
Springer Proceedings in Physics 267

Ramis Örlü
Alessandro Talamelli
Joachim Peinke
Martin Oberlack   Editors

Progress in 
Turbulence 
IX
Proceedings of the iTi Conference in 
Turbulence 2021



Springer Proceedings in Physics

Volume 267



Indexed by Scopus

The series Springer Proceedings in Physics, founded in 1984, is devoted to timely
reports of state-of-the-art developments in physics and related sciences. Typically
based on material presented at conferences, workshops and similar scientific
meetings, volumes published in this series will constitute a comprehensive
up-to-date source of reference on a field or subfield of relevance in contemporary
physics. Proposals must include the following:

– name, place and date of the scientific meeting
– a link to the committees (local organization, international advisors etc.)
– scientific description of the meeting
– list of invited/plenary speakers
– an estimate of the planned proceedings book parameters (number of pages/

articles, requested number of bulk copies, submission deadline).

Please contact:

For Americas and Europe: Dr. Zachary Evenson; zachary.evenson@springer.com
For Asia, Australia and New Zealand: Dr. Loyola DSilva; loyola.dsilva@springer.
com

More information about this series at http://www.springer.com/series/361

mailto:zachary.evenson@springer.com
mailto:loyola.dsilva@springer.com
http://www.springer.com/series/361


Ramis Örlü · Alessandro Talamelli ·
Joachim Peinke ·Martin Oberlack
Editors

Progress in Turbulence IX
Proceedings of the iTi Conference
in Turbulence 2021



Editors
Ramis Örlü
Linné FLOW Centre
KTH Engineering Mechanics
Stockholm, Sweden

Joachim Peinke
Institute of Physics
University of Oldenburg
Oldenburg, Niedersachsen, Germany

Alessandro Talamelli
Department of Industrial Engineering
Università di Bologna
Forlì, Italy

Martin Oberlack
Department of Mechanical Engineering
TU Darmstadt
Darmstadt, Germany

ISSN 0930-8989 ISSN 1867-4941 (electronic)
Springer Proceedings in Physics
ISBN 978-3-030-80715-3 ISBN 978-3-030-80716-0 (eBook)
https://doi.org/10.1007/978-3-030-80716-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-80716-0


Preface

iTi has become an established biannual conference on turbulence research taking
place in the years between the ETC—European Turbulence Conference and TSFP—
Turbulence and Shear Flow Phenomena conferences. With 80–100 participants, the
iTi conference places value on the discussions and personal contacts in the location
of the beautiful town of Bertinoro in Northern Italy close to Bologna. It continues
a tradition that has been started in Bad Zwischenahn/Germany with the first edition
of the conference in 2003. In contrast to many conferences, where highly special-
ized parallel sessions take place, the size of the iTi was purposely designed to host
one single session from the very beginning, so that experimentalists, theoreticians
and simulation experts can listen simultaneously and enter into a direct dialog with
each other. The content-related focus areas of the conference are the interdisci-
plinary aspects of turbulence, defining the abbreviation iTi—interdisciplinary Turbu-
lence initiative. iTi attracts scientists from the engineering, physics and mathematics
communities.

The 9th iTi was planned to be held in the autumn of 2020, but the Covid-19
pandemic has forced us to change our plans. We intentionally did not want to cancel
iTi. The feeling was that, in the turbulence community, even in these difficult times,
the interest and the need for an intensive scientific exchange was very strong. Against
this background, the iTi conference took place as a pure online event, during February
25–26, 2021.

Due to the virtual nature of the conference, 192 scientists from 17 countries with
a regular attendance of 60–100 participants throughout all talks participated. In total,
there were 69 contributions, of which 4 were invited live talks, 35 were regular live
talks and the remainder were on-demand video contributions, covering a wide range
of aspects of current turbulence research. Advances in the understanding of turbu-
lence and theory, turbulence modeling and simulation, turbulence experiments, data
processing and turbulent scaling laws and a variety of related topics were addressed.

At this point, we would like to thank Dario Klingenberg, Alparslan Yalcin, Jie
Liu, Yi Zhang and Tim Gebler from TU Darmstadt without whose help the virtual
event would not have been possible.
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vi Preface

The content of the 9th iTi conference is documented in this volume comprising 41
contributions. All contributions were thoroughly reviewed by external reviewers, to
whom we want to express our thanks for their valuable and important contributions.

Based on the successful previous conferences, wewill continue with this initiative
for subsequent years with the 10th iTi Conference September 2023.

Finally, it is a distinct desire for us, to pay a special tribute to Charles Rogers
Doering, who passed away a few weeks after the iTi onMay 15, 2021, shortly before
the completion of these proceedings. Charles had given a wonderful and stimulating
talk at iTi in his inimitable style on the subject of Heat transport in steady and
turbulent Rayleigh-Bénard convection. He had been intensely involved with this
topic in recent years, and through it he was particularly closely associated with the
turbulence community. Charles was not only a brilliant scientist but also an inspiring
speaker who could captivate his audience even on highly complex topics. Of the
very large number of awards and honors he received during his career, it is worth
mentioning that he received the NSF Presidential Young Investigator Award early
on—many more followed. In addition to his scientific work, Charles’ personality is
particularly remembered. He had many facets, of course, but we experienced him
above all as a humorous, emphatic, clear, honest, inclusive and always respectful
person with whom it was always particularly entertaining to spend an evening.
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Part I
Experiments



Dynamic Triad Interactions
and Non-equilibrium Turbulence

Clara M. Velte and Preben Buchhave

Abstract The classical K41 theory, based on the ideas of Kolmogorov, Richardson
and Batchelor, has in recent years with accumulating evidence become subject to
increased scrutiny. We elaborate on the idea that the deficiencies of the theory orig-
inate in the fundamental assumption of universal equilibrium, which in turn is the
result of the basic assumption of locality of nonlinear interactions. These very funda-
mental assumptions are argued to have no anchoring in the governing Navier-Stokes
equation. The possibility for other kinds of solutions are discussed from a historical
perspective. K41 is also identified to represent an equilibrium solution that cannot
predict non-equilibrium turbulence.

1 Why the Need for New Perspectives on the Established
Theory?

The theoretical framework developed by Kolmogorov (including the contributing
ideas of Richardson and Batchelor, often collectively referred to as the ‘K41’ the-
ory [1–3]), has comprised the cornerstone of our understandingof turbulence formore
than half a century. It has up until recently not been so frequently acknowledged that
Kolmogorov’s ideas were initially heavily questioned. In fact, it took two decades
before K41 was convincingly supported by experiments; first in a turbulent round
jet by Gibson [4] and secondly (and more widely acknowledged) by Grant, Stewart
and Moilliet [5]. Once these empirical studies supporting K41 finally appeared, the
theory has been amply supported by further experiments and simulations in some
flows, while other theories have beenmore successful in predicting non-K41 types of
flows (c.f. [6–12]), including arguments by Kolmogorov himself [13]. In fact, even
after K41 had become commonly accepted, Kolmogorov would still refer to K41
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as “purely phenomenological” [14]. This is further emphasized by the fact that the
famous k−5/3 spectral power law can be obtained from pure dimensional analysis
(and was in fact found independently by others around the same time [15, 16]).

G.K. Batchelor was an early adopter and a strong proponent of Kolmogorov’s
ideas. He even contributed with a mathematical framework on homogeneous turbu-
lence [17]. Unfortunately, homogeneous flows are not well representative of actual
flow, not least in that practical flows are of finite extent in time and space. Another
critiquewould be that few (if any) flows display even approximate homogeneity in all
directions across the domain of the flow. Furthermore, a homogeneous flow cannot
remain stationary, as can be seen directly from the energy equation, c.f. [18].

In fact, the classical experiments in decaying grid turbulence (van Kármán,
Howarth, Batchelor, Townsend, Corrsin and Comte-Bellot), designed to mimic the
ideal case of homogeneous flow, played a key role in the early acceptance and con-
troversy of K41. As grid turbulence decays rather slowly, at least in the initial period
of decay (approximately u2 ∝ t−1, as expected from the van Kármán-Howarth solu-
tion), one was faced with the practical problem that the test sections of the wind
tunnels would be too short compared to the initial turbulence decay to reach defini-
tive conclusions regarding independence upon initial conditions (or universality).
By making the mesh dimension smaller, this decay length could be shortened, but at
the expense of increased measurement errors with the hotwires used [17]. With the
introduction of exponentially decaying turbulence [19] and subsequently experimen-
tal support in fractal grid turbulence, which certainly did not obey K41, a broader
acceptance began to emerge that there may indeed be more to the story.

As early as in 1992, the late John L. Lumley asked [20]: “What part of modeling is
in serious need of work? Foremost, I would say, is the mechanism that sets the level
of dissipation in a turbulent flow, particularly in changing circumstances”. We know
today, from careful studies, that K41 can with great success describe turbulence
in simple statistically stationary free shear flows [9], but unfortunately appears to
have limited predictive capabilities in flows that accelerate, decay or separate—all
common features of important engineering flows. These are also flows for which the
(K41 based) turbulence models struggle.

In the following, we will argue that K41 is indeed an equilibrium solution that in
general predicts (nearly) stationary turbulence satisfactorily. However, it is becom-
ing increasingly accepted in the community that we must develop a more accurate
understanding of turbulence that is valid also for the scientifically and technologically
important class of non-stationary flows.

1.1 Why Experiments Cannot Prove a Theory

Although K41 was a great intellectual achievement given the resources available
at the time of development, from the author’s own experience (including repeated
comments from proposal reviewer comments and the ERC review and interview
process) [21], there seems to exist a widespread misconception that K41 has been
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proven by experiments. This is a logical fallacy, since experiments can—at best—
support or increase our confidence in a theory, but they can never prove the generality
of a theory. On the other hand, one experiment is, in principle, sufficient to disprove
the generality of a theory. And, in fact, there exist several experiments that do and
the field is slowly opening up to this possibility, see e.g. [22].

A simple example could be used to illustrate the point; One could carry out a
vast range of experiments indicating that the Earth is flat. This does however not
‘prove’ the idea. If carried out in a different manner, an experiment could indicate
that the Earth is curved, or even round (or even more complex geometries, if the
experiments are continually refined). The same principle of course applies to other
theories, including the K41 theory. To disprove a theory by a carefully designed
experiment, it all comes down to targeting its weak points—usually its assumptions
(if otherwise correctly deduced). George [9] and the authors argue that it is, in
particular, the central assumption of universal local (small scale) equilibrium that
constitutes the core weakness of the K41 theory.

2 The Assumption of Universal Equilibrium

When presenting repeated arguments against the universal equilibrium assumption
(e.g. during an ERCStartingGrant interview [21]), it also became apparent to the first
author that it is a common misconception that the universal equilibrium assumption
would not be postulated to hold under ‘changing circumstances’. However, even
current theoretical, experimental and numerical work repeatedly make use of this
assumption also in highly non-equilibrium flows (e.g. gas/wind turbines, separation,
stagnation etc.). Furthermore, Batchelor makes it quite clear that the theory applies
also under ‘changing circumstances’, as hewrites himself in his book “Homogeneous
Turbulence” [17] (Chap. 6: “The Universal Equilibrium Theory”): “In particular, the
statistical quantities determined by the equilibrium range are independent of the
properties of the large-scale components of the turbulence...” and “If the spectrum
shape can be determined, then, according to the foregoing theory, it will apply to all
kinds of turbulent motion, whatever their large-scale properties, the only condition
being that the Reynolds number should be sufficiently large.”

2.1 Local Equilibrium and the Locality of Scale Interactions

Being a statistician, it does not seem surprising that Kolmogorov based his funda-
mental view of small-scale turbulence [1–3] on a gas dynamics (statistical physics)
analogy to the small and intermediate turbulent scales. In this analogy between the
fluid and the flow, the small and intermediate scales would behave relative to the large
scales similarly to how molecules in a thermal equilibrium relate to a corresponding
thermodynamic macroscopic system. Just like individual molecules in thermody-

http://dx.doi.org/10.1007/978-3-030-80716-0_6
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Fig. 1 Thought experiment
illustrating non-local
interactions under high shear
conditions

namic equilibrium, the wide range of small and intermediate turbulent flow scales
were, through local interactions, assumed to be effectively decoupled from the large
energy containing scales ([17, 23], Sect. 21.3) and at a state of statistical local (or
small scale) equilibrium—nomatter what the dynamics of the large scales. However,
even molecules can be pushed out of a thermodynamic equilibrium. And the small
and intermediate turbulent scales are much larger than molecules.

Thus, a consequence of assuming local interactions and decoupling between the
large versus the intermediate and small scales was Kolmogorov’s Zeroth Hypoth-
esis1: that the smallest and intermediate scales could be considered to be in local
equilibrium. But, this very fundamental assumptions has no anchoring in the equa-
tions that govern fluid flow.

Furthermore, the K41 theory was developed for the scales where the energy was
the smallest. But in fact the inertial and dissipative range (or universal equilibrium
range) together contain the majority of the energy in high Reynolds number turbu-
lence. Batchelor also recognized this, see Chapter VII of [17], where the presented
grid turbulence experiments evidenced that the energetic scales constituted only
roughly 20% of the turbulent kinetic energy.

The breakdown of these ideas can be illustrated by a simple thought experiment:
Suppose that two large counter-rotating vortices are located next to one another. Their
motion can set the fluid in between into rotation and directly generate significantly
smaller scales in between, if spaced sufficiently close together (see Fig. 1). In such
a system, energy can be directly transferred through non-local interactions from
energetic to inertial or even dissipative scales. Furthermore, the dynamics (non-
equilibrium) in the large energetic scales can translate directly into the small and
intermediate scales.

This thought experiment strongly indicates that the central assumption of local
interactions and decoupling between the energetic scales from the small and inter-
mediate scales (and hence the derived consequence of local equilibrium) cannot
hold true. And this leaves the theory with only a single hope of remaining valid: the
requirement that all scales are in equilibrium. One could thus argue that K41 is in
fact an equilibrium solution.

1 In fact, Kolmogorov only implied this. Batchelor [17] codified it into the form we now take for
granted.



Dynamic Triad Interactions and Non-equilibrium Turbulence 7

2.2 The Crucial Constancy of Spectral Energy Flux

If the Reynolds number is sufficiently large, the energy containing and dissipa-
tive scales were hypothesized to separate leaving a buffer-like region in between in
wavenumber space where only transfer between scales of similar size occurs. This
intermediate region can, under the stated assumptions, only depend on the (constant)
spectral flux of energy, εk , passing down along the cascade. As the energy is fed into
the dissipation range at this rate, the dissipation of energy, ε, must in this setting take
place at the same rate, requiring consequently εk(inertial range) = ε. Because of this
equality, the dissipation, concentrated in the small scales, can be directly estimated
from the large energy containing scales. The small and intermediate scales are thus
believed to behave in a universal manner as long as the Reynolds number is ‘large
enough’. Almost all turbulence theories and turbulence models are based on some
form of this basic idea. A vivid illustration of this is the so-called “zeroth-law of
turbulence”, ε ∝ u′3/�. This is really just a definition of �, which can in turn, thanks
to the arguments above, be assumed to be proportional to the integral scale.

It is, based on these arguments, simply a task of dimensional analysis to derive one
of the most famous results in turbulence, E(k) ∝ ε

2/3
k k−5/3, the −5/3 law, where k

is the wavenumber and E(k) is the wavenumber dependent turbulent kinetic energy.
Although Kolmogorov developed his theory using velocity differences in physical
space, this −5/3 slope in wavenumber space has over the decades become the ‘hall-
mark’ of the established K41 picture and hence also of turbulence. As a consequence,
all of the energy being generated at the large scales has to pass though this−5/3-range
through (non-linear) local interactions in an (approximately) monotonic fashion until
being eventually dissipated as the scales become too small to counter friction forces.
These hypotheses were later refined [13], but the main ideas of local equilibrium
and local interactions remain intact. Thus, models and hypotheses frequently only
allowed for interactions between scales of similar size.

It is important to note that this picture relies crucially upon the assumption that
nothing modifies the constancy of the spectral flux in the inertial subrange (or k−5/3

range). Any process adding or removing energy at wavenumbers (such as deviations
from equilibrium in time or non-local interactions in space) in this range will make
the assumed constant spectral flux εk vary, and hence also the dissipation, ε.

In such a flow setting, the K41 description cannot be used.

3 Nonlinear Triadic Energy Transfer

From the Fourier transform of the non-linear term, (u · ∇)u, in the governing Navier-
Stokes equation, formulated in wavenumber space, the transfer of energy can be seen
to be restricted between triads of wavenumbers (say, k1, k2 and k = k1 + k2) in so-
called triadic interactions. This energy transfer could in principle happen between
any triadic combination of wavenumber vectors, since the equations do not favor any
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particular combination. However, adding the assumption of only local interactions
being allowed (or at least being strongly favored), energy exchange is limited to
triads of similar size. The vast majority of cascade models (c.f. [17, 18, 23], e.g. by
Kovasnay, Heisenberg, Onsager) indeed assume only local interactions are important
(and [constant] spectral flux only depends on ε and k). But none of these have so far
been able to accurately describe how turbulent kinetic energy transfers from lower
to higher wavenumbers in non-stationary or transient experiments. In fact, direct
coupling seems to be possible even between scales of very different sizes, with
energy being able to flow towards both higher and lower energies (although, clearly,
the net effect is energy transport towards higher wavenumbers).

3.1 The Navier-Stokes Machine and New Theory
Developments

The inspiration to include the time component in the description came fromProfessor
WilliamK.George, in particular from the paper hewrote for the “Whither Turbulence
and Big Data in the 21st Century” meeting in 2015 [24]. There, he pointed out that
time should be included in the nonlinear triadic energy exchange and he speculated
whether one should expand the concept of triadic interactions to ‘quadratics’.

Our interpretation [25] of the role of time in the decomposition is somewhat differ-
ent, as we find that time only has a direct effect in the case of finite resolution and high
intensity turbulence. The Navier-Stokes equation describes the momentum balance
in a point in time and space. And through the definition of velocity, u(r, t) = dr/dt ,
temporal and spatial fluctuations are coupled at a mathematical point. However, in
real experimental and numerical observations, flow fields are described with finite
temporal and spatial domains and resolution. The finite resolution thus results in a
decoupling of the spatial and temporal fluctuations of the velocity. Consequently,
the velocity instead becomes a stochastic function of four independent parameters—
three spatial coordinates and time.

The Fourier-decomposition of the nonlinear term in the Navier-Stokes equation
thus becomes [25]:

F.T . {(u · ∇) u} = 1

(2π)4

∫∫∫∫
dk1dω1

1

(2π)4

∫∫∫∫
dk2dω2 ×

∫∫∫
W(r)W (t)e−i[(k−k1−k2)·r−(ω−ω1−ω2)t] drdt

{[
ik2 · û(k1, ω1)

]
û(k2, ω2)

}

where W(r, t) and W (t) are top-hat windows delimiting the finite measurement or
simulation domains in the infinite integrals. These windows can also be generalized
to describe flows that are finite in space and time, however with more complex
profiles in time and space in general (and for free shear flows in particular). ‘F.T .’
and ·̂ denote Fourier transform. Note that the choice of Fourier transform as a basis
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function for decomposition is in fact an arbitrary choice, but we follow convention
and use Fourier transforms although local homogeneity is not assumed.

In a second order nonlinear term, such as the one in the Navier-Stokes equation,
(u · ∇)u, two waves can interact to generate or interact with a third wave. If we
include time, as done in the expression above, temporal frequencies will be added
that will broaden the phase match condition.

If Taylor’s hypothesis applies, there is no temporal development except for con-
stant advection, u0, of the frozen field. In this case, the temporal frequencies can
be directly related to the spatial frequencies (wavenumbers) and the classical phase
match condition applies: [ω − (ω1 + ω2)] ⇒ [k − (k1 + k2)] · u0.

Muchmore interesting is then the case of high intensity turbulence, where Taylor’s
hypothesis cannot be invoked. If we consider the total phase match exponent in the
integral, we observe that a mismatch in the spatial phase can be compensated by a
corresponding mismatch in the temporal phase. Since the integral covers all space
and time, at least of the limited flow or measurement domain, the modal interactions
can be generated from velocities both prior to and after the point in time where the
Navier-Stokes equation is currently operating. These dynamic interactions [25] can,
respectively, be denoted ‘advanced’ and ‘delayed’.

This is merely one of the ways in which real measured or simulated velocity fields
behave differently from homogeneous Batchelor-turbulence [17]. The finite nature of
real flows (as well as that of simulation or measurement domains), here expressed in
terms of the windowsW(r) andW (t), impacts the observed interactions as well [25].
This can in fact be immediately observed from the above expression, where the two
windows could be defined e.g. as a top-hat. When evaluating the integral, the product
of the integrand with the added windows will lead to a convolution between them.
The top-hats would transform into sinc-functions with a finite width, as opposed to
delta-functions which would be the case for an infinite domain as the velocity field
is defined by Batchelor. The broadening of the interaction peaks would allow for
interactions to happen not just between strict delta function overlaps, but between
peaks of finite width that can overlap to varying degrees. Furthermore, the peaks may
in fact interfere either constructively or destructively, depending on the overlap as
the sign of the interaction peak may vary with distance from its peak value.

A detailed discussion on these matters can be found in [25] including a discussion
on the patterns of interaction efficiency between two waves, the time duration of
interactions (what is commonly referred to as ‘coherent structures’) and the dynamic
spectral development of turbulence.

A good spatial overlap between the waves (i.e. with constructive interference) will
lead to higher interaction efficiency, which explains why local interactions are often
favored. However, as we all know, there exist many so-called non-equilibrium flows
in which non-local interactions can be quite efficient as well. These are typically
flows where large and small scales are allowed to interact over a long period of time.
Then even flows where the waves do not overlap efficiently spatially can exchange
significant amounts of energy in non-local interactions. This can happen e.g. in thin
shear layers or near large vortices, although fractal turbulence may be one of the
most illustrative examples.
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Fig. 2 Non-local
interactions resulting from
the Navier-Stokes equation.
(left) Input signal and (right)
result after several iterations
through the Navier-Stokes
equation

In fractal grid turbulence, waves of certain wavelengths are injected by shedding
from grid bars of variable thickness into an approximately constant advection veloc-
ity. The injected waves are travelling at the same speed and traveling in the same
direction along the stream. This type of turbulence is known for developing rapidly,
which is very much enhanced by the extended temporal overlap between waves of
different wavelenghts. Depending on the spatial overlap of the introduced compo-
nents, some grids are more efficient in interactions and therefore develop faster than
other grid configurations.

We will briefly illustrate these ideas with a very simple simulation tool, which
we have dubbed the ‘NS-machine’ [26]. It is basically a one-cell Direct Numerical
Simulation tool, with which we have been able to predict the downstream develop-
ment even of high intensity turbulent flows. The simulations have been validated by
several experiments [27]. The only input into these simulations is the Navier-Stokes
Equation. While the main drawback with simulating at a single point is that it does
not explicitly include and treat the pressure term (although it can be included using
pressure models), the results are still quite convincing in comparison with several
experimental data sets—even in high intensity flows.

Figure2 shows an example of one low and one highwavenumber component as an
input signal (left) to the Navier-Stokes equation that is allowed to interact over time
(right). From the example, it is clear that the two components can indeed interact
non-locally. The generated components can be understood by simply substituting the
sum of two waves into the non-linear term of the Navier-Stokes equation, which can
be seen to result in sums, differences and doubling of the input wavenumbers [26].

4 Establishing a New Laboratory and Developing a
Theoretical Framework

In previous work [25, 26], we have with quite simplemeans been able to advance and
better understand the dynamics of turbulence interactions, including the implications
for real flows under practical experimental conditions. This understanding can be
used to describe the underlying processes for how turbulence evolves. The next
natural step is to expand to a full-field description, encompassing all four dimensions.
Properly capturing the ‘full’ dynamics will, of course, require more advanced tools.
Since the statistics has to be extensive to obtain sufficient statistical convergence,
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Direct Numerical Simulations is not a viable tool in our investigations. Luckily,
technological developments are at a level of maturity that allows us to carry out
the measurements with the generous support from the European Research Council
(Starting Grant 803419) and the Poul Due Jensen (Grundfos) Foundation.

To be able to target the Universal Equilibrium assumption and the classical view
of turbulence, our group is therefore in the process of establishing a cutting edge
laboratory at the Technical University of Denmark, the Department of Mechanical
Engineering. The laboratory consists of two main setups; one to quantify the degree
of non-equilibrium and one to measure and analyze the true underlying processes,
to be described in coming work e.g. [28–31]. This will allow us to directly test e.g.
the assumptions of locality of interactions and whether it results in universal equi-
librium under circumstances that directly challenge these two central assumptions—
regardless of the dynamics at the large scales.

In parallel to the establishment of the laboratory, our group is also developing a
rigorous theoretical framework that allows us to properly analyze the various scale
interactions. This has not been a trivial endeavour, but these developments have
finally reached a level of maturity that allows us to analyze measurement results and
test the fundamental assumptions.

A key component is including time in the description and to be open to the fact
that turbulent cascade processes may exhibit dynamic behavior. Including realistic
experimental or numerical conditions, such as finite resolution and flow domain sizes
in both space and time, affect significantly the observed interactions, their efficiency
and what components are available to interact [25, 26].

The interested reader can follow our developments on the DTU Turbulence
Research Laboratory webpage: https://www.trl.mek.dtu.dk/.
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Turbulent/Turbulent Entrainment

Krishna S. Kankanwadi and Oliver R. H. Buxton

Abstract The interfacial region between two bodies of turbulent fluid was inves-
tigated through simultaneous particle image velocimetry (PIV) and planar laser
induced fluorescence (PLIF) experiments in the far wake of a circular cylinder. Inter-
face conditioned plots of enstrophy revealed the existence of a turbulent/turbulent
interface (TTI)where the enstrophy adjusts itself between the two regions. An enstro-
phy jump was present even in the most extreme cases of subjected free-stream turbu-
lence. Further analysis of the TTI through the lens of the enstrophy budget equation
highlighted the altered roles of inertia and viscosity in the vicinity of the TTI. Unlike
the turbulent/non-turbulent interface (TNTI), the inertial term is largely responsible
for enstrophy production in the outer regions of the interface, whilst viscosity plays
a much more subdued role. The global effects of free-stream turbulence on entrain-
ment behaviour was investigated through the measurement of the mean entrainment
flux. It was shown that an increase in intensity of the free-stream turbulence acted
to reduce the mean entrainment flux into the wake. Length scale of the background
turbulence on the other hand did not greatly influence entrainment behaviour in the
far wake of a circular cylinder.

1 Introduction

The growth of a turbulent body of fluid is strictly governed by the flow physics
at the outer boundary of the fluid region. These dynamics control the process of
entrainment, which describes the process by which mass is transferred from the
surroundings into the body of fluid. Hence, it is instrumental in the growth of a
turbulent region of fluid. The understanding of this process is critical, since the
industrial and environmental applications that are governed by it, are vast. Examples
range from the growth of a turbulent boundary layer to the spreading of wind turbine
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wakes in a wind farm. As a result of the importance of this process, entrainment
from a non-turbulent background has been extensively studied [1, 2]. However,
even though most industrial and environmental applications exist in the presence
of background turbulence, an understanding of turbulent/turbulent entrainment is
lacking. The few studies that have examined it have highlighted the importance of
both the background turbulence intensity, T I , as well as the integral length scale,
L12, of the background turbulence to be important in influencing the entrainment
behaviour [3–5]. This chapter aims to summarise and build up on the work presented
in reference [6].

The behaviour of a region of turbulent fluid inside a turbulent environment was
investigated using two separate experimental campaigns. These included a planar
particle image velocimetry (PIV) experiment as well as a cinematographic stereo-
scopic PIV experiment. Both of which were accompanied by simultaneous planar
laser induced fluorescence (PLIF) experiments that were conducted alongside the
PIV measurements. These measurements were conducted in the far wake of a cir-
cular cylinder approximately 40 cylinder diameters downstream of the rear face.
Conducting simultaneous PLIF experiments that run alongside the PIV experiments
is imperative to demarcate the wake fluid from the turbulent background. An illustra-
tion of the experimental setup used for both campaigns is depicted in Fig. 1. During
the experimental campaign, both, regular square grids as well as fractal square grids
were utilised to generate user specified background turbulence conditions. Figure2
represents the experimental envelope of both campaigns indicating the background
turbulence parameters present for each conducted run. It should be noted that run
1a is the control case as it represents a run conducted with no grid being placed
upstream of the circular cylinder. All of the runs conducted have been classified into
three groups based largely on the intensity of the subjected background turbulence.

2 Turbulent/Turbulent Interface

Simultaneously captured PLIF data was used to identify the location of the wake
boundary for each snapshot. The wake boundary was identified by placing a thresh-
old, on the modulus of the gradient of the light intensity (|∇φ|). Further details
regarding this methodology can be found in reference [6]. Upon establishing the
location of the wake boundary, it is possible to extract statistics conditioned on the
location of the boundary, within the interface. For the remainder of this chapter, the
interface normal coordinate is referred to as γ . Note that γ > 0 represents the free-
streamwhereas γ < 0 lies inside the wake. Interface conditioned statistics presented
in the following sections are derived as a spatial average over the length of the field
of view as well as being temporally averaged across all collected snapshots. This
process is represented by the following symbology, 〈〉I .

Figure3 depicts the behaviour of interface conditioned enstrophy, 〈ω2〉I as a func-
tion of the normal distance away from the interface for all conducted runs. Run 1a,
which represents the no-grid case reproduces the characteristic enstrophy jump that
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(a)

(b)

Fig. 1 Illustration of the experimental setup. a Campaign 1: Planar PIV and PLIF experiment. b
Campaign 2: Cinematographic stereoscopic PIV and PLIF experiment
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Fig. 2 Experimental envelope highlighting the background turbulence parameters for runs con-
ducted in both experimental campaigns. Note that the red dot-dashed line represents the background
turbulence intensity present at the location of the field of view for the no grid case. The blue dotted
line indicates a length scale equal to the cylinder diameter [6]. Reproduced with permission

Fig. 3 Interface conditioned
jump of enstrophy as a
function of normal distance
away from the interface [6].
Reproduced with permission
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is present in a turbulent non-turbulent interface [7]. Furthermore, it is clear to see
that regardless of the level of background turbulence that is available, an enstrophy
jump is always observed. This holds true even for cases that lie in group 3 where the
intensity of the background turbulence is greater that the intensity found inside the
wake itself. This is a crucial result as it goes to show that similar to the turbulent/non-
turbulent interface, there exists a turbulent/turbulent interface where the turbulence
adjusts itself between the two regions.

In order to investigate the turbulent/turbulent interface in greater detail, the
behaviour of each term of the enstrophy budget equation (see (1)) was investigated
in the vicinity of the interface. Analysis similar to this is fairly common for the
turbulent/non-turbulent interface (TNTI) [8, 9]. The TNTI may be sub-divided into
two regions where different flow physics dominate. Van Reeuwijk and Holzner [8]
have described the innermost region as the buffer layer, where inertial production of
enstrophy dominates (ωiω j si j term). By definition, the free-stream side of the TNTI
consists of irrotational fluid, where vorticity is non-existent. Therefore, in the outer-
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most part of the interface, also known as the viscous superlayer, the inertial term is
unable to produce any enstrophy. Accordingly, the viscous diffusion term, ν ∂(ω2/2)

∂x j ∂x j
,

takes over all responsibility for enstrophy production in the superlayer, since the
dissipation term is strictly negative. Rather than being a sink of enstrophy as it is
in the rest of the interface, the viscous diffusion term is the only method by which
enstrophy may be produced in the outermost region of the interface and thereby is
the only process by which enstrophy is imparted to the surrounding fluid.

D

Dt

ω2

2
= ωiω j si j + ν

∂(ω2/2)

∂x j∂x j
− ν

(
∂ωi

∂x j

)2

(1)

However, this restriction on the inertial term is lifted when rotational fluid is avail-
able in the background, via free-stream turbulence. The following section now inves-
tigates the role of viscosity and strain in enstrophy production in a turbulent/turbulent
interface. Figures4 and 5 depict the interface conditioned behaviour of the inertial
and viscous diffusion term. Firstly, it should be noted that the behaviour observed by
the no-grid case is identical to literature published on the TNTI [7–9]. The charac-
teristic peak in enstrophy production through the viscous diffusion term at the outer
edge of the interface is clearly replicated. Additionally, further into the turbulent core
this term quickly turns into a sink of enstrophy, as per the literature. Furthermore,
the lack of any enstrophy production through both the inertial and viscous terms on
the free-stream side of the interface is also evident. However, this no longer holds
true when free-stream turbulence is applied. With the newly available vorticity on
the free-stream side of the turbulent/turbulent interface, the inertial term is able to
contribute to enstrophy production in the outer regions of the interface. Figure5 high-
lights behaviour similar to the no-grid case for the viscous diffusion term in groups 1
and 2, whereas, in the case of group 3 turbulence, this similarity is slightly lost as the
level of noise is greatly increased. However, looking at the magnitude of both terms
it is possible to say that any contribution of the viscous diffusion term is greatly
overshadowed by the inertial term. When background turbulence is available, the
inertial term takes over much of the responsibility for enstrophy production in the
vicinity of the interface, leading to the conclusion that viscosity plays a negligible
role in a turbulent/turbulent interface.

3 Turbulent/Turbulent Entrainment

Upon establishing the physics by which entrainment occurs in a turbulent environ-
ment, the effect of background turbulence on entrainment into the wake is examined
in this section. A methodology similar to that of Mistry et al. [1] is utilised to cal-
culate the entrainment mass flux for all conducted runs. Temporal averaging over
the entire set of snapshots and normalising by the cylinder diameter as well as the
free-stream velocity, gives the normalisedmean entrainment mass flux as can be seen
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Fig. 4 Interface conditioned plot of the inertial term as a function of normal distance away from
the interface
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Fig. 5 Interface conditioned plot of the viscous diffusion term for a groups 1 and 2 and b group 3

in Fig. 6. This figure depicts the behaviour of the mean entrainment mass flux as a
function of the subjected background turbulence intensity. It is clear to see that a net
reduction in mean flux is observed as the turbulence intensity in the background is
increased. Cases in groups 1 and 2 experience a slight reduction in mean entrainment
flux whereas group 3 is subjected to a severe reduction. The behaviour in group 3
cases can be so extreme, such that one of the cases even displays net detrainment.

This behaviour can be explained by further analysing each data set. The numerical
values displayed alongside each data point in Fig. 6 reflects the skewness value of the
data set. Group 2 behaviour may be explained through a slight reduction in skewness
values. This is further exaggerated for cases that reside in group 3. Examining the
probability density functions of normalised flux (not shown here for brevity) for
cases in group 3, makes it clear that the severe reduction in entrainment flux comes
as a result of extreme detrainment events [6]. These events create an imbalance as
they are not compensated by similar extreme entrainment events. Thereby, tipping
the balance towards the detrainment side.
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Fig. 6 Entrainment mass flux as a function of background turbulence intensity. Note that the values
next to each data-point represent the skewness value of the data set and the error bars represent a
95% confidence interval. The black dashed line denotes a linear regression, whereas, the red dot-
dashed line indicates the turbulence intensity found inside the wake at the location of the field of
view for the no-grid case [6]. Reproduced with permission

Length scale on the other hand, has a negligible effect on the mean flux (not
shown). We thereby establish turbulence intensity as the dominant parameter in
influencing entrainment in a turbulent environment.
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Active Control of Turbulent Convective
Heat Transfer with Plasma Actuators

Rodrigo Castellanos, Theodoros Michelis, Stefano Discetti, Andrea Ianiro,
and Marios Kotsonis

Abstract We study an array of streamwise-oriented Dielectric Barrier Discharge
(DBD) plasma actuators as an active control technique in turbulent flows. The analy-
sis aims at elucidating the mechanism of interaction between the structures induced
by theDBD-plasma actuators and the convective heat transfer process in a fully devel-
oped turbulent boundary layer. The employed flush-mounted DBD-plasma actuator
array generates pairs of counter-rotating, stationary, streamwise vortices. The full
three-dimensional, velocity field is measured with stereoscopic PIV and convective
heat transfer at the wall is assessed by infrared thermography. The plasma actuator
forcing diverts the main flow, yielding a low-momentum region that grows in the
streamwise direction. The suction effect promoted on top of the exposed electrodes
confines the vortices in the spanwise direction. Eventually, the pair of streamwise
vortices locally reduces the convective heat transfer with a persistence of several
outer lengthscales downstream of the actuation.
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1 Introduction

The irruption of computational tools and novel control strategies is opening new
research opportunities in the field of turbulent flows and their application to the
industrial field. The need for efficient control devices in compact spaces is fostering
the development of advanced heat-transfer control strategies. Heat-transfer control
applications are found in several fields such as cooling of electronics or film-cooling
in turbomachinery [5].

A common solution for convective heat transfer enhancement in turbulent flows
consists of using passive vortex generators. Some designs induce pairs of counter-
rotating streamwise vortices, whereas others produce co-rotating vortices. The pro-
duction of near-wall streamwise vortices that persist over a significant downstream
distance promotes cross-stream momentum transfer within the boundary layer. This
serves to transport high-momentumfluid from theouter region towards thewallwhich
make this kind of devices ideally suitable for heat-transfer or mixing enhancement.
Conversely, if the objective is to reduce heat transfer, it is known that a sufficiently
powerful, stationary vortex embedded in a turbulent boundary layer and aligned to
the streamwise direction, may substantially reduce turbulent wall fluxes according
to the persistence theory of turbulence [2].

Even though passive methods do not require neither external power source nor
complex devices, there are many applications in which the control is required at
very specific or off-design conditions, making active techniques the most suitable
option for overall efficiency. This study proposes the usage of Dielectric Barrier
Discharge (DBD) plasma actuators to actively control convective heat transfer in
turbulent flows. The DBD-plasma actuators are flush, surface-mounted active flow
control devices used to promote a body force near the surface. Indeed, past studies
have successfully employed DBD-plasma actuators [3, 4] to introduce streamwise
vortices in order to control turbulent boundary layers.Wicks et al. [6] investigated the
vorticity generation mechanism of a streamwise-oriented array of plasma actuators
in an operational manner analogous to vortex generators. The authors conclude that
both the wall-normal vorticity introduced by the array as well as the boundary layer
vorticity are re-oriented towards the streamwise direction.

By combining the ideas brought forward by persistence theory and the obser-
vations of the various investigations mentioned above, the present work aims to
generate stationary streamwise vortices within a fully-developed turbulent boundary
layer, with the final goal of reducing convective heat transfer downstream of the
control location. The boundary layer hereby considered develops on a zero pressure
gradient (ZPG) flat plate. A series of streamwise-oriented DBD plasma actuators
with opposing actuation directions are utilised to produce the required streamwise
vortices on the wall surface (similarly to [6]). The assessment of the effect of the
stationary vortices on the surface convective heat transfer process is carried out by
means of infrared (IR) thermography over a Joule-heated printed circuit board (PCB).
This combination is used as a heat-flux sensor, located downstream with respect to
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the plasma-actuator array. Stereoscopic Particle Image Velocimetry (PIV) measure-
ments aim to capture the three-dimensional features of the introduced stationary
vortices and the interactions that lead to the observed patterns in the convective heat
transfer distribution.

2 Experimental Setup and Methodology

The experimental campaign was carried out in the anechoic vertical wind tunnel
(A-Tunnel) at Delft University of Technology. A turbulent boundary layer develops
on a smooth aluminum flat plate of 1 m length and 20 mm thickness, spanning
the entire width of the squared (50 × 50 cm) test section. The flat plate is installed
between two parallel, side-walls to ensure two-dimensional flow. Two main inserts
are flush-mounted into the flat plate, namely the plasma actuator and the heat-flux
sensor (see Fig. 1). A movable trailing-edge flap is used to modify the position of
the stagnation point. The boundary layer is tripped close to the leading edge with
zig-zag turbulators in combination with a strip of silicon carbide grit downstream.
The experiments are carried out for a single inflow velocity, U∞ = 11.8 m/s.

Fig. 1 Schematic of the experimental setup. a Front view; the measurement area of infrared ther-
mography is indicated ( ). b Side view; the field of views of the stereo-PIV measurements are
highlighted ( )
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The DBD-plasma actuator array is constructed as a repeated pattern of 6 dou-
ble actuators with a spanwise wavelength λ = 26 mm and streamwise length
L = 128 mm. The electrodes are manufactured by silver particle deposition on a
polymethacrylate plate of 3 mm thickness. The discharge is initiated by a continuous
sinusoidal signal at a frequency of 2 kHz and a peak-to-peak discharge voltage fixed
at 20 kV.

Stereo-PIV velocity-field measurements are performed in two regions of interest:
the plasma actuator and the heat-flux sensor. Seeding particles are produced using a
glycol-water solution with mean droplet diameter of 1 µm. Illumination is provided
by a dual cavity Nd:Yag Quantel Evergreen laser (200 mJ/pulse at 10 Hz). Two
LaVision Imager sCMOS CLHS cameras equipped with Nikkon NIKKOR 60mm
focal distance lenses are used. The cameras and the laser head are mounted on an
automated traverse system to scan 3D effects in the spanwise direction.

Infrared thermography is used to measure the convective heat flux at the wall. A
thermally-thin PCB is used as heated-thin-foil sensor. A constant heat-flux by Joule
effect q ′′

j is provided to the PCB by a stabilized power supply. The convective heat
transfer distribution is expressed in non-dimensional form in terms ofNusselt number
(Nu = hδp/kair) where kair is the air thermal conductivity, h is the convective heat-
transfer coefficient, and δp is the boundary layer thickness at the plasma onset xp . The
computation of h is performed through a steady-state energy balance, modeling the
PCB as a heated-thin-foil sensor [1]. The temperature measurements are performed
with a CEDIP-SC7300 Titanium IR camera (320× 256 pixel MCT sensor and Noise
Equivalent Temperature Difference (NETD) < 25 mK).

3 Plasma Actuation Effects on Flow Fields and Heat
Transfer

The 3D flow field is reconstructed in a region covering two opposing actuators.
Figure2 depicts the average streamwise velocityU on the y − z plane at x̂ = δp, 3δp,
and 5δp alongwith a superimposedvector plot of the correspondingV andW velocity
components (being x̂ = x − xp). On themost upstream location of actuation (x̂ = 0),
the fluid ejected laterally by the discharge is replenished by entertainment from above
the exposed electrodes. This generates a circulation leading to a vortical motion. At
x̂ = δp, the streamwise vortices are already developed and begin to depart from the
wall; their core is located at approximately y ≈ δp/10. The location of the vortex
core is identified by the roll-up in the vector field and by λ2 isolines. The counter-
rotating, streamwise vortices mutually interact at z/λ = 1 pushing the fluid away
from the wall while the suction effect on top of the exposed electrodes sustains
the entrainment towards the wall at z/λ = 1/2 and 3/2. The vortices are then
progressively displaced away from the wall and grow in size, an indication of vortex
strength reduction, in agreement with [6]. It must be noted, however, that the pair
of counter-rotating, streamwise vortices is confined for several outer scales in the
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(a) (b) (c)

(f)(e)(d)

Fig. 2 Evolution of plasma actuation in the y − z plane at x̂ = δp(a), 3δp(b),

5δp(c), 14δp(d), 16δp(e), 18δp(f). The contour depicts the streamwise velocity distribution
at each plane. The quiver represents the flow motion based on V and W velocity components.
Negative λ2 isolines ( ) illustrate the locations of vortical flow structures

space between two consecutive, opposing, exposed electrodes, i.e. 1/2 < z/λ < 3/2
according to Fig. 2, suggesting vortex persistence.

Moving further downstream, the effect of the plasma actuation is still persisting
(Fig. 2d–f). Note that the upstream edge of the heat-flux sensor is located at xPCB, i.e.
x̂ = 13δp. The induced structures are strong enough to divert the flow, affecting also
the outer region of the boundary layer. The pairs of counter-rotating vortices gener-
ated upstreamby the plasma actuation are less evident due to dissipation. The vortices
progressively expand in the spanwise direction and lose strength. Nonetheless, the
mutual interaction between the pair of vortices yields a significantwall-normal veloc-
ity that clearly persists and which is progressively expanded over a wider area in the
spanwise direction. The ejected fluid out of the wall is then replenished by fluid from
the outer region of the boundary layer.

The induced action of the vortices has evident effects on the convective heat trans-
fer distribution. The time-averagedNusselt numbermap is shown in Fig. 3, computed
from IR measurements over a region covering two pairs of opposing plasma actua-
tors to show its uniformity. The results are normalized with the Nusselt number at
reference flow conditions Nu0 (i.e. without plasma forcing). The plasma forcing is
composed of two main effects on the heat-transfer distribution: a uniform reduction
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Fig. 3 Nu/Nu0 contour
map for plasma actuated flow

over the whole region where the actuator array is deployed, and a localized, predom-
inant decrease at the location where the plasma plumes lift-off to promote out-of the
wall motion. Eventually, the plasma forcing provides a reduction of 9% in convective
heat transfer within the region covered by the heat-flux sensor, far downstream the
DBD-plasma actuator.

4 Conclusions

The usage of DBD plasma actuators for heat-transfer control in a well-developed
TBL has been studied experimentally. The plasma actuator array was designed to
induce pairs of counter-rotating, streamwise vortices. The results from stereo-PIV
confirm the formation of such vortices which are locally confined by the suction
effect promoted by the plasma discharge along the electrodes. The local confinement
prevents the vortices to expand in the spanwise direction, making them stationary
and hence persistent along the DBD actuator array. Downstream of the actuation,
the vortices reduce their intensity but a strong up-wash motion at the plasma-jet
impingement location (z/λ = 1) persists. At this spanwise location, a wide ribbon
of heat-transfer deficit is observed from IR thermography measurements. The local
velocity deficit at this location as a consequence of the flow blockage promotes the
reduction of Nusselt number even several δp downstream the actuation. An average
reduction of 9% in Nusselt number is achieved over a wide region of interest con-
firming the effectiveness of the plasma-induced large scales structures to control heat
transfer.
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Mean Parameters of Incompressible
Turbulent Boundary Layer with Zero
Pressure Gradient on the Wall of the
TsAGI T-128 Wind Tunnel at Very High
Reynolds Numbers

Anton Gorbushin, Svetlana Osipova, and Vladimir Zametaev

Abstract The mean parameters of an incompressible equilibrium turbulent bound-
ary layer (TBL) with zero pressure gradient (ZPG) were measured on the nozzle flat
wall and on the perforated wall of the TsAGI T-128 transonic wind tunnel in the
range Reθ = 5.3 × 104 − 3 × 105—velocity profiles, skin friction coefficient, and
shape factor. Novel data were obtained for TBL ZPG on perforated wall in the range
Reθ ≈ 8.2 × 104 − 3 × 105. This study supplements existing TBL ZPG data on the
smooth wall at very high Reynolds numbers and enrich them by presenting novel
results in the Reynolds number range Reθ = 2.35 × 105 − 2.9 × 105.

1 Introduction

Lively interest in studies of turbulent boundary layers (TBLs) on smooth surfaces at
high Reynolds numbers is driven by two main reasons:

• practical questions from large aircraft and ships designers;
• fundamental interest: what would happen to the TBL at Re → ∞?

However, the greatest interest has always attracted canonical case—
incompressible ZPG TBL. Most of the papers focused on this issue can be divided
into the three main groups:

• studies of TBL on the flat plate in wind or water tunnels;
• measurements of TBL on wind tunnel walls;
• atmospheric boundary layers researches.
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Smits et al. [1] and Marusic et al. [2] came to the conclusion: even though there
are a lot of available results on TBL canonical case, it’s quite important to continue
researches to identify all the time and length characteristic scales.One of the preferred
methods is to conduct experiments at facilities, which could provide thick turbulent
boundary layers.

Equally interesting is the turbulent boundary layer on perforated walls. Perforated
walls are used in the intakes of jet engines and in the test sections of transonic wind
tunnels. The parameters of the boundary layer on the perforated wall of the test
section of the wind tunnel are used for:

• setting the boundary condition in the problem of the influence of perforated walls
of test section on the aerodynamic characteristics of aircraft models;

• estimating the drag of the test section when designing new facilities;
• optimizing the position of moving elements of the test section of existing facilities
in order to improve the quality of the flow andminimize the drag of test section [3].

The goal of this study was to supplement existing TBL ZPG data at very high
Reynolds numbers and enrich them by presenting novel results in the Reynolds num-
ber range Reθ = 2.35 × 105 − 2.9 × 105 for smooth wall and Reθ ≈ 8.2 × 104 −
3 × 105 for the perforated wall.

2 Experimental Set-Up

The experiments were held in T-128 facility: continuous variable-density closed-
circuit transonic wind tunnel with a four-stage compressor and main drive with a
power of 100 MW. T-128 is equipped with 4 changeable test sections with unique
walls of variable permeability: perforated and slotted. The facility was described
more thoroughly in [3, 4].

TBL mean parameters were measured with two rakes of Pitot tubes: first was
mounted on a smooth wall at the nozzle outlet (Fig. 1a), second—at the end of the
test section #1 upper perforated wall (Fig. 1b). Pressures were measured using small-
sized pressure modules.

The research was carried out at low Mach numbers M = 0.2 − 0.4 in the range
Reθ = 5.6 × 104 − 3 × 105. Reynolds number of the flow was regulated by setting
total pressure values in the range Pt ≈ 100 − 380kPa. The streamwise turbulence
intensity on the axis of the test sectionwas estimated as 0.20% atM = 0.2 and 0.16%
at M = 0.3 & 0.4 (D.S. Sboev, private communication).

The geometry of nozzle side walls was adapted to minimize longitudinal pressure
gradient. It was dCp/dx = −0.006m−1 at −3m < x < 0, which corresponds to
the dimensionless local streamwise pressure gradient parameter [5] Kp = ν/U 2

e ×
dUeν/dx ≈ 7 × 10−10. The pressure coefficient across the nozzle at x = −0.157m
is in the range from −0.02 to 0.0046, which corresponds to the upper estimate of the
longitudinal velocity nonuniformity ±0.6%.



Mean Parameters of Incompressible Turbulent Boundary Layer … 31

(a) T-128 wind tunnel nozzle and rake in-
stalled on its upper wall

(b) Rake installed on the perforated upper wall of
test section

Fig. 1 Experimental set-up

3 Results

First, the Clauser equilibrium parameter was evaluated to determine whether the
boundary layer on the nozzle wall was in equilibrium G ≈ 6.5 − 7 (Fig. 2a). The
coincidence of the experimental data obtained in this study with the results of other
researchers (including [6–8]) allows to conclude that the boundary layer at the exit of
the T-128 wind tunnel nozzle is in equilibrium. Figure2a also shows that Clauser’s
equilibrium parameter is higher for TBL on the perforated wall (F = 6%) G ≈
7.5 − 9.

Comparison of non-dimensional velocity profiles obtained in T-128 with other
researchers’ data is displayed on Fig. 2b. For TBL on smooth wall in the nozzle
were achieved maximum Reynolds number Reθ = 2.88 × 105 and the record-high
von Kármán number δ+ ∼ 1 × 105. Logarithmic law was maintained up to y+ ≈
1.3 × 104. The results obtained show that even at the very large Re numbers, the
outer bound of the logarithmic region y/δ ≈ 0.15 is preserved. Collapse of the data
in the outer region confirms the self-similarity and equilibrium of the boundary layer.

(a) Clauser equilibrium parameter as a
function of

(b) Comparison of non-dimensional veloc-
ity profiles obtained in T-128 with other
researchers’ data

Fig. 2 Results
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(a) as a function of (b) as a function of

Fig. 3 Results

Stationary streamwise velocity profileUUe = e−y
∫ y
0 exp(η − e−η) dη [9] agrees

well with experimental data beginning with y/δ0.99 ≈ 0.6. This analytical solution
could be a useful complement to the existing wake velocity profile models.

Velocity profile on perforated wall of T-128 test section in its inner region appears
to go lower in the comparison with the other researchers’ data and looks similar to
Klebanoff [10] and Österlund [11] results on the smooth wall. However in the outer
region data obtained on perforated wall tends to agree with the data on smooth wall.

Skin friction coefficient was calculated using the Clauser chart method. Values of
constants in the classical logarithmic velocity profile were chosen as recommended
by [6]: k = 0.384 and B = 4.17. The same k and B were used for smooth and
perforated wall cases.

For smooth wall agreement of experimental data in the range Reθ = 7 × 104 −
3 × 105 does not exceed �c f = ±0.00006(±3.7%) (Fig. 3a). The empirical and
semi-empirical dependencies were described thoroughly in [4].

As for TBL on the perforated wall, local skin friction coefficient on perforated
wall is nearly 2 − 10% less than that on the smooth wall when permeability coef-
ficient is F = 6%. The result was predictable, since perforation is an intermediate
state between a smooth wall and a mixing layer. A further decrease in the friction
coefficient of the turbulent boundary layer on the perforated wall one may expect
with an increase of its permeability coefficient.

Data obtained on shape factor as a function of Reθ is shown in Fig. 3b. For TBL
on the smooth wall experimental data agreement at high Reynolds numbers does not
exceed �H = ±0.012(±1%). Experimental results begin noticeably flat at Reθ >

6 × 104.
As for TBL on perforated wall, its shape factor is higher than that on the smooth

wall: H ≈ 1.28 − 1.29.
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4 Conclusions

The results obtained in this study supplement the available data of TBL on smooth
wall and present novel data in the range Reθ ≈ 2.35 × 105 − 2.9 × 105 including
the data on perforated wall.

The dimensionless velocity profiles obtained in T-128 on smooth wall turned out
to be universal in the range Reθ ≈ 5.5 × 104 − 2.9 × 105.

The results of measurements of the boundary layer parameters on the smooth
wind tunnel wall presented in this study, as well as those obtained by Winter and
Gaudet [12], Fernholz et al. [8], Metzger and Klewicki [13], Castillo et al. [14], and
Nickels et al. [15] show good agreement with the data obtained on a flat plate by
Klebanoff [10], Österlund [11], Kornilov and Litvinenko [16], Vallikivi et al. [5],
Oweis et al. [7]. The test results showed the self-similarity of the velocity profiles in
the outer (wake) part of the turbulent boundary layer on smooth and perforated walls
at high Reynolds numbers.

An analysis of the experimental results presented in this study confirms the con-
clusion of [1, 2] that new experimental data including the direct measurement tech-
niques such as floating elements and oil film interferometry are required to refine the
asymptotic behaviour of the friction coefficient and the shape factor of the velocity
profile parameter as Re → ∞.
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Investigation of Self-Similarity
of the Temperature Stratified Turbulent
Boundary Layer Over the Wavy Surface
in Laboratory Conditions

D. A. Sergeev, Yu I. Troitskaya, A. A. Kandaurov, and M. I. Vdovin

Abstract This work is devoted to investigation of the self-similarity behavior of
the stably thermostratified air turbulent boundary layer above the wavy surface for a
wide range of wind speed and wave state parameters. Experiments were carried out
on the TSWiWaT facility with special system of wave damping using underwater
plastic net which allowed to adjust the wave parameters independently on the wind
speed. It was shown that the profiles of the velocity defect and the temperature defect
in the turbulent airflow boundary layer near water surface are self-similar. Besides,
for both velocity and temperature the form of self-similarity profiles did not depend
on parameters of surface roughness, but only depend on the wind speed.

1 Introduction

One of the central and the most important problem in case of applied tasks of marine
hydrometeorology and physical oceanography is investigation of exchange processes
(fluxes of momentum, heat and moisture) in atmosphere boundary layer. Field obser-
vation of a turbulent airflow over a wavy water surface are connected with many dif-
ficulties in measuring characteristics of the wind flow and waves under severe wind
conditionwhen steep and breakingwaves forming. The good alternative is laboratory
modelling of wind-wave interaction at the high-speed wind-wave facilities. In such
case, different methods can be applied for measuring fluxes in turbulent boundary
layer. In [1] the momentum and heat fluxes were obtained from direct eddy corre-
lation flux measurement and the by hot film (wire). But in the case of strong winds
and breaking waves spray of droplets fall on the heated film leading to significant
measurement errors. In laboratory experiment [2] at strong winds the surface stress
was determined from a momentum budget between selected sections of the tank.
In [3] the same idea (measurement of the temperature differences between selected
sections) was applied for measuring heat fluxes. However, this is not direct method,
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errors are still significant and the data is contrary to the field observations. In [4]
surface drag coefficient was directly obtained by so called profiling method on the
base of hypothesis of the self-similarity of the mean airflow velocity profiles in the
wind-wave flume. Using Pitot gauges less sensitive for falling droplets then hot films
(wires) allowed to obtain mean profiles for high winds. But in those experiments
the parameters of the waves in the experiment were determined by the wind forc-
ing. This fact narrowed the area of applicability of the self-similar hypothesis. This
work is devoted to the generalization of the theory of self-similarity for the case of
temperature profiles for a wide range of conditions (wind speeds and surface waves).

2 The Description of the Experimental Setup

The experiments were carried out at the Thermo stratified Wind-Wave Tank (TSWi-
WaT) of IAP RAS. The detailed description of this experimental facility, the princi-
ples of creating and controlling the parameters of airflow is given in [4]. The general
scheme of the experiments is shown in Fig. 1. The airflow velocity at the axis of the
wind tunnel is proportional to the fan frequency rotation F (see Fig. 2) and varied in
experiment from 8.8m/s to 19m/s, which corresponds to the equivalent wind speed
U10 on the standard height of 10meters from 10m/s to 35m/s. To perform the tem-
perature stratification of the turbulent boundary layer above the water surface, the air
entering the tunnel was heated to 30–40 ◦C (depending on the airflow speed). The
temperature on the water surface in all the experiments was maintained constant of
about 15 ◦C.

A special feature of this experiment was the ability to varying surface waves
independently on the wind speed in the flume. For this purpose, the plastic net
0.25mm thickwith a cell of 1.6× 1.6mmhas been stretched along the entire channel.
The net did not affect the heat exchange, but the characteristics of surface waves
varied depending on its depth: the waves were absent when the net was located at the
level of the undisturbed surface of the water, but at maximum depth (33 cm) it had
practically no effect on the parameters of the surface disturbances for all wind speeds
implemented on the facility. The wave parameters in the flume were measured by
wire gauges with sampling rate 100Hz.

The temperature and wind speed at the inlet of the flume were controlled with the
additional hot film gauge. Also, the temperature gauge was placed under water in the
working section to measure the temperature of the surface layer of water. Velocity
and temperature profiles in the working section of the flume (at a distance of 6.5m
from the entrance channel) were measured simultaneously with Pitot gauge and hot
film correspondingly, mounted on the vertical scanner. The L-shaped Pitot tube with
the differential pressure transducer Baratron MKS 226A provided the resolution
of velocity measurement 3cm/s. The resolution of temperature measurements was
0.1 ◦C. The scanning method with the consecutive height increment of 3–5 mm
and occurring time of 2min at each point was used. For each fixed wind speed and
net depth two profiles of velocity and temperature were measured for subsequent
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Fig. 1 General scheme of the experiment. (1) wind wave channel body, (2) wind wave bearings, (3)
convergent diffusion section with a honeycomb, (4) hot film anemometer at the entrance, (5) a net
along the channel installed on the different depths, (6) wave absorber, (7) Pitot tube on a scanning
system, (8) hot film anemometer on the same scanning system, (9) wire wave-gauge, (10) a gauge
for water temperature measurements. The sizes are in cm

(a) (b) (c)

Fig. 2 a Axis wind speed via rotation frequency, b measured velocity profiles, c measured tem-
perature profiles. Fan frequency: blue—20Hz, red 30Hz, black 35Hz, green 40Hz

averaging. The lower level of scanning was located at a distance of 1cm from the
crests of the waves and depended on the wind speed, while the upper layer was 38cm
(in 2cm below the upper lid of the wind tunnel). Measured profiles are shown on the
Fig. 2.

