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Abstract

In his Lissner Award medal lecture in 2000, 
Stephen Cowin asked the question: “How is a 
tissue built?” It is not a new question, but it 
remains as relevant today as it did when it was 
asked 20  years ago. In fact, research on the 
organization and development of tissue struc-
ture has been a primary focus of tendon and 
ligament research for over two centuries. The 
tendon extracellular matrix (ECM) is critical 
to overall tissue function; it gives the tissue its 

unique mechanical properties, exhibiting 
complex non-linear responses, viscoelasticity 
and flow mechanisms, excellent energy stor-
age and fatigue resistance. This matrix also 
creates a unique microenvironment for resi-
dent cells, allowing cells to maintain their 
phenotype and translate mechanical and 
chemical signals into biological responses. 
Importantly, this architecture is constantly 
remodeled by local cell populations in 
response to changing biochemical (systemic 
and local disease or injury) and mechanical 
(exercise, disuse, and overuse) stimuli. Here, 
we review the current understanding of matrix 
remodeling throughout life, focusing on for-
mation and assembly during the postnatal 
period, maintenance and homeostasis during 
adulthood, and changes to homeostasis in nat-
ural aging. We also discuss advances in model 
systems and novel tools for studying collagen 
and non-collagenous matrix remodeling 
throughout life, and finally conclude by iden-
tifying key questions that have yet to be 
answered.
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Abbreviations

AGEs	 Advanced glycation end-products
Aha		  Azidohomoalanine
BATs	 Bioartificial tendons
CHP		 Collagen hybridizing peptide
CMP		 Collagen mimetic peptide
COMP	 Cartilage oligomeric matrix protein
CSA		 Cross sectional area
DAMPs	 Damage-associated molecular patterns
DIBO	 Dibenzooctyne
DIC		  Differential interference contrast
DTAF	 Dichlorotriazinyl aminofluorescein
ECM	 Extracellular matrix
EDS		 Ehlers-Danlos Syndrome
EM		  Electron microscopy
FACIT	 �Fibril-associated collagens with inter-

rupted triple helices
FIC		  Flow-induced crystallization
FN		  Fibronectin
FRET	 Förster resonance energy transfer
GAG		 Glycosaminoglycan
GFP		 Green fluorescent protein
GPC		 Golgi to plasma membrane carrier
IL		  Interleukin
LEs		  Ligament equivalents
Met		  Methionine
MMP	 Matrix metalloproteinase
N3-Pro	 Azido-proline
PGE2	 Prostaglandin E2

ROS		 Reactive oxygen species
SASP	 �Senescence-associated secretory 

phenotype
SHG		 Second harmonic generation
SLRP	 Small leucine rich proteoglycan
TECs	 Tissue engineered constructs
TEM		 Transmission electron microscopy
TSCs	 Tendon stem cells
TSP		  Thrombospondin

3.1	 �Introduction

In his Lissner Award medal lecture in 2000, 
Stephen Cowin asked the question: “How is a tis-
sue built?” It is not a new question, but it remains 
as relevant today as it did when it was asked 
20 years ago (Cowin 2000). In fact, research on 

the organization and development of tissue struc-
ture has been a primary focus of tendon and liga-
ment research for over two centuries. The tendon 
extracellular matrix (ECM) is critical to overall 
tissue function; it gives the tissue its unique 
mechanical function, exhibiting complex non-
linear responses, viscoelasticity and flow mecha-
nisms, excellent energy storage and fatigue 
resistance (Butler et  al. 1997; Connizzo et  al. 
2013a; Franchi et  al. 2007; Thorpe and Screen 
2016; Thompson et  al. 2017). This matrix also 
creates a unique microenvironment for resident 
cells, allowing cells to maintain their phenotype 
and translate mechanical and chemical signals 
into biological responses (Thompson et al. 2017; 
Wall et al. 2018; Wang et al. 2013a; Dyment et al. 
2020). Importantly, this architecture is constantly 
remodeled by local cell populations in response 
to functional changes such as exercise, as well as 
in response to tissue damage or injury. Here, we 
review our current understanding of matrix 
remodeling throughout life, focusing on forma-
tion and assembly during the postnatal period, 
maintenance and homeostasis during adulthood, 
and changes to homeostasis in natural aging.

3.1.1	 �Tendon Composition, 
Structure, and Function

The dry weight of the  tendon ECM can be dis-
sected into two main components: the collage-
nous structural hierarchy, and the non-collagenous 
matrix (Fig. 3.1). Both components are essential 
to tendon function and biology, although the col-
lagenous structure has been studied far more 
extensively. Type I collagen is the primary pro-
tein in tendon, accounting for 65–80% of the dry 
mass of the tendon (Brinckmann and Bachinger 
2005; Kannus 2000). The asymmetric triple-helix 
collagen molecules coil to form the triple helix of 
a collagen molecule (Mienaltowski and Birk 
2014). Collagen molecules then link in a quarter 
staggered orientation to form fibrils. Collagen 
fibrils, now considered to be the basic unit of ten-
don, are bundled together within a collagen fiber. 
Collagen fibers are then bundled together and 
bound via a fine sheath of tissue; this structure is 
now called a fascicle. Fascicles then bundle to 

S. M. Siadat et al.



47

form whole tendon, which is surrounded by the 
epitenon sheath. The non-collagenous matrix in 
tendon is found interspersed between collagen 
fibrils, fibers, and fascicles in the interfibrillar, 
interfiber, and interfascicular region of the ten-
don, respectively, and is mainly composed of 
proteoglycans, glycoproteins, and minor colla-
gens (Kannus et al. 1998; Taye et al. 2020; Thorpe 
et al. 2016a).

The structural organization of the tendon 
ECM is a major contributor to overall tissue func-
tion. During mechanical loading, collagen fasci-
cles, fibers, and fibrils exhibit a number of 
dynamic responses that allow for reduction of 
stress concentrations and prevent structural dam-
age (Connizzo et al. 2013a; Franchi et al. 2007). 
This includes uncrimping (Lavagnino et al. 2017; 
Patterson-Kane et al. 1997; Miller et al. 2012a), 
or the reduction in the wavy formation of the col-
lagen fibers, and fiber/fibril re-alignment (Miller 
et al. 2012b; Connizzo et al. 2013b; Lake et al. 
2010), when these structures re-orient towards 
the axis of loading and consolidate to a single 
fiber direction. In addition, collagen fascicles, 
fibers, and fibrils have all demonstrated the 
capacity to slide against one another, although 
this ability is more often attributed to the proper-

ties of the non-collagenous compartment rather 
than the collagen structure itself (Connizzo et al. 
2014a; Rigozzi et al. 2013; Thorpe et al. 2015a; 
Szczesny and Elliott 2014). In addition, proteo-
glycans and their glycosaminoglycan 
(GAG)  chains present in the non-collagenous 
compartment attract and trap water molecules 
allowing for complex fluid flow and viscoporo-
elasticity (Butler et al. 1997; Rigozzi et al. 2013; 
Legerlotz et al. 2013a; Connizzo and Grodzinsky 
2017; Buckley et al. 2013). It is crucial to note 
however that both the structure and function of 
tendons and ligaments varies significantly based 
on tissue site, and more specifically based on the 
functional demands of the tissue.

3.1.2	 �Function-Based Variations 
in Tendon Composition 
and Structure

All tendons within the appendicular skeleton 
transfer muscle-generated force to the bony skel-
eton, positioning the limbs during locomotion. In 
addition to a positional function, specific tendons 
also store and release energy as they stretch and 
recoil with each stride, reducing the energetic 

Fig. 3.1  Hierarchical organization of the equine superficial digital flexor tendon with specific detail related to the 
interfascicular and interfibrillar matrix composition. (Reproduced from O’Brien et al. 2020)
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cost of locomotion (McNeill 2002). The major 
energy storing tendons in the human are the 
Achilles and hamstring tendons, whereas in large 
quadrupeds, such as the horse, the digital flexor 
tendons are the predominant energy storing tis-
sues (Shepherd et al. 2014; Lichtwark and Wilson 
2005; Biewener 1998). Energy storing tendons 
require specialised mechanical properties for 
their function, including greater compliance and 
enhanced fatigue resistance, properties that are 
conferred by compositional and structural spe-
cialisations at different levels of the tendon hier-
archy (Thorpe and Screen 2016; Thorpe et  al. 
2013a). Here, we specify research performed in 
energy storing or positional tendons for clarity 
wherever relevant.

Tendon structure and composition are also 
dramatically different at the junction with muscle 
and bone compared to the midsubstance. The 
enthesis, or insertion site, has unique composi-
tional and structural properties that allow it to 
minimize stress concentrations at the junction of 
dissimilar materials (Deymier-Black et al. 2015; 
Thomopoulos et  al. 2003; Saadat et  al. 2016). 
Tissue function at these sites is also altered, dem-
onstrating more complex multi-scale mechanical 
responses (Connizzo et  al. 2016a). In addition, 
some tendons exhibit unique anatomical posi-
tions that alter function. Tendons that wrap 
around bony structures exhibit cartilaginous-like 
tissue regions with higher levels of the large pro-
teoglycan aggrecan and enhanced mechanical 
function in compression (Connizzo and 
Grodzinsky 2018a; Wren et al. 2000; Koob and 
Vogel 1987; Fang et al. 2014). For the purposes 
of this discussion, we focus on general changes 
across multiple species in the collagen structure 
and non-collagenous matrix at the midsubstance 
of the tendon and not in specialized regions.

3.1.3	 �Tendon Cell Populations

Remodeling of the extracellular matrix is cell-
mediated, and therefore an understanding of cell 
populations within tendon is necessary for 
discussion of this highly complex process. Early 
in development, tendon is highly cellular, with 

proliferative cells appearing homogenous with 
more rounded cell nuclei. Following deposition 
of the extracellular matrix, tendon becomes 
hypocellular with limited mitotic activity and a 
heterogeneous cell population with cells with 
long and spindle shaped nuclei in the fascicles 
and the more rounded, densely packed cells in the 
interfascicular matrix (Oryan and Shoushtari 
2008; Russo et  al. 2015; Grinstein et  al. 2019; 
Zamboulis et al. 2020). Until recently the main 
cell types that had been described in tendon were 
tenocytes and tendon progenitor/stem cells 
(TSCs) as well as tissue-resident immune cells, 
vascular cells, neuronal cells, and chondrocyte-
like cells at the tendon insertion (Kannus 2000; 
Ackermann et al. 2016; Thomopoulos et al. 2010; 
Bi et  al. 2007; Lee et  al. 2018; Mienaltowski 
et  al. 2018). With the advent of single-cell 
sequencing, the investigation of cell heterogene-
ity within tissues has been made possible and its 
recent use in tendon research has unveiled several 
tendon cell subtypes (Paolillo et al. 2019; Harvey 
et al. 2019; Kendal et al. 2020; De Micheli et al. 
2020; Yin et al. 2016), but the role of the identi-
fied clusters in the development, maintenance, 
and aging of tendon still remains to be 
elucidated.

3.2	 �Postnatal Development

3.2.1	 �Collagen Fibril Formation

The highly dynamic nature of fibrillogenesis and 
growth of fibrils in the complex extracellular 
environment has made it challenging to precisely 
separate the events that cause conversion of solu-
ble collagen to an insoluble fibril. In vitro polym-
erization of tissue-extracted collagen molecules 
in solution has shed light on fibrillogenesis kinet-
ics and thermodynamics. Collagen molecules 
polymerize spontaneously at physiological pH, 
temperature, and ionic strength (Gross and Kirk 
1958; Wood 1964; Williams et al. 1978; Vanamee 
and Porter 1951) demonstrating the same detailed 
fine structure of native fibrils (Vanamee and 
Porter 1951; Bahr 1950; Noda and Wyckoff 
1951; Schmitt et al. 1942). Slight deviations from 
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physiological conditions lead to formation of 
abnormal fibrils (Gross 1956). 
Thermodynamically, type I collagen fibrillogen-
esis in vitro is an entropy-driven and endothermic 
self-assembly process (Kadler et al. 1987) which 
is driven by the loss of solvent molecules from 
the collagen surface. In vitro self-assembly, how-
ever, cannot explain the formation of highly orga-
nized native collagenous tissues such as tendon 
with a multi-hierarchical structure comprising 
molecules, fibrils, fibers, and fascicles all parallel 
to the long axis of the tendon (Franchi et  al. 
2007). Formation of unorganized networks of 
fibrils varying in diameter and direction in vitro 
(Wood and Keech 1960; Bard and Chapman 
1973), points to the critical role of cellular envi-
ronment in vivo. It is clear that collagen produc-
tion and fibrillogenesis is under the direct control 
of fibroblasts (Wolbach and Howe 1926; 
Maximow 1928; Stearns 1940a, b; Wassermann 
1954; Porter and Pappas 1959; Chapman 1961; 
Peach et  al. 1961; Ross and Benditt 1961; 
Goldberg and Green 1964). What is not exactly 
clear, is the site and mechanism of initial fibril 
formation which has been the subject of studies 
for almost two centuries (Schwann 1839, 1847). 
The literature contains contradictory explana-
tions regarding whether the collagen fibrils of the 
connective tissues arise within the cytoplasm 
(Ferguson 1912; Bradbury and Meek 1958; 
Godman and Porter 1960), on the surface (Porter 
and Pappas 1959; Mall 1902), or in the intercel-
lular spaces (Stearns 1940a, b; Ross and Benditt 
1961; Mallory 1903; Hertzler 1910; Baitsell 
1915, 1916, 1921, 1925; Isaacs 1916, 1919; 
Gross et  al. 1955; Ross and Benditt 1962) of 
collagen-secreting cells.

After the advent of electron microscopy, sev-
eral studies demonstrated vesicular components 
containing small fibrils just below the cell surface 
(Bradbury and Meek 1958; Godman and Porter 
1960; Sheldon and Kimball 1962; Voelz 1964; 
Welsh 1966; Trelstad 1971). High voltage elec-
tron microscopy revealed collagen fibrils within 
small surface recesses in chick embryo cornea 
(Birk and Trelstad 1984), tendon (Birk and 
Trelstad 1986; Yang and Birk 1986), and dermis 
(Ploetz et al. 1991) fibroblasts. It was suggested 

that cells directly produce fibrils within these 
deep and narrow recesses and place them into the 
ECM (Fig.  3.2a). However, it was previously 
shown that fibrils can be produced by any action 
that causes shrinkage of the intercellular sub-
stance (Isaacs 1919), increasing the possibility of 
formation of artificial fibrils due to fixation or 
dehydration in prepared samples for electron 
microscopy. Canty et al. (2004) using serial sec-
tion and 3-D reconstructions of chick embryonic 
tendon fibroblasts revealed fibrils within closed 
intracellular Golgi to plasma membrane carriers 
(GPCs). Further, using pulse-chase experiments, 
procollagen fragments were detected within the 
GPCs (Canty et  al. 2004). It was proposed that 
the GPCs were on their way to plasma membrane 
protrusions, which were named fibril depositors 
or fibripositors. It has been widely accepted now 
that fibripositors are the site of fibril assembly in 
vivo (Holmes et  al. 2018); fibril segments are 
formed intracellularly and then discharged into 
extracellular space by the non-muscle myosin II 
mechanism (Fig. 3.2b) (Kalson et al. 2013; Canty 
et al. 2004).

