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Abstract The Filtering Approach (FA) is a simple multiscale method of analysis, it
extends the statistical formalism to a generic filtering operator and main ingredients
are the Generalized Central Moments (GCM) homomorphic to the Statistical Central
Moments (SCM). In the past this technique was intensively used to model turbulent
flows in the context of the Large Eddy Simulation (LES) and at present is more and
more applied to analyze turbulence and extract statistical data from under-resolved
databases. In this paper we will briefly summarize the main multiscale characters of
the FA, the well known identity relating GCM of the second order at different levels
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is discussed in detail, and a new identity relating GCM of the third order at different
levels is presented. Finally some recent developments are illustrated. The structure
of the subfilter stresses and the decomposition of the Reynolds stresses is examined,
hybrid LES modeling procedures are applied and metrics that measure the statistical
homogeneity of a turbulent flow are proposed.

1 Introduction

The Navier-Stokes equations, that describe mathematically the motion of a fluid,
become chaotic for a sufficiently high Reynolds number characteristic of the par-
ticular flow. As such a numerical solution, however much resolved and extended in
space and time, is everything and nothing at the same time. As remarked by [1], this
trajectory is apparently uncorrelated to the true solution of a flowfield if it is allowed
to evolve over a long time, and hence is called a pseudo-orbit. Moreover there are
profound and unresolved theoretical problems about the true solutions of the Navier-
Stokes equations, their unicity and so on, see [2] for a detailed exploration of that and
the related implications as regards to the numerical simulation of turbulent flows.

Only when we define a statistical operator 〈....〉e we can produce averaged quan-
tities 〈u〉e, 〈uv〉e, ....., and we can make comparisons. But the translation of theory
in practice is not so simple. To carry out something in accordance with our theories
or our ideals can be very difficult. If we open a book on turbulence, it starts with a
statistical description of a turbulent flow. Usually the objectivity of turbulence relies
on theories that consider fluid flow experiments that can be repeated many times
under a specified set of conditions, as we read in Pope [3], page 34, but practically
it is not so easy to have at our disposal an ensemble of realizations, so we have to
recur to some surrogate in order to replace it [4]. Moreover a database produced by
a numerical code is usually coarse grained [5], limited in resolution in space and
time that we generally indicate with�, and in extent in time and in the homogeneous
directions, that we generally indicate as T and Z respectively. If we have two or
more databases of the same turbulent flow, produced by the same code or different
codes for different values of resolution � and extent T , the basic problem is their
comparison, in other words the extraction of their objectivity. Usually all that is per-
formed face up to the truth represented by experimental data or Direct Numerical
Simulation (DNS), ideally obtained in the limit � → 0 and T → ∞. Long time
and long space averages are the usual ingredients of an explicit averaging statistical
operator, and the values provided by them, u(�, T ) have to be compared with the
absolute, the true quantities u(� → 0, T → ∞). All that is not so simple, and the
Filtering Approach provides some help.

The Filtering Approach (FA) is a simple multiscale approach to the analysis of
turbulent flows. As usual its origins are deeply rooted in the past, see [6] for some
historical notes on that, and a recent important motivation was to understand what
the computer was producing in the first numerical simulations of turbulent flows. The
Leonard [7] idea of representing the Large Eddy Simulation of a generic turbulent
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quantity a (x, t), computed with a code characterized by a grid length h, with a
filtered representation 〈a〉 f due to a filtering operator F characterized by a filtering
length � ≈ h

F [a] ≡ 〈a〉f =
∫

F (x, y;�) a (y, t) dy ;
∫

F (x, y;�) dy = 1 (1)

was in our opinion a major step in the turbulence studies. On its wake an operational
formulation was proposed based on a hierarchy of filtering operators and on the Gen-
eralized Central Moments, (GCM) [8], that extend the Statistical Central Moments
(SCM) and the statistical formalism to a generic filtering operator. Fundamentals to
the multiscale approach are some simple identities that relate the GCM at different
resolution levels, in particular with the statistical one.

In this paper some recents developments are presented. The structure of the sub-
filter stress [12] and a new decomposition of the Reynolds stress [14] are examined,
a new dynamic modeling procedure is applied to the LES of Shock Driven Turbulent
Mixing [20] and indices that measure the statistical homogeneity of a turbulent flow
are proposed [23]. Some conclusions are finally provided.