3 The Self-Similar Behavior of the Velocity
and Temperature Defect Profiles

The algorithm suggested in [4], which generalizes the model of the turbulent bound-
ary layer above the flat rigid surface [5], was used to investigate self-similar behavior
of the profiles. In this work for the first time the self-similar behavior of the velocity
defect profiles in the near-wall turbulent flows was studied, and following expression
was proposed:

Umax −U (z)

u∗
= F

(z
δ

)
, (1)
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where Umax is the maximum speed in a turbulent boundary layer, u∗ is the wind
friction velocity and δ is the boundary layer thickness. According to [5] for non-
gradient turbulent boundary layer at a flat rigid plate in the wind tunnel, the following
approximation of the self-similar velocity profile:

Umax −U (z) =
{
u∗

(
− 1

κ
ln(z/δ) + α

)
; z/δ < 0.15,

βu∗(1 − z/δ)2; z/δ > 0.15,
(2)

where κ = 0.4 is the Karman constant.
The constants α and β can be obtained from the best fitting of the experimental

data. The results of previous experiments [4] in the wind-wave facility showed that
the velocity profile in the airflow above the waved water surface is also self-similar,
and the velocity profile can be approximated by the expression (2). Determining the
constants α and β included the following data processing. The profiles of air velocity
defectmeasured at a certain frequency of rotation of the fan and set of the net positions
controlling waves, were expressed in terms of the self-similar coordinate y = z/δ
and normalized by the scale of velocity βu∗. Obtained dimensionless velocity defect
profiles are shown in Fig. 3 for a number of fan rotation frequencies. It can be seen that
the experimental points for a fixed speed and set of net positions (different surface
waves) collapse on certain curves, confirming the self-similarity of the profile of the
flow velocity defect in the flume above the water surface.

With this normalization the logarithmic part of the self-similar profile of the
velocity defect has the form:

Umax −U (z)

βu∗
= 1

β

(
− 1

κ
ln(y) + α

)
. (3)

(a) (b) (c)

Fig. 3 a Dimensionless velocity defect profiles for all wind speeds and net positions, colour of
symbols corresponds the same conditions as on Fig. 2, b dependence of the constant α on the fan
frequency rate, c) the same for β
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Taking into account (1)–(3), it is easy to determine the constants α and β from
the logarithmic best fitting of the experimental points. A certain difference between
the fitting curves near the water surface can be seen from Fig. 2.

The dependencies of the constants α and β on the fan speed are shown in Fig. 3. A
spread of the constants is statistically significant within the 95% confidence intervals
shown on the figure. And we see, that behavior of the α and β with increasing wind
speed (fan frequency) is close to each other.

Similar processing was carried out with the temperature profiles. Allows deter-
mining the Stanton number and temperature roughness from the temperature profiles
in the flume. We used in this case the self-similarity of the profile of the temperature
defect, which was defined similarly to the expression (1) for the velocity defect:

Tmax − T (z)

T∗
= G

( z

δT

)
, (4)

where

T∗ = 〈T ′w′〉
u∗

. (5)

For the approximationof the self-similar dependence for the profile of the temperature
defect the expression similar to (2) was used:

Tmax − T (z) =
{
T∗

(
− 1

κ
Prt ln(z/δT ) + αT

)
; z/δT < 0.15,

βT T∗(1 − z/δT )2; z/δT > 0.15,
(6)

For implementation the profiling method for measuring turbulent heat flux in
atmosphere boundary layer we need to set the turbulent Prandtl number Prt. Accord-
ing to [6] Prt was assumed to be 0.85. This valuewas also obtained by direct numerical
simulation of turbulent boundary layer above waved water surface. To determine the
constants αT and βT data similar processing was carried out as described above
for the velocity profile. The profiles of the temperature defect of the airflow were
expressed in terms of the self-similar coordinate y = z/δT and normalized by the
curvature of the temperature factor βT T∗. Obtained dimensionless profiles of the
temperature defect are shown in Fig. 4 for various fan rotation frequencies and net
positions.

The dependencies of the constants αT and βT on the fan frequency rate are shown
on Fig. 4, where no statistically significant spread in the constants within 95% con-
fidence intervals, with αT = 2.8, βT = 9.5. It differs from the case of a velocity
profiles, when the constants showed a significant dependence on wind speed.
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(a) (b) (c)

Fig. 4 a Dimensionless temperature defect profiles for all wind speeds and net positions, colour
of symbols corresponds the same conditions as on Fig. 2, b dependence of the constants αT on the
fan frequency rate, c the same for nd βT

4 Conclusion

A series of experiments to study the self-similarity of the temperature and velocity
profiles in a stably stratified temperature turbulent boundary layer over thewavywater
surface was carried out at the TSWiWaT IAP RAS. Simultaneous measurements of
the airflow velocity and temperature were obtained for a wide range of wind speed
and characteristics of the surface waves. It was shown that the profiles of the velocity
defect and the temperature defect of the turbulent airflow boundary layer near water
surface are self-similar. Besides, for both velocity and temperature the form of self-
similarity profiles, i.e. constants α, β, αT , βT did not depend on parameters of surface
roughness. These constants were obtained from the best fitting of the experimental
data. A significant dependence of α, β and the absence of a dependence of αT , βT

(within 95% confidence intervals) on the wind speed were demostrated.
Obtained results are useful for further applying method of retrieving parameters

of the wind flow including momentum and heat fluxes, drag and heat exchange
coefficients.

Acknowledgements This work was supported by the Russian Foundation of Basic Research
projects 21-55-52005, 20-05-00322 (carrying out experiments) and in its turn was supported by
the Russian Science Foundation project 19-17-00209 (data processing), A. Kandaurov and M.
Vdovin are personally grateful to the President grant for young scientists MK-5503.2021.1.5.

References

1. Y.-H.L.Hsu,Turbulent transfers in the atmospheric surface layer under varied stability conditions
- a laboratory study. Ph.D. dissertation. University of Delaware (1981)

2. M.A. Donelan, B.K. Haus, N. Reul, W.J. Plant, M. Stiasse, H.C. Graber, O.B. Brown, E.S.
Saltzman, On the limiting aerodynamic roughness in very strong winds. Geophys. Res. Lett. 31,
L18306 (2005)



Investigation of Self-Similarity of the Temperature Stratified … 41

3. D. Jeong, B.K. Haus, M.A. Donelan, Enthalpy transfer across the air-water interface in high
winds including spray. J. Atmos Sci. 69(9), 2733–2748 (2012)

4. Y.I. Troitskaya, D.A. Sergeev, A.A. Kandaurov, G.A. Baidakov, M.A. Vdovin, V.I. Kazakov,
Laboratory and theoreticalmodeling of air-seamomentum transfer under severewind conditions.
J. Geophys. Res. 117, C00J21 (2012)

5. J.O. Hinze, Turbulence: An Introduction to Its Mechanism and Theory (McGraw-Hill, New
York, 1959)

6. O.A. Druzhinin, Y.I. Troitskaya, S.S. Zilitinkevich, Stably stratified airflow over a waved water
surface. Part 1: Stationary turbulence regime. Q. J. R. Meteorol. Soc. 142, 759–772 (2016)



On Similarity of Turbulence Statistics
of a Turbulent Planar Jet Taking
the Static Pressure into Account

Tatsuya Ito, Takuya Ito, P. Henrik Alfredsson, Antonio Segalini,
and Masaharu Matsubara

Abstract The pressure gradient in a jet is usually regarded as negligibly small when
deriving the streamwise velocity profile from the momentum equations. In addition
one assumes that the bulk streamwise momentum is conserved in the streamwise
direction. On the other hand, it is known that the pressure distribution in the jet
is well balanced with the square of the lateral velocity fluctuation, indicating that
pressure is not negligible in the lateral momentum equation. The purpose of this
study is to determine the importance of the pressure in the jet by evaluating balances
in the streamwise and lateral momentum equations from experimental data measured
by a static pressure tube and an X-probe. The turbulence fluctuations and the static
pressure indicate similarities in their lateral distributions and are well balanced in
the streamwise and lateral momentum equations. Although the contribution of the
static pressure to the streamwise momentum is small, it is of the same order as that
of the turbulent statistics in the lateral momentum equation.
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1 Introduction

For a planar turbulent jet, Townsend [4] derived similarity solutions for the mean
streamwise and lateral velocity distributions by introducing an eddy viscosity. Since
then, many experiments have supported Townsend’s theory, and the planar turbulent
jet, as well as that of a round jet, is considered to be a successful application of the
eddy viscosity hypothesis. The fact that a similarity velocity distribution is consistent
with experiments indicates not only that the eddy viscosity approximation in the
streamwise momentum equation is appropriate, but also that the turbulence statistics
also follow the similarity law, which has been experimentally examined and verified.
Miller and Comings [3] derived the streamwise and lateral momentum equations for
the planar jet and showed that the lateral distribution of the mean pressure is in good
agreement with that of the square of the lateral velocity fluctuations. Because of
their limited measurement range, the similarity was not fully clarified. Bradbury [1]
found similarity of the pressure distributions, suggesting that they are well balanced
in the lateral mean momentum equation. The purpose of this study is to determine
the importance of the pressure in the jet by studying the balances in the streamwise
and lateral momentum equations using experimental data.

2 Experimental Setup

The experimental apparatus was the same as that of Matsubara et al. [2], where
a two-dimensional jet issued into a soundproof chamber from a fully developed
turbulent channel flow. The channel width is 10mm, its length is 1000mm and
its spanwise width 300mm. The coordinate system is defined such that x is the
streamwise direction, and y is the position in the lateral flow direction, with the origin
at the centre of the channel exit. The time averaged and fluctuation components of
the streamwise velocity are U and u, those of the lateral velocity are V and v, and
the mean pressure is given as P . The centre velocity U0 at the outlet is 24m/s, and
the Reynolds number based on U0 and the duct width d is around 15000.

A hot-wire X-probe was used for the measurements of the streamwise and lateral
velocity components. The hot-wire sensors of 1mm length and 2.5 μm diameter are
spaced 1mm apart with 90◦ intersection angle. Calibrations for the flow velocity and
angle are carried out in a 2–25m/s velocity range and a ±36◦ angle range.

The mean pressure distribution was measured using a pitot-static pressure tube
and a high-precision differential pressure gauge with a ±100 Pa range. The pitot
tube has a diameter of 3mm and a static pressure measurement hole on the side
18mm downstream from the tip. The reference static pressure is measured inside
the soundproof chamber far away from the jet. The traversing device that moves the
pitot tube in the x and y directions is computer controlled and the same computer
also samples the signal from the differential pressure gauge.



On Similarity of Turbulence Statistics of a Turbulent Planar … 45

3 Results

The jet width δ is defined as δ = 1
Uc

∫ ∞
0 Udy where Uc is the velocity at the jet

centre. For the integration, the lateral distributions of U are fitted to a polynomial.
The jet width δ andU−2

c from the curve fitting are shown in Fig. 1. For x > 0.150 m,
both values vary linearly with x . This linearity and the good agreement of the U
distribution with a sech2(y/δ) distribution, are consistent with Townsend’s theory.
The straight lines intercept the x axis at 0.0306m and 0.0320m, respectively and the
slope, β = dδ/dx , is 0.135.

Figure2 shows the y-distributions of the turbulence statistics scaled with δ and
Uc, where, η = y/δ. Not only the mean velocity components U and V , but also the
turbulence statistics of the velocity fluctuations and the pressure P show similarity for
the lateral distributions for x ≥ 0.220 m. The similarity in the turbulence statistics of
the fluctuating velocity indicates that the turbulence statistic equations are in balance
with the chosen length and velocity scales. In addition, the similarity is maintained
even though the local Reynolds number Relocal = Ucδ/ν increases downstream. This
suggests that the effect of viscosity on the jet development is negligible. To investigate
the balance of turbulence statistics, the Reynolds decomposition is introduced into
the two-dimensional Navier-Stokes equations. After averaging for the mean and
Reynolds stresses, the following conservative form of the equations is obtained:
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Fig. 1 Streamwise variations of jet properties as function of downstream distance x . a Jet width δ
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c ,bVarious contributions to the streamwisemomentumequation: the streamwisemomentum

Mx , the longitudinal Reynolds stress mx and pressure contributions
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respectively, whereas the solid black lines are fitted using (5)a, c, d, f and (6)b, e

∂U 2

∂x
+ ∂UV

∂y
= − 1

ρ

∂P

∂x
− ∂u2

∂x
− ∂uv

∂y
(1)

∂UV

∂x
+ ∂V 2

∂y
= − 1

ρ

∂P

∂y
− ∂uv

∂x
− ∂v2

∂y
, (2)

where ρ is the density of the fluid and the overline denotes the time average. By
integrating (1) and (2) with respect to y from −∞ to ym , where ym denotes the
measurement y position, the following equations are obtained

U (ym)V (ym) = −
ym∫

−∞

∂U 2

∂x
dy − 1

ρ

ym∫

−∞

∂P

∂x
dy −

ym∫

−∞

∂u2

∂x
dy − uv(ym) (3)

− P(ym)

ρ
=

ym∫

−∞

∂UV

∂x
dy + V 2(ym) + v2(ym) +

ym∫

−∞

∂uv

∂x
dy + const. (4)

Miller and Comings [3] derived these equations and attempted a comparison
for each term. Since spatial differentiation and integration are required for evaluat-
ing each of these terms, the similarity distributions of the dimensionless turbulence
statistics are expressed by the following functions with fitted constants σ and ai ,
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Fig. 3 Comparisons among the terms in 1–4

fs = e−ση2 (
a6η

6 + a4η
4 + a2η

2 + a0
)

(5)

fa = e−ση2 (
a7η

7 + a5η
5 + a3η

3 + a1η
)
, (6)

fs is applied to the symmetric similarity distributions, and fa is for the antisymmetric
similarity distributions. The fitted functions shown as solid lines in Fig. 2 are good
approximations to the data within the similarity region.

The distribution of each term in (1)–(4) obtained by numerical differentiation and
integration is shown in Fig. 3. As seen in Fig. 3a, the leading term in (1) is ∂U 2

∂x and it
well balances with the total of the other terms. Figure3b also shows a good balance

of the terms in (2) with the leading terms 1
ρ

∂P
∂y and ∂v2

∂y . The other terms of (2) only
marginally influence the balance.

Figure3c shows the terms of (3). The measured UV and the total (all terms) of
the right-hand side of (3) are in good agreement around the jet centre, although the
peak of the total is slightly shifted outside. This indicates that the conservation law
of the streamwise momentum is well kept in the measurement results around the
jet centre. The dominant terms are the mean velocity terms and uv, demonstrating
that the average velocity distribution is well-predicted even if the terms including
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P and u2 are ignored as done by Townsend. Although the pressure term is small, it
is still about 10% of the total, and is not negligible when considering the balance
of turbulence statistics. It is also expected that the pressure affects the streamwise
momentum conservation in the jet.

The measured dimensionless static pressure is compared with the total of the
right-hand side of (4) in Fig. 3d. The shapes of the distributions are similar though
the distribution of P is wider and the value at the centre is slightly higher than the
total. The distribution of the total is close to the distribution of v2 since the other three
terms are small and also that the distribution of V 2 is similar but with opposite sign
to the other two terms thereby decreasing the overall contribution of these terms.

By substituting ∞ for ym in (4) and integrating in x , the following conservation
equation is obtained

ρ

∞∫

−∞
U 2dy + ρ

∞∫

−∞
u2dy +

∞∫

−∞
Pdy = const. (7)

The first term on the left-hand side represents the streamwise momentum, so it
is denoted as Mx . The second term, denoted as mx , is not momentum, but the lon-
gitudinal Reynolds stress acting on the cross section perpendicular to the x-axis.
The last term is the contribution of pressure to the momentum balance. Figure1b
shows the streamwise changes of these terms. The momentum Mx increases down-
stream, and reaches a constant for x > 0.25 m. Though the magnitude ofmx is about
10% of Mx , its change is about the same order as that of Mx . mx at first increases
downstream, but slightly decreases downstream of x = 0.30 m. The pressure inte-
gration rapidly changes around x = 0.12 m and becomes constant for x > 0.25 m.
The rapidmomentum increase downstream of the duct exit is about three times larger
than the pressure decrease, so this increase cannot be explained by the pressure gra-
dient alone. In the similarity region (x > 0.25 m) the integration of the pressure is
constant because the pressure is proportional to the inverse of x whereas the lateral
scale δ is proportional to x these variation cancel each other. However, the favorable
pressure gradient before the similarity region contributes to the momentum increase.

4 Summary

The turbulence statistics and the static pressure indicate similarities in their lateral
distributions and are well balanced in the streamwise and lateral momentum equa-
tions. Although the contribution of the static pressure to the streamwise momentum
is small, it is of the same order as the turbulent fluctuations in the lateral momen-
tum equation. It is clear that the static pressure distribution cannot be ignored when
considering the balance of the turbulence statistics.
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Mean Velocity Profiles
over Streamwise-Aligned Permeable
Ridges

Yuki Okazaki, Yumeto Takase, Yusuke Kuwata, and Kazuhiko Suga

Abstract To understand the effects of permeable roughness on logarithmic velocity
profiles, discussions of the PIV measurement data of turbulent channel flows over
rib-roughened porous media are carried out. By fitting the measured mean veloc-
ity profiles to the logarithmic law, parameters: the zero-plane displacement d, the
equivalent roughness scale h and the von Kármán constant κ are obtained. It is found
that the parameters normalized by the mean pore diameter d/Dp, h/Dp become
almost constant regardless of the roughness geometry and the permeability. More-
over the zero-plane displacement has a linear relationship with the roughness scale
as d/h � 2.5. The von Kármán constant κ for permeable roughness case is smaller
than that for impermeable case. The equivalent sand grain roughness height k+

s has
an almost linear relationship with h+ as k+

s = 8h+. This implies that the von Kármán
constant for the present cases is κ � 0.25. Although it was reported that h+ for flat
porous wall cases correlated to the permeability Reynolds number ReK regardless
of the wall permeability, that for permeable roughness cases does not show the same
tendency.

1 Introduction

Since porous media have large specific surface areas, they are used in many indus-
trial devices such as heat exchangers. In such devices, flows over porous media often
become typically turbulent. Hence it is important for engineers to understand the tur-
bulent flows over porous media. Accordingly, many studies [2–5, 7] were performed
for turbulent flows over porous media. Those studies reported that turbulence over
porous media became stronger as the wall permeability increased. Moreover, the
parameters of the logarithmic mean velocity profiles correlated to the wall perme-
ability.
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However, the surface structure of the porous media is not always flat but it is
often uneven. For example, the river beds and the vegetation canopies, which are
considered as porous media, have surface irregularity. For industrial devices, porous
media often have structural roughness for higher performance. In such a situation,
turbulent flows are affected by the combined effect of the surface roughness and
permeability. Accordingly, such combined effects on turbulence should be discussed.

Raupach et al. [8], Jiménez [9] andFlack andSchultz [10] summarized a number of
experimental and numerical investigations for rough wall turbulent boundary layers.
By those studies, it is known that the roughness function�U+,which is the downward
shift of the logarithmic velocity profile, have a good correlation to the equivalent sand
grain roughness height ks . Although surface roughness geometry is not limited to
two-dimensional, the basic two-dimensional roughness geometries are classified by
the ratio of the roughness intervals w to roughness height k into two types: d-type
roughness forw/k < 3 − 4 and k-type roughness forw/k > 3 − 4. These two types
of roughness show different tendency of the roughness function.

Although many studies focused on the effects of roughness and permeability on
turbulence separately, combined effects of permeability and roughness had never
been systematically discussed, to the best of the authors’ knowledge. Hence we per-
formed PIV measurements for turbulent flows over porous media with k-type rough-
ness,w/k = 9 [1]. It was confirmed that the recirculation behind the rib becameweak
due to the flow through the rib. Accordingly, turbulence over k-type permeable rough-
ness became weak as the permeability increased. In this study, to further understand
the effects of the permeability on d-type rough-walled turbulence, PIV measure-
ments for turbulent channel flows over rib-roughened porous media of w/k = 1 are
conducted.

2 Experimental Setup

PIV measurements are performed for turbulent channel flows over permeable rough
walls. As shown in Fig. 1a, porous media are filled in the bottom half of the flow
facility so that the clear channel height is H = 30mm. Since the width of the test
section is 300mm(10H ), the aspect ratio of the test section is 1:10. Measurements
are performed at the symmetry plane of the channel where the two-dimensionality is
confirmed in our previous study [3]. Square porous ribs, whose height k is 10% of the
channel height H , are mounted on the porous surface with constant spacing w = k
as illustrated in Fig. 1b. Three kinds of porous media: #30, #20 and #13 are used in
this study. Their porosities are almost the same as ϕ = 0.8 but their permeabilities
are different K = 0.004, 0.020 and 0.033mm2, respectively, for #30, #20 and #13.
Their mean pore diameters Dp are about 30%, 60% and 90% of the rib height.
The impermeable case (case solid) is also measured for comparison. The measured
Reynolds numbers are listed in Table 1.
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Fig. 1 Flow facility: a schematic view of the test section, b side view of the test section

Table 1 Turbulence conditions: Reb, Reτ = uτδ
ν

and ReK are the bulk Reynolds number, the
friction Reynolds number and the permeability Reynolds number; κ , d , h and ks are the best fitted
values of the von Kármán constant, the zero-plane displacement, the roughness scale, the equivalent
sand grain roughness, respectively

Case Reb Reτ ReK k+ κ d+ h+ k+
s

Solid 5000 220 0 42 0.38 0 0.64 –

10200 430 0 79 0.40 0 0.8 –

15300 620 0 113 0.38 0 1.2 –

19700 790 0 143 0.40 0 1.05 –

#30 4600 240 1.0 50 0.32 15 2.45 38

9900 540 2.3 107 0.31 32 6.2 88

15300 860 3.4 164 0.29 49 13 155

19000 1080 4.4 208 0.29 62.5 16.2 197

#20 4800 380 3.0 64 0.31 36 13 185

9900 780 6.0 128 0.31 73 28.5 390

14900 1170 8.9 189 0.31 107 41 584

19100 1670 12.3 262 0.31 150 68 969

#13 4900 410 4.0 67 0.27 60 25.8 249

10000 830 8.0 133 0.26 125 56 524

15200 1320 12.4 205 0.27 200 90 895

19600 1780 16.5 272 0.28 260 120 1272

3 Results

Figure2a shows the mean velocity profiles at Reb � 15000 in a semi-log chart. Here,
the superscript ‘+’ denotes a normalized value based on the friction velocity uτ at the
rib-top position. As described inBreugem et al. [7] and Suga et al. [2], the logarithmic
velocity profiles are fitted to the log-law form of Best [6]:
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+ +

Fig. 2 Logarithmic velocity profiles and log-law parameters: a mean velocity profiles with fit-
ting lines of (1), b, c equivalent roughness height and zero-plane displacement against the bulk
Reynolds number with flat porous wall cases [2, 4] and permeable roughness cases of w/k = 9 [1],
respectively, d correlation between the zero-plane displacement and the equivalent roughness scale

u+ = 1

κ
ln

y + d

h
, (1)

where the parameters κ, d, h are the von Kármán constant, the zero-plane displace-
ment from the rib-top and the roughness scale, respectively. It is observed that the
logarithmic distributions shift downward as the permeability increases and the down-
ward shift almost saturates at case #20. In addition, the logarithmic slopes of perme-
able roughness cases are steeper than that of the impermeable case. This corresponds
to that κ becomes smaller for the permeable cases although the κ ≈ 0.4 for the imper-
meable case. The same tendency was confirmed in the results for flat porous walled
turbulence [2, 4]. Figure2b, c shows d and h normalized by the mean pore diameter
Dp against the bulk Reynolds number. Each parameter is almost constant regardless
of Reτ . The constants: h/Dp and d/Dp for the flat porous wall cases and permeable
roughness cases of w/k = 1 are almost the same regardless of the wall permeability
as h/Dp � 0.35, d/Dp � 1, This general tendency suggests that these parameters
are independent of the Reynolds number and are determined by the surface geom-
etry. Figure2d shows the correlation between d+ and h+ together with the data of
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the k-type (w/k=9[1]) and flat [4] porous surfaces. It is found that similar linear rela-
tionships are seen regardless of the roughness geometry. All shown cases collapse
to d+ � 2.5h+.

For themean velocity over impermeable roughness, the roughness function�U+,
which relates to the pressure loss, correlates with the equivalent sand grain roughness
height k+

s in the fully rough regime:

�U+ = κ−1 ln k+
s − 3.5. (2)

with �U+, the log-law form:

u+ = κ−1 ln ŷ+ + 5.0 − �U+ (3)

is usually applied for rough-wall turbulence. Here, ŷ is the wall normal distance from
an appropriate origin. With (2) and (3), κ−1 ln k+

s = κ−1 ln h+ − 8.5. This relation-
ship rewritten as:

k+
s = h+e8.5κ . (4)

Figure3 shows k+
s for the permeable roughness cases against the equivalent rough-

ness h+. The distributions of k+
s for permeable roughness cases seem to be almost

collapsed to k+
s � 8h+ regardless of the roughness geometry and permeability. With

(4), this suggests that κ � 0.25 in the permeable roughness wall turbulence and
that k+

s can be predicted by h. For the flat porous surfaces [4, 5] discussed that
the parameters, d and h had linear relationships to the permeability Reynolds num-
ber ReK = uτ

√
K/ν. The same tendency can be seen for the cases with permeable

roughness while the proportional coefficient changes depending on the permeability
and the roughness geometry. Although the above findings are very suggestive, further
discussions to characterize the roughness scale are required to find a universal law
of the mean velocity over permeable rough walls.

+s +

Fig. 3 a Correlation of equivalent sand roughness with equivalent roughness scale, b equivalent
sand roughness against permeability Reynolds number
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4 Concluding Remarks

To understand the effects of permeable roughness on logarithmic velocity profiles,
PIV measurements of turbulent channel flows over rib-roughened porous media are
carried out. The presently measured roughness geometry is the so-called d-type
roughness whose rib interval w to the rib height h is w/k = 1. After fitting the mean
velocity profiles to the logarithmic law, parameters: the zero-plane displacement d,
the equivalent roughness scale h and the von Kármán constant κ are obtained. By
the discussion of these log-law parameters obtained by the present study and our
previous study of k-type roughness: w/k = 9, the following remarks are concluded.

(1) The parameters normalized by the mean pore diameters d/Dp, h/Dp become
constant regardless of the roughness geometry and the permeability. Moreover d+
and h+ have a linear relationship with d/h � 2.5.

(2) The equivalent sand grain roughness height and the roughness scale show a
linear relation: k+

s = 8h+. This leads to the von Kármán constant of κ � 0.25.
(3) Although h+ correlates to the permeability Reynolds number ReK , the pro-

portional coefficient changes with the permeability and roughness geometry.
Further discussions to characterize the roughness scale are required to find a uni-

versal law of the mean velocity over permeable rough walls.
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Energy Dissipation and Total Entropy
Production in SHREK Experiment

Swapnil Kharche, André Fuchs, Michel Bon-Mardion, Jean-Paul Moro,
Bernard Rousset, Christophe Baudet, Joachim Peinke, and Alain Girard

Abstract The Superfluid High REynolds von Kármán experiment (SHREK) has
been designed to study the fundamental characteristics of turbulence at very high
Reynolds number flows using a medium of normal helium (HeI) or superfluid
helium (HeII). The velocity fluctuations were measured by the technique of hot-wire
anemometry in classical liquid helium at T = 2.2K and P = 3bar. The dimensionless
dissipated power per unit mass estimated from the hot-wire measurements has found
to reach an asymptotic value with respect to Reynolds number for each of the con-
figuration of von Kármán flow. The turbulence cascade is one of the non-equilibrium
thermodynamic process, which can be expressed by solving the Fokker-Planck equa-
tion (FPE) using the experimental hot-wire data. Using the solution of FPE in terms
of drift and diffusion coefficient, the total entropy change �Stot is estimated from
the system entropy change �Ssys and the medium entropy change �Smed for each of
the turbulence cascade trajectory starting from integral length scale L down to Taylor
microscale λ. The validity of the integral fluctuation theorem is proved. Experimen-
tally, the validity of the increase of entropy principle is addressed for the SHREK
experimental data with respect to Reλ up to O(104).

1 Introduction

The fundamental understanding of the complexity of turbulence is becoming clearer
with the advancement of numerical simulations and the extent of experimental obser-
vations. As of today, our laboratory scale turbulence experiments are limited in size
which makes it difficult to reach very high Reynolds number flows. The well known
turbulence theories such as K41 [1] and K62 [2] are based on the assumption of very
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Table 1 Details of the configurations of VK flow: f1 & f2 is the frequency of top and bottom
propeller/turbine respectively in Hz [For example: for data set D, − f1 is the frequency of top
turbine whereas f2 = 1.2 f1 is the frequency of bottom turbine; for data set A and G, f1 = f2]

Data set Flow Type f1 & f2 Min Reλ Max Reλ Max λ(mm) Min λ(mm)

A Co-Rotation + f1 + f2 720 3690 1.04 0.45

B Contra − 0 + f2 2340 6180 0.65 0.25

C Contra − f1 + 3 f1 3360 7820 0.50 0.35

D Contra − f1 + 1.2 f1 3360 9460 0.89 0.41

E Contra − f1 + 1.5 f1 1380 9260 1.6 0.40

F Anti-Contra + f1 − 0 1390 8450 1.4 0.32

G Anti-Contra + f1 − f2 5510 13600 0.61 0.31

high Reynolds number flows. To address the validity of such theories, it is necessary
to study very high Reynolds number turbulent flows on the laboratory scale. For this
reason, we have constructed a von Kármán (VK) flow facility which can be operated
using liquid helium (HeI) or superfluid (HeII). Very low kinematic viscosity (ν) of
helium at low temperature allows to generate very high Reynolds number flows. It
has been argued that the dimensionless dissipated power per unit mass reaches a con-
stant value for sufficiently high Reynolds number flows [3, 4]. The first aim of the
present work is to address the validity of that statement up to the Reynolds number
of O(107). In addition, the approach of Fokker-Planck equation (FPE) has been used
to describe the turbulence cascade using the SHREK experimental data. Using the
estimated drift and diffusion coefficients of the FPE, the change in the total entropy
of production is calculated for each of the cascade trajectory [5]. The second aim of
this work is to show the dependence of the mean of total entropy change with respect
to very high Reynolds number flows. This paper is organized as follows. Firstly, the
basis of experimental data sets is explained. Secondly, the results are presented with
the discussion. Finally, the conclusions are made based on our experimental findings.

2 Experimental Data Sets

The experimental data used in the present analysis belongs to the Superfluid High
REynolds vonKármán experiment with a working fluid of classical liquid helium at
T=2.2K and P=3bar. Detailed explanation of the experimental set-up, its dimensions
and its operation are described in B. Rousset et al. [6]. The velocity fluctuations in
the VK flow are measured using the well known technique of hot-wire anemom-
etry. A home-made hot-wire made of Platinum-Rhodium Wollaston wire is used.
The hot-wire of length 300µm and diameter 1.27µm is installed slightly above the
equatorial plane in order to avoid the shear layer effects. The experimental data sets
are categorized based on the flow configuration as shown in Table1.
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Using this facility, different types of VK flows can be generated such as co-
rotation, contra and anti-contra flow configuration. For more details of the experi-
mental data and the convention of rotation of turbines, one is referred to Kharche et
al. [7].

3 Results and Discussion

The energy injected in the flow transfers from large to small scales in the inertial
range. Eventually, this transferred energy dissipates into heat at the smallest scales
within the dissipation range. It follows that in the steady state the injected, transferred
and the dissipated power are equal. The energy transfer rate ε

(
m2

s3 or W
kg

)
is estimated

from the third order structure function (S3) using the relation ε = − 5
4
S3
r ,where r (m) is

the spatial scale [7]. This gives ε = 2.6W/kg for the data set Gwith f1 = f2 = 0.6Hz.
In the VK flow, the energy is dissipated in the control volume between the top and
bottom turbine. The volume of the VK cell in the SHREK experiment contributes
to about VHe = 0.31m3 which contains around MHe = 47kg of liquid helium at T
= 2.2K and at an absolute P = 3 bar. Assuming homogeneous dissipation rate in the
VK cell, ε = 2.6W/kg corresponds to the dissipated power Pd=122W.

In an ideal case, the injected power (Pi ) must be equal to the dissipated power in
order tomaintain the steady temperature inside theVK cell (T=2.2K±0.1mK). In the
VK cell, Pi = 2π f1C1 + 2π f2C2, where C1 and C2 are the measured torques (N-m)
on the top and bottom propellers respectively [6]. For the above example of data set
G with f1 = f2 = 0.6Hz the measured injected power adds up to Pi =108W. This
value is close to the estimated dissipated power which shows the consistency of Pi
and Pd within the same order of magnitude (for data set G with f1 = f2 = 0.45Hz,
Pd=44W and Pi = 51W ). Pd and Pi are also found to be in good agreement with
the cooling capacity of the refrigerator used in the SHREK facility.

In order to discuss the dimensionless dissipated power per unit mass, following
nomenclature is used. R is the radius of the VK cell and H is the height of the
turbulent flow region between two turbines. The angular velocity� = 2π( f1+ f2)

2 . The

Reynolds number Re = π( f1+ f2)R2

ν
. The rotation number θ = ( f1− f2)

( f1+ f2)
. And finally,

the dimensionless dissipated power per unit mass is then given by, P = εMHe
ρR4�3πH ,

where ρ is the density of HeI. Figure1 shows P with respect to Re for different
VK flow configurations for which θ varies from -1 to 1. From this figure, we can
see that P reaches a fixed asymptotic value based on the flow configuration, which
shows that, we have attained a regime where P is independent of the Re. Based on
the relatively higher shear and rotation rate induced by the turbine frequency from
θ = 0 to θ = ±1, P increases from the co-rotation to contra and maximum for the
anti-contra VK flow configuration as shown in Fig. 1.

To estimate the change in total production of entropy (�Stot ) during each of
the turbulence cascade process the approach of FPE has been used. The FPE for
the evolution of velocity increment ur = u(x + r) − u(x) with respect to scale r in
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Fig. 1 Dimensionless
dissipated power per unit
mass as a function of Re for
the data sets A to G. The
minimum and maximum
Taylor microscale

λ =
√

15νu2rms
ε

and

Reλ = urmsλ
ν

are also
mentioned in Table1, where
urms is the root mean square
velocity of the fluctuating
velocity component

terms of the conditional probability density function (CPDF) of ur is written as [5]

− ∂

∂r
p(ur |ur ′) = − ∂

∂ur
[D(1)(ur )p(ur |ur ′)] + ∂2

∂u2r
[D(2)(ur )p(ur |ur ′)] (1)

where r < r ′ and p(ur |ur ′) is the CPDF of ur conditioned on ur ′ . D(1) is the drift
and D(2) is the diffusion coefficient which are estimated for each of the experimental
data sets mentioned in Table1 [8]. For each independent turbulent cascade trajectory
from L down to λ, �Stot can be calculated using the drift and diffusion coefficients
from the Fokker-Planck equation. �Stot can be expressed as the sum of the medium
entropy change �Smed and the system entropy change �Ssys which is estimated
using the following relations [9].

�Stot = �Smed + �Ssys (2)

�Smed =
∫ λ

L
∂r ur

D(1)(ur , r) − ∂u D(2)(ur , r)

D(2)(ur , r)
dr (3)

�Ssys = − ln
p(uλ, λ)

p(uL , L)
(4)

where �Smed takes into account the evolution of the trajectory of velocity increment
from scale L down to λ. And �Ssys allows measurement of the change in entropy
based on the initial and final states of the system, p(uL , L) is the probability of veloc-
ity increment uL on scale L and p(uλ, λ) is the probability of velocity increment
uλ on scale λ. The second law of thermodynamics states that 〈�Stot 〉 ≥ 0, where
〈·〉 denotes the mean value. Figure2 shows the PDF of �Stot , �Smed and �Ssys
for data set E. This figure shows the presence of fewer entropy consuming trajec-
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Fig. 2 Probability density
function of �Stot , �Smed
and �Ssys for the data set E

Fig. 3 Evolution of
〈e−�Stot 〉N for two different
flow configurations with
respect to N

tories (�Stot < 0) as compared to larger number of entropy producing trajectories
(�Stot > 0), which results into 〈�Stot 〉 = 0.67 satisfying the second law of thermo-
dynamics. The corollary of the second law of non-equilibrium thermodynamics is
the integral fluctuation theorem (IFT) expressed by 〈e−�Stot 〉 = 1 [10]. Following the
FPE analysis, it is found that the IFT is satisfied for the SHREK experimental data
quite accurately as shown in Fig. 3. Besides 〈�Stot 〉 > 0, a direct consequence of the
IFT is the adequate presence of entropy consuming trajectories.

Furthermore, the dependence of 〈�Stot 〉 is addressed with respect to Reλ for all
the data sets as shown in Fig. 4. This figure indicates that the increase in Reλ lead to
the build up of disorderliness, irreversibilities and randomness within the turbulence
cascade. It also shows the increase in the degrees of freedom with respect to the
increase in Reλ. Therefore, Fig. 4 experimentally suggests the increase of entropy
principle subjected to the increase in Reλ in a turbulent flow.
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Fig. 4 The mean of the
change in total entropy of
production (〈�Stot 〉) as a
function of Reλ for the data
sets A to G as mentioned in
Table1

4 Conclusion

The local hot-wire measurements were carried out in the SHREK facility at T =
2.2K in order to study the turbulent flows at Reλ up to O(104). The dimensionless
dissipated power per unit mass shows a different but constant asymptotic value with
respect to increase in global Re for each of the configurations of the VK flow. The
FPE has been solved using the experimental data which led to the estimation of
total entropy change of production. It has been found that the IFT is valid for the
SHREK experiment with a positive mean total entropy of production satisfying the
second law of non-equilibrium thermodynamics. Experimentally, the increase of
entropy principle has been investigated for the VK turbulent flows, which indicates
the increase in disorderliness, irreversibilities and randomness which are linked to
the increase in number of degrees of freedom within the turbulence energy cascade
with respect to increasing Reλ.
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The Filtering Approach as a Tool
for Modeling and Analyzing Turbulence
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Fernando F. Grinstein, M. Klein, Francesco Larocca, Juan A. Saenz,
and Guglielmo Scovazzi

Abstract The Filtering Approach (FA) is a simple multiscale method of analysis, it
extends the statistical formalism to a generic filtering operator and main ingredients
are the Generalized Central Moments (GCM) homomorphic to the Statistical Central
Moments (SCM). In the past this technique was intensively used to model turbulent
flows in the context of the Large Eddy Simulation (LES) and at present is more and
more applied to analyze turbulence and extract statistical data from under-resolved
databases. In this paper we will briefly summarize the main multiscale characters of
the FA, the well known identity relating GCM of the second order at different levels
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is discussed in detail, and a new identity relating GCM of the third order at different
levels is presented. Finally some recent developments are illustrated. The structure
of the subfilter stresses and the decomposition of the Reynolds stresses is examined,
hybrid LES modeling procedures are applied and metrics that measure the statistical
homogeneity of a turbulent flow are proposed.

1 Introduction

The Navier-Stokes equations, that describe mathematically the motion of a fluid,
become chaotic for a sufficiently high Reynolds number characteristic of the par-
ticular flow. As such a numerical solution, however much resolved and extended in
space and time, is everything and nothing at the same time. As remarked by [1], this
trajectory is apparently uncorrelated to the true solution of a flowfield if it is allowed
to evolve over a long time, and hence is called a pseudo-orbit. Moreover there are
profound and unresolved theoretical problems about the true solutions of the Navier-
Stokes equations, their unicity and so on, see [2] for a detailed exploration of that and
the related implications as regards to the numerical simulation of turbulent flows.

Only when we define a statistical operator 〈....〉e we can produce averaged quan-
tities 〈u〉e, 〈uv〉e, ....., and we can make comparisons. But the translation of theory
in practice is not so simple. To carry out something in accordance with our theories
or our ideals can be very difficult. If we open a book on turbulence, it starts with a
statistical description of a turbulent flow. Usually the objectivity of turbulence relies
on theories that consider fluid flow experiments that can be repeated many times
under a specified set of conditions, as we read in Pope [3], page 34, but practically
it is not so easy to have at our disposal an ensemble of realizations, so we have to
recur to some surrogate in order to replace it [4]. Moreover a database produced by
a numerical code is usually coarse grained [5], limited in resolution in space and
time that we generally indicate with�, and in extent in time and in the homogeneous
directions, that we generally indicate as T and Z respectively. If we have two or
more databases of the same turbulent flow, produced by the same code or different
codes for different values of resolution � and extent T , the basic problem is their
comparison, in other words the extraction of their objectivity. Usually all that is per-
formed face up to the truth represented by experimental data or Direct Numerical
Simulation (DNS), ideally obtained in the limit � → 0 and T → ∞. Long time
and long space averages are the usual ingredients of an explicit averaging statistical
operator, and the values provided by them, u(�, T ) have to be compared with the
absolute, the true quantities u(� → 0, T → ∞). All that is not so simple, and the
Filtering Approach provides some help.

The Filtering Approach (FA) is a simple multiscale approach to the analysis of
turbulent flows. As usual its origins are deeply rooted in the past, see [6] for some
historical notes on that, and a recent important motivation was to understand what
the computer was producing in the first numerical simulations of turbulent flows. The
Leonard [7] idea of representing the Large Eddy Simulation of a generic turbulent
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quantity a (x, t), computed with a code characterized by a grid length h, with a
filtered representation 〈a〉 f due to a filtering operator F characterized by a filtering
length � ≈ h

F [a] ≡ 〈a〉f =
∫

F (x, y;�) a (y, t) dy ;
∫

F (x, y;�) dy = 1 (1)

was in our opinion a major step in the turbulence studies. On its wake an operational
formulation was proposed based on a hierarchy of filtering operators and on the Gen-
eralized Central Moments, (GCM) [8], that extend the Statistical Central Moments
(SCM) and the statistical formalism to a generic filtering operator. Fundamentals to
the multiscale approach are some simple identities that relate the GCM at different
resolution levels, in particular with the statistical one.

In this paper some recents developments are presented. The structure of the sub-
filter stress [12] and a new decomposition of the Reynolds stress [14] are examined,
a new dynamic modeling procedure is applied to the LES of Shock Driven Turbulent
Mixing [20] and indices that measure the statistical homogeneity of a turbulent flow
are proposed [23]. Some conclusions are finally provided.

2 Statistical and Generalized Central Moments

Main ingredients of the statistical approach are the Statistical Central Moments asso-
ciated to the statistical operator E, defined as

τe(a, b) ≡ 〈ab〉e − 〈a〉e〈b〉e
τe(a, b, c) ≡ 〈abc〉e − 〈a〉eτe(b, c) − 〈b〉eτe(c, a) − 〈c〉eτe(a, b) − 〈a〉e〈b〉e〈c〉e

τe(a, b, c, d) ≡ · · · (2)

and it is easy to see that due to the operational rules of the statistical averaging
operator, rules that in turbulence are often referred as the Reynolds rules of the
mean, 〈〈a〉e〉e = 〈a〉e and 〈a〈b〉e〉e = 〈a〉e〈b〉e, we have an equivalent formulation of
the SCM given by

τe(a, b) = 〈a′b′〉e ; τe(a, b, c) = 〈a′b′c′〉e ; · · · (3)

where the brackets indexed e stand for the statistical average 〈a〉e = E[a] and the
apex stands for the statistical fluctuations a′ = a − 〈a〉e.

In the general case of a linear and constant preserving filtering operator F the
Reynolds rules of the mean are usually not satisfied. We can however associate
formally to F theGeneralized Central Moments, GCM, algebraically homomorphic
to the SCM
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τ f (a, b) ≡ 〈ab〉f − 〈a〉f〈b〉f
τ f (a, b, c) ≡ 〈abc〉f − 〈a〉f〈bc〉f − 〈b〉f〈ca〉f − 〈c〉f〈ab〉f + 2〈a〉f〈b〉f〈c〉f

≡ 〈abc〉f − 〈a〉fτ f (b, c) − 〈b〉fτ f (c, a) − 〈c〉fτ f (a, b) − 〈a〉f〈b〉f〈c〉f
τ f (a, b, c, d) ≡ · · · (4)

and that is the starting point of the Filtering Approach. The GCM have the same
algebraic properties as the SCM, and in a sense they extend the statistical formalism
to a generic filtering operatorF . We refer for more detail on that to [6, 8] and we also
remark a recent paper where the formal relationships between filtering and averaging
are defined using generalized central moments in the more complex case of variable
density flows [9].

2.1 Multiscale Identities

Let us now derive some important identities that are the basic ingredients of the
Filtering Approach and that characterizes its multiscale nature. Let us consider the
GCM associated to the product P = GF of two filtering operators. It is easy to
derive the following important relations that connect the GCM at different scales of
resolution

τp(a, b) = 〈τ f (a, b)〉g + τg(a f , b f ) (5)

τp(a, b, c) = 〈τ f (a, b, c)〉g + τg(a f , τ f (b, c)) + τg(b f , τ f (c, a))

+ τg(c f , τ f (a, b)) + τg(a f , b f , c f ) (6)

where we use the simplified notation a f ≡ 〈a〉f , b f ≡ 〈b〉f , c f ≡ 〈c〉f . We remark
that if we also assume that FG = GF

〈〈· · ·〉g 〉f = 〈〈· · ·〉f 〉g (7)

we can additionally write

τ f g(a, b) = 〈τg(a, b)〉f + τ f (ag, bg)

= 〈τ f (a, b)〉g + τg(a f , b f ) = τg f (a, b) (8)

τ f g(a, b, c) = 〈τg(a, b, c)〉f + τ f (ag, τg(b, c)) + τ f (bg, τg(c, a))

+ τ f (cg, τg(a, b)) + τ f (ag, bg, cg)

= 〈τ f (a, b, c)〉g + τg(a f , τ f (b, c)) + τg(b f , τ f (c, a))

+ τg(c f , τ f (a, b)) + τg(a f , b f , c f ) = τg f (a, b, c) (9)
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Moreover when GF = G we have more simply

τg(a, b) = 〈τ f (a, b)〉g + τg(a f , b f ) (10)

τg(a, b, c) = 〈τ f (a, b, c)〉g + τg(a f , b f , c f ) + τg(a f , τ f (b, c))

+ τg(b f , τ f (c, a)) + τg(c f , τ f (a, b)) (11)

and we remark again that these identities represent very important multiscale prop-
erties of the GCM. The first one is well known, it has played an important role in the
development of the dynamic modeling approach [10] and we remark here that the
flexibility of this approach was recently discussed and demonstrated also in the con-
text of modeling the commutation errors in LES [11]. The second one, the relation
(6) connecting GCM of the third order, is new, and it is very important in the case of
compressible flows, where a = � represents the density and b = ui , c = u j are the
velocity components.

3 Recent Contributions

3.1 Structure of the Subfilter Stress

The second order GCM associated to a velocity field τ f (ui , u j ) are better known
under the name of subfilter stresses. Their intimate structure has been studied [12]
based on the following considerations. Due to the additive properties of the GCM
we can write

τ f (ui , u j ) = [
τ f (ũi , u j ) + τ f (ui , ũ j ) + τ f (wi , u j ) + τ f (ui ,wj )

]
/ 2 (12)

where
ui = ũi + wi (13)

is a generic additive decomposition of the turbulent velocity field ui . All that is exact,
and a first approximation is

τ f (ui , u j ) ≈ τ f (ũi , u j ) + τ f (ũi , u j )

2
(14)

that we can formally write in terms of a tensorial eddy viscosity νki

τ f (ui , u j ) ≈ −νk j∂k ũi − νki∂k ũ j (15)
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given explicitly by

νki = −1

4

∫ ∫
F(x, y)F(x, z) (yh − zh)

(
u j (y) − u j (z))

)
dydz (16)

This last relation is due to the fact that we can explicitly write [13]

τ f (ũi , u j ) = 1

2

∫ ∫
F(x, y)F(x, z) (ũi (y) − ũi (z))

(
u j (y) − u j (z)

)
dydz (17)

and we can approximate at the first order

ũi (y) − ũi (z) ∼ (yh − zh)
∂ũi (x)
∂xh

(18)

3.2 Decomposition of the Reynolds Stress

The second order SCM associated to a velocity field τe(ui , u j ) and to a scalar
τe(ui ,ϕ) are better knownunder the nameofReynolds stresses andReynolds fluxes. A
fundamental problem in the analysis of turbulence is to extract the Reynolds stresses
and the Reynolds fluxes from a database obtained by a numerical simulation or an
experimental exploration, and in [14, 15] the previously derived operational relations
between SCM and GCM are applied to this particular problem. Let us indicate the
Reynolds averaging operator as E, and the filtered average as F . Let us first assume
that EF = E. In terms of SCM and GCM we define the following quantities

Ri j ≡ τe(ui , u j )

τi j ≡ τ f (ui , u j )

Ti j ≡ τe(〈ui 〉f , 〈u j 〉f ) (19)

where ui are the components of the velocity field at a given time and location. We
have

Ri j = 〈τi j 〉e + Ti j (20)

Let us now only assume that EF = FE, a much weaker, very general and
respected assumption. We define the following additive GCM

ϑi j ≡ τ f (〈ui 〉e, 〈u j 〉e) (21)

and by applying the identity (5) we have

〈Ri j 〉f + ϑi j = 〈τi j 〉e + Ti j (22)
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This new identity has been recently applied to the study of the decomposition of the
Reynolds stress from filtered data [14] when filtering is not applied in homogeneous
statistical directions or in time for statistically stationary turbulent fields.

We can extend all that to compressible flows. As in [16, 17] we will not introduce
Favre averages. Let us first of all assume thatEF = E, and let us define the following
GCM

R�i ≡ τe(�, ui ) ; Ri j ≡ τe(ui , u j )

R�i j ≡ τe(�, ui , u j )

τ�i ≡ τ f (�, ui ) ; τi j ≡ τ f (ui , u j )

τ�i j ≡ τ f (�, ui , u j )

T�i ≡ τe(〈�〉f , 〈ui 〉f ) ; Ti j ≡ τe(〈ui 〉f , 〈u j 〉f )
T�i j ≡ τe(〈�〉f , 〈ui 〉f , 〈u j 〉f ) (23)

where � is the density and ui are the components of the velocity field at a given time
and location. We have

R�i = 〈τ�i 〉e + T�i ; Ri j = 〈τi j 〉e + Ti j (24)

R�i j = 〈τ�i j 〉e + T�i j + τe(〈�〉f , τi j ) + τe(〈ui 〉f , τ� j ) + τe(〈u j 〉f , τ�i )

(25)

We remark finally that this decomposition of the Reynolds stresses for compressible
flows is very simple if compared to the usual ones expressed in terms of the statistical
or the Favre fluctuations.

3.3 Dynamic Coarse Grained Modeling

Coarse Grained Simulation [5] combines classical large eddy simulations based on
explicit sub-grid scale models and implicit LES (ILES) relying on subgrid models
provided by physics-capturing numerics. We can apply this method to the Flow
Simulation Methodology [18, 19] in a hybrid ILES/RANS approach. All that is
motivated by the study of a challenging problem, the turbulent mixing driven by a
shock wave [20, 21].

The role here of the FilteringApproach is to suggest dynamic blending procedures
based on the following main points. We have remarked that the multiscale identity
that connects the turbulent subgrid stress at different levels

τ f g(a, b) = 〈τ f (a, b)〉g + τg(a f , b f ) (26)
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has played an important role in the development of the dynamic modeling approach
[10]. If the test filterG is the statistical operator Ewe could imagine dynamic models
[22] constrained by the Reynolds stress. Following Speziale [18] we assume that

τ LES
i j ∼ f (�/L) τ RANS

i j (27)

where f is the so called contribution function. Empirically we could write

f (�/L) = [1 − exp(−β�2)]m (28)

where � is a grid length and m and β ad hoc coefficients, but a dynamic procedure
could remove such arbitrariness. We can write

τ RANS
i j = τ RES

i j + 〈τ LES
i j 〉 (29)

and to exploit this multiscale identity in order to determine dynamically the contri-
bution function f .

3.4 Statistical Homogeneity Indices

Many important benchmark turbulent flows are provided with one or more homoge-
neous direction. Sustained homogeneous turbulence is provided with homogeneity
in time and three space directions, homogeneous decaying turbulence and decaying
Taylor Green vortex flow are homogeneous in three directions, plane channel tur-
bulent flow is homogeneous in time and two space directions, turbulent flow past
a cylinder is homogeneous in time and the spanwise direction. In all these cases
the objective in these chaotic simulations is to extract from the obtained database
some statistical quantities, typically the mean values and the Reynolds stresses for
the velocity components.

In the case of the turbulent flow past a cylinder we have two homogeneities, the
time t and the spanwise spatial direction z, and we can average along one or both of
them. Given the turbulent velocity field ui (x, y, z, t)we will introduce the following
space and time statistical filtering operators T and Z

Z{ui } ≡ 〈ui 〉z ≡ 1

Z

∫ Z

0
ui (x, y, z

′, t)dz′

T {ui } ≡ 〈ui 〉t ≡ 1

T

∫ T

0
ui (x, y, z, t

′)dt ′ (30)

and we define E as the product of the two, E ≡ TZ, where Z and T are the extents
of the computational domain in the spanwise direction z and in time t .
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Let us first of all examine the differences between space and time averages. Con-
sistently with the filtering approach based on the GCM let us define the following
turbulent stresses associated to the filters T and Z

τz(ui , u j ) ≡ 〈uiu j 〉z − 〈ui 〉z〈u j 〉z
τt (ui , u j ) ≡ 〈uiu j 〉t − 〈ui 〉t 〈u j 〉t
τe(ui , u j ) ≡ 〈uiu j 〉zt − 〈ui 〉zt 〈u j 〉zt

τz(〈ui 〉t , 〈u j 〉t ) ≡ 〈〈ui 〉t 〈u j 〉t 〉z − 〈ui 〉zt 〈u j 〉zt
τt (〈ui 〉z, 〈u j 〉z) ≡ 〈〈ui 〉z〈u j 〉z〉t − 〈ui 〉t z〈u j 〉t z (31)

We note that due to E = ZT = TZ we have the two identities

τe(ui , u j ) ≡ τz(〈ui 〉t , 〈u j 〉t ) + 〈τt (ui , u j )〉z
≡ τt (〈ui 〉z, 〈u j 〉z) + 〈τz(ui , u j )〉t (32)

and we can define two measures of turbulence resolution, the first related to the time
average and the second to the spanwise average, given by

Mt (x, y) = 〈τt (ui , ui )〉z
Rii

; Mz(x, y) = 〈τz(ui , ui )〉t
Rii

(33)

where Ri j ≡ τe(ui , u j ).We remark that by definitionM = 0 corresponds to a perfect
DNS and M = 1 to a perfect RANS. As such Mt (x, y) and Mz(x, y) measure and
can be defined as indices of the statistical homogeneity in timeT and in the spanwise
direction Z. They are related to the total Reynolds RANS stress produced by the
joint average E = ZT = TZ.

We remark finally that in the general case

E = E1E2 = E1E2E3 = · · · (34)

we can read all that as a multiscale analysis of the variance, where E is the statistical
operator and Ei are different nested partitions of the probability. In this case the
relations

〈u〉e = 〈〈u〉2〉1 = 〈〈〈u〉3〉2〉1 = · · · (35)

τe(u, v) = τ1(〈u〉2, 〈v〉2) + 〈τ2(u, v)〉e
= τ1(〈u〉2, 〈v〉2) + 〈τ2(〈u〉3, 〈v〉3)〉1 + 〈〈τ3(u, v)〉2〉1
= · · · (36)

are better known in applied statistics respectively as the Law of Total Expectation and
the Law of Total Variance, the Adam’s and Eve’s laws [24–26]. The total statistical
mean 〈u〉e is the average of the partial means, and the total statistical covariance
τe(u, v) is the average of the partial covariances plus the statistical covariances of the
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partial mean values. Our multiscale identities are the generalization of the Adam’s
and Eve’s laws to a hierarchy of generic filtering operators, and we really think that
this simple multiscale approach could be usefully applied not only to modelling
turbulent flows but also to the analysis of turbulent databases.

4 Conclusions

In the paper themain peculiarities of the FilteringApproach based on theGeneralized
Central Moments are summarized and some recent applications both in the analysis
and modelling of turbulent flows are presented. All that in the spirit of illustrating
a unified theory linking the direct approach to the statistical one by a continuous
interval of intermediate steps [8].
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Dynamic Bridging for Coarse Grained
Simulations of Turbulent Material
Mixing

Fernando F. Grinstein, Juan A. Saenz, and Massimo Germano

Abstract We revisit coarse-grained simulation strategies for turbulent material mix-
ing applications involving shock-driven turbulence, based on bridging LANL’s Radi-
ation Adaptive Grid Eulerian (xRAGE)—implicit large-eddy simulation (ILES), and
Besnard-Harlow-Rauenzahn (BHR)—Reynolds-Averaged Navier-Stokes (RANS),
using Low-Mach-Corrected (LMC) hydrodynamics. Tests of a new dynamic LMC-
xRAGE/BHR bridging paradigm demonstrate much-improved scale-resolving
enabling higher simulated mixing and turbulence levels on coarser grids. Impact
assessments are carried out based on simulations of a canonical shock-tube experi-
ment.

1 Background

In shock-driven turbulence applications such as inertial-confinement-fusion capsule-
implosion experiments, we are interested in predicting the mixing consequences of
material interpenetration and hydro-dynamical instabilities arising from perturba-
tions at shocked/accelerated material interfaces. The 3D variable-density hydro-
dynamics depend on initial conditions (IC) and involve transition to turbulence,
non-equilibrium turbulence development, and late-time relaminarization. Such flow
physics can be captured with a coarse grained simulation paradigm [1], presuming
the spectral cascade transfer of energy (the rate limiting step) is determined by the
initial and boundary condition constrained large-scale dynamics, and using mixing
transition criteria and effective turbulence Reynolds numbers (Re) for macroscopic
convergence metrics [2]. Because shocks and turbulence are involved, resolving
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all relevant physical scales in shock-driven turbulence simulations becomes pro-
hibitively expensive. ILES addresses the seemingly insurmountable issues posed by
underresolution [4] by combining shock and turbulence emulation capabilities based
on a single numerical model [3].

Strategies bridging large-eddy simulation (LES) and RANS are the aerospace and
automobile industry standard for full scale simulations [5]. Blended hybrids such
as the Flow Simulation Methodology [6, 7] scale the closure terms on the RANS
equations by a contribution function 0 < f (�/L) < 1, where � is the local grid
size, and L is a reference bridging length. Balance between modeled and computed
dissipation is based on the RANS stress model Rm

i j locally morphing into SGS Favre-
averaged LES stress SGS model ˜Rs

i j ,

˜Rs
i j ≡ f (�/L) Rm

i j , (1)

where the contribution function f (�/L) vanishes in the high fidelity limit (� → 0)
and approaches unity at the low resolution limit (pure RANS). Formal relations such
as (1)—involving ensemble-averaged RANS and spatially-filtered LES quantities,
are interpreted in a generalized-function (integral) sense. Hybrids exploit the struc-
tural similarity of equations for RANS and LES, and use the relationships between
filtering and averaging operations—e.g. [8, 9].

FSMwas originally intended to locally bridge direct numerical simulation (DNS)
andRANSas a functionof grid resolution.More generally, FSMcanbeused to locally
blend a high-fidelity simulation strategy (such as ILES) with RANS to generate
a sophisticated LES strategy in-between. The issue of interest is the computation
of the dissipation which has to be suplemented by the model for underresolved
flow conditions. For sufficiently fine resolution the dissipation range is resolved
and the RANS contribution should switch itself off—i.e., f (�/L) → 0 as � → 0.
In the FSM aproach first proposed in Speziale [6]—and subsequently pursued in
various forms by others, empirical ad hoc forms for the contribution function f
were prescribed.