However, fibripositors are absent during post-
natal development (Humphries et  al. 2008) and 
therefore cannot explain the persistent produc-
tion of de novo fibrils in postnatal tendon and 
throughout life (Chang et  al. 2020) when cells 
lose their ability to directly access damaged or 
developing fibrils in the dense and mature ECM 
(Isaacs 1919; Kalson et al. 2015). The fibripositor 
theory is also unclear regarding intracellular pro-
cessing of procollagen. It has been shown that 
removal of the carboxyl propeptides lowers the 
solubility of procollagen (Kadler and Watson 
1995) and is an essential step for the assembly of 
collagen fibrils (Prockop et al. 1979a, b). While 
procollagen processing has been reported within 
intracellular compartments of postnatal murine 
(Humphries et  al. 2008) and chick embryonic 
(Canty et  al. 2004) tendon fibroblasts, the 
enzymes for procollagen cleavage have been 
detected primarily within the extracellular cul-
ture medium (Hojima et  al. 1985; Kessler and 
Goldberg 1978; Duksin et al. 1978; Leung et al. 
1979; Jimenez et al. 1971) and not extracts of the 
cells (Goldberg et al. 1975). The required ionic 
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calcium concentration for enzyme activity 
(Hojima et al. 1985) is also orders of magnitude 
larger than intracellular calcium concentration 
(Bronner 2001). Furthermore, the procollagen 
proteinases are neutral metalloproteinases 
(Kessler and Goldberg 1978; Duksin et al. 1978; 
Leung et al. 1979; Goldberg et al. 1975; Njieha 
et al. 1982; Bornstein et al. 1972) and have negli-
gible activity at pH  6 or below (Hojima et  al. 
1985, 1994). The acidic pH of Golgi network 
transport carriers and secretory vacuoles 
(Demaurex et al. 1998) is incompatible with the 
neutral pH condition required for procollagen 
processing and fibrillogenesis of collagen mole-
cules. N’Diaye et  al. recently showed that the 

extracellular space is the main action site of bone 
morphogenetic protein 1, which is required for 
type I procollagen C-terminal processing in post-
natal lung fibroblasts (N’Diaye et al. 2020). It is 
possible that the detected intracellular collagen 
fragments in other studies (Canty et  al. 2004; 
Humphries et al. 2008) are processed extracellu-
larly and then rapidly endocytosed.

Several studies suggest that intracytoplasmic 
fibrils are evidence for the ability of fibroblasts to 
phagocytose extracellular collagen fibrils in rap-
idly remodeling (Ten Cate 1972; Ten Cate and 
Deporter 1974, 1975; Ten Cate and Freeman 
1974; Listgarten 1973) or developing (Dyer and 
Peppler 1977) tissues. Intracellular mature fibrils 

Fig. 3.2  Possible mechanisms of fibril formation. (A) 
Collagen fibrillogenesis model proposed by Trelstad and 
Hayashi (1979). Collagen is synthesized in the endoplas-
mic reticulum (er), packaged in the Golgi apparatus (ga), 
and transferred in condensation vacuoles (cv) to deep 
cytoplasmic recesses (site of fibril assembly). (B) The 
processes of collagen fibril nucleation and movement in 
the fibripositor model proposed by Kalson et al. (2013). 
The initial collagen fibril nucleation occurs at the plasma 
membrane by accretion of collagen molecules or collagen 
aggregates. NMII powers the transport of newly formed 

fibrils in fibripositors. (C) Flow-induced crystallization 
model by Paten et al. (2016) elucidating the early stage of 
tendon morphogenesis in vivo: (1) cell recruitment, (2) 
cell migration and organization, (3) ECM molecular syn-
thesis e.g., collagen monomers, fibronectin, elastin, pro-
teoglycans and hyaluronic acid, (4) initial fibrillogenesis 
by filopodia on the fibroblasts via exerting a contractile 
force on collagen-binding complexes, and (5) tissue 
strains cause formation of additional fibrils precisely 
where they are required for tissue connectivity

S. M. Siadat et al.



51

have been reported with loss of banding (Ten 
Cate 1972), coiled in membrane-bound struc-
tures (Ten Cate 1972), and with poorly-visualized 
structures (Listgarten 1973). Some fibrils were 
observed situated partly within the fibroblast and 
partly outside of it while demonstrating the pres-
ence of enzyme activity (Deporter and Ten Cate 
1973). All of this suggests that the observed 
intracellular fibrils were once extracellular and 
on their way to be degraded intracellularly. It has 
been shown that intracellular cross-banded col-
lagen fibrils appear even when collagen synthesis 
is blocked (Everts et al. 1985; Everts and Beertsen 
1987; Beertsen et al. 1984) and that cytoplasmic 
actin filament systems are involved in the phago-
cytosis of collagen (Everts et  al. 1985, 1989). 
Furthermore, quantitative radio-autography after 
injection of 3H-proline revealed that collagen 
precursors (procollagen) were released outside of 
the cell fibroblasts (Marchi and Leblond 1983, 
1984). The observed intracytoplasmic collagen 
fibrils did not contain the new labeled proline, but 
were instead associated with lysosomes and 
digestive vacuoles, had lost their banding and 
were at various stages of degeneration.

Several studies suggest that fibril formation 
could operate independently of the cell surface or 
at some nominal distance from it, guided by 
long-range spatial cues provided by cell traction 
(Stopak et al. 1985) or mechanical forces (Gross 
et  al. 1955; Paten et  al. 2016; Lewis 1917). 
Wolbach followed histologic sequences in the 
development of connective tissue of guinea pigs 
under a scorbutic condition (Wolbach and Howe 
1926; Wolbach 1933). It was suggested that rapid 
appearance and large volume of intercellular col-
lagen fibrils is due to presence of a liquid precur-
sor of collagen in the extracellular space, and that 
the collagen fibril formation is influenced by 
forces acting on this homogeneous collagen. 
Another study followed the progress of a healing 
wound in the connective tissue of a living rabbit’s 
ear, demonstrating that intercellular connective 
tissue fibrils formed extracellularly as a result of 
fibroblastic activity (Stearns 1940a, b). The fibro-
blasts participated directly in the process by the 
projection of cytoplasmic material from their sur-
face. Since this cytoplasmic material disappeared 

as the fibrils formed, it was suggested that the 
secreted material was utilized in the production 
of fibrils guided by applied tension and orienta-
tion of fibroblast cells. Emerging evidence sug-
gests the presence of a newly synthesized 
precursor  – tropocollagen  – that is free in the 
ECM (Gross et al. 1955) and diffuses away from 
the secretory cells (Revel and Hay 1963), and 
that individual collagen fibrils can form from pre-
cursor molecules/microfibrils produced by more 
than one cell (Lu et al. 2018).

Paten et al. demonstrated in vitro how tension 
can directly drive initial fibrillogenesis (Paten 
et al. 2016). It was shown that organized fibrils 
can be formed by slowly drawing a microneedle 
from the slightly concentrated surface of a colla-
gen solution droplet. They then proposed a model 
for early connective tissue development in which 
extensional strain triggers fibril formation extra-
cellularly directly in the path of force. Paten et al. 
further expanded the concept to address the 
establishment of continuity in collagenous tissue, 
suggesting that the amplification of the exten-
sional strain rate between the ends of early fibrils 
can rapidly fuse them by flow-induced crystalli-
zation (FIC) (Fig. 3.2c). They further estimated 
that the required collagen concentration and con-
traction rates necessary for FIC is achievable by 
the local cell population. While it has not yet 
been demonstrated experimentally, the FIC 
model has the potential to explain (1) the abun-
dance of short fibril segments during initial ten-
don morphogenesis and their end-to-end growth 
(Birk et  al. 1995, 1997), (2) the synchronized 
alignment of collagen fibrils far from the main 
cell body (Young et al. 2014), and (3) the role of 
hyaluronic acid (Goldberg and Green 1964; 
Green and Hemerman 1964), fibronectin (Sottile 
and Hocking 2002; McDonald et al. 1982; Paten 
et al. 2019), actin filaments (Johnson and Galis 
2003), and integrins (Li et al. 2003) which have 
been all shown previously to be necessary for 
collagen fibrillogenesis. While the precise man-
ner in which collagen molecules are manipulated 
to drive the formation, growth, and remodeling of 
collagen fibrils has not been agreed upon, it is 
likely guided by a common physical and regu-
lated by multiple factors to establish long-range 
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connectivity and growth of collagenous struc-
tures into the path of force, where it is needed.

3.2.2	 �Post-formation Assembly

Embryonic growth occurs by an increase in both 
fibril number and diameter (Parry and Craig 
1977, 1978; Scott et al. 1981; Scott and Hughes 
1986). In the postnatal period, tendon growth 
continues by increases in fibril diameter and 
length (Parry and Craig 1977, 1978; Parry et al. 
1978a; Eikenberry et al. 1982; Michna 1984) in a 
multi-stage growth/stabilization process 
(Nurminskaya and Birk 1998). The manner in 
which molecules or fibril segments add to the 
growing fibril in vivo is not completely under-
stood. Fibril growth involves both an intrinsic 
self-assembly process (diffusion-controlled) and 
extrinsic regulation (interface-controlled) by 
other fibril-associated molecules, and the local 
environment of collagen fibrils (Hoffmann et al. 
2019). The data from growing native fibrils have 
provided evidence for models of fibril fusion 
(Graham et al. 2000; Kadler et al. 2000), molecu-
lar accretion (Kalson et  al. 2015; Holmes et  al. 
2010), and possibly a combination of both (Birk 
et al. 1997; Ezura et al. 2000).

Interfibrillar fusion can potentially involve 
tip-to-tip, tip-to-shaft, and shaft-to-shaft fusion 
(Birk et al. 1995). However, bipolar fibrils with 
two C-ends or fibrils with multiple switch regions 
have not been found, either in vivo or in vitro 
(Fig. 3.3) (Kadler et al. 1996). End-to-end fusion 
of unipolar and bipolar fibrils will decrease the 
unipolar fibril population. Therefore, an enriched 
bipolar fibril population, unable to fuse further, 
could determine the limit of fibril growth in 
length. Fibril fusion can also be regulated by 
fibril-associated proteoglycans or some other 
macromolecule through maintaining interfibrillar 
spacing and inhibition of lateral segment fusion 
(Scott et al. 1981). It has been shown that mature 
rat tail tendon comprises several fibrils in the pro-
cess of fusion or separation with some intrafibril-
lar proteoglycans inside large collagen fibrils 
(Scott 1990). Furthermore, fibrils’ tips in embry-
onic chick metatarsal leg tendons have less 

surface bound proteoglycans compared to the 
fibril shaft allowing for tip-to-tip fusion and lon-
gitudinal fibril growth (Graham et al. 2000).

Direct evidence for molecular accretion in 
vivo is scarce due to the difficulty of visualizing 
and tracking of single collagen molecules (see 
Sect. 3.5.3). It has been shown that slow stretch-
ing of a cell culture tendon-like construct 
increases fibril diameter and volume fraction 
(Kalson et  al. 2011). However, interfibrillar 
fusion alone could not explain the increase in 
fibril volume fraction. In vitro studies have also 
shown direct evidence for growing fibrils from 
acid-soluble collagen (Holmes and Chapman 
1979). Fractured ends of isolated fibrils from 
avian embryonic tendon can further grow in the 
opposite axial direction by molecular accretion 
(Holmes et  al. 2010). Kalson et  al. (2015) pre-
sented a growth model based on 3D-electron 
microscopy of mouse tail tendon (Kalson et  al. 
2015). During the embryonic growth stage, fibril 
number, diameter, and length increase by fibril 
nucleation and axial growth. During postnatal 
growth, fibril number remains constant but fibril 
diameter and length continue to grow likely by 
molecular accretion. Birk et al. (1997) proposed 
a model in which thin fibril intermediates are 
formed by molecular accretion in chicken embryo 
metatarsal tendon (Birk et al. 1997). Then, longer 
and larger diameter fibrils are produced by lateral 
associations of preformed segments. The longer 
fibrils would have multiple polarity changes 
which would determine the regions able to asso-
ciate. Growth would follow by molecular rear-
rangement to reconstitute cylindrical fibrils. 
Enzymatic intervention is also considered in this 
model to degrade poorly cross-linked fibrils in 
regions of polarity reversal and generate short 
polar units that could participate in further 
growth. Ezura et al. (2000) also suggested a fibril 
growth model in the developing mouse flexor 
tendons where fibril intermediates form by 
molecular accretion and are stabilized through 
their interactions with small leucine-rich repeat 
proteoglycans (Ezura et al. 2000). The change in 
composition of the matrix proteoglycans leads to 
a multi-step fusion/growth process. More tissue 
specific models are needed to fully explain the 
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combination of fibril associated molecules in 
every stage of fibril growth and stabilization 
which establishes the biological and mechanical 
functionality of tendons (Robinson et al. 2005).

Fibril growth mechanisms might be different 
in tissues with different mechanical and biologi-
cal functions. For example, fibrils from sea 
cucumber dermis (Trotter et  al. 1998) and sea 
urchin spine ligament (Trotter et al. 2000) display 
symmetrical mass distributions with a single 

transition zone in the center, making fibril fusion 
an unlikely growth mechanism (Trotter et  al. 
1998). Most likely, fibril growth throughout life 
in tendon is maintained by molecular accretion as 
well as linear and lateral association of fibril seg-
ments. In the early stages of development, tissue 
architecture is defined by fibril growth in number 
and length possibly  through flow-induced crys-
tallization (Paten et al. 2016) and/or spontaneous 
end-to-end fusion of small fibril segments 

Fig. 3.3  Collagen fibril polarity and fusion. (a) 
Unipolar and bipolar collagen fibrils from embryonic 
chick tendon. Reproduced with permission from Kadler 
et  al. (2000). The molecular switch region of a bipolar 
fibril is shown in magnification. (b) Possible models of 

fibril end-to-end fusion based on fibril’s polarity. Arrows 
indicate molecular polarity within a fibril and pink boxes 
indicate regions of polarity reversal. Reproduced from 
Kadler et al. (1996)
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(Graham et al. 2000). Later in development and 
upon removal of lateral growth inhibitors, fibrils 
rapidly grow by lateral fusion (Scott et al. 1981) 
followed by molecular accretion to maintain a 
uniform (Parry and Craig 1984), energetically-
stable shape. Cross-linked, adult fibrils may grow 
and remodel further by molecular accretion upon 
mechanical loading or injury of tendon.

