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Abstract We revisit clustering of coherent Reynolds shear stress producing eddies
inwall bounded turbulent flows.We question the plausibility of the strict alignment of
the packets of vortices that supposedly lead to very-large-scale motions. Attention is
later drawn to the self-exciting Hawkes stochastic processes tomodel and understand
the organization of coherent vortices into clusters, and their spatial organization in
the logarithmic layer.

1 Introduction

The main aim of this short note is to introduce and propose adequate stochastic point
processes to describe and model large-scale (LSM) and very-large scale (VLSM)
motions occurring in wall bounded turbulent flows. The LSM originate from the
packets of Reynolds (Re) shear stress producing eddies in the buffer layer (quasi-
streamwise vortices, QSV), at small-medium and large Re numbers [5, 7]. The origin
of very-large-scale motions (VLSM) at large Re is still not clearly understood, but
one of the conjectures is the coherent alignment of LSM and the wakes they induce
into the subsequent packets [5] and their immersion in the logarithmic layer. Figure1
shows the top view of the quasi-streamwise vortices populating a turbulent channel
flow obtained through direct numerical simulations (DNS) in particularly large com-
putational domains at Reτ = huτ

ν
= h+ = 590. Here h is the channel half width and

uτ and ν are respectively the shear velocity and the viscosity. Hereafter (+) denotes
the quantities scaled by uτ and ν. Note the large spanwise extend of the cluster. It
is also seen that the very-large scale motions have a direct impact on the weighted
spectra of the turbulent streamwise velocity intensity in the logarithmic layer.
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Fig. 1 Left: Top view of QSV’s in a turbulent channel flow at Reτ = 590 resulting from our own
DNS. Clusters of QSV appear as amalgamation of LSM’s at different wall normal positions into a
large bulge. The radius of the circle is about 10h. Right: weighted streamwise velocity fluctuations
spectra in the log-layer. Black and colour contours correspond to h+ = 395 and 1100 respectively
[10]

2 Coherent Alignment of One-Dimensional (1D) Clusters.
Structuration of VLSM

The cumulative probability distribution (cpd) of the QSV interarrival times in the
buffer layer shown in Fig. 2-left, is reminiscent of a double Poisson process. The
passage of the QSV are detected by single point measurements through different
identification schemes combined with a self-similar pattern recognition technique
[7]. The results in Fig. 2 have been obtained in a turbulent channel flow at h+ = 560.
Two categories of events emerge, those that are close (packets) and the solitary single-
events. AMarkov chain that contains 3 states is introduced here to model this double
Poisson process as in [3] (Fig. 2, right). The state 0 stands for the presence of a QSV
within a given interval of time δt . The states 1 and 2 are thewaiting stateswith absence
of QSV. The arrows are annotated with their respective probabilities of occurrence.
The quantity A is a measure of clustering and te is the mean regeneration period
of the structures. The Markov chain perfectly estimates the cpd of the interarrival
times (squares in Fig. 2 left) as expected. The evaluation of the supposed coherent
alignments of the packets that presumably result inVLSMrequires the use of a hidden
Markov chain. Yet the part of theMarkov chain shown by the circle in broken lines in
Fig. 2 allows as to estimate the stricto sensu alignment probability of the clusters. We
found that the probability of having � aligned 1D clusters, which uniformly contain
N individual vortices, is proportional to

logp(� > 1) ∝ (� − 1)(N + 1)logA (1)

and since the measure of clustering is A < 1, this probability decreases both with N
and �. That is, the larger the LSM, the rarer their coherent alignment into VLSM.
Coherent alignment of clusters of structures originating from roughly the same buffer
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Fig. 2 Left: Cumulative probability distribution (cpd) of the interarrival times of QSV’s in the
buffer layer. Further details of the methodology can be found in [7]. Circles and squares show the
measurements and the model estimations respectively. Right: Markov chain modelling the double
Poisson distribution

layer streak, as suggested by [5] is therefore unlikely. This constitutes, at least a formal
argument justifying the observations and discussions related to the vortex clusters in
the logarithmic region in [2].

3 Self-exciting Processes and Regeneration
of Large-Scale-Motions

The clusters of the near wall structures are provoked by a primary structure which
is sufficiently intense, and/or close to the wall (Fig. 3 left). This has been shown
both experimentally and through direct numerical simulations in [7, 11]. A mother
structure with large s+ = �/a+2, wherein � is the circulation of the primary vortex
and a+ is its distance to the wall gives birth to a cascade of active eddies. The char-
acteristic time-scale of the viscous-inviscid response related to the primary structure
is 1/s+.