Dynamically solving for f based on decomposing the full stress into modeled and
resolved components and using a differential filter as secondary filtering operation to
define the resolved part was first proposed in Germano [10], and recently extended
[11, 12] by additionally requiring the resolved stress to approach the full stress with
grid resolution refinement to ensure realizability of the bridging-based LES. In our
dynamic FSM paradigm for turbulent material mixing applications, the full stress is
decomposed in terms of modeled ˜Rs

i j and resolved Ti j parts,

R f ull
i j = ˜Rs

i j + Ti j . (2)

We use ILES as high-resolution limit strategy in the formalism, so there is no
explicit LES SGS model, and the hybrid ˜Rs

i j is directly related to the RANS stress
Rm
i j in terms of f through (1).
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For consistency and realizability of the generated LES in approaching the high
resolution / fidelity limit, we require that Ti j → R f ull

i j as �/L → 0. We enforce
this additional modeling constraint, in terms of γ = (�/L)l , for l ≥ 1, by assuming
that R f ull

i j can be approximated by a resolution-dependent weighted-average of the
RANS and resolved stresses,

R f ull
i j ∼ γ Rm

i j + (1 − γ )Ti j . (3)

We substitute equation (1) into (2), use (3), and after contracting with a generic
tensor quantity qi j – e.g., qi j = Ti j , we solve for f – see full derivations in [11, 12],

f (�/L) = γ {1 − [ qi j Ti j ]/[ qi j Rm
i j ]}. (4)

For consistency we also require f ≡ 1 for γ ≥ 1.
In the FSM bridging DNS and RANS [6, 7], the bridging length L was an esti-

mated Kolmogorov length scale. Choosing L as the Kolmogorov scale amounts to
choosing L as the smallest hydrodynamic length scale in the turbulent flow—a small
fraction of the Taylor microscale characterizing the smallest vortices of the turbu-
lence. For xRAGE-BHRbridgingLES, it is still useful to compute aTaylormicroscale
[13]—typically � 10 cells for xRAGE ILES [14], to characterize the smallest vor-
tical structures in the simulated turbulence. In what follows, a small fraction of the
computed Taylor microscale is chosen, i.e., L ∼ few cells.

By design, the contribution function enforces realizability of the bridging-based
LES through (1) in the high fidelity limit � → 0, when LES → DNS (if based on
the Navier-Stokes equations), or LES → ILES based on the Euler equations. The
choice of l controls how the numerics-based ILES SGSmodel is supplemented by the
explicit SGS model generated by the bridging strategy for intermediate resolutions.
For xRAGE numerics—1st-order near shocks and 2nd-order in smooth flow regions,
l ≥ 2 is a suitable choice.

Present ILES is based on the newly available directionally-unsplit LMC xRAGE
numerical hydrodynamics [11, 12, 15]. The default 2nd-order split xRAGE hydrody-
namics [16] was used in our previous sequential ILES/RANS simulations of the CEA
shock-tube laboratory experiments [17] running pure ILES at early times to gener-
ate RANS initialization at a selected prescribed start time. In contrast, the present
dynamic bridging LES/RANS paradigm acts at all times. Detaled discussion of BHR
initialization issues can be found in [11, 12].

2 Simulations of the CEA Planar Shock Tube Experiments

We revisit the CEA shock-tube laboratory experiments [18], involving high (SF6)
and low (air) density gases, Atwood number, At = 0.67, presumed geometries of the
membranes and the wire mesh initially separating the gases, and reshock off an end-
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wall. A shocked SF6 region is created upstream in terms of a higher-density higher-
pressure SF6 region for aMach 1.45 shock (strength 0.54). The planar primary shock
propagates in the through unshocked SF6 , and then through the SF6 /Air contact
discontinuity. The shock propagates through the contact discontinuity and reflects
at the end of the simulation box where purely reflecting boundary conditions are
enforced – to enable reshock simulation.

The early CEA (0.05mm resolution) simulations [19] were based on the 2D
Navier-Stokes equations. In the more recent sequential xRAGE-ILES/BHR-RANS
hybrid simulation studies [17], xRAGE-ILES generated data was used to provide
physics-based IC to BHR-RANS just before 1st reshock, and was also used as ref-
erence for its assessment. By prescribing ILES generated 3D IC and allowing for
3D convection with just enough resolution in Grinstein [17], the computed dissipa-
tion in 3D RANS (vs. 2D RANS) was found to effectively supplement the modeled
dissipation following 1st reshock. However, the 3D RANS cannot resolve well the
subsequent consequences of a new transitional flow event at 2nd reshock [17]. This
limitation is typical of a standalone RANS and motivates our pursuit of suitable
blended LES/RANS capable of dynamically adapting the simulation model to local
flow conditions for applications driven by multiple shocks.

As in Grinstein [11], our 3D dynamic BHR simulations use qi j = Ti j in con-
junction with l = 2. Moreover, as in Grinstein [17] we used between 0.1-5.5×109

computational cells, based on adaptive mesh refinement with finest resolutions rang-
ing between 0.2mm and 0.05mm.

Spectral content and standard deviation need to be prescribed for the initial mate-
rial sharp-interface conditions. Following [17] IC are defined as superposition of six
equally-weighed wavelengths in the neighborhood of h (characteristic initial egg-
crate lengh and mix thickness), in addition to (red-noise) ∼ k−2 deformations with
standard deviation 0.04h and shortest wavelength of at least 4 coarsest cells.

Mix width, as well as velocity magnitude and variance data from the experiments
[18, 19] are used for benchmarking the ILES predictions—see [12] for detailed
discussion of validation results and analysis. In turn, ILES is then used as detailed
reference for bridging results for same domain, resolution, and initial conditions.

Mixing measures less sensitive to subgrid contributions may enable accurate pre-
diction of quantities of interest with the bridging-based generated LES with less
resolution than typically required with the ILES high-fidelity option. Such potential
benefits were noted in Grinstein [11] with regard to having scalar-mixing predictions
converged on coarser grids with the more-accurate LMC xRAGE. In what follows,
we examine the impact of choices of the bridging length L in this context.

Figure1 shows centerplane predicted mass-fraction distributions associated with
dynamic bridging and LMC-xRAGE ILES for the coarsest 0.2mm resolution (2-
level AMR) case. Prediction accuracy is determined by ability to capture the vortical
structures responsible for the onset and development of turbulence, and bridging
modeling efficiency is directly determined by how much less resolution is required
to resolve the flow scales not amenable to modeling [20]. Results with bridging
length L ∼ 2, and L ∼ 4 (smallest) cells are shown at selected times before, after,
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Fig. 1 Dynamic BHR versus ILES for 0.2mm resolution (two-level AMR)

and between the reshock events. Varying the bridging length directly impacts the
detailed captured content of space/time fluctuations effects.

For the sake of quantitative mix analysis, we consider here a frequently used
integrated mixing measure—e.g. [21], T MX = 4

∫

ρ2 Y airY SF6 dx , in terms of
the mass density ρ, SF6 and air mass fractions YSF6 and Yair = 1 − YSF6 , and using
transverse-plane averaging, φ(x) = ∫

φ(x, y, z) dydz /
∫

dydz.
Figure2 compares TMX versus resolution and bridging length L . The ability of

the dynamic bridging model to capture the basic mixing features with less resolution
is well apparent between first and second reshock, where the 0.2mm and 0.1mm
bridgingpredictions for�/L = 0.26 are nearly the sameand in very good agreement
with the finest (0.05mm) ILES – suggesting preferred bridging/resolution trade-offs
and robust mixing capturing with coarser gridding. Beyond second reshock, bridging
with 0.1mm resolution and�/L = 0.26 still provides very good predictions – albeit
RANS corrections to better converged (resolved) ILES appear less necessary there.

For the tested planar shock tube case, we attain the same level of accuracy with
significantly less resolution than required with the highest-fidelity turbulence simu-
lation models typically used at scale with default xRAGE hydrodynamics [12]. Two
levels of grid-coarsening savings are achieved for the mixing predictions: one asso-
ciated with the more-accurate LMC xRAGE hydrodynamics, and an additional one
from using the dynamic xRAGE-BHR bridging.

Los Alamos National Laboratory is operated by TRIAD LLC for US DOE NNSA.
This research was supported by the LANL PEM Mix & Burn Project.
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Fig. 2 TMX for LMC-xRAGE ILES and dynamic BHR versus resolution for �/L = 0.26, 0.49

References

1. F.F. Grinstein, Coarse Grained Simulation and Turbulent Mixing. (Cambridge, NY, 2016)
2. Y. Zhou, F.F. Grinstein, A.J. Wachtor, B.M. Haines, Phys. Rev. E 89, 013303 (2014)
3. F.F. Grinstein, L.G. Margolin, W.J. Rider, ILES Book. (Cambridge, NY, 2nd Printing, 2010)
4. S. Ghosal, J. Comput. Phys. 125, 187–206 (1996)
5. J. Frolich, D.A. von Terzi, Prog. Aerosp. Sci. 44, 349–77 (2008)
6. C.G. Speziale, AIAA J. 36(2), 173–184 (1998)
7. H.F. Fasel, D.A. von Terzi, R.D. Sandberg, J. Appl. Mech. 73, 405–412 (2006)
8. M. Germano, J. Fluid Mech. 238, 325–336 (1992)
9. J.A. Saenz, D. Aslangil, D. Livescu, Phys. Fluids 33, 025115 (2021)
10. M. Germano, AIAA J. 36(9), 1766–1767 (1998)
11. F.F. Grinstein, J.A. Saenz, M. Germano et al., Comput. Fluids 199, 104430 (2020)
12. F.F. Grinstein, J.A. Saenz, M. Germano, Phys. Fluids 33, 035131 (2021)
13. A.J. Wachtor, F.F. Grinstein, J.R. Ristorcelli et al., Phys. Fluids 25, 025101 (2013)
14. F.F. Grinstein, Phys. D Nonlinear Phenom. 407, 132419 (2020)
15. F.F. Grinstein, J.A. Saenz, J.C. Dolence, T.O. Masser et al., CAMWA 78, 437–458 (2019)
16. M. Gittings et al., Comput. Sci. Discov. 1, 015005 (2008)
17. F.F. Grinstein, Comput. Fluids 151, 58–72 (2017)
18. F. Poggi, M.-H. Thorembey, G. Rodriguez, Phys. Fluids 10, 2698 (1998)
19. C. Mugler, S. Gauthier, Phys. Fluids 12, 1783 (2000)
20. F.S. Pereira, L. Eca, G. Vaz, S.S. Girimaji, J. Comput. Phys. 363, 98–115 (2018)
21. M. Hahn, D. Drikakis, D.L. Youngs, R.J.R. Williams, Phys. Fluids 23, 046101 (2011)



Dynamic Tensorial Eddy Viscosity
and Turbulent Stresses

A. Abbà, A. Cimarelli, and Massimo Germano

Abstract In the theoretical framework provided by an alternative decomposition of
the turbulent stresses, a new formalism for their approximation and understanding
has been proposed in [1] that spontaneously directs to a tensorial turbulent eddy
viscosity. Based on this, new modelling approaches for LES, representing subgrid
fluxes for momentum, energy and heat fluxes, based on the second order inertial
properties of the grid element are developed. The new model has firstly tested in
the case of typical LES benchmark for compressible flow, such as the turbulent
channel flow. A numerical simulation of turbulent flows in a more complex geometry
using unstructured meshes has been performed, exploiting the properties of the eddy
viscosity model based on the inertial tensor of the numerical grid element. The
analysis highlights the capability of the model to well reproduce the anisotropic
character of the turbulent flows.

1 Theoretical Framework

The old idea of Boussinesq to represent the turbulent stress by means of an eddy
viscosity has been developed during the years and applied to the formulation of many
different turbulence models. However, its fundamental hypothesis of isotropicity is
violated not only by the large turbulent scales but also by the small ones. Hence,
tensorial eddy viscosity models have been proposed to overcome the isotropicity
assumption and to combine with the disalignment between the strain rate tensor and
the subfilter stress.Non-isotropic grids are usually used in numerical simulationswith
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the aim to better represent the large anisotropic turbulent structures. Moreover the
size and anisotropic geometry of grid elements directly affect the subgrid turbulence
through implicit filtering and such information can be usefully taken into account.
First [2, 3] introduced different length scales associated to the face element diagonal
with the aim to take into account the resolution anisotropy. Other proposals, based
on empirical arguments, has followed [4, 5].

In a previous paper [1] an alternative decomposition of the turbulent stresses has
been proposed that naturally directs to a tensorial turbulent eddy viscosity. In the
present work, we extend that approach to the modelling of the subgrid terms in the
energy equation.

2 The Flow Equations and the Subgrid Model

The following filtered Navier–Stokes equations, in non dimensional form, are used
to represent a turbulent compressible flow in a LES context,

∂tρ + ∂ j (ρũ j ) = 0 (1)

∂t (ρũi ) + ∂ j
(
ρũi ũ j

) = − 1

γ Ma2
∂i p + 1

Re
∂ j σ̃i j − ∂ jτi j + ρ fi (2)

∂t (ρẽ) + ∂ j

(
ρh̃ũ j

)
= γ Ma2

Re
∂ j

(
ũi σ̃i j

) − 1

κ RePr
∂ j q̃ j − 1

κ
∂ j Q j

− γMa2

2
∂ j

(
Jj − τkk ũ j

) + γMa2ρ f j ũ j . (3)

As usual the Favre filter ·̃ is applied to velocity u, specific total energy e, enthalpy
h and temperature T while p denotes the filtered pressure. σ̃ and q̃ represent the
filtered momentum and heat diffusive fluxes, respectively. The equation of state for
a perfect gas p = ρT̃ , and the constitutive equations

σ̃i j = 2μ(S̃i j − 1

3
S̃kkδi j ), q̃i = −μ∂i T̃ (4)

complete the system. S̃ is the resolved strain rate tensor and μ the dynamic viscosity,
defined according to the Sutherland law. The following terms

τi j = ρ
(
ũi u j − ũi ũ j

)
, Qi = ρ(˜ui T − ũi T̃ ), Ji = ρ(ũi ukuk − ũi ũk ũk),

represent the subgrid stress tensor, heat flux and diffusion flux respectively. Consid-
ering the generalized central moment definition [6]

τ (ui , u j , uk) = ρũi u j uk − ũiτ jk − ũ jτik − ũkτi j − ρũi ũ j ũk (5)
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the turbulent diffusion flux can be written as

Ji = τ (ui , uk, uk) + 2ũkτik + ũiτkk . (6)

Following [1], we model the subgrid stresses as

τi j = −ρ
(
νk j∂k ũi + νki ũ j

)
(7)

where νki are the components of a tensorial subgrid viscosity

νki = −1

2
τ (xh, xk)∂hũi . (8)

An expression similar to (7), where the velocity gradients are substituted by the strain
rate components, has been derived by [7] starting from a fourth order eddy viscosity
tensor. The moment

τ (xh, xk) = 1

K f

∫

K f

(ξk − xk)(ξh − xh)dξ (9)

is related to the inertial tensor of the filter volume K f and take into account the
anisotropy of computational grid, see [1, 8]. This approach is extended to model also
the scalar quantities

Qi = −1

2
ρνih∂h T̃ , τ (ui , uk, uk) � τ (ui , ukuk) = −1

2
ρνih∂h (̃ukũk) (10)

Now a dynamic procedure is applied. Each subgrid term is multiplied by a tensorial
coefficient [1]

τi j = −Ci j
(
νk j∂k ũi + νki ũ j

)
(11)

Qi = −1

2
CQ
i ρνih∂h T̃ (12)

τ (ui , ukuk) = −1

2
C J
i ρνih∂h (̃ukũk). (13)

A test filter operator ·̂ and a Favre test filter ·̆ = ρ̂·/ρ̂ are introduced with correspond-
ing subtest fluxes

Ti j = ̂ρui u j − ρ̂ ˘̃ui ˘̃u j , Qst
i = ̂ρui T − ρ̂ ˘̃ui ˘̃T , T (ui , ukuk) = ̂ρui ukuk − ρ̂ ˘̃ui ˘(̃uk ũk).

The Germano identity reads

Li j = Ti j − τ̂i j , LQ
i = Qst

i − Q̂i , LJ
i = T (ui , ukuk) − τ̂ (ui , ukuk). (14)
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We apply the tensorial viscosity model to the test filtered terms

Ti j = −Ci j ρ̂
(
ν̂k j∂k ˘̃ui + ̂νki ũ j

)
(15)

Qst
i = −1

2
CQ
i ρ̂ν̂ih∂h

˘̃T (16)

T (ui , ukuk) = −1

2
C J
i ρ̂ν̂ih∂h ˘(̃ukũk). (17)

where

ν̂ki = −1

2
̂τ (xh, xk)∂h ˘̃ui . (18)

Assuming the scale invariance of the tensorial coefficients we get

Ci j = Li j

Ni j
, CQ

i = LQ
i

N Q
i

, C J
i = LJ

i

N J
i

. (19)

By this way the tensorial coefficients are dynamically determined since the terms
Li j , LQ

i , LJ
i and

Ni j = ̂ρνk j∂k ũi + ̂ρνki∂k ũ j − ρ̂ν̂k j∂k ˘̃ui − ρ̂ν̂ki∂k ˘̃u j (20)

N Q
i = ̂ρνki∂k T̃ − ρ̂ν̂ki∂k

˘̃T (21)

N J
i = ̂ρνki∂k (̃ukũk) − ρ̂ν̂ki∂k ˘(̃ukũk) (22)

are known by the resolved velocity and temperature fields. The coefficients are
clipped to get non negative total dissipation. This dynamic procedure to determine
the coefficients using (19) is independent on the flow geometry and conditions.

2.1 Results

The compressible flow equations and the illustrated subgrid model have been imple-
mented in a numerical code based on the Local Discontinuous Galerkin approach.
The code is based on the FEMilaro finite element library [9]. For more details we
refer to [10, 11].

In order to evaluate the performances of the described model, the compressible
turbulent channel flow at the bulk Reynolds number Re = 2795 andMachMa = 0.7
has been simulated. The computational mesh is obtained by a structured mesh with
Nx , Ny , Nz hexahedra, each one split into 6 tetrahedral elements. The 4th order
polynomial degree has been used. Three different resolutions have been used which
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Table 1 Grid parameters of the present simulations and DNS [12]

Nx × Ny × Nz Δ+
x Δ+

z Δ+
ymin

/Δ+
ymax

16 × 16 × 12 24 11 0.67/8.2

12 × 16 × 10 32 13.5 0.67/8.2

8 × 16 × 8 48 22 0.67/8.2

DNS 4.89 4.89 0.19/2.89
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Fig. 1 Mean velocity, turbulent kinetic energy and shear stress in the channel flow

Fig. 2 Streamwise
component of the velocity
field for the periodic hill flow

grid parameters are summarized in Table1. Figure1 shows the streamwise velocity,
the turbulent kinetic energy and shear stress profiles. A very good agreement with
DNS [12] is observed for high and middle resolutions but also the lower one presents
good performances.

Then the flow over periodic hills at Re = 2800 and Ma = 0.2 [13] has been
considered and the use of an unstructured grid highlights the peculiarity of themodel.
The minimum sizes of the elements close to the lower wall are Δx = 0.023, Δy =
0.00325,Δz = 0.062. The flow separates on the top of each hill, creating a significant
turbulent recirculation bubble, and then re-attaches before the next hill, where the
flow is accelerated on the forward side. A sketch of the streamwise velocity field is
depicted in Fig. 2. The profiles of mean streamwise velocity and of shear stresses
are compared with the results of the DNS [13] in Fig. 3. The negative peak in the
recirculating region and the following accelerating trend are well reproduced in
the streamwise velocity profiles. No relevant differences are evident between the
results of LES and the DNS in these plots. In conclusion, the comparison with DNS
results highlights how the present model accurately capture the anisotropicity of the
considered flows also at the lower resolutions.
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Fig. 3 Mean profiles of longitudinal velocity and turbulent shear stresses in the periodic hill flow
at different x positions: x = 0.5, x = 2, x = 4, x = 6
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A Numerical Study of the Spanwise
Turbulence Past a Cylinder Flow

Andrea Ferrero, Francesco Larocca, Guglielmo Scovazzi,
and Massimo Germano

Abstract Many flows of industrial interest and many important benchmark tur-
bulent flows are statistically stationary in time and are provided with a spanwise
direction of homogeneity. The numerical simulation of such flows is conditioned by
the discretization in space and time, and the statistical analysis of the data is biased
by the finite extent of the produced dataset. In this work the flow around a circular
cylinder at Reynolds 3900 is numerically investigated by an implicit Large Eddy
Simulation. The computations are performed by a modal Discontinuous Galerkin
finite element solver and the produced database is analysed in order to quantify the
temporal and spanwise contribution to the estimation of the statistics. The goal of the
work is to investigate a procedure which allows to quantify the statistical efficiency
of the operators which are used to perform the average in time and in the spanwise
direction. Finally, the hierarchical nature of the modal basis used in each element is
exploited to perform a local element-wise filtering operationwhich allows to quantify
the contributions given by the smallest resolved scales to the statistics.

1 Introduction

Many flows of industrial interest and many important benchmark turbulent flows
are statistically stationary in time and are provided with a spanwise direction of
homogeneity. Typical examples are the flow in blade cascades and more simply the
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flow around a cylinder. The numerical simulation of such flows is conditioned by the
discretization in space and time, and the statistical analysis of the data is biased by the
finite extent of the produced dataset. In a previous paper the authors have examined
in detail the statistical error in the time averages [1], but we remark that, due to the
spanwise homogeneity, statistics can be also computed with a combined average in
time and in the spanwise direction.As remarked in [2], an insufficient spanwise extent
can produce a overprediction of the streamwise and normal turbulent intensities
and correspondingly artificial suppression of the spanwise turbulent intensity. These
considerations can be used to define a minimum spanwise extension required to
correctly describe the evolution of the largest structures. However, this provides only
a lower bound to the spanwise extension: in a general flow it is not clear a-priori
whether it is more convenient to collect the statistics by performing a simulation
with a relatively large spanwise extension and a small time window or the contrary.
In order to find a numerical criterion which allows to quantify the efficiency of
computing statistics in time and in the spanwise direction, the potential of some
indices of statistical resolution is investigated.

In particular a database of the turbulent flow past a circular cylinder at Reynolds
3900 is produce by means of an implicit Large Eddy Simulation (LES). The com-
putations are carried out by means of a modal Discontinuous Galerkin (DG) finite
element solver based on the use of a modal orthonormal basis implemented follow-
ing the guidelines of [3]. The solver is compressible but in this study a low far field
Mach number (M∞ = 0.2) is assumed in order to make comparisons with available
experimental results in almost incompressible conditions [4].

Finally, the hierarchical nature of the modal orthonormal basis used inside each
element allows to perform a local element-wise filtering operation: in this way it is
possible to quantify the contributions given by the smallest resolved scales.

2 Indices of Statistical Resolution

The turbulent flow past a cylinder is characterised by two homogeneities, the time t
and the spanwise spatial direction z, and we can average along one or both of them in
order to estimate average fields and Reynolds stresses. Given the turbulent velocity
field ui (x, y, z, t) we will introduce the following space and time statistical filtering
operators T and Z

Z{ui } ≡ 〈ui 〉z ≡ 1

Z

∫ Z

0
ui (x, y, z

′, t)dz′

T {ui } ≡ 〈ui 〉t ≡ 1

T

∫ T

0
ui (x, y, z, t

′)dt ′ (1)

and we define as E the product of the two
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E{ui } ≡ TZ ≡ ZT ≡ 〈ui 〉e ≡ 1

ZT

∫ Z

0

∫ T

0
ui (x, y, z

′, t ′)dz′dt ′ (2)

where Z and T are the extents of the domain in the spanwise direction z and in time
t . The turbulent stresses can be defined by means of the operators T and Z

τz(ui , u j ) ≡ 〈uiu j 〉z − 〈ui 〉z〈u j 〉z
τt (ui , u j ) ≡ 〈uiu j 〉t − 〈ui 〉t 〈u j 〉t
τe(ui , u j ) ≡ 〈uiu j 〉zt − 〈ui 〉zt 〈u j 〉zt

τz(〈ui 〉t , 〈u j 〉t ) ≡ 〈〈ui 〉t 〈u j 〉t 〉z − 〈ui 〉zt 〈u j 〉zt
τt (〈ui 〉z, 〈u j 〉z) ≡ 〈〈ui 〉z〈u j 〉z〉t − 〈ui 〉t z〈u j 〉t z (3)

We note that due to E = ZT = TZ we have the two identities

τe(ui , u j ) ≡ τz(〈ui 〉t , 〈u j 〉t ) + 〈τt (ui , u j )〉z
≡ τt (〈ui 〉z, 〈u j 〉z) + 〈τz(ui , u j )〉t (4)

and we can define two measures of turbulence resolution, the first related to the time
average and the second to the spanwise average, given by

Mt (x, y) = 〈τt (ui , ui )〉z
Rii

= 1 − τz(〈ui 〉t , 〈ui 〉t )
Rii

Mz(x, y) = 〈τz(ui , ui )〉t
Rii

= 1 − τt (〈ui 〉z, 〈ui 〉z)
Rii

(5)

where Ri j ≡ τe(ui , u j ). The indices Mt (x, y) and Mz(x, y) allow to quantify the
relative contribution given by time and spanwise direction to the evaluation of the
statistics. For example, whereMt −→ 0 the statistics are mainly captured by sampling
in the spanwise direction while where Mt −→ 1 the statistics are mainly captured by
sampling in time. The index Mz shows an opposite behaviour.

3 Numerical Results

The simulations are performed on an unstructured mesh with approximately 3 · 105
elements by a third order accurateDG scheme (p = 2): 3 · 106 degrees of freedomare
employed for each equation. Time integration is performed by means of an explicit
RK3method. The spanwise extension of the domain along the direction z is set equal
to three diameters D. The simulation is carried out for several hundreds of convective
timesCT , as shown in Fig. 1a which reports the time evolution of the drag coefficient
Cd . A snapshot of the vorticity magnitude field is reported in Fig. 1b which puts in
evidence the development of turbulence structures in the wake.
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Fig. 1 Drag coefficient history (a) and instantaneous vorticity magnitude field (b)

Fig. 2 Spectrum for the streamwise (a) and normal (b) velocity at x/D = 4 and y/D = 0

The spectrum of the streamwise and normal velocity in a station located at x/D =
4 and y/D = 0 is reported in Fig. 2. The spectrum is computed from a time window
with 400CT and it is averaged along the spanwise direction z. The plots show a
peak at f D/U = 0.4 for the streamwise velocity and two peaks at f D/U = 0.2
and f D/U = 0.6 for the normal velocity: this is in line with the results reported
by [4].

The R11 component of the Reynolds stress tensor is evaluated in the station at
x/D = 2.02 according to (4). The results are reported in Fig. 3a for two different
choices of the averagewindows T and Z and they are comparedwith the experimental
results from [4]. The numerical simulation is performed for T = 400CT with a span-
wise extension Z = 3D and it is used to generate a global database. Two subsets are
extracted from this database by selecting different extensions in time and spanwise
direction: (T = 100CT, Z = 3D/20) and (T = 5CT, Z = 3D). In this problem the
computational cost is directly proportional to both the spanwise extension and the
duration of the simulated time window. This means that the same computational
cost could be associated to the two subsets. However, the results reported in Fig. 3a
show that the estimation of the Reynolds stresses performed from the dataset with
(T = 100CT, Z = 3D/20) is significantly closer to the experimental results. In con-
trast, the results obtained from the dataset with (T = 5CT, Z = 3D) appear to be far
from statistical convergence since they are characterised by a strongly asymmetric
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Fig. 3 Effects of the choice on the spanwise extension and time window size on R11 (a) and
comparison of the Reynolds stresses in the three directions (b) for the control station at x/L = 2.02
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Fig. 4 Indices of statistical resolution (a) and element-wise modal filtering (b) for the control
station at x/L = 2.02

distribution. This first test suggests that in the considered test case time averaging
is more efficient with respect to averaging in the spanwise direction. This can be
explained by the fact that in this problem the flow field is dominated by the stream-
wise velocity and so the transport of turbulent structures in the streamwise direction
determines strong temporal fluctuations for a fixed control station. Furthermore, the
streamwise fluctuations are significantly stronger with respect to the spanwise fluc-
tuations, as confirmed by the distribution reported in Fig. 3b.

In order to verify the possibility to link the statistical efficiency of time and
spanwise directions to a measurable quantity the indices Mt and Mz are evaluated
and reported in Fig. 4a: the plot shows clearly that the index Mt is systematically
higher than the index Mz for all the values of y. This result suggests a general
strategy which can be applied for statistically steady flows with a direction of spatial
homogeneity. First of all, a preliminary simulation can be done by choosing the
minimum spanwise extension which is necessary to allow the correct evolution of
the largest structures and running the simulation for a few convective times. Then
the results of this preliminary simulation can be used to estimate the indices Mt and
Mz which provide insight in the statistical efficiency of time and spanwise direction:
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finally, a full simulation can be set up by increasing the runtime or the spanwise
extension, according to the indications provided by Mt and Mz .

Finally, the plot in Fig. 4b shows a comparison between the experimental values of
R11 and the numerical predictions evaluated according to (4) for the full order results
(p = 2) and for a filtered solution (p = 0) obtained by truncating the results of the
p = 2 simulation to the first term in each element. This makes it possible to quantify
the contributions given by the turbulent structures whose size is comparable to the
size of the element. The results show that this contribution is small in the present
simulation and so it is possible to assume that the contribution of the subgrid scales
is even smaller. This explains why the implicit LES approach provides reasonable
results. However, for problems characterised by higher values of Reynolds number,
the contributions associated to the subgrid scales can be more important and so an
explicit LES with a subgrid model would be more suitable. In that case, the modal
nature of the DG solution can be exploited to develop dynamic approaches for the
subgrid scale model, following for example the guidelines provided by [5]. As a
final remark, in this work the extensions of the spanwise and temporal windows are
normalised with respect to the diameter and the convective time: it would be possible
to get more physical insight by normalising with respect to the spatial and temporal
turbulence scales. However, the use of diameter and convective time simplifies the
investigation since these values are known a-priori.
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Asymmetry in Wake of Oscillating Foils
with Combined Pitching and Heaving
Motion

Suyash Verma and Arman Hemmati

Abstract This is a numerical study of the dynamics of primary and secondary vortex
structures in high performance wakes of oscillating foils with combined heaving and
pitching motion at Reynolds number of 8000. The peak performance is associated
with either high efficiency or large thrust production, which are achieved at specific
motion settings. Using three-dimensional direct numerical simulations, we charac-
terized and compared the dominant instability features for two peak propulsivewakes
of a teardrop foil. Spanwise vortex dislocations on paired rollers for high efficiency
setting revealed qualitative features of elliptic instability of primary vortex that led to
tongue-like, and crescent shaped valley and bulge formations. However, asymmetric
shedding of vortex dipoles in large thrust production setting depicted large scale dis-
locations in the form of conjoint hairpin-horseshoe formations that emerged out of
vortex cores. These hinted at the dominance of both core and centrifugal instability.
Here, we propose a hypothesis that large scale dislocations have greater influence
on the spatial topology of secondary vortex structures compared to their temporal
topology, which were observed to be similar in both wakes.

1 Introduction

Dynamics of coherent structures (e.g., rollers) in turbulentwakes of oscillating hydro-
foils have been observed to play a dominant role in propulsivemechanisms of various
marine biological species, such asfish [1]. These studies have contributed to the devel-
opment of efficient underwater propulsors and energy harvesting technologies. The
fluid mechanics of these systems, however, still require further analysis to optimize
their design. Mainly, instability mechanisms in wakes of oscillating hydrofoils that
could promote vortex dislocations on rollers and subsequent formation of secondary
vortex pairs (or ribs), remains not fully explored at this time. This will also enrich our
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understanding of dominant and complex interactions between the large scale vortex
structures (rollers and ribs) that directly impact flow properties, such as pressure and
shear distribution with implications on flow entrainment and turbulence.

Numerical [2] and experimental [3] studies on three-dimensionalwakes of station-
ary bluff bodies (e.g., cylinders) have revealed the presence of dominant instability
modes (Mode-A and Mode-B) that governed the wake transition at low Reynolds
numbers (Re). The characteristic features of the instability further detailed the mech-
anism of secondary vortex formation, which originated either on account of deform-
ing primary vortex core (Mode-A) or streamwise stretching of the braid shear layer
between the primary vortex rollers [3]. Direct numerical simulations (DNS) have
also provided capabilities and insights into modeling of prominent instability modes
in wakes of rigid bodies (e.g., hydrofoils) that execute an oscillatory motion, either
pitching [4] or heaving [5]. For both motions, instability modes were characterized
with respect to the spanwise wavelength of the counter-rotating rib pair as well as
their temporal periodicity in each full and half shedding cycle, respectively. Although
mechanism of centrifugal instability was hinted as being responsible for the forma-
tion of rib pairs, an elaborate discussion is still lacking [4]. Evaluation of instability
and secondary vortex characteristics for an oscillatory hydrofoil in combined heaving
and pitching motion is not fully explored.

This study focused on the quantitative and qualitative analyses of
three-dimensional spatio-temporal characteristics of both primary and secondary
vortex formations in the wake of an infinite span oscillating foil with a combined
pitching and heaving motion. Specifically, the study focused on wakes correspond-
ing to peak propulsive performance regimes for high propulsive efficiency and large
thrust generation. Identification and comparative assessments of vortex dislocations
on the primary vortex rollers are discussed along with their association to previ-
ously identified elliptic and centrifugal instability of the vortex core, and braid shear
layer, respectively. The paper is setup such that numerical method is described first,
followed by discussion of the results and major conclusions.

2 Problem Description

The wake of an infinite span teardrop hydrofoil was numerically simulated using
DNS with motion parameters corresponding to peak propulsive performance based
on a recent experimental study [6]. We utilized the Overset Grid Assembly (OGA)
method inOpenFOAM to perform the combined pitching and heavingmotions. OGA
is based on a finite volume solver, which has beenwell validated for study ofwake and
vortex dynamics [7]. The three-dimensional Navier–Stokes equations were solved
directly at a chord based Reynolds number of Re = U∞c/ν = 8000. Second-order
accurate temporal (backward Euler) and spatial (central-difference) schemes were
employed for discretization of equations.

The computational domain included a stationary background grid and another
overlapping grid that modeled the hydrofoil motion. The background grid extended
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20c, 16c and 2πc in the streamwise, cross-stream and spanwise directions, respec-
tively. A combined heaving and pitching motions were prescribed for the foil, which
followed sinusoidal formulations:

h = h0sin(2π f t) and θ = θ0sin(2π f t + φ).

Here, h, θ , f and φ denote the heave and pitch amplitude, oscillation frequency and
phase offset, respectively. A uniform velocity alongwith a zero pressure gradient was
assigned at the inlet boundary, while a Neumann outflow condition was prescribed at
the outlet boundary. The domain sides were assigned a periodic boundary condition.
All remaining edges were assigned a zero gradient condition for both velocity and
pressure whereas a no-slip wall condition was ensured for the moving foil. More
details on the validation for the numerical solver can be found in [7].

Performance results from [6] indicated that a high efficiency (and small thrust)
was achieved when h0 = 0.125, θ0 = 10◦, f ∗ = 0.48 and φ = 270◦. Similarly, a
large thrust generation (and low efficiency) was observed at h0 = 0.375, θ0 = 15◦,
f ∗ = 0.64 and φ = 330◦. Thus, the prominent instability features were evaluated in
the wake of foils within this parameter space.

3 Results and Discussion

Using isosurfaces of normalized Q-criterion (Q∗ = Qc2/U 2∞), we first describe the
primary vortex mode corresponding to the wake of high efficiency (η) motion setting
along with the prominent vortex dislocations on the spanwise rollers (Fig. 1a). Paired
counter-rotating vortices (2PT mode) were observed near the foil, which merged to
form reverseVonKármánwake downstream. Fine scale corrugationswere evident on
the upstream leading edge roller (LEVac), which hints at development of a spanwise
instability. Besides, the merger of a weaker leading edge vortex structure (LEVc)
with the stronger trailing edge vortex (TEVc) formed a structure with larger circu-
lation that led to a stronger strain field intensity. This further promoted formations
of dislocations (identified as valleys and bulges) with larger depth to width ratios
compared to upstream corrugations. Qualitatively, these dislocation features seem
comparable to the tongue-like formations, and crescent shaped features, that were
previously identified in the wake of stationary bluff bodies [2, 8]. Such tongue-like
formations were attributed to a characteristic instability of primary vortex core [8],
whose mechanism was also described later in terms of elliptic instability of a vortex
pair [3, 9]. We made a quantitative assessment for the ratio of spanwise wavelength
(λi ) for dislocations to the diameter of invariant vortex core (dinv). The estimated
ratio was close to 2, similar to the observations of [9]. Thus, both quantitative and
qualitative evidence suggested that an elliptic instability of vortex core should be
prominent in the high η wake. Investigation of the asymmetric wake (dominated by
vortex dipoles or couples) for large thrust settings revealed large scale dislocations
in the form of conjoint hairpin-horseshoe vortex structures (Fig. 1b). This resembled
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Fig. 1 Vortex dislocations identified on primary vortex structures in the wake (a Q∗ = 0.01 and b
Q∗ = 0.09). Figures on left and right depict the top and bottom view, respectively

qualitative characteristics of core instability. A mechanism for emergence of hairpin
vortices out of vortex cores had been proposed [2]. However, conjoint large scale
structures observed for our asymmetric wake was unique in terms of spatial topology
for hairpin legs that wrapped around coupled spanwise rollers. Interaction of these
hairpin legs with the braid vorticity region, i.e. small scale vorticity between two
subsequent dipoles, could indicate a centrifugal instability mechanism, which can
further lead to formations of secondary vortex pairs. Ratio of λi/dinv revealed a value
equal to 1.813, which was similar to that of high efficiency wake. Detailed Floquet
stability analyses could provide more insight into the dominant instability modes in
both wakes.

The analyses of instability characteristics hint at their apparent contribution to
the formation of secondary streamwise vortices or ribs [3, 9]. We therefore assessed
the spatio-temporal characteristics of counter-rotating rib pairs in the wake. Figure2
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(a) High Efficiency Wake (b) Large Thrust Wake

Fig. 2 Secondary vortex structures in the wake of an oscillating foil for two performance regimes,
identified using iso-surfaces of ωx

depicts ribs structures for the high efficiency and large thrust cases. In case of the
former, continuous and alternating tubes (in spanwise direction) appeared to pass
over one side of the spanwise rollers. It revealed a qualitative similarity to Mode-B
arrangement in thewake of stationary cylinders [8]. In contrast, the large thrust gener-
ationwake depicted an asymmetric spatial topology. Paired ribswrapped around each
dipole while being connected in the braid vorticity region. This topology appeared
qualitatively similar to Long wavelength mode [4] and Mode-A [5] for purely pitch-
ing and heaving foils, respectively. The looped rib pairs further reflected a qualitative
similarity to elongated hairpin legs in Fig. 1b, which wrapped around the coupled
rollers. This similarity supports the argument of a centrifugal instability mechanism
[2] for interaction of developed hairpin-horseshoe structures with the braid vortic-
ity. It also explains the interconnected nature of rib pairs between two subsequent
dipoles. The spanwise wavelength (λz = λ/c) and temporal periodicity (with respect
to shedding cycles) of the rib configurations were also evaluated using statistical cor-
relations of streamwise vorticity (ωx ) on specific spanwise planes that passed through
individual primary vortex cores. The estimated λz for both wakes was in the range
of 0.7–0.8, thereby supporting our qualitative observations that their characteristics
were similar to the purely pitching [4] or heaving foils [5]. The rib pairs further
maintained their direction of rotation with each full shedding cycle. It is therefore
apparent that large-scale vortex dislocations have greater influence on spatial topol-
ogy of secondary structures, rather than causing changes in spanwise wavelength or
streamwise periodicity for the two wakes.
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4 Conclusions

The wakes corresponding to peak propulsive performance regimes of an oscillat-
ing foil with combined heaving and pitching motion were investigated numerically
at Re = 8000. The high efficiency wake depicted fine scale spanwise corrugations
on paired rollers (2P mode) near the foil, whereas deeper valleys and bulges were
observed for individual rollers downstream. These resembled tongue-like and cres-
cent shaped formations, whose spanwise wavelength was approximately twice the
diameter of invariant stream-tube within the core vortex. Such qualitative and quanti-
tative evidence suggested that elliptic instability of the primary vortex core dominates
the high efficiencywake. Contrarily, thewake of large thrust generating configuration
depicted conjoint hairpin-horseshoe vortex formations that emerged out of the core,
and led to an intense spanwise deformation of rollers. The core instability mecha-
nism was prominent based on the quantitative estimation of the wavelength for these
dislocations. Moreover, interaction of developed hairpin legs with the braid vorticity
further revealed the possible association with formation of secondary vortex pairs,
and hence a prominence of centrifugal instability. Evaluation of secondary vortex
characteristics in the wakes further indicated resemblance to long wavelength mode
and Mode-A observed previously for purely pitching and heaving foils, respectively.
However, the asymmetric topology of the wrapped rib pairs around dipoles indicated
an influence of the large scale dislocations observed for the wake in large thrust
generation configuration. However, these dislocations did not affect the spanwise
wavelength or temporal periodicity of rib pairs in both propulsive wakes.
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Helical Structures in the Wake of Long
Wall-Mounted Prisms at High Incident
Angles

Arash Zargar and Arman Hemmati

Abstract The coherent wake structures behind a rectangular prism at different inci-
dence angles are numerically studied at Re = 250. The results indicated that chang-
ing the incidence angle altered the critical Reynolds number at which the wake
transitions to unsteady flow. The variation in wake dynamics and evolution of vortex
structures are evaluated and characterized at high incidence angles. The change in
the wake size and surface pressure distribution due to variations in the incidence
angle are also related to the change in wake topology.

1 Introduction

The flow structures around a wall-mounted rectangular prism have various engineer-
ing applications at low Reynolds numbers, for example, in designing the cooling
system of electronic chips, developing biomedical devices, and optimizing the per-
formance of small heat exchangers. This has motivated extensive research on the
characteristics of the wake of prisms at all ranges of Reynolds number. However,
these studies focused only on small depth-to-height ratio prisms.

Rastan et al. [1] numerically studied the onset of vortex shedding for a wall-
mounted prism with an aspect ratio of AR = 7 and reported that it starts at the
Reynolds number of 75 < Re < 85. They identified that the flow field of the prism
remains steady at lower Reynolds numbers. Saha [2] investigated the effect of aspect
ratio on the wake dynamics of a square prism at the Reynolds number of 250. They
reported that the intensity of unsteadiness in thewake of a prismdecreases by decreas-
ing the aspect ratio. Thus, the wake of a square prism with an aspect ratio of 2 was
classified as weakly unsteady, while the wake of a prism with AR = 5 appeared to
be fully unsteady. Sakamoto et al. [3] mentioned that decreasing aspect ratio leads

A. Zargar · A. Hemmati (B)
Department of Mechanical Engineering, University of Alberta, 10-203 Donadeo Innovation
Centre for Engineering, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
e-mail: arman.hemmati@ualberta.ca

A. Zargar
e-mail: zargar@ualberta.ca

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
R. Örlü et al. (eds.), Progress in Turbulence IX, Springer Proceedings in Physics 267,
https://doi.org/10.1007/978-3-030-80716-0_14

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80716-0_14&domain=pdf
mailto:arman.hemmati@ualberta.ca
mailto:zargar@ualberta.ca
https://doi.org/10.1007/978-3-030-80716-0_14


104 A. Zargar and A. Hemmati

to changing the vortex shedding characteristics from a Karman-like to an arc-type
vortex shedding. Therefore, it can be inferred that changing the geometrical shape
of the body would alter the onset of wake unsteadiness.

Characterizing the shape and orientation of structures in thewake of square prisms
or circular cylinders can be categorized as a classical problem in fluid mechanics.
Models of the wake of a square prism can be divided into two classes. The first class
hypothesizes that there are different vortex structures, specifically tip, base, Karman
type, and horseshoe vortices, in the wake. The origin and characteristics of these
structures are different, and they can exist simultaneously in the wake [4, 6]. How-
ever, another hypothesis ponders the occurrence of a single arc-type structure in the
wake, which connects tip, base, and Karman-type structures [5]. The most rigorous
argument supporting the latter hypothesis is the fact that most studies captured a
single dominant frequency in the wake of a wall-mounted square prim. This strongly
hints at the presence of a single structure.

Most recently, Zargar et al. [7] numerically analyzed the flow dynamics behind a
wall-mounted rectangular prismwith a large depth-ratio at different incidence angles
using Direct Numerical Simulations (DNS). They reported that there exists a critical
incidence angle at which the flow behavior changes from steady to unsteady, while
the flow is utterly steady at zero incident angle. Their results demonstrated that chang-
ing the incidence angle leads to the formation of evolving helical structures in the
wake. They captured different peak frequencies above the critical incidence angle and
demonstrated the characteristic length and origin of the peak frequencies. Further-
more, they established a skeleton model for the unsteady wake. This paper expands
on their observations by highlighting particular changes to the surface parameters
and wake dynamics after the onset of unsteadiness.

2 Problem Description

This study examined the effect of incidence angle on the unsteady wake dynamics
and vortex interactions behind a long wall-mounted rectangular prism at Re = 250
by directly solving the three-dimensional Navier–Stokes and continuity equations
in OpenFOAM. The prism had a height of h, and a width and length of w = 0.83h
and l = 4.15h, respectively. The long prism was placed at 10 different incidence
angels from i = 0◦ to i = 45◦ at 5◦ increments with respect to the incoming flow.
The computational domain extended L ≈ 35h in the x−direction, 12h ≤ W ≤ 15h
in the y−direction and H = 5h in the z−direction. The boundary conditions were
set as uniform normal velocity (U∞) at the inlet, Neumann condition for all flow
parameters at all other boundaries, andno-slipwall condition for the groundandprism
faces. The spatial grid consisted 3.9 × 106–5.2 × 106 hexahedral elements, while the
temporal grid was uniform and set such that the Courant number remained below
0.8. Validation and verification of the simulations are described comprehensively in
Zargar et al. [7].
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3 Results

The effect of changing incidence angle on formation and evolution of coherent wake
structures was examined by looking at the isosurfaces of normalized Q−criterion.
Figure1a shows that increasing the incidence angle leads to the formation of a vor-
tex tube in the wake region. Furthermore, there was a critical range of incidence
angle between 40◦ ≤ i ≤ 45◦, at which the wake behavior changed from steady to
unsteady. This coincided with the formation of helical structures in the wake, which
are identified in Fig. 1b.

Vorticity distribution is another important parameter in characterizing the shape
of coherent structures in the wake. The flow behind a long-wall-mounted rectangular
prism remained steady for the incidence angle of i < 40◦ at Re = 250, whereas it
was unsteady at i > 40◦. To identify the wake features that led to the formation of
unsteady flow, time-averaged streamwise vorticity distributions are compared for
different incident angles in the wake of the long prism in Fig. 2. A single vortex pair
with a large vorticity (Vt ) can be recognized at all incident angles, which is associated
with the vortex tube in the wake (similar to Fig. 1a). Increasing the incidence angle
to i = 45◦ leads to the formation of an extra focal point in the wake that is identified
as Vs in Fig. 2c. Zargar et al. [7] captured the formation of a vortical structure in the
near wake of the long prism, which originated from the leading edge of the prism,
inducing unsteady fluctuations in the wake. Figure2 shows that the induced unsteady
flow created an extra streamwise vortical structure that has not been captured in

Fig. 1 Isosurface of Q∗ = 4.42 × 10−2 at different incident angles at Re = 250. (Q∗ = Q×h2

U2∞
)

Fig. 2 Time-averaged vorticity distribution at x/h = 7.5 for different incidence angles
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Fig. 3 Snapshot of vorticity contours overlaid by flow streamlines for i = 45◦ at x/h = 7.5

previous studies of square prisms. Following the terminology of Zargar et al. [7],
this structure span out of the “Frontal-Tip-Vortex”.

Figure3 shows snapshots of vorticity distribution in the wake at t∗ = 530, 570
and 620 for the case of i = 45◦. These plots are overlaid by instantaneous flow
streamlines. These results reveal that the position and size of vortical structures
associated with the vortex tube (Vt ) are approximately steady. However, the extra
streamwise wake structure (Vs) is strongly unsteady, which leads to the formation
of complex vortex interactions in the wake. The vortex dynamics observed here is
enormously different from the previously proposed wake models for short depth-
ratio rectangular prisms. Zargar et al. [7] showed that helical structures in the wake
at i = 45◦ evolve at a low frequency, which leads to periods of strong and weaker
flowfluctuations. Figure3 shows that variations in the vorticity distribution coincided
with the evolution of helical structures in the wake.

The change in wake dynamics at high incidence angles results in alterations in the
wake size, and hence the aerodynamics forces andmoments. Figure4 shows the time-
averaged streamlines calculated at the first cell from the ground plane. Comparing
the position of highlighted saddle points in the wake for the cases of i = 0◦ and 25◦
revealed that wake losses its symmetry in the y− direction at higher incidence angle.
It is also notable that the distribution of critical points for the case of i = 45◦ altered
in comparison to the lower incidence angles. This indicates that there has been a
change in wake dynamics at this incident angle. If position of the last saddle point
(Ls) in the wake is considered as the flow reattachment point to the ground plane, the
distance of this saddle point from the body is an appropriate measure for the wake
size. As shown in Fig. 5a, distance of the flow reattachment point is approximately
constant for i ≤ 30◦. However, the last saddle point distance (Ls), and thus the wake
size, increased significantly for i ≥ 35◦.
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Fig. 4 Time-averaged streamlines based on velocity vectors at the first cell from the ground

Fig. 5 The distance between the last saddle point and the prism’s back-face and the surface pressure
coefficient on the mid-height of the prism at different incidence angles

Figure5b shows that changing the incidence angle altered the surface pressure
distribution on the faces of the prism, which led to alteration of the force andmoment
coefficients. Increasing the incidence angle disrupted the surface pressure distribution
symmetry and moved location of the stagnation point on the prism. At i = 0◦, the
pressure coefficient was negative on the frontal part of the side faces due to the
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formation of small separation bubbles. At i = 45◦, the stagnation point moved on
the edge of the windward and front faces. This modification increased the pressure
coefficient and altered the pressure distribution on surfaces of the prism. This is a
sufficient measure to identify onset of the formation of vortical structures, which is
important in development of mechanisms to control the wake.

4 Conclusion

This study numerically examined the wake of a wall-mounted rectangular prism
with an aspect ratio of 1.2 and depth ratio of 4.15 at different incidence angles. The
Reynolds number based on the height of the prism was Re = 250, which constituted
a steady wake at zero incident angle. The results demonstrated that increasing the
incidence angle leads to the formation of a vortex tube in the wake. At a critical
incidence angle of 40◦ ≤ i ≤ 45◦, the flow behavior changed to unsteady, which
coincided with the formation of helical structures. The time-averaged vorticity dis-
tribution revealed an extra focal point in the wake due to the formation of a new
unsteady vortical structure. The results demonstrated that changing the incidence
angle altered position of the stagnation point and changed the surface pressure dis-
tribution as a means to identify the onset of wake unsteadiness, and thus formation
of helical structures.
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A Spatially Accelerating Turbulent Flow
with Longitudinally Moving Walls

Matthew Falcone and Shuisheng He

Abstract A new theory is proposed to explain the development of spatially acceler-
ating flowswith the aim of helping to resolve some of the long-standing issues related
to the understanding of their development. This new theory postulates that on the
onset of the acceleration a new laminar boundary layer forms superimposed on the
existing turbulent flow with the development of the accelerating flow characterised
by the development and subsequent transition of the new boundary layer. The theory
has been tested using Direct Numerical Simulations of an innovative idealised accel-
eration using an accelerating moving wall which results in a relative acceleration
between the wall and the fluid. The results indicated that the flow in general behaves
similarly to previous studies and is found to support the new theory. u′u′ is found
to exhibit downstream growth from the onset of the acceleration consistent with the
amplification of the near-wall structures by the new boundary layer. Increases in the
wall-normal and spanwise stresses does not occur until the onset of transition where
turbulent spots begin to develop. The theory is also supported by the lack of response
from the eddy viscosity prior to the new boundary layer’s transition.

1 Introduction

Spatial acceleration is encountered in a wide range of engineering applications such
as turbomachinery and airfoils in addition to natural flows. However, despite its
prevalence, spatial acceleration contains interesting and not well-understood phe-
nomena including laminarisation which can have a significant effect of flow physics.
Laminarisation occurs when a turbulent flow reverts to a more laminar-like state and
has been found to occur in flows undergoing severe spatial acceleration. The process
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bywhich this reversion occurs has become known as the island of ignorance. For sub-
sonic flows, spatial acceleration is typically imposed by reducing the effective flow
area which results in an increasing velocity due to mass conservation. The resulting
flow physics is thus complicated by the effect of streamline contraction which results
from the reduction in flow area.

Much of the current understanding of spatial acceleration derives from the seminal
work of Narasimha and Sreenivasan [4], who split the process of laminarisation into
four regions: Fully turbulent (I), the region after the onset of the acceleration where
the flow remains turbulent; reverse transitional (II), the region where the flow begins
to becomemore laminar-like corresponding to the location of the island of ignorance;
quasi-laminar (III), where the statistics that describe the flow tend towards values
more consistent with a laminar flow; and retransition (IV), where the flow begins to
return to the turbulent state after the removal of the acceleration. The cause of the
laminarisation was not found to be due to a significant reduction in the magnitude
of the turbulent stresses, which were in fact found to be near-frozen, but due to
their relative domination by the increasing pressure gradient which results from the
acceleration. This phenomenon has since been referred to as ‘soft’ laminarisation
[3]. This also raises important questions as to why the Reynolds stresses freeze with
the onset of acceleration.

The new theory proposed here is that on the onset of the acceleration a new
laminar boundary layer forms superimposed on the existing turbulent flow with the
phenomena of the accelerating flow characterised by the development, growth and
subsequent breakdown to turbulence of this new boundary layer in a process akin to
bypass transition. As will be shown, this theory has the potential to explain aspects of
spatial acceleration notwell explained by the current theory including the cause of the
frozen Reynolds stresses. It should also be noted that there are some key differences
between the new theory and the current understanding of spatial acceleration. Firstly,
previous studies have alluded to the development of a laminar sub-boundary layer
as a result of the laminarisation [4]. Here, we propose that the new boundary layer
develops from the onset of the acceleration and hence would develop irrespective of
the presence of laminarisation. Secondly, a key aspect of the new theory is that the
onset of transition/retransition is, like bypass transition, linked to the development
of instabilities in the new laminar boundary layer and is not inherently linked to the
end of the acceleration.

This paper presents Direct Numerical Simulations (DNS) of an idealised spatially
accelerating flow which has utilised longitudinally non-uniform moving walls to
provide a relative spatial acceleration. The purpose of this is to understand the effect
of flow acceleration on a simpler flow setup to test the potential of this new theory
without some of the complex physics associated with typical spatially accelerating
flows including streamline contraction.
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2 Methodology

TheDNSwas performed using an ‘in-house’ channel flow solver, CHAPSim [1]. The
solver uses a temporal discretisation comprising a third-order, low-storage Runge-
Kutta scheme for the convective terms and the implicit second-order Crank-Nicolson
scheme for the diffusive terms. The idealised acceleration was implemented by mod-
ifying the streamwise velocity boundary condition of a channel flow so that the
velocity opposed the direction of the flow, with the magnitude of the wall veloc-
ity becoming larger with downstream distance resulting in a relative acceleration.
This is shown in Fig. 1 where the arrows represent the wall velocity and the yellow
highlighted region is where acceleration occurs. In this paper, a linear acceleration
is presented such that the wall velocity is defined as Uw = −Cx , where C is a posi-
tive constant. Given the absolute bulk fluid velocity, U0 is constant, the result is an
increasing relative velocity between the wall and the fluid: Urel = U0 + Cx .

A single case is shown in this paper with an inlet Reynolds number based
on the half-channel height Re0 = Urelδ/ν = 2800 (Reτ,0 = 176). The flow is lin-
early accelerated over 15 half-channel heights to Re1 = 5600 (Reτ,1 = 324). The
domain size (X × Y × Z ) was 30δ × 2δ × 4δ with a mesh of 1620 × 288 × 360.
The changes in wall, absolute and relative velocity for the case are shown in the line
plot in Fig. 1.

3 Results and Discussion

The instantaneous results highlight the key features of the development of the relative
spatial acceleration. Figure2 shows the contour plots of the instantaneous streamwise
(Fig. 2a) and wall-normal (Fig. 2b) velocity fluctuations at y+0 = 4.9. The red line

Fig. 1 Schematic of the methodology used to create the relative acceleration. Top: the walls of a
channel flowwith the arrows representing the wall velocity. Bottom: The absolute, wall, and relative
flow velocities for the case. The dashed lines represent the start and the end of the acceleration



112 M. Falcone and S. He

Fig. 2 x − z contours of u′ (a), and v′ (b). Black lines at x/δ = 0 and x/δ = 15 represents the
start and end of the acceleration. The red line indicates the onset of transition as indicated byC f,min

indicates the approximate location of the onset of transition. Prior to the start of
the acceleration, u′ exhibits the ubiquitous near-wall streaky structures present in
wall shear flows. After the start of the acceleration at x/δ = 0, the near-wall streaks
strengthen mildly. At x/δ ≈ 6, localised spots begin to appear in the contour plot
indicated by the patches of larger magnitude fluctuations of shorter spatial scale.
These spots, which initially coexist with the strengthened streaks, grow as they are
convected downstream as indicated by the spots at different stages of development
(at x/δ ≈ 6, x/δ ≈ 8, x/δ ≈ 10 ). By the end of the acceleration at x/δ = 15, new
turbulence is found to extend across the spanwise extent of the wall. In contrast,
v′ remains unaffected by the acceleration until the onset of transition, where spots
appear coincident with the spots in u′.

This development can be explained by the new theory. The new boundary layer,
forming on the onset of the acceleration, modulates the pre-existing turbulent struc-
tures resulting in the stretching of the near-wall streaks by the mean shear associated
with the developing boundary layer and extracting energy from the mean flow as
indicated in Fig. 2a. Eventually, similar to bypass transition, secondary instabilities
develop on these strengthened streaks resulting in their breakdown forming turbu-
lent spots. Given the streaks are streamwise turbulent structures, their strengthening
primarily affects u′ and thus v′ does not increase until the streaks breakdown with
the onset of transition. The development of the fluctuations exhibits similarities to
contour plots found in studies of bypass transition [2]. Consequently, the stages of
transition in this flow can be described similarly to Jacobs and Durbin [2] with pre-
transition (0 < x/δ � 6), transition (6 � x/δ � 15), and fully turbulent (x/δ � 15).

The flows can be further characterised through statistics. Figure3a shows the
development of the maximum normal Reynolds stresses to illustrate the disturbance
energy growth. u′u′ exhibits downstream growth from the start of the acceleration
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Fig. 3 a The maximum normal Reynolds stresses against x/δ. Each component is annotated in
figure. The vertical line represents the location of C f,min . b Skin friction coefficient, C f

similarly to studies of spatial acceleration [5], associated with rises in production,
while v′v′ andw′w′ shows a clear delay until the onset of transitionwhich is consistent
with Fig. 2 and is indicative of the freezing of wall-normal and spanwise stresses
observed in spatial acceleration. This delay is also associated with the response of
pressure strain (not presented) which until the onset of transition remains subdued.
Figure3b shows the development of the skin friction coefficient,C f . After the start of
the acceleration, C f rises briefly before falling rapidly due to the increasing velocity
and reaches a minimum before increasing rapidly following the onset of transition.
C f,min , similar to bypass transition appears to be an indicator of the location of the
onset of transition. These results show that in this case the onset of transition occurs
well before the end of the acceleration. This indicates that, as suggested by the new
theory, transition is not inherently linked to the end of the acceleration.