3.2.3	 �Regulators of Matrix Growth 
and Development

Regardless of the mechanism, fibril growth in 
tendon and ligaments is highly regulated (Parry 
et al. 1978b). Fibrils in vivo are cylindrical with 
uniform diameter (Parry and Craig 1984), but 
reconstituted fibrils in vitro have a broad diame-
ter distribution (Bard and Chapman 1973). 
Presence of an upper limit for fibril diameter may 
be due to the difficulty of the addition of new 
molecules or fibril segments and points to the 
participation of several regulatory processes, 
detailed below.

3.2.3.1	 �Water Structures
Collagen structure and stability is driven by 
molecular interaction with water molecules 
(Finch and Ledward 1972; Luescher et al. 1974; 
Kopp et  al. 1990; Bigi et  al. 1987; Miles and 
Ghelashvili 1999; Na 1989; Tiktopulo and Kajava 
1998; Burjanadze 1982). Initial fibril formation 
is an endothermic, but entropy driven process 
(Kadler et  al. 1987; Cassel 1966) arising from 
release of water molecules (Streeter and de 
Leeuw 2011; Kauzmann 1959). Post formation 
assembly can also be regulated by stabilization of 
water molecules (Cooper 1970), where breakers 
of water structure promote fibril formation, and 
makers of water structure are inhibitory (Hayashi 
and Nagai 1972). Mature fibrils in vivo are cross-
linked by covalent bonds between neighboring 
molecules. However, the young and growing 
fibrils are stabilized by non-covalent hydrogen 
bonds (Bailey et al. 1998) and have the potential 
to bind more water molecules (Kopp et al. 1990). 
In fact, proteoglycans (Birk et al. 1996) or hyal-
uronate (Scott et  al. 1981; Scott 1984) can 

stabilize the water layer associated with the col-
lagen molecules. Release of these trapped water 
molecules could provide the increase of entropy 
required to drive the association of molecules 
into the fibrils.

Collagen structural models (Ramachandran 
and Chandrasekharan 1968; Ramachandran et al. 
1973; Berg and Prockop 1973; Yee et  al. 1974; 
Privalov et  al. 1979) suggest that there are two 
types of intermolecular and intramolecular 
hydrogen bonds in fibrils: (I) a direct interchain 
hydrogen bond forms between the glycine resi-
due and the residue in the second position of the 
neighboring chain, and (II) an additional hydro-
gen bond which links two adjacent tropocolla-
gens using a bridging water molecule. This 
water-mediated hydrogen bonding makes two 
thirds of hydrogen bonds that connect neighbor-
ing peptides (Cameron et al. 2007) and therefore 
is a dominant interaction in stabilizing the fibril-
lar structure (Leikin et al. 1995; Kuznetsova et al. 
1998). These water bridges are dynamically 
linked with freely exchangeable hydrogen atoms 
(Tourell and Momot 2016). Furthermore, water 
molecules can be confined by hydrophobic 
groups of neighboring tropocollagens (Hulmes 
et  al. 1973) to maximize the number of water-
water hydrogen bonds (Southall et al. 2002; Dill 
1990). Since molecular assembly is driven by 
decreasing the number of unfulfilled hydrogen-
binding opportunities at the protein-water inter-
face (Fernández 2016), the trapped water 
molecules and the water bridges may have an 
important role in the collagen molecular assem-
bly during fibril growth and remodeling (Martin 
et al. 2020).

3.2.3.2	 �Surface-Associated 
Proteoglycans

Proteoglycans are a superfamily of molecules 
distinguished by the covalent attachment of one 
or more highly negatively charged glycosamino-
glycan chains to their core proteins (Comper and 
Laurent 1978), and they play a significant  
regulatory role during fibrillogenesis. Surface-
associated proteoglycans and their 
glycosaminoglycan chains extend around the 
fibril and through steric effects limit lateral fibril 
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growth (Scott et al. 1981; Scott 1980, 1984; Scott 
and Orford 1981). A three phase model of fibril-
logenesis and fiber maturation in rat tail tendon 
was proposed by Scott et  al. (1981) In phase 1 
(up to day 40 after conception), tropocollagen 
interacts with dermatan sulphate-rich proteogly-
can during or immediately after formation of 
microfibrils. The hyaluronate and proteoglycan-
rich environment and collagen synthesis increase 
the number of thin fibrils, rather than growth in 
diameter of established fibrils. In phase 2 (from 
day 40 to approximately day 120 after concep-
tion), concentrations of chondroitin sulphate-rich 
proteoglycan and hyaluronate decrease, promot-
ing the addition of collagen to extant fibrils rather 
than formation of new fibrils, resulting in rapid 
increase of fibril diameter without axial periodic-
ity change. In phase 3 (day 120 after conception 
onwards), fibril growth slows down and reaches 
its final structure.

Direct in vivo evidence for the role of proteo-
glycans in the regulation of collagen assembly 
and growth has been achieved by development of 
animals deficient in small leucine rich proteogly-
cans (SLRPs). The principal SLRPs found in ten-
don are decorin, biglycan, fibromodulin, and 
lumican. Both decorin and biglycan are expressed 
in the interfibrillar matrix and interfascicular 
matrix in postnatal development but they present 
distinct temporal patterns (Zamboulis et al. 2020; 
Zhang et  al. 2006; Ansorge et  al. 2012). 
Interfibrillar biglycan abundance in the mouse is 
highest early in development whereas decorin 
abundance peaks later during development; both 
are low in abundance at maturity (Zhang et  al. 
2006; Ansorge et al. 2012). Equine tendon shares 
the same temporal expression for decorin but big-
lycan abundance peaks later (Zamboulis et  al. 
2020). Both proteoglycans have a regulatory role 
in collagen fibril assembly during tendon devel-
opment. Biglycan is believed to promote fibril 
diameter growth, whereas decorin is believed to 
control lateral fusion of the fibrils and increase 
fibril stability (Zhang et  al. 2005). Decorin and 
biglycan-deficient mice show abnormal fibril 
structure and lateral fusion during development 
resulting in an increased number of small fibrils 
with a simultaneous presence of collagen fibrils 

with unusually larger diameter and decreased 
failure strength and stiffness once in maturity 
(Zhang et  al. 2006; Ameye et  al. 2002; Corsi 
et  al. 2002). Decorin and biglycan also share a 
binding site for collagen type I (Schönherr et al. 
1995) and an increase in biglycan abundance in 
decorin-deficient mice was observed, alluding to 
compensation between the two proteins (Zhang 
et al. 2006).

Both fibromodulin and lumican are found in 
the interfibrillar matrix of mouse tendon, with 
lumican expression peaking during early postna-
tal development and fibromodulin abundance 
peaking in the later stages (Ezura et al. 2000). In 
contrast, the temporal expression in the equine 
interfascicular matrix was reversed, with fibro-
modulin abundance early and lumican peaking 
towards the end (Zamboulis et  al. 2020). 
Fibromodulin and lumican share a binding site 
on collagen type I implying that they are likely to 
have functional overlap (Svensson et  al. 2000). 
Fibromodulin and lumican deficient and double 
deficient mice showed abnormal fibril structure, 
with lumican deficient mice displaying an 
increase in larger diameter fibrils and fibromodu-
lin deficient mice an increase in smaller diameter 
fibrils at maturity. In the fibromodulin deficient 
mice, increased cross-linking of collagen was 
also observed (Kalamajski et al. 2014) and lumi-
can expression was increased, suggesting com-
pensation (Ezura et  al. 2000). In the lumican 
deficient mice, the phenotype was less severe and 
tendon mechanical properties were not affected. 
Interestingly, the mechanical properties of dou-
ble knockout mice were dependent on the num-
ber of functioning alleles pointing toward a 
regulatory role for fibromodulin and a modula-
tory role for lumican (Ezura et al. 2000; Jepsen 
et al. 2002).

Asporin and lubricin (PRG4) are also 
expressed in tendon interfibrillar and interfascic-
ular matrix, but have received much less attention 
than the principal SLRPs. In developing equine 
tendon, asporin demonstrates a temporal pattern 
in the interfascicular matrix where it is increased 
in early development and subsequently decreases 
but remains present in mature tendon (Zamboulis 
et al. 2020; Henry et al. 2001; Peffers et al. 2015). 
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The role of asporin in tendon fibrillogenesis and 
mechanical properties has not been documented 
yet, but the skin of asporin deficient mice had 
increased expression of collagen type I and III, 
increased toughness, as well as a two-fold 
increase in decorin and biglycan levels 
(Maccarana et al. 2017). Lubricin, a large proteo-
glycan important for matrix lubrication (Rees 
et al. 2002; Kohrs et al. 2011; Sun et al. 2015a; 
Funakoshi et al. 2008; Nugent et al. 2006), is also 
found in the interfascicular matrix of equine ten-
don, with increasing abundance with develop-
ment and in low abundance pericellularly in the 
interfibrillar matrix (Zamboulis et  al. 2020). In 
lubricin deficient mice the gliding resistance of 
fascicles against each other was increased com-
pared to null mice, confirming lubricin may play 
an important role in interfascicular lubrication 
(Kohrs et al. 2011). However, the role of lubricin 
in fibrillogenesis has not yet been elucidated in 
tendon.

3.2.3.3	 �pN-Collagen
There are several observations suggesting that 
N-propeptides are confined to the fibril surface 
(Watson et al. 1992; Holmes et al. 1991) where 
they block accretion of further molecules 
(Fleischmajer et al. 1981, 1983, 1985, 1987a, b; 
Nowack et al. 1976; Veis et al. 1973; Lapiere and 
Nusgens 1974; Timpl et  al. 1975; Lenaers and 
Lapiere 1975). As a result, further lateral growth 
would be regulated by enzymic cleavage of the 
propeptides. The important role of N-propeptide 
has been observed in the studies of dermatosp-
araxis and Ehlers-Danlos syndrome (EDS) type 
VIIB. Dermatosparaxis is caused by partial loss 
of procollagen N-proteinase activity (Lapiere 
et al. 1971; Lenaers et al. 1971; Becker and Timpl 
1976). Presence of N-propeptide on the surface 
of these fibrils results in a non-circular cross sec-
tions (Watson et  al. 1998). Remarkably, it has 
been shown that dermatosparactic collagen fibrils 
will gain a normal appearance after implantation 
in normal animals (Shoshan et al. 1974), suggest-
ing the existence of a dynamic mechanism for 
fibril growth and degradation. Also, Ehlers-
Danlos syndrome type VIIB fibrils in which pN-

collagen is only partially cleaved have 
rough-bordered and non-circular cross sections 
(Watson et al. 1992; Holmes et al. 1993).

Growth models (Hulmes 1983; Chapman 
1989) have been proposed for collagen fibrils in 
which accretion of collagen molecules is inhib-
ited by N-propeptides on the fibril surface. 
Growth of pN-collagen fibrils is inhibited due to 
the steric blocking of interaction sites by the 
N-propeptides. The growth inhibitor part of the 
molecules (the N-terminus) is confined to the 
fibril surface and the C-ends are buried inside the 
interior of the fibril. Since the growth inhibitors 
cannot act as a site for further accretion, their sur-
face density increases with lateral growth. 
Growth of fibril diameter continues until fluidity 
in intermolecular contacts is restricted due to ste-
ric hindrance. This first critical diameter depends 
on the lateral width of the inhibitor segment, 
allowing for growth of fibrils with preferred 
diameters in different tissues (the inhibitor might 
vary in different tissues and stages of develop-
ment, but the same mechanism still applies). 
When a fibril reaches uniformity at this critical 
diameter, accretion is limited to the fibril ends 
and growth is only in axial direction. Lateral 
growth can proceed to a second critical diameter 
after enzymatic removal of the growth inhibitor.

Romanic et al. (1991) in an in vitro study dem-
onstrated that pN-collagen III can co-polymerize 
with collagen I, but cannot be deposited on previ-
ously assembled collagen I fibrils (Romanic et al. 
1991). It was shown that the presence of pN-
collagen III can (1) inhibit the rate of collagen I 
assembly, (2) decrease the amount of collagen I 
incorporated into fibrils, and (3) decrease the 
diameter of fibrils in comparison with fibrils gen-
erated under the same conditions from collagen I 
alone. Fibril diameter progressively decreased 
with increasing the initial molar ratio of pN-
collagen III to collagen I. Therefore, it was con-
cluded that pN-collagen III coats the surface of 
collagen I fibrils early in the process of fibril 
assembly and hinders lateral growth of the fibrils. 
But it does not bind to the growing tips of fibrils, 
resulting in formation of thin fibrils.
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3.2.3.4	 �Minor Collagens
Other types of collagens are synthesized simulta-
neously with type I collagen (Gay et  al. 1976; 
Burke et al. 1977; Foidart et al. 1980, 1983). The 
structural similarities of fibril forming collagens 
allow them to polymerize within the same “het-
erotypic” fibrils (Henkel and Glanville 1982; 
Fleischmajer et  al. 1990). In tendon, approxi-
mately 95% of collagen is type I, with the remain-
ing being mostly type III (Birch et  al. 1999; 
Makisalo et al. 1989; Riley et al. 1994a; Amiel 
et al. 1984). Collagen type III is found both in the 
interfibrillar and interfascicular matrix of the 
developing tendon. In equine tendon, collagen 
type III expression increases throughout develop-
ment in both the interfibrillar and interfascicular 
matrix reaching peak abundance towards the end 
of maturation (Zamboulis et al. 2020). Collagen 
type III distribution in the avian tendon is 
observed throughout the interfibrillar and inter-
fascicular matrix early in development but solely 
in the interfascicular matrix later (Birk and 
Mayne 1997; Kuo et al. 2008). The decrease in 
collagen type III expression in avian tendon is 
also associated with the appearance of collagen 
fibrils with larger diameters implying participa-
tion of collagen type III in the regulation of col-
lagen fibrillogenesis (Birk and Mayne 1997). 
Furthermore, collagen type III deficient mice 
demonstrated disrupted collagen fibrillogenesis 
and larger diameter fibrils, confirming the 
involvement of collagen type III in fibrillogenesis 
(Liu et al. 1997).