We propose to model the buffer layer clusters through a self-exciting non- homo-
geneous Hawkes Poisson point process [4]. In the Hawkes terminology, the primary
intense vortex of the cluster is an immigrant and the provoked subsequent structures
are the offsprings. These processes are commonly used in seismology (earthquake

Fig. 3 Left: ‘mother’ structure with a large enough intensity, and close to the wall regenerates
secondary structures according to [7, 11]. Right adapted from [6] with the consent of the authors:
The arrival rate in time of a typical Hawkes process [6]. The red circle shows a typical ‘packet’
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and subsequent aftershocks), neuroscience, epidemiology, insurance and finance.
They are long-range dependent. Our aim in this short note is to draw our commu-
nity’s attention to these peculiarities. Consider the process with arrival (occurrence)
rate in time:

λ∗(t) = λ +
∑

ti<t

αe−β(t−ti ) (2)

Each arrival in the system increases the arrival intensity by α, then this arrival’s
effect decays at rate β [6]. This is a non-homogeneous Poisson process in which
the intensity explicitly depends on previous events. The excitation function which is
exponential, is connected to the regeneration of the QSV packets in the buffer layer.
The red circle in Fig. 3b, which is adapted from [6] shows such a self-excited packet.
The covariance density of this point process is:

Rc (τ ) = λ
∗
δ(t) + αβλ(2β − α)

2 (β − α)2
e−(β−α)τ (3)

The first term of this equation, wherein δ is the Dirac function, stands for a clas-
sical non-excited Poisson process and λ

∗ = λ
1−α/β

. The second term shows that the

process is long range dependent, with a typical relaxation time tr = (β − α)−1. The
original Hawkes’s process is one of the self-exciting processes, but other types of
excitation processes can also be considered. In the present context, the parameter
α is typically the rate of arrivals of the structures into packets. The parameter β is
such that at the trailing edge (the end) of a packet the arrival rate α is substantially
reduced. We have experimental data to roughly estimate α and β in the buffer layer,
but unfortunately only at h+ = 560 [7], and we are not aware of more data analyzing
the regeneration process this way. Thus, α ∝ 1/
P where 
tP is the time interval
separating the consecutive events within the packets. Supposing that β dumps the
arrival rate by two decades at the leading edge of a cluster, gives β ∝ 5/TP where TP

is the typical time duration of the packet. Using the data in [7] one obtains α+ ∝ 0.05,
β+ ∝ 0.08 resulting in the memory time of the process t+r ∝ 30 which is as large
as the outer time scale at this Reτ . Using a convection velocity of 10 wall units in
the buffer layer results in the streamwise extends of l+α = 200 and l+β = 125 that are
within the range of the lengths of QSV. It has to be emphasized here that the choice
(estimation) of α and β is crucial as significantly longer memory periods can result
when approaching the excessive case β → α. Maximum likelihood estimations are
needed to determine these parameters more precisely [6]. The packets form large
wakes of typical streamwise lengths Lw ≈ 5h in the low buffer [1, 7]. The clusters
transport the wakes into the outer region by the lift-up velocity field they induce
according to the Biot-Savart law. Hence, the streamwise and spanwise length of the
multiple-wakes increase linearly with the wall distance [2]. The wake structure stays
self-similar during the long memory time tr , as the tall self-similar attached clusters
grow self-similarly in time in [2]. The lifetime of the wakes is much larger than tr .
Once the wake clusters merge in the log-layer they lose their initial memory and the
trails of the streamwise velocity fluctuations they transport adapt themselves to the
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Fig. 4 Conceptual model of the merging of LSM induced wakes into the logarithmic layer (left).
Two clusters of wakes coming from different origins shifted in the spanwise direction can lead
to persistent streamwise velocity fluctuations in the intersection plane. Right: an attached cluster
according to [2] adapted with permission

outer scales. According to our estimations given above, the multiple-wakes reach
y+ ≈ 300 self-similarly during tr . Their streamwise and spanwise scales increase by
the same amount, attaining roughly 6h. Although the stricto sensu coherent align-
ment of the clusters is unlikely as discussed before, the alignment of the multiple
wakes formed by different buffer-layer clusters with different past stories and that are
close in the streamwise direction and (or) shifted in the spanwise one, now becomes
plausible. This is schematically shown in Fig. 4, which also shows a typical attached
cluster explored in [2] and originating roughly from a region of about 100 wall units
spanwise extend. Last but not least, the cluster excitation parameter α and conse-
quently β depends on the Reynolds number. Indeed, the regeneration of offsprings
depends on the vorticity intensity of themother structure and the streamwise vorticity
intensity at the wall is Re dependent [9].

4 Conclusion

Self excited processes are good candidates to model the clustering of coherent struc-
tures and of their wakes emerging into VLSM in the logarithmic layer. It is unlikely
that the vortex clusters originating, say from the same streak in the buffer layer, get
coherently aligned to form VLSM in the logarithmic region. The main point is the
spanwise expansion of the wakes generated by individual clusters. This consequently
makes possible the amalgamation of different wake clusters with different histories,
coming from different, but close enough streamwise and spanwise locations. The
VLSM result from a self-exciting spatio-temporal Poisson cluster process, in which
the spanwise direction plays a capital role in the present context. Existing mod-
els such as the Townsend-Perry hierarchy should be modified to take these specific
features into account (see [8] for a review). To be short, the contribution of the hier-
archies to the shear stresses in the fully developed turbulent region is related to the
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probability density for the length scale in the hierarchy. This probability density has
to be extended to contain informations on the streamwise and spanwise extends of
the clusters. The events in the clusters have to be marked by the wake they induce,
which is an additional important variable. The self-exciting feature of the regener-
ation process has to be taken into account. We are currently working on these key
issues.
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