Figure4a shows that the Reynolds shear stress, u′v′ increases by ∼ 60% during
pre-transition which is limited to the near-wall region (y+ ∼< 60). With the onset
of transition, u′v′ increases over a broad wall-normal region, the extent of which
increases with downstream distance. These changes are again consistent with previ-
ous investigations of spatial acceleration [5]. The eddy viscosity, μt is presented in
Fig. 4b which shows that during pre-transition it remains constant. This is significant
as it implies that the increasing u′v′ during pre-transition is entirely related to the
increase in mean shear consistent with a laminar-like response of the flow to the
acceleration during pre-transition. After the onset of transition, the eddy viscosity
begins increasing progressively from wall to the centre of the channel.



114 M. Falcone and S. He

Fig. 4 a Reynolds shear stress, u′v′ and b eddy viscosity, μt against y/δ. x/δ ∈
{0, 2, 4, 6, 9, 13, 17, 21}. Blue lines indicate locations before transition; red lines those after

4 Conclusion

An innovative methodology has been used to test a new theory for spatially accelerat-
ing flows. The methodology uses an accelerating moving wall to create an idealised
spatial acceleration which replicates many of the key developments found in conven-
tional spatial acceleration. It has been found that the new theory is well-supported
by the development of the flow and future work will include testing the new theory
on more conventional spatially accelerating flows.
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Dissimilarity Between Heat and
Momentum Transfer of Turbulent Heat
Transfer over Surfaces with Hemisphere
Protrusions

Rika Nagura, Yusuke Kuwata, and Kazuhiko Suga

Abstract To explore how the roughness arrangement affects the turbulent heat trans-
fer, direct numerical simulations of turbulent heat transfer over walls with regu-
larly distributing hemisphere protrusions were performed by the lattice Boltzmann
method. The friction Reynolds number was fixed at 660 and the fluid Prandtl num-
ber was 0.71 assuming an air flow. The roughness increases the momentum transfer
more than the heat transfer. The Reynolds analogy factor, which measures the dis-
similarity between themomentum and heat transfer, can be expressed as a function of
the skin friction coefficient, inner-scaled equivalent roughness, and Prandtl number
regardless of the roughness arrangement.

1 Introduction

The heat transfer over a roughened wall is of great engineering interest because the
presence ofwall roughness leads to a considerable enhancement ofmomentum,mass,
and heat transfer. As the wall roughness enhances turbulence, secondary or tertiary
flow as well as flow mixing, artificial roughness is frequently created to increase
the heat transfer performance of engineering devices, such as internal cooling inside
turbine blades [1], solar thermal systems [2], and heat transfer pipes [3]. Hence, a
great deal of effort has been made to understand the effects of the wall roughness on
heat and momentum transfer.

With regard to the momentum transfer, wall roughness hardly affects the momen-
tum transfer provided that the wall roughness is buried within the viscous sublayer
but has a considerable impact when the wall roughness protrudes into the logarith-
mic layer. As a consequence of the enhancement of the momentum transfer, the
skin friction coefficient at a rough surface increases resulting in a downward shift in
the inner-scaled mean velocity. It is well established that the downward shift in the
mean velocity profile, which is referred to as the velocity roughness function, can be
expressed as a function of the inner-scaled equivalent roughness [4].
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As for the effects on the heat transfer, wall roughness also leads to a downward
shift in the inner-scaled mean temperature profiles due to an increase in the heat
transfer over a rough surface. However, as the Reynolds analogy does no longer hold
for rough wall turbulence, the temperature roughness function, which is a downward
shift in the inner-scaled mean temperature profile, is lower than the velocity rough-
ness function even though the Prandtl number is unity. There is still much controversy
about the effects of wall roughness on the dissimilarity between the heat andmomen-
tum transfer and no universally-accepted correlation that can accurately predict the
heat transfer rate over a rough surface. In this study, for the improvement of the
prediction of turbulent heat transfer over a rough surface, we investigate the effects
of the roughness arrangement on the dissimilarity between the heat and momen-
tum transfer by means of direct numerical simulations (DNSs) of the turbulent heat
transfer over surfaces with hemisphere protrusions.

2 Flow Conditions

A schematic of a rough-walled open-channel flow is shown in Fig. 1. Periodic bound-
ary conditions were applied to the streamwise (x) and spanwise (z) directions,
whereas a slip wall was considered for the top wall. The bottom wall was rough-
ened by regularly distributing hemisphere protrusions with relatively large size of
k = 0.3Ly , where Ly is the open-channel height. The distances between two neigh-
boring hemispheres in the streamwise and spanwise directions (px and pz , respec-
tively) were systematically varied with the roughness density being fixed as shown in
Fig. 1. The rough surface is named NXMZ, where N = px/k and M = pz/k stand
for the streamwise and spanwise hemisphere pitches, respectively. The surface for
case 20X2.5Z in Fig. 1a has the smallest spanwise pitch of pz = 2.5k yielding the
largest streamwise frontal area, whereas the surface for case 2.5X20Z in Fig. 1d has
the smallest frontal area. The streamwise and spanwise computational domain size
were respectively Lx = 6Ly and Lz = 3Ly for cases 20X2.5Z, 10X5Z, and 5X10Z,
but extended to 6δ in the spanwise direction for case 2.5X20Z. A flow was driven
by a constant streamwise pressure difference, and the friction Reynolds number was
fixed at Reτ = 660. The fluid Prandtl number was Pr = 0.71 assuming an air flow.

The flowfieldwas simulated by theD3Q27multiple-relaxation-time lattice Boltz-
mannmethod (LBM) [5], whereaswe usedD3Q19 regularizedLBM[6] for the scaler
field. The computational grid was uniform with equal spacing in all directions, and
the grid points across the half channel height were 270 such that the resolution in
wall units is comparable to those used in the lattice Boltzmann DNS studies [7].
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Fig. 1 Computational geometry of a rough-walled open channel flow

3 Results and Discussion

The modification of the mean velocity and temperature profiles are presented in
Fig. 2, where the superficial x − z plane-averaged inner-scaled streamwise mean
velocity u+ and mean temperature θ

+
are shown against the inner-scaled effective

wall-normal distance y+
e . Here, θ indicates the fluid temperature T relative to thewall

temperature Tw: θ = T − Tw, and the effective wall-normal distance ye is defined as
the wall-normal integral of the x − z plane porosity: ye = ∫ y

0 ϕdy, which accounts

for a virtual origin of a rough wall [7]. The figure confirms that the u+ and θ
+
profiles

for rough wall cases are shifted downward. The hemisphere arrangement affects the
u+ profiles considerably, whereas the θ

+
profiles remain almost unaffected. The

downward shift in u+ is the largest for case 20X2.5Z, followed by 10X5Z, 5X10Z,
and 2.5X10Z.

Fig. 2 a Inner-scaled streamwise mean velocity profiles, b Inner-scaled mean temperature profiles.
The DNS data from [8] is also included
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Fig. 3 Velocity and temperature roughness function against the inner-scaled equivalent roughness.
The experimental data from [14], and the DNS data for sinusoidal roughness from [10] and grid-
blasted surface from [9] are shown

To better understand the behaviors of the downward shift values, the velocity and
temperature roughness functions (�U+ and ��+, respectively) are plotted against
equivalent roughness height k+

s in Fig. 3. For comparison, the DNS data for the
sinusoidal roughness from [10] and grid-blasted surface from [9] are also shown.
Here, �U+ (��+) is defined as a mean difference in the u+ (θ

+
) profile between

the smooth wall and rough wall cases in k < y < δ. The trend of ��+ against k+
s is

found to be very different from that of�U+:�U+ monotonically increases with k+
s ,

whereas ��+ for the present results exhibits an almost constant value of ��+ � 3
despite the considerable difference in the hemisphere arrangement. This plateau
value is seemed to be somewhat smaller than those for the sinusoidal roughness
and grid-blasted surface, indicating that the heat transfer enhancement relative to
the momentum transfer enhancement is smaller for the present rough surfaces. The
possible explanation is that the present rough surfaces tend to yield larger pressure
drag which increases the momentum transfer but not the heat transfer. It is well
established that �U+ against k+

s collapses onto a single curve irrespective of the
surface texture in the fully rough regime; however, ��+ against k+

s is found to be
rather scattered, indicating that ��+ is not expressed as a function of k+

s solely but
other roughness or flow parameters should be taken into account.

To quantify the augmentation of the heat and momentum transfer, the skin friction
coefficient C f and Stanton number St normalized by the corresponding values C f 0

and St0 for smooth wall turbulence are shown in Fig. 4. Note that C f and St are the
averaged values over the rough surfaces. For a better physical understanding, C f

is decomposed into the contribution by the pressure and viscous effects. It is clear
that the augmentation of C f can be attributed to the role of the pressure, and the
contribution by the pressure largely depends on the hemisphere arrangement. On the
other hand, although St is also enhanced by the wall roughness, the augmentation
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Fig. 4 a Augmentation of the skin friction coefficient C f /C f 0 and b augmentation of the Stanton
number St/St0

Fig. 5 Comparison of the
Reynolds analogy factor
normalized by the smooth
wall value RA/RA0

of St is much smaller than that of C f , which is considered to be due to an absence
of the pressure term in the energy equation. Both C f and St show the largest values
for case 20X2.5Z where the streamwise frontal area is the largest, whereas the case
with streamwise aligned roughness elements (case 2.5X20Z) results in the smallest
C f and St values.

Finally, to explore the predictivemethod for the dissimilarity between themomen-
tum and heat transfer, we discuss the Reynolds analogy factor, which is defined as the
ratio of the doubled Stanton number to the Skin friction coefficient: RA = 2St/C f .
When the heat transfer exceeds the momentum transfer, the RA value is greater than
unity, whereas it is less than unity in the opposite situation. Figure5 presents the
Reynolds analogy factor RA normalized by a corresponding value for smooth wall
turbulence RA0, together with the correlation proposed by [12]:

RA/RA0 = Pr2/3

1 + √
0.5C f

(
5.19(k+

s )0.2Pr0.44 − 8.5
) , (1)

and that by [11],

RA/RA0 = Pr2/3

Prt + √
0.5C f

(
(k+

s )0.2Pr0.44/C
) . (2)



120 R. Nagura et al.

where the turbulent Prandtl number is assumed to be unity, Prt = 1, and the model
constant of C = 0.35 is assigned [13]. The figure demonstrates that the RA values
predicted by the (1) and (2) are lower than unity, suggesting that both of the models
reproduce the dissimilar trend between the heat and momentum transfer. In particu-
lar, the correlation by [12] gives solutions that are significantly closer to the present
DNS results. This suggests that the Reynolds analogy factor, which measures the
dissimilarity between the heat and momentum transfer, can be expressed as a func-
tion of the skin friction coefficient, Prandtl number, and the inner-scaled equivalent
roughness, irrespective of the roughness arrangement.

4 Conclusion

Direct numerical simulations of turbulent heat transfer over walls with regularly dis-
tributing hemisphere protrusions is performed to get insight into how the roughness
arrangement affects the turbulent heat transfer. The roughness arrangement largely
affects the momentum and heat transfer: the augmentation of the momentum and
heat transfer is the largest for the surface with the maximum streamwise frontal
area, whereas it is the smallest for the streamwise-aligned hemisphere protrusions.
As the hemisphere protrusions particularly increases pressure drag, the roughness
increases the momentum transfer more than the heat transfer, resulting in the dissim-
ilarity between the momentum and heat transfer. The Reynolds analogy factor can
be expressed as a function of the skin friction coefficient, inner-scaled equivalent
roughness, and Prandtl number regardless of the roughness arrangement.
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The Diagnostic Plot—A Tutorial
with a Ten Year Perspective

P. Henrik Alfredsson, Antonio Segalini, and Ramis Örlü

Abstract The diagnostic plot was introduced in 2010 (Eur. J. Mech. B/Fluids 29:
403–406) but was used already in 2008 during a large measurement campaign as a
litmus test to determine if tripped zero-pressure gradient turbulent boundary layers
fulfilled basic criteria of being canonical. It used the rms-level of streamwise velocity
(urms) in the outer part of the boundary layer, a region where urms can give clear
indications if insufficient or too tough tripping has been used. In standard plots one
needs both the friction velocity and measurement of the full velocity and turbulence
profiles. By instead plotting urms/U∞ as a function of U/U∞, it was found that this
gives rise to a well-defined distribution that could be used as a canonical measure.
It was later discovered that it is possible to extend the description to the near wall
region. It has also been extended to boundary layers over rough surfaces and with
pressure gradients, and some further uses. This paper aims to be both a review of the
development of the method during the last 10+ years and a tutorial for those who
want to employ it in their research and maybe also find new uses of the methodology.

1 Introduction

Turbulent shear flows, whether boundary layers, channel or pipe flows, as well as jets
or wakes, are often analyzed assuming some form of similarity. Two prime examples
of such an analysis are the planar turbulent wake and jet, where in the fully developed
region (i.e. far from the wake-generating body or the jet exit), one assumes the mean
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Fig. 1 The diagnostic plot used to evaluate the development towards a self-similar state for a
two-dimensional turbulent jet at Re = 14500, data replotted from Ref. [8], both sides of the jet are
shown. Red lines 0.5 < x/D < 20, black lines 20 < x/D < 40, where D is the nozzle width

velocity and higher moments to be expressed in similarity form. As an example, one
can describe the jet streamwise (x) mean velocity (U ) and variance (uu) as

U (x, y) = Uc(x)F
′[y/δ(x)] and uu = U 2

c (x)g[y/δ(x)]

where y is the cross-flow coordinate, Uc is the centreline (y = 0) velocity and δ(x)
is some suitable cross-flow length scale. This immediately gives the possibility to
write

uu/U 2
c = H [U (x, y)/Uc(x)] or urms/Uc = h[U (x, y)/Uc(x)]

If similarity holds for x/D larger than some value where initial conditions do not
play a role, plots of urms/Uc vs U/Uc should then collapse on a single curve (see
Fig. 1 obtained from data in Ref. [8]); such a plot has now become known as the
diagnostic plot, Ref. [1]. As can be seen in the figure the data approach a single curve
as x/D increases and above approximately x/D > 20 similarity seems to hold.

For wall-bounded turbulent flows the situation is more complicated as compared
to jets and wakes since the wall-normal distribution depends on two different length
scales: the inner or viscous scale and an outer scale related to a measure of the
boundary-layer thickness, i.e. the size of the flow. Furthermore there are two different
velocity scales, an outer velocity scale (free-stream velocity in boundary layers or
centreline velocity in channel and pipe flows) and the friction velocity determined
from thewall shear stress. The diagnostic plotwas first used for zero pressure gradient
turbulent boundary layers (ZPGTBL) [1] and was shown to work well in the outer
region when the scaling velocity is the free-stream velocity U∞, as can be seen in
Fig. 2. An important aspect of this way to plot the data is that neither the friction
velocity nor the exact determination of the wall position is necessary which makes
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Fig. 2 Original version of the diagnostic plot for zero pressure-gradient turbulent boundary layers
at four different Reynolds numbers adapted from Ref. [1]. The red line is a DNS at a momentum-
loss based Reynolds number of Reθ = 2510 from Ref. [17], experimental data from Ref. [12];
© : Reθ = 2540,� : Reθ = 8100,� : Reθ = 18700. Blue dashed line indicates the tangent to the
data in the viscous sublayer corresponding to the magnitude of the rms of the wall shear stress
fluctuations normalized by its mean, here 0.4

analysing the data in this way much less cumbersome than by scaling both velocity
and wall distance with the friction velocity, a quantity that needs to be determined
accurately by some independent mean.

As can be seen in Fig. 2 the collapse of the data for the three Reynolds numbers
shown is quite good in the range 0.6 < U/U∞ < 1 whereas in the range 0.2 <

U/U∞ < 0.6 they diverge and then start to collapse again for for U/U∞ < 0.2. In
terms of y+, U/U∞ ≈ 0.6 is found in the lower part of the logarithmic region (the
exact value depends on the Reynolds number), for instance for Reτ = 4 · 103 and
4 · 105 the corresponding y+-values are approximately 200 and 2000, respectively.

In this paper we will summarize our ownwork using the diagnostic concept, show
how it can be used to formulate a description of urms that is valid across the boundary
layer (as well as for pipe and channel flows) for arbitrary Reynolds numbers, how
it can be used to estimate the thickness and “free-stream velocity” of atmospheric
boundary layers fromvelocitymeasurements close to the ground, and that the concept
actually predicts the existence of an outer peak of urms at sufficiently high Reynolds
numbers. We will also show that the diagnostic concept can be used for higher-order
moments, rough-wall boundary layers, for non-zero pressure gradients boundary
layers as well as for more complex flows.

2 The Background and Original Diagnostic Plot

In studies of wall-bounded turbulent flows the custom is to scale the mean velocity
and the Reynolds stresses using the friction velocity uτ as the scaling parameter and
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Fig. 3 Mean velocity and urms distributions of ZPGTBLnormalizedwith inner variables at different
Reynolds numbers. Red profiles are from LES by Ref. [7], blue profiles from experiments by
Ref. [15]. Vertical dashed lines indicate the limits described in Table1, where the two outermost
ones are for the highest Re case

Table 1 Increments of the streamwise velocity for different regions in the diagnostic plot formu-
lation for the highest friction Reynolds numbers of the LES and the experiments in Fig. 3

Boundary layer
region

y range Reτ = 2500 Reτ = 20000

Viscous sublayer 0 < y+ < 5 0.00 < U/U∞ < 0.18 0.00 < U/U∞ < 0.15

Buffer region 5 < y+ < 100 0.18 < U/U∞ < 0.59 0.15 < U/U∞ < 0.50

Logarithmic region 100 < y+,
y/δ < 0.15

0.59 < U/U∞ < 0.71 0.50 < U/U∞ < 0.77

Wake region 0.15 < y/δ < 1 0.71 < U/U∞ < 1.00 0.77 < U/U∞ < 1.00

normalize the distance from the wall with the viscous length scale �∗ = ν/uτ such
that the wall-normal distance y is denoted as y+ = y/�∗. To scale the flow far from
thewall an outer length scale, such as the boundary layer thickness (δ) or channel half
height/pipe radius, is usually used. To illustrate the background to the diagnostic plot,
we use a set of nine boundary layer profiles, the five with lowest Re are from LES [7]
whereas the four for high Re are from experiments [15]. The mean velocity profiles
are plotted in Fig. 3 in the standard semi-logarithmic format where it is divided
into four parts; the viscous region 0 < y+ < 5, the buffer region 5 < y+ < 100, the
logarithmic region between y+ > 100 and y/δ < 0.15 and finally thewake region for
y/δ > 0.15. Table1 shows the approximate ranges of the streamwise velocity for the
different regions for the highest friction Reynolds numbers of the LES (Reτ = 2500)
and the experiments (Reτ = 20000). In physical distances the size of the four regions
are very different, however in terms of increments in U+(= U/uτ ) or U/U∞ they
are of the same order. As can be observed, the largest change with Reynolds number
is within the logarithmic region. Also shown in Fig. 3 are the corresponding urms

profiles for the same nine cases plotted in standard format.
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Fig. 4 Same data as in Fig. 3 plotted in original diagnostic form and extended diagnostic form. The
dashed slope is from Eq.1. The arrows indicate increasing Reynolds numbers

In the first published paper [1] on the diagnostic plot it was suggested that if urms

normalized with U∞ was plotted as function of U/U∞ one could clearly obtain a
“litmus” test both of the data in the viscous sublayer and in the outer region (see
Fig. 4). In the viscous sublayer urms should increase linearly with U up to about
U+ = 5, i.e. of the order ofU/U∞ = 0.2. In the outer region all data should collapse
on a single curve in the approximate region 0.5 ≤ U/U∞ ≤ 1. In a later paper [2]
an extended version of the diagnostic plot was suggested by normalizing urms with
the local streamwise velocity. In that scaling the data in the outer region followed a
straight line; the higher the Reynolds number the wider the range of U/U∞ where
this line fitted the data (see Fig. 4).

A fitting to the data points in this linear region gives the following expression for
the line

urms

U
= α − β

U

U∞
(1)

with α = 0.29 and β = 0.26.
An interesting aspect of this linear relation is that it predicts a maximum in

urms/U∞ = α2/4β = 0.08 at U/U∞ = α/2β = 0.56 as long as the data lies along
the line given by Eq.1. As can be seen from Fig. 4 this is only the case if the Reynolds
number is high enough and explains why the so called “outer peak” can only be
observed if the local turbulence intensity follows the linear behaviour at least down
to U/U∞ = 0.56, corresponding to a threshold value of around Reτ = 20000. It is
also interesting to note that the maximum value of urms/U∞ and its position in terms
of U/U∞ is independent of Reynolds number. However, in traditional scaling, i.e.
urms/uτ , the maximum increases with Re as well as its position in wall units. The
experimental high Reynolds number data in Fig. 4 barely reaches below this value
and only a weak maximum can be discerned for the highest Re.
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Fig. 5 Same data as in Fig. 3 plotted as function ofU+, andwith the linear relation (Eq.1) subtracted

3 Extension to the Near Wall Region

As can be seen in Fig. 4, the data in the near wall region do not collapse as expected
since it is well known that near the wall viscous scaling applies. If instead urms/U
is plotted versus U+ as in Fig. 5, one finds a nice collapse in the inner region. By
subtracting the linear relationship (Eq.1) found in the outer region, one obtains a
unique collapse of the data in the near wall region. Alfredsson, Örlü & Segalini [3]
fitted a difference function 	 to the data and obtained an empirical description of
urms/U across the boundary layer (except in the outermost region where the data
deviates from the straight line) which reads:

urms = U
[
α − β

U

Umax
+ 	

( U

Umax
U+

max

)]
(2)

In Eq.2 one observes that the Reynolds number dependence of the urms profile
only enters through U+

max in the 	 function.

4 How the Diagnostic Idea Can Be Used to Predict High
Re Flows

The relations (Eqs. 1, 2) described in Sect. 3 can now be used to predict the urms distri-
bution in any scaling if the mean velocity distribution is known. Figure6 shows urms

for a wide range of Reynolds numbers, both in diagnostic form and in standard form,
i.e. u+

rms as function of y+. The composite boundary layer profile given in Ref. [11]
has been utilized for the mean velocity description.What can be noted is that for high
enough Reynolds numbers an outer peak develops that actually overtakes the inner
peak at y+ ≈ 15. Here outer is maybe a misnomer since this broad peak is located in
the logarithmic layer andmoves outwards approximately as Re0.56τ . Another interest-
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Fig. 6 Prediction of urms in diagnostic and standard forms. The arrows indicate increasingReynolds
numbers. The Reynolds numbers predicted are Reτ = 103, 3·103, 104, 3·104, 105, 3·105, 106

ing observation is that the model predicts that the inner peak increases with Reynolds
number and this is an effect of that the linear region (in the extended diagnostic scal-
ing) expands to lower values of U/U∞ as the Reynolds number increases. One may
interpret this as an increased influence of outer region large scales on the near-wall
flow.

If one wants to compare these predictions for high Reynolds numbers with exper-
imental or numerical data, there are few data sets that are available. The ones that
exist for truly high Reynolds numbers and have sufficient spatial resolution not to
distort the results are from the atmospheric boundary layer; this is a complication for
the diagnostic plot methodology since for such data the free-stream velocity is not
known a priori. As suggested in Ref. [1], an equivalent free-stream velocity can be
estimated by fitting the data by varying the value ofU∞ to the description in the outer
region (see Fig. 4), assuming that Reynolds number effects are small. This method
has been applied to the atmospheric SLTEST data (Ref. [10]) in Fig. 7. Although
the atmospheric data show more scatter than typical wind-tunnel data, they nicely
follow the trend suggested by the diagnostic plot and an outer maximum is found as
predicted. In addition to the atmospheric data in Fig. 7, data from DNS and wind-
tunnel experiments, different from those in previous figures, are included. This also
shows that the data in previous figures were not “cherry-picked”.

5 Use in Complex Flow Situations—Rough Wall Example

So far we have discussed the diagnostic plot for smooth wall ZPGTBL but it has been
found that it can be used with some modifications also in other more complex flow
situations, such as rough-wall boundary layers and boundary layers with pressure
gradient. Castro, Segalini & Alfredsson [4] found that, if the extended version of the
diagnostic plot was used for rough-wall boundary layers, the data still followed a
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Fig. 7 Data spanning a large Re-range, DNS data [18]: red lines Reτ = 250 − 1300; hot-wire
wind-tunnel data [12] ◦: Reτ = 850, LDV wind-tunnel data [5] 
: Reτ = 1700, ♦, Reτ = 4300,
�, Reτ = 10000, hot-wire measurements from the SLTEST [10]: ∗,×,+, Reτ ≈ 106. Data plotted
in diagnostic plot and in standard format, i.e. u+

rms vs y
+

straight line but with increasing slope with increasing roughness strength until the
slope saturated at fully rough conditions (see Fig. 8). However they also found that,
if the plot was modified by taking the downward shift of the mean velocity (	U ) in
the logarithmic region for the rough boundary layer into account by modifying the
normalizing velocities such that the plot was

urms

U + 	U
vs

U + 	U

U∞ + 	U
,

all data followed the smooth-wall line (see Fig. 8). The diagnostic methodology is
well adapted to rough-wall boundary layers since neither the exact wall position, nor
the friction velocity are needed, both hard to accurately determine for a rough-wall
case, as pointed out by e.g. Refs. [9, 14].

Some further examples of the use of the diagnostic plot in more complex flows
are TBL with pressure gradients [6] and in three-dimensional flows [19].

6 An Example: How the Diagnostic Plot Can Be Used in
Practice

The diagnostic plot was initially proposed as a simple way to determine if a turbulent
boundary layer is in a canonical state. This idea was further exploited by Sanmiguel
Vila et al. [16]. Figure9 shows an example where a hot wire is traversed in the
streamwise direction inside the boundary layer, whereas the inset shows how urms/U
varies at the measurement position. When the data falls on the line, the boundary
layer could be assumed to be in a canonical state. The beauty of this method is
that the measurements can be performed at arbitrary y-positions as long as they are
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Fig. 8 Rough-wall ZPGTBL data plotted in the extended diagnostic plot and the modified velocity
scaling taking the shift 	U in the logarithmic region into account. U ′ = U + 	U and U ′∞ =
U∞ + 	U . Figures adapted from Ref. [4]

0 0.5 1 1.5 2 2.5

 x [m]

0.7 0.8 0.9 1

 U/U

0

0.05

0.1

0.15

 u
rm

s/U

Fig. 9 Illustration on how the diagnostic plot can be used to determine at which x-position a
ZPGTBL can be assumed to be in a canonical state. Data from Ref. [16]

within the straight-line region given by Eq.1, which amounts to a large fraction of
the boundary-layer height. The red data points in Fig. 9 indicate at which x-positions
the boundary layer is in the canonical state.

7 Summary and Conclusions

The diagnostic-plot methodologywas introducedmore than 10years ago as amethod
to discern if a ZPGTBL reached a canonical state by using rms data of the streamwise
fluctuations in and above the logarithmic region. It was also a method that could
easily show if measurements in the viscous sublayer were affected by near-wall
effects. It was further developed to establish a unique relation of urms in the buffer
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region. One of the strengths of the method is that it does not rely on neither the exact
determination of the measurement position with respect to the wall nor the friction
velocity. It has furthermore shown that the long-discussed existence of an “outer”
peak in the urms-distribution can only be observed for sufficiently high Reynolds
numbers and the method gives a quantitive answer on how large the corresponding
Reynolds number needs to be. The method can also be used to determine an effective
free-stream velocity for atmospheric boundary layer flows and has been able to
fairly accurately predict the urms-distribution measured in such flows. Furthermore
the methodology has found extensions to more complex flow situations, such as
rough-wall boundary layers and TBLs with pressure gradients. It should also be
pointed out that the methodology is not limited to TBLs but has also been shown to
work equally well for channel and pipe flows [3] and can be further generalized to
higher-order moments [13].

However one should point out that so far there is no clear explanation for the
success of the methodology although one may compare with the successful use a
similarity analysis for the analysis of jets and wakes. The analysis has some further
implications in the outer region of wall-bounded flows as one can write

−uv

u2τ
≈ 1 − y

δ
or − uv

urmsvrms
≈ U∞

urms

U∞
vrms

u2τ
U 2∞

(1 − y

δ
)

Since vrms also seems to follow diagnostic scaling (see Ref. [19], Fig. 5b), this implies
that the correlation −uv/urmsvrms decreases with increasing Reynolds number, i.e.
the turbulence within the outer region of a TBL tends towards isotropy.
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Bayesian Optimisation with Gaussian
Process Regression Applied to Fluid
Problems

Saleh Rezaeiravesh, Yuki Morita, Narges Tabatabaei, Ricardo Vinuesa,
Koji Fukagata, and Philipp Schlatter

Abstract Bayesian optimisation based on Gaussian process regression (GPR) is an
efficient gradient-free algorithm widely used in various fields of data sciences to
find global optima. Based on a recent study by the authors, Bayesian optimisation is
shown to be applicable to optimisation problems based on simulations of different
fluid flows. Examples range from academic to more industrially-relevant cases. As a
main conclusion, the number of flow simulations required in Bayesian optimisation
was found not to exponentially grow with the dimensionality of the design parame-
ters (hence, no curse of dimensionality). Here, the Bayesian optimisation method is
outlined and its application to the shape optimisation of a two-dimensional lid-driven
cavity flow is detailed.

1 Introduction

Optimisation arises in many problems in CFD (computational fluid dynamics), in
general, and in the context of wall-bounded turbulent flows, in particular. The aim
is to either maximise or minimise an objective or cost function defined based on the
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flow quantities of interest (QoIs) through estimating optimal values for a set of design
parameters. To this end, different approaches can be used in practice, see e.g. Ref. [9].
The methods can be classified as gradient-based, gradient-enhanced and gradient-
free. When the gradients are obtained using the adjoint sensitivity method, gradient-
based optimisation methods can be very efficient particularly in large-dimensional
space of design parameters. However, these methods may find the local optima and
may suffer from an instability of the adjoint for chaotic cases. Moreover, when
applied to unsteady simulations of the Navier–Stokes equations, the gradient-based
methods may demand a large memory and also add a considerable computational
overhead. Another main approach for optimisation in CFD is the response-surface
method (RSM)which treats theflowsolver as a black-box, see e.g. [4]. Thesemethods
are non-intrusive and construct a surrogate for the objective function in the space
of design parameters using a limited number of simulations. An efficient way of
constructing the surrogate is the use of the Gaussian process regression (GPR) [10].
Although the RSM can find the global optima, in its standard form, it suffers from the
curse of dimensionality. The issue can be significantly reduced by including gradient
information in RSM, see e.g. Ref. [5].

As detailed in Sect. 2, the Bayesian optimisation employed in the present study is
among the response-surface methods, but has a distinctive characteristic: instead of a
set of fixed samples, a sequence of samples for the design parameters is drawn which
converges to the global optimum [3, 11]. Although the BO has been frequently used
in the fields of machine learning and data science [11], its application to CFD and
turbulent-flow simulations is rather recent [6, 13]. In a recent study by the present
authors [7], the BO based on GPR was shown to be applicable to a wide range of
optimisation problems arising in wall-bounded turbulent flows and boundary layers.
The considered problems range from purely academic to industrially-relevant setups
and include up to 8 design parameters. The BO-GPR was shown to be computation-
ally efficient for finding the global optima, meaning that the number of simulations
does not grow exponentially with the dimension of the design parameters.

2 Bayesian Optimisation

Let p ≥ 1 design parameters be denoted by q = (q1, q2, . . . , qp). The admissible
space of q is Q ⊂ Rp. Corresponding to each sample for q taken from Q, a flow
simulation can be performed and a realisation for the flowQoI is obtained.Depending
on the optimisation problem at hand and using a combination of theQoIs, an objective
function r(q) can be defined which can be minimised (or maximised):

qopt = argmin
q∈Q

r(q) . (1)

To briefly review the Bayesian optimisation based on GPR (BO-GPR), first a short
introduction is given to Gaussian processes. In general, the functional relationship
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for r(q) in (1) may not be known in an analytical form. Samples of r(q) can be
considered to be generated as,

r(q) = f (q) + ε , (2)

where f (q) is the computer simulator and ε represents noise. The samples of ε are
assumed to be independent and identically distributed (iid) as N(0, σ 2). An option
for constructing the surrogate f̃ (q) is to assume it be a Gaussian process (GP) [10]:

f̃ (q) ∼ GP (
m(q), c(q,q′)

)
. (3)

Here, m(q) and c(q,q′) are mean and covariance functions of the GP, which are
dependent on a set of hyperparameters, hereafter denoted by β. When instantiat-
ing f̃ (q), a prior distribution for β is assumed. Then within the Bayesian framework,
a posterior distribution for β is constructed given a set of observed data of size k,
i.e. D1:k = {q(i), r (i)}ki=1. As a result, the posterior distribution of r(q) is obtained,
and it is also a GP. Using that, mean and variance of r(q) and f̃ (q) at any test sam-
ple q∗ ∈ Q can be predicted. Note that based on the posterior predictive variance, a
confidence interval can be constructed for the predicted mean values. The BO-GPR
algorithm can be summarised as the following:

1. Start from a given D1:k .
2. Construct a GP for f̃ (q) and find the posterior distribution of the hyperparam-

eters β using D1:k .
3. Find the next sample q(k+1) through maximising an acquisition function that is

here taken to be the expected improvement (EI) defined as [3]:

EI(q) = E[max(r(q†) − r(q), 0)] , (4)

where q† = argminq∈D1:k r(q). For an iid Gaussian noise in (3), a closed-form
expression for EI(q) has been derived in [3].

4. Check convergence of the BO-GPR; if not converged, update D1:k by q(k+1),
k ← (k + 1), and go to 2.

Defining appropriate convergence criteria in the last step is problem-dependent and
can, for instance, be based on the distance between the consecutive samples of q or
having r(q†) unchanged over a certain number of samples, see [7] and the references
therein. In practice, the computational budget may also impose a limit to the number
of simulations. In step 3, when maximising EI(q), a combination of exploitation, the
use of bestq so far, and exploration, reduction of the uncertainty in theGPR surrogate,
is considered. The latter, i.e. the active involvement of the predicted uncertainty in
the algorithm, is a distinctive characteristic of the BO-GPR approach. As another
advantage, the BO-GPR algorithm is versatile meaning that it can be non-intrusively
linked to any CFD solver. For instance, a bash or Python driver can be developed
to automatise the whole machinery which comprises of drawing samples in the BO-
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GPR, pre-processing the CFD cases, and finally running and post-processing them.
In the present study, the BO-GPR algorithm is implemented using GPyOpt [14].

3 Shape Optimisation in a Lid-Driven Cavity Flow

Consider a two-dimensional (2D) cavity flow with the lid moving with a constant
velocity U0 in the positive x direction. The aim is to optimise the shape of the left
and right walls of the cavity so that the dissipation, defined as:

D = 2

Re

∫

�

Si j Si jdx , i, j = 1, 2 (5)

is minimised or maximised. In this expression, Re is the Reynolds number, Si j =
(∂ui/∂x j + ∂u j/∂xi )/2 is the rate-of-strain tensor, and� specifies the flow domain.
The optimisation is constrained to keep

∫
�
dx constant and also retain the length of

the lid and bottom surface, l, fixed. The first step to apply the Bayesian optimisation
method is to parameterise the left and rightwalls. To this end, a third-order polynomial
is considered for each wall: x̄ = a0 + a1 ȳ + a2 ȳ2 + a3 ȳ3, where x̄ = x/ l and ȳ =
y/hwith h denoting the height of the cavity. Considering the origin of the coordinates
at (x, y) = (0, 0), the constraint of keeping l fixed leads to a0,L = 0 and a3,L =
−(a1,L + a2,L) for the left wall, and, a0,R = 1 and a3,R = −(a1,R + a2,R) for the
right wall. Therefore, only four distinct design parameters are to be optimised: q =
(a1,L , a2,L , a1,R, a2,R). For these, corresponding admissible ranges are arbitrarily
chosen as Qa1,L = Qa1,R = [−0.7, 0.7] and Qa2,L = Qa2,R = [−0.5, 0.5]. Assuming
the design parameters to be uniform random variables over these ranges, the Sobol
sensitivity indices [12] are computedwhich show a larger sensitivity of x̄ to a1 than a2
at any ȳ ∈ [0, 1] (not shown here). For any sample of q taken from the 4D parameter
space Q = Qa1,L × Qa2,L × Qa1,R × Qa2,R , a new shape for the left and right walls is
obtained. Corresponding to each configuration of the cavity a computational mesh
is automatically generated by gmsh [2]. The flow simulations are performed using
Nek5000 [1] which is an open-source highly scalable spectral-element flow solver.
In Nek5000, the flow domain is decomposed into a finite number of elements. In
each element, a weak form of the incompressible Navier–Stokes equations is solved
over Gauss–Lobatto–Legendre (GLL) grid points. In the present study, 30 elements
in each of x and y directions are considered, and they are compressed towards the
walls. In each element, a 10 × 10 tensor-product grid of the GLL points is employed.

At Re = U0l/ν = 2000, the cavity shapes with minimum and maximum dissipa-
tion are shown in Fig. 1. The optimal parameters for the minimisation and maximisa-
tion are found at the 20-th and 15-th iterations, respectively. However, the sampling
was continued until 50 iterations to ensure a global optimum had been obtained.
The optimal geometries are consistent with the flow physics. In particular, for the
shape with maximum dissipation, two large vortices adjacent to the lid are generated
which prevent the velocity underneath to increase. The optimal shapes in Fig. 1 can
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Fig. 1 Contours of the velocitymagnitude normalizedwith the lid velocityU0 of the 2D cavity flow
with (left) minimum and (right) maximum energy dissipation. The flow is steady with Re = 2000

be compared to the results reported by Nakazawa [8] using an adjoint method for
optimisation. For the minimisation case, the obtained cavity shapes are similar for
both BO-GPR and adjoint methods. But this does not hold for the geometry with
maximum dissipation. Aside from the difference between the Reynolds number in
the two studies, the mismatch can be due to the fact that the BO-GPR finds the global
optima. In Fig. 2, the surface of the response r(q) in (3) (here is the dissipation) is
plotted in the 2D subspace a1,L − a1,R of the original 4D parameter space. In the
plots, the values of a2,L and a2,R are fixed at their computed optima. In Fig. 2a, b,
the response surfaces are obtained using the samples generated in minimisation and
maximisation, respectively. Clearly, samples are clustered around the global opti-
mum in each case, confirming the fact that the BO is goal-oriented and the sequence
of samples quickly moves toward the optima. In the same 2D subspace by combin-
ing the samples acquired in minimisation and maximisation problems, more detailed
response surfaces are constructed as illustrated in Fig. 2c, d. Through the compar-
ison, the strong point of the BO-GPR algorithm in finding global optima becomes
even more visible. An important feature of the GPR is the automatic estimation of
the uncertainties of the constructed surrogate over the parameter space, which are
represented by the surfaces of the 95% confidence interval in Fig. 2. Reducing such
uncertainties is a main driver in the BO algorithm.

4 Conclusion and Outlook

The Bayesian optimisation (BO) based on Gaussian processes regression can be an
efficient way of tackling optimisation problems arising in wall-bounded turbulent
flows. For such applications, the accuracy and cost-effectiveness of the BO has been
recently shown by the authors [7]. The encouraging results have motivated applying
the BO to scale-resolving simulations such as large-eddy simulation (LES) and direct
numerical simulation (DNS) of wall-bounded turbulent flows. To reduce the overall
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Fig. 2 Posterior surfaces of dissipation in the a1,L − a1,R plane for a, c minimisation and b, d
maximisation of the dissipation in the cavity flow, see Fig. 1. The values of (a2,L , a2,R) at these
surfaces are fixed at a, c (−0.5, 0.5), b, d (0.5, 0.5), which are equal to their corresponding optimal
values. TheGPR in a,b, and c, d is constructed using the samples taken in theminimisation problem,
maximisation problem, and combination of both sets of samples, respectively. The colored surface
shows the mean of posterior of dissipation, the red and blue wireframes represent associated upper
and lower 95% confidence intervals, and the black symbols are the samples of the design parameters
generated during the optimisation

cost in such applications and also account for the observational uncertainties involved
in the simulations data, developments are currently ongoing.
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Data-Driven Dynamics Description
of a Transitional Boundary Layer

F. Foroozan, V. Guerrero, Andrea Ianiro, and Stefano Discetti

Abstract Cluster analysis is applied to a DNS dataset of a transitional boundary
layer developing over a flat plate. The stream-wise-span-wise plane at a wall nor-
mal distance close to the wall is sampled at several time instants and discretized
into small sub-regions, which are the observations analysed in this work. Using K -
medoids clustering algorithm, a partition of the observations is sought such that the
medoids in each cluster represent themain local states. The clusteringhas been carried
out on a two-dimensional reduced-order feature space, constructed with the multi-
dimensional scaling technique. The clustered feature space provides a partitioning
which consists of five different regions. The observations are automatically classified
as laminar, turbulent spots, amplification of disturbances, or fully-developed turbu-
lence. The Lagrangian evolution of the regions and the state transitions are described
as aMarkov process in terms of transition probability matrix and transition trajectory
graph to determine the transition dynamics between different states.

1 Introduction

The dynamics of turbulent flows are non-linear and characterized by high dimen-
sionality. The capability of machine-learning (ML) tools to deal with such kind of
systems is now paving the way to promising research lines. The purpose of ML fluid
dynamics is to provide accurate and efficient reduced-order models that capture the
essential dynamical features of fluid flows at a reasonable cost [1]. A comprehensive
overview ofMLmethods used for the turbulence modelling and control is reported in
[2]. Dimensionality reduction techniques have received particular attention for flow
modelling and control purposes in an automated manner.

In this work we propose an automated flow-modelling method to describe the
transition to turbulence of a boundary layer (BL), which has important practical
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implications due to the enhanced mixing of momentum, higher skin-friction drag,
and heat transfer rates. Herewe focus on zero-pressure-gradient BL in the presence of
an external flow with free-stream turbulence, with the transition to turbulence being
classified as bypass transition [3]. The bypass transition mechanism is described as
follows. Firstly, there is a region of streaks i.e. the elongated regions of the per-
turbation of the stream-wise velocity component. Then these elongated distortions
reach large amplitude, which can be larger than 10% of the mean flow speed when
the free-stream turbulence intensity is only 3%. The streaks break down locally,
to form turbulent spots, precursors of localized regions of turbulence. Once fully
formed, these spots continue to grow and spread laterally until they merge with the
downstream, fully-turbulent region.

In this work, we aim to obtain an automatic input-free domain partitioning tech-
nique, to represent the stages of development of a transitional bypass BL. The avail-
ability of well-understood theories for the boundary-layer transition makes it an
excellent test case to explore the capabilities of ML to discover a flow theory, and
also helps us to evaluate our approach. The use of unsupervised ML techniques to
identify regions has already been explored on this dataset. An algorithm has been
successfully implemented in the work of [4] to demonstrate the ability of an unsuper-
vised self-organizing map as an automatic tool to identify the turbulent-boundary-
layer interface in a transitional flow. In contrast to this method, which separates the
points into TBL and non-TBL regions, our focus here is on detecting different stages
of the transition based on feature similarity.

The overall approach of thiswork is presented in Sect. 2, to describe the dataset and
also the implemented unsupervised-learning techniques, and the results are presented
in two main parts as kinematic (in Sect. 3) and dynamical analysis (in Sect. 4).

2 Methodology

The dataset used in this work was downloaded from the John Hopkins Turbulence
Databases, namely it is the Direct Numerical Simulation (DNS) of the transitional
BL of the incompressible flow over a flat plate with an elliptical leading edge. The
half-thickness of the plate (L) and the free-stream velocity (U∞) are used as the
reference length-scale and reference velocity respectively. The Reynolds number
based on these references quantities is 800. The free-stream turbulence intensity
is approximately 3% at the leading edge and slightly less than 0.5% at the outlet
of the simulation domain. Stream-wise velocity distribution on a wall-parallel (x-
z) plane is sampled. This plane is placed at y/L = 0.25 (with y being the wall-
normal coordinate), sufficiently close to the wall to be representative of the wall-
shear distribution. This selected domain is then discretized into small-sized square
cells (20L × 20L) to classify regions by inspecting sub-regions of the domain. The
cell size here is of the same order of magnitude as the BL thickness, in order to being
large enough to capture significant flow structures, and small enough to guarantee a
good mapping of the state of the flow, i.e. a sufficient number of cells. The data in
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each cell is captured with the spacing of 0.1L . Finally, the data is captured at several
time instants with the time spacing equal to the convective time to cross a cell with a
convection velocity equal toU∞. This choice simplifies the analysis since a pseudo-
Lagrangian dynamics of observations can be observed by simply stream-wise shift
of one cell for each snapshots in time.

Unsupervised learning methods such as Clustering andMultidimensional Scaling
(MDS) are applied and evaluated in this work. In order to get a more tractable dataset
and remove noisy and redundant features, we propose to reduce the dimensionality
before clustering. MDS is a dimensionality reduction technique that maps a set
of N points in an original p-dimensional space to a q-dimensional space, where
q << p, given only a proximity matrix. MDS does not require any prior knowledge
of the system behavior. It only expects a time-resolved sequence of observations and
a problem-dependent definition of a distance measure. Since we work with high-
dimensional datasets, taking advantage of MDS we would be able to reduce the
dimensionality of the problem while preserving the data structure in the state space.

Clustering partitions the data by introducing few representatives of the system as
basis of the reduced-order models. Here we chose an algorithm called K -medoids,
which follows the main procedure of K -means but with a different prototyping; K -
medoids selects themost centered observation belonging to the cluster as its prototype
instead of the average of the observations. This feature is advantageous since we are
seeking to find a specific pattern as the representative of each cluster.

After clustering, the dynamical behaviour between different coherent states (or
clusters) can be investigated using the Cluster Transition Matrix (CTM) P . It pro-
vides the transition of the observations from one cluster to another when advected
downstream, that identifies how the groups of observations in the domain belonging
to the same cluster change their grouping in one time step. The elements of this
matrix Pjk , describing the probability of transition from a cluster Ck to C j in a given
forward step, are defined as the number of observations that move from Ck to C j in
�t divided by the total number of observations (according to [5]).

In addition, to track the transition of cluster states in continuous time-steps, we
defined the pseudo-Lagrangian trajectory of observations in the cluster space. Cluster
Transition Trajectory (CTT) model the transition between these regions as a Markov
process. Having the trajectory of the most probable transitions between clusters,
discovers the prevailing sequence of the flow stages. This definition also helps us
to track the most upstream observations while travelling downstream. We combine
these ideas to develop our low-order model. Since this is a data-driven approach,
the model can be as informative as provided by the data. In the present problem the
temporal and spatial evolution are considered simultaneously. Here, the aim is not to
predict the future states, but rather their interpretability, which means that we need
a customized definition with links to the physics of the flow and not a hypothetical
transition time-step. Accordingly, we have defined a physics-oriented transition time,
which assumes compatible spatial and temporal steps: the convective time to cross
a specified space-resolved cell with a convection velocity equal to U∞. Since here
we have defined a homogeneous coarse-grained spatial domain, this time-step will
be fixed throughout the entire domain.
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3 Kinematic Analysis

Reducing the dimensions of the dataset enables us to plot all the data in a 2D MDS
map with the coordinates of γ1 and γ2 that provide a useful interpretability tool to
identify the characteristics of the observations which are the stream-wise velocity of
the domain captured in small cells. To investigate these characteristics, we examined
some of the points along γ1 and γ2 to illustrate them in the physical space and
observe the flow structure inside each sample cell. Accordingly, we can find the
parameters that correlate well with γ1 and γ2. This investigation showed that along
γ1, the stream-wise variance of the sampled data in the physical space, which is
an indicator of the turbulence intensity, is increasing. Along γ2, however, the high-
variance regions of the sampled data move in span-wise direction. To quantify these
characteristics of the observations the span-wise profile of the stream-wise velocity
variance inside each cell are evaluated with γ1 and γ2. The mean value of this profile
(σ ) and the span-wise position of the center of area of this profile (Z∗) are examined
and we found that these two parameters have a linear behavior with respect to γ1
and γ2, respectively. This makes a valuable correlation between the axes and these
parameters. Thus, it can be stated that the computer has found two consistent metrics
to reveal important features. Accordingly, we can confirm that γ2 is not related to the
stream-wise evolution of the structures, thus the transition process.

After reducing the dimensionality of the problem, data clustering is performed
on the low-dimensional space (Fig. 1a). In this work the elbow method [6] is used

Fig. 1 Kinematic analysis: a Clustered two-dimensional MDS map after applying the symmetry.
Clusters are specified by colors and the gray points are the merged points. b Original contour
illustration of the cluster medoids; showing the streaks in medoid 1, turbulent spots in medoid 2,
and turbulent stages in medoids 3 to 5 with increasing in intensity
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to choose the number of clusters. The result yield to K = 6. In addition to what
the process found about γ1 and γ2 from correlation parameters, the symmetrical
configuration of the clusters further confirms that γ2 relates directly to the asymmetry
of the cells rather than to region recognition. Therefore, it is relevant to shrink the
2D map by reflecting all the points to the upper half part of the map. Thus, clusters
numbers 2 and 3 are merged into one cluster and five medoids are shown in Fig. 1b,
in which we can detect different structures inside them. This difference between
their internal structures reveals different flow regimes. We can clearly distinguish
different stages of the transitional BL flow from streaks, formation of turbulent spots,
high velocity fluctuations turbulent regions and fully turbulent region. There is an
overshoot of turbulent activity in the transition region, then the turbulence activity
decreases while moving towards fully-turbulent state and is in accordance to [7].

4 Dynamical Analysis

The results shown in Fig. 2 report the CTM containing the probability of transition
from one cluster (in columns) to another (in rows) within a forward time-step. It
represents the dynamical change of state in the entire flow field. It can be seen that
the second cluster play a role as transition phase between the first one and the last
three which are coupled and reveal the regions of high turbulence. For cluster 3,
it has a large probability to remain in the same state, and thus, it reveals the state
of fully turbulent. Distance Matrix also discovers the similarity between clusters in
terms of the distance parameter in the low-dimensional space (Fig. 2b). This distance
represents the dissimilarity of the primitive cells, the more is the distance, the less
similar are the clusters. The same configuration of clusters as the probability matrix
can be seen here. It shows that the group of 3 clusters that have themost probability of
transition in between aremore similar to each other than to other clusters. To track the

Fig. 2 Dynamical analysis: a Cluster Transition Matrix. b Cluster Distance Matrix. For the tran-
sition matrix the scale is logarithmic, while it is linear for the distance matrix. Cluster subsets
are shown in black squares. c Graph of Cluster Transition Trajectory. The group of the three final
clusters are depicted in one specific color to show their belonging to the turbulent region
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transition of cluster states in continuous time-steps, we need to model the transition
between these regions as a process, which displays the graph of the trajectories
shown in Fig. 2c. Here we assumed that after one time step, each cell travels one-
step forward in space. With this assumption, the pseudo-Lagrangian tracking of
the cells is captured from the leading edge to the end of the plate and the most
probable trajectories are determined. In contrast to the cluster transition matrix that
captures all the possible movements in time, this graph captures just the ones that
happen between two different clusters. However, the typical path is consistent with
the cluster transition matrix, and the cells typically move from laminar to turbulent
spots, and finally to regions in the center which is the most spatially homogeneous
configuration, thus fully-developed turbulence.

5 Conclusions

With the feature-space discretization, we obtained the regions of development of
a transitional BL automatically identified as region containing streaks, turbulent
spots, amplification of disturbances, and fully developed turbulent flow. The pseudo-
Lagrangian evolution of the regions and the state transitions are employed in terms
of transition probability matrix and transition trajectory graph to determine flow
dynamics and transition mechanisms between the different states. The development
of regions in transitional BL flow presents intermediate stages. The present method-
ology correctly identifies the bypass transitionmechanism. Thiswork thus shows that
unsupervised algorithms can identify complex flow dynamics and extract theoretical
information.
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Identification of a Stochastic Hopf
Bifurcation from Stationary
Measurement Data of a Turbulent Flow

Moritz Sieber, Christian Oliver Paschereit, and Kilian Oberleithner

Abstract The observation of a Hopf bifurcation in fluid dynamics is commonly
associated with the occurrence of a global hydrodynamic instability. The increase of
a control parameter above a critical value causes a change from a stable to an unstable
flow condition. This behaviour is well understood for the occurrence of instabilities
in laminar flows. In turbulent flows, however, the occurrence of hydrodynamic insta-
bilities is similarly observed but less clear. The current work examines the use of
stochastic models to describe the supercritical Hopf bifurcation of the global mode
in a turbulent swirling jet. The consideration of the interaction between the global
mode and the stochastic turbulent perturbations allows a consistent description of
the experimental observations. This opens up extensive possibilities for describing
and interpreting the occurrence of hydrodynamic instabilities in turbulent flows.

1 Introduction

The observation and description of hydrodynamic instabilities are historically asso-
ciated with the observation of periodic dynamics in laminar flows that trigger the
transition to turbulence. The transition from a stable to an unstable flow state is
associated with the change of a control parameter. This parameter is commonly the
Reynolds number, which defines the flow states that give rise to instabilities and
cause the transition to turbulence. The occurrence of these instabilities is commonly
associated with a Hopf bifurcation of the flow [1]. Beyond their well-established
role in the transition to turbulence, the occurrence of hydrodynamic instabilities in a
turbulent flow is less clear. The change of control parameters other than the Reynolds
number can lead to the emergence of hydrodynamic instabilities in fully turbulent
flows. In this case, the instability does not develop from an undisturbed steady state,
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but within a stochastically fluctuating flow. The interaction between deterministic
dynamics that develop due to the instability and stochastic perturbations that are
introduced from the background turbulence is decisive to understand the dynamics
in such cases. Phenomenologically, the velocity fluctuations in turbulent flows are
categorised by a triple decomposition [2]. Accordingly, the velocity is decomposed
into a mean, coherent, and stochastic part that reads

v(x, t) = v(x) + ṽ(x, t) + v′(x, t), (1)

respectively. The mean part v, given by the time averaged velocities, constitutes the
base flow on which hydrodynamic instabilities may develop. These hydrodynamic
instabilities cause the coherent velocity fluctuations ṽ. Further stochastic fluctuations
v′ are present due to the turbulent flow state.

The observation of coherent dynamics in fully turbulent flows can be attributed to
hydrodynamic instabilities. In that context, the instabilities are assumed to develop
on the mean velocity field and the turbulent fluctuations act as an increased viscosity
[3]. This approach has provided accurate replication of coherent structures extracted
from measurements. However, the temporal dynamics observed in the measurement
data and the amplification rates suggested by theory do not necessarily coincide [4].
In this work, the experimental observations are explained by a mixed deterministic
stochastic model that provides a consistent closure. The stochastic model is based
on the analysis of stationary measurement data [5]. It relies on a strict separation of
deterministic and stochastic contributions in the data. Accordingly, the deterministic
and stochastic part can be accurately modelled which allows an accurate description
of the observed dynamics. Previously, the approach was used to characterise thermo-
acoustic instabilities in combustion chambers [6].

2 Stochastic Modelling Approach

This section describes the essence of this approach. A detailed derivation of the con-
secutive steps for the presented approach is given in a related study [7]. Accordingly,
the deterministic dynamics of the hydrodynamic instabilities are captured by the
Stuart-Landau equation [1]. It describes the oscillatory motion of the instability and
the mean-field corrections that lead to a saturation of the oscillation amplitude at
the limit-cycle. The background turbulence is covered as a stochastic forcing of the
Stuart-Landau equation. This reads

dA

dt
= (σ + iω)A − α |A|2 A + ξ, (2)

where A is the complex-valued amplitude of the global mode. The deterministic
evolution of the amplitude is governed by the frequency ω, amplification rate σ , and
saturation α. The stochastic perturbations are represented by random forcing ξ with
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zero mean and variance �. In a purely deterministic configuration without stochastic
forcing, the amplitudewould always converge to the limit cycle. Due to the additional
stochastic perturbations, the dynamics is perturbed at the limit cycle. The resulting
displacement from the limit cycle and the deterministic return to the limit cycle
enables the calibration of state-spacemodels. Since the stochastic perturbations cause
continuous disturbances of the system, this is possible with steady-state measured
data.

The calibration of the model from the data does not rely on the replication of
measured temporal dynamics. Instead, the same statistics are derived from the model
and themeasurements and then compared. Therefore, themodel (2) that describes the
evolution of one specific state of the flow is transferred to a Fokker-Planck equation
that describes the corresponding probability density of a flow state. The stationary
solution of the Fokker-Planck equation provides the average probability density P
for the observation of a specific oscillation magnitude |A| as

P(|A|) = N |A| exp
(
2σ

�
|A|2 − α

�
|A|4

)
. (3)

The parameters of this analytical representation are calibrated to match with the
measured probability distribution. The calibrated parameters ultimately provide the
physical amplification rate σ of the underlying flow.

3 Application to Experimental Data

The approach is used to investigate the global hydrodynamic instability in a swirling
jet [3]. The rise of this instability is related to the swirling strength of the flow, which
is characterised by the swirl number. Hence, the swirl number is the major control
parameter in the investigations. It can be set independently from theReynolds number
allowing investigations at fully turbulent conditions. Trough a step-wise increase of
the swirl intensity, a supercritical Hopf bifurcation of the flow is observed. The bifur-
cation is primarily detected from pressuremeasurements, which allows the recording
of the long time series that are necessary to obtain converged statistics. The pressure
time series are further filtered to separate the coherent dynamics from stochastic per-
turbations. The filter uses a spatial Fourier decomposition to reduces the information
from eight pressure to a complex coefficient witch is further band pas filtered to the
frequency range of the instability. The validity of the filterwas further checked against
dominant structures found in PIV measurements of the flow, as detailed in [7]. From
the measurements, the probability distributions of the amplitudes are determined and
the analytical model (3) is calibrated to replicate these distributions. The change of
the model parameters across the investigated parameters is used to interpreter the
flow physics.

The measured probability distributions and the calibrated amplification rate are
presented in Fig. 1. The probability distributions (Fig. 1a) show a continuous increase
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Fig. 1 The graphs show themeasured oscillationmagnitude |A| (a) and the estimated amplification
rate σ b against the swirl number S. The insert c gives a detail of graph (b). The magnitude is
represented by the measured probability distribution P(|A|) at different swirl numbers. The critical
swirl number is indicated by a dashed vertical line. (see also [7] for further results)

of the amplitude. The variance of the amplitude does also continuously increase with
the swirl number. The sole consideration of the mean amplitude or the variance does
not indicate a change of the flow from a stable to an unstable state, it indicates a
continuous transition from small to large amplitudes. The parameters from the cali-
bration probability distributions give a much clearer picture. From the amplification
rate (Fig. 1b), the sign change that marks the bifurcation point can be identified. The
turbulent perturbations obscure the transition in the measured amplitudes, but the
stochastic model allows to identify the underlying bifurcation.

The approach is based on the assumption that the flow is actually determined
by the stochastic model used. It requires a strict separation of deterministic and
stochastic dynamics and does not allow to lump any deterministic dynamics missed
in the measurements into the stochastic contributions. The extensive study in [7]
shows that the model used here is an oversimplification of the flow. Improving the
model accuracy causes minor changes in the trends observed in Fig. 1. However, an
increase in the model fidelity (dimensions) comes at the cost of reduced accuracy of
the model calibration. This is due to the fixed amount of available measurement data
from which the statistics can be derived.
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4 Discussion

The proposed method allows to draw completely new conclusions from steady-state
measurements of turbulent flows. It allows one to infer a detailed picture of the
flow state from relatively simple measurements. This is possible through an accurate
separation of deterministic and stochastic dynamics and appropriate modelling of
both contributions. Due to the stochastic perturbations, the sole consideration of the
mean state does not allow the identification of the bifurcation. This becomes more
clear when bifurcation scenarios in laminar and turbulent flows, given in Fig. 2, are
investigated side by side. For laminar conditions, the bifurcation from the stable to the
unstable state can be seen from the sudden occurrence of the limit cycle oscillation.
In a turbulent flow, stochastic forcing causes the occurrence of oscillations even for
stable conditions. The closer the flow is to the bifurcation point, on the stable side, the
longer it takes for these exited oscillations to decay. Hence, we observe a continuous
change of the amplitude across the stochastic bifurcation.