Collagen type V has also demonstrated a 
growth regulatory effect on collagen fibrillogen-
esis (Wenstrup et al. 2004; Birk et al. 1990a) and 
its mutations have been identified in patients with 
classic EDS (Malfait and De Paepe 2014; 
Symoens et al. 2012). Collagen type V is found in 
the interfibrillar and interfascicular matrix of the 
developing equine tendon and in the interfibrillar 
matrix of mouse tendon in association with the 
tenocyte surface (Zamboulis et al. 2020; Wenstrup 
et  al. 2011; Smith et  al. 2012, 2014; Sun et  al. 
2015b). Reduction of collagen V expression dur-
ing development also results in formation of 
fibrils with larger diameters in other tissues such 
as the dermis (Wenstrup et al. 2006) and cornea 

(Segev et al. 2006). Corneal stroma, which con-
tains collagen fibrils of uniformly small diameter 
(Hay and Revel 1969), is relatively rich in type V 
collagen with 20% type V to 80% type I 
(McLaughlin et  al. 1989). Studies of type I/V 
interactions in the mature corneal stroma have 
shown that type I and type V collagen co-
assemble into fibrils (Fitch et al. 1984; Birk et al. 
1986, 1988; Linsenmayer et al. 1985, 1990) and 
decreasing the levels of type V collagen secreted 
by corneal fibroblasts in situ results in assembly 
of large-diameter fibrils with a broad size distri-
bution (Marchant et al. 1996). In vitro fibrillogen-
esis studies (Birk et  al. 1990a; Adachi and 
Hayashi 1986) also showed that fibrils produced 
from only type I collagen were thicker than 
hybrid fibrils of type I and type V collagen. In 
addition, collagen V-null mice tendons are 
smaller than their wild type counterparts and 
exhibit reduced mechanical function (Connizzo 
et  al. 2015). However, the effect of collagen V 
deficiency on mechanical function is much more 
dramatic in joint stabilizing tendons and liga-
ments, suggesting a relationship between 
mechanical loading and collagen V mediated 
fibril development (Connizzo et  al. 2015). 
Collagen type XI is found to be present early in 
development both in the mouse and equine inter-
fibrillar matrix, and thought to play synergistic 
roles with collagen type V (Zamboulis et  al. 
2020; Wenstrup et al. 2011). Col11a1-null mouse 
models (Sun et  al. 2020) show decreased body 
weights and their flexor digitorum longus tendon 
has abnormal collagenous matrix structure with a 
significant decrease in biomechanical properties. 
Absence of collagen type XI disrupts the parallel 
alignment of fibrils and increases fibril diameter, 
similar to collagen type V.

Collagen type XII and XIV are closely related 
members of the fibril-associated collagens with 
interrupted triple helices (FACIT) collagen class 
and have been identified in the interfibrillar 
matrix in mouse (Izu et al. 2020; Ansorge et al. 
2009), and the interfibrillar and interfascicular 
matrix in the developing avian (Young et  al. 
2000; Zhang et  al. 2003) and equine tendon 
(Zamboulis et al. 2020). Collagen type XIV lev-
els are high in early development and decrease 
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thereafter to barely detectable levels in mature 
tendon whereas collagen type XII is more abun-
dant in early development but also present 
throughout development, maturation, and aging 
(Zamboulis et al. 2020; Izu et al. 2020; Ansorge 
et al. 2009; Young et al. 2000; Zhang et al. 2003). 
Collagen type XII regulates lateral network for-
mation and fiber domain compartmentalisation, 
as well as collagen type I secretion. Collagen 
type XIV plays a role in the early stages of ten-
don fibrillogenesis and entry into lateral growth, 
in accordance with its temporal expression. 
Absence of collagen type XII in Col12a1-null 
mouse model results in larger tendons with 
abnormal collagen fibril packing, increased stiff-
ness, and decreased overall type I collagen (Izu 
et  al. 2020). Also, type XIV collagen deficient 
mouse tendons demonstrate premature fibril 
growth and larger fibril diameters, but no defi-
ciency in biomechanical properties at maturity 
(Ansorge et  al. 2009). Despite being closely 
related, there does not appear to be a compensa-
tory relationship in expression patterns (Izu et al. 
2020; Ansorge et al. 2009).

Finally, collagen type VI has also been identi-
fied both in the interfibrillar matrix of developing 
mouse tendon, especially in the pericellular 
region, and in the interfibrillar and interfascicular 
matrix in equine developing tendon (Zamboulis 
et  al. 2020; Smith et  al. 2012; Izu et  al. 2011). 
During development, collagen type VI was found 
to be implicated in maintaining the cell shape, 
microdomain structure and fiber organisation. 
Collagen VI deficient mice displayed abnormal 
fibril assembly in the pericellular region with 
more dense fibrils of smaller diameter and fre-
quent very large or twisted fibrils (Izu et  al. 
2011). Other collagens such as collagen type IV 
and XXI show temporal expression in the devel-
opment of the equine interfascicular matrix but 
they have received less attention and their role is 
not currently known.

3.2.3.5	 �Elastin, Fibrillins, and Fibulins
Elastin is found at the core of elastic fibers sur-
rounded by a fibrillin-rich microfibril scaffold 
(Kielty et al. 2002). In tendon, its abundance is 
function-dependent, with a greater abundance of 

elastin found in energy storing tendons (Thorpe 
and Screen 2016; Godinho et al. 2017). Elastin is 
present during embryonic development and 
increases in response to mechanical loading 
(Oryan and Shoushtari 2008; Zamboulis et  al. 
2020; Wagenseil et  al. 2010; Luo et  al. 2018). 
Spatially, elastin is localized sparsely in the inter-
fibrillar matrix parallel to the tendon axis and 
more densely in the interfascicular matrix, with 
both a parallel and perpendicular organization in 
relation to the tendon axis. Elastin haploinsuffi-
ciency in mice resulted in alterations to collagen 
fibril structure, favoring an increase in large 
diameter fibrils and reduced interfibrillar matrix, 
but these changes were site-specific (Eekhoff 
et al. 2017). The effect of elastin depletion on tis-
sue function has also been debated, with some 
studies showing significant mechanical disrup-
tion and others demonstrating no effect (Eekhoff 
et  al. 2017; Grant et  al. 2015; Fang and Lake 
2016). When fascicle and interfascicular matrix 
were interrogated separately following elastase 
treatment in equine tendons, fascicles did not 
show any changes in their mechanical properties. 
However, the interfascicular matrix was signifi-
cantly compromised, suggesting a different role 
for interfibrillar and interfascicular elastin 
(Godinho et al. 2020).

Fibrillin-1 and 2 are known to be involved in 
elastogenesis and regulate activation and bio-
availability of TGF-β superfamily members 
(Chaudhry et al. 2007; Boregowda et al. 2008). 
Fibrillin-1 and 2 are present in the interfibrillar 
and interfascicular matrix in mature tendon, co-
localizing with elastin and also pericellularly on 
their own (Ritty et al. 2002; Kharaz et al. 2018). 
In developing equine tendon, fibrillin-1 and 2 
were identified in the interfibrillar and interfas-
cicular matrix with fibrillin-1 showing an increase 
in abundance during development in the interfas-
cicular matrix only (Zamboulis et  al. 2020). 
Fibrillin-1 deficiency in mice did not disrupt the 
tendon structure apart from generating smaller 
tendons (Tran et  al. 2019) and fibrillin-2 defi-
ciency resulted in a decrease in collagen cross-
linking but did not affect tendon structure 
(Boregowda et al. 2008). It is possible that simi-
lar to elastin deficiency, the interfascicular matrix 
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is more profoundly affected by fibrillin-1 and 2 
deficiencies than the fascicles.

Fibulin-4 and 5 are indispensable for elasto-
genesis (McLaughlin et al. 2006; Nakamura et al. 
2002; Yanagisawa et  al. 2002) and fibulin-4 is 
found in the tendon interfibrillar matrix co-
localized with fibrillins (Markova et al. 2016). In 
fibulin-4 deficient mice, forelimb contractures 
were noted and collagen fibrillogenesis was dis-
rupted in tendons (Markova et al. 2016). Fibulin-5 
is found in the interfibrillar matrix but also the 
interfascicular matrix where its abundance in 
equine tendon peaks early in development 
(Zamboulis et  al. 2020). In fibulin-5 deficient 
mice, malformed elastic fibers were found in ten-
don with no other changes to the composition or 
structure of the tendon. In addition, the linear 
modulus of the Achilles tendon was increased in 
the fibulin-5 deficient mice whereas the posi-
tional tibialis anterior tendon did not show any 
changes in mechanical properties (Eekhoff et al. 
2021). Taken together, this supports a role for 
elastic fibers in the mechanical properties of 
functionally distinct tendons or tendon  
compartments beyond regulation of collagen 
fibrillogenesis.

3.2.3.6	 �Thrombospondins
Thrombospondins, specifically TSP-1, TSP-4, 
and COMP (TSP-5), have also recently been 
identified in the interfibrillar and interfascicular 
matrix of tendons (Kannus et al. 1998; Zamboulis 
et  al. 2020; DiCesare et  al. 1994; Hauser et  al. 
1995; Smith et  al. 1997; Fang et  al. 2000; 
Södersten et al. 2006; Havis et al. 2014; Schulz 
et  al. 2016). COMP levels in the developing 
interfibrillar and interfascicular matrix increase 
with development and have been shown to be 
associated with loading (Zamboulis et al. 2020; 
Smith et al. 1997). In COMP deficient mice, the 
tendon structure exhibited larger fibril diameters 
with an increase in irregular shape, suggesting a 
role in collagen fibrillogenesis. In addition, col-
lagen accumulation in the endoplasmic reticulum 
was detected in isolated dermal fibroblasts in 
vitro, alluding to its intracellular role in the secre-
tion of collagen, which is dependent on the for-
mation of a COMP-collagen complex (Schulz 

et al. 2016). TSP-4 has been reported to have a 
similar spatiotemporal expression as COMP, a 
function associated with loading, and also to be 
increased in COMP deficient mice (Schulz et al. 
2016; Cingolani et al. 2011; Frolova et al. 2014). 
Similarly to COMP deficient mice, in TSP-4 defi-
cient mice, tendons exhibited larger fibril diame-
ters (Frolova et al. 2014). TSP-2 and TSP-3 have 
also been reported in the interfibrillar matrix of 
mouse tendon (Havis et al. 2014; Frolova et al. 
2014; Kyriakides et  al. 1998) and TSP-2 defi-
ciency (Kyriakides et al. 1998) resulted in a simi-
lar collagen fibril phenotype noted in TSP-4 and 
COMP deficient mice (Schulz et al. 2016; Frolova 
et al. 2014).

3.3	 �Maintenance of the Matrix 
During Adulthood

3.3.1	 �Matrix Turnover

The pioneering studies of Schoenheimer and his 
collaborators in the  1930s changed the percep-
tion of proteins from a static collection of mate-
rial to a material existing in a state of dynamic 
flux, where the balance of synthesis and degrada-
tion is critical to homeostatic maintenance of 
structure (Cohn 2002; Wilkinson 2018). The 
study of matrix turnover in maintaining adult tis-
sue homeostasis, and the regulation of this pro-
cess, has been the focus of much research over 
the past century since then and could be the key 
to preventing injury.

3.3.1.1	 �Collagenous Matrix
It is well established that collagen is one of the 
longest lived proteins in many tissues within the 
body, with a relatively low rate of turnover in 
skin, tendon and cartilage compared to other 
ECM proteins (Thorpe et  al. 2010; Maroudas 
et al. 1998; Sivan et al. 2006, 2008; Verzijl et al. 
2000). However, the specific rate of collagen 
turnover within tendon is still a matter of contro-
versy, with conflicting data reported in the litera-
ture. Several studies have reported negligible 
turnover of tendon collagen within an individu-
al’s lifetime, with a half-life of 198 years in the 
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energy storing equine superficial digital flexor 
tendon determined by measuring the rate of 
aspartic acid racemization, and no collagen turn-
over detected in the healthy adult human Achilles 
tendon using 14C bomb pulse data (Thorpe et al. 
2010; Heinemeier et al. 2018, 2013a). However, 
other studies have reported relatively rapid col-
lagen synthesis in tendon, with fractional synthe-
sis rates of 0.04–0.06% hour−1 calculated in the 
human patellar tendon, which equates to half-
lives ranging from 48 to 64  days (Miller et  al. 
2005; Babraj et  al. 2005; Smeets et  al. 2019). 
There are several potential explanations for these 
large discrepancies.

The studies in which high fractional synthesis 
rates were reported used stable isotope labelling 
over a very short time period, and it is unlikely 
that all newly synthesized collagen would be 
incorporated into the matrix, such that fractional 
synthesis rates would be overestimated. Indeed, 
using the tracer cis-[18F]fluoro-proline combined 
with positron emission tomography and measur-
ing protein incorporation in the rat Achilles ten-
don, it has been demonstrated that only 
approximately 20% of the proline taken up in the 
tissue was incorporated into the tendon matrix 
(Skovgaard et al. 2011).

The studies in which extremely long half-lives 
have been reported may also be affected by sev-
eral factors. In these studies, the collagenous 
fraction of the matrix is purified using enzymatic 
digestion or protein extraction techniques 
(Thorpe et  al. 2010; Heinemeier et  al. 2018). 
Such purification techniques may result in some 
collagen loss; indeed approximately 13% of col-
lagen was lost during purification by guanidine 
hydrochloride extraction (Thorpe et  al. 2010). 
This is likely to represent more recently synthe-
sized collagen that is less tightly cross-linked into 
the matrix, and therefore the half-life calculated 
based on the remaining collagen would be over-
estimated. There are also limitations associated 
with the methods used to estimate half-life; cal-
culation of protein turnover rates using racemiza-
tion of aspartic acid relies on assumptions made 
during calculations, as accumulation of 
D-Aspartic acid is affected by several factors, 
including temperature, pH, and protein structure 

(Thorpe et  al. 2010). Precision of 14C measure-
ments is limited by variability in tissue radiocar-
bon levels within the population, which has 
progressively decreased over the past 50  years 
(Hodgins and U. S. Department of Justice 2009).

