-day form, and all this is called stress
history. Of all, the joints are possibly the commonest
structures that are formed at various stages from burial of
sediments till uplift and erosion. However, the joints formed
in such basins are formed under different stress conditions as
the host rock continued to change its state (from unconsoli-
dated mass to a lithified mass) as well as its location. For
example, during sedimentation and diagenesis, the area
witnessed increase of stresses, while during uplift and ero-
sion, the stresses were gradually released. It is thus possible
to understand stress history of any sedimentary basin or any
sedimentary terrain by careful study of joints.

3.19 Stress Inside the Earth

3.19.1 Nature of Stress Inside the Earth

Earth below the surface is a storehouse of stress. Our knowl-
edge of underground stress is important for certain engineer-
ing aspects. During excavation, for example, knowledge of
pre-existing in situ stresses is necessary, especially for the
stability of the excavation (Jaeger et al. 2007, p. 399). How-
ever, precise estimation of stress from below the earth’s
surface is rather difficult. Here, all the stresses are compres-
sive; other types of stresses are considered negligible.
Anderson (1951) suggested that below the earth the state of
stress is everywhere equal to vertical. Also, estimation of
horizontal stress is difficult, and therefore our knowledge
on complete information on the state of stress on the earth’s
surface is as yet far from being satisfactory (Zoback and
Zoback 1989).

In general, the in situ stresses below the earth vary as a
function of depth, but the nature of the stresses and their
variations are difficult to ascertain. The underground stresses
are influenced by the topography, tectonic forces, constitutive
behaviour of the rocks and local geological history (Jaeger
et al. 2007, p. 399).

3.19.2 Basic Stress Types Inside the Earth

Our understanding of the basic stress types in the lithosphere
comes from laboratory experiments. Engelder (1993, p. 22)
suggested that the governors for earth stress include three
general types of mechanisms that lead to failure of
intact rock: crack propagation, shear rupture and ductile
flow (Fig. 3.17). Friction is an additional governor for litho-
spheric stress if joints or shear fractures are reactivated to slip
due to large shear traction. In the middle portion of the brittle
intracontinental crust, the least compressive stress, σ3, is
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commonly horizontal but equally likely vertical in the upper
kilometre or two (Nadan and Engelder 2009).

On the basis of rheological properties, Scholz (1990)
divides lithosphere into two parts: the schizosphere or brittle
region and the plastosphere or ductile region. Since
earthquakes are a manifestation of brittle behaviour, the
extent of schizosphere is demarcated by earthquakes. Since
schizosphere shows evidences of some ductile deformation
mechanisms such as stress solution, the boundary between
schizosphere and plastosphere is gradational or blurred.

3.19.3 Causes of Stress Inside the Earth

Stresses inside the earth arise due to several causes of which
the following are important.

3.19.3.1 Overburden
The weight of the overlying rocks and soils is broadly called
overburden at any point inside the earth. By far, it is the most
important factor to develop stress at any point. Obviously, the
magnitude of stress inside the earth caused due to overburden
increases with depth.

3.19.3.2 Pore Fluid Pressure
Presence of water or any fluid or gas has great effect on the
physical-mechanical properties of rocks located inside the
earth. Water constitutes the most common fluid inside the
earth. Presence of water strongly affects the strength of rocks.
Water is believed to be present in the pore space of the rocks.
Water reduces the stress that is locked in the fractures, and

this in turn proportionately reduces the pore fluid pressure,
i.e. the hydrostatic pressure; as such, the normal stress of the
rock is reduced (Ranalli 1987, p. 94). In such cases, failure is
controlled by the effective stress (σ0), which is the principal
stresses (considered positive for compressive stresses) minus
the pore pressure (P) (Jaeger et al. 2007, p. 98), i.e.

σ01 ¼ σ1 � P, σ02 ¼ σ2 � P, σ03 ¼ σ3 � P ð3:25Þ

Effective stress significantly affects the deformational pro-
cesses such as initiation of fractures or initiation of sliding of
a pre-existing fault, and all these, on a grand scale, control
various geodynamic processes such as faulting, thrust move-
ment and seismic activity.

3.19.3.3 Thermal Stresses
Rocks are susceptible to changes in temperature in several
ways. Rocks have variable thermal expansion, and because of
this some rocks undergo change in volume to accommodate
the change in temperature while others do not. Rocks that
undergo change in volume can be considered to have
accommodated the imposed thermal stress; such rocks prac-
tically do not induce additional stress. Rocks that do not
undergo change in volume, on the other hand, can be consid-
ered to store thermal stress within them. In the rocks of the
upper crust down to a depth of 15–20 km, thermal stresses
arise from resistance to the temperature-induced volume
change (Ranalli 1987, p. 146). In general, increase of tem-
perature generates a compression, and it has been estimated
that a change in temperature by 100 K generates stresses of
the order of 100 MPa (Ranalli 1987, p. 148).

Fig. 3.17 Basic three types of
stress inside the earth as revealed
from the laboratory test. See text
for details. (Slightly simplified
from Engelder T, 1993, Stress
Regimes in the Lithosphere
Fig. 1–6. Reproduced with
permission from Princeton
University Press. Request ID:
600067225)
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The amount of thermal stresses generated in the upper
crust is generally very low as compared to stresses generated
by some other processes. However, it is believed that thermal
stresses can in some cases produce fractures, if not large-
scale signatures of deformation.