The probabilistic interpretation of the flow state and the accurate modelling of
deterministic and stochastic contributions allow us to gain deep insights into the
dynamics of turbulent flows. The interpretation of the occurrence of a global mode
in a turbulent flow as a stochastic Hopf bifurcation allows an accurate description
of the experimental observations. The proposed approach requires only stationary
measurements and still provides a detailed picture of the dynamic state of the flow.
This is possible due to the stochastic forcing that causes the flow to explore the
state space in the vicinity of the asymptotic state. Without forcing, the flow would
approach the asymptotic state (limit cycle or fixed point) and stay there infinitely.
From the balance between the deterministic return to the asymptotic state and the
stochastic forcing, which deflects the flow from this state, the flow physics can be
identified.

The presented approach has provided great detail for the occurrence of global
modes in turbulent swirling flows [4, 7]. Moreover, the authors are confident that it

Fig. 2 Different characteristics of a supercritical Hopf bifurcation in a laminar and in a turbulent
flow. The graphs show the bifurcation diagram for the magnitude |A| against the swirl number S.
The laminar case provides distinct points in the state space whereas the turbulent case allows only
a probabilistic description of the state. (as in Fig. 1a)
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will help to interpret the occurrence of hydrodynamic instabilities in turbulent flows
in many other cases, as well. The consideration of the stochastic forcing in turbulent
flows has shown to be the key element for an accurate interpretation of measurement
data of instabilities in turbulent flows.
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Data-Driven Identification of Robust
Low-Order Models for Dominant
Dynamics in Turbulent Flows

Y. Schubert, Moritz Sieber, Kilian Oberleithner, and Robert J. Martinuzzi

Abstract This work presents an automated process minimising input parameters
for the study of turbulent flows. The goal is to gain insight into the flow dynamics
by deriving a data-driven reduced-order model (ROM). Spectral proper orthogonal
decomposition (SPOD) is used to efficiently separate the flow dynamics and project
the flow field onto a low-dimensional subspace to represent the dominating dynam-
ics with a reduced set of modes. A polynomial combinations of the temporal modal
coefficients defines a function library to describe the dynamics by a linear system of
ordinary differential equations. In a two-stages cross-validation procedure (conser-
vative and restrictive sparsification), the most important functions are identified and
combined in a final ROM. The process is demonstrated for PIV data of a circular
cylinder undergoing vortex induced vibration (VIV) Re = 4000.

1 Introduction

Over the last decades, experimental studies and simulations of flows have improved
significantly in both accuracy and resolution, leading to tremendous amounts of
high-fidelity data. Hence, data-driven approaches to investigate turbulent flows are
increasingly important. These approaches often aim to derive low-order models with
fast and accurate predictions of the flow dynamics to support physical analysis.

The investigation of turbulent flows poses two inherent challenges to data-driven
identification of ROM. First, the posterior system identification from observed flow
dynamics requires a distinct separation of deterministic dynamics from the stochastic
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fluctuations. Second, the calibration procedure must account for random perturba-
tions of theflow that are extraneous to the candidatemodel andmay lead toover-fitting
of the model. In this work a robust approach to handle these challenges using as few
exogenous parameters as possible is presented.

Figure1 illustrates themain idea of the process. Instead of computing the temporal
evolution of the velocity field v(x, t) by solving the Navier-Stokes-Equations N (·)
directly (slow and very computational costly) the idea is to project the velocity data
onto a low-dimensional subspace, isolate the temporal variance ai (t) of the dynamics
and find a representation i. e. operator F that describes the dynamics.

d

dt
a(t) = F(a(t)). (1)

In a final step, the field is projected back to the original system. The questions arises:
What does this operator F look like and how to derive it?

The first challenge is addressed by an efficient separation of the flow dynamics
using a modal decomposition of the flow data [1]. The flow is represented by spatial
modes and their corresponding modal coefficients capturing temporal variations.
This allows representing the flow dynamics by a reduced set of modes and a simple
description of the dynamics by the temporal evolution of the modal coefficients [2].
Here, the velocity is decomposed into a mean field v(x) and fluctuations, which are
further decomposed into spatial modes �i (x) and temporal coefficients ai (t):

v(x, t) = v(x) +
N∑

i=1

�i (x)ai (t). (2)

Themodal base of low-ordermodels is commonly constructed fromaPOD.However,
this often lacks a clear separation of individual dynamics in different modes making
it difficult to build efficient models. This shortcoming is circumvented using the
recently introduced SPOD, which helps distinguish different dynamics [3], which
is well suited for cyclical but not necessarily periodic signals. The SPOD seeks a
short-time temporal coherence in addition to the spatial coherence that is imposed by
the modal decomposition. Hence, SPOD requires the specification of a correlation
window size, which is the only additional parameter to POD. This results in smooth
temporal coefficients,which is beneficial for constructingROMs. Since coherent flow
structures are usually represented by pairs of modes, the spectral proximity between
the modes is measured and they are paired accordingly as real and imaginary parts
of a complex mode [3]. This allows to simplify the system description and reduces
the computational costs.

For the second challenge, the approach builds on recent work introducing strate-
gies from machine-learning [4]. These studies show that efficient representations of
canonical fluid dynamic problems can be identified from an automated procedure.
The central idea is to describe all interactions of the flow dynamics (even non-linear)
with a linear system of ordinary differential equations, where a library of functions
� accounts for the non-linearities. For this, a reduced number Nm (dependant on the
flow complexity) of temporal coefficients A,
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Fig. 1 Conceptual schematic for deriving the temporal evolution of a flow field: the dashed arrow
is the direct approach solving Navier-Stokes-Equations (theoretical solution), curved arrows indi-
cates the indirect approach via a modal decomposition (applied solution); the dotted line indicates
transition between physical (above) and modal space (below)

A =

⎡

⎢⎢⎢⎣

aT (t1)
aT (t2)

...

aT (tN )

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

a1(t1) a2(t1) . . . aNm (t1)
a1(t2) a2(t2) . . . aNm (t2)

...
...

. . .
...

a1(tNt ) a2(tNt ) . . . aNm (tNt )

⎤

⎥⎥⎥⎦ , (3)

is used as basis function and combined in all forms of polynomial combinations to
define library functions that compose the library

�(A) =
⎡

⎣
| | | | | | |
1 A A AP2 A

P2
(AA)P2 AP3 . . .

| | | | | | |

⎤

⎦ . (4)

Here, AP2 , AP3 , (AA
P2

) etc. denote higher order polynomials of the state vector a(t)
and its complex conjugated a∗(t). Hence, (1) can be formulated as

d

dt
A = �(A)�, (5)

where the matrix � contains the library coefficients, that define which of the library
functions contribute for the prediction of each mode. While the number of library
functions comprises all sorts of possible combinations, it is assumed that in fact only
a few of the corresponding library coefficients � = [ξ 1 ξ 2 . . . ξ Nm

] are important
i. e. different from zero. Thus, the matrix � is considered to be sparse.

A critical step of the process is the identification of these library coefficients (spar-
sification). For turbulent flows the stochastic dynamics that are not represented by
the low-order model can perturb the modelled dynamics and make the direct appli-
cation of the recent methodology unreliable. In the present study, a refined approach
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is presented that uses two-stage cross-validation for the sparsification procedure to
find models with as few parameters as possible without resulting in trivial solutions.

2 Two-Stage Sparsification

The procedure is divided into a conservative sparsification, focused on the approxi-
mation of the derivative, and a restrictive sparsification, focused on the model predic-
tion. Hence, the first step identifies candidates and the second retains only a subset
of statistically significant coefficients.

2.1 Conservative Sparsification

The principle of this cross-validation step is a bottom-up approach to find the optimal
library coefficient in each iteration that improve the approximation of the derivative.
The goal is to prefilter the library to reduce computational effort in the restrictive
sparsification. Initially, all library coefficients are set to zero. Then coefficients are
stepwise activated and their influence on the derivative approximation evaluated. For
this, the original signal is divided into equidistant segments based on the SPOD filter
to preserve data continuity. The segments are randomly split into training ttrain (20%
of segments) and validation tval (remaining 80%) data. The ratio depends on the
available data aiming to maximise the validation data while keeping enough data for
training, thus minimising the over-fitting risk. The active coefficients are trained,

ξ train = argmin
ξ

∥∥∥∥
d

dt
aT

(
ttrain

) − �
(
aT

(
ttrain

))
ξ

∥∥∥∥ (6)

and then a residual r is computed

r =
∥∥∥∥
d

dt
aT

(
tval

) − �
(
aT

(
tval

))
ξ train

∥∥∥∥
2

. (7)

When all non-active library coefficients are individually tested, the coefficient with
the highest improvement is activated permanently. In the following iterations coeffi-
cients are evaluated and added in the same way until there is no further improvement
in the approximation of the derivative. This is repeated for Ntrain random selections of
training and validation data. In a last step, all coefficients that showed an amelioration
with respect to the residual are merged into final list of possible candidates.
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2.2 Restrictive Sparsification

This procedure is a top-down approach. It starts with the candidate list optimising the
coefficient selection based on the model prediction. In comparison to the first stage,
the idea is to evaluate if a library coefficient is important not only for the prediction
of a single mode, but for the entire system and thereby remove coefficients that are
not relevant to describe the dynamics. In an iterative procedure models are built
excluding one of the library coefficients candidates, trained and then a short-time
integration is performed. Analogously to the the first procedure a subset of randomly
chosen training data is used, but this time the entire model is trained simultaneously:

�train = argmin
�

∥∥∥∥
d

dt
aT

(
ttrain

) − �
(
aT

(
ttrain

))
�

∥∥∥∥ . (8)

With short-time integrations (over Nsim time steps) from over Ninit randomly chosen
initial values the model performance can be evaluated:

r =
t0+Nt�t∫

t0

∥∥∥∥∥∥
a(t) − a(t0) −

t∫

t0

f (a(s))ds

∥∥∥∥∥∥

2

dt, (9)

with function f = �(a) �train. By iterating over different initial values and various
training data sets, a quality function that indicates the relevance of each library
coefficient for the ROM can be determined. Coefficients that impact negatively the
prediction are excluded permanently. This is repeated until the model converges to
a final selection of statistically significant library coefficients.

3 Application to Experimental Data

The procedure is demonstrated for PIV data from the VIV of a cylinder at Re = 4000
[5]. A case in the de-synchronisation regime is chosen to show interactions of forced
and natural shedding. The applied process results in the following model using the
three most energetic (complex) modes, which is the minimal group of modes to have
a meaningful illustration of the process describing the dominating flow dynamics:

da1
dt

= α1 · a1 + α2 · a2|a2|2 + α3 · a1|a1|2 + α4 · a1|a2|2 + α5 · a2a3a∗
1 + α6 · a1a1a∗

3

da2
dt

= β1 · a2 + β2 · a2a2a∗
1 + β3 · a2a3 + β4 · a1a1a∗

3 + β5 · a1|a3|2
da3
dt

= γ1 · a3 + γ2 · a2a∗
1 + γ3 · a3|a1|2 + γ4 · |a1|2.
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Fig. 2 Power spectrum of the mode coefficients obtained from the SPOD of PIV measurement
(blue), a simulation of the calibrated low-order model (orange). The graphs show the mode (a)
of the natural frequency of the cylinder, b the vortex shedding and c of the mode related to the
interaction of the forced shedding and the cylinder motion

Following the two-step sparsification the number of possible library coefficients
is reduced from 252 to only 15. These statistically significant coefficients and the
corresponding library functions provide insight to the flow physics. As the model
only represents the deterministic dynamics of the dominating structure, long-term
predictions show deviations after approximately two periods of the natural cylinder
oscillation, since the model does not account for stochastic perturbations and only
uses a reduced number of modes to represent flow structures. However, Fig. 2 shows,
that the model captures the general, spectral characteristics of the flow.

4 Conclusion

The presented approach provides an objective strategy for the investigation of turbu-
lent flows. It uses SPOD for an efficient separation of the flowdynamics,which allows
to isolate individual physical phenomena and results in smooth temporal coefficients.
With a two-stage cross-validation procedure the essential analytical functions can be
identified, so that flow dynamics can be represented with a linear system of ODEs.
The selection of the analytical functions also provides insight of the flow physics.
Finally, this is achieved with a very limited number of input parameters, which can
either be derived from physical proprieties of the flow or address the number of
repeated iterations on different parts of the data, i.e. without the need to define an
arbitrary threshold.
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Experimental Assessment of Symmetry
Induced Higher-Moment Scaling Laws
in Turbulent Pipe Flow

Spencer Zimmerman, Joseph Klewicki, and Martin Oberlack

Abstract The total velocity moment scaling law that can be obtained through the
symmetry group analysis described byOberlack et al. (Mech. Eng. Rev., vol. 2, 2015)
is assessed using experimental pipe flowvelocitymeasurements previously published
in Zimmerman et al. (J. Fluid Mech., vol. 869, 2019, pp. 182–213) and Baidya et
al. (J. Fluid Mech., vol. 871, 2019, pp. 377–400). Although the streamwise velocity
data are well described by the proposed scaling law, we show that the observed
level of agreement is primarily reflective of the role played by the mean velocity
rather than of the details of the fluctuations. Indeed, recalculation of moment profiles
using Gaussian standardized central moments in place of the measured ones results
in very little change, and does not affect the overall quality of agreement. We also
show that the influence of the mean makes discrimination between these turbulent
and Gaussian total streamwise moment profiles via hotwire anemometry essentially
infeasible. Finally, we find that in its present form the proposed scaling law is not
suitable to describe the azimuthal total moment profiles using the same coefficients
obtained from the streamwise total moment profiles.

1 Background

Both classical and statistical symmetries admitted by themulti-pointmoment (MPM)
equations, which can be derived from the Navier Stokes equations, may be exploited
to derive functional forms for statistical moments of the instantaneous total velocity
ũi ≡ Ui + ui in turbulent wall-bounded flows [1]. The same symmetry conditions
that yield logarithmic dependence of the mean velocity U1 on wall-distance x2 can
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also yield power-law dependence of higher-order moments of the instantaneous total
velocity (to arbitrarily high order), as well as linear dependence of the scaling expo-
nent on order number [2]. That is, if the MPM tensor of rank n is given as:

Hi{n}
(
x, r {n−1}, t

) = ũi(1) (x, t) · ũi(2) (x, r (1), t) · . . . · ũi(n)
(x, r (n−1), t), (1)

then the symmetries consistent with a mean velocity profile of the form:

U+
1 = 1

κ
log

(
x+
2 + A

) + B (2)

can also yield the following form for moments n ≥ 2 when all r {n−1} = 0 (i.e. for
the single-point case):

H+
i{n} = Ci{n}

(
x+
2 + A

)ω(n−1) − Bi{n} . (3)

Note that the overbar implies time-averaging, the superscript ‘+’ implies normal-
ization by the wall-shear-stress scales, B{n} and Ci{n} are constants of integration,
and κ , A and ω are functions of the symmetry group parameters associated with the
infinite set of MPM equations. The integration constants are constrained to be of the
functional forms Ci{n} = αieβi n and B{n} = α̃ieβ̃i n . For the remainder of this paper,
normalization by the wall-shear-stress scales will be implied, and the superscript ‘+’
will be omitted for compactness of notation. In this paper, we assess the adherence
to these predictions of the turbulent pipe flow measurements of Zimmerman et al.
2019 [3] and Baidya et al. 2019 [4].

In order to contextualize the fidelity of the experimental data to the proposed
scaling law, it is useful to establish a baseline for comparison. To do so, we also test
the fidelity to (3) of hybrid synthetic/experimental data, prescribed in a way that is
intentionally inconsistentwith (3). This process can be described by first rewriting (1)
(for the r {n−1} = 0 case) in terms of contributions from themean and the fluctuations:

Hi{n} =
n∑

k=0

(
n

k

)
uki U

n−k
i , (4)

i.e. as a binomial expansion of ũni ≡ (Ui + ui )n . Any probability distribution can

then be assigned to the fluctuations by making the substitution uki = Mku2i
k/2

, where
Mk are the standardized central moments (e.g. skewness, kurtosis, etc.). For the
present purposes, we will use the values of Mk associated with a Gaussian distri-
bution (i.e. Mk = (k − 1)!! for even k, and Mk = 0 otherwise). While the log-layer
turbulent fluctuations are qualitatively quasi-Gaussian, it can be shown explicitly that
the Gaussian values of Mk are inconsistent with (3). For example, if we write (4) for
n = 3 and substitute the M3-based term for u3i :
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Table 1 Datasets used in this study. R represents the pipe radius, lw represents the length of each
individual hotwire sensor, ts represents the sample time, and Ucl represents the mean velocity at
the pipe centreline. Darker shaded lines are used to denote higher R+ within each dataset

Colours Study Method Cases R+ l+w tsUcl/R

[3] ×-wire 4 5400–14000 13–35 5–25×103

[4] SN-wire 3 10000–35000 11–39 5–100×103

Hi{3} = M3u2i
3/2 + 3u2i Ui +U 3

i , (5)

we can see from an order of magnitude analysis that M3 must not be constant for (3)
to hold. That is, if we write out the order of each term implied by (3) (and employ
the substitution u2i = Hi{2} −U 2

i ), we obtain:

O(x2
2ω) = Mk · O

((
x2

ω −U 2
i

)3/2) + O ((
x2

ω −U 2
i

)
Ui

) + O (
U 3

i

)
. (6)

This expression implies that Mk = O
(
xω/2
2

)
(to leading order) for (3) to be valid

(note that U1 = O(log(x2)) and U2 = U3 = 0). The same argument also applies to
higher orders. As the experimental data are able to establish that the fluctuations are
non-Gaussian based onMk to a high degree of certainty, we posit that their adherence
to (3) must be clearly different from that of ‘Gaussian’ profiles (reconstructed from
measured Ui and u2i and Gaussian Mk) for the result to be significant. It is shown
below that this is not the case for the i = 1 data, and that it is likely infeasible for
hotwire-based experimental data to realize this level of significance.

2 Results

The experimental data presented herein are summarised in Table1 below.More detail
regarding these datasets can be found in [3] and [4]. Figure1a shows the family
of streamwise Hi{n} profiles for n = 2 − 8 on logarithmic axes. The curves from
all different cases appear to be relatively independent of Reynolds number in the
logarithmic region in this ‘macroscopic’ representation. These moment profiles are
plotted again in Fig. 1b, but with their log-layers explicitly highlighted, and with all
curves shifted by the additive constants B1{n} . These profiles are then compared to
the best-fit family of power laws of the form implied by (3) (with B1{n} added to both
sides), which are shown as black dashed lines. Figure1b illustrates that it is possible
to obtain fits that closely describe the measured data across all present Reynolds
numbers (at least relative to their overall variation in magnitude) using the five free
fitting parameters α1, β1, α̃1, β̃1, and ω.
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Fig. 1 a H1{n} profiles for n = 2–8. Line colors as in Table 1. b H1{n} profiles shifted by the additive

constants B1{n} , using α̃1 = −0.434 and β̃1 = 2.64 (see text). Coloured segments of each profile in

b highlight the log-layer, bounded by 3
√
R+ < x+

2 < 0.15R+. Dashed lines represent the best-fit
family of power laws, i.e. ω = 0.118, α1 = 1.83, and β1 = 2.33

In order to detect any systematic deviations between the fit and the data that
might otherwise be obfuscated by the ‘macroscopic’ view, we now show in Fig. 2 the
difference between the two (for the highest Re case only), measured in decades. That
is, Fig. 2 shows the deviations of the measured data from the best-fit lines computed
as follows:

�1{n} ≡ log10
(
H1{n} + B1{n}

) − log10
(
C1{n}

(
x+
2 + A

)ω(n−1)
)

. (7)

The plot in Fig. 2 is therefore analogous to the indicator plot commonly used to detect
logarithmic behaviour in themean velocity profile (or, more precisely, x−1

2 power law
behaviour in its gradient). Figure2 also helps illustrate the effects of both the func-
tional form of C1{n} as well as the details of Mk , as will be explained below. Figure2a
shows the deviations of the measured data from the five-parameter functional from,

Fig. 2 Deviation of R+ ≈ 35000 actual (orange) and synthetic (green) data from log-layer best fit
for: a five-parameter case, using α1 = 1.83, β1 = 2.33, α̃1 = −0.434, β̃1 = 2.64, and ω = 0.118;
and b relaxed C1{n} constraint case (see text), using α̃1 = 1.8374, β̃1 = 2.7817, and ω = 0.102
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Fig. 3 Azimuthal total moment profiles for (even) n = 2–8 for all present data. Profiles increase
in magnitude monotonically with n. Line colors as in Table 1. Note that darker shades represent
higher Reynolds numbers

while Fig. 2b shows the deviations under the relaxed condition C1{n} = f (n) (as
opposed to C1{n} = αeβn). The measured data are consistently concave down relative
to the full five-parameter fit. This concavity can be reduced dramatically by remov-
ing the exponential functional constraint from C1{n} , which illustrates the potential
effects of measurement uncertainty. That is, measurements that suffer from some
degree of precision and bias errors may still produce roughly ‘correct’ slopes via
regression, but bias in particular could diminish the fit quality when an additional
magnitude constraint (i.e. C1{n} = αeβn) is imposed. Furthermore, the magnitudes
of the deviations from the fit for the measured (orange) and the Gaussian (green)
profiles are essentially the same. Thus, we posit that the present data neither support
nor refute the proposed scaling law for the i = 1 case.

This begs the question of the root cause of the insensitivity to the fluctuations,
and the related question of what might be required to overcome it experimentally.
Essentially, the insensitivity comes down to the relative magnitudes ofU1 and u1,rms

in the log-layer. Using the representative values of U1 ≈ 20 and u1,rms ≈ 2.5, it
can be shown numerically that Un

1 > (n − 1)!!un1,rms for n < 174. That is, when
computing H1{n} from (4) (and assuming Gaussian Mk), the contribution of the mean-
only term will exceed the contribution from the fluctuation-only term until n ≥ 174.
This estimate is also likely too low for streamwise fluctuations in wall-bounded
flows, as these are known to be sub-Gaussian in the tails [3, 5] (at least out as far
as has been converged). This is not to say, however, that non-Gaussianity could not
be detected at lower n. It can also be shown numerically that a term involving M4

(i.e. kurtosis) or higher does eventually becomes larger than Un
1 when n = 16. This

term, i.e.
(16
4

)
U 12

1 u41, would still however be highly sensitive to measurement errors
in U1. Given the tendency of hotwire sensors to suffer from calibration drift, and
the extremely long sample times required to converge such high moments (here we
converge up to n ≈ 10), it is unlikely that one could obtain (via hotwire) data that
could conclusively support or refute the proposed scaling law.

In order to avoid the aforementioned challenges in assessing the fit for the i = 1
case, we now turn to the i = 3 case for which the mean contribution is zero (i.e.
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U3 = 0). Figure3 shows profiles of H3{n} for n = 2–8. Several issues are immediately
apparent that point towards 3 being unsatisfactory for the i = 3 case, at least over
the present range of Reynolds numbers. The first issue is that the profiles tend to
increase in magnitude in the log-layer with increasing Reynolds number rather than
being Re-invariant. The second issue is that the best-fit power law slopes are negative
(and increasingly-so with increasing n), which impliesω < 0. This is in conflict with
theω > 0 condition implied by the i = 1 profiles. This discrepancymotivates further
analysis to determine whether the symmetries that lead to (3) for the i = 1 case are
applicable to the i = 3 (or i = 2) case.

3 Conclusions

The present analyses show that it is not possible to use the present datasets to con-
clusively support or refute the proposed higher-moment scaling law for the i = 1
case. This is related to the relative magnitudes of U1 and u1,rms , which causes con-
tributions to H1{n} from the mean to overwhelm those of the fluctuations out to very
high n. Indeed, the overall fit quality is largely unaffected even when the fluctua-
tion moments Mk are prescribed so as to be inconsistent with the proposed scaling
law. This issue is likely insurmountable for hotwire-based experiments, owing to the
extreme sample times that would be required and the tendency of hotwire sensors
to suffer calibration drift. To avoid the issue of the mean contribution altogether, we
also consider the i = 3 case. Here we show that the H3{n} profiles are not Re-invariant
over the present parameter space, and that their slopes imply that the same value of
ω cannot be used to describe both the i = 1 and i = 3 profiles. Further analysis is
thus required to determine if modifications to (3) are necessary for the i = 3 case.
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Characteristics of Reynolds Shear Stress
in Adverse Pressure Gradient Turbulent
Boundary Layers

Sylvia Romero, Spencer Zimmerman, Jimmy Philip, and Joseph Klewicki

Abstract The focus of the present work is to characterize the features of the tur-
bulent inertia term (the wall-normal gradient of Reynolds shear stress) through the
mean momentum balance and the Reynolds shear stress correlation coefficient (ρuv).
Effects of the Reynolds number and Clauser pressure-gradient parameter, β, are dis-
cussed. Large eddy simulations of low Reynolds number adverse pressure gradient
turbulent boundary layers from Bobke et al. [1], low Reynolds number experimental
data from Vila et al. [2] and Volino [3], and newly acquired experimental data at
higher Reynolds number from the Flow Physics Facility at The University of New
Hampshire are utilized for this analysis. Observations are compared to zero pres-
sure gradient turbulent boundary layer direct numerical simulations of Schlatter and
Örlu [4] and Sillero et al. [5], and experimental data from Zimmerman et al. [6] and
Zimmerman [7]. These cases show that the correlation coefficient (ρuv) decreases
in magnitude with increasing Reynolds number and β. However, from these initial
observations we find that ρuv is more sensitive to changes in the Reynolds number
in comparison to the examined range of β. We also find that the location of zero-
crossing of the turbulent inertia term seems to scale with

√
δ+ while the minimum

of ρuv scales with δ.

1 Introduction

The effects of pressure gradients on turbulent boundary layers are often parame-
terized in terms of the Clauser pressure-gradient parameter β = (δ∗/τw)(dP/dx),
where δ∗ is the displacement thickness, τw is the wall shear stress, and dP/dx is the
streamwise pressure gradient. Positive and negative values of β respectively reflect
adverse pressure gradient (APG) and favorable pressure gradient conditions, while
β = 0 reflects zero pressure gradient (ZPG) conditions. The Clauser parameter can
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also be characterized as a ratio of turbulence time scale tturb = �/uτ to pressure
gradient time scale tPG = 1/|dU∞/dx |, where � is the Rotta-Clauser thickness and
uτ the friction velocity. For the APG flow to be in equilibrium, the ratio of two time-
scales, i.e., |β| = tturb/tPG , has to be a constant. Therefore, under a non-constant
β, the flow would take time to reach equilibrium, a history-effect would be present.
This history-effect is anticipated to be different when β increases or decreases and
also depends on how rapidly β is changing. In order to avoid these potentially con-
founding history-effects, this paper focuses on cases where β is nearly constant in
numerical simulations taken from Bobke et al. [1] as well as experimental cases
where β is only changing mildly with Reynolds number obtained from Vila et al. [2]
and Volino [3] and newly acquired data at the Flow Physics Facility of the University
of New Hampshire.

1.1 Mean Momentum Balance

The mean momentum balance (MMB) is the time-averaged statement of Newton’s
second law. The MMB for the ZPG turbulent boundary layer (TBL) consists of three
terms: viscous force (VF), turbulent inertia (TI), and mean inertia (MI):

∂2U+

∂ y2+
︸ ︷︷ ︸

VF

+ ∂−uv+

∂y+
︸ ︷︷ ︸

TI

+
[

−U+ ∂U+

∂x+ − V+ ∂U+

∂y+

]

︸ ︷︷ ︸

MI

= 0. (1)

In (1) x and y respectively represent the streamwise and wall-normal coordinate
directions and the superscript ‘+’ denotes normalization by themeanwall shear stress
and the fluid kinematic viscosity, or ‘viscous’ scales. The VF term is the gradient
of the viscous stress and the TI term is the gradient of the Reynolds shear stress.
The zero-crossing of the TI term corresponds to the peak location of the Reynolds
shear stress. Prior to the zero-crossing, the TI term acts as a source of momentum
(i.e., TI > 0), whereas after the zero-crossing the TI term becomes negative and acts
as a momentum sink. These source and sink regions balance to zero, (i.e. it must
integrate to zero across the boundary layer), which implies that the TI term is merely
redistributive. The MI term reflects boundary layer development, and so when cast
as a force represents a source of momentum. The MMB for the APG TBL includes
a fourth term, the pressure gradient (PG) term, which is constant and negative:

∂2U+

∂ y2+
︸ ︷︷ ︸

VF

+ ∂−uv+

∂y+
︸ ︷︷ ︸

TI

+
[

−U+ ∂U+

∂x+ − V+ ∂U+

∂y+

]

︸ ︷︷ ︸

MI

+U+
∞

∂U+∞
∂x+

︸ ︷︷ ︸

PG

= 0. (2)

As an example, Fig. 1 shows the distribution of the different terms in (1) and (2).
Changes in the MMB indicate structural changes in the APG TBL flow from the
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Fig. 1 aMMB of ZPG TBL at Reτ = 490, from [4]. bMMB of APG TBL at Reτ = 490 at β = 1,
from [1]

ZPG TBL flow. In (1) the effect of turbulence is represented by the Reynolds shear
stress uv via the TI term. The focus of the present work is to understand changes
in the TI term through the Reynolds shear stress uv and the associated Reynolds
shear stress correlation coefficient ρuv = uv/(urmsvrms), where urms and vrms are
streamwise and wall-normal fluctuating r.m.s. velocities. The Reynolds shear stress
correlation coefficient represents an “efficiency” of turbulent momentum transport
while the Reynolds shear stress itself may be affected by the available fluctuation
energy (as represented by urms and vrms).Wewant to know if the larger changes in the
Reynolds stresses due to Reτ (the friction Reynolds number) and β are accompanied
by a change to this efficiency.

1.2 Experimental and Computational Data Summary

The APG cases are compared to canonical ZPG TBL data to provide context for the
APG TBL analysis. A summary of the computational and experimental data is given
in Table1.
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Table 1 Summary of data sets and corresponding symbols

2 Results

The effects of Reynolds number and β on the peak location of the Reynolds shear
stress, i.e. the zero-crossing of the TI term of the MMB, and the minimum of ρuv are
discussed in the following sections.

2.1 ZPG TBL for Increasing Reynolds Number

Before moving to the APG cases, the ZPG case is observed over a range of Reynolds
numbers in Fig. 2. As the Reynolds number increases ρuv decreases inmagnitude; see
Fig. 2 (left). This decrease in magnitude reflects the increasing intensity of the u and
v fluctuations in the outer region while −uv+ gets closer to its theoretical maximum
value of 1 [8].The peak of −uv+ and minimum of ρuv are marked by green ♦ and
blue♦ symbols, respectively. As can been seen in Fig. 2 (right) the peak in ρuv scales
nominally with δ, which is why it appears to move outward when plotted relative
to y+ or y+/

√
δ+. The maximum of −uv however, seems to scale with

√
δ+. Note

that δ+ := δuτ /ν =: Reτ , and we interchangeably use δ+ and Reτ . There is more
scatter for the high Reynolds number markers due to the difficulty of identifying the
peak locations within the experimental data. This scaling is well-established for ZPG
TBLs despite the scatter in the present experimental data.

2.2 ZPG TBL and APG TBL at Matched Reynolds Number

A ZPG case is compared to several APG cases at matched Reynolds number, Reτ =
490, for 0.99 < β < 4.5 in Fig. 3 (left). Note that when comparing data sets at the
same Reτ one cannot determine whether certain features occur at fixed y+, y+/

√
δ+,

or y/δ. One clear feature that distinguishes the Reynolds shear stress of the APG
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Fig. 2 (left): −uv+ and ρuv at β = 0. Reynolds number increasing from dark to light colors.
250 < Reτ < 2000, from [4] and [5] plotted with—lines. 3300 < Reτ < 10000 from [6] and [7]
plotted with ◦ symbols. Maximum of −uv+ and minimum of ρuv marked by green ♦ and blue ♦
symbols, respectively. (right): The corresponding wall-normal locations plotted versus Reynolds
number

cases from the ZPG case is the emergence of a peak that exceeds unity, i.e.−uv+ > 1.
The peak of −uv+ is marked by green ♦ symbols. The increased peak magnitude
is enabled by the presence of the pressure gradient; the maximum Reynolds shear
stress is not capped by the maximum viscous stress (i.e. u2τ ) as in the ZPG case.
Surprisingly, there is relatively little change in ρuv at the outer minimum, marked
by blue ♦ symbols, despite the emergence of outer peaks in u+

rms and v+
rms with

increasing β. The insensitivity of this ‘efficiency’ to β in the outer region suggests
that the observed outer peaks in u+

rms and v+
rms are more reflective of changes of

the scaling factor uτ than of fundamental changes to the local turbulence. The wall-
normal location of the outer minimum of ρuv remains fairly constant with increasing
β, as seen in Fig. 3 (right) for Reτ = 490 in diamond symbols. Over the range of
positive β examined, the peak of −uv+ remains nominally constant. However, the
peak of the APG cases has shifted outwards from the ZPG case. This indicates that
the TI term has remained positive further away from the wall and is acting as an
additional source of momentum in the APG cases.

2.3 ZPG TBL and APG TBL: Effects of β and Reτ

ZPG cases are compared to APG cases for β ≈ 1. The corresponding −uv+ in
Figs. 4b, d indicate that the peak location of −uv+ maintains

√
δ+ scaling for both

the ZPG and APG cases examined. Note that the outer minimum of ρuv remains
at nominally the same wall-normal location when normalized by δ in Fig. 4c. In
Fig. 4a, c there is minimal change between the ZPG and APG ρuv profiles at matched
Reynolds number as β increases from 0 to ≈ 1. In comparison, both the ZPG and
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Fig. 4 a, c ρuv of β = 0 and β ≈ 1 for increasing Reynolds number. b, d −uv+ of β = 0 and
β ≈ 1 for increasing Reynolds number. Reτ = 490: β = 0 and β = 1.0 plotted with orange – and
blue – lines from [4] and [1], respectively. Reτ = 1800: β = 0 and β = 1.1 plotted with orange 	
and blue 	 symbols from [3]. Reτ = 7800: β = 0 and Reτ = 7100: β = 1.1 plotted with orange ◦
and blue ◦ symbols from [7] and recent experiments, respectively

APG ρuv curves decrease in magnitude as the Reynolds number increases. It appears
that ρuv is more sensitive to changes in Reynolds number than the change from β = 0
to β ≈ 1.
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3 Conclusion

We find that ρuv is more sensitive to changes in Reynolds number in comparison to
the examined range of β. Overall there is little change in the ‘efficiency’ of turbulent
momentum transport as characterized by ρuv, for increases in β. It is reasoned that
the effects of β diminish as Reynolds number increases, i.e., the same effect requires
a larger β. Furthermore, the location of the zero-crossing of the TI term seems to
scale with

√
δ+ for the APG cases examined while the minimum of the Reynolds

shear stress correlation coefficient scales with δ.
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Energy Transfer in Turbulent Boundary
Layers with Adverse Pressure Gradient

Taygun R. Gungor, Ayse G. Gungor, and Yvan Maciel

Abstract Turbulent boundary layers (TBLs) under the effect of an adverse pres-
sure gradient (APG) are significantly different from canonical wall-bounded flows
because of the increasingmomentumdeficit. In this study, the effect of velocity defect
on energy-transferring structures is investigated in a non-equilibriumAPGTBLwith
Reθ reaching 8000. The spectral distributions of production and pressure-strain of
〈u2〉 have been employed. The findings show that energy-transferring structures in
APG TBLs may remain fairly similar within one layer (inner or outer) as the defect
increases.

1 Introduction

Turbulent boundary layers (TBLs) that are subjected to a strong or prolonged adverse-
pressure-gradient (APG) behave differently than canonical wall-bounded flows such
as channel flows or zero-pressure-gradient (ZPG) TBLs because of the effect of the
pressure gradient [1]. The presence of such a pressure gradient leads to an increasing
momentum deficit and substantially changes the nature of the flow. As this defect
increases, inner layer turbulence loses its importance, and outer layer turbulence
becomes dominant [2]. This is one of the main distinctions between APG TBLs and
canonical wall-bounded flows.

Regarding the coherent structures in APG TBLs, as the outer layer structures
become dominant, the inner layer structures weaken. The inner layer streaks become
disorganized or vanish as the flow approaches separation [3]. Furthermore, the num-
ber of sweeps and ejections in the inner layer is less in APG TBLs than in ZPG TBLs
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[4]. Moreover, energetic structures are found more frequently in the outer layer in
APG TBLs [5]. The outer layer structures become shorter with increasing velocity
defect.

Despite research efforts on coherent structures carrying 〈u2〉 and 〈uv〉 in APG
TBLs, spectral analysis of Reynolds stress transport equations has been performed
only for canonical wall-bounded flows so far. The energy cascade, scale separation
and energy transferring structures were investigated for Couette [6] and channel
flows [7].

To understand the energy transfer mechanisms in APG TBLs, the spectral distri-
butions of the production and pressure-strain terms of 〈u2〉 are analyzed in a non-
equilibrium APG TBL.

2 The Flow Case

The current study employs a direct numerical simulation (DNS) database of a non-
equilibrium APG TBL with an increasing mean velocity deficit. The DNS was per-
formed using a box domain with a no-slip smooth bottom wall. The Reynolds num-
ber based on momentum thickness (Reθ ) spans 2000–8000 and the shape factor
(H ) increases from 1.5 to 3.2. The dimensions of the computational box are (Lx ,
Ly , Lz)/δ0 = 81, 16, 24, where δ0 is the boundary layer thickness at the inlet. The
number of grid points are Nx , Ny , Nz = 4609 × 736 × 1920.

Figure1 shows the spatial evolution of 〈u2〉 as a function of x/δ0 and y/δ0. The
maximum value of 〈u2〉 is in the inner layer at the beginning of the domain. It is
found in the outer layer after approximately x = 25δ0 when the shape factor reaches
approximately 1.75. It is seen that the dominant turbulence energy is in the outer
layer when the defect is large. In order to investigate the effect of velocity defect
on turbulent structures, energy transfer is examined at two streamwise positions
corresponding to small and large velocity defect cases, where the shape factor is
1.65 and 2.63, respectively.

Fig. 1 The spatial evolution of 〈u2〉/U2
e,0 as a function of x/δ0 and y/δ0, where Ue,0 is the edge

velocity at the inlet. The straight and dashed black lines indicate boundary layer thickness and
the wall-normal position of maxima of 〈u2〉. Blue and red vertical lines indicate the streamwise
positions of H = 1.65 and 2.63, respectively
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3 Results

3.1 The Reynolds Stress Budgets

First, the energy transfer mechanisms in the APG TBL are investigated through the
transport equations for the Reynolds stresses. Figure2 shows the Reynolds stress
budget of 〈u2〉 for the small and large velocity defect cases. In the small defect case,
all terms exhibit a strong inner peak. This strong inner layer activity suggests that
the small defect case has similarities with canonical wall-bounded flows, where the
inner layer turbulence is dominant.

As the defect increases, the inner layer loses its importance, and the outer layer
becomes dominant. All transfer terms increase in the outer region except viscous dif-
fusion. Furthermore, production and pressure-strain peak in the outer layer, roughly
around y/δ = 0.5. There is still inner layer activity, but it is much weaker than in
the outer layer for production and pressure-strain. In addition, the energy levels are
different in both defect cases.

3.2 The Spectral Distributions

The Reynolds stress budgets provide information about the wall-normal distribution
of the energy transfer mechanisms but not about coherent structures that are linked to
these mechanisms. To investigate the role that coherent structures play in the energy
transfer, the spectral distribution of production and pressure-strain of 〈u2〉 are ana-
lyzed using the transport equation for the two-point velocity correlation tensor. The
reason for using the two-point correlation equation is that the spectral information
about energy transfer mechanisms can only be obtained through two-point corre-

-20 -10 0 10 20

10-3

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10

10-3

0.2

0.4

0.6

0.8

1

Fig. 2 The energy transfer mechanisms of 〈u2〉 as a function of y/δ for the small (left) and large
(right) defect cases. Ue is the the edge velocity and δ is the local boundary layer thickness
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lations. The transport equation for the two-point correlation tensor (〈ui ũ j 〉) can be
written as follows.

0 =
[
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∂ x̃k∂ x̃k

〉]

where Ui and ui are the mean and fluctuation velocities, xi and x̃i are vector coor-
dinates of the two points where the correlations are computed. The terms on the
RHS of the equation are, in order, mean convection, production, pressure-strain,
pressure transport, turbulent transport and viscous terms. This study focuses only on
production and pressure-strain, the latter being the inter-component energy transfer
between 〈u2〉, 〈v2〉 and 〈w2〉. In addition, only spanwise separation is considered for
the two-point correlations. Therefore, the spectral distributions are functions of x , y
and only spanwise wavenumber in wavenumber space.

Figure3 displays the premultiplied energy, production and pressure-strain spectra
of 〈u2〉 as a function of λz/δ and y/δ for the small and large defect cases using a linear
scale for y to emphasize the outer region. It is important to note that the pressure-
strain spectra have predominantly negative values because the pressure-strain of 〈u2〉
acts as a sink term since 〈u2〉 transfers energy to 〈v2〉 and 〈w2〉. It is negative except
for the very near-wall region. Some characteristics of outer layer energy transferring
structures remain similar with increasing velocity defect even though the shape of
the spectra is different. The production and pressure-strain structures are at similar
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Fig. 3 The energy (shaded), production (red), and pressure-strain (purple) spectra of 〈u2〉 as a
function of λz/δ and y/δ for the small (left) and large (right) defect cases. The contours are 0.1,
0.2, 0.45, and 0.9 of the absolute maximum of each spectrum and negative for the pressure-strain
spectra. δ is the local boundary layer thickness
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Fig. 4 The energy (shaded), production (red), and pressure-strain (purple) spectra of 〈u2〉 as a
function of λ+

z and y+ for the small (left) and large (right) defect cases. Only the inner layer
(y+ < 50) is shown. The contours are 0.25, 0.5, 0.75, and 0.9 of the absolute maximum of each
spectrum in the inner layer and negative for the pressure-strain spectra

y-locations as the most energetic structures. Moreover, λz of energy-transferring
structures are in the same order of magnitude in both cases. In addition, the pressure-
strain structures are slightly narrower than the production structures in the outer layer
of both defect cases.

Regarding the inner layer, Fig. 4 presents the same spectral distributions as in Fig. 3
but masking the outer layer to examine the inner layer in more detail, especially for
the large defect case. The reason formasking the outer layer is to prevent the dominant
outer peak from hiding the spectral distribution in the inner layer. The inner peak in
the energy spectra completely vanishes in the large defect case. On the other hand, the
spectral distributions of both production and pressure-strain exhibit an inner peak,
although the spectra are noisy in the large defect case because the levels are low.
Furthermore, the shape of both spectral distributions is very similar in both defect
cases. Moreover, the relationship between the production and pressure-strain spectra
remains very similar with increasing velocity defect. The main difference between
both defect cases is that the y-position and λz of the inner peak of production and
pressure-strain spectra are different, but this is expected since friction-viscous units
are not appropriate scales for APG TBLs with large velocity defect [1].

4 Conclusion

The effects of the velocity defect on the energy-transferring structures are examined
through the spectral distributions of energy, production and pressure-strain of 〈u2〉
in a non-equilibrium APG TBL. Two streamwise positions that correspond to small
(H = 1.65) and large (H = 2.63) velocity defect cases of the APG TBL are chosen.

The examination of energy, production and pressures-strain spectra suggests that
the production and pressure-strain structures have some similarities within one layer
regardless of the velocity defect. In the inner layer, there is a peak in production and
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pressure-strain spectra in both defect cases, even though the inner peak completely
vanishes in the energy spectra of the large defect case. Moreover, the shape of the
production and pressure-strain spectra do not significantly change with increasing
velocity defect. In the outer layer, the y-position of production and pressure-strain
structures with respect to the most energetic structures are similar. Regarding their
size, the spanwisewavelengths of production and pressure-strain structures remain in
the same order of magnitude as the defect increases. Furthermore, the pressure-strain
structures are slightly narrower than the production structures in both cases.

To have a more complete picture of energy-transfer mechanisms and energy-
transferring structures and come to a more solid conclusion, 1D spectra as a function
of streamwise wavelength and 2D spectra of energy and all energy transfer terms
should be investigated in future studies.
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Influence of Rough Surface Morphology
on Boundary Layer Flow

K. Jurčáková, P. Procházka, R. Kellnerová, P. Antoš, and V. Skála

Abstract The flow over nine different surfaces with sharp-edged roughness ele-
ments were measured by single wire anemometry. The intensity of turbulence did
increase with the plan/frontal solidity of the roughness elements. We used a diag-
nostic plot to assess the quality of boundary-layer flows. All investigated boundary
layers revealed linear dependence of the turbulence intensity on the relative mean
wind speed in the outer layer. The slope of the diagnostic plot was dependent on
the frontal solidity of the elements but not on their size. The intensity of turbulence
exceeds the maximal slope of the diagnostic plot for rough-wall flows showed in
(J. Fluid Mech.727:119–131) in six cases.

1 Introduction

Outer-layer similarity for smooth- and rough-wall flows is still an unresolved prob-
lem. Townsend’s hypothesis [1] suggests that it is only the inner layer (approx. up to
five roughness heights) that is affected by surface roughness and studies of e.g.,
[2] and [3] support this hypothesis. On the other hand, there are studies (e.g. [4])
which suggest that the entire boundary layer is affected and that the difference is also
dependent on the roughness topology. The roughness topology can be very variable,
for example, the classical sandpaper roughness, a wire mesh, long rods or bars ori-
ented across the flow, or three-dimensional regularly placed obstacles. In our study,
turbulence is very effectively generated by spatially placed sharp-edged obstacles,
which suppress along-wind dimensions (i.e. plates).
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2 Experimental Setup

Turbulent boundary layers over 9 surfaces were experimentally investigated by hot-
wire anemometry. A constant-temperature anemometer, DISA M10, together with a
single-wire probe, Dantec 55P11, were utilized. The sensor used was a tungsten wire
with a diameter of 5 μm and a length of 1.25mm. The temperature of the sensor was
200 ◦C. The sampling frequency was 75 kHz and the sampling time was 30s, which
corresponded to more than 3500 boundary-layer turnover times. The measurement
campaign was conducted in an open blowing-type wind tunnel with dimensions of
0.25, 0.25 and 4.20m (width, height and length). Operational free-streamwind speed
was around 14m/s and there was no tripping. The non-dimensional pressure gradient
parameter, defined as

β = δ∗

uτ ρ

dp

dx
(1)

where δ∗ is displacement thickness, uτ is friction velocity, and ρ is the air density,
had negligible value: −0.22 < β < −0.15. Therefore, all boundary layers can be
considered as zero pressure-gradient flows.

We investigated one nearly smooth surface (non-polished block material) and 8
rough surfaces with plate roughness elements. All roughness elements had a uniform
height of k = 4 mm and a length l = 1 mm, they were arranged in staggered rows,
and they covered the whole extent of the wind tunnel floor. The spacing of elements
in one row was the same as the rows’ spacing. The first set of 4 rough surfaces S4_8,
S4_6, S4_4, and S4_2 (the first row in Fig. 1) had identical roughness elements
with decreasing element spacing and, consequently, with increasing plan solidity
λp and frontal solidity λ f . The second set of rough surfaces S7_5, S10_6, S15_7,
and S20_8 (the second row in Fig. 1) was derived from the surface S4_4. The width
of the elements and their spacing were increased to keep λp and λ f constant. The
roughness layout details are given in Table1.

Fig. 1 Sketches of rough surfaces. Only parts of the surfaces are shown
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Table 1 Surface characteristics. All surface names are in the format Sx_y where x is the element
width in mm and y is the element spacing as a multiple of the element height (k = 4 mm)

S4_8 S4_6 S4_4 S4_2 S7_5 S10_6 S15_7 S20_8

Element’s
width
(mm)

4 4 4 4 7 10 15 20

Spacing
(mm)

32 24 16 8 20 24 28 32

Plan
solidity
(%)

0.3 0.6 1.2 3.7 1.2 1.2 1.2 1.2

Frontal
solidity
(%)

1.3 2.3 4.7 14.8 4.9 4.7 4.8 4.7

Fig. 2 Wall-normal profiles of mean velocity (left) and velocity standard deviation (right) in the
outer scaling measured at x = 3450 mm

3 Mean Flow Profiles

Mean velocity profiles in outer scaling showed the influence of the surface roughness,
see Fig. 2, left. The profiles lined up according to the plan and frontal solidities. The
profiles over the second set of surfaces with the constant λp and λ f (S4_4, S7_5,
S10_6, S15_7, and S20_8, various blue colours) collapsed into identical profiles
of the mean stream-wise velocity U/Uδ and its standard deviation u′/Uδ in the
outer region (within the experimental error). The roughness sublayer (z < 2k), where
the individual profiles varied according to the proximity of individual roughness
elements, was excluded from the graphs.
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4 Diagnostic Plot

There is some doubt whether a boundary layer created by flow over large and sharp-
edged roughness elements is properly developed and whether there is adequate scale
separation or if it is just a superposition of bluff-body wakes. The diagnostic plot
proposed in Alfredsson and Örlü [5] was created and used to analyse wall-bounded
turbulence profiles. In the outer region, including the inertial sublayer, the dependence
between stream-wise fluctuation intensity u′/U and local velocity in outer scaling
U/Uδ can be, according to Alfredsson and Örlü [6], expressed linearly as

u′

U
= a + b

U

Uδ

(2)

where a and b are empirical constants. The diagnostic plot shows different slopes for
flows over rough and smooth walls. Alfredsson and Örlü [6] set the constants for the
boundary-layer flows over a smooth wall as: a = 0.286 and b = −0.255. Castro and
Segalini [7] compiled various rough-wall data and found a = 0.436 and b = −0.389
as an asymptote line for the fully rough boundary-layer flows. The compiled dataset
includedflows over sand grains, grits,meshes, cubes, bars, and sparsely placed plates.
Based on their observation, they stated that any examined surface roughness does
not change the outer layer turbulence intensity.

Diagnostic plots for all 9 profiles are shown in Fig. 3 together with the asymptotic
line for the smooth (dashed line) and rough (solid line) walls. The lines for surfaces
S0 and S4_8 lie between the smooth and rough wall lines which show that the
boundary layers are transitionally rough and not fully developed. The values of Reτ

and roughness function �U (see Table2) support this observation. Surface S4_6
agrees with Castro’s rough line very well. The other profiles have a higher turbulence
intensity in the whole extent of the outer layer and it keeps the linear dependence on
U/Uδ . The S4_2 surface,which has the highestλp andλ f , has the steepest slope and a
new asymptotic line can be parametrized with the anew = 0.499 and bnew = −0.445.
Our sharp-edged roughness elements aremore effective in turbulence production than
the surfaces compiled in Castro and Segalini [7]. The values of roughness function
(defined in (4)) of our profiles �U+ in the range of 11–15 (see Table2) is on the
upper limit and higher than the data in Castro and Segalini [7]. Their maximum was
�U+ = 13.9 for 2D bars roughness. We repeated the measurement of all surfaces
for the free-stream velocity 23m/s with the same results. The only weak point of our
data is the rather small ratio δ/k ≈ 25. This leads to a higher relative thickness of
the roughness sublayer and loss of the lower part of the logarithmic layer, i.e. the
region where U/Uδ � 0.6.

The difference between smooth and rough diagnostic-plot slopes can be associated
with the difference in roughness function �U . All data in Castro and Segalini [7]
collapsed in one line using a modified version of the diagnostic plot

u′

U ′ = ã + b̃
U ′

U ′
δ

, where U ′ = U + �U and U ′
δ = Uδ + �U. (3)
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Fig. 3 Diagnostic plot for all surfaces. Dashed and bold line adopted from Castro and Segalini [7],
dash-dotted line is the new asymptote

Table 2 Boundary-layer parameters for investigated surfaces

S0 S4_8 S4_6 S4_4 S4_2 S7_5 S10_6 S15_7 S20_8

δ [mm] 49 75 80 93 105 96 94 97 99

Uδ

[m/s]
13.6 14.0 14.3 14.7 14.9 14.5 14.5 14.4 14.3

δ/k – 19 20 23 26 24 24 24 25

uτ

[m/s]
0.40 0.66 0.72 0.85 0.97 0.86 0.88 0.94 0.96

�U
[m/s]

0.3 4.5 5.7 9.5 14.3 10.1 10.8 12.8 13.6

�U+ 0.75 6.8 7.9 11.2 14.7 11.7 12.3 13.6 14.2

Reτ 1307 3300 3840 5270 6790 5504 5515 6079 6336

At the limit for the smooth wall�U = 0, (2) and (3) will be the same. Roughness
parameter �U can be calculated from the composite velocity profile (adapted from
Chauhan et al. [8])

U

uτ

= 1

κ
ln

( y uτ

ν

)
+ A − �U

uτ

+ 2


κ
W

( y

δ

)
(4)

where κ is the von Karman constant, ν is the kinematic viscosity, A = 5.2 is the
smooth surface additive constant,
 is knownas thewakeparameter, δ is the boundary
layer height, andW is thewake function, which is defined to satisfy the normalization
conditions W (0) = 0 and W (1) = 1. We used the exponential wake function from
Chauhan et al. [9].We also tested the composite profile fitwith non-zero displacement
height, but the values of displacement height were negligible and the fit error did not
decrease. Therefore, zero-plane displacement was set to zero for all setups. This is a
valid assumption since the maximal plan solidity λp was 3.7%.
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We had no direct measurement of the surface shear stress and the inner layer was
overridden by the roughness sublayer. Therefore, friction velocity uτ and roughness
function �U were obtained by the least-square fit of the composite profile (4) to
the measured vertical profiles of U in the range 2.2k < y < 0.95δ. Boundary-layer
parameters as boundary-layer height δ and free stream velocity Uδ as well as the
fitted parameters uτ and �U for all surfaces are listed in Table2.

The values of roughness functions obtained by the fit of measured profiles to (4)
are not large enough to unify all profiles onto the smooth line, see Fig. 3, right. The
�U values would have to be much higher (up to 100% for surfaces S4_8 and S4_6)
for themodified diagnostic plot (3) to reach the smooth-wall line. Please note, that the
dependency of u′/U ′ onU ′/U ′

δ is not linear (by definition) but the curvature is small.
However, the curvature is increasing for the higher values of �U and it is probably
not feasible for such turbulent boundary layers to collapse into the smooth-wall line.

There is no visible difference in the mean velocity profiles for the surfaces with
a constant λp and λ f if plotted in outer scaling (see Fig. 2). However, there is an
increasing trend in the values of boundary-layer depth δ and roughness function�U+
with the increasing width of the elements (S4_4 -> S20_8).We plan to investigate the
flow over these surfaces by particle image velocimetry to reveal possible structural
changes in the flow.

5 Conclusion

We confirmed that roughness elements in the shape of erected plates are extremely
effective in turbulence production. The boundary layers created above surfaces with
such elements are relatively shallow (19 < δ/k < 26) but their turbulence intensity
u′/U is linearly dependent on relative velocity U/Uδ in the outer layer. The slope
of this dependence increases with the density of roughness elements. Six of the
investigated setups exceed the line for fully rough boundary-layer flow as proposed
in Castro and Segalini [7]. The new asymptote has parameters: anew = 0.499 and
bnew = −0.445.
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Similarity Scaling of a Free, Round
Jet in Air

Preben Buchhave, Chunyue Zhu, and Clara M. Velte

Abstract Natural phenomena adhere to certain conservation laws that follow from
fundamental symmetries in nature. We assume a simplified model for a free, round,
fully developed turbulent jet in air and apply the conservation laws to this model to
see what we can predict concerning the physical properties of such a jet. We compare
these results to carefully conducted laserDoppler anemomenty (LDA)measurements
in a fully developed turbulent round jet. We find that both first, second and third
order statistical quantities are controlled by a single scaling factor—the downstream
distance x .

1 Background

It is well known that some fluid flows, that are free and unhindered of physical bound-
aries, develop into a state that to somedegree replicate statistical properties describing
the flow upstream. This phenomenon is called self-preservation or self-similarity [1–
9]. The concept of self-similarity is of great practical importance because it simplifies
the mathematical description of such flows and reduces the computational load when
it can be used in engineering models.

The phenomenon is also interesting from a theoretical point of view: What is the
underlying reason for the development of self-similarity? When does it occur? And
how many parameters are needed to describe self-similarity in a flow?

The free, axisymmetric jet is an example of a canonical flow, which has been
studied thoroughly over the years [10–14]. In our laboratory, we have worked with
a jet with an initial 10mm diameter top-hat profile issuing into a large nylon tent.
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We find that this jet in a matter of a few milliseconds develops into a state that
scales downstream in a self-reproducing manner. Most treatments of the self-similar
jet consider this as an observation of an experimental fact and, based on that, create
mathematical relations describing the already assumed similarity properties. It is then
shown that the scaling relations satisfy the equation ofmotion, in this case theNavier-
Stokes equation. Finally, the theory is confirmed by comparison to experimental data.

We believe that the development of a self-similar state is governed by basic,
underlying principles resulting from fundamental properties of space and time, the
so-called symmetry properties of classical space-time. These symmetry relations
are equivalent to conservation relations governing mathematical physical quantities
such as momentum, energy and angular momentum. In the following we begin by
applying these conservation relations to a simplified model of a jet without assuming
anything about the jet except that it issues in a given axial direction and is symmetric
about this axis with a constant velocity profile. We then derive how various first,
second and third order statistical functions and moments of the velocity are expected
to scale downstream in the jet.

We then describe laserDopplermeasurements of the axial velocity component and
present results of calculations of statistical functions that convincingly confirm the
predictions from the simple model and imply that the similarity scaling is controlled
by a single, geometrical scaling factor. In two companion papers to be published [15,
16], we presentmore details regarding the derivation of the scaling behavior expected
from the simple model and more details about the measurements and the computed
statistical functions.

2 Space-Time Symmetries and Conservation Laws

The basic symmetry properties of classical space-time in which the jet exists are (see
e.g. Frisch [3]):

• Space translation symmetry
• Time translation symmetry
• Rotational symmetry

In addition, we assume a Newtonian fluid described fully by

• Navier Stokes equation (NSE)

As is well known fromNoether’s theorem [17], the symmetries lead to corresponding
basic physical-mathematical conservation laws:

• Conservation of momentum
• Conservation of energy
• Conservation of angular momentum

In addition, we know that non-dimensionalizing the Navier-Stokes equation for
Re � 1 leads to (see e.g. Monin and Yaglom [1])



Similarity Scaling of a Free, Round Jet in Air 199

• Reynolds number similarity,

which, as we shall see, in connection with momentum conservation, leads to the
linear growth of the jet and the velocity decrease being inversely proportional to the
distance from the origin.

3 Simple Jet Model

We consider a simple model for the jet in a cylindrical coordinate system, see Fig. 1,
where we assume constant mean velocity u(x, y) in the axial direction, x , that is
zero outside the jet radius, δ(x), in the radial direction, y, but do not otherwise
assume anything about the form of the jet except rotational symmetry about the jet
axis. We then apply momentum conservation. Because the jet is not influenced by
boundaries, the initial momentum flux at the jet exit in the direction of the jet axis
must be conserved downstream. The momentum flux, Ḃ, is: Ḃ = ρπδ2 u dt u/dt =
ρπδ2u2 = constant, where ρ is the constant mass density of air. It then follows
that δ2u2 = constant and therefore the large-scale Reynolds number ReL = uδ/ν =
constant along the jet axis.