More recent studies also help to explain these 
previous contradictory findings, suggesting there 
may be pools of collagen within tendon that have 
differential turnover rates. Indeed, more collagen 
neopeptides, which are a marker of turnover, 
were identified within the interfascicular matrix 
compared to the fascicular matrix in the equine 
superficial digital flexor tendon (Thorpe et  al. 
2016a). These findings are supported by a recent 
study using in vivo isotope labelling combined 
with laser capture microdissection and mass 
spectrometry to measure the turnover rates of 
individual proteins within the fascicular and 
interfascicular matrices in the rat Achilles tendon 
(Choi et al. 2020). Results revealed significantly 
faster turnover of collagen in the interfascicular 
matrix compared to the fascicles, with a half-
lives of 1.6 and 2.7 years for type I collagen in 
interfascicular matrix and fascicles respectively. 
While no studies have directly determined differ-
ences in turnover rates of extracellular matrix 
proteins between small and large animals, it is 
likely that protein turnover is more rapid in rodent 
models compared to humans, as previous studies 
have demonstrated a negative correlation between 
median protein turnover rate constants and lifes-
pan (Swovick et  al. 2018), and the half-life of 
serum albumin is approximately tenfold greater 
in the human compared to the rat (Chaudhury 
et al. 2003; Jeffay 1960).

Emerging evidence also suggests the presence 
of a sacrificial collagen matrix within tendon fas-
cicles, with a recent study in murine tendon iden-
tifying the presence of thin collagen fibrils that 
are interspersed between thicker fibrils, and are 
synthesized and removed from the tendon within 
a 24  h period, while the bulk of the collagen 
remains unchanged (Chang et al. 2020). This rap-
idly turned over collagen may act to protect the 
long-lived collagen from mechanical damage, 
and also helps to explain previous studies which 
have measured both a high rate of synthesis, but 
very low rates of bulk turnover.
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There is also evidence to suggest that collagen 
half-life varies between tendons with different 
functions, with a half-life of 198  years in the 
energy storing equine superficial digital flexor 
tendon compared to 34  years in the positional 
common digital extensor tendon (Thorpe 2010). 
While a lower rate of collagen turnover in high 
strain energy storing tendons may seem counter-
intuitive, slower turnover may protect the tendon 
from remodeling which would weaken its struc-
ture, with the trade-off that when damage does 
occur it is more difficult to repair.

3.3.1.2	 �Non-collagenous Matrix
While only a small number of studies have mea-
sured rates of collagen turnover in tendon, even 
fewer have assessed turnover of non-collagenous 
proteins. It is, however, well established that non-
collagenous protein turnover occurs at a more 
rapid rate than collagen turnover, with the excep-
tion of elastin, which is known to have very low 
turnover rate. While elastin half-life in tendon 
has not been measured, in other connective tis-
sues there is compelling evidence that following 
development elastic fibers are not replaced 
throughout an individual’s lifetime (Shapiro et al. 
1991; Sherratt 2009). Aspartic acid racemization 
has been used to estimate turnover of the non-
collagenous fraction of the extracellular matrix in 
functionally distinct equine tendons. However, 
this study was unable to provide turnover rates of 
individual proteins and a small amount of soluble 
collagen was detected in the fraction analysed, 
which is likely to affect the results (Thorpe et al. 
2010). Despite these limitations, this study did 
show that turnover of non-collagenous proteins 
differed in tendons with different functions, with 
more rapid turnover in energy storing tendons 
compared to positional tendons (2.2  years vs. 
3.5 years), which may allow for greater repara-
tive capacity in injury-prone energy storing ten-
dons (Thorpe et al. 2010).

Metabolism of different proteoglycan classes 
has been studied in tendon explants using radio-
labelling, with results demonstrating relatively 
rapid turnover of newly synthesised large proteo-
glycans (half-life approx. 2  days) compared to 

small leucine rich proteoglycans (half-life 
approx. 20 days) and showing that different path-
ways are involved in the degradation of large and 
small proteoglycans (Samiric et  al. 2004). 
However, this approach is only able to measure 
the turnover of newly synthesised proteoglycans 
rather than those already present within the 
matrix, which may be metabolized at a slower 
rate. More recent approaches using isotope label-
ling in vivo have measured turnover rates of a 
range of tendon proteoglycans, with half-lives 
ranging from 21 days for decorin to 72 days for 
lumican (Choi et al. 2020). There is also evidence 
to suggest that turnover rates of non-collagenous 
proteins may vary according to their location 
within the tendon matrix. Turnover of interfas-
cicular decorin occurs at a faster rate than that of 
interfibrillar decorin (Choi et al. 2020). The rea-
sons for this are unclear but indicate that proteo-
glycans may have distinct roles in different 
tendon regions.

3.3.2	 �Mechanical Stimulation 
for Matrix Remodeling

It is well established that mechanical stimulation 
drives the natural remodeling of the tendon ECM, 
and specifically the collagen structure (Zamboulis 
et al. 2020; Smith et al. 2002; Screen et al. 2005a; 
Batson et al. 2003; Bohm et al. 2015; Pan et al. 
2018; Quigley et  al. 2018; Theodossiou et  al. 
2019). Tenocytes can sense changes in their 
mechanical environment through cell-cell and 
cell-matrix interactions and transduce mechani-
cal signals, which then trigger adaptive responses, 
a process called mechanohomeostasis (Fig. 3.4) 
(Maeda et  al. 2012; Lavagnino et  al. 2015; 
Heinemeier et al. 2003; Maeda et al. 2011; Havis 
et  al. 2016). Since mechanotransduction path-
ways are comprehensively reviewed elsewhere 
(Wall et al. 2016, 2018; Humphrey et al. 2014), 
we report here on downstream changes in ECM 
structure in response to changes in mechanical 
stimuli. In addition, we focus on adaptations to 
normal loading and sub-failure damage rather 
than massive tissue injury/repair processes which 

3  Tendon Extracellular Matrix Assembly, Maintenance and Dysregulation Throughout Life



62

are well described elsewhere (Thomopoulos et al. 
2015; Andarawis-Puri et  al. 2015; Andarawis-
Puri and Flatow 2018).

3.3.2.1	 �Exercise
Alterations in mechanical stimuli can influence 
ECM turnover of adult tendons, with exercise 
and disuse both reported to result in a range of 
adaptations. However, the response seen in ten-
don is far less pronounced than that seen in mus-
cle, and results are contradictory. In humans, 
there is evidence of tendon hypertrophy in 
response to exercise, with increases in patellar 
tendon cross sectional area (CSA) (Couppé et al. 

2008; Farup et  al. 2014). Studies have also 
reported increased markers of collagen synthesis 
and breakdown in peritendinous tissue both as a 
result of acute exercise and longer-term training 
in human Achilles and patellar tendons (Langberg 
et al. 1999, 2001; Astill et al. 2017). As collagen 
turnover rate in the tendon core is very low it has 
been suggested that additional newly synthesized 
collagen may be deposited around the edge of the 
tendon, resulting in increased CSA (Magnusson 
and Kjaer 2019). However, other studies which 
have taken tendon biopsies to assess collagen 
synthesis post-exercise in the patellar tendon 
report conflicting results, with some observing 

Fig. 3.4  Schematic of adult matrix mechanohomeo-
stasis. (1) Multiaxial and multimodal mechanical loading 
on the tendon applies stress macroscopically to the tissue, 
which then (2) propagates through the multiscale hierar-
chy of the tendon matrix via interactions between the col-
lagenous and non-collagenous matrix. Stress is then 
transduced from physical to biochemical signals in the 
cell via mechanotransduction (3), and these signals then 
trigger (4) catabolic or anabolic responses. In the case of 
normal loading or positive adaptation due to exer-
cise (left), (5) new matrix is synthesized and incorporated 
into the existing structure while damaged matrix is 
removed resulting in (6) sustained or improved tissue 
function. In the case of excessive loading (overuse) or 

stress deprivation (disuse), there is a loss of tensional 
homeostasis at the cellular level which leads to the pro-
duction of inflammatory markers and damage-associated 
molecular patterns (DAMPs) as well as increased matrix 
degradation and cell death  (right). These signals can be 
spread to other cells through paracrine signaling, and can 
also be caused by other biochemical signaling or cellular 
changes (e.g., cell aging) in the absence of changes to 
mechanical loading (see Sect. 3.3.3). This process can 
lead to diminished function, and enter the tissue into a 
chronic degenerative cycle whereby further loading 
causes more matrix damage, eventually leading to tissue 
rupture and/or tendinopathy. (Created with BioRender.
com)
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increased collagen synthesis (Miller et al. 2005) 
and others reporting no change (Dideriksen et al. 
2013; Hansen et al. 2009). This limited respon-
siveness is supported by studies which have 
either detected no, or very limited changes, in 
collagen and growth factor gene expression in 
response to exercise (Dideriksen et  al. 2013; 
Heinemeier et al. 2013b; Sullivan et al. 2009).

These findings are in contrast to those reported 
in a variety of small animal models, which have 
demonstrated upregulation of tendon associated 
genes and increases in mechanical properties as a 
result of exercise or increased loading 
(Heinemeier et  al. 2007, 2012; Olesen et  al. 
2006). However, the majority of small animal 
studies have been performed in animals that are 
not yet fully mature, such that they may have 
more capacity for adaptation to loading than skel-
etally mature human tendon. In addition, the type 
and duration of exercise performed is likely to 
influence results, with studies of the rat supraspi-
natus tendon demonstrating that a single bout of 
exercise tends to decrease mechanical properties, 
whereas chronic exercise results in improved 
mechanical properties (Rooney et al. 2017). This 
is accompanied by more matrix-related gene 
changes in chronic compared to acute exercise 
groups (Rooney et al. 2015). Ex vivo studies have 
also been performed to uncover the effects of 
loading on tendon metabolism, with mechanical 
loading of artificial tendon constructs in vitro 
resulting in little change in tendon related genes 
at physiological levels of loading, but upregula-
tion of genes associated with tendon develop-
ment as a result of overloading (Herchenhan 
et al. 2020). By contrast, exposing fascicles from 
rat tail tendons to moderate degrees of loading 
increased collagen synthesis without generating 
mechanical or structural changes (Screen et  al. 
2005a; Legerlotz et al. 2013b).

3.3.2.2	 �Disuse or Stress Deprivation
Disuse has been shown to result in a marked 
decline in tendon mechanical properties, both in 
humans and animal models (Magnusson and 
Kjaer 2019; Rumian et al. 2009; Almeida-Silveira 
et al. 2000; Matsumoto et al. 2003; Couppé et al. 
2012). However, the mechanisms by which these 

alterations occur are unclear, as the majority of 
studies do not report any alterations in tendon 
dimensions or mass as a result of unloading 
(Kinugasa et  al. 2010; de Boer et  al. 2007; 
Heinemeier et  al. 2009). Some studies have 
reported decreased patellar tendon collagen syn-
thesis as a result of lower limb suspension in the 
human, even after relatively short periods of dis-
use (de Boer et al. 2007; Dideriksen et al. 2017), 
accompanied by increased matrix metallopro-
teinase 2 (MMP-2) expression (Boesen et  al. 
2013). By contrast, results from animal studies 
are variable and sometimes contradictory; hind 
limb suspension in the rat resulted in very few 
alterations in the Achilles tendon (Heinemeier 
et  al. 2009), whereas denervation-induced 
unloading of the mouse patellar tendon caused 
decreased expression of type I collagen, increased 
expression of MMP-13 and a decrease in colla-
gen fibril diameter (Mori et  al. 2007). Explant 
models have been used to further investigate the 
effect of unloading on tendon metabolism, with 
stress deprivation of murine tail tendon fascicles 
resulting in increased levels of matrix degrading 
enzymes and reduced mechanical properties 
(Abreu et al. 2008; Lavagnino et al. 2003, 2005; 
Wunderli et al. 2018). More recent studies dem-
onstrate decreased expression of genes associ-
ated with both matrix synthesis and degradation 
in stress deprived murine flexor tendons 
(Connizzo et al. 2019).

The contradictory findings from animal stud-
ies may be due to differences in species and ages 
in studies, the particular model of mechanical 
stimulation employed, and also whether the 
experiments have been performed in vivo or ex 
vivo. In addition, it has been reported that func-
tionally distinct tendons also display a differen-
tial response to unloading ex vivo, with more 
rapid and extensive changes seen in positional 
compared to energy storing tendons (Choi et al. 
2019). Further, stress deprivation may preferen-
tially affect the interfascicular matrix, with 
greater deterioration in this region compared to 
the fascicles in unloaded rat tail tendon (Rowson 
et al. 2016). Different types of mechanical stimu-
lation can also generate different responses and, 
in vitro, tenocytes are mostly stimulated using 
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tension, which likely mirrors the mechanical 
stimulation interfibrillar tenocytes experience in 
vivo. However, in vitro shear stress stimulation of 
adult tenocytes, which is likely experienced by 
interfascicular tenocytes, generated an “anti-
fibrotic” expression pattern with decreased tran-
scription of collagen type I and III (Fong et  al. 
2005). In addition, the responses to mechanical 
stimulation may also be influenced by the age of 
the cells or tissues in vitro (Zamboulis et al. 2020; 
Fong et al. 2005) and the magnitude of loading 
(Zhang and Wang 2013).

3.3.2.3	 �Sub-failure Microdamage
In addition to normal exercise, studies have 
sought to understand the capacity for intrinsic 
repair of microdamage that occurs due to tendon 
overload. Several in vivo models have been 
developed to induce tendon fatigue damage, 
including treadmill running and repetitive reach-
ing activities (Glazebrook et al. 2008; Carpenter 
et al. 1998; Gao et al. 2013). A model developed 
by Fung et al. (2010) in which the rat patellar ten-
don is clamped and loaded directly while the ani-
mal is under anaesthesia allows precise loads to 
be applied to the tendon, while the number of 
cycles applied can be varied to induce different 
degrees of damage. This model has been used to 
extensively characterise the structural, mechani-
cal and molecular changes within tendon to vary-
ing levels of fatigue damage at different time 
points. Results show that structural alterations 
become more pronounced as severity of fatigue 
loading progresses, with isolated collagen fiber 
kinking in response to low-level fatigue loading 
which becomes more widespread in moderate 
fatigue loading and is accompanied by fiber sepa-
ration. Severely fatigue loaded tendons exhibit 
widespread matrix disruption and fiber thinning 
(Fung et al. 2010). These structural changes are 
associated with alterations in mechanical proper-
ties, with a single bout of moderate fatigue load-
ing being sufficient to induce accumulation of 
structural damage associated with non-
recoverable loss of stiffness (Bell et  al. 2018). 
These studies indicate a limited ability for intrin-
sic repair of damage above a certain threshold, 
even when no further loading is applied.