2 Statistical and Generalized Central Moments

Main ingredients of the statistical approach are the Statistical Central Moments asso-
ciated to the statistical operator E, defined as

τe(a, b) ≡ 〈ab〉e − 〈a〉e〈b〉e
τe(a, b, c) ≡ 〈abc〉e − 〈a〉eτe(b, c) − 〈b〉eτe(c, a) − 〈c〉eτe(a, b) − 〈a〉e〈b〉e〈c〉e

τe(a, b, c, d) ≡ · · · (2)

and it is easy to see that due to the operational rules of the statistical averaging
operator, rules that in turbulence are often referred as the Reynolds rules of the
mean, 〈〈a〉e〉e = 〈a〉e and 〈a〈b〉e〉e = 〈a〉e〈b〉e, we have an equivalent formulation of
the SCM given by

τe(a, b) = 〈a′b′〉e ; τe(a, b, c) = 〈a′b′c′〉e ; · · · (3)

where the brackets indexed e stand for the statistical average 〈a〉e = E[a] and the
apex stands for the statistical fluctuations a′ = a − 〈a〉e.

In the general case of a linear and constant preserving filtering operator F the
Reynolds rules of the mean are usually not satisfied. We can however associate
formally to F theGeneralized Central Moments, GCM, algebraically homomorphic
to the SCM
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τ f (a, b) ≡ 〈ab〉f − 〈a〉f〈b〉f
τ f (a, b, c) ≡ 〈abc〉f − 〈a〉f〈bc〉f − 〈b〉f〈ca〉f − 〈c〉f〈ab〉f + 2〈a〉f〈b〉f〈c〉f

≡ 〈abc〉f − 〈a〉fτ f (b, c) − 〈b〉fτ f (c, a) − 〈c〉fτ f (a, b) − 〈a〉f〈b〉f〈c〉f
τ f (a, b, c, d) ≡ · · · (4)

and that is the starting point of the Filtering Approach. The GCM have the same
algebraic properties as the SCM, and in a sense they extend the statistical formalism
to a generic filtering operatorF . We refer for more detail on that to [6, 8] and we also
remark a recent paper where the formal relationships between filtering and averaging
are defined using generalized central moments in the more complex case of variable
density flows [9].

2.1 Multiscale Identities

Let us now derive some important identities that are the basic ingredients of the
Filtering Approach and that characterizes its multiscale nature. Let us consider the
GCM associated to the product P = GF of two filtering operators. It is easy to
derive the following important relations that connect the GCM at different scales of
resolution

τp(a, b) = 〈τ f (a, b)〉g + τg(a f , b f ) (5)

τp(a, b, c) = 〈τ f (a, b, c)〉g + τg(a f , τ f (b, c)) + τg(b f , τ f (c, a))

+ τg(c f , τ f (a, b)) + τg(a f , b f , c f ) (6)

where we use the simplified notation a f ≡ 〈a〉f , b f ≡ 〈b〉f , c f ≡ 〈c〉f . We remark
that if we also assume that FG = GF

〈〈· · ·〉g 〉f = 〈〈· · ·〉f 〉g (7)

we can additionally write

τ f g(a, b) = 〈τg(a, b)〉f + τ f (ag, bg)

= 〈τ f (a, b)〉g + τg(a f , b f ) = τg f (a, b) (8)

τ f g(a, b, c) = 〈τg(a, b, c)〉f + τ f (ag, τg(b, c)) + τ f (bg, τg(c, a))

+ τ f (cg, τg(a, b)) + τ f (ag, bg, cg)

= 〈τ f (a, b, c)〉g + τg(a f , τ f (b, c)) + τg(b f , τ f (c, a))

+ τg(c f , τ f (a, b)) + τg(a f , b f , c f ) = τg f (a, b, c) (9)
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Moreover when GF = G we have more simply

τg(a, b) = 〈τ f (a, b)〉g + τg(a f , b f ) (10)

τg(a, b, c) = 〈τ f (a, b, c)〉g + τg(a f , b f , c f ) + τg(a f , τ f (b, c))

+ τg(b f , τ f (c, a)) + τg(c f , τ f (a, b)) (11)

and we remark again that these identities represent very important multiscale prop-
erties of the GCM. The first one is well known, it has played an important role in the
development of the dynamic modeling approach [10] and we remark here that the
flexibility of this approach was recently discussed and demonstrated also in the con-
text of modeling the commutation errors in LES [11]. The second one, the relation
(6) connecting GCM of the third order, is new, and it is very important in the case of
compressible flows, where a = � represents the density and b = ui , c = u j are the
velocity components.