As detailed in the companion paper [15] we can then invoke Reynolds number
similarity and conclude that the jet width must increase linearly along the jet axis
and that the velocity must decrease inversely proportional to the distance from the
origin. Further, the jet mass must increase linearly with distance from the origin and
entrainment defined as the influx of mass per unit axial length must be constant. The
actual rate of increase depends on the initial structure of the jet [18, 19].

If we then apply energy conservation to equal thickness sections of the jet, we
find that the energy density and thus the variance must decrease as x−2 and that the
spectral energy density must decrease as x−1 and that the wavenumber k describing
the spatial scales must also decrease as x−1. It follows that the turbulence intensity
must be constant along the jet axis.

Seeing that spatial structures and velocity scale with a single, geometrical scaling
factor, we can expect higher order statistical functions to scale according to the
dimension of velocity and spatial structures entering the formula for the statistical
functions. We reiterate that all these considerations are based on a simplified model
for the mean values of the velocity and that these predictions must be compared to
experimental results in order to find to which degree they can be verified.

Fig. 1 Simplified jet model
with arbitrary u(x, y) and
δ(x) to be determined from
first principles
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4 Measurements

The measurements were performed on a free, axisymmetric jet in air. The jet ori-
fice was D = 10 mm, the Reynolds number based on the jet diameter was 32.000.
Measurements were made at 70 positions from x = 30D − 100D and across the full
width of the jet. The axial velocity component was measured with a laser Doppler
anemometer (LDA)with variable optical frequency shift optimized for bias-free, high
signal-to-noise Doppler signals. Between 100 and 400 records of 1 second duration
were sampled at each measurement point. All-digital signal processing provided
sample time, velocity and transit time. The data processing provided velocity data
separated spatially by the convection record method. Thus, all statistical functions
were spatially sampled, corrected for the convection velocity sweeping effect [20].
We present selected results; a complete description will be published separately [16].

Figure2 presents first order scaling properties of the jet. The scaling along the
axis adheres quite well to the predictions from the simple model. Figure3 shows the
spatial power spectral density along the jet axis and Fig. 4 shows the same in cross
sections at 30D, 60D and 90D. The axial spectra have been scaled, first along the
ordinate and then the abscissa for optimum collapse of the spectra in the velocity and
spatial scalings, respectively, to the one at 30D. The transverse spectra have been
scaled only with the total energy.

Figures5 (left) and (middle) show the second and third order structure functions,
respectively, scaled to collapse to the one at 30D. The scaling factor allows us to
compute the mean rate of dissipation and the Kolmogorov scale. Figure5 (right)

Fig. 2 Axial development of mean velocity profiles with a Gaussian fit (left), the mean square
velocity (middle) and the jet width indicating a virtual origin at x0/D ≈ 5 − 8 (right)

Fig. 3 Axial developments of scaled spatial power spectra along the jet centerline. x/D =
30, 40, 50, 60, 70, 80, 90, 100



Similarity Scaling of a Free, Round Jet in Air 201

Fig. 4 Spatial power spectra along the radial direction at x/D = 30, 60 and 90; r =
0, 20, 40, 60, 80, 100, 120 mm. These spectra have been scaled only by the local total energy.
Yellow line: −5/3 slope

Fig. 5 Left and middle: Second and third order structure functions at axial downstream distances
of x/D = 30, 40, 50, 60, 70, 80, 90, 100, scaled to collapse. Right: Spatial scales as a function
of axial distance

shows the spatial scales along the jet axis. The integral scale is computed from the
spatial one-point correlation functions. The Taylor microscale is computed in Fourier
space from the Fourier components in the inertial range and the Kolmogorov scale
is computed from the measured scaling factor to fit the third order structure function
to a 4/5 slope.

5 Conclusion

The overall result of the detailed measurements and computations is that all first
and second order statistical quantities can be referred to a single scaling parame-
ter, the downstream distance x , in agreement with the conservation laws applied to
the simple conical model. The third order spatial structure function can be scaled
to fit a 4/5 slope and thus provide results for average dissipation and Kolmogorov
scale. All the scaling functions needed to make the various statistical functions col-
lapse do so as expected from their dimension. We thus conclude that the statistical
functions measured for this high Reynolds number jet scale according to a single
geometrical scaling factor, namely the axial distance x from a virtual origin given
within experimental uncertainty to lie between 5 and 8 jet orifice diameters. The
scaling functions needed to make the statistical functions collapse and thus display
self-similarity adhere well to the predictions from a simple, conical model for the
mean velocity.
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Topological Differences in Mean Wakes
of Circular and Square Cantilevered
Cylinders

Matthew G. Kindree, Dekun Yan, and Robert J. Martinuzzi

Abstract The turbulent quasi-periodic wake of a circular and a square cross-section
cantilevered finite aspect ratio cylinder protruding a thin laminar boundary layer is
investigated experimentally. The mean wake vortical structure and flow topology are
found to be more complex for the square than the circular geometry. The differences
arise from interactions involving periodically shed Kármán-like vortices. For the
square cylinder, the circulation of the shed vortices is significantly stronger, giving
rise tomore complex interactions between shed vortices and the redeveloping bound-
ary layer. The strength of the shed vortices is related to the rate vorticity, generated
on the obstacle faces, is transported along the separated shear layers. The obstacle
surface topology thus plays an important role by modifying the separation process.

1 Introduction

Flows over circular and square cross-section, finite aspect ratio cantilevered cylinders
are commonly studied as heuristic simplifications forwind engineering and industrial
aerodynamics. These are often discussed interchangeably, yet their surface topology
are distinct. When compared to the circular cylinder, the additional discontinuities at
the sharp edges and corners of the square geometry require topological differences in
the flow domain to satisfy the Poincaré–Hopf theorem [1]. The surface influences the
rate vorticity is generated and convected into the wake, thus affecting the dynamics
of Kármán-like vortex shedding. In this study, it is shown that these differences result
in more complex wake structures for square than for circular geometries.
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The influence of the boundary layer state on the wake structure and dynamics is
poorly documented for cantilevered cylinders with height-to-width ratios h/d > 2.
For on-coming thin boundary layers of thickness δ <∼ 0.3h, the wake dynamics are
characterized by the quasi-periodic shedding of Kámán-like vortices. Whereas for
the square cylinder shedding is observed over most of the obstacle height, for the
circular cylinder it is typically restricted to regions closer to the ground plane below
∼ h/2 [2]. The dominant mean wake features are a lee region recirculation from
which two counter-rotating stream-wise vortices, commonly referred to as a dipole,
extend downstream [3]. The dipole is the mean signature of the shed vortices, which
are tilted upstream with increasing elevation from the ground plane, and are thus
observed at lower elevations for circular than square cylinders.

For thin laminar boundary layers, the wake structure is qualitatively similar to that
for turbulent boundary layers, but the existence of low-frequency instabilities near the
free-end have been reported. In contrast, for the square cylinder, the wake structure
differs significantly with multiple mean vortex structures [2, 4]. These observations
motivate more detailed studies to elucidate the role of the boundary layer state.

2 Methodology

The turbulent wakes of cantilevered circular and square cylinders of height-to-width,
h/d, aspect ratio 4 protruding a thin laminar boundary layer are investigated using
planar, time-resolved Stereoscopic Particle Image Velocimetry (SPIV) synchronized
with surface-pressure measurements. For each SPIV plane, 16,000 snapshots were
collected at a sampling rate corresponding to about 11 points per shedding cycle.
The nominal Reynolds number, based on the free-stream velocityU∞, the kinematic
viscosity ν and d, is 10,500. Further experimental details can be found in Kindree et
al. [2]. The on-coming boundary layer satisfies the Blasius profile and its undisturbed
thickness at the obstacle location is 0.05h (0.2d).

Data are reported for a Cartesian coordinate system with (x, y, z) representing
(stream-wise,flow-normal, plate-normal) directions and (u, v,w) the correspond-
ing velocity components. Mean and fluctuating components of velocity are denoted
(U, V,W ) and (u′, v′,w′), respectively. Coordinate variables are normalized by d,
with zh = z · d/h, and velocity byU∞. Over 30 SPIV z-planes are synchronizedwith
the surface pressure measurements to obtain volumetric, phase-average representa-
tions of the wake dynamics. The common reference phase-angle was obtained using
a Hilbert transform of the surface pressure fluctuations. A phase-averaged shedding
cycle was represented by 40 phase-bins.

3 Results and Discussion

Mean streamlines overlaying flooded iso-contours of the w′2–distributions in the
symmetry plane y = 0 are compared in Fig. 1. Also shown are sectional streamlines
overlaying iso-contours of W close the ground at an elevation of zh = 0.03 (z =
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Fig. 1 Mean flow field for a circular cylinder and b square cylinder. Top: Iso-contours of w′2
overlaid bymean flow streamlines in the symmetry plane y = 0. Bottom: Iso-contours ofW overlaid
by sectional streamlines in the plane z = 0.11 (zh = 0.03)

0.11). The flow separates at the top leading edges giving rise to a mean recirculation
over the obstacle free-end. For the square cylinder, however, the separated shear
layer reattaches intermittently. For both obstacles, the separated shear layer exhibits
a flapping motion. This process gives rise to a low-frequency, fL , instability in the
wake near the free-end at fLd/U∞ ≈ 0.04 and 0.01 for circular and square cylinders,
respectively [2]. For the square cylinder, due to the intermittent reattachment, the
amplitude of the low-frequency instability isweaker than for the circular cylinder. The
dominant contribution to the wake fluctuations is due to the Kármán-like shedding
of vortices at frequencies fS corresponding to St = fSd/U∞ = 0.146 and 0.110 for
circular and square cylinders, respectively.Concentrations of highw′2 showdominant
spectral contributions at 2St and are located closer to the ground for the circular
cylinder. As is further elaborated below, these observations are consistent with the
passage of vortex strands connecting alternately shed vortices.

Important topological differences are noted near the wake attachment. For the
circular cylinder, the bifurcation line originating over the free-end impinges on the
the ground resulting in a simple attachment half-saddle. In contrast, for the square
cylinder, the bifurcation connects to a free-saddle S. Flow is directed up from the
ground to S giving rise to a secondary vortex structure downstream of the attachment
point along regions of W > 0 marked FW in the plane zh = 0.03.

The extent and nature of the topological differences are more clearly appreciated
by comparing the isometric views of the mean vortical structures shown in Fig. 2.



206 M. G. Kindree et al.

Fig. 2 Mean vortical structures in the wake of the a circular and b square cylinder visualized as
isosurfaces of λ2 = 0 coloured by stream-wise vorticity�x . Identified are:D dipole;P junction;DV
descending; FW far wake and HS horseshoe vortices. Superscripts +/− indicate sense of rotation

This figure shows the iso-surfaces of λ2 = 0 coloured by mean streamwise vorticity.
While both mean wakes show dipole (D) tip vortices and junction (P) vortices, the
square cylinder wake also shows a descending vortex pair (DV) and far wake (FW)
structures extending downstream.

Differences in the mean wake structures are due to the signature of the instanta-
neous, interacting large-scale vortices associated with the shedding process. Phase-
averaged reconstructions of the wake structure are shown for the circular cylinder,
Fig. 3, and square cylinder, Fig. 4, for an arbitrary, but similar, shedding phase. In
these figures, features are numbered chronologically with respect to the shedding
cycle. The principal cores, PC, extend vertically from the ground plane. These cores
tilt stream-wise forming connector strands,CS, which cross the symmetry plane and
connect to the upstream opposite-rotating PC. This process results in a continuous
chain linking successive shed vortices [3] as seen from the loci of vortex centroids.

The mean signature of the connector strands corresponds to the dipole vortices,
D in Fig. 2. Maxima of w′2 along y = 0 occur along the trajectories of the connector
strands as these cross the symmetry plane. During each shedding cycle, two strands,
one fromeach opposing shed vortex, cross the symmetry plane such that the dominant
w′–fluctuation frequency is 2St in this region.

Closer consideration of the phase-resolved wake structure indicates important
differences in the wake dynamics and vortex interactions between the two cases. For
the circular cylinder in Fig. 3, the connector strands attach to the upstream PC at
an elevation around z = 2 (zh = 0.5). A more resolved view of the process can be
gleaned from the loci of the vortex centroids. The loci for the CS and PC remain
distinct, indicating that the vortices have not fully merged. Note that the loci along
the PC are located on the outer side of the wake, compared to those for theCS, which
are located closer to the symmetry plane after connecting.
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Fig. 3 Phase-averaged vortical structures in the wake of the circular cylinder for an arbitrary
shedding phase visualized as isosurfaces of λ2 = 0 coloured by streamwise vorticity 〈ωx 〉. Middle
frame shows loci connecting vortex centroids estimated from the second moments of vorticity

Fig. 4 Phase-averaged vortical structures in the square cylinder wake for an arbitrary shedding
phase visualized as isosurfaces of λ2 = 0 coloured by 〈ωx 〉. Middle frame shows loci connecting
vortex centroids. The semi-transparent region in the right frame marks the DV–trajectory

For the square cylinder, Fig. 4, the CS connect to the upstream vortices at greater
elevation (z ≈ 3, zh ≈ 0.75). In contrast to the circular cylinder wake, the loci of the
connected CS are located on the outer side of the wake and those of the PC closer
to the symmetry plane. The connector strands are effectively entrained around the
principal core. Due to this wrapping motion, the vorticity vector along the centroid
rotates almost 180◦ stream-wise as the connector wraps around the PC. From the
right-hand frame of Fig. 4, this wrapping motion occurs along the trajectory of the
DV, which are thus the mean signature due to the re-orientation of the CS.

These differences in the wake dynamics appear related to the strength of the shed
vortices. The circulation of the principal cores were estimated for each reconstructed
shedding phase for five planes below the CS according to � = ∫ ∫ 〈ωz〉d A, where
A is the area of the vortex core in the z–plane enclosed by the λ2 = 0 iso-contour.
For each geometry, the estimated � varied less than 5% for each plane or shedding
phase. The ensemble average of � for the circular cylinder wake is �/dU∞ = 3.8,
which is significantly less than �/dU∞ = 4.8 for the square cylinder.

The greater strength of the shed vortices for the square cylinder wake results
in stronger induced velocities. These observations are consistent with the stronger
W < 0 observed in the wake along the symmetry plane and the stronger entrainment
of the connector strands. The stronger entrainment helps explain why the connector
strands wrap around the principal core, giving rise to the descending vortices, for the
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square cylinder. For the circular cylinder wake, the CS are not entrained as strongly
and descending vortices are not observed.

For the square cylinder, the principal cores are located more closely to the sym-
metry plane. These are thus expected to induce the upward flow (W > 0) near the
attachment region (x ∼ 3) from the ground plane,which is consistentwith the appear-
ance of the free saddle point S in Fig. 1b. This motion induced by these principal
cores is further believed to induce the formation of the the far-wake vortices FW
downstream of S. For the circular cylinder, the principal cores do not approach the
symmetry plane are much weaker, such the flow attaches at a simple half-saddle (in
the y = 0 plane) and FW are not observed.

4 Concluding Remarks

Significant differences havebeen shown in themeanwake structure andflow topology
of circular and square cantilevered cylinders protruding a thin laminar boundary
layer. For both cases, the wake is turbulent and quasi-periodic. These differences are
related to changes in the wake dynamics and vortex interactions due to the strength
of the shed vortices. The surface topology of the obstacles affects the nature of the
separation and thus the rate at which surface-generated vorticity is transported to the
wake. These changes also affect interactions with the junction vortices and horseshoe
vortices, which were not discussed for brevity. The influence of the low-frequency
instability on the wake remains unclear and is the subject of on-going research.
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References

1. H. Hornung, A.E. Perry, Some aspects of three-dimensional separation, part I: streamsurface
bifurcations. Zeit. Flug. Weltraumforsh. 8, 77–87 (1984)

2. M.G. Kindree, M. Shahroodi, R.J. Martinuzzi, Low-frequency dynamics in the turbulent wake
of cantilevered square and circular cylinders protruding a thin laminar boundary layer. Exp.
Fluids 59, 186 (2018)

3. J.A. Bourgeois, B.R. Noack, R.J. Martinuzzi, Generalized phase average with applications to
sensor-based flow estimation of the wall-mounted square cylinder wake. J. Fluid Mech. 736,
316–350 (2013)

4. D. Zhang, L. Chang, H. An, M. Zhao, Direct numerical simulation of flow around a surface-
mounted finite square cylinder at low Reynolds numbers. Phys. Fluids 29, 045101 (2017)



Large-Scale-Motions and Self-excited
Clustering of Coherent Structures
in Wall Turbulence

Sedat Tardu

Abstract We revisit clustering of coherent Reynolds shear stress producing eddies
inwall bounded turbulent flows.We question the plausibility of the strict alignment of
the packets of vortices that supposedly lead to very-large-scale motions. Attention is
later drawn to the self-exciting Hawkes stochastic processes tomodel and understand
the organization of coherent vortices into clusters, and their spatial organization in
the logarithmic layer.

1 Introduction

The main aim of this short note is to introduce and propose adequate stochastic point
processes to describe and model large-scale (LSM) and very-large scale (VLSM)
motions occurring in wall bounded turbulent flows. The LSM originate from the
packets of Reynolds (Re) shear stress producing eddies in the buffer layer (quasi-
streamwise vortices, QSV), at small-medium and large Re numbers [5, 7]. The origin
of very-large-scale motions (VLSM) at large Re is still not clearly understood, but
one of the conjectures is the coherent alignment of LSM and the wakes they induce
into the subsequent packets [5] and their immersion in the logarithmic layer. Figure1
shows the top view of the quasi-streamwise vortices populating a turbulent channel
flow obtained through direct numerical simulations (DNS) in particularly large com-
putational domains at Reτ = huτ

ν
= h+ = 590. Here h is the channel half width and

uτ and ν are respectively the shear velocity and the viscosity. Hereafter (+) denotes
the quantities scaled by uτ and ν. Note the large spanwise extend of the cluster. It
is also seen that the very-large scale motions have a direct impact on the weighted
spectra of the turbulent streamwise velocity intensity in the logarithmic layer.
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Fig. 1 Left: Top view of QSV’s in a turbulent channel flow at Reτ = 590 resulting from our own
DNS. Clusters of QSV appear as amalgamation of LSM’s at different wall normal positions into a
large bulge. The radius of the circle is about 10h. Right: weighted streamwise velocity fluctuations
spectra in the log-layer. Black and colour contours correspond to h+ = 395 and 1100 respectively
[10]

2 Coherent Alignment of One-Dimensional (1D) Clusters.
Structuration of VLSM

The cumulative probability distribution (cpd) of the QSV interarrival times in the
buffer layer shown in Fig. 2-left, is reminiscent of a double Poisson process. The
passage of the QSV are detected by single point measurements through different
identification schemes combined with a self-similar pattern recognition technique
[7]. The results in Fig. 2 have been obtained in a turbulent channel flow at h+ = 560.
Two categories of events emerge, those that are close (packets) and the solitary single-
events. AMarkov chain that contains 3 states is introduced here to model this double
Poisson process as in [3] (Fig. 2, right). The state 0 stands for the presence of a QSV
within a given interval of time δt . The states 1 and 2 are thewaiting stateswith absence
of QSV. The arrows are annotated with their respective probabilities of occurrence.
The quantity A is a measure of clustering and te is the mean regeneration period
of the structures. The Markov chain perfectly estimates the cpd of the interarrival
times (squares in Fig. 2 left) as expected. The evaluation of the supposed coherent
alignments of the packets that presumably result inVLSMrequires the use of a hidden
Markov chain. Yet the part of theMarkov chain shown by the circle in broken lines in
Fig. 2 allows as to estimate the stricto sensu alignment probability of the clusters. We
found that the probability of having � aligned 1D clusters, which uniformly contain
N individual vortices, is proportional to

logp(� > 1) ∝ (� − 1)(N + 1)logA (1)

and since the measure of clustering is A < 1, this probability decreases both with N
and �. That is, the larger the LSM, the rarer their coherent alignment into VLSM.
Coherent alignment of clusters of structures originating from roughly the same buffer
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Fig. 2 Left: Cumulative probability distribution (cpd) of the interarrival times of QSV’s in the
buffer layer. Further details of the methodology can be found in [7]. Circles and squares show the
measurements and the model estimations respectively. Right: Markov chain modelling the double
Poisson distribution

layer streak, as suggested by [5] is therefore unlikely. This constitutes, at least a formal
argument justifying the observations and discussions related to the vortex clusters in
the logarithmic region in [2].

3 Self-exciting Processes and Regeneration
of Large-Scale-Motions

The clusters of the near wall structures are provoked by a primary structure which
is sufficiently intense, and/or close to the wall (Fig. 3 left). This has been shown
both experimentally and through direct numerical simulations in [7, 11]. A mother
structure with large s+ = �/a+2, wherein � is the circulation of the primary vortex
and a+ is its distance to the wall gives birth to a cascade of active eddies. The char-
acteristic time-scale of the viscous-inviscid response related to the primary structure
is 1/s+.

We propose to model the buffer layer clusters through a self-exciting non- homo-
geneous Hawkes Poisson point process [4]. In the Hawkes terminology, the primary
intense vortex of the cluster is an immigrant and the provoked subsequent structures
are the offsprings. These processes are commonly used in seismology (earthquake

Fig. 3 Left: ‘mother’ structure with a large enough intensity, and close to the wall regenerates
secondary structures according to [7, 11]. Right adapted from [6] with the consent of the authors:
The arrival rate in time of a typical Hawkes process [6]. The red circle shows a typical ‘packet’
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and subsequent aftershocks), neuroscience, epidemiology, insurance and finance.
They are long-range dependent. Our aim in this short note is to draw our commu-
nity’s attention to these peculiarities. Consider the process with arrival (occurrence)
rate in time:

λ∗(t) = λ +
∑

ti<t

αe−β(t−ti ) (2)

Each arrival in the system increases the arrival intensity by α, then this arrival’s
effect decays at rate β [6]. This is a non-homogeneous Poisson process in which
the intensity explicitly depends on previous events. The excitation function which is
exponential, is connected to the regeneration of the QSV packets in the buffer layer.
The red circle in Fig. 3b, which is adapted from [6] shows such a self-excited packet.
The covariance density of this point process is:

Rc (τ ) = λ
∗
δ(t) + αβλ(2β − α)

2 (β − α)2
e−(β−α)τ (3)

The first term of this equation, wherein δ is the Dirac function, stands for a clas-
sical non-excited Poisson process and λ

∗ = λ
1−α/β

. The second term shows that the

process is long range dependent, with a typical relaxation time tr = (β − α)−1. The
original Hawkes’s process is one of the self-exciting processes, but other types of
excitation processes can also be considered. In the present context, the parameter
α is typically the rate of arrivals of the structures into packets. The parameter β is
such that at the trailing edge (the end) of a packet the arrival rate α is substantially
reduced. We have experimental data to roughly estimate α and β in the buffer layer,
but unfortunately only at h+ = 560 [7], and we are not aware of more data analyzing
the regeneration process this way. Thus, α ∝ 1/
P where 
tP is the time interval
separating the consecutive events within the packets. Supposing that β dumps the
arrival rate by two decades at the leading edge of a cluster, gives β ∝ 5/TP where TP

is the typical time duration of the packet. Using the data in [7] one obtains α+ ∝ 0.05,
β+ ∝ 0.08 resulting in the memory time of the process t+r ∝ 30 which is as large
as the outer time scale at this Reτ . Using a convection velocity of 10 wall units in
the buffer layer results in the streamwise extends of l+α = 200 and l+β = 125 that are
within the range of the lengths of QSV. It has to be emphasized here that the choice
(estimation) of α and β is crucial as significantly longer memory periods can result
when approaching the excessive case β → α. Maximum likelihood estimations are
needed to determine these parameters more precisely [6]. The packets form large
wakes of typical streamwise lengths Lw ≈ 5h in the low buffer [1, 7]. The clusters
transport the wakes into the outer region by the lift-up velocity field they induce
according to the Biot-Savart law. Hence, the streamwise and spanwise length of the
multiple-wakes increase linearly with the wall distance [2]. The wake structure stays
self-similar during the long memory time tr , as the tall self-similar attached clusters
grow self-similarly in time in [2]. The lifetime of the wakes is much larger than tr .
Once the wake clusters merge in the log-layer they lose their initial memory and the
trails of the streamwise velocity fluctuations they transport adapt themselves to the
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Fig. 4 Conceptual model of the merging of LSM induced wakes into the logarithmic layer (left).
Two clusters of wakes coming from different origins shifted in the spanwise direction can lead
to persistent streamwise velocity fluctuations in the intersection plane. Right: an attached cluster
according to [2] adapted with permission

outer scales. According to our estimations given above, the multiple-wakes reach
y+ ≈ 300 self-similarly during tr . Their streamwise and spanwise scales increase by
the same amount, attaining roughly 6h. Although the stricto sensu coherent align-
ment of the clusters is unlikely as discussed before, the alignment of the multiple
wakes formed by different buffer-layer clusters with different past stories and that are
close in the streamwise direction and (or) shifted in the spanwise one, now becomes
plausible. This is schematically shown in Fig. 4, which also shows a typical attached
cluster explored in [2] and originating roughly from a region of about 100 wall units
spanwise extend. Last but not least, the cluster excitation parameter α and conse-
quently β depends on the Reynolds number. Indeed, the regeneration of offsprings
depends on the vorticity intensity of themother structure and the streamwise vorticity
intensity at the wall is Re dependent [9].

4 Conclusion

Self excited processes are good candidates to model the clustering of coherent struc-
tures and of their wakes emerging into VLSM in the logarithmic layer. It is unlikely
that the vortex clusters originating, say from the same streak in the buffer layer, get
coherently aligned to form VLSM in the logarithmic region. The main point is the
spanwise expansion of the wakes generated by individual clusters. This consequently
makes possible the amalgamation of different wake clusters with different histories,
coming from different, but close enough streamwise and spanwise locations. The
VLSM result from a self-exciting spatio-temporal Poisson cluster process, in which
the spanwise direction plays a capital role in the present context. Existing mod-
els such as the Townsend-Perry hierarchy should be modified to take these specific
features into account (see [8] for a review). To be short, the contribution of the hier-
archies to the shear stresses in the fully developed turbulent region is related to the
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probability density for the length scale in the hierarchy. This probability density has
to be extended to contain informations on the streamwise and spanwise extends of
the clusters. The events in the clusters have to be marked by the wake they induce,
which is an additional important variable. The self-exciting feature of the regener-
ation process has to be taken into account. We are currently working on these key
issues.
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The Conservative Pressure Hessian
and the Free Fluid Particle Model

Maurizio Carbone, Andrew Bragg, Josin Tom, Michael Wilczek,
and Michele Iovieno

Abstract In this work we aim to understand the interplay between deformation and
energy of a fluid particle in a turbulent flow, focusing on the role of the pressure
Hessian. A new decomposition of the Hessian is proposed, defining a conservative
Hessian which contains the stabilizing effects of the full Hessian on energy and
deformation of fluid elements. This conservative Hessian is then used to construct
models for the velocity gradientwhich allow controlling alignments and singularities.

1 Introduction

Small-scale turbulence exhibits complex and intriguing features, such as quasi log-
normality of the dissipation rate, extreme intermittency of vorticity [1] and exponen-
tial stretching/contraction of fluid elements [2, 3]. The velocity gradient, together
with the Cauchy-Green tensor, comprehensively characterize small-scale turbulence,
including strain/rotation rates and the deformation of fluid elements. The velocity
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gradient drives the evolution of theCauchy-Green tensorwhile undergoing non-linear
and non-local dynamics. The pressure Hessian encodes most of the non-localities.

We analyze the interplay between the pressure Hessian, kinetic energy and the
deformation of fluid elements. In particular, we aim to extract simple dynamical
features introduced by pressure, possibly concealed by chaotic behaviours and inter-
mittency. The usual decomposition of the pressure Hessian is purely kinematic, con-
sisting of an isotropic part that ensures incompressibility and a non-local/anisotropic
part [4]. In contrast, we define a dynamical decomposition of the pressure Hessian
into a conservative and a non-conservative part, based on the equations for the dynam-
ics of fluid elements [5]. Taken by itself, the conservative Hessian introduces a first
integral of motion in the dynamics of fluid elements. This conserved quantity hinders
the formation of singularities in the gradient dynamics and opposes the exponential
deformation of material lines. Also, the conservative part of the Hessian does not
apply any torque to the fluid element. In this sense, the conservative Hessian acts on
a free fluid particle: angular momentum and energy are conserved.

We employ the conservative pressure Hessian to construct models that allow
controlling the statistical alignments and the onset of singularities. The resulting
class of closures includes the well-known Restricted Euler model [4] and the inviscid
tetrad closure [6] as limiting cases. Those classical closures provide relevant insight
into the velocity gradient dynamics but also have some shortcomings, yielding, for
example, Hessians that are either positive or negative definite [6, 7]. Contrarily, the
pressure Hessian in turbulence has a rich set of preferential configurations, as shown
through an invariant triangle in [8] or a symmetry analysis in [9].

2 Constructing the Conservative Pressure Hessian

The dynamics of the velocity gradient A = ∇u(x, t) in an incompressible flow is
governed by the equations

Tr(A) = 0, dt A ≡ (∂t + u · ∇)A = −A2 − H + ν∇2A + F, (1)

where Tr(·) indicates the matrix trace, H is the pressure Hessian, ν is the kinematic
viscosity and F is an external forcing. In the following, we analyze the role of H on
the dynamics of a fluid element, and we neglect viscous stresses and forcing. The
Cauchy-Green tensor characterizes the shape of an infinitesimal fluid element, and
its evolution is driven by the velocity gradients

C = DD�, dtC = AC + CA�, (2)

where D = ∂X(t; x)/∂x is the deformation tensor, describing the dependence of
the fluid particle trajectory X(t; x) on the initial position x. Equations (1) and (2)
allow deriving the evolution equations for the angular momentum L = CA� − AC
and the kinetic energy E = Tr(AA�C)/2 of an infinitesimal ideal fluid element [5]
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dtL = [H,C], dt E = −Tr(HAC), (3)

where [·, ·] indicates the matrix commutator. Equation (3) implies that the angular
momentum of the fluid element is conserved if C and H commute. In such a case, H
and C share the same eigenvectors, or, more generally, the space of the eigenvectors
of H is C-invariant. Based on that, we define the conservative pressure Hessian

H = ϕ−1
C−1

Tr(C−1)
+ ϕ0

(
I
3

− C−1

Tr(C−1)

)
+ ϕ1

(
C

Tr(C)
− C−1

Tr(C−1)

)
, (4)

where I is the identitymatrix and coefficientsϕi (C, A) are functions of the invariants
formed through the velocity gradient and the Cauchy-Green tensor. We also require
that this conservative part ensures incompressibility through Tr(H + A2) = 0. We
further constrain the conservative HessianH to conserve a potential energy function,
which is achieved if ϕ0 and ϕ1 are a function of C only. In such a case, the Hessian
defined in (4) does work on fluid elements according to (3) by conserving a pressure-
induced potential energy function U

Tr(HAC) = ϕ0

6
dt c1 + ϕ1

4c1
dt c2 ≡ dtU (c1, c2), (5)

where c1 = Tr(C) and c2 = Tr(C2) are the principal invariants of the Cauchy-Green
tensor. The conservative Hessian components ϕi are related to the velocity gradient
and pressure-induced energy U through

ϕ0 = 6
∂U

∂c1
(c1, c2), ϕ1 = 4c1

∂U

∂c2
(c1, c2), ϕ−1 = −Tr(A2). (6)

By introducing the decomposition of the pressure Hessian into conservative and
non-conservative parts, H = H[U ] + H ′, the energy balance in (3) becomes dt (E +
U ) = −Tr(H ′AC). Therefore, the tensorH[U ], taken by itself, conserves amodified
energy function F = E +U , consisting of the sum of the kinetic energy E and a
pressure-induced potential energy U .

3 Conservative Pressure Hessian from DNS Data

We compute the conservative Hessian using data from a direct numerical simulation
of incompressible, statistically steady and isotropic turbulence. The computational
grid size is 2563 and the Reynolds number based on the Taylor micro-scale is Reλ �
110. In the simulations, a statistically steady state is maintained in a deterministic
fashion by reintroducing at large scales the energy lost to viscous dissipation.

A requirement of minimum statistical distance between the conservative and full
pressure Hessians is employed, we search for components ϕi that yield
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)b()a(

Fig. 1 a Components ϕi of the conservative pressure Hessian (4) as functions of time. The results
are from DNS and all quantities are normalized through the Kolmogorov time-scale. b Effect of
conservative and full pressure Hessian Hi = w�

i Hwi along the principal deformation directions

min
〈
Tr

(
(H − H)2

)〉
. Equation (4) is projected along the basis tensors formed

through normalized powers of C and the resulting linear system yields the con-
servative Hessian components ϕ0 and ϕ1, while incompressibility specifies ϕ−1. The
conservative Hessian components, ϕ0 and ϕ1 depend only on the C eigenvalues,
which approach almost everywhere the same exponential growth rate for long times,
namely the Lyapunov exponents [3]. Therefore ϕ0 and ϕ1 are independent of spatial
coordinates for long times. Figure1a shows the components ϕi of the conservative
Hessian as a function of time. After a short transient, the components approach con-
stant values. The conservative Hessian does work on fluid elements preserving the
potential energy U which, with constant components ϕ0 and ϕ1, is asymptotically
U ∼ (ϕ0/3 + ϕ1)c1/2.This potential energy is analogous to that of a springwith stiff-
ness K = ϕ0/3 + ϕ1. The stiffness coefficient from our DNS data is K � 0.03/τ 2

η ,
where τη is the Kolmogorov time-scale. Therefore, the conservative part of the pres-
sure Hessian introduces a positive stiffness of the fluid element: the fluid element
behaves as if it could react to deformations. Of course, an isolated blob of ideal fluid
does not react to deformation. This stiffness arises through interaction with other
fluid elements mediated by pressure.

The stabilizing effect of the pressure Hessian due to the introduction of stiffness
of fluid elements impacts the dynamics of velocity gradients. To see how, we project
the equation for the gradient (1) along instantaneous directions of the eigenvectors
wi of C . The eigenvectors are ordered such that the first corresponds to the major
stretching direction, the second to the intermediate (which also stretches in turbu-
lence [2]), and the third to the exponentially shrinking direction. Figure 1b shows
that pressure Hessian hinders all stretching/shrinking of fluid elements. Indeed, the
Hessian componentsw�

i Hwi induce negative strain along the major and intermediate
stretching directions w1 and w2, while inducing positive strain along direction w3.
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4 The Free Fluid Particle and the Control of Singularities

We now employ the pressure-induced potential energy to construct models for the
velocity gradient dynamics that allow controlling preferential alignments and singu-
larity onsets. As a first step,we neglect all non-conservative contributions, namely the
non-conservative part of the pressure Hessian, the viscous stresses and the external
forcing. These rather extreme simplifications allow us to focus on the time-reversible
part of the velocity gradient dynamics. We leave the introduction of dissipation for
future work. We propose an ansatz in which the pressure-induced potential energy
U is proportional to the anisotropy degree of the fluid element. This results in the
model equations

dt A = −A2 − H[U ], dtC = AC + CA�, U = γ E0
Tr

(
(C − I)2

)
Tr

(
C2) ,

(7)
where E0 is the initial kinetic energy of the fluid element and γ E0 is the maximum
potential energy. Equations (7) are integrated in time through a second-order Runge–
Kutta scheme, featuring QR decomposition of the Cauchy-Green tensor at each time
step. The conservativeHessianH[U ] corresponding to the potential energyU follows
from Equations (4) and (6) and we would recover the tetrad closure [6] by setting
γ = 0. The parameter γ controls the amount of kinetic energy relative to potential
energy of the fluid element. The gradients cannot be singular when γ > 1 since the
energy balance dt (E +U ) = 0 bounds both the kinetic and potential energy. The
resulting deformations are also bounded so that this time-reversible model rules out
the exponential chaotic separation of fluid particles. Despite these simplifications, the
model can surprisingly replicate characteristic features of small-scale turbulence. For
example, the model predicts very well the preferential alignment between vorticity
and intermediate strain-rate eigenvector, as shown in Fig. 2a. The inset shows that
this preferential alignment is stronger as γ decreases, corresponding tomore extreme
deformations of fluid elements. The proposed time-reversible model already encodes
relevant information about the turbulent dynamics, thus providing a good starting
point to introduce forcing and dissipation for more realistic turbulence modelling.

Figure 2b shows the joint PDFof the principal velocity gradient invariants obtained
from the proposed model. It resembles the PDF from a Gaussian random field
and does not show very pronounced tails along the zero-discriminant curve [4].
Despite this resemblance to Gaussian random fields, the strain and vorticity are
well correlated, showing pronounced alignments. A drawback of the energy balance
dt (E +U ) = 0 is that the kinetic energy and the deformations are bounded. There-
fore, the gradients cannot take on extreme values, and the PDF of its invariants decays
very fast compared to the same PDF in turbulence. This drawback is also observed
in closures based on the recent deformation approximation [10].
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Fig. 2 a PDF of the alignment between vorticity and strain-rate eigenvectors ω̂i = vi ·ω /‖ω‖.
The first strain eigenvector corresponds to most positive eigenvalue. Solid lines refer to the model,
dashed lines refer to the DNS. Note that the solid red and blue lines overlap due to time reversibility.
Inset: mean square alignment as a function of the model parameter γ . b Joint PDF of the principal
invariants of the velocity gradient A. Results are for γ = 1.3

5 Concluding Remarks and Outlook

We have defined a conservative pressure Hessian that highlights the effects of the
pressure on energy and deformation of fluid elements. The conservative Hessian,
taken by itself, introduces first integrals of motion. These induce a dynamical sta-
bilizing effect, hindering extreme velocity gradients and material lines deformation.
The newly observed stabilizingmechanism is mainly related to strain rate, thus being
complementary to the reduction of non-linearity, which relies on the stabilizing role
of vorticity. The conservative Hessian is used to construct models for the veloc-
ity gradient that allow controlling alignments and singularities. Despite its extreme
simplifications, the presented time-reversible model can predict alignments between
strain rate and vorticity, thus representing a good starting point to construct more
realistic models for turbulence.
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Modelling The Pressure Hessian
in Turbulence Through Tensor Function
Representation Theory

Maurizio Carbone and Michael Wilczek

Abstract One of the main challenges in Lagrangian modelling of velocity gradients
in isotropic turbulence is to capture the non-local effects of the pressure Hessian and
viscous diffusion. In statistical models of the velocity gradient tensor, the non-local
effects give rise to unclosed conditional averages, making the statistical framework
ideal for tensor function representation theory. By employing data fromdirect numer-
ical simulation (DNS) of incompressible, statistically steady and isotropic turbulence,
we analyze the mean non-local pressure Hessian conditional on the local velocity
gradient tensor configuration.We define a basis consisting of velocity gradients prod-
ucts and investigate the trend of the associated Hessian components as functions of
the velocity gradient invariants. Results show that some of the Hessian components
display a pronounced dependence on the gradient invariants, undergoing sharp vari-
ations in specific phase space regions. Thus, our analysis lays the foundation for
improved dynamical velocity gradient models that are accurate across the whole
phase space.

1 Introduction

Many important characteristics of small-scale turbulence, such as dissipation, enstro-
phy, and the topology of small-scale structures, are encoded in the velocity gradient.
For example, the teardrop-shaped probability density function (PDF) of the velocity
gradient’s principal invariants, together with the preferential statistical alignments
between strain-rate eigenvectors and vorticity, are distinguishing marks of turbulent
motion [1]. The dynamics of the velocity gradient is non-linear and non-local. The
anisotropic part of the pressure Hessian encodes most of the non-locality, thus con-
tributing to prevent singularities that the non-linear terms alone would induce [2].
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In single-particle models for the velocity gradient, the non-local contributions are
unclosed and require modelling. Classical closures are constructed, for example, by
approximating the geometrical features of motion [3], by employing analytically
tractable random fields [4], or by combinations of both [5]. A more recent alternative
consists of tensorial neural networks that can predict the non-local pressure Hessian
statistics given the local velocity gradients [6]. Such machine learning approaches
rely on tensor function representation theory [7]. Tensor function representation can
also be directly employed to build stochastic models for the velocity gradient dynam-
ics. For example, a recent work [8] assumed constant components of the pressure
Hessian in a basis consisting of products of velocity gradients. The resulting stochas-
tic model accurately reproduces the dynamics of the gradient invariants in vorticity-
dominated regions. However, it leaves room for improvement at a large strain rate.
Here, we explore how to refine such dynamical models for the velocity gradient,
using data from direct numerical simulations and tools from information theory. We
systematically characterize the tensor function representation of the non-local Hes-
sian in terms of the velocity gradient, featuring variable Hessian components with
respect to the prescribed basis.

2 Statistical Dynamics of Velocity Gradients and Tensor
Function Representation Theory

The equations governing the dynamics of the velocity gradient A(r, t) = ∇u(r, t)
are obtained by taking the gradient of the incompressible Navier-Stokes equations,
resulting in

(∂t + u · ∇)A = −A2 − H + ν∇2A + F, Tr(A) = 0, (1)

where Tr(·) denotes the matrix trace, ν is the kinematic viscosity, H is the pressure
Hessian divided by the constant fluid density, and F is an external large-scale forcing.
The pressure Hessian can be decomposed into a local part, entirely determined by
incompressibility, and a non-local part ˜H = H − Tr(H)I/3,which can be expressed
as a spatial convolution. From a single-point perspective, this anisotropic/non-local
part is unclosed, and we need to express it in terms of local quantities to obtain a
closed set of equations for the velocity gradient. Modelling every single realization
of the pressure Hessian in terms of the local velocity gradient is probably infeasible.
However, in a statistical framework based on a Fokker-Planck equation, the pressure
Hessian enters the velocity gradient dynamics in ensembles of fluid particles only
through its mean conditional on the gradient itself. The corresponding Langevin
equation takes the form [4]

dA =
(

−˜A2 − 〈

˜H(r, t)
∣

∣A
〉 + 〈

ν∇2A(r, t)
∣

∣A
〉

)

dt + dF, (2)
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where the tilde indicates the traceless part and brackets denote the conditional aver-
age. The key advantage here is that the conditional averages are by definition ten-
sor functions of the velocity gradient so that tensor function representation theory
applies. It allows representing any tensor in terms of other basis tensors derived from
a generating tensor [7].

In the following, we specify the independent invariants and basis tensors that
can be formed through the velocity gradient. We split A into strain-rate S = (A +
A�)/2 and rotation-rate W = (A − A�)/2. The independent invariants that can be
constructed through S and W read

x1 = Tr
(

S2), x2 = −Tr
(

W 2
)

, x3 = Tr
(

S3),

x4 = Tr
(

SW 2), x5 = −Tr
(

S2W 2
)

. (3)

These invariants determine a sixth invariant only up to a sign [7].Wewill not consider
the sixth invariant as an independent variable since it cannot vary continuously and
independently from the other invariants. Regarding the basis tensors, only five sym-
metric and traceless basis tensors can be linearly independent in three dimensions.
Therefore, given the basis tensors

B1 = ˜S2, B2 = ˜W 2, B3 = SW − WS,

B4 = √
x1 + x2S, B5 = 1√

x1+x2

(

˜SW 2 + ˜W 2S
)

, (4)

all the others can be retrieved by means of the Cayley-Hamilton equation. Two
additional tensors would be necessary to fix possible degeneracies of the basis [7],
which however occur with vanishingly small probability.

A realization of the non-local pressure Hessian at each point and time can be
expressed as a linear combination of the basis tensors Bi defined in (4)

˜H(r, t) =
5

∑

i=1

ϕi (r, t)Bi (A(r, t)) . (5)

This is a local representation of the pressure Hessian, and the coefficients ϕi (r, t) are
the components of ˜H(r, t) in the considered basis. On the other hand, the conditional
pressure Hessian is an isotropic tensor function of the velocity gradient, so that its
components ϕ̄i are functions only of the invariants x j defined in (3)

〈

˜H(r, t)
∣

∣A
〉 =

5
∑

i=1

ϕ̄i (x1(A), x2(A), . . . , x5(A)) Bi (A). (6)

Equations (5) and (6) highlight the differences in local modelling strategies and sta-
tistical closures for theHessian: the conditional pressureHessian is completely deter-
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mined by the phase-space variable A, while the single realization ˜H(r, t) encodes
additional information through the space-time dependency of its components.

3 Pressure Hessian Components as Functions
of the Velocity Gradient Invariants

We aim to retrieve the functional dependency of the conditional pressure Hessian
components on the velocity gradient invariants. We do this numerically, using data
from a 10243 DNS of incompressible, statistically steady and isotropic turbulence,
with one-half truncation for de-aliasing to fulfil the constraint Tr(H + A2) = 0 [9].
The Reynolds number based on the Taylor micro-scale is Reλ � 140.

The local velocity gradient invariants x j (A(r, t)) are random variables represent-
ing the local state of the fluid particle. On the other hand, the corresponding pressure
Hessian components ϕi (r, t) encode non-local information and represent the ran-
dom variables we aim to predict based on the known velocity gradient invariants.
This interplay between given and unknown random variables is typical in informa-
tion theory, and we analyze the information that each invariant x j (A(r, t)) provides
about the corresponding Hessian component ϕi (r, t). The mutual information of two
random variables is

I (ϕi , x j ) =
〈

log2
f2(ϕi , x j )

f1(ϕi ) f1(x j )

〉

, (7)

where f1 and f2 indicate single-quantity and joint probability densities, respectively.
Figure 1a shows the mutual information between the local velocity gradient invari-
ants x j and anisotropic pressure Hessian components ϕi . The components ϕi (r, t)
are obtained by projecting (5) along Bi (A(r, t)) at each point r and time t . The
local enstrophy x2 provides most of the information about the Hessian components,
especially concerning the second component of the Hessian ϕ2. Therefore, we expect
to observe a well-defined trend of ϕ̄2 regarded as a function of x2.

Based on the mutual information analysis, we approximate the conditional Hes-
sian components ϕ̄i as functions of only the enstrophy. These components ϕ̄i (x2)
are shown in Fig. 1b. As expected based on the information analysis, the second
component of the conditional Hessian ϕ̄2(x2) strongly and smoothly varies with the
enstrophy. In particular, it displays a clear trend with the inverse norm of vorticity.
Our results indicate that the fit ϕ̄2(x2) � a + b/

√
x2 works very well for various

Reynolds numbers and different forcing schemes (not shown). We also notice from
Fig. 1a that the relative information between ϕ5 and x2 is also high, but ϕ̄5 is almost
constant when regarded as a function of only x2. The high relative information is not
reflected in the functional trend in this case, the variations of ϕ̄5 are suppressed by
conditional averaging on the single invariant x2.

It is insightful to further analyze the first two conditional pressure Hessian com-
ponents as functions of the gradient invariants. Indeed, for a conditional Hessian
computed from a Gaussian random field, the first two components, ϕ̄1 and ϕ̄2, are
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)b()a(

Fig. 1 aMutual information I (ϕi , x j ) between the invariant x j (A(r, t)) and the pressure Hessian
component ϕi (r, t). b Conditional pressure Hessian components ϕ̄i (x2) as functions of the enstro-
phy. As expected based on the information analysis, ϕ̄2 displays a prominent trend in terms of x2.
All quantities are normalized through the Kolmogorov time-scale τη = 1/

√
2〈x1〉

Fig. 2 Conditional pressure Hessian components ϕ̄1(x1, x2) and ϕ̄2(x1, x2) as functions of the

strain-rate magnitude x1 and enstrophy x2. The components correspond to basis tensors ˜S2 and ˜W2

and quantities are normalized through the Kolmogorov time-scale

constant and do not depend on the spatial correlations of the flow field [4]. There-
fore, variations of the first two components highlight the effects of non-Gaussianity
of the turbulent velocity field. Figure 2 shows the conditional Hessian components
as functions of the strain-rate magnitude and enstrophy, ϕ̄1(x1, x2) and ϕ̄2(x1, x2).
The components exhibit a well-defined functional trend with almost straight contour
levels. The second component displays the strongest variation, being positive at small
enstrophy and then becoming negative at large enstrophy. This trend is consistent
withwhat we observed for the quantity ϕ̄2 regarded as a function of only x2. However,
the results also unveil the dependency of the conditional Hessian components on the
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strain-rate magnitude x1. Remarkably, this dependency averages out when the ϕ̄i are
regarded as functions of the single invariant x1 (not shown).

These observations can be useful to further improve stochastic models for the
velocity gradient dynamics. For example, a recent model for the velocity gradient
dynamics [8] assumed constant conditional Hessian components in a basis consisting
of powers of the velocity gradient. Themodel leaves room for improvement in strain-
dominated regions, and our results reveal the reason for this. At small enstrophy,most
of the pressure Hessian components undergo sharp variations. The sign of ϕ̄2 even
flips between strain- and vorticity-dominated configurations (cf. Figs. 1b, 2b), leading
to qualitatively different dynamical behaviours of the conditional Hessian along ˜W 2.

4 Concluding Remarks

We characterized the conditional pressure Hessian components as functions of the
velocity gradient invariants in a basis consisting of powers of the velocity gradients.
When focusing on individual invariants, a mutual information analysis shows that the
enstrophy encodes most of the information on the Hessian components. In particular,
the component along the squared rotation-rate varies as the inverse of the square root
of enstrophy. The sharpest variations of the conditional Hessian components occur in
strain-dominated regions where current models for the velocity gradient are not accu-
rate. Therefore, this work constitutes the first step towards improving such models
through analysis of DNS data. Also, the systematic interpretation of the DNS results,
together with mutual information analyses, can be effectively employed to improve
machine learning approaches to the velocity gradient dynamics in turbulence.
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Stretched Amplitude Decaying Fourier
Modes in the Jet Far-Field

Azur Hodžić, K. E. Meyer, W. K. George, and Clara M. Velte

Abstract A framework is presented for decomposing the self-similar region of the
round jet along the streamwise direction using an analytical series expansion deduced
from the four dimensional (space-time) Proper Orthogonal Decomposition (POD)
integral. A specific inner product weight function is introduced in order to deduce
the Stretched Amplitude Decaying Fourier Modes. The inner product weight func-
tion, maps the POD kernel into a displacement invariant kernel. The SADFM are
demonstrated to be orthogonal with respect to the weighted inner product and there-
fore constituting a basis for the weighted Hilbert space, L2

w(�,C3), over the domain
� ⊂ R4. The SADFM allow for an Fast Fourier Transform (FFT) algorithm to be
used along the streamwise inhomogeneous direction reducing the computational
workload for the four-dimensional POD of the jet far-field. Applying a Galerkin
projection to the governing equations using the SADFM provides additional insight
into the far-field dynamics.

1 Introduction

The common polynomial expansions combined with the Proper Orthogonal Decom-
position (POD) are the regular trigonometric polynomials, which have aptly been
applied along coordinate direction for which the flow is periodic, homogeneous, or
statistically stationary, see e.g. [1–4]. The Fourier-based POD methods in general
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allow for the implementation of efficient decomposition algorithms for the decom-
position of turbulent flows with reduced memory demands, [5]. The latter is due
to the fact that Fourier-based decompositions imply that the eigenvalue problem at
hand can be solved separately for each wavenumber/frequency, thereby breaking up
a large matrix-eigenvalue problem into a number of smaller ones.

Similarity solutions to statistical moments in turbulent flows have been inves-
tigated in e.g. [6–8], and are a manifestation of statistical symmetries that certain
turbulent flows may exhibit. One such flow is the far-field region of the turbulent
round jet, which is self-similar in the streamwise direction. The present work (based
on [9–11]) builds on the previous work of [7, 12] and aims to extend to statistically-
inhomogeneous directions the set of polynomials that may be combined with the
POD for the analysis of the jet. In the current work we present the framework for
decomposing the far-field region of the turbulent round jet using Stretched Ampli-
tude Decaying Fourier Modes (SADFM) by introducing an inner product weight
(window) function that maps the POD kernel into a displacement invariant kernel,
characterized by its exclusive dependence on the coordinate difference along the
streamwise direction. From here one can argue that the solution to the POD inte-
gral in the streamwise direction consists of Fourier modes, analogous to the case of
homogeneous turbulence.

2 Proper Orthogonal Decomposition

The formulations from this point on are specific for the self-similar region of the jet
far-field. Let the fluctuating velocity field of the turbulent jet far-field be represented
by vector-valued functions, v ∈ L2

w, where the vector space is defined as

L2
w

(
�,C3

) :=
⎧
⎨

⎩
ϕ : � �→ C3

∣∣∣
∣∣∣

∫

�

|ϕ(x)|2 w(x)dx < ∞
⎫
⎬

⎭
, w(x) > 0 , (1)

where w : � �→ R>0 is a weight function, and the spatio-temporal domain is defined
by � ⊂ R4. Equipping (1) with the inner product

(ϕ, ψ)w =
∫

�

ϕ(x)ψ∗(x)w(x)dx , ψ ∈ L2
w

(
�,C3) , (2)

where the asterisk denotes complex conjugation, and the norm

‖ϕ‖w = √
(ϕ, ϕ)w , (3)

makes the vector space in (1) a Hilbert space. The POD is then given by the following
integral eigenvalue problem
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∫

�

R
(
x, x ′)ϕ

(
x ′)w(x ′)dx ′ = λϕ(x) , (4)

where the two-point correlation function R(x, x ′) is given by

R(x, x ′) = 〈
v(x) ⊗ v(x ′)

〉
. (5)

Here the angle braces denote ensemble averaging, v ∈ L2
w

(
�,C3

)
represent the

fluctuating part of the turbulent velocity field, and ⊗ is the tensor product over the
velocity components of v(x) and v(x ′).

2.1 SADFM

Introducing a radially-stretched spherical coordinate system (ξ, θ, φ), defined wrt.
Cartesian coordinates as follows

x(ξ, θ, φ) = Ceξ cos θ + x0 , (6)

y(ξ, θ, φ) = Ceξ sin θ cosφ , (7)

z(ξ, θ, φ) = Ceξ sin θ sin φ , (8)

where x = y = z = 0 denotes the center of the nozzle at the lip, and the line y = z =
0 denotes the jet centerline. ξ is the logarithmically stretched streamwise coordinate
and C = xs − x0, is a constant where xs is the start of the self-similar and x0 is the
virtual origin.

One realization of the velocity magnitude in this region of the jet is shown in
Fig. 1 sampled with two-component Particle Image Velocimetry, [10].

Fig. 1 Velocity magnitude
of the jet in the fully
developed self-similar
region, where x0 is the
virtual origin and D is the
nozzle diameter. The overall
velocity is shown to decay
downstream
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Fig. 2 Real- and imaginary parts of the streamwise part of the PODmodes, f (ξ), in the jet far-field
for the choice of weight w = ((eLξ − 1)/Lξ )e−ξ . The wavenumber, κ , is defined in terms of k by
κ = 2πk/Lξ , where Lξ is the spatial domain length

In order to express (4) in this system the Jacobian is needed, which evaluates to
|J | = C3e3ξ sin θ . Choosing theweight to bew(ξ) = ((eLξ − 1)/Lξ )e−ξ and exploit-
ing that the kernel in this case is displacement invariant in ξ yields that the modes in
the streamwise direction are given by

fκ (ξ) = x̃ iκ− 3
2 = eiκξ− 3

2 ξ , (9)

where x̃ = (x − x0)/C . We note that (eLξ − 1)/Lξ is a constant included in the
definition of the window function to ensure that the turbulence kinetic energy of
the field in � equals the case where w = 1. The scaling of the window function by
((eLξ − 1)/Lξ ) corresponds to the normalization factors used on windows/filters for
the reduction of spectral leakage. The real- and imaginary parts are shown in Fig. 2
for k = 0, 1, 2, 3 where κ = 2πk/Lξ where Lξ is the length of the domain in the
streamwise direction.

3 Results and Discussion

AGalerkin projection of the production term of the turbulence kinetic energy (TKE)
transport equation is then performed using the SADFM in combination with the
numerical θ -component of the POD modes. Normalizing by the product of the fluid
density and the eigenvalues, ρλ, one obtains the energy normalized production spec-
tra,Pρλ, [11], as a function of the wavenumber κ and PODmode number α. Figure3
shows the absolute value of Pρλ, revealing the relative production-to-energy rate of
the modes as a function of κ and α. The relative production rate appears localized in
the spectral domain, characterized by the high values in Fig. 3. The SADFM projec-
tion coefficients for the streamwise and spanwise fluctuating velocity components are
defined as cξ (κ, θ) = 1√

2π

∫ Lξ

0 vξ f ∗
κ (ξ) dξ and cθ (κ, θ) = 1√

2π

∫ Lξ

0 vθ f ∗
κ (ξ) dξ ,
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Fig. 3 Absolute value of the Galerkin projection of the energy normalized production term inte-
grated over the domain, Pρλ, obtained from the TKE transport equation shown as a function of
wavenumber, κ , related to the streamwise SADFM decomposition as well as the POD mode num-
ber α. Pρλ shows significant levels even in the −5/3-region identified for 20 < κ < 300

Fig. 4 Spatial SADFM energy spectra along the centerline of the jet shows the −5/3-region for
20 < κ < 300. Here 〈|cξ |2〉 and 〈|cθ |2〉 represent the component energy spectra for the ξ - and
θ-components, respectively, and 〈|cξ cθ∗|〉 is the cross spectrum

respectively, from which energy spectra may be obtained (Fig. 4). Combined with
Fig. 3 these reveal that Pρλ shows significant values even in the −5/3-region identi-
fied for κ ∈ [20 : 300]. This shows that even the modes related to the −5/3-region
of the spectrum are able to produce significant levels of their energy content. This
sort of behavior was hypothesized by [12].
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4 Summary

The present study proposes that the streamwise part of the POD modes in the
self-similar far-field region of the steady turbulent round jet can be represented by
Stretched Amplitude Decaying Fourier Modes (SADFM) by introducing a stream-
wise decaying inner product weight function, w = ((eLξ − 1)/Lξ )e−ξ . The latter
allows for a FFT-based POD of the far-field region of the jet along the streamwise
direction. The inner product definition ensures that the resulting POD modes are
orthogonal and may be used to span the L2

w(�,C3) vector space. The introduction
of the weight function inevitably redistributes the energy across the eigenvalues,
thereby reducing the convergence rate of the eigenspectrum relative to a choice of
weight w = 1. Nevertheless, the use of the weight function has the advantage of
reducing the computational resources needed for the decomposition by making use
of the efficient FFT-algorithm.
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Generalizable Theory of Reynolds Stress

T.-W. Lee

Abstract We generalize the Lagrangian transport theory to include the normal and
shear Reynolds stresses, so that a complete tensor can be constructed. The ideology
is based on imposition of the momentum and energy balance to a control volume
moving at the local mean velocity, which bears the effect of de-coupling the mean
from the fluctuation components. The resulting transport equations are verified, with
available DNS data. Representation of the fluxes in this form leads to the dissipation
scaling, which collapses the u′2, v′2 and u′v′ gradient profiles for all Reynolds num-
bers. Addition of the energy spectra, derivable from the maximum entropy principle,
completes the Reynolds stress theory, to fully prescribe the turbulence structures in
canonical geometries.

1 Introduction

In prior works [1–4], we have set forth a set of Galilean-transformed transport equa-
tions to produce explicit inter-dynamical relations for u′2, v′2 andu′v′. This formalism
is based on momentum ((1) and (2)) and energy balances ((3)), wherein the fluctua-
tion velocities represent flux vectors. The derivations and validations can be found
in [1–4].

u′ momentum transport:

d(u′v′)
dy

= −C11U
d(u′2)
dy

+ C12U
d(v′2)
dy

+ C13
d2u′

rms

dy2
(1)
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v′ momentum transport:

d(v′2)
dy

= −C21U
d(u′v′)
dy

+ C22U
d(v′2)
dy

+ C23
d2v′

rms

dy2
(2)

u′2 transport:

d(u′3)
dy

= −C31
1

U

d(u′v′ · u′)
dy

+ C32
1

U

d(v′ · u′v′)
dy

+ C33
1

U

(
du′

rms

dy

)2

(3)

In this work, we complete the theoretical formulation through analysis of the
scaling in the “dissipation” space, i.e. at the first- and second-gradient levels, and
by adding the spectral function for the turbulence kinetic energy, derivable from the
maximum entropy principle [5, 6].