Considering the molecular changes as a result 
of fatigue loading, expression of genes associated 
with matrix remodeling, including collagens and 
MMPs, were negatively correlated with the 
degree of damage (Andarawis-Puri et al. 2012), 
suggesting an impaired ability to repair micro-
damage as the damage worsens. In addition, 
apoptosis within the tendon increased with dam-
age (Andarawis-Puri et  al. 2014), likely due to 
alterations in cell microenvironment. Increased 
apoptosis will likely decrease the capacity for 
matrix remodeling, leading to further damage 
accumulation. The authors of these studies sug-
gest that restoration of cell microenvironment 
may be key to improving the capacity of resident 
tendon cells to successfully remodel regions of 
microdamage (Andarawis-Puri and Flatow 
2018). Exercise performed post-fatigue loading 
provides a method of influencing cell microenvi-
ronment and subsequently matrix synthesis, and, 
depending on timing, can either worsen or 
improve repair. Exercise initiated 2 weeks after 
fatigue loading resulted in increased levels of 
procollagen-I, indicative of matrix remodeling, 
whereas exercise that commenced immediately 
after fatigue loading caused further damage to the 
tendon, accompanied by increased levels of 
aggrecan and collagen type III, proteins that are 
both associated with a failed healing response 
(Bell et  al. 2015). It is likely that post-fatigue 
loading exercise also influences matrix degrada-
tion, however this is yet to be directly 
determined.

There is also emerging evidence to suggest 
that initial overload damage within the tendon 
may occur within the interfascicular matrix. In 
bovine and equine flexor tendon explants exposed 
to cyclic loading in vitro, initial damage occurred 
preferentially to the interfascicular matrix, with 
upregulation of inflammatory mediators observed 
in this region (Spiesz et  al. 2015; Thorpe et  al. 
2015b). The high shear environment within the 
interfascicular matrix of energy storing tendons, 
caused by interfascicular sliding as the tendons 
stretch, is likely to expose the resident cells to a 
complex strain environment incorporating ten-
sion, shear and compression (Cook and Screen 
2018). Overload may therefore induce cell-

S. M. Siadat et al.



65

mediated degradation, and subsequent loss of 
interfascicular matrix structure is likely to alter 
cell microenvironment within the fascicles, lead-
ing to propagation of damage throughout the tis-
sue. However, the majority of rodent tendons 
lack an interfascicular matrix structure (Liu et al. 
2016; Lee and Elliott 2019), and therefore the 
response of the interfascicular matrix to micro-
damage cannot be studied using these models, 
limiting our knowledge in this area.

3.3.3	 �Biochemical Disruption 
of Matrix Homeostasis

There are a variety of biochemical stimulators 
that can influence tendon homeostasis. While 
inflammation occurs in the initial response to ten-
don injury, inflammatory mediators, including 
prostaglandins and cytokines, are also upregu-
lated in tendon in response to exercise (Langberg 
et  al. 1999, 2002). Blocking prostaglandin E2 
(PGE2) by administration of non-steroidal anti-
inflammatories resulted in decreased peritendi-
nous collagen synthesis in response to exercise in 
the human patellar tendon, and collagenase 
upregulation in rat tendon cells (Christensen 
et al. 2011; Tsai et al. 2010). In addition, periten-
dinous infusion of (interleukin-6) IL-6 elevates 
collagen synthesis in a similar manner to exercise 
(Andersen et al. 2011). Inflammatory mediators 
also influence proteolytic activity, with IL-1β act-
ing in synergy with mechanical stretch to increase 
levels of matrix degrading enzymes in rabbit ten-
don fibroblasts and human patellar tendon derived 
cells (Archambault et al. 2002; Yang et al. 2005). 
Recent studies also show that IL-1 and IL-6 can 
directly lead to matrix degeneration using an in 
vitro model system (Connizzo and Grodzinsky 
2018b, 2020). Collectively, these results suggest 
that inflammatory mediators are important stimu-
lators of collagen turnover in tendon that can act 
independently of loading. However, it is likely 
that only a very small proportion of newly syn-
thesized collagen is incorporated into the matrix, 
and therefore upregulation of matrix metallopro-
teases does not necessarily alter tendon mechani-
cal properties or collagen content (Marsolais 

et  al. 2007). Interestingly, it seems that regular 
mechanical loading is required to protect rat tail 
tendons cultured in the presence of inflammatory 
cells from degradation and loss of mechanical 
properties (Marsolais et  al. 2007), highlighting 
the importance of mechanical stimuli for mainte-
nance of tendon homeostasis.

Systemic diseases can also affect tendon 
metabolism and increase the risk of tendon injury. 
Diabetes is associated with increased prevalence 
of tendinopathy and disorganization of the colla-
gen fibers within human tendon (Abate et  al. 
2013). Tendons from diabetic mice have smaller 
cross-sectional areas, reduced mechanical prop-
erties and altered collagen fiber alignment, and 
these alterations vary between tendon types 
(Connizzo et  al. 2014b). It is hypothesized that 
these changes are caused by the accumulation of 
advanced glycation end-products (AGEs) due to 
the increased availability of glucose, causing loss 
of both biological and mechanical function 
(Abate et al. 2013). These AGEs are also known 
to accumulate naturally during the aging process. 
Studies have also shown that treating rat tendon-
derived cells with high glucose results in down-
regulation of ECM-associated genes (Wu et  al. 
2017), indicating alterations in tendon 
homeostasis.

Obesity is another recognized risk factor for 
tendon injury, initially postulated to be caused by 
the increased mechanical strain due to weight. 
However, it has recently been established that 
adipose tissue is a potent releaser of signaling 
molecules, with raised serum levels of inflamma-
tory markers present in obese individuals sug-
gesting the presence of low grade inflammation, 
which could disrupt tendon homeostasis (Abate 
et al. 2013; Cilli et al. 2004). Indeed, in diabetic 
and obese mice, collagen and MMP expression is 
elevated during tendon healing, with increased 
macrophages and delayed remodelling 
(Ackerman et al. 2017a). Other metabolic disor-
ders are also associated with tendon pathologies, 
including hypercholesterolemia, which results in 
cholesterol deposits in tendon, accompanied by 
alterations in tenocyte gene and protein expres-
sion, matrix turnover, tissue vascularity, and 
cytokine production (Soslowsky and Fryhofer 
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2016). It appears these disorders all affect tendon 
homeostasis via a variety of mechanisms which 
often involve inflammatory mediators, resulting 
in altered turnover and disruptions to the tendon 
matrix leading to increased risk of pathology.

3.3.4	 �Circadian Regulation

Recent studies have also unveiled the importance 
of the circadian clock in regulating tendon pro-
tein turnover, with rhythmic expression of several 
clock-associated genes resulting in nocturnal 
procollagen synthesis and diurnal fibril assembly 
in mice. This pool of newly synthesized collagen 
is then rhythmically degraded. This could be a 
primary mechanism for repairing microdamage 
that accumulates over a single day of use, but the 
incorporation of these newly synthesized colla-
gen fragments into the existing matrix has not yet 
been confirmed. Disabling the circadian clock 
results in formation of abnormal collagen fibrils 
and collagen accumulation, indicating that pro-
tein homeostasis in tendon is maintained by cir-
cadian regulation of a sacrificial collagen matrix 
(Chang et al. 2020). While endogenous circadian 
rhythms have been observed in human tendon 
cells, studies have not yet been able to detect any 
alterations in expression of clock-associated 
genes within tendon as a result of exercise or 
immobilization (Yeung and Kadler 2019; Yeung 
et al. 2014). However, expression levels of clock 
genes in these studies were very low, and there 
were high levels of variability between individu-
als. Therefore, more studies are needed to deter-
mine if the alterations in tendon turnover as a 
result of changes to loading environment occur 
via circadian regulation.

3.4	 �Dysregulation of ECM 
Structure and Function 
During Aging

Aging is one of the primary risk factors for 
degenerative tendon injuries, particularly in the 
Achilles tendon and the rotator cuff tendons 
(Wertz et al. 2013; Strocchi et al. 1991; Minagawa 

et al. 2013; Longo et al. 2011; May and Garmel 
2020). These injuries cause significant pain, 
frailty and a loss of independence, leading to a 
general reduction in quality of life (Kjær et  al. 
2020). Age-related disorders are associated with 
a degenerative tendon state, rather than an acute 
tendon rupture, which is thought to be a result of 
repetitive damage to the extracellular matrix 
(Fig. 3.4). However, the ability to study tendon 
aging in a controlled and repeatable fashion is 
quite challenging. Results are heavily dependent 
on the tendon being studied, the methodology 
used and on the ages defined as ‘young’ and 
‘old’. Furthermore, aging is a complex and multi-
factorial process, involving natural changes in 
structure and function as well as alterations to the 
biological processes that regulate tissue 
architecture.

3.4.1	 �Changes to Matrix Structure 
and Function with Age

Historically, aging studies in tendon have focused 
on alterations in tendon structure and function in 
aged individuals, and in particular on detecting 
changes in the collagenous structure. However, 
findings of age-related changes in collagen mor-
phology appear to be species- and tendon-
dependent. Collagen content has been shown to 
increase (Stammers et  al. 2020), decrease 
(Couppé et  al. 2009; Sugiyama et  al. 2019), or 
remain unchanged (Birch et  al. 1999; Thorpe 
et al. 2010; Kostrominova and Brooks 2013) with 
increasing age in a variety of model systems, 
despite also reporting downregulation of colla-
gen mRNA expression (Kostrominova and 
Brooks 2013). Equine research shows a decrease 
in tendon fibril diameters with increasing age 
(Parry et  al. 1978a), hypothesized to lead to 
increased fibrillar interaction and reduced interfi-
brillar sliding (Ribitsch et al. 2020). Alterations 
in collagen cross-linking are also debated in the 
literature, with increases in mature cross-links 
observed in old human subjects (Couppé et  al. 
2009) while overall cross-linking levels decreased 
with age in mouse tail tendon fascicles (Stammers 
et al. 2020). However, non-enzymatic crosslink-
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ing associated with advanced glycation end-
products was increased in both studies.

Studies in age-related alterations in the struc-
tural organization of the collagenous and non-
collagenous tissue compartments are similarly 
inconclusive. Studies in rat tail fascicles using 
polarized Raman spectroscopy demonstrate 
changes in collagen fiber orientation with aging, 
specifically indicating a more homogeneous tis-
sue structure (Van Gulick et al. 2019), yet histo-
logical studies report disruption of collagen fiber 
organization in aged mouse tendons (Sugiyama 
et al. 2019). Other studies have also demonstrated 
altered crimp morphology in the flexor tendon of 
older horses (Patterson-Kane et al. 1997). Crimp 
frequency and amplitude in the murine flexor and 
patellar tendons were no different with age, but 
the change in crimp amplitude in response to 
mechanical loading was larger in older flexor ten-
dons (Zuskov et al. 2020). Interestingly, the num-
ber of collagen fascicles was observed to decrease 
with age, suggesting a shift towards a greater pro-
portion of interfascicular matrix in older tendons 
(Ali et al. 2018; Gillis et al. 1997).

Similar to age-associated changes in collagen 
content, inconsistent differences in glycosamino-
glycan (GAG) levels have been observed. GAG 
content is decreased with age in the human supra-
spinatus tendon, but not in the biceps tendon 
(Riley et al. 1994b). However, GAG content was 
no different in male or female murine flexor ten-
dons (Connizzo et  al. 2019). Research in the 
equine model showed tendon-specific changes in 
GAG content, with age-associated decreases in 
positional tendons but no difference in energy 
storing tendons (Thorpe et al. 2010). This alludes 
that changes in GAG content with aging may be 
specific not only to the tendon studied but also 
perhaps to regional differences within the tendon. 
For example, accumulation of GAGs has been 
reported in tendinopathy samples, which is highly 
associated with aging, and tendons with regions 
that wrap around bone such as the rotator cuff 
and the insertion of the Achilles tendon (Thornton 
and Hart 2011; Archambault et  al. 2007; Attia 
et al. 2012; Majima et al. 2000).

With respect to the other non-collagenous 
components of tendon, there are few studies 

investigating age-related changes. Measures of 
DNA content, and therefore tissue cellularity, do 
not change in aged equine tendons (Birch et al. 
1999). One recent study in aged murine flexor 
tendons demonstrated a significant reduction in 
cell density in aged murine flexor tendons, but 
this change appeared to be sex-dependent with no 
differences found in age-matched female tendons 
(Connizzo et al. 2019). Cell density has also been 
shown to decrease in both rabbits and rats 
(Magnusson and Kjaer 2019; Nakagawa et  al. 
1994). In addition to cell number, tenocyte shape 
has also been reported to be altered in aging, with 
a shift towards a higher nucleus to cytoplasm 
ratio and a reduction of other organelles (Ippolito 
et  al. 1980). Elastic fibers, typically found 
between collagen fibers and fascicles, have been 
reported to decrease and become more disorga-
nized during aging (Godinho et al. 2017; Eekhoff 
et al. 2017; Ippolito et al. 1980), potentially alter-
ing sliding and stretch mechanisms at the 
microscale. Lubricin, which acts as a lubricant to 
enable gliding function (Funakoshi et  al. 2008; 
Sun et  al. 2006; Taguchi et  al. 2009), has been 
reported to increase with age in rabbit tendons 
(Thornton et al. 2015) but remain unchanged in 
human Achilles tendon (Peffers et  al. 2015). 
Finally, aged mice have been reported to have 
increased calcification, reduced vascularization, 
and increased adipose tissue (Zhang and Wang 
2015; Marqueti et al. 2017).

Changes in tissue structure do not appear to 
translate into clear deficits in macroscopic tissue 
function. In fact, age-related changes in quasi-
static mechanical properties appear to vary based 
on the specific tendon studied, the protocol used 
to assess changes, and the boundary conditions 
(gripping, testing environment, etc.) for experi-
mentation (Ackerman et al. 2017b; Vogel 1980; 
Shadwick 1990; Haut et  al. 1992). Tendon 
mechanical properties have shown to both 
decrease (Vogel 1980) and increase with age in 
rat tail tendons (Shadwick 1990; Nielsen et  al. 
1998). In rat patellar tendon, mechanical proper-
ties were weakly positively correlated with age 
(Haut et al. 1992) or decreased with age (Dressler 
et al. 2002). Achilles tendon function is decreased 
in older humans (Lindemann et  al. 2020), and 
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either decreased (Pardes et al. 2017) or no differ-
ent (Gordon et  al. 2015) in aged rodents com-
pared to mature counterparts. Rotator cuff 
tendons do not appear to have altered macroscale 
function with aging (Connizzo et al. 2013b; Lin 
et al. 2020). Interestingly, measures of dynamic 
tissue function through fatigue loading (Zuskov 
et al. 2020; Thorpe et al. 2017), dynamic macro-
scopic testing (Pardes et al. 2017; Dunkman et al. 
2013), and measures of dynamic responses at the 
fiber (Connizzo et al. 2013b; Li et al. 2013) and 
fibril (Thorpe et  al. 2013b) levels all suggest a 
diminished mechanical function in the aging 
population. In addition, nanomechanical testing 
revealed increased fluid flow and poroelasticity 
in aged supraspinatus tendons but decreased 
compressive function (Connizzo and Grodzinsky 
2018a), alluding to deficits in dynamic mechani-
cal function. These dynamic and nanoscale eval-
uations are indicative of changes present in the 
extracellular matrix, but could be more associ-
ated with changes in the interfibrillar or interfas-
cicular matrix (Thorpe et al. 2013b, 2015a, 2017) 
rather than the collagenous matrix.