3 Recent Contributions

3.1 Structure of the Subfilter Stress

The second order GCM associated to a velocity field τ f (ui , u j ) are better known
under the name of subfilter stresses. Their intimate structure has been studied [12]
based on the following considerations. Due to the additive properties of the GCM
we can write

τ f (ui , u j ) = [
τ f (ũi , u j ) + τ f (ui , ũ j ) + τ f (wi , u j ) + τ f (ui ,wj )

]
/ 2 (12)

where
ui = ũi + wi (13)

is a generic additive decomposition of the turbulent velocity field ui . All that is exact,
and a first approximation is

τ f (ui , u j ) ≈ τ f (ũi , u j ) + τ f (ũi , u j )

2
(14)

that we can formally write in terms of a tensorial eddy viscosity νki

τ f (ui , u j ) ≈ −νk j∂k ũi − νki∂k ũ j (15)



72 M. Germano et al.

given explicitly by

νki = −1

4

∫ ∫
F(x, y)F(x, z) (yh − zh)

(
u j (y) − u j (z))

)
dydz (16)

This last relation is due to the fact that we can explicitly write [13]

τ f (ũi , u j ) = 1

2

∫ ∫
F(x, y)F(x, z) (ũi (y) − ũi (z))

(
u j (y) − u j (z)

)
dydz (17)

and we can approximate at the first order

ũi (y) − ũi (z) ∼ (yh − zh)
∂ũi (x)
∂xh

(18)

3.2 Decomposition of the Reynolds Stress

The second order SCM associated to a velocity field τe(ui , u j ) and to a scalar
τe(ui ,ϕ) are better knownunder the nameofReynolds stresses andReynolds fluxes. A
fundamental problem in the analysis of turbulence is to extract the Reynolds stresses
and the Reynolds fluxes from a database obtained by a numerical simulation or an
experimental exploration, and in [14, 15] the previously derived operational relations
between SCM and GCM are applied to this particular problem. Let us indicate the
Reynolds averaging operator as E, and the filtered average as F . Let us first assume
that EF = E. In terms of SCM and GCM we define the following quantities

Ri j ≡ τe(ui , u j )

τi j ≡ τ f (ui , u j )

Ti j ≡ τe(〈ui 〉f , 〈u j 〉f ) (19)

where ui are the components of the velocity field at a given time and location. We
have

Ri j = 〈τi j 〉e + Ti j (20)

Let us now only assume that EF = FE, a much weaker, very general and
respected assumption. We define the following additive GCM

ϑi j ≡ τ f (〈ui 〉e, 〈u j 〉e) (21)

and by applying the identity (5) we have

〈Ri j 〉f + ϑi j = 〈τi j 〉e + Ti j (22)
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This new identity has been recently applied to the study of the decomposition of the
Reynolds stress from filtered data [14] when filtering is not applied in homogeneous
statistical directions or in time for statistically stationary turbulent fields.

We can extend all that to compressible flows. As in [16, 17] we will not introduce
Favre averages. Let us first of all assume thatEF = E, and let us define the following
GCM

R�i ≡ τe(�, ui ) ; Ri j ≡ τe(ui , u j )

R�i j ≡ τe(�, ui , u j )

τ�i ≡ τ f (�, ui ) ; τi j ≡ τ f (ui , u j )

τ�i j ≡ τ f (�, ui , u j )

T�i ≡ τe(〈�〉f , 〈ui 〉f ) ; Ti j ≡ τe(〈ui 〉f , 〈u j 〉f )
T�i j ≡ τe(〈�〉f , 〈ui 〉f , 〈u j 〉f ) (23)

where � is the density and ui are the components of the velocity field at a given time
and location. We have

R�i = 〈τ�i 〉e + T�i ; Ri j = 〈τi j 〉e + Ti j (24)

R�i j = 〈τ�i j 〉e + T�i j + τe(〈�〉f , τi j ) + τe(〈ui 〉f , τ� j ) + τe(〈u j 〉f , τ�i )

(25)

We remark finally that this decomposition of the Reynolds stresses for compressible
flows is very simple if compared to the usual ones expressed in terms of the statistical
or the Favre fluctuations.

3.3 Dynamic Coarse Grained Modeling

Coarse Grained Simulation [5] combines classical large eddy simulations based on
explicit sub-grid scale models and implicit LES (ILES) relying on subgrid models
provided by physics-capturing numerics. We can apply this method to the Flow
Simulation Methodology [18, 19] in a hybrid ILES/RANS approach. All that is
motivated by the study of a challenging problem, the turbulent mixing driven by a
shock wave [20, 21].

The role here of the FilteringApproach is to suggest dynamic blending procedures
based on the following main points. We have remarked that the multiscale identity
that connects the turbulent subgrid stress at different levels

τ f g(a, b) = 〈τ f (a, b)〉g + τg(a f , b f ) (26)
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has played an important role in the development of the dynamic modeling approach
[10]. If the test filterG is the statistical operator Ewe could imagine dynamic models
[22] constrained by the Reynolds stress. Following Speziale [18] we assume that

τ LES
i j ∼ f (�/L) τ RANS

i j (27)

where f is the so called contribution function. Empirically we could write

f (�/L) = [1 − exp(−β�2)]m (28)

where � is a grid length and m and β ad hoc coefficients, but a dynamic procedure
could remove such arbitrariness. We can write

τ RANS
i j = τ RES

i j + 〈τ LES
i j 〉 (29)

and to exploit this multiscale identity in order to determine dynamically the contri-
bution function f .