2 Dissipation Scaling

We have shown in recent works that gradient structures in wall-bounded flows are
self-similar [7]. This “dissipation” scaling emerges if we examine the first gradients
of the u′2 profiles for channel flows in Fig. 1, where an intrinsic order is observed.
The DNS data in Fig. 1 and subsequent figures are from [8–10]. All the previous
scaling efforts have attempted to find some relationships at the surface level, which
did have some utility, e.g. invariant peak location at y+ ∼ 15 [11]. However, ordered
structures are found at the first- (u′2) and second-gradient (v′2, u′v′) levels [7], which
facilitate the collapse of the gradient structures, as illustrated in Figs. 2, 3 and 4. After
normalizing by local extrema (initial peak height or magnitude of the second nadir),
du′2
dy+ , d2v′2

dy+2 , and d2u′v′
dy+2 profiles collapse onto single respective curves, as shown in Figs.

Figs. 2, 3 and 4. Similar to the abbreviated notations in (1)–(3), here u′2 represents
〈u+2〉
u2τ

, etc; fluctuation velocities are Reynolds-averaged and normalized by the friction
velocity squared. The secondary peaks (-/+) have also been ratioed relative to the
first (+/-), so that the same peak-to-peak amplitudes are retained in the profiles. There
are some deviatoric data points near the wall, possibly due to insufficient numerical
resolution, and also in the far field caused by the subtle differences in the outer
boundary conditions. Nonetheless, the unification of the profiles is nearly complete,
at least at these Reynolds numbers, and applies across wall-bounded geometries:
channel (CF) and boundary-layer flow over a flat plate (FP). The scaling factors
simply are functions of the Reynolds number, but asymmetrical [7]. It is interesting
to note that u′2-structure scales at the first-gradient level, while v′2 and u′v′ do so
at the second. The fact that (1) and (2) are momentum-conserving, while (3) is
an expression of the energy balance, may have some bearing on this: momentum
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Fig. 1 Scalability of the u′2
profiles at the first gradient
level. Self-similarity is
observable with
asymmetrical monotonicity.
DNS data are from [8, 9]

Fig. 2 The above scaling
leads to a unitary, collapsed
profile for asymmetrically

normalized du′2
dy+

Fig. 3 Similar scaling holds
for v′2, except at the
second-gradient level

diffuses proportionately to the second-gradient, whereas energy dissipation has a
linear dependence on the first-derivative squared. For the free jet flows, r/x or y/x
scaling already accomplishes the same effect [12].
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Fig. 4 The Reynolds shear
stress also collapses onto a
single profile, for the second
gradients

3 Turbulence Flux Dynamics

We can examine the transport dynamics in this context, starting from du′3
dy+ ((3)) and

dv′2
dy+ ((2)). Both of these fluxes are important contributors to the Reynolds shear stress
in (1), and scripting these two root variables would suffice in full reconstruction
of u′v′, de-necessitating any turbulence models. Equation (3) shows that u′v′ and
v′2 in turn re-combine to prescribe the kinetic energy flux gradient, du′3

dy , forming a
triad of energy terms to produce the observed turbulence structure. Here, we take
the Lagrangian interpretation of u′3 as (u′2)3/2, just as u′

rms is set equal to (u′2)1/2

in (1), so that u′2 profiles can be obtained directly from integration of du′3
dy+ . We can

see in Fig. 5 that the agreement between the current theory (3) and DNS data [9]
is quite good, until we reach the “far-field”, y+ > 30. The main composition of
the kinetic energy flux are the lateral transport (C31 term) and the pressure work
(C32). The viscous dissipation (C33) term is quite small at this Reynolds number
(Reτ = 1000), and its omission does not subtract from the current accuracy. Thus,
a succinct visualization emerges wherein the streamwise flux of kinetic energy, du′3

dy+ ,
is balanced by the cross-stream transport (C31) and expended through pressure work
(C32) and viscous dissipation (� 1).

It is a simple matter to numerically integrate and see that this gradient structure
will result in a sharp peak near the wall, followed by an increasingly abrupt bend
toward gradual decline to the centerline boundary condition [7, 13]. For dv′2

dy+ , the
set of flux terms in (2) prescribe the composition of the v′-momentum content also
accurately (Fig. 6).

We have already shown the flux balances for the Reynolds shear stress in previous
works [1–4]. As described therein, by substituting u′2 and v′2-gradients in (1), du′v′

dy is
directly computed, which upon integrations and insertion in the Reynolds-averaged
Navier-Stokes equation results in the mean velocity profile [3, 4]. For jet flows,
the situation is made yet simpler due to absence of the pressure terms in ((1)–(3)),
and solutions scaled by y/x are iteratively achieved [1]. The above flux balances
occur through the transport equations of (1)–(3). The dynamical processes can also
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Fig. 5 du′3
dy+ profile as

prescribed by the terms in
(3). In (3), C32 term
represents the pressure work

Fig. 6 dv′2
dy+ profile as

prescribed by the terms in (2)

be intuitively visualized by conjuring an observer on a vessel (the control volume),
which is moving at the local mean velocity. If the observer opens the windows, no
effects of the mean flow velocity can be felt due to the zero relative motion. However,
the fluctuation momentum must still be balanced: streamwise u′2-flux must be offset
by the lateral flux (u′v′) plus the forces (pressure and viscous). Algebraically, these
flux balances lead to ((1)–(3)), which prescribe the turbulence transport processes
quite accurately and logically, as shown above. Figure7 demonstrates the efficacy of
the transport equations in another geometry: adverse pressure-gradient flow (DNS
data are from [14]). Therefore, the flux dynamics of ((1)–(3)) are generalizable due
to its applicability for each of the Reynolds stress components, and across different
flow geometries.

4 Energy Spectra

Finally, the final component for a full description of turbulent flows is the energy
distribution or spectra. Since u′2 and v′2 also represent the mean turbulence kinetic
energy, enumeration of their spectral contents will complete the statistical prescrip-
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Fig. 7 The applicability of
the current theory is
extended to more complex
flows: boundary layer flow
over a flat plate in adverse
pressure gradient. DNS data
are from [14]

tion. In this regard, we drew upon yet another fundamental principle of the Second
Law, in the corollary form of the maximum entropy method [5, 6], which derives the
full spectral function, parameterizable with the root turbulence variables, as shown
below [5, 6].

E(k) = C1

k4
exp

{−C2u
′2 − C3k

2u′2} (4)

This spectral function, along with the kinematic scaling for u′ ∼ m-log(k), is
found to be applicable in two-, three-dimensional homogeneous turbulence, and in
channel flows [5, 6], reproducing the full observed energy distributions continuously
from the energy-containing, inertial to the viscous dissipation range. Further confir-
mation would be useful in other turbulence geometries, but the above set of findings
constitute a foundation for theoretical analysis of canonical turbulence.

5 Summary

Resolution of the turbulence structure has been a long-standing, “millennial” problem
in fluid physics. In this work, a formalism is demonstrated to encapsulate and predict
the main features of turbulent flows in canonical geometries, including the energy
spectra.
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Spectral Energetics of a Quasilinear
Approximation in Uniform Shear
Turbulence

Carlos G. Hernández and Yongyun Hwang

Abstract The spectral energetics of a quasilinear (QL) model is studied in uniform
shear turbulence. For the QL approximation, the velocity is decomposed into a mean
averaged in the streamwise direction and the remaining fluctuation. The equations for
the mean are fully considered, while the equations for the fluctuation are linearised
around themean. TheQLmodel exhibits an energy cascade in the spanwise direction,
but this is mediated by highly anisotropic small-scale motions unlike that in direct
numerical simulation mediated by isotropic motions. In the streamwise direction,
the energy cascade is shown to be completely inhibited in the QL model, resulting
in highly elevated spectral energy intensity residing only at the streamwise integral
length scales. Finally, the QL model is shown to generate anisotropic turbulence
throughout the entire wavenumber space and inhibit the nonlinear regeneration of
streamwise vortices in the self-sustaining process.

1 Introduction

In wall-bounded turbulent shear flows, linear instability does not arise from the
mean velocity. In this type of flows, the evolution of disturbance has been studied
by examining the response of the linearised Navier–Stokes equations to various
excitation mechanisms [11, 12], such as initial condition (transient growth) [4, 16]
and deterministic/stochastic forcing (analysis of resolvent and gramian) [1, 7].

The earliest work utilising the quasilinear (QL) framework can be found in [8],
which ignored the self-interactions in the second group with the ‘marginal stabil-
ity’ for the closure of the quasilinear system. The modern approaches share similar
ideas with these early ones, but they take more flexible and delicate approaches for
modelling of the self-interaction term of the second group (e.g. stochastic forcing,
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eddy viscosity, etc.). Of particular interest here is the type of RNL (Restricted Non-
linear) model without any parametric stochastic excitation. This type of quasilinear
model was recently applied to parallel wall-bounded shear flows [5, 10, 13–15],
in which the key dynamics of coherent structures has been understood in terms of
the so-called ‘self-sustaining process’ [6, 17]. An important feature of this type of
model is that it typically activates only a handful number of streamwise Fourier
modes for self-sustaining velocity fluctuations [5, 13, 15]. A judicious choice of the
active streamwise Fourier modes appears to reproduce sound first-order turbulence
statistics [3].

The present study aims to explore spectral energy transfer of the aforementioned
QL model in order to gain the fundamental understanding of its precise modelling
capability. Here we consider uniform shear turbulence where only single integral
length scale is retained by prescribing the size of computational domain.

2 Problem Formulation

We consider a turbulent flow under a uniform mean shear. The flow field is decom-
posed into a streamwise mean and the remaining fluctuation, the former of which
is solved by considering the full nonlinear equations whereas the latter is obtained
from the linearised equations around the former: u = Um + ur, with Um = 〈u〉x,
where 〈·〉x indicates the streamwise average. Following [10], we introduce two lin-
ear projection operators defined as Pm[u] ≡ 〈u〉x = Um, Pr[u] ≡ u − 〈u〉x = ur.
The Navier–Stokes equations are first projected onto the Pm and Pr subspaces. The
subsequent linearisation of the equations for ur about Um leads to the QL system:

∂Um

∂t
+ (Um · ∇yz)Um = − 1

ρ
∇yzPm + ν∇2

yzUm − Pm[(ur · ∇)ur] (1a)

∂ur
∂t

+ (Um · ∇)ur + (ur · ∇)Um = − 1
ρ

∇pr + ν∇2ur, (1b)

where Pm and pr are defined to enforce ∇yz · Um = 0 and ∇ · ur = 0, respectively,
with p = Pm + pr . The self-interaction term Pr [(ur · ∇)ur] in (1b) will be ignored.
The TKE equation is considered in the streamwise/spanwise Fourier space:

〈{
−û′(k)v̂′(k)

dU

dy

}〉
r⊥,y,t︸ ︷︷ ︸

P̂(k)

+
〈
−ν

∂ û′
i (k)

∂x j

∂ û′
i (k)

∂x j

〉
r⊥,y,t︸ ︷︷ ︸

ε̂(k)

+
〈{

−û′
i (k)

(
∂

∂x j

(
̂u′
i u

′
j (k) − Pr

[
̂u′
r,i u

′
r, j (k)

])) }〉
r⊥,y,t︸ ︷︷ ︸

T̂ (k)

= 0, (2)
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Table 1 L∗
x , L

∗
y and L∗

z indicate the domain size in the x-, y- and z directions in the Kolmogorov
unit, respectively. Here, Re = U0Ly/(2ν), Reτ,Lz = L∗

z and Reλ is the Reynolds number based
on Taylor microscale. The grid spacings in the x- and z-directions are �∗

x and �∗
z (after aliasing).

Nx,F indicates the number of the positive-wavenumber streamwise Fourier modes

Case Re Reτ,Lz Reλ L∗
x L∗

z �∗
x �∗

z Nx,F Ny × Nz δ∗
y

H-DNS 25000 514 63 1542 1714 14.3 5.7 54 497 × 108 257

H-QL-FULL 25000 617 108 1852 2056 17.1 8.6 54 497 × 108 308

H-QL-NX4 25000 580 103 1739 1932 869 8.1 1 497 × 108 289

H-QL-NX16 25000 628 108 1883 2094 188 8.7 5 497 × 108 313

H-QL-NX32 25000 626 112 1877 2086 89 8.7 10 497 × 108 312

H-QL-NX48 25000 629 111 1888 2096 59 8.7 16 497 × 108 314

where the overbar indicates the complex conjugate, and Re {·} the real part. P̂(k)
is the rate of turbulence production, ε̂(k) is the viscous dissipation and T̂ (k) is the
(nonlinear) turbulent energy transport, at a given wavenumber, respectively. Since∫ ∞
0 T̂ (k) dk = 0, the exact statistical balance between the production and dissipation
of TKE is obtained for both of the full and QL systems through (2). A simulation
is first set up for plane Couette flow where the two parallel sliding walls with the
velocity±U0 are located at y = ±Ly/2, respectively (Table1). The spanwise domain
of the simulation is designed to be highly restricted, such that the size of the largest
eddies in the bulk region is determined by Lz . The bulk region of the flow in effect
simulates a uniform shear flow [18]. The numerical solver used is diablo [2].

3 Results and Discussion

The QL model is found to generate more anisotropic velocity fluctuations: u∗
rms and

v∗
rms are increased in the QL model regardless Nx,F considered, whereas w∗

rms is
decreased (see Table2). This behaviour is a little different from that observed in
wall-bounded shear flows (e.g. [5, 14]), where only u∗

rms is increased by the QL

Table 2 One-point turbulence statistics

Simulation dU∗/dy∗ −〈u′∗v′∗〉x,y,z,t u∗
rms v∗

rms w∗
rms

H-DNS 0.017 0.99 1.72 1.15 1.42

H-QL-FULL 0.007 0.99 1.80 1.35 1.30

H-QL-NX4 0.007 0.99 1.9 1.35 1.1

H-QL-NX16 0.006 0.99 1.75 1.35 1.25

H-QL-NX32 0.006 0.99 1.81 1.35 1.25

H-QL-NX48 0.006 0.99 1.80 1.35 1.25
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Fig. 1 Premultiplied spanwise (first row) and streamwise (second row) wavenumber spectra of
energy budget per unit mean shear for the H-DNS and H-QL-FULL cases

approximation while the others are decreased. The QL model exhibits one-point tur-
bulence statistics well converged for Nx,F ≥ 5 (see Table2). This implies that only
a reasonably small number of the streamwise Fourier modes are active in the QL
model, consistent with the previous observations made in wall-bounded flows (e.g.
[5, 13–15]). The premultiplied one-dimensional spanwise wavenumber spectra of
the production, turbulent transport and dissipation per unit mean shear from DNS
and QL model are plotted in Fig. 1 (first row). Production takes place at large scales
(kz Lz � 20) and this energy appears to be transferred almost equally to turbulent
transport and viscous dissipation, the latter phenomenon of which is presumably due
to the still relatively low Reynolds number considered in the present study. At small
scales (kz Lz � 50), the production becomes negligible and the other two terms bal-
ance each other with the turbulent transport term being positive. The premultiplied
streamwise wavenumber spectra of the energy budget per unit mean shear are shown
in Fig. 1 (second row). While the spectra of DNS show the typical features of energy
cascade and turbulent dissipation observed in Fig. 1, the QL model does not develop
such features even with the streamwise resolution used in DNS. In particular, both
turbulent transport and dissipation spectra are highly localised within the wavenum-
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Fig. 2 Premultiplied spanwise (first row) and streamwise (second row) wavenumber spectra of
pressure strain per unit mean shear for the H-DNS and H-QL-FULL cases

ber space where turbulence production is active kx Lz � 1. However, it should also
be pointed out that there are still a non-negligible number of wavenumbers actively
involved in the spectral TKE balance: for example, in the case of H-QL-FULL, there
are still approximately five streamwise Fourier modes highly active, and they form
the spectral TKE balance in the streamwise wavenumber space. Furthermore, the
nonlinear turbulent transport is not completely inactive in the streamwise wavenum-
ber space.

The pressure-strain spectra are finally explored to understanding the mechanism
of the componentwise TKE distribution in the QL model. Figure2 shows the spectra
of the pressure-strain terms for DNS and QL model. A negative 
̂x and a positive

̂y are observed for both DNS and QL model throughout the spanwise scales. The

̂z takes a positive value at small wavenumbers (kz Lz � 20 in DNS and kz Lz � 10
in QL model) and a negative value at large wavenumbers. The QL model appears to
reproduce the pressure-strain spectra similar to those of DNS, but it largely fails to
do so quantitatively. In particular, the absolute values of the pressure-strain spectra
of the QL model are considerably smaller than those of DNS in the entire range of
the spanwise wavenumbers. Similar behaviours are also observed in the streamwise
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wavenumber spectra of pressure strain. Here, the only notable qualitative difference
from the spanwise wavenumber spectra is that the pressure-strain spectra of the
QL model is also highly localised for kx Lz � 1. This is evidently due to the lack
of nonlinear energy transport (energy cascade) of the QL model in the streamwise
wavenumber space.

4 Concluding Remarks

The overall turbulence statistics and the spectral energetics of the QL model found
in the present study are reminiscent of those of under-resolved direct numerical sim-
ulation: in fact, the monochromatic QL model (i.e. the QL model with Nx,F = 1)
is mathematically identical to direct numerical simulation with single streamwise
Fourier mode. Having pointed this out, the observations made in the present study
suggest that the QL model considered in the present study may be improved, if the
mechanisms of nonlinear turbulent transport in the streamwise wavenumber space is
further incorporated. One such way might be realised by adding an eddy-viscosity-
based diffusion model to (1b), as the enhanced diffusion at the integral length scale
would replace the role of nonlinear turbulent transport without creating energy cas-
cade. Given the translational invariance of the statistical features of uniform shear
turbulence in all the spatial directions, a realistic and simplest form of the eddy
viscosity would be an isotropic constant diffusion tensor. In this respect, the GQL
[9, 15] would be an interesting direction to pursue, as it would incorporate some
minimal role of the slow pressure. Ultimately, combination of an additional turbu-
lence model (e.g. based on an eddy viscosity) with the GQL might be a direction
towards a reliable low-dimensional description of turbulent flows.
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Miscellaneous Topics



Turbulence and Uncertainty for Future
Renewable Energy Reliability

P. Tavner and D. Zappalá

Abstract Current climate change concerns accelerate interest in developing reliable
renewable energy sources. Two of the most significant, in the wind and sea, are
subject to turbulence, where its mathematics are at the forefront and the topic of this
Conference.

At the heart of renewable energy extraction are aero/hydrodynamic and elec-
trical/mechanical/control machines, all subject to fault processes, some initiated
by that turbulence. Humans, animals and plants are also subject to fault processes
and health degradation, but plants and animals have cellular structures, incorpo-
rating growth and self-repair, dependent on genes. Machines of human construction,
however, do not have these benefits, but there are similarities. Renewable energy
extraction reliability depends on:

• Application: such as wind or tidal turbines, or wave devices. Figure 1 shows an
early wind power spectrum while Figs. 2 and 3 show the turbulence encountered
by renewable devices;

• Design: by virtue of device rating, load and materials used;
• Physics: energy transfer by thermodynamically reversible processes accompa-

nied by irreversible fault processes, mitigated by design, but degrading energy
conversion through uncertain failures.

In time, these irreversible loss processes, or root causes, accumulate, worsening
machine reliability and triggering conversion failure, a stochastic integration process.
Brand et al. [2] point out the gap in the Fig. 1 spectrum is absent over land, the wind
speed distribution is non-Gaussian under unstablemaritime conditions, and off-shore
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Fig. 1 Classical wind speed time variation assumption [1]. This is expressed as fS(f), not S(f) as
used in current turbulence work, thus Kolmogorov decay in double-log presentation would be f−2/3,
as expressed in current turbulence concepts, [2–3]

Fig. 2 Practical turbulence encountered by an onshore wind turbine (left) and an offshore wave
energy device (right), [4]

Fig. 3 Practical,
unpredictable tidal energy
device turbulence
superimposed on predictable
diurnal variation, [4]

wind speed profiles differ from onshore. Recent insights fromNandi et al. [3] confirm
some of Fig. 1’s turbulence assumptions.

However, the purpose of this brief paper is to draw turbulence researchers’ atten-
tion to the connection between themathematical continuity of turbulence and the inte-
gration of uncertain failure physics processes. The intent is to explain the impact on
wind and sea renewable energy extraction of aero-dynamic and hydro-dynamic turbu-
lence and the integrating effect of subsequent uncertain irreversible failure processes
on those renewable energy devices.



Turbulence and Uncertainty for Future Renewable Energy Reliability 257

Fig. 4 Concorde full-size
fatigue air-frame test,
Aerospatiale/BAe,
Farnborough, UK, 1973–75,
[5]

This is not new, scientists and engineers experienced similar issues in the early
days of transonic jet aircraft flight, summarized by:

• Slow fuselage skin stress variation, due to pressurization or depressurization, as
aircraft descend from or ascend to high altitude, initiating low-cycle skin fatigue
failure;

• Rapid air-frame and skin stress changes as aircraft accelerate or decelerate through
the sound barrier, initiating high-cycle fatigue failure.

Figure 4, from the 1970s [5], shows for the Concorde supersonic aircraft airframe
how such structural issues were resolved, by full-size physical fatigue and pressur-
ization/depressurization tests.

We make this comparison between the aeronautic and renewable industries,
emphasizing structural fatigue failure in the former, whereas renewable industry
failure processes penetrate further into the device than the structure, because these
devices are fully robotic and risk overall failure if one part fails, whether in the
structure or conversion system.

To analyze such issues cost-effectively, devices cannot be subjected to full-size,
Concorde-like tests but must be modelled. To do that for wind and sea renewables we
need a mathematical understanding that links turbulent causes to uncertain cumula-
tive consequences, not only in device structures but also in their energy collection
systems, generators, electronics and controls. There needs to be a mathematical
connection between the continuity of turbulence mathematics and the integration
processes of uncertain failure physics, across combined structural, mechanical, elec-
trical and control technologies [6]. A first attempt at this process has been taken by
Lin et al. [7].
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Instability on Rotating Sharp
Cones—Revisited

K. Kato, P. Henrik Alfredsson, and R. J. Lingwood

Abstract Weanalyse the azimuthal velocity fluctuation in the boundary layer driven
by a rotating slender cone with a half-cone apex angle of 30◦. The flow is dominated
by a centrifugal instability, which develops into randomly occurring spiralling vor-
tices travelling on the cone surface. Such non-stationary vortices are observed as
an irregular wave packet-like fluctuation signal by a hot wire fixed in the lab frame
of reference and the spectral map at different radial positions forms a smooth ridge,
which is in contrast to the periodic time signal due to stationary crossflow vortices on
broad cones, which gives rise to sharp spectral ridges. The present analysis decom-
poses the wave packet-like fluctuation using a short-time Fourier transform (STFT),
revealing that the smooth spectral peak at a given radial position consists of waves
with different frequencies. The most probable fundamental frequency follows the
most unstable frequency according to linear stability theory. Also, we evaluate the
amplitude of the harmonics of the most energetic mode around transition; quadratic
nonlinear growth is observed until the amplitude of the fundamental mode saturates
at transition. This behaviour is similar to that on broad cones although the primary
instability and vortex structures are different.
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1 Introduction

Instability in boundary layers driven by rotating cones in still fluid has been studied to
understand transition in three-dimensional boundary layers. The early work showed
that two different instabilities dominate the flow depending on the half-cone apex
angle ψ (see Fig. 1); on a broad cone (including ψ = 90◦, i.e., the disk) the cross-
flow instability develops into spiral vortices that are stationary with respect to the
surface and an abrupt collapse of the vortices leads to transition,whereas a centrifugal
instability forms larger spiral vortices (with a smaller azimuthal wavenumber n) on
sharper cones (including ψ = 0◦, i.e., the cylinder) [5]. For the latter case, however,
the transition process has not been studied in detail.

We define an orthogonal coordinate system with the origin located at the apex of
the cone as shown in Fig. 1; x , θ and z are the coordinates along the generatrix of the
cone, azimuthal and wall-normal directions, respectively. Lengths are normalised by
δ∗
ν = √

ν∗/(�∗ sinψ) (ν∗ and�∗ are the kinematic viscosity of the surrounding fluid
and the cone angular velocity, respectively). Note that the Reynolds number based
on x∗ and the local wall velocity is the square of x .

Recent work on a sharp cone [4] shows that the centrifugal instability can be

characterized by a Görtler number G =
√
x δ32/ sinψ , where δ2 is the measured

momentum thickness scaled by δ∗
ν . The instability develops into a slightly inclined

non-stationary vortex (see Fig. 1c in [6]), that modifies the mean flow at G ≈ 10 and
saturates in the range 14 � G � 20.

In the present work, we analyse the azimuthal velocity fluctuations v inside of
the boundary layer on the slender cone obtained by the previous hot-wire measure-
ments [4]. An example of the characteristic transition is illuminated in the power
spectrum density (PSD) map shown in Fig. 2, compared with ones on broad cones;
the colour shows the amplitudes of different frequency components as a function of
x . On the disk and broad cone (a, b), around 30 and 24 stationary crossflow vor-
tices exist, respectively. A hot wire fixed in the laboratory detects 30 and 24 waves
per cone revolution, which are observed as multiple sharp peaks at the frequency
ω ≈ 30 and 24 (normalised by �∗) developing from x ≈ 450 (a) and 370 (b). For
increasing x , higher harmonics are observed due to nonlinearity. At x ≈ 570 (a) and

Fig. 1 The coordinate
system (x, θ, z) on the cone
with a half-cone apex angle
of ψ = 30◦. The azimuthal
velocity fluctuation v was
measured by a single hot
wire. All data for ψ = 30◦
analysed in the present work
are for a case with
�∗ = 900 rpm [4]
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Fig. 2 Power spectrum density (PSD) log(E) map of the azimuthal velocity fluctuation v close
to the centre of the boundary layer on cones with different apex angles: a ψ = 90◦, 1400 rpm [1],
b ψ = 60◦, 900 rpm [2, 3], c ψ = 30◦, 900 rpm [4] and d blow-up of c. ω is the frequency
normalized by the rotational rate �∗. For a and b, the spectra of the full fluctuation are shown.
For c and d, the spectrum of the stationary component was subtracted and only the non-stationary
component is shown; this was done to reduce the effect of an imbalance at ω = 1 (in the lab
frame of reference); no significant effect was observed at other frequencies. Data were taken from
the corresponding references and further detailed explanations on the experiments can be found
in [1–4]

537 (b), the disturbance level abruptly increases for all frequencies indicating the
breakdown [1–3]. In contrast, no distinct harmonics and breakdown are observed on
the slender cone (c, d). In this work, we analyse and discuss the transition process in
the centrifugal-dominated flow on the slender cone (ψ = 30◦).
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2 Time-Frequency Decomposition Using STFT

The velocity fluctuation v subtracted by the stationary fluctuation v̂ (obtained by
phase-averaging v according to the cone revolution) is shown in Fig. 3(i). For small
x , wave packet-like fluctuations appear spontaneously (ai); and as x increases, both
the number of packets and their amplitude increase (bi). At larger x-locations, the
wave packets fill up the signal (ci). STFT using a short time window (for 10 cone
revolutions) provides the corresponding PSDs (ii); when the wave packets are sep-
arated (a), it is clear that the packet consists of several frequency components, in
which we call the one with the maximum amplitude the fundamental mode (with the
frequency ω0 marked by the black line in (ii)) and other higher ones with frequencies
of multiples of ω0 as harmonics. For larger x , the more frequent appearances of the
packets partly obscure the harmonics (bii) and they cannot be distinguished in (cii).

Applying this analysis to the whole data length (3600 cone revolutions), we accu-
mulate the PSDs and detected ω0. The probability density function (PDF) of ω0

as a function of x is shown through the colour map in Fig. 4; just beyond the neu-
tral curve (50 � x � 120), the detected ω0 is found in the region 0.5 � ω0 � 1. As
x increases, more modes become unstable and variation of ω0 increases gradually
(150 � x � 350). It is interesting that the most probable ω0 follows the most unsta-
ble frequency (white lines) at a given x-location according to linear stability analysis
with a certain shift in the x-direction 100 � �x � 150. It may be interpreted that
the most unstable mode at a given x-location X does not necessarily have the largest
amplitude there and needs some distance until the amplitude exceeds that of the
lower-frequency mode that has the largest amplitude at X . At x ≈ 350, the varia-
tion of ω0 spreads suddenly, indicating breakdown. Thus, the sudden transition is
detected clearly by evaluating only the fundamental mode whereas this is masked by
harmonics in Fig. 2d.

Also, we can evaluate the quadratic nonlinear development of the harmonics by
extracting the PSDs with the particular ω0. Figure5 shows the case selecting ω0 = 4
as the fundamental frequency, which is the most energetic mode at transition. The
amplitudes of harmonics are plotted in a similar way as in Fig. 6b in [2] (as the
representative of samples, median of the amplitudes are taken, which is more robust
against outliers than the average). The amplitude of the kth harmonic v′

rms, ωk
∼

[v′
rms, ω0

]k+1 grows following the slope of k + 1 (without significant effect of the
mean flowmodification at G = 10, marked by×), and rapidly increases at transition
where the amplitude of the fundamental saturates at G = 20 (marked by +). Thus,
this analysis reveals a quadratic nonlinear growth of the harmonics, which is not
observable in the time-averaged spectra (Fig. 2c, d). Interestingly, Fig. 5 shows a
similar behaviour to the broad cone [2] and may indicate a common mechanism for
transition in three-dimensional boundary layers in general.
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Fig. 3 The non-stationary velocity fluctuation v − v̂ (i) and the PSDs log(E) using STFT or
spectrogram (ii) at different x-locations: a x = 151, b x = 250, c x = 301. The fluctuation is
normalised by the local wall velocity. The thick lines (ii) indicate the fundamental frequency ω0
where the maximum amplitude is detected in the frequencies ω > 0.3 in each short segment for
10 cone revolutions (providing a frequency resolution of �ω = 0.1 and overlapping 90%)



264 K. Kato et al.

Fig. 4 PDF of the detected fundamental frequency ω0. The shadowed area shows where no funda-
mental frequency was detected. The black and white lines indicate the neutral curves and the fre-
quencywith the highest growth rate according the linear stability analysis [4] for different azimuthal
wave numbers: n = −1 (solid line), n = 0 (dash-dotted line), n = 1 (dotted line)
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Fig. 5 Median of the harmonics’ amplitudes as a function of the median of amplitude of the fun-
damental disturbance v′

rms, ω0=4: a the first harmonic, b the second harmonic, c the third harmonic.
The colour indicates x-location. The white × and + indicate the points at G = 10 and 20, respec-
tively (x ≈ 270 and 334 at 900 rpm). The amplitude was calculated by integrating the premultiplied
spectrum in the single frequency bin �ω = 0.1. Only every second measured point is shown for
ease of visibility

3 Conclusion

The instability and transition scenario in the boundary layer induced by a rotating
sharp cone (ψ = 30◦) in still fluid is studied through a temporal-spectral analysis
of the azimuthal velocity fluctuations. The fluctuations caused by the centrifugal-
dominated non-stationary vortices appear as irregular wave packets in time and give
a smooth peak in the frequency domain (Fig. 3). On the other hand the STFT provides
the spectrum and fundamental frequency ω0 of each wave packet. The most proba-
ble ω0 follows the frequency with the largest spatial growth rate predicted by local



Instability on Rotating Sharp Cones—Revisited 265

linear stability analysis with a certain radial offset (Fig. 4). For the most energetic
mode around transition (ω = 4), the developments of the harmonics are evaluated;
their amplitudes grow in a quadratic manner until the fundamental mode saturates,
and increases suddenly around transition (Fig. 5) though these harmonics and sud-
den breakdown are not observable in the time-averaged spectrum (Fig. 2c, d). This
behaviour, which is first reported here, may indicate a similar transition scenario with
the one on broad cones that are dominated by a crossflow instability.
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Rotational Effects on Layered Structures
in Inhomogeneous Stratified Turbulence

Oaki Iida

Abstract Effects of buoyancy force stabilizing the disturbances and system rota-
tion are investigated on turbulent structure of inhomogeneous flow. Fourier spectral
method is used for inhomogeneous flow stirred by the artificial body force in the
fringe region at the right side of the cuboid computational box of periodic bound-
ary condition; thus stirred disturbances are dispersed from turbulent to non-turbulent
flowfield in the x1, i.e., streamwise direction.Moreover, a constantmean temperature
gradient d�/dx3 is imposed in the x3 direction i.e., vertical direction, to make a flow
dynamically stable. As a result, internal gravity waves are radiated from the disturbed
region, contributing to the dispersion of turbulent fluctuations, which generates the
layered structures of u1, i.e., streamwise velocity elongated in the x1 direction.More-
over, system rotation imposed in the x3 direction results in an asymmetry between the
positive and negative vertical vorticity; negative anticyclonic vorticity, surrounded
by positive cyclonic vorticity, tends to become dominant flow structures.

1 Introduction

In the environmental flow, combined effects of density stratification and system
rotation seriously affect turbulence and its diffusion. For example, the emergence
of turbulent patches generated by the breaking of the internal gravity waves and
the subsequent effect of Earth’s rotation on them is the feature common in oceanic
mixing and dispersion.

In this study, the effects of stable density stratification on turbulent diffusion from
the locally disturbed region are numerically investigated in the very simple flow
configuration of the periodic boundary conditions in all three directions. As shown
in Fig. 1, attaching the fringe region excited by the artificial body force, Fourier
spectral method can be used for inhomogeneous flow stirred at the right side of the
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Fig. 1 a flow configuration with the coordinate system, and b bird view of the entire computational
region including the isosurfaces of streamwise velocity u1=0.1 at the early period of the calculation
in the casewithout system rotation. At the inlet (left edge of the computational region), the buoyancy
Reynolds number defined as Reb = ε/νN 2 is less than 2 in all cases of N2F, S10, S1, and S01 over
the entire computational period, while the Froude number Fr = ε/kN is less than 0.03, indicating
that the flow is so-called at the viscosity dominated regime; k and ε are the turbulent kinetic energy
and its dissipation rate at the inlet, respectively, while ν and N are the kinematic viscosity and
buoyancy frequency, respectively. Reproduced from [Phys. Fluids 33, 025102 (2021)], with the
permission of AIP Publishing

Fig. 2 Isosurfaces of temperature θ and streamwise velocity u1 in case N2F [1], where system
rotation is not imposed; blue and red isosurfaces are θ=-0.05 and 0.05, respectively, while grey is
u1=0.1; the entire computational regions are visualized, including the fringe region at the right-hand
side

cuboid computational box, from which disturbances are dispersed from turbulent to
non-turbulent flow field in the x1, i.e., streamwise direction. Moreover, a constant
mean temperature gradient Sθ = d�/dx3 is imposed in the x3 direction i.e., vertical
direction, to make a flow dynamically stable.

Our previous study [1] without system rotation shows that internal gravity waves
are radiated from the disturbed region,which contributes to the dispersion of turbulent
fluctuations and generation of the layered structure. As shown in Fig. 2, the layered
structures of u1, i.e., streamwise velocity elongated in the x1 direction, are observed,
though layers are sandwiched by upper cold fluids and lower hot fluids, indicating
the generation of gravity currents where the potential energy is reconverted into the
horizontal kinetic energy, as indicated by our previous study [1].

https://aip.scitation.org/doi/10.1063/5.0033144
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In this study, however, the entire flow is also assumed to rotate in the vertical
direction, i.e., x3, with the angular frequency � as shown in Fig. 1. Although the
results of numerical simulations are identical with the previous study [2], effects of
system rotation on the layered structures are more visually presented by using the
different figures from our previous studies [1, 2].

2 Numerical Methods

In this study, a buoyancy force is approximated by the linearBoussinesq equation, and
the rotational axsis is assumed to be vertical axis. The physical parameters included
in the governing equations are kinematic viscosity ν, thermal diffusivity α, Sθ , the
rotation frequency f = 2�, and buoyancy parameter gβ, where β represents the
volume-expansion rate.

TheBoussinesq-approximatedNavier–Stokes equations attaching the fringe term,
the continuity equation, and the equation of temperature fluctuations θ take the
following forms:

∂ui
∂xi

= 0 (1)

∂ui
∂t

+ u j
∂ui
∂x j

= − ∂p

∂xi
+ ν

∂2ui
∂x j∂x j

+ gβδi3θ + ε3i j2�u j + Fi (x1) (2)

∂θ

∂t
+ u j

∂θ

∂x j
= −Sθu3 + α

∂2θ

∂x j∂x j
+ Fθ (x1), (3)

where Fi (x1) and Fθ (x1) are body force terms working in the fringe region. In
above equations, ui and p are the i th component of the velocity vector and pressure,
respectively, while θ is temperature fluctuation.

Moreover,when non-dimensionalized by the appropriate length scale L , the veloc-
ity scale U , and the temperature scale �T (= |Sθ |L), the following equations are
obtained:

∂ui
∂xi

= 0 (4)

∂ui
∂t

+ u j
∂ui
∂x j

= − ∂p

∂xi
+ 1

Re

∂2ui
∂x j∂x j

+ ε3i j
1

Ro
u j + 1

Fr2
δi3θ + Lλ(x1)

U
(vr − ui ),

(5)
∂θ

∂t
+ u j

∂θ

∂x j
= −u3 + 1

RePr

∂2θ

∂x j∂x j
+ Lλ(x1)

U
(θr − θ). (6)
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The last term in the right side of (5) and (6) is the fringe term and supposed to
force disturbances to be the ideal inflow condition vr and θr [3]. Also, Re = UL/ν,
Fr = U/LN and Ro = U/L f are the Reynolds, Froude, and Rossby numbers,
respectively; the reference length and velocity scales are set to be unity in our pre-
vious studies [1, 2]. In contrast, Pr = ν/α, N = √

gβSθ , and Ro/Fr are the Prandtl
number, buoyancy frequency, and S = N/2�, respectively. In all cases, Pr and N
are set to be 0.71 and 2, respectively. The case without system rotation is defined as
N2F. Moreover, S is set to be 10, 1, and 0.1 in the same flow configuration and grids
resolution as case N2F; cases of S = 10, 1, and 0.1 are coined as case S10, S1, and
S01, respectively.

The computational box is set to be 8π × 8π × 2π in x1, x2, and x3 directions,
respectively, while the grid resolutions are set to be 512 × 512 × 128 in x1, x2, and
x3 directions, respectively. In contrast, the fringe region is put in the region of x1= 7π
to 8π , where flow is artificially disturbed by the fringe term, which is switched on,
when the velocities are deviated from the ideal disturbances, i.e., vr and θr , which
are the artificial random numbers as discussed in our previous studies.

In these numerical simulations, all equations are solved by the Fourier spectral and
second-order Runge–Kutta methods, while alias error is removed by the truncation.
The periodic boundary condition is imposed in all three directions.

3 Results and Discussions

Figure3 shows the isosurfaces of the vertical vorticity ω3 at t = 12. It is noted that
in cases S01 and S1, the isosurfaces of ω3 tend to be thin columns elongated in the
vertical direction. In contrast, in cases S10 and N2F, the isosurfaces become flatten
pancake structures. A close-up of Fig. 3 in cases S1 and S10 is shown in Fig. 4, where
the effects of system rotation are observed, i.e., suppression of the horizontal enlarge-
ment of the vertical vorticity and its vertical elongation. In both cases, however, the
anticyclones (ω3 < 0) become dominant in comparison to cyclones(ω3 > 0); intense
cyclones are observed only at the periphery of the intense anticyclones.

Figure5 shows the instantaneous velocity vectors colored by ω3 in case N2F and
case S10. It is noted that because of relatively small rotational effects, the structure
of diffusion has a high similarity between these two cases. However, the rotation
makes the layered structures large-scale anticyclonic vortices, and their periphery is
rimmed by the cyclonic vorticity as observed in Figs. 3 and 4. Similar anticyclones
are also observed in case S1, as shown in Fig. 3.
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Fig. 3 Isosurfaces of vertical vorticity ω3 at t = 14 in the entire computational regions of cases
S01, S1, S10, and N2F; red and blue represent u1 = 0.1 and −0.1, respectively

Fig. 4 Close-up of Fig. 3 in cases S1 and S10; regions of 2π × 8π × 2π are visualized in the x1,
x2, and x3 directions, respectively

4 Conclusions

The rotational effects on the diffusion of the disturbances injected into the laminar
region under a stable density stratification are discussed by the direct numerical
simulations of spectral methods with the fringe region, where the disturbances are
excited by the artificially imposed body force. We find that by imposing the system
rotation, disturbances diffused from the inlet generate anticyclonic vortices of the
negative vertical vorticity, though their periphery is rimmed by the weak positive
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Fig. 5 Horizontal velocity vectors colored by the vertical vorticity ω3 at t = 22 in the entire hori-
zontal planes (8π × 8π ) of cases N2F and S10; red and blue represent positive and negative values,
respectively, while green represents zero. Reproduced from [Phys. Fluids 33, 025102 (2021)], with
the permission of AIP Publishing

vorticity. With an increase in system rotation, the vertical length of the vorticity
increases, while its horizontal scales decrease.

Acknowledgements Gratitude is expressed to author’s former students of graduate school, M.
Hayashi and Y. Inagaki for their contributions to this research study.

References

1. O. Iida, Turbulent structure of stably stratified inhomogeneous flow. Phys. Fluids 30, 045101
(2018)

2. O. Iida, Effects of system rotation on diffusion of the disturbances in inhomogeneous strongly
stratified flow. Phys. Fluids 33, 025102 (2021)

3. J. Nordstorm, N. Nordin, D. Henningson, The fringe region technique and the Fourier method
used in the direct numerical simulation of spatially evolving viscous flows. SIAMJ. Sci. Comput.
20, 1365 (1999)

https://aip.scitation.org/doi/10.1063/5.0033144


Magnetoclinicity Instability

Nobumitsu Yokoi and Steven M. Tobias

Abstract In strongly compressible magnetohydrodynamic turbulence, obliqueness
between the large-scale density gradient and magnetic field gives an electromotive
force mediated by density variance (intensity of density fluctuation). This effect is
named “magnetoclinicity”, and is expected to play an important role in large-scale
magnetic-field generation in astrophysical compressible turbulent flows. Analysis
of large-scale instability due to the magnetoclinicity effect shows that the mean
magnetic-field perturbation is destabilised at large scales in the vicinity of strong
mean density gradient in the presence of density variance.

1 Magnetoclinicity: Dynamo at Strong Compressibility

With the aid of the two-scale direct-interaction approximation (TSDIA), a multiple-
scale renormalised perturbation expansion theory for inhomogeneous turbulence [1,
2], the turbulent electromotive force (EMF) is written as [3, 4]

〈u′ × b′〉 = − (β + ζ )∇ × B + αB − (∇ζ ) × B + γ∇ × U

− χρ∇ρ × B − χQ∇Q × B − χD
DU
Dt

× B, (1)

where u′ is the velocity fluctuation, b′ the magnetic fluctuation, B the mean mag-
netic field, U the mean velocity, ρ the mean density, Q the mean internal energy,
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D/Dt = ∂/∂t + U · ∇, and 〈· · · 〉 denotes ensemble averaging. Here, the trans-
port coefficients ηT(= β + ζ ), α and γ represent the turbulent magnetic-diffusivity,
residual-helicity and cross-helicity effects, respectively, which are present even in
the incompressible case [5]. On the other hand, the transport coefficients χρ , χQ ,
and χD have no counterparts in the incompressible case. They are related to the
obliqueness of mean magnetic field to the gradients of density, internal energy, etc.,
and are called “magnetoclinicity”. Note that in the TSDIA framework, they depend
on the response functions and the compressible energy spectra with the multiplica-
tional wavenumber factor k2. This corresponds to the square of turbulent dilatation,
(∇ · u′)2, and is directly connected to the magnitudes of density and internal-energy
fluctuations.

The physical origin of the magnetoclinicity effect can be obtained as follows.
Through simplest linear relations, the density and internal-energy fluctuations can
be expressed in terms of the turbulent dilatation as

ρ ′ = −τρρ∇ · u′, q ′ = −(γs − 1)τq Q∇ · u′, (2)

where γs is the ratio of the specific heats at the constant pressure and volume, and τρ

and τq are the characteristic times for the density and internal-energy fluctuations,
respectively. These relations naturally show that the density and internal-energy
fluctuations are reduced or enhanced respectively with turbulent expansion (∇ · u′ >

0) or contraction (∇ · u′ < 0). From the equation of state, the fluctuation pressure
is linearly related to the density and internal energy as p′ = (γs − 1)

(
q ′ρ + ρ ′Q

)
.

Then the velocity fluctuation is related to the turbulent dilatation as

∂u′

∂t
= · · · − 1

ρ
∇ p′ + · · · � · · · − (γs − 1) q

′
ρ
∇ρ − (γs − 1) ρ ′

ρ
∇Q + · · ·

� · · · + (γs − 1)2τq
Q
ρ
(∇ · u′)∇ρ + (γs − 1)τρ(∇ · u′)∇Q + · · · . (3)

Here, use has been made of (2) on the final evaluation of (3), which suggests that
positive (negative) turbulent dilatation leads to velocity fluctuation parallel (anti-
parallel) to themean density gradient. On the other hand, from the induction equation
of fluctuating magnetic field, we have

∂b′

∂t
= · · · − (∇ · u′)B + · · · . (4)

This represents the effect of magnetoacoustic wave. Positive (negative) turbulent
dilatation induces the magnetic fluctuation whose direction is opposite (parallel) to
the mean magnetic field (Fig. 1).

Integrating (3) and (4) with respect to time, we get approximate expressions for
u′ and b′. Then, the EMF due to turbulent dilatation, 〈u′ × b′〉TD, is given as
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Fig. 1 Turbulent electromotive force due to the mis-alignment of the mean magnetic field B from
the gradient of mean density or internal energy, ∇ρ or ∇Q. Cases for the local expansion (positive
dilatation) (left) and the local contraction (negative dilatation) (right)

〈u′ × b′〉TD � −(γs − 1)2τuτbτq〈(∇ · u′)2〉 Q
ρ
∇ρ × B

−(γs − 1)τuτbτρ〈(∇ · u′)2〉∇Q × B, (5)

where τu and τb are the characteristic times of velocity andmagnetic-field evolutions,
respectively. Equation (5) infers that in the presence of the obliqueness between the
mean magnetic field B and the gradient of mean density, ∇ρ, and/or the gradient of
mean internal energy, ∇Q, the EMF is induced in the direction of B × ∇ρ and/or
B × ∇Q, mediated by the turbulent dilatation. It is important to note that the direction
of 〈u′ × b′〉TD is always in the direction of B × ∇ρ and/or B × ∇Q, independent of
the sign of turbulent dilatation (Fig. 1).

2 Equilibrium State and Disturbance

In this work, we study a large-scale instability of compressible MHD turbulence:
How do the mean or large-scale fields evolve under the influence of the turbulent
transport represented by turbulent correlations such as the turbulent mass flux 〈ρ ′u′〉,
Reynolds stress 〈u′u′〉, turbulentMaxwell stress 〈b′b′〉, turbulent internal-energy flux
〈q ′u′〉, EMF 〈u′ × b′〉, etc. appearing in the mean-field equations. For this purpose,
a mean-field quantity F is divided into the equilibrium unperturbed state F0 and the
deviation from it or disturbance, δF , as F = F0 + δF with the disturbance being
much smaller than the equilibrium field: |δF | � |F0|.

In this work, for the sake of simplicity, we assume simplified equilibrium mean
fields for the velocity and magnetic field in the rectangular coordinate system
(x, y, z):

U = U0 + δU = δU = (
δUx , δU y, δUz

)
, (6)

B = B0 + δB = (B0, 0, 0) + (
δBx , δBy, δBz

)
. (7)

Themean equilibriumvelocityU0 is assumed to be zero (U0 = 0), and themean equi-
librium magnetic field B0 is put in the x direction transverse to the mean equilibrium
density gradient ∇ρ0 and uniform (B0 = const.).
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We decompose the mean-field equations into F0 and δF with (6) and (7), we have
equations of disturbances:

∂δρ

∂t
+ (δU · ∇)ρ0 + ρ0∇ · δU = −∇ · 〈ρ ′u′〉1, (8)

∂

∂t
ρ0δU

α = −∂δP

∂xα
+ ∂

∂xa
μ

(
∂δUα

∂xa
+ ∂δUa

∂xα

)
+ (J0 × δB)α + (δJ × B0)

α

− ∂

∂xa

[
δρ

(
〈u′au′α〉0 − 1

μ0ρ0
〈b′ab′α〉0

)
+ δUa〈ρ ′u′α〉0 + δUα〈ρ ′u′a〉0

]
, (9)

∂

∂t
(ρ0δQ + δρQ0) + ∇ · (ρ0δUQ0)

= ∇ ·
(

κ

Cv

∇δQ

)
− ∇ · (

δρ〈q ′u′〉0 + δQ〈ρ ′u′〉0
)

+ δU〈ρ ′q ′〉0 − (γs − 1)
[
ρ0Q0∇ · δU + δρ〈q ′∇ · u′〉0 + δQ〈ρ ′∇ · u′〉0

]
, (10)

∂δB
∂t

= ∇ × (δU × B0) + η∇2δB + ∇ × 〈u′ × b′〉1 (11)

and the solenoidal condition of the magnetic field: ∇ · δB = 0.
The pressure and internal-energy perturbations, δP and δQ, can be expressed in

terms of the density perturbation δρ with the speed of sound cs as

δP = (γs − 1) (ρ0δQ + Q0δρ) = c2s δρ. (12)

Then, there is no need to solve the internal-energy equation.
The turbulent correlations in the mean-field perturbation equations are given as

〈ρ ′u′〉0 = −κρ∇ρ0, 〈ρ ′u′〉1 = −κρ∇δρ, (13)

〈u′αu′β 〉0 − 1

μ0ρ
〈b′αb′β 〉0 = −νK

(
∂Uβ

0
∂xα

+ ∂Uα
0

∂xβ

)

+ νM

(
∂Bβ

0
∂xα

+ ∂Bα
0

∂xβ

)

/μ0ρ = 0,

(14)

〈u′ × b′〉1 = −ηTδJ + αδB + γ δ� + χρB0 × ∇δρ + χρδB × ∇ρ0, (15)
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where κρ , νK, and νM are the transport coefficients. Note that (14) gives no contribu-
tion because of the assumptions (6) and (7).

3 Normal Mode Analysis of the Mean-Field Equations

We analyse an arbitrary disturbance into a complete set of normal modes, and exam-
ine the stability of each of these modes characterised by a wave number k. The
disturbances are expressed in terms of two-dimensional periodic waves as

δF = f̂ (z) exp[i(kx x + ky y) − iωkt], (16)

where δF = (δρ, δU, δQ, δB) and f̂ = (ρ̂, û, q̂, b̂). In general this formalism leads
to a two-point boundary eigenvalue problem for the functions f̂ (z). Here, as the
simplest possible case, we assume that the amplitudes of disturbances, f̂ , do not
depend on the vertical coordinate z and constant, which will be relaxed in subsequent
papers. Under this assumption, the equations of perturbations are

(−k2κρ + iωk
)
ρ̂ + ikxρ0û

x + ik yρ0û
y + dρ0

dz
ûz = 0, (17)

− ikxc2s ρ̂ +
(

κρ

d2ρ0

dz2
+ iωkρ0

)
ûx = 0, (18)

− ik yc2s ρ̂ +
(

κρ

d2ρ0

dz2
+ iωkρ0

)
û y − ik y B0b̂x + ikx B0b̂

y = 0, (19)

ikxκρ û
x + ik yκρ û

y +
(

κρ

d2ρ0

dz2
+ iωkρ0

)
ûz + ikx B0

dρ0

dz
b̂z = 0, (20)

k2γ ûx − ik y B0û
y +

(
−k2ηT + χρ

d2ρ0

dz2
+ iωk

)
b̂x + ik yαb̂z = 0, (21)

(
k2γ + ikx B0

)
û y +

(
−k2ηT + χρ

d2ρ0

dz2
+ iωk

)
b̂y − ikxαb̂z = 0, (22)

ikx B0û
x + k2γ ûz − ik yαb̂x + ikxαb̂y + (−k2ηT + iωk

)
b̂z = 0. (23)

This system of equations (17)–(23) with the solenoidal conditions for the magnetic
field is analysed. One of the dispersion relations is given by

χρ

d2ρ0

dz2
− ηTk

2 + iωk = 0. (24)
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From this, the α component of large-scale magnetic-field disturbance is written as

δBα = b̂α exp

[(
−ηTk

2 + χρ

d2ρ0

dz2

)
t

]
exp[i(kx x + ky y)]. (25)

The first term in the temporal evolution part arises from the turbulent magnetic
diffusivity ηT. The growth of the mean-field perturbations are suppressed by ηT.
This effect is strongest at small scales where the wave number k is large. On the
other hand, in the presence of a strong mean density inhomogeneity such that

χρ

d2ρ0

dz2
> ηTk

2, (26)

the second or χρ-related term in the temporal evolution part contributes to the growth
of mean-field perturbations. This large-scale instability, the magnetoclinicity insta-
bility, is important only in the region where the density variance is strong enough
since it also depends on χρ(∝ 〈ρ ′2〉).

4 Instability Across the Strong Density Variation

In order to quantitatively evaluate the magnetoclinicity effect, we consider a simplest
possible spatial profile of the unperturbed density ρ0(z) as

ρ0(z) = ρm − ρd tanh (z/zd) , (27)

where ρm[= (ρ> + ρ<)/2] is the reference (average) density, ρd[= (ρ> − ρ<)/2]
the density difference, and zd the depth of mean density variation. For the spatial
distribution of unperturbed density (27), the first and second derivatives are given as

dρ0(z)

dz
= −ρd

zd

1

cosh2(z/zd)
,

d2ρ0(z)

dz2
= +2ρd

z2d

tanh(z/zd)

cosh2(z/zd)
. (28)

The schematic spatial distribution of the unperturbed density, its first and second
derivatives, as well as the setup considered, are depicted in Fig. 2.

With this density configuration, the second derivative is positive in the upper layer
(low density region) and negative in the lower layer (high density region) as

d2ρ0

dz2

{
> 0 (z > 0, ρ< : low density),
< 0 (z < 0, ρ> : high density).

(29)

It follows from (25) that the mean magnetic-field disturbance can increase in the low
density (positive z) side, and decays in the high-density (negative z) side. The lower
the wave number k is, the larger the growth rate of the perturbed magnetic field is.
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Fig. 2 Schematic spatial distributions of a the unperturbed density ρ0(z), b its first derivative with
respect to z, dρ0/dz, c the second derivative d2ρ0/dz2, and d the setup with transverse B

In this sense, this magnetoclinicity effect is more suitable for producing large-scale
magnetic-field structures than small-scale ones. The growth rate also depends on how
much large transport coefficient χρ is. The magnitude of χρ reflects the magnitude
of density variance 〈ρ ′2〉. If the high χρ region is spatially localised, the instability
region of the large magnetic field is also spatially localised. A region with a strong
mean density gradient ∇ρ is favourable for high density variance 〈ρ ′2〉, since 〈ρ ′2〉
is generated by strong ∇ρ coupled with −〈ρ ′u′〉. We stress again here that although
the arguments here make physical sense, a global analysis involving a two-point
boundary value problem is necessary to elucidate the mechanisms.
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Beginning of Taylor’s and Wavy Vortices
at the Loss of Stability of a Conducting
Liquid Flow Produced by the Rotating
Magnetic Field

Alexander Zibold

Abstract The non-stationary instability of the axisymmetric laminar flow of a vis-
cous incompressible conducting liquid arising in infinitely long circular cylinder
under the influence of coaxially homogeneous rotating magnetic field is investigated
in linear representation. Calculation of critical parameters of a flow at which the
primary azimuthal flow loses stability and Taylor’s or wavy vortices arise was com-
pleted. It is established, that wavy vortices can arise directly at the loss of stability of a
primary flow, omitting the stage of Taylor’s vortices formation. The results have been
compared to those of stability of Couette flow between concentric rotating cylinders
in conventional hydrodynamics.

1 Introduction

It is well known that the flows arising in technological devices under the influence
of the rotating magnetic field (RMF), as a rule, are three-dimensional. At the loss of
stability of primary azimuthal laminar flow, not a turbulent but secondary laminar-
vortical mode appears. Thus, the system periodic along the vessel axis meridional
vortices is imposed on primary laminar flow: depending on flow parameters it is
either Taylor’s vortices or wavy vortices. This feature of rotary flows has extremely
high value for the theory and practical applications.

The nearest analogue of such type a flow is Couette flow between two concentric
cylinders fromwhich internal one rotates and external remainsmotionless.Analyzing
stability of such flow, Lin [1] has noticed, that the first approximation equations for
small perturbations of velocity and pressure allow for periodic solution with respect
to ϕ and z:

f = f (r) · exp(γ t + inϕ + iaz), (1)

wheren is the integer number (azimuthwavenumber), anda is the real (dimensionless
axial wave number).
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Using analogy to Couette flow for a flow excitable of RMF we will consider a
special case of rotary symmetry n = 0. In this case a primary flow is independent of
ϕ, but disturbances of velocity ur , uϕ, uz and pressure q are not zero. The stability
of a primary azimuthal flow and three-dimensional hydrodynamic structures of thus
arising ‘Taylor’s vortices’ have been investigated by us in sufficient detail [2, 3].
With the use of Galerkin method for a wide range of flow parameters we obtained
the curves of neutral stability, separating the area of one-dimensional azimuthal
flow from that of the three-dimensional laminar-vortical flow. Apparently, in low-
frequency approximation (ω̄ = μ0σωR2

0 < 1) the stability is characterized by two
independent criteria—Reω = ωR0

2/ν and Haac = B0R0
√

σ/2η. At the increase in
relative frequency there is a one-parametrical family of neutral curves depending on
Prandtlmagnetic number. For all investigated ranges of values of parameters of a flow
calculationswe got one-vortical (in the radial direction) structure of Taylor’s vortices.
We studied the influence of flow parameters on the change of the characteristic size
of Taylor’s vortex, and on the displacement of the centre of a vortex along cylinder’s
radius.

The case of n �= 0 corresponds to the occurrence of the so-called wavy vortices. In
this case stability of a primary azimuthal flow in relation to non-axially symmetrical
disturbances is investigated. Thus, the vortical structure is transformed in such a
manner that the centres of Taylor’s vortices form a wave extending in an azimuthal
direction. As the number of waves along the azimuth can be only integer it is clear
why n is the integer. Initially, the stability of a primary azimuthal flow in relation to
non-axially symmetrical disturbances was investigated in stationary statement [4].
It has been established, that the loss of stability of a primary flow can lead both to
the occurrence of Taylor’s vortices (in sufficiently limited range of parameters of a
flow), and to the occurrence of directly wavy vortices of this or that mode, bypassing
of a Taylor’s vortices stage. Actually, we deal with the whole cascade of bifurcations,
thus the axial wave number varies step-wise (the characteristic size of a vortical cell
decreases).