3.4.2	 �Matrix Turnover in Aged 
Tendons

Like many other tissues, it has been well estab-
lished that the matrix repair response in aged ten-
dons is impaired (Ackerman et  al. 2017b; 
Mienaltowski et  al. 2016). Recent studies have 
focused primarily on massive injury responses as 
a result of partial or full-thickness tendon tears. 
However, we focus here on the ability of aged 
cells to regulate everyday tissue homeostasis. 
Although tendons typically are thought to have 
very low matrix turnover at maturity, tenocytes 
do become metabolically active, begin to prolif-
erate and actively remodel the matrix in response 
to changes in mechanical stimulus (Heinemeier 
et al. 2012; Rooney et al. 2014, 2015; Magnusson 
and Kjaer 2003; Kjaer et al. 2005). As reported 
here and in studies before, only a small fraction 
of the collagen present in tendons, hypothesized 
to be associated with small diameter collagen 

fibrils, is homeostatically regulated for daily 
remodeling to comply with functional demands 
(Chang et al. 2020; Thorpe et al. 2010; Yeung and 
Kadler 2019; Birch et  al. 2016). However, the 
turnover rate of this small fraction has not been 
studied extensively in aged tendons to date (Birch 
et  al. 2016). One study in equine tendons sug-
gested that there is a decline in collagen turnover 
in aged tendons, while other studies of diseased 
tendon show increased collagen turnover rate (de 
Mos et al. 2007). Recent investigations of colla-
gen synthetic activity in horse tendons reported 
no differences though (Thorpe et al. 2015b), sug-
gesting no difference in the capacity to remodel 
the matrix. However, recent studies in mouse ten-
don explants demonstrated that although there 
were no differences between young and aged 
mice synthetic activity at baseline, age-related 
declines were evident when subjected to stress 
deprivation (Connizzo et  al. 2019). Perhaps an 
injurious stimulus is necessary to illuminate 
larger deficits in matrix synthesis due to the gen-
erally low metabolic activity of tendon in vivo, 
and this highlights potential deficits that could be 
present in homeostatic remodeling and tissue 
repair but are not yet explored.

The interfascicular matrix has recently been 
shown to contain more proteins and more protein 
fragments than the collagenous compartment, 
indicating greater matrix degradation and turn-
over (Thorpe et al. 2016a). Since dynamic reor-
ganizations such as collagen sliding and 
re-alignment are responsible for much of the 
daily function of tendons, the interfascicular 
compartment is likely more often damaged and 
remodeled accordingly. In fact, the interfascicu-
lar matrix, and not the fibrous matrix, was 
recently shown to be the primary location of 
adaptation to mechanical loading during devel-
opment, highlighting the importance of this com-
partment in understanding overall tissue turnover 
(Zamboulis et al. 2020). While protein quantity 
does not change with aging in the interfascicular 
matrix, the number of protein fragments 
decreased indicating decreased matrix turnover 
and accumulation of tissue damage, potentially 
leading to chronic disease (Thorpe et al. 2016a).
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3.4.3	 �Aging-Associated Changes 
in Cell Function Affecting 
Matrix Homeostasis

One difficulty in identifying mechanisms for age-
related tissue degeneration is the inability to dis-
entangle changes in the ECM and changes in cell 
behavior. Since resident cell populations are criti-
cal to maintaining and repairing the extracellular 
matrix in mechano-homeostasis (Fig.  3.4), it is 
likely that changes with age in the extracellular 
matrix are preceded by cellular adaptations. Age-
related cellular changes have been characterized 
extensively in other organ systems, defined as 
nine primary hallmarks of aging (López-Otín 
et al. 2013; Hernandez-Segura et al. 2018). This 
includes genomic instability, telomere attrition, 
epigenetic alterations, loss of proteostasis, dereg-
ulated nutrient sensing, mitochondrial dysfunc-
tion, cellular senescence, stem cell exhaustion, 
and altered intercellular communication. The 
first four hallmarks represent primary causes of 
cellular damage, while the other five are either 
responses to that damage, initially attempting to 
mitigate the damage but eventually becoming 
damaging themselves, or consequences of that 
damage. Since there are several other reviews 
that describe these hallmarks and their effects on 
cell behavior extensively (López-Otín et al. 2013; 
Folgueras 2018; Guerville et  al. 2020; Rebelo-
Marques et  al. 2018), we focus here on those 
changes that may be relevant to understanding 
age-related changes in matrix turnover, based on 
literature in the tendon and ligament field as well 
as studies performed in other fibrous tissues.

3.4.3.1	 �DNA Damage and Matrix 
Turnover

Although we have DNA repair mechanisms, 
damage naturally accumulates over time via 
exposure to environmental toxins, simple DNA 
replication errors, or damage molecules. 
Telomeres protect the terminal ends of chromo-
somes from deterioration, but since cells are not 
able to copy the ends of DNA efficiently the telo-
mere region shortens with each cell division. 
After some time, this can lead to cell growth 

arrest, limiting the ability of tissues to grow and 
regenerate with aging. Stem cells harvested from 
the periodontal ligament were reported to have 
significantly shorter telomere length with increas-
ing donor age, and this corresponded with 
reduced regenerative properties (Ng et al. 2020; 
Trivanović et al. 2015). In contrast, relative telo-
mere length was not decreased in aged equine 
tendons (Thorpe et al. 2016b). Given differences 
in collagen turnover rate between the two tissues, 
with periodontal ligament being associated with 
much faster turnover, DNA damage accumula-
tion due to telomere shortening may be depen-
dent on specific tendon function. Since tenocytes 
more generally have a fairly low proliferation 
rate at maturity (Grinstein et  al. 2019), it is 
unclear what role replication-based damage 
would play in tenocyte behavior; it is more likely 
that these mechanisms would impact tendon-
derived stem or progenitor cells (Kohler et  al. 
2013).

Proteins are constantly being synthesized and 
degraded throughout our lifetime to maintain an 
efficient and effective functional tissue. The reg-
ulation of protein assembly inside the cell, an 
array of quality control mechanisms, is called 
protein homeostasis or proteostasis (López-Otín 
et  al. 2013; Klaips et  al. 2018). These mecha-
nisms become less efficient in aged organisms, 
which can result in protein aggregation as well as 
the production of damaged or misfolded proteins 
which can cause cell and tissue dysfunction. 
Decreased expression of genes encoding molecu-
lar chaperones facilitating protein folding and 
proteostasis has been reported in fibroblasts har-
vested from skin in patients with classic EDS 
(Chiarelli et al. 2019a, b). Given the tendon and 
ligament phenotype in this disease, this work 
provides evidence that loss or inefficient proteos-
tasis could be a mechanism for disrupted matrix 
production in fibrous tissues. Furthermore, 
another recent study reported interplay between 
collagen synthesis and endoplasmic reticulum 
stress via the circadian clock, whereby targeting 
protein misfolding in disease could restore colla-
gen homeostasis (Pickard et  al. 2019). Future 
work is necessary to determine if loss of proteos-
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tasis is an age-related phenomenon in tenocytes 
or tendon stem cells and what direct effects this 
might have on matrix homeostasis.

3.4.3.2	 �Mitochondrial Dysfunction 
and Oxidative Stress

A byproduct of mitochondrial energy production 
is the presence of free radicals or reactive oxygen 
species (ROS), which can be potentially damag-
ing to the cell. For many years, ROS were thought 
to be the major culprit behind aging but recent 
studies showing that lowering ROS does not 
impact health have challenged this idea (López-
Otín et al. 2013; Hekimi et al. 2011; Van Remmen 
et al. 2003). Production of ROS is important for 
signaling cell stress, but this process is a delicate 
balance. Over time, increasing production of 
ROS results in dysfunction of the mitochondria 
which in turn can lead to cells becoming less effi-
cient at producing energy and causing damage to 
other cellular components (López-Otín et  al. 
2013). One recent study reported increases in the 
expression of peroxiredoxin, an antioxidant, in 
degenerated tendon, suggesting that oxidative 
stress may be a factor in the etiology or progres-
sion of age-related tendon disease (Wang et  al. 
2001). In addition, a reduction in catalase and 
heat shock proteins discovered through pro-
teomic analysis suggests that aged tendons may 
be prone to ROS-based damage (Peffers et  al. 
2014). However, other studies have found no 
changes in oxidative-stress related genes (Peffers 
et al. 2015). Several studies have suggested that 
DNA damage in tendon cells can be induced 
through the production of ROS via mechanical 
overload or underload (Yudoh et al. 2005; Zapp 
et al. 2020). In fact, repression of oxidative stress 
through drug therapies diminishes the aberrant 
differentiation of tendon-derived cells subjected 
to excessive mechanical overload (Hsiao et  al. 
2019; Morikawa et al. 2014). Physiological load-
ing was found to reduce the production of oxida-
tive products such as ROS, protecting cells from 
premature senescence and matrix degeneration 
(Zhang and Wang 2015).

Besides the study of reactive oxygen species 
produced in the mitochondria, there have not 
been many studies on the role of mitochondrial 

function in tendon aging more generally. One 
recent study found that treating rat-derived ten-
don fibroblasts with advanced glycation end-
products caused alterations in mitochondrial 
DNA content as well as a shift in matrix remodel-
ing towards degradation rather than synthesis 
(Patel et al. 2019). Mitochondrial biomarkers are 
upregulated in the early phases of tendon healing, 
and therefore dysfunction in this organelle may 
also play a role in impaired tissue healing found 
in aged individuals (Thankam et  al. 2018). 
Furthermore, the export of mitochondrial cal-
cium is a key process in the process of matrix 
calcification during tendon calcification, suggest-
ing a link with matrix production (Yue et  al. 
2016). Given these links between mitochondrial 
function and matrix production, clearly more 
research into the role of mitochondrial function 
in normal tenocyte or tendon stem cell homeosta-
sis is warranted.

3.4.3.3	 �Cellular Senescence and SASP 
in Matrix Degradation

Cellular senescence is a natural repair response 
to damage, which can arise due to overexpression 
of certain oncogenes, by excessive cell replica-
tion, or by the presence of certain DNA damage-
causing molecules (Acosta et  al. 2013; 
Blagosklonny 2011; Blokland et  al. 2020). 
Senescence is critical for wound repair and tumor 
suppression in young and mature individuals, 
preventing damaged cells from continuing to pro-
liferate and propagate throughout the tissue. 
However, in old tissues, clearance of these cells is 
deficient, likely due to deteriorating immune 
function and thus, senescent cells accumulate 
within the matrix. One major concern with the 
presence of senescent cells is their ability to pro-
duce pro-inflammatory cytokines, called the 
senescence-associated secretory phenotype 
(SASP) (Miller et  al. 2012b; Connizzo et  al. 
2013b). Inflammatory signaling produces many 
deleterious effects on matrix metabolism, as dis-
cussed above in Sect. 3.3.3 (Acosta et al. 2013; 
Zhang et al. 2015; Tsuzaki et al. 2003; Fedorczyk 
et al. 2010). Therefore, exposure to high levels of 
inflammatory cytokines may tip the scales 
towards matrix degeneration over adaptation 
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(Connizzo and Grodzinsky 2018b, 2020). 
Importantly, the SASP reinforces senescence 
through paracrine signaling (Acosta et al. 2013), 
thus a small population of senescent cells in aged 
tissues can lead to significant declines in tissue 
maintenance (Campisi 1998). This inflammatory 
signaling can also be further stimulated by 
damage-associated molecules produced in the 
extracellular matrix regularly, such as soluble 
decorin, tenascin-c and fibrinogen (Blokland 
et al. 2020).

Both tenocytes and tendon stem cells (TSCs) 
have been induced to replicative senescence in 
vitro, and cells harvested from aged subjects have 
been shown to favor senescence induction earlier 
than young counterparts (Kohler et  al. 2013; 
Arnesen and Lawson 2006). Cells prematurely 
induced to senescence in the laboratory have 
been critical at understanding the age-related 
process, but cell culture alone does not replicate 
native cell-cell and cell-matrix connections for 
studying ECM remodeling. Therefore, the link 
between cellular senescence and dysregulation of 
ECM maintenance has not yet been fully eluci-
dated. There does appear to be a connection 
between matrix synthesis and cellular senes-
cence. One study demonstrated that collagen I is 
upregulated in senescent fibroblasts harvested 
from human subjects and in cells subjected to 
hydrogen peroxide to induce senescence (Murano 
et al. 1991; Dumont et al. 2000), indicating a role 
for collagen production in senescence. 
Interestingly, research using senescence-
accelerated mouse models demonstrated that 
senescence-prone cells respond to collagenase-
injection with altered expression profiles favor-
ing matrix degradation over synthesis (Ueda 
et  al. 2019). In fact, increased expression of 
MMPs has been reported before generally with 
aging and also specifically in aging tendon and 
senescent cells (Dudhia et al. 2007; Jones et al. 
2006; Yu et al. 2013; Millis et al. 1992). In the 
absence of mechanical signals (as in the case of 
disuse or injury), aged mouse flexor explants 
exhibited increased expression of MMPs and cel-
lular senescence markers (p16/p19/p53) 
(Connizzo et  al. 2019). Therefore, there does 
appear to be a relationship between senescence 

and collagen turnover although it is unclear 
whether collagen is typically increased or 
decreased due to discrepancies between studies. 
Senescence has been implicated in fibrosis of the 
lung and in cutaneous wounds (Waters et  al. 
2018; Jun and Lau 2017), but further work is 
needed to clarify this link in tendon and ligament 
tissues.

3.4.3.4	 �Tendon Stem Cell Exhaustion 
and Matrix Repair

Like other cells, stem cells are also subject to 
age-related changes such as DNA damage accu-
mulation, telomere shortening and cellular senes-
cence. Over time, these lead to changes in the 
behavior of the stem cells present as well as a 
reduction in the pool of stem cells available. Age-
related changes in TSCs is one of the more com-
monly studied mechanisms of aging in the tendon 
and ligament literature (Lui and Wong 2019; 
Zhou et al. 2010; Dai et al. 2019), thought to be a 
primary mechanism for age-related declines in 
tendon healing. TSCs are present in lower num-
bers in aged rabbit (Zhang and Wang 2010), rat 
(Zhou et al. 2010), and human tendons (Kohler 
et al. 2013; Ruzzini et al. 2014). Since these cells 
are often recruited to injury sites to aid in tissue 
repair, this reduction in cell number is hypothe-
sized to be a primary determinant of diminished 
healing capacity.

While multiple studies have also shown that 
the self-renewal capacity of TSCs is not altered 
with aging (Kohler et al. 2013; Zhou et al. 2010; 
Ruzzini et  al. 2014), the functional capacity of 
these cells to perform duties necessary for matrix 
remodeling and repair is indeed altered. Aged 
TSCs exhibit lower proliferative capacity and 
reduced migration (Zhang and Wang 2015; 
Kohler et al. 2013; Zhou et al. 2010), suggesting 
insufficiencies in recruitment of TSCs to repair 
sites in aged tendons. However, the recruitment 
of TSCs to an injury site in vivo has not yet been 
explored in detail, and studies to date have pri-
marily been performed in cell culture. Structural 
differences to the tendon ECM with aging as dis-
cussed above may further alter the ability of 
TSCs to migrate to wounds in vivo.
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Only a few studies have investigated the abil-
ity of aged or senescent TSCs to perform their 
duties with regards to matrix synthesis. One 
recent study revealed significant deficits in the 
ability to form three-dimensional tissue organ-
oids, citing poor ability to produce and organize 
collagen matrix and reduced expression of 
matrix-related genes, including collagen I and 
key regulators of fibrillogenesis (Yan et al. 2020). 
In addition, organoids formed from aged TSCs 
also exhibited significant apoptosis and senes-
cence. Expression of ECM and ECM-remodeling 
genes was found to be significantly reduced in 
other studies of aged mouse and human tendons, 
specifically reporting reduced collagen expres-
sion and reduced collagen production in aged 
TSCs (Klatte-Schulz et al. 2012; Han et al. 2017; 
Gehwolf et  al. 2016). This could suggest that 
aged TSCs, and specifically senescent TSCs, may 
respond to injury via fibrotic mechanisms.

3.4.3.5	 �Altered Intercellular 
Communication 
and Mechanosensing

Tissues are able to grow and function normally 
due to the ability of cells to communicate with 
each other, constantly transferring information 
locally to nearby cells through direct cell-cell 
junctions or through the interstitial matrix via 
secretion of soluble factors (López-Otín et  al. 
2013; Rebelo-Marques et  al. 2018). Aging can 
alter the ability of cells to perform this function 
and in the case of stem cells, impact cell fate and 
function. Signaling in tenocytes during develop-
ment, homeostasis and injury has been exten-
sively studied as it is critical to transduction of 
mechanical signals in order to facilitate tissue 
adaptation (Wall et  al. 2016; Wall and Banes 
2005). Dysregulated cell-cell communication 
was reported in aged TSCs recently (Popov et al. 
2017), but interestingly this has not been explored 
in aging tenocytes yet. This avenue of investiga-
tion may be critical to understanding the dys-
function of matrix maintenance that occurs with 
age and we strongly encourage more research in 
this area.

3.5	 �Novel Systems and Tools 
to Study ECM Maintenance 
and Regulation

At the heart of the research discussed above is the 
dynamic addition and removal of material from 
critical structures within the tissue. The net flux 
of molecular components to developing and 
extant structures is positive during matrix assem-
bly/growth, zero during maintenance and nega-
tive during degradation. For collagenous tissue 
assembly, maintenance and dysregulation it is 
critical to track (1) the production/export of new 
ECM molecules, (2) the degradation of existing 
ECM molecules, (3) the trafficking of ECM mol-
ecules from the cells to the matrix, and (4) the 
fate of the ECM molecules as they incorporate 
into matrix structures. This work heavily relies 
on novel tools and model systems used to track 
ECM molecules. Here we focus on those that can 
be used extracellularly, where they can help illu-
minate the dynamics of component exchange in 
the compartment that resides between the cells 
and the structural matrix.

3.5.1	 �In Vitro Model Systems

One major hurdle to studying ECM maintenance 
throughout life is the difficulty in measuring 
matrix production and breakdown in real-time 
without disruption of the intricate tissue struc-
ture. A number of simpler in vitro model systems 
have been designed to address this concern. 
Generally, in vitro culture allows for complete 
control and accurate measurement of applied 
mechanical and biological stimuli through the 
use of novel bioreactors (Wang et  al. 2013a, b; 
Dyment et  al. 2020; Janvier et  al. 2020; 
Tohidnezhad et al. 2020; Chen et al. 2016; Butler 
et al. 2009), allowing for simple and straightfor-
ward experiments. Recent developments in tissue 
engineering strategies have allowed researchers 
to produce three-dimensional tissue engineered 
constructs (TECs), bioartificial tendons (BATs), 
and ligament equivalents (LEs) (Chen et al. 2016; 
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Deng et al. 2009; Butler et al. 2008; Garvin et al. 
2003; Huang et al. 1993). Typical cell sources for 
engineered neo-tendons include mesenchymal 
stem cells, fibroblasts, embryonic tendon cells, 
and tendon progenitor or stem cells (TSCs), 
which are harvested and expanded using tradi-
tional culture methods. Cells are then supplied 
with appropriate growth factors and mechanical 
cues to stimulate production of tendon-like 
matrix. Mechanical cues include the use of cus-
tom bioreactors to stimulate tenogenic differen-
tiation through static and cyclic tensile loading as 
well as the use of spatial or organizational cues, 
such as high aspect ratio channels and aligned 
substrate morphology in order to stimulate cells 
to form aligned tendon-like collagenous tissue.

Through this work, researchers have estab-
lished that mechanical stimulation is critical for 
formation of appropriate collagen fibril morphol-
ogy in vitro (Kalson et  al. 2011; Mubyana and 
Corr 2018; Schiele et  al. 2013; Kapacee et  al. 
2008). The arrangement of geometric constraints 
(posts, channels, etc.) and the topographical sur-
face in these systems can dictate both matrix 
alignment and cell phenotype, opening the door 
for studying links between substrate-specific 
mechanotransduction and matrix assembly 
(Schiele et al. 2013; Nirmalanandhan et al. 2007; 
Bayer et  al. 2010). Furthermore, these systems 
have been critical in identifying which cell types 
can be induced to a tenogenic lineage and the 
necessary conditions to do so (Chen et al. 2016; 
Rajpar and Barrett 2019; Angelidis et  al. 2010; 
Harris et al. 2004). These studies have paved the 
path for in vivo studies using larger and more 
complex tissue engineered constructs for tendon 
repair and also aided in the establishment of met-
rics to define repair capacity for tendon-derived 
cell populations, all while revealing the sophisti-
cation and complexity of tendon and ligament 
cell biology. However, these neo-tendons and 
more sophisticated TECs have not been able to 
faithfully recapitulate the mature tendon matrix, 
lacking hierarchical fibrillar structure and 
mechanical integrity, and thus can only be used 
for studying the initial stages of ECM production 
and not adult maintenance. Furthermore, studies 
to date have only focused on the collagenous 

matrix and have not investigated the interfibrillar 
and interfascicular matrix development. Finally, 
the study of age-related dysfunction would be 
difficult in systems requiring cell expansion due 
replicative senescence-prone aged cell 
populations.

Though the technique has been used since the 
late 1980s (Dyment et al. 2020; Wunderli et al. 
2020), explant culture models have gained popu-
larity again recently to study matrix turnover in 
vitro without major disruption of the hierarchical 
ECM structure. Explants can be harvested either 
as whole tendon with adjacent muscle and bone 
intact (murine rotator cuff (Connizzo and 
Grodzinsky 2018b)), intact tendon midsubstance 
(canine (Hannafin et al. 1995; Ikeda et al. 2010), 
rabbit (Abrahamsson et  al. 1991), equine 
(Murphy and Nixon 1997), avian (Flick et  al. 
2006), and murine flexor tendon (Connizzo et al. 
2019)), functional tendon sub-units (rat tail ten-
don fascicle (Lavagnino et  al. 2016; Wunderli 
et  al. 2017; Leigh et  al. 2008; Screen et  al. 
2005b)), or cut pieces of tendon (human (Wong 
et  al. 2009; Costa-Almeida et  al. 2018) and 
bovine tendon explants (Koob and Vogel 1987; 
Samiric et al. 2006)). Historically, these explant 
models have been used primarily to understand 
the role of mechanical stimulus in preventing 
degeneration of tissue ECM either by studying 
stress deprivation or applying mechanical stress 
or strain to explants via custom-built bioreactors 
(Koob and Vogel 1987; Lavagnino et  al. 2003; 
Connizzo et al. 2019; Hannafin et al. 1995; Flick 
et al. 2006; Gardner et al. 2012). They have also 
been used more recently to study inflammation, 
disease, and injury through the use of medium 
additives and other chemicals to simulate various 
biological environments (Connizzo and 
Grodzinsky 2018b, 2020; Abrahamsson et  al. 
1991; Wong et  al. 2009; Fessel et  al. 2014). 
Combining these model systems with the use of 
traditional labeling pulse-chase experiments 
allow for the measurement of matrix (proteogly-
can, collagen) synthesis (Connizzo and 
Grodzinsky 2018b; Koob et  al. 1992; Robbins 
et al. 1997). Recent studies have identified sex- 
and age-related differences in matrix synthesis 
and overall tissue metabolism despite no initial 
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differences at baseline (Connizzo et  al. 2019), 
highlighting the power of these model systems in 
studying cell-mediated ECM remodeling in 
real-time.

A major benefit of explant culture models is 
the preservation of the intact hierarchical fibrillar 
matrix and the internal cell population, allowing 
for study of natural cell-matrix interactions and 
more minor changes to the ECM. Furthermore, it 
is possible that explants could be a viable model 
system to study the interfibrillar matrix, as this 
tissue is also kept intact during harvest. Explant 
tissues can be harvested from transgenic and 
aged animals, allowing us to pinpoint the roles of 
certain regulatory proteins in ECM homeostasis 
directly as well as to capitalize on the use of pre-
viously established injury and disease models. 
However, explants are inherently separated from 
other cell types and tissues that may be relevant 
for ECM maintenance, such as systemic innerva-
tion, lymphatics, and vasculature. Furthermore, 
tissue harvest induces injury and appropriate cul-
ture conditions for tissue maintenance is still an 
ongoing avenue of investigation by multiple lab-
oratories (Abrahamsson et  al. 1991; Wunderli 
et  al. 2017; van Vijven et  al. 2020; Vogel and 
Hernandez 1992). Nevertheless, with the increase 
in novel tools for measuring real-time ECM regu-
lation, there is untapped potential for explant cul-
ture systems in studying ECM turnover.

3.5.2	 �In Vivo Model Systems

In vivo animal models, and in particular trans-
genic rodent models, have long been used in ten-
don research to study tendon matrix development, 
maturation, and aging (Delgado Caceres et  al. 
2018; Hast et  al. 2014; Carpenter et  al. 1999; 
Robinson et al. 2017). However, traditional trans-
genic animal models are limited by an inability to 
separate temporal regulation and compensatory 
effects due to the involvement of many regulatory 
proteins during tendon development (Connizzo 
et  al. 2013a; Theodossiou and Schiele 2019). 
However, precise control of expression via the 
establishment of novel inducible mouse lines 
have since allowed for the study of temporal 

expression patterns during healing and growth 
(Gumucio et  al. 2020; Disser et  al. 2019; 
Ackerman et al. 2017c), as well as the ability to 
label cell populations for lineage tracing and 
local expression pattern studies (Yoshida et  al. 
2016; Soeda et  al. 2010; Dyment et  al. 2014, 
2015). Using tamoxifen-inducible scleraxis-cre 
mouse models, researchers recently established 
that decorin and biglycan contribute critically to 
normal tendon homeostasis and aging, despite 
their low expression relative to developmental 
time points (Robinson et al. 2017; Leiphart et al. 
2020). However, one study demonstrated delete-
rious effects of tamoxifen injection on tendon 
homeostasis and healing (Best et al. 2020) allud-
ing to pro-fibrotic mechanisms, and another dem-
onstrated altered rotator cuff healing (Cho et al. 
2015), warranting further exploration. Using a 
doxycycline-induced green fluorescent protein 
(GFP) reporter model, researchers were able to 
pinpoint the transition from development to 
homeostasis, and correlate this to tissue growth 
(Grinstein et al. 2019).

In addition to these inducible models, the gen-
eration of tendon-specific knockout mice and cell 
lines via targeting of scleraxis-lineage cells has 
revolutionized the study of tendon development, 
homeostasis, and aging (Gumucio et  al. 2020; 
Yoshida et al. 2016; Pryce et al. 2007; Schweitzer 
et  al. 2001; Killian and Thomopoulos 2016). 
First, the study of key ECM regulatory proteins 
that were previously unexplored due to embry-
onic or perinatal lethality is now possible. 
Through these efforts an essential role for colla-
gen XI in tendon development was discovered 
where the lack of collagen XI resulted in altered 
fibrillar structure and organization, as well as 
reduced tissue function (Sun et al. 2020). In addi-
tion, these models have established a critical role 
for MMP-14 during development in the forma-
tion of collagen fibrils, in sharp contrast to more 
well-known function in facilitating matrix break-
down (Taylor et  al. 2015). Furthermore, recent 
work has identified the critical role of collagen V 
in the regulation of regionally-dependent 
(Connizzo et al. 2016b, c) and site-specific ten-
don structure and function (Sun et  al. 2015b; 
Connizzo et al. 2015). Along with novel induc-
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ible models, these technologies are primed to 
study the role of matrix regulators in tendon 
homeostasis without disruption from develop-
mental processes or systemic changes associated 
with genetic knockdown.

Despite these major advances, there are still a 
number of hurdles in studying tendon matrix 
homeostasis and regulation. One difficult area of 
study is the dysfunction of ECM regulation dur-
ing aging. Mice considered for the study of aging 
should ideally be between 18 and 24 months of 
age, after most biomarkers of aging are present 
and before survivorship drops significantly 
(Flurkey et  al. 2007). Maintaining aging rodent 
colonies is both expensive and time-consuming, 
especially when considering novel transgenic 
lines for which breeding must be performed in 
house. One solution is to consider mouse models 
of accelerated aging, such as models of progeroid 
syndromes, models of mitochondrial mutations, 
senescence-prone mice or models of ‘inflam-
mageing’ (Folgueras 2018; Kõks et  al. 2016; 
Butterfield and Poon 2005). We are not yet aware 
of any studies investigating tendon aging with 
these models nor is there much evidence of ten-
don disease, and therefore this presents an inter-
esting future avenue of exploration.

3.5.3	 �Tools for Labelling