3.19.3.4 Plate Motion
The state of stress in the lithosphere constitutes a primary
cause of plate motion. High degree of stress is generated at
plate boundaries where seismic and tectonic processes are
active. The state of stress in a plate depends much on the type
of relative plate motion, i.e. whether the boundary of two
plates is convergent, divergent or transform. A major part of
stress in a plate also arises from the plate-mantle interaction,
which in turn varies depending upon whether the plate is
oceanic or continental. The forces acting on the subducting
slab are the largest and control the velocity of oceanic plates
(Forsyth and Uyeda 1975). All this also implies that the state
of lithospheric stress controls, directly or indirectly, the ther-
mal convection system of the underlying mantle.

3.19.3.5 Burial
Below sea level, burial of sediments is a common process that
generates a good deal of stress (burial stress) below the
surface. Burial stress acts in vertical direction due to gravity.
Maltman (1994) suggested that there is a proportional
increase of burial stress with a depth at least up to about
1000 m below seawater. Here, sedimentation and tectonism
also commonly go together, and it is the tectonic forces that
induce dewatering to generate overpressures. Thus, in regions
where burial is active, the crust continues to add stress.

3.20 Significance of Stress

3.20.1 Academic Significance

• Our knowledge of stress in rocks is necessary because it
helps in giving an idea of directions in which the stresses
had acted upon the rocks and also the amount of deforma-
tion, i.e. strain in rocks.

• Knowledge of stress field throws light on the deformation
behaviour of the crust at a given time.

• Estimation of stress of the crust has implications for the
direction of relative plate motions and seismicity
distribution.

3.20.2 Engineering and Economic Significance

• The stresses inside the earth not only are heterogeneously
distributed both horizontally and vertically but also keep
changing with time. Despite all these, our understanding

of the state of stress inside the earth is important, espe-
cially for several utility and practical aspects in addition to
academic interests.

• In the construction of dams, knowledge of the state of
stress is helpful in ensuring that the weight of the super-
structure should be much below the affordable stress of
the earth at that point.

• In mining, information on stress is necessary for the con-
struction of tunnels, pits and related engineering work.

• During drilling for petroleum, artificial fractures are cre-
ated at depth to increase the permeability of the petroleum-
bearing horizon; this enhances the production of
petroleum.

• In civic construction work, knowledge of in situ stress of
the foundation ensures longer safety of the structures and
buildings to be constructed.

3.21 Summary

• A rock mass under the influence of externally applied
forces develops stress within it. Stress is thus caused by
external forces and is given by the forces acting per unit
area of a body.

• Every rock has strength (i.e. the value of stress that causes
failure), small or large, due to which it is able to bear some
or a large quantity of stress. If the stress developed in a
rock exceeds its strength, the rock accommodates the
stress by changing its shape or size, which is called strain.
Thus, if stress is a cause, strain is an effect.

• Considering a rock mass as a deformable solid or fluid, the
forces acting upon it can be of two types, body forces and
surface forces. Body forces act upon a unit volume of the
body and are therefore given by the volume or size of the
body such as gravity or magnetic force. Surface forces act
upon the boundaries of a body and thus act along the area
where the forces are in contact with the body. Force acting
on a unit area of the body is known as stress.

• Stress can be tensile, compressive or shear stress. Tensile
stress develops when the stress acts along the plane in
opposite directions. Compressive stress develops when
the stress acts perpendicular to the plane. Shear stress
develops when the stress acts in opposite directions but
not along the same plane or line; as a result, the body
shows angular changes of its original planes and thus to its
shape.

• If all the stresses acting upon a body are represented by
only three stress components acting parallel to each of the
coordinate axes x, y and z, the normal stress acting parallel
to each axis is called a principal stress and is designated as
X, Y and Z, respectively, such that X > Y > Z. The coordi-
nate axes along which the stresses act are called principal
axes of stress.
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• If we represent all the stresses acting on a body by lines,
the longest and shortest lines trace an ellipse called stress
ellipse that represents 2D stress. Likewise, the normal
stress acting upon three planes can be represented by the
lengths of the axes of a triaxial ellipsoid, and this gives a
stress ellipsoid.

• When all the stresses act in the plane of a body, the state of
stress is known as biaxial stress. It is a 2D stress that is
represented in two directions: a normal stress acting nor-
mal to the plane and a shear stress acting along the plane.

• 2D stress can also be determined by Mohr diagram that
can estimate the values of shear stress, normal stress and
angle of failure at the point when a crack is developed,
i.e. when failure occurs.

• Stress can be hydrostatic stress, differential stress,
deviatoric stress and lithostatic stress.

• Stress locked in rocks in geologic past is called
palaeostress. Basic principles of estimating palaeostress
have been described.

• A generalized state of stress in rocks inside the earth’s
surface is called stress field. Knowledge of stress field
throws light on the deformation behaviour of the crust at
any particular time.

• The stress condition of a rock mass changes all through
the long history of the rock from burial to the present-day
form, and all this is called stress history.

• The state of stress inside the earth varies as a function of
depth and is influenced by the topography, tectonic forces,
constitutive behaviour of the rocks and local geological
history.

Questions
1. What is stress? Explain why does a body develop stress.
2. What are the differences between body forces and sur-

face forces?
3. What are normal stress and shear stress?
4. What is the difference between tensile stress and shear

stress?
5. Outline salient features of uniaxial stress and biaxial

stress.
6. What is Mohr diagram? Give its utility in structural

studies.
7. With the help of a cube, describe the stress at a point and

the state of stress acting on the cube.
8. What is deviatoric stress? What does it signify in the

deformation of a rock?
9. Describe how the concept of stress tensor can be

extended to structural geology.
10. Describe the causes of stress inside the earth.
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