In hydrodynamic experiments with the Couette flow, in some cases the motion
of wavy vortices in the azimuthal direction with a certain phase angular velocity
was observed. Therefore, non-stationary statement of a problem about stability of a
primary flow will be more correct. Thus, contrary to the Taylor’s vortices problem,
where, according to the principle of stability change in expression (1), γ = 0, the
eigenvalue γ will now be complex. It describes waves, moving in an azimuthal
direction with phase angular velocity ωph = Im{γ }/nω.
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2 Presentation of the Problem

Non-stationary instability of axisymmetric laminar flow of a viscous conducting
liquid in infinitely long circular cylinder, arising under the influence of coaxially
homogeneous RMF, is investigated in a linear statement. Stability is investigated
both in relation to axially and to non-axially symmetrical disturbances. The prob-
lem is studied both in the low-frequency approximation, and for any value of rela-
tive frequency. As the most interesting results have been received in low-frequency
approach, we will dwell upon such statement of a problem. In cylindrical coordinate
system the problem is described by the following system of the dimensionless equa-
tions

∂ur
∂t

+ Vϕ0

r

∂ur
∂ϕ

− 2Vϕ0uϕ

r
= −∂q

∂r
+ 1

Reω

(
Lur − 2

r2
∂uϕ

∂ϕ

)
− Ha2ac

Reω

ur (2)

∂uϕ

∂t
+

(
dVϕ0

dr
+ Vϕ0

r

)
ur + Vϕ0

r

∂uϕ

∂ϕ
= −1

r

∂q

∂ϕ
+ 1

Reω

(
Luϕ + 2

r2
∂ur
∂ϕ

)
− Ha2ac

Reω
uϕ

(3)

∂uz

∂t
+ Vϕ0

r

∂uz

∂ϕ
= −∂q

∂z
+ 1

Reω

	uz − 2Haac2

Reω

uz (4)

∂ur
∂r

+ ur
r

+ 1

r

∂uϕ

∂ϕ
+ ∂uz

∂z
= 0 (5)

with boundary conditions

u |r=1= 0, u |r=0< ∞, (6)

where

	 = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2
∂2

∂ϕ2
+ ∂2

∂z2
, L = 	 − 1

r2
,

Vϕ0 = r − I1 (Haacr)

I1 (Haac)
– a primary axisymmetric flow, arising of homogeneous RMF.

The problem (2)–(5) with boundary conditions (6) solved with use of Galerkin
method. The universal computer program which allows to investigate various cases
of supercritical transitions has been created. Calculation of critical parameters of
a flow at which the primary azimuthal flow loses stability and at n = 0 Taylor’s
or at n �= 0 wavy vortices appear, have been completed. By results of calculations
curves of neutral stability (Fig. 1), representing projections space curves of neutral
stability on corresponding coordinate planes, are constructed. Instability in relation
to non-axially symmetrical disturbances (n �= 0) arises at lower critical parameters in



284 A. Zibold

Fig. 1 Projections of curves of the neutral stability (a–e—low-frequency approximation): a in
planes Reω, Haac; b in planes Reω, a; c in planes Haac, a; d in planes Reω, Im{γ }; e in planes
Haac, Im{γ }; f in planes Reω, Haac; g in planes Reω, a; h in planes Haac, a
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comparison with a case of axially symmetrical (n = 0) disturbances (a dashed lines
on Fig. 1). In addition to the features obtained by solving of a stationary problem of
stability [4], calculations of a non-stationary problem have led to unexpected results.
For sufficiently big Hartmann numbers interesting regularity has been discovered:
critical numbers Reω coincide for various axial and neighboring azimuthal wave
numbers. Calculations of Im{γ } have shown that for each concrete azimuthal wave
number n, Im{γ } increases with the increase in the Reynolds and Hartmann numbers
(Fig. 1d, e). With the increase of n in points of bifurcation, the value Im{γ } (and
furthermore ωph) decreases step-wise. It is logical to assume, that at coinciding
critical Reω the variant with the least phase angular velocityωph, so with the greatest
n,will be realized. Numerical experiment has shown, that in low-frequency approach
for certain ranges of Haac change there is an area in which critical Reω coincide to
within 4 significant digits for 4 neighboring azimuthal wave numbers (with n = 1
to n = 4). Taking into account the aforesaid it is logical to assume, that the variant
with n = 4 (corresponding to the wave with four periods round an axis) will be the
most preferable to realization. It is interesting to develop comparison with classical
Couette flow in common hydrodynamics. So, for example, one of the important
results of Coles experiments [5] about transitions in Couette flow was the detection
of non-uniqueness of spatial structure: at the same Reynolds’s number waves with
various axial and azimuthal wave numbers can be observed. From Coles experiment
it follows, that the wave mode with n = 4 is preferable. As well, the experiments of
other authors confirm the special status of non-axially symmetrical mode with n = 4
among other modes. Apparently, noted earlier formal analogy to Couette flow has
appeared to be deeper up to the similarity of the results.

It is necessary to notice, that in low-frequency approximation besides unique area
with coinciding critical Reω for 4 neighboring azimuthal wave numbers there are
areas in which critical Reω coincide for 2 and for 3 neighboring azimuthal wave
numbers. Localisation of these areas and transitions between them are reflected in
Table1. Various conditions for Reω are singled out by various colours of fonts. Not
realised Reω—a black colour; realised critical Reω—a red colour: possible—a font
slanted, preferable (with maximum n)—a font boldface.

When solving a problem on stability of a primary azimuthal flow in statement for
any values of relative frequency the numerical solution of a full induction problem
about primary laminar axisymmetric flow received in [6] has been used. For wide
enough investigated ranges of values of parameters of a flow only transition from
Taylor’s vortices (n = 0) to wavy vortices with azimuthal wave number n = 1 has
beennoted.Curves of the neutral stability received in low-frequency statement and for
any values of relative frequency (results of calculations for Prm = 10−6 are reduced)
are well compatible among themselves (Fig. 1f–h).
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Table 1 Critical values of the parameters characterizing the instability onset

Haac Reω

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

0.20 65140 67190 77560

3.59 490.8 490.9 536.6

3.60 489.9 489.9 535.4 623.1

3.62 488.1 488.1 533.1 620.1

3.63 487.2 487.1 532.0 618.7

26.95 1189 1106 1107 1108

26.96 1189 1107 1107 1109 1111

28.84 1282 1192 1192 1193 1194

28.85 1283 1193 1193 1193 1194 1197

29.97 1340 1244 1244 1244 1245 1247

29.98 1340 1245 1245 1245 1245 1247 1252

30.71 1378 1279 1279 1279 1279 1280 1284

30.72 1378 1280 1279 1279 1279 1280 1284

31.10 1398 1298 1297 1297 1297 1298 1301

31.11 1399 1298 1298 1297 1297 1298 1301

31.63 1426 1323 1322 1321 1321 1322 1324

31.64 1426 1324 1323 1322 1322 1322 1325 1338

32.40 1466 1360 1359 1358 1358 1358 1359 1371

32.41 1467 1360 1359 1358 1358 1359 1371

33.05 1501 1391 1390 1388 1388 1389 1399

33.06 1501 1390 1389 1388 1389 1399

33.55 1528 1414 1412 1411 1412 1421

33.56 1528 1414 1413 1412 1412 1421 1445

34.45 1576 1457 1456 1454 1454 1461 1483

34.46 1577 1456 1455 1454 1461 1483

37.84 1764 1624 1620 1617 1618 1632

37.85 1765 1625 1621 1618 1618 1632

38.30 1790 1648 1644 1640 1640 1653

38.31 1791 1644 1641 1640 1653

40.00 1888 1730 1726 1723 1732
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3 Conclusions

The executed research allows one to expand our views about the mechanisms of the
rise in instability of the conducting liquid flow generated by the RMF in infinitely
long cylindrical vessel. The results obtained thus far allow us upon the loss of stability
of a primary flow, to predict the occurrence of a secondary flow in Taylor’s vortices
or wavy vortices of this or that mode depending on the value of the power affecting
the liquid. The fact of coincidence of critical Reynolds numbers for various wave
modes is noted (the conclusion about preference of a mode with the greatest value
of azimuth wave number is given a reason). Apparently, noted features of beginning
of Taylor’s and wavy vortices would likely be true for sufficiently long cylinders of
finite length as well, when it is possible to neglect the influence of end faces, on a
flow in the central part of the vessel.
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Investigation of the Flow Generated
by the Surface Discharge on the Cylinder
Body in the Quiescent Air

A. V. Ivchenko and V. G. Shakhov

Abstract By using the shadow and PIV methods, the flow patterns induced by
the surface discharge on the circular cylinder in the stationary air are presented.
It is shown that the flow around cylinder is a superposition of the near-wall
vortex structure and radially-propagating jets. The averaged and pulsation compo-
nents of the jet velocity for two levels of discharge power consumption (8.2 and
39 W) are determined by the LDA method. Based on the analysis of the velocity
pulsation spectra, the presence of two inertial intervals with decrements round
‘–5/3’ for f <20–30Hz and ‘–7’ for f >40Hz is shown. For description flowpulsating
near a plasma sheet, it is proposed to use a double-cascade model of turbulence.

1 Introduction

It is well known [1, 2] that the processes in the gas boundary layer are of great
importance in the flow around the bodies and influence on the physical phenomena
observed here. A gas deceleration can cause instability of the boundary layer and
leads to flow separation [2]. Flow separation increases aerodynamic drag, reduces
heat dissipation, and increases the noise in technical systems. Therefore, the ways
searching for boundary layer stabilization to cancel flow separation is urgent task.

One of the advanced methods to influence the boundary layers is associated with
the surface discharge use [3–7]. According to [3–5], a surface discharge excited
directly in the boundary layer is capable of not only generating 3D-disturbances [3,
7] but also forming spatially-oriented jets [4, 5]. It makes it possible to consider the
surface discharges both a source of turbulence in the boundary layer and an efficient
transporter of turbulence in the space. Therefore, the excitation of a surface discharge
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changes the mechanisms of dissipation of mechanical energy in the gas and has a
significant impact on the near-wall flows [3].

In practices, the turbulent properties of surface discharges are most realized, when
gas flows around bluff bodies [6, 7]. In the paper [6], it was experimentally shown
possibility of the premature laminar-turbulent transition for circular cylinder. In this
case [6], the plasma ignition provides a reduction in the aerodynamic drag of the
cylinder by 20–30%. However, for the validation of mathematical models, infor-
mation about the characteristics of the flows caused by a surface discharge in still
atmosphere under the discharge generation mode modification is necessary.

2 Methods and Instruments

Our investigation was performed by using small-size model of the circular cylinder
(diameter is 32mm, length is 150mm)with the electrode system for surface discharge
excitation (Fig. 1). During the experiments the discharge was formed on the surface
of the film-type dielectric barrier with thickness 320 μm (ε = 3.5 and ρs ≈ 1014

� × cm). For discharge excitation, the alternating voltage (| Ua |< 4 kV and f ∼=
8 kHz) was used. The plasma sheets formed around the perimeter of the discharge
electrode (Fig. 1. pos. 4), which consisted of ten foil segments with thickness of
40 μm deposited along the generatrix lines of the cylindrical surface. The distance
between adjacent segments did not exceed 5 mm at angular step �α = 360. In this
case, the discharge electrode couldn’t disturb the slow flow (V < 1 m/s), since its
height was less than the shear layer thickness.

At excitation, the inter-electrode gaps on the cylindrical surface were formed by
the similarly-charged segments of the discharge electrode that led to the colliding
surface discharges generation [8]. For this reason, the surface discharges could serve
as source of the jets directed along normal to the dielectric surface [5].

Fig. 1 Aerodynamic model
scheme of the cylinder body:
1-cylindrical housing;
2-grounded screen;
3-dielectric barrier;
4-discharge electrode;
�α = 360—angular step
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Measurement of discharge power consumption was produced by the method of
oscilloscopic recording with the help of digital dual-link oscilloscope (PCSU1000)
with the acceptance band of 60 MHz, high-voltage divisor (division ration—5000:1)
and current shunt Rsh = 26.5 �. The oscilloscopic data processing was based on
the method [9] permitting to identify the voltage-current characteristic of discharge
system and to relate the dependency of the discharge power level (Fig. 2) with the
observed aerodynamic flows (see Figs. 3 and 4).

For spatial localization of the excited heat flows, optical visualization was
produced by the shadow method [10]. For this purpose, the installation based on
Maksutov’s optical scheme was used. To obtain the spatial distribution of veloc-
ities near cylinder, Particle Image Velocimetry (PIV) system with double-pulsed

Fig. 2 Dependency of active power W versus voltage level Ua of the surface discharge electrode
system on the cylinder body in the quiescent air

(a) (b)

Fig. 3 Flow visualization around the cylinder body by the shadow method at the different power
consumption of the surface discharge: W1 = 8.2 W (a) and W2 = 39 W (b). A-A, B-B and C-C
lines present cross-sections for LDA-measurements at distances from the cylinder surface: h1 =
1 mm, h2 = 5 mm, h3 = 15 mm respectively
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Fig. 4 Instant PIV data on
flow velocity distribution in
vicinity of cylinder body
under surface discharge
action: 1-jet, 2-vortex
structure. Registration mode:
illumination laser pulse
energy is 45 mJ, laser pulses
frequency is 8 Hz. Discharge
power consumption is
W2 = 39 W

frequency laser (Solo-150TX) and camera (Flow Sens-2 M) was applied. While the
pulsating flow parameters were determined by Laser Doppler Anemometry (LDA)
[11] with help of a laser anemometer (LAD-056C) acting in 2D-mode. Thus, the
presented combination of LDA and PIV devices allowed us to determine the average
velocity field in the vicinity of the cylinder body as well as parameters of flow
pulsations at the predetermined points [11, 12].

3 Results

The flow visualization in the vicinity of the cylinder under surface discharge action
showed the presence of a near-wall vortex structure and radially-oriented jets (see
Figs. 3 and 4). With an increase in the discharge power consumption, an intensifi-
cation of the jet process was observed. When the discharge power consumption was
reached 39 W, the jets propagated over a distance up to 15–20 mm leaving near-wall
area and pushing the gas away from the cylinder.

Quantitative measurements of the averaged and pulsation jet velocity components
were performedby theLDAmethod along three lines located at the different distances
(hi) from cylinder (Fig. 3a). The selected lines were positioned above the central part
of the aerodynamic model, where flow had a two-dimensional flow structure.

The velocity registration was carried out by sequential scanning of the selected
lines with using the stepper motors of LAD-056. Step between two neighboring spots
in each line did not exceeded of 1 mm. For the accumulation of statistical data, in
each spots it was recorded no less than 4096 reliable Doppler’s flashes caused by
passage of oil particles through the measuring volume (0.05 × 0.05 × 1 mm). For
frequent appearance of particles in the measuring volume, the cylinder was placed
in a glass box (700 × 400 × 300 mm) to provide the high-density oil smog.

The data on the averaged flow velocity components are presented in Figs. 5 and 6.
The flow velocity profiles qualitatively marched the data given in [5]. In center of the
inter-electrode gap we observe the normal-oriented jet while in peripheral areas there
are counter flows. Flow properties depended on the discharge power consumption.
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(a) (b)

Fig. 5 The tangential (a) and normal (b) components of the averaged flow velocities near cylinder
(based on LDA-measurements) at the discharge power consumption W1 = 8.2 W: 1–h1 = 1 mm,
2–h2 = 5 mm, 3-h3 = 15 mm

(a) (b)

Fig. 6 The tangential (a) and normal (b) components of the averaged flow velocities near cylinder
(based on LDA-measurements) at the discharge power consumption W2 = 39 W: 1-h1 = 1 mm,
2-h2 = 5 mm, 3-h3 = 15 mm

At W1 = 8.2 W (Fig. 5) the normal component of flow doesn’t exceed of 0.25 m/s
while at W2 = 39 W it reaches of 0.8 m/s (Fig. 6).Also these graphs (Figs. 5 and 6)
demonstrate that the flow turbulence forW1 is greater than forW2. This is confirmed
by the measured values of the velocity dispersion.

The spectral analysis of the velocity pulsation components was carried out by
technique described in [13, 14]. Figure 7 shows modification of mean power spectral
density (MPSD) of velocities pulsating component in center of the inter- electrode
gap under surface discharge action. The obtained spectra demonstrate localization of
turbulent pulsations in the range of 0–80 Hz and their intensification with discharge
power consumption growth.

By analyzing the spectra in the Fig. 7, we can observe two inertial intervals which
indicate a double-stage process of energy dissipation in initial part of the gas jet.
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(a) (b)

(c) (d)

Fig. 7 Mean power spectral density for normal (a), (b) and tangential (c), (d) velocities pulsating
components in the center of inter-electrode gap (distance from cylinder is 1 mm) at the different
discharge power consumption: a, c W1 = 8.2 W, b, d W1 = 39 W

4 Conclusions

1. To reveal the structure of the flow excited by the surface discharge in the vicinity
of a circular cylinder in the quiescent air, the visualization was performed by
using the shadow and PIV methods. The obtained pictures demonstrate the
vortex structure formation near cylindrical surface under surface discharge
action with power consumption around 8 W. While discharge power consump-
tion growth (up to 40 W) provides the generation of radial jets that leave
near-wall area around cylinder.

2. The distributions of flow velocity components for near-wall jet under surface
discharge actionwere obtained by usingLDAmethod. The flowvelocity profiles
near cylindrical surface (h∼= 1–5mm) have analogical structure to flow obtained
in case of theflat surface discharge electrode system [5].Moreover, in both cases,
the structure of the jet is similar to the structure of the jets formed in counter
flows [15].

3. Based on the spectral analysis data, it was shown that MPSD has two inertial
intervalswith different values of decrements. The decrements areweakly depen-
dent on the power consumption of the surface discharge and on the orientation
of the velocity component. The decrements vary in the range (–1.14–1.53) for
the low-frequency interval (f < 20–30 Hz) and in the range (–7.23–7.54) for
the high-frequency interval (f > 40 Hz) of the spectra. According to [16], the
obtained values match to well-known theoretical laws. For our conditions, we
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believe it is expedient to use the double-cascade turbulence model [16] for flows
description excited by surface discharge with Kolmogorov’s law (decrement is
‘–5/3’) [17] for low-frequency cascade and with Heisenberg’s law (decrement
is ‘–7’) [18] for high-frequency cascade.
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Numerical and Physical Aspects
of Large-Eddy Simulation of Turbulent
Mixing in a Helium-Air Supersonic
Co-flowing Jet

Alexey Troshin, Sergey Bakhne, and Vladimir Sabelnikov

Abstract This paper addresses a long-standing problem of dissimilar gas mixing
prediction within large-eddy simulation approach. A series of simulations was car-
ried out of A.D. Cutler et al. experiment (NASA Langley Research Center) in which
a supersonic helium jet issuing into air co-flow was studied. Grid convergence anal-
ysis was performed. Variations of turbulent (subgrid-scale) Schmidt number and
numerical scheme were done. All these attempts were unsuccessful in approaching
the experimental data, including the simulation performed on a grid consisting of
83 million cells. After that, the subgrid length scale was increased, which finally
led to agreement with the experimental data in the considered flow region. Physical
guesses are given as to why this parameter had a positive effect on the simulation
results and what consequences can be derived from this.

1 Introduction

Large-eddy simulation (LES) is a popular high-fidelity tool for studying both canon-
ical and complex flows in many areas. It is of great importance to validate numerical
schemes and physical models used in LES. Consequently, there is need for high-
quality reference experimental and DNS databases. The data published in [4] is such
an example: a careful experimental study of supersonic helium jet in a co-flowing air
stream was carried out and a detailed database was created. This database is used in
the current study to evaluate LES potential in the area of high-speed variable-density
turbulent mixing. To the best of our knowledge, there are no published LES studies
of [4] which agree with the experiment, see e.g. [2]. At the iTi Conference 2018, we
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presented [11] the first results of our assessment of LES on the database [4] and also
received systematic discrepancies with experiment in helium jet mixing intensity.
The jet spreading rate was overestimated by a factor of almost 2. In that study, a
single computational grid and a single numerical scheme was used. The failure to
predict mixing intensity encouraged us to systematically study the possible reasons
for the discrepancies, and the results are presented in the current paper.

2 Test Case and Numerical Setting

In the experiment [4], a round cold helium jet issued into a co-flow air stream. The
nozzles forming these streams were designed for operating at Mach number 1.8. Due
to differences in molecular weights, gas velocities at nozzle exits were significantly
different. The flow regime that was used in the simulations is presented in Table1.
These parameters were used at the inlets of the supplying channels.

Characteristic flow time scale was taken to be tchar = Dout/Uout ≈ 1.2 × 10−4 s,
where Dout = 60.47 mm is outer nozzle diameter andUout ≈ 485 m/s is gas velocity
at the outer nozzle exit. In LES, statistically steady flow was established during
the period of �t = 20tchar . After that, statistical data was collected during �T =
100tchar (fine grid), 200tchar (medium grid), and 300tchar (coarse grid).

All the simulations were carried out with the use of in-house computational code
zFlare which is part of software package EWT-TsAGI [3]. The code is focused on
solving unsteady combustion problemswithin URANS andDES/LES approaches on
multiblock structured grids. For the present simulations, hybrid spatial approxima-
tion was adopted which blends upwind-biased WENO5 scheme with MP limiter in
RANS regions and central difference scheme in LES regions. The blending function
was taken from [6]. Base central difference scheme had 4th order (denoted “CD4”
hereinafter), but 2nd order scheme (“CD2”) was also considered, as well as a scheme
obtained by taking half-sum of WENO5 reconstructions on a cell face, leading to
6th order in smooth flow regions (“symm” scheme). Time integration was done
with explicit 2nd order scheme, with time step varying between 1.25 × 10−4tchar
and 5.0 × 10−4tchar depending on the grid. The computational domain and imposed

Table 1 Flow regime specified in the simulations

Flow parameter Core jet Co-flow jet Ambient surroundings

Composition 95% He + 5% O2 by
volume

Pure air Pure air

Static
temperature T , K

303.45 299.75 294.6

Static pressure p, Pa 615 000 578 300 100 130

Streamwise
velocity U , m/s

141.50 22.63 10.0
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boundary conditions were the same as in [11]. 3 nested grids were constructed, con-
sisting of 1.3 mln, 10 mln and 83mln cells. The medium grid was the same as in [11].
The hybrid model was SST-DDES [5] with shear-layer adapted length scale [10].
The model acted in LES mode everywhere except in the turbulent boundary layers
inside the nozzle, where small RANS zones were located.

The SST-DDES model uses a hybrid length scale

lDDES = lRANS − fd max{0, lRANS − lLES},

from which a dissipation rate ε = ρ̄k3/2/ lDDES entering the turbulent kinetic energy
equation is determined. Here, lRANS = k1/2/(0.09ω) is a length scale of SST [8]
turbulence model, lLES = CDES�̃ω is a subgrid length scale (details of �̃ω definition
can be found in [10]), and fd is a delay function that keeps the model in RANSmode
in the boundary layer regardless of the grid spacing. The subgrid length scale contains
a coefficientCDES = F1CDES1 + (1 − F1)CDES2 which varies between its near-wall
value CDES1 and free-stream value CDES2 by means of SST blending function F1.
The optimal values of CDES1 and CDES2 depend on the numerical scheme. Based on
the simulations of isotropic turbulence in a periodic box, CDES2 was taken equal to
1.0. Since CDES1 coefficient is of no significance in the current flow, it was set equal
to CDES2, making CDES constant.

Most of the simulations were run on HPC cluster with 24 Intel Xeon E5-2680v3
CPUs. Several runs were done on the “Lomonosov” supercomputer [9].

3 Simulation Results

In the present study, we focus on the inner (helium) jet. The instantaneous helium
mass fraction fields obtained on three grids are shown in Fig. 1. It is clearly seen how
the spatial resolution is increased with that of the grid. Despite a big difference in
the grid resolution, one can note that potential core length is nearly the same.

In Fig. 2a, axial distributions of time-averaged helium mass fraction are depicted.
On all grids, helium mass fraction falls too rapidly, indicating excessive mixing. Up
to x/D = 15 from nozzle exit (D = 10 mm is inner nozzle diameter), medium grid
solution is sufficiently close to the fine grid, in contrast to the coarse one. Even with
the fine grid, too rapid mixing is predicted, and it looks like further grid refinement
would not help, unless DNS limit is reached. The same mixing overestimation was
observed in our previous study [11] and by other authors [2].

Attempts were made to vary different parameters and find out which of them can
influence the mixing intensity. Hereinafter, all the results are obtained on medium
grid. First, we tried to vary turbulent (subgrid-scale) Schmidt number from 0.5 to
2 and could not find any significant differences between solutions, see Fig. 2b. This
may indicate that subgrid model of mass diffusion is not responsible for the incorrect
behavior. We tried to vary central difference part of the scheme (which is active in



300 A. Troshin et al.

Fig. 1 Helium mass fraction fields on coarse (top), medium (middle) and fine (bottom) grids

Fig. 2 Influence of simulation parameters on axial distribution of time-averaged helium mass
fraction. a Grid density. b Subgrid-scale Schmidt number. c Numerical scheme. d Value of CDES

LES region). Indeed, switching to “CD2” and “symm” schemes changed solution a
little (see Fig. 2c), but clearly insufficiently to get close to the experiment.

After that, we tried to vary the CDES coefficient entering the subgrid length scale
(see Sect. 2). The results are presented in Fig. 2d. Strikingly, wewere able to approach
experimental data withCDES as high as 5! This is a counter-intuitive result: to reduce
the overall diffusion rate, we had to increase the subgrid mixing. As can be seen from
Fig. 3, starting fromCDES = 3, potential core length is captured adequately, andwith



Numerical and Physical Aspects of Large-Eddy Simulation of Turbulent … 301

Fig. 3 Time-averaged helium mass fraction in different cross-sections of the jet

Fig. 4 Instantaneous helium mass fraction fields on medium grid with CDES = 5

even higher values of this coefficient, the solution improves further downstream.
With CDES equal to 3, the solution follows the experiment up to x/D = 12, while
CDES = 5 allows to fit the data up to at least x/D = 25.

An instantaneous helium mass fraction field obtained on the medium grid with
CDES = 5 is shown in Fig. 4. Compared to Fig. 1, small-scale structures are filtered
out. Given the fact that numerical scheme errors are most prominent on the smallest
scales, by increasing CDES we somehow change the scheme behavior, probably
masking its errors behind the subgrid-scale model.

Why scheme errors lead to excessive diffusion? Someguesses follow froma recent
DNS [1] of variable-density temporal mixing layers. In nearly-constant density case,
the mixing layer is symmetrical. When the density ratio is high, strong asymmetry
arises. Mixing layer tends to develop preferentially towards light fluid, its growth
rate being lower than in constant-density case. With a central difference scheme,
approximation errors are spatially symmetrical, which is probably unsuitable for
taking into account the asymmetrical variable-density effects. On the other hand,
subgrid viscosity model explicitly depends on the density field, which may be better
suitable for description of dissimilar gas mixing.

4 Conclusions

It is shown that to capture the mixing details adequately, subgrid-scale model should
be adjusted to provide an appropriate length scale. On the one hand, the requirement
remains that the length scale falls within the inertial range. On the other hand, it
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makes no sense to maximize the spatial resolution of the simulation on a given grid:
the filter should be sufficiently large to suppress scheme errors, in the present test case
5 times larger than the cell size. It is reasonable to expect that not only SST-DDES,
but also other hybrid and subgrid-scale models may require similar adjustments of
subgrid length scale in the considered class of flows.

The exact reason for the need to modify the subgrid-scale model has not yet been
investigated. The issue is assumed to have numerical nature, but it may turn out to
be physical as well [7]. This is an area for further research.
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Turbulent Energy Production
in the Boundary Layer of a Gas Flow
Near the Free Surface of a Liquid

A. Goltsman and I. Saushin

Abstract Structure of the boundary layer on the air-water interface at the initial
tremor-wavelet transition has been experimentally studied. The flow characteristics
using the Smoke Image Velocimetry (SIV) optical technique with high temporal and
spatial resolution have been measured. The analysis of the obtained results has been
showed that the occurrence of an initial tremor-wavelet transition at the interface leads
to a local production of turbulence energy into the boundary layer. This phenomenon,
by analogy with the theory of flow around rough surfaces, is due to the excess of
the wave height over the thickness of the laminar region of the boundary layer.
However, due to the exponential growth of the wave height, the extremum of the
energy production occurs with a spatial delay depending on the boundary conditions
of the problem and the properties of continuous media.

1 Introduction

A gas flow around an interface with a liquid can be called one of the branches of the
turbulent boundary layer theory. As for the classical boundary layer on a solid smooth
or rough surface, the velocity profiles in gas/liquid interface flow obey the similarity
law. However, the mutual influence of the shape of the interphase surface on the
velocity profiles significantly complicates the flow process. The wave generation
(the length of which can range from 4 to 40cm [1] at the interface, their frequency,
amplitude and velocity of movement are mainly determined by the dynamic pressure
of the gas flow and the viscosity of the liquid. This problem, for example, is relevant
for the flow of two-phase mixtures in mains, where the revelation of waves at the
interface significantly increases the pressure drop [2] and can lead to the appearance
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of plugs. A more global example related to the effect of the shape of the interface of
the ocean surface on the transfer of heat, momentum and mass with the atmosphere,
which determines large-scale weather events, can also be cited. A large number of
experimental, analytical and numerical papers on this topic clearly show the non-
triviality of the above problem.

The analytical solution of this problem is greatly complicated by themathematical
formulation of the boundary condition at the interface, where necessary assumptions
strongly idealize the real picture. Therefore, the results of analytical solutions give
only qualitative information, which is difficult to compare with the results of exper-
iments. However, theoretical studies made it possible to formulate the main mecha-
nisms of generation of surface waves, to distinguish the linear and exponential modes
of their growth.

Due to the known complexity of numerical simulation of multiphase flows, a
solution was obtained for a single-phase statement, that is, the effect of one of the
phases on the other was investigated most often. Only a few papers have solved the
problem numerically in a two-phase statement [3–6].

In contrast to analytical and numerical statements, experimental studies do not
needmost of the assumptions, but for this problem they are quite complex in technical
terms. For the above reason, in each of the experimental studies, as a rule, one problem
was considered: conditions for separation of the boundary layer,mechanisms ofwave
generation and propagation, and shear stresses at the interface, average or phase
dynamics of air flow and its characteristics, the physical processes of the transfer of
momentum and heat across the interface.

Numerous experimental works have clearly recorded the effect of a developed
wave flow on the boundary layer of the air flow. The classification of waves [7] iden-
tifies three wave modes: initial tremor, initial wavelet, and sea wave with transient
critical values of uτH/ν = 0.3 and uτH/ν = 200, respectively (where H is the aver-
age wave height, ν is the kinematic viscosity of air). In turn, the initial wavelet class
at uτH/ν = 6 is divided into two subclasses, earlier stage and later stage. The present
paper tries to fill a small scientific gap in the studies of the evolution of a turbulent
boundary layer when flowing around an interface with a calm liquid, namely, at the
moment of the first appearance of waves—during the initial tremor-wavelet transi-
tion. This transition was previously studied exclusively from the point of view of the
dynamics of the interface, without considering the effect of the gas flowing around
it on the boundary layer. Perhaps the appearance of small waves suggests that they
are unable to influence the turbulent boundary layer. However, as the present study
has shown, the moment of appearance of the initial wavelet is due to interesting local
changes in the boundary layer, the traces of which are lost in the flow direction with
the development of wind-wave impact.
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2 Experimental Setup and Method

The experiments were carried out in the Hydrodynamics and Heat Transfer Lab-
oratory of the Kazan Scientific Center of the Russian Academy of Sciences. The
test section was a rectangular 130 × 150mm2 channel with the length of 2000mm
(Fig. 1). Instead of the lower wall of the channel, at a distance of 40mm from the
inlet section, a rectangular water cavity with a height of 120mm and a length of
1700mmwas installed. In order to prevent liquid splashing, the back wall of the cav-
ity was increased to 145mm, and the height of the outlet air channel was accordingly
reduced to 105mm. All walls of the test section were made of 5mm thick glass. For
convenient cleaning of glass surfaces, the upper wall of the channel was removable
and was fixed with a sealant during experiments.

To ensure a uniform velocity profile in the test section, in front of the entrance,
there was a smooth inlet with 6:1 contraction along the y coordinate (Fig. 2). The
walls of the smooth inlet were profiled by a Bernoulli lemniscate and were made
of flexible plexiglass. Air entered the smooth inlet section from a 2m3 air-aerosol
mixture preparation chamber, where clean atmospheric air (20 ◦C, 1.2kg/m3) was
mixed with aerosol particles by a generator (MT-Gravity fluid with medium fog
density and average particle size of 0.1 …5µm; Safex aerosol generator). A 1.99m3

cylindrical receiver was mounted at the exit from the test section. The air flow rate
(206m3/h) was controlled using a set of critical nozzles with an uncertainty of no
more than 0.25%. The required pressure drop for the operation of the nozzles was
provided using an air compressor. The flow pattern was recorded by a monochrome
high-speed camera Fastec HiSpec with the frame resolution of 1088 × 140 pixel

Fig. 1 Test section of experimental setup

Fig. 2 Experimental setup; 1 test section of air flow, 2 cavity with calm water, 3 smooth inlet, 4
air-aerosol mixture preparation chamber, 5 aerosol generator, 6 measurement area, 7 continuous
laser, 8 high-speed camera, 9 receiver tank, 10 set of critical nozzles, 11 air compressor
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(scaling factor of 0.03mm/pixel), frame rate f= 5692 1/s, and recording time of 3.5 s.
The camera was equipped with a Navitar 1′′F/0.95 lens (focal length 25mm, manual
focus). The measurement area was illuminated by a continuous diode-pumped solid-
state laser KLM-532/5000-h. The camera and laser were fixed in the coordinating
device and synchronously moved along the test section. The measurements were
carried out in seven sections, Fig. 1. The last section was at a distance of 300mm—
12 heights of the forward facing step before the contraction of the channel. This
distance was sufficient to suppress the hydraulic effect of the contraction on the
velocity profiles in the last section. Therefore, the velocity of the external flow in all
measurement sections theoretically should have been constant. Subsequently, this
statement was also confirmed by the measurement results. To measure the dynamics
of instantaneous velocity fields, the Smoke Image Velocimetry (SIV)method [8] was
used.

3 Results

Probably the first and main question concerning the velocity profile in the interface
flow was the question of maintaining the logarithmic section of log law. Indeed, for
the flow around a smooth plate, the self-similarity of the Reynolds velocity and stress
profiles is known (starting with Reθ ≈ 450 and higher). One of the first mentions of
the non-fulfillment of the classical 1/7 power-law in the flow around the interface
can be found in [7].

Figure3b shows that the velocity field U+ can be divided into three areas. In the
first section 0.5 < F ≤ 1m, where an initial tremor-wavelet transition occurs at F =
0.65m, we observe an almost self-similarity of the U+ profiles along the interface
(Fig. 3c) and the identity of the velocity field with the field around a smooth wall
(Fig. 3a). Further, on the interval of 1 < F ≤ 1.4m, the U+ profiles begin to slowly
decrease closer to the boundary layer edge, and a small kink appears in the region
of y+ ≈ 20. In order to show the further evolution of the U+ profiles, we added to
the graph the results of measurements [9, 10] carried out at similar air velocities at
F = 2.1m and F = 22.7m, respectively. In the interval F > 2m, there is already a
significant decrease of the U+ velocity profiles compared to the case of flow around
the plate, and further downstream there is a tendency to form a self-similar boundary
layer. It is known that in flow around the interface, such a deviation of the U+ profile
is facilitated by two factors: an increase in air velocity and wave slope [9, 11, 12].
Therefore, since the data in Fig. 3 were obtained at a constant air velocity, here we
are dealing directly with the second cause.

As is well known, the turbulence production in the boundary layer is mainly due
to the spatial gradient of the velocity field. When flowing around an initially smooth
interface, there is a critical state of the appearance of an initial wavelet at F= 0.65m.
The initial wavelet leads to an increase in the U+ gradient along the boundary layer
thickness in the region of y+ ≈ 12...30 only to the F = 1m section (Fig. 3c). From
this region the interval of significant growth of u’u’+ subsequently affected almost
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Fig. 3 U+ velocity component along x coordinate; a field in the developed flow around a smooth
plate; b field in flow around the interface; c velocity profiles

Fig. 4 Turbulent velocity pulsations u′
i u

′
j
+; a field in the developed flow around a smooth plate;

b field in flow around the interface; c velocity profiles

the entire thickness of the boundary layer begins, and it continues until a new self-
similarity of the U+ profiles is revealed (Fig. 4).When the flow regime is established,
the u′

i u
′
j
+ profiles in comparisonwith the case of flow around a smooth plate differ by

an almost threefold increase in values in the region of the extremum (buffer sublayer).
The v′

iv
′
j
+ and u′

iv
′
j
+ fields are very similar to each other and, in general, retain the

same tendency as u′
i u

′
j
+.

4 Conclusion

The boundary layer along an initial tremor is essentially no different from the case
of a smooth wall. This is mainly due to the fact that the initial tremor wave height
is significantly lower than the laminar sublayer thickness. From the theory of the
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boundary layer along a rough surface, the interface is hydraulically smooth. If the air
flow velocity is higher than the critical one (2–4 m/s), the wave height will gradually
increase to 0.05mmand the transition from the initial tremor to the initial wavelet will
take place (where the wave height grows exponentially). As long as the wave height
does not exceed the thickness of the laminar sublayer, there will be no significant
changes in the boundary layer. Therefore, the effect of the transition from the initial
tremor to the initial wavelet on the boundary layer occurs with a small spatial delay.
Obviously, the delay depends on the properties of continuous media and the air flow
velocity.

When the wave height exceeds the thickness of the laminar sublayer in the buffer
region, the kink in the velocity profile increases, which promotes the production of
turbulence energy. From this section, the appearance of a zone of increased turbulence
affecting almost the entire thickness of the boundary layer is observed, which appar-
ently continues up to a certain critical wavelength. After this region, a well-studied
flow pattern around the interface appears which has many of its own features.
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Phase Distribution of the Developed
Three-Component Pipe Flows

I. Saushin and A. Goltsman

Abstract In contrast to single-component pipe flows, where the developed velocity
profile depending on the Reynolds number plays a defining role in the flowmeasure-
ment, the addition of other phases leads to the wide range of flow regimes and to
an obvious increase in the number of dimensionless parameters of the problem. In
the case of developed pipe flow of a three-component mixture, such as oil-gas-water
three-phase flow in the oil well production and oil-gas transportation, the number
of regimes depending on the classification can reach 10 or more. Based on numer-
ical simulation, the present paper shows the studied ten regimes of the developed
flow of a gas-oil-water mixture in a horizontal pipe. Depending on the developed
all ten flow regimes, the resulting phase distribution of the mixture components was
used to estimate the uncertainty of isokinetic sampling by known types of tube-type
probes without and with prior mixing. The results of the study are relevant for further
research on the preparation of the mixture using mixing devices in order to correctly
determine the phase composition by the isokinetic sampling method.

1 Introduction

One of the main problems of multicomponent developed pipe flows is the measure-
ment of the flow rate of one or more of the phases. In contrast to single-component
pipe flows, where the developed velocity profile depending on the Reynolds number
plays a defining role in the flowmeasurement, the addition of other phases leads to the
wide range of flow regimes and to an obvious increase in the number of dimensionless
parameters of the problem. In the case of developed pipe flow of a three-component
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mixture, such as oil-gas-water three-phase flow in the oil well production and oil-gas
transportation, the number of regimes depending on the classification can reach 10
or more.

Measurement and analysis ofmulticomponentflowsbecamepossible only through
some compromise on the accuracy of someparameters and the development of unique
and very expensive sensors. However, even with such trade-offs, the use of expensive
sensors does not guarantee sufficient accuracy in estimating the flow rates of each
phase. Moreover, the use of methods of identifying flow regimes based on gamma
radiation [1] or electro-tomography [2] for periodic or permanent analysis of the
composition of the produced mixture from each well is obviously impossible for
many cases.

The early detection of water is an important measurement for subsea gas con-
densate wells where inhibitors may be added to prevent the formation of scale and
hydrates in the pipeline downstream of the well head. To manage the use of the
inhibitors, the detection and quantification of the water can result in significant cost
savings. Unfortunately, the metrological methods for diagnosing such flows are sci-
entifically and technically extremely complex and unprofitable.

Therefore, the simplest way to determine the phase composition of a mixture is
to artificially bring it into a homogeneous state in the local section of the pipeline,
where sampling is performed, as a rule, by the isokinetic method. For two-phase
like fluid-fluid flows, it is recommended to sampling after pumps or dispersers in
the relevant standards [3–5]; however, when a third component (compressible) of
the mixture appears, the use of such devices can be severely limited. Moreover,
sampling from flows of gas-fluid-fluid mixtures [3–5] is completely unregulated. An
alternative way to prepare a three-component mixture in front of the sampling region
is to mechanically mix it under the effect of the energy of the flow itself. This raises
the question of the correlation of existing mixing devices for pipe flows with a wide
spectrum of the mixture regime map.

2 Problem Statement and Method

2.1 Three-Phase Flow Regimes and Isokinetic Probe Design

Classification of the flow regimes of a gas/liquid/liquidmixture is a separate scientific
problem. In view of the motion of continuous media, the specific velocity of each
component plays a decisive role here. To date, there are two approaches to represent-
ing the gas/liquid/liquid flow: considering it as a two-component flow of liquids with
gas [6–9], or as a three-component mixture flow [10–13]. In present work, the second
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point of view was adopted, and the classification of regimes itself was taken from
work [12]. According to this classification, the flow of a gas/liquid/liquidmixture can
be described by 10 regimes depending on the specific velocities of each phase, Fig. 1.
Red markers show the investigated flow regimes, which are formed at different spe-
cific velocities of the ji phases (Fig. 2, regimemap): 1. Oil-based dispersed plug flow;
2. Oil-based dispersed slug flow; 3. Oil-based dispersed stratified/wavy flow; 4. Oil-
based separated stratified/wavy flow; 5. Oil-based separatedwavy stratifying-annular
flow; 6. Oil-based separated/dispersed stratifying-annular flow; 7. Water-based dis-
persed slug flow; 8. Water-based dispersed stratified/wavy flow; 9. Water-based
separated/dispersed incipient stratifying annular Flow; 10. Water-based dispersed
stratifying-annular flow.

At this stage of the research, the well-known and proven designs proposed in
[4, 5] for two-component liquid/liquid flows as the isokinetic probes were taken. 4
designs were considered—A, B, C, D types, which differ in the number and location
of probes in the pipeline section, Fig. 1.

Designs of sampling devices A [5], B [4, 5], C [4, 5] have the same inlet cross-
sectional area of the probes and differ only in their number. The D-type probe, which
was proposed in [5], has a feature that is expressed in an increase in the diameter of
the inlet cross-sections of the probes close to the pipe wall.

2.2 Simulation Method

The CFD solver ANSYS Fluent R19.2 is used to perform numerical simulations of
Gas-Liquid-Liquid flow in a tube. The three-fluid Eulerian-Eulerian transient Vol-
ume of Fluid (VOF) model in explicit formulation is employed to represent each
incompressible phase as interpenetrating continua and the conservation equations
for mass and momentum for each phase are ensemble-averaged. These conserva-
tion equations are closed with the Re-Normalisation Group (RNG) k-ε turbulence
model using standard wall functions. A second-order upwind discretization scheme
was used for the momentum equations while a first-order upwind discretization was
used for volume fraction, turbulent kinetic and turbulent dissipation energy. These
schemes ensured, in general, satisfactory accuracy, stability and convergence. The
convergence criterion is based on the residual value of the calculated variables, i.e.,
mass, velocity components, turbulent kinetic energies, turbulent dissipation energies
and volume fraction. In the present calculations, the threshold values were set to
a thousandth of the initial residual value of each variable. The pressure staggering
option (PRESTO) and Pressure-Implicit with Splitting of Operators (PISO) algo-
rithms) are used to resolve the coupling between velocity and pressure.
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The boundary conditions fully reproduced the experiment procedure [10], in
which the flow of an air/water/oil mixture in a 19mm diameter and 3000mm length
pipe was investigated. A homogeneous mixture was supplied into the inlet section
with a fraction of each of the three components given through mass flow rate:
incompressible air (μ = 1.7894 · 10−5 Pa·s,ρ = 1.225kg/m3), oil (μ = 0.1164Pa·s,
ρ = 864kg/m3) and water (μ = 0.001003Pa·s, ρ = 998.2kg/m3). Specific oil rate
of 18.98kg/h was constant, air and water flow rate varied in the ranges of 0.07–29.34
and 1.45–63.14kg/h, respectively.Maintaining the desired range of y+ inmultiphase
unsteady flows is complicated by the variability of the mixture properties in the local
computational domain of a fixed volume over time, which in turn causes the spatial
inhomogeneity of the magnitude of this characteristic. For this reason the scalable
wall functions were used in the calculations. The maximum of y+ for the selected
turbulence model should not go beyond the fully turbulent portion or log-law region
(corresponds to the region where turbulent shear predominates), that is the values
of the order of 300. For the remaining eight flow regimes, the y+ was within this
interval.

3 Results

The results of numerical simulation on the flowpatternwith the results of experiments
[12] are in good agreement.We reproduced the features of all ten regimes. To estimate
the sampling uncertainty for each of the four device designs, the � parameter was
chosen; it describes the percentage difference between the oil phase content in the
liquid mixture that flows through the pipe in 10s and the liquid mixture that was
captured by the probes. For convenience, the regime maps are painted in four colors
according to the deviation � of the CFD estimates of the oil volume fraction in the
water/oil mixture from the true value of N: green—� ≤ 10%, yellow—� ≤ 20%,
orange—� ≤ 30%, red—�> 30%, Fig. 1. A sampling device with a single probe
(TypeA) located in the center of the pipe should not be used inmixture flows of liquid
and gases. Since for regimes with a tunneling gas flow in the center or in the upper
part of the pipe, this probe is useless. Installing a mixing device will probably not
help here either. The increase in the number of such probes (Type B and C) expanded
the list of regimes where the uncertainty in measuring the phase oil content below
10 % was achieved. But the smallest uncertainty for all regimes was obtained by the
Type D sampling device. This, apparently, was due to the increased diameter of the
inlet section of the probe near the wall, where the flow of the heaviest liquid, water,
takes place in most regimes. If the mixing device is located in front of the sampling
area, using the B, C and D probes are likely to be equivalent, but this needs to be
verified.
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Fig. 1 Uncertainty � of
estimating the phase oil
content for each air/oil/water
flow regime with an
isokinetic sampling device
[2, 3]. Green—� ≤ 10%,
yellow—� ≤ 20%,
orange—� ≤ 30%, red—�>
30%. Blue color shows
water, brown shows oil, and
gray indicates the air phase.
In the upper right corner of
the figure, the inlet
cross-sections of the
samplers for the considered
types of devices are shown

Fig. 2 Three-phase flow
regime map (jo = 4.3cm/s).
Markers indicate the present
investigated regimes
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4 Conclusion

The present paper shows that the phase content of a mixture can be estimated with a
fairly good uncertainty and simple isokinetic probes used for two-component liquid
mixture flows. It was obtained that this uncertainty can be reduced by pre-mixing
the flow before the mixture sampling section. Therefore, we plan to use these results
further to choose the optimal mixing device for the air/oil/water flow. Obviously, this
approach is inferior in accuracy to modern multiphase flowmeters and can only serve
as a rough estimate. Nevertheless, given the technical complexity of maintenance
and the cost of multiphase flowmeters, the classical method of isokinetic sampling
may be the only available in many cases and sometimes quite sufficient method for
estimating the phase composition of a gas/liquid/liquid mixture.

Acknowledgements This study was supported by the Russian Science Foundation (Project no.
19-79-00160). Computational resources for numerical simulation of the present study were carried
out with financial support from the government assignment for Federal Research Center “Kazan
Scientific Center of Russian Academy of Sciences” FMEG-2021-0001.

References

1. B.K. Arvoh, R. Hoffmann, M. Halstensen, Estimation of volume fractions and flow regime
identification in multiphase flow based on gamma measurements and multivariate calibration.
Flow Meas. Instrum. 23(1), 56–65 (2012)

2. A. Zhao, Y.Y. Ren, L. Zhu, X. Yang, Multi-scale long-range magnitude and sign correlations
in vertical upward oil-gas-water three-phase flow. Z. Naturforsch. 71(1), 33–43 (2016)

3. ISO 3170, Petroleum liquids -manual sampling. International Organization for Standardization
(2004)

4. ISO 3171, Petroleum liquids - automatic pipeline sampling. International Organization for
Standardization (1988)

5. GOST 2517-2012, Petroleum and petroleum products.Methods of sampling. Interstate Council
for Standardization, Metrology and Certification (2018)

6. M.S. Malinowsky, Petroleum and petroleum products. An experimental study of oil-water and
oil-water-gas flowing mixtures in horizontal pipes. MSc. thesis, University of Tulsa, USA
(1975)

7. G.C. Laflin, An experimental study on the effects of flowrate, water fraction and gas-liquid
ratio on air-oil-water flow in horizontal pipes. BSc. thesis, University of Tulsa, USA (1976)

8. H.H. Stapelberg, D. Mewes, The flow of two immiscible liquids and air in a horizontal pipe,
in Advances in Gas-Liquid Flows FED (1990), pp. 89–96

9. H.H. Stapelberg, D. Mewes, The flow of two immiscible liquids in horizontal pipes - pressure
drop and flow regimes, in European Two-Phase Flow Group Meeting, Varese (1990)

10. D.P. Sobocinsk, Horizontal co-current flow of water, gas-oil and air. Master thesis, University
of Oklahama (1955)



Phase Distribution of the Developed Three-Component Pipe Flows 315

11. A. Pleshko, M.P. Sharma, An experimental study of vertical three-phase (oilwater-air) upward
flows, advances in gas-liquid flows, in Winter Annual Meeting of the American Society of
Mechanical Engineers, Dallas, Texas (1990)

12. M. Acikgoz, F. Franca, R.T. Lahey Jr., An experimental study of three-phase flow regimes. Int.
J. Multiph. Flow 18(3), 327–336 (1990)

13. L. Pan, High pressure three-phase (gas/liquid/liquid) flow. Ph.D. thesis, Imperial College,
University of London, UK (1996)


	Preface
	Contents
	Contributors
	Part I Experiments
	 Dynamic Triad Interactions and Non-equilibrium Turbulence
	1 Why the Need for New Perspectives on the Established Theory?
	1.1 Why Experiments Cannot Prove a Theory

	2 The Assumption of Universal Equilibrium
	2.1 Local Equilibrium and the Locality of Scale Interactions
	2.2 The Crucial Constancy of Spectral Energy Flux

	3 Nonlinear Triadic Energy Transfer
	3.1 The Navier-Stokes Machine and New Theory Developments

	4 Establishing a New Laboratory and Developing a Theoretical Framework
	References

	 Turbulent/Turbulent Entrainment
	1 Introduction
	2 Turbulent/Turbulent Interface
	3 Turbulent/Turbulent Entrainment
	References

	 Active Control of Turbulent Convective Heat Transfer with Plasma Actuators
	1 Introduction
	2 Experimental Setup and Methodology
	3 Plasma Actuation Effects on Flow Fields and Heat Transfer
	4 Conclusions
	References

	 Mean Parameters of Incompressible Turbulent Boundary Layer with Zero Pressure Gradient on the Wall of the TsAGI T-128 Wind Tunnel at Very High Reynolds Numbers
	1 Introduction
	2 Experimental Set-Up
	3 Results
	4 Conclusions
	References

	 Investigation of Self-Similarity of the Temperature Stratified Turbulent Boundary Layer Over the Wavy Surface in Laboratory Conditions
	1 Introduction
	2 The Description of the Experimental Setup
	3 The Self-Similar Behavior of the Velocity and Temperature Defect Profiles
	4 Conclusion
	References

	 On Similarity of Turbulence Statistics of a Turbulent Planar Jet Taking the Static Pressure into Account
	1 Introduction
	2 Experimental Setup
	3 Results
	4 Summary
	References

	 Mean Velocity Profiles  over Streamwise-Aligned Permeable  Ridges
	1 Introduction
	2 Experimental Setup
	3 Results
	4 Concluding Remarks
	References

	 Energy Dissipation and Total Entropy Production in SHREK Experiment
	1 Introduction
	2 Experimental Data Sets
	3 Results and Discussion
	4 Conclusion
	References

	Part II Simulations and Modelling
	 The Filtering Approach as a Tool for Modeling and Analyzing Turbulence
	1 Introduction
	2 Statistical and Generalized Central Moments
	2.1 Multiscale Identities

	3 Recent Contributions
	3.1 Structure of the Subfilter Stress
	3.2 Decomposition of the Reynolds Stress
	3.3 Dynamic Coarse Grained Modeling
	3.4 Statistical Homogeneity Indices

	4 Conclusions
	References

	 Dynamic Bridging for Coarse Grained Simulations of Turbulent Material Mixing
	1 Background
	2 Simulations of the CEA Planar Shock Tube Experiments
	References

	 Dynamic Tensorial Eddy Viscosity and Turbulent Stresses
	1 Theoretical Framework
	2 The Flow Equations and the Subgrid Model
	2.1 Results

	References

	 A Numerical Study of the Spanwise Turbulence Past a Cylinder Flow
	1 Introduction
	2 Indices of Statistical Resolution
	3 Numerical Results
	References

	 Asymmetry in Wake of Oscillating Foils with Combined Pitching and Heaving Motion
	1 Introduction
	2 Problem Description
	3 Results and Discussion
	4 Conclusions
	References

	 Helical Structures in the Wake of Long Wall-Mounted Prisms at High Incident Angles
	1 Introduction
	2 Problem Description
	3 Results
	4 Conclusion
	References

	 A Spatially Accelerating Turbulent Flow with Longitudinally Moving Walls
	1 Introduction
	2 Methodology
	3 Results and Discussion
	4 Conclusion
	References

	 Dissimilarity Between Heat and Momentum Transfer of Turbulent Heat Transfer over Surfaces with Hemisphere Protrusions
	1 Introduction
	2 Flow Conditions
	3 Results and Discussion
	4 Conclusion
	References

	Part III Data Processing and Scaling
	 The Diagnostic Plot—A Tutorial with a Ten Year Perspective
	1 Introduction
	2 The Background and Original Diagnostic Plot
	3 Extension to the Near Wall Region
	4 How the Diagnostic Idea Can Be Used to Predict High  Re Flows
	5 Use in Complex Flow Situations—Rough Wall Example
	6 An Example: How the Diagnostic Plot Can Be Used in Practice
	7 Summary and Conclusions
	References

	 Bayesian Optimisation with Gaussian Process Regression Applied to Fluid Problems
	1 Introduction
	2 Bayesian Optimisation
	3 Shape Optimisation in a Lid-Driven Cavity Flow
	4 Conclusion and Outlook
	References

	 Data-Driven Dynamics Description of a Transitional Boundary Layer
	1 Introduction
	2 Methodology
	3 Kinematic Analysis
	4 Dynamical Analysis
	5 Conclusions
	References

	 Identification of a Stochastic Hopf Bifurcation from Stationary Measurement Data of a Turbulent Flow
	1 Introduction
	2 Stochastic Modelling Approach
	3 Application to Experimental Data
	4 Discussion
	References

	 Data-Driven Identification of Robust Low-Order Models for Dominant Dynamics in Turbulent Flows
	1 Introduction
	2 Two-Stage Sparsification
	2.1 Conservative Sparsification
	2.2 Restrictive Sparsification

	3 Application to Experimental Data
	4 Conclusion
	References

	 Experimental Assessment of Symmetry Induced Higher-Moment Scaling Laws in Turbulent Pipe Flow
	1 Background
	2 Results
	3 Conclusions
	References

	 Characteristics of Reynolds Shear Stress in Adverse Pressure Gradient Turbulent Boundary Layers
	1 Introduction
	1.1 Mean Momentum Balance
	1.2 Experimental and Computational Data Summary

	2 Results
	2.1 ZPG TBL for Increasing Reynolds Number
	2.2 ZPG TBL and APG TBL at Matched Reynolds Number
	2.3 ZPG TBL and APG TBL: Effects of β and Reτ

	3 Conclusion
	References

	 Energy Transfer in Turbulent Boundary Layers with Adverse Pressure Gradient
	1 Introduction
	2 The Flow Case
	3 Results
	3.1 The Reynolds Stress Budgets
	3.2 The Spectral Distributions

	4 Conclusion
	References

	 Influence of Rough Surface Morphology on Boundary Layer Flow
	1 Introduction
	2 Experimental Setup
	3 Mean Flow Profiles
	4 Diagnostic Plot
	5 Conclusion
	References

	Part IV Theory
	 Similarity Scaling of a Free, Round  Jet in Air
	1 Background
	2 Space-Time Symmetries and Conservation Laws
	3 Simple Jet Model
	4 Measurements
	5 Conclusion
	References

	 Topological Differences in Mean Wakes of Circular and Square Cantilevered Cylinders
	1 Introduction
	2 Methodology
	3 Results and Discussion
	4 Concluding Remarks
	References

	 Large-Scale-Motions and Self-excited Clustering of Coherent Structures in Wall Turbulence
	1 Introduction
	2 Coherent Alignment of One-Dimensional (1D) Clusters. Structuration of VLSM
	3 Self-exciting Processes and Regeneration of Large-Scale-Motions
	4 Conclusion
	References

	 The Conservative Pressure Hessian and the Free Fluid Particle Model
	1 Introduction
	2 Constructing the Conservative Pressure Hessian
	3 Conservative Pressure Hessian from DNS Data
	4 The Free Fluid Particle and the Control of Singularities
	5 Concluding Remarks and Outlook
	References

	 Modelling The Pressure Hessian in Turbulence Through Tensor Function Representation Theory
	1 Introduction
	2 Statistical Dynamics of Velocity Gradients and Tensor Function Representation Theory
	3 Pressure Hessian Components as Functions of the Velocity Gradient Invariants
	4 Concluding Remarks
	References

	 Stretched Amplitude Decaying Fourier Modes in the Jet Far-Field
	1 Introduction
	2 Proper Orthogonal Decomposition
	2.1 SADFM

	3 Results and Discussion
	4 Summary
	References

	 Generalizable Theory of Reynolds Stress
	1 Introduction
	2 Dissipation Scaling
	3 Turbulence Flux Dynamics
	4 Energy Spectra
	5 Summary
	References

	 Spectral Energetics of a Quasilinear Approximation in Uniform Shear Turbulence
	1 Introduction
	2 Problem Formulation
	3 Results and Discussion
	4 Concluding Remarks
	References

	Part V Miscellaneous Topics
	 Turbulence and Uncertainty for Future Renewable Energy Reliability
	References

	 Instability on Rotating Sharp Cones—Revisited
	1 Introduction
	2 Time-Frequency Decomposition Using STFT
	3 Conclusion
	References

	 Rotational Effects on Layered Structures in Inhomogeneous Stratified Turbulence
	1 Introduction
	2 Numerical Methods
	3 Results and Discussions
	4 Conclusions
	References

	 Magnetoclinicity Instability
	1 Magnetoclinicity: Dynamo at Strong Compressibility
	2 Equilibrium State and Disturbance
	3 Normal Mode Analysis of the Mean-Field Equations
	4 Instability Across the Strong Density Variation
	References

	 Beginning of Taylor's and Wavy Vortices at the Loss of Stability of a Conducting Liquid Flow Produced by the Rotating Magnetic Field
	1 Introduction
	2 Presentation of the Problem
	3 Conclusions
	References

	 Investigation of the Flow Generated by the Surface Discharge on the Cylinder Body in the Quiescent Air
	1 Introduction
	2 Methods and Instruments
	3 Results
	4 Conclusions
	References

	 Numerical and Physical Aspects  of Large-Eddy Simulation of Turbulent Mixing in a Helium-Air Supersonic Co-flowing Jet
	1 Introduction
	2 Test Case and Numerical Setting
	3 Simulation Results
	4 Conclusions
	References

	 Turbulent Energy Production  in the Boundary Layer of a Gas Flow Near the Free Surface of a Liquid
	1 Introduction
	2 Experimental Setup and Method
	3 Results
	4 Conclusion
	References

	 Phase Distribution of the Developed Three-Component Pipe Flows
	1 Introduction
	2 Problem Statement and Method
	2.1 Three-Phase Flow Regimes and Isokinetic Probe Design
	2.2 Simulation Method

	3 Results
	4 Conclusion
	References