3.4 Statistical Homogeneity Indices

Many important benchmark turbulent flows are provided with one or more homoge-
neous direction. Sustained homogeneous turbulence is provided with homogeneity
in time and three space directions, homogeneous decaying turbulence and decaying
Taylor Green vortex flow are homogeneous in three directions, plane channel tur-
bulent flow is homogeneous in time and two space directions, turbulent flow past
a cylinder is homogeneous in time and the spanwise direction. In all these cases
the objective in these chaotic simulations is to extract from the obtained database
some statistical quantities, typically the mean values and the Reynolds stresses for
the velocity components.

In the case of the turbulent flow past a cylinder we have two homogeneities, the
time t and the spanwise spatial direction z, and we can average along one or both of
them. Given the turbulent velocity field ui (x, y, z, t)we will introduce the following
space and time statistical filtering operators T and Z

Z{ui } ≡ 〈ui 〉z ≡ 1

Z

∫ Z

0
ui (x, y, z

′, t)dz′

T {ui } ≡ 〈ui 〉t ≡ 1

T

∫ T

0
ui (x, y, z, t

′)dt ′ (30)

and we define E as the product of the two, E ≡ TZ, where Z and T are the extents
of the computational domain in the spanwise direction z and in time t .
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Let us first of all examine the differences between space and time averages. Con-
sistently with the filtering approach based on the GCM let us define the following
turbulent stresses associated to the filters T and Z

τz(ui , u j ) ≡ 〈uiu j 〉z − 〈ui 〉z〈u j 〉z
τt (ui , u j ) ≡ 〈uiu j 〉t − 〈ui 〉t 〈u j 〉t
τe(ui , u j ) ≡ 〈uiu j 〉zt − 〈ui 〉zt 〈u j 〉zt

τz(〈ui 〉t , 〈u j 〉t ) ≡ 〈〈ui 〉t 〈u j 〉t 〉z − 〈ui 〉zt 〈u j 〉zt
τt (〈ui 〉z, 〈u j 〉z) ≡ 〈〈ui 〉z〈u j 〉z〉t − 〈ui 〉t z〈u j 〉t z (31)

We note that due to E = ZT = TZ we have the two identities

τe(ui , u j ) ≡ τz(〈ui 〉t , 〈u j 〉t ) + 〈τt (ui , u j )〉z
≡ τt (〈ui 〉z, 〈u j 〉z) + 〈τz(ui , u j )〉t (32)

and we can define two measures of turbulence resolution, the first related to the time
average and the second to the spanwise average, given by

Mt (x, y) = 〈τt (ui , ui )〉z
Rii

; Mz(x, y) = 〈τz(ui , ui )〉t
Rii

(33)

where Ri j ≡ τe(ui , u j ).We remark that by definitionM = 0 corresponds to a perfect
DNS and M = 1 to a perfect RANS. As such Mt (x, y) and Mz(x, y) measure and
can be defined as indices of the statistical homogeneity in timeT and in the spanwise
direction Z. They are related to the total Reynolds RANS stress produced by the
joint average E = ZT = TZ.

We remark finally that in the general case

E = E1E2 = E1E2E3 = · · · (34)

we can read all that as a multiscale analysis of the variance, where E is the statistical
operator and Ei are different nested partitions of the probability. In this case the
relations

〈u〉e = 〈〈u〉2〉1 = 〈〈〈u〉3〉2〉1 = · · · (35)

τe(u, v) = τ1(〈u〉2, 〈v〉2) + 〈τ2(u, v)〉e
= τ1(〈u〉2, 〈v〉2) + 〈τ2(〈u〉3, 〈v〉3)〉1 + 〈〈τ3(u, v)〉2〉1
= · · · (36)

are better known in applied statistics respectively as the Law of Total Expectation and
the Law of Total Variance, the Adam’s and Eve’s laws [24–26]. The total statistical
mean 〈u〉e is the average of the partial means, and the total statistical covariance
τe(u, v) is the average of the partial covariances plus the statistical covariances of the
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partial mean values. Our multiscale identities are the generalization of the Adam’s
and Eve’s laws to a hierarchy of generic filtering operators, and we really think that
this simple multiscale approach could be usefully applied not only to modelling
turbulent flows but also to the analysis of turbulent databases.

4 Conclusions

In the paper themain peculiarities of the FilteringApproach based on theGeneralized
Central Moments are summarized and some recent applications both in the analysis
and modelling of turbulent flows are presented. All that in the spirit of illustrating
a unified theory linking the direct approach to the statistical one by a continuous
interval of intermediate steps [8].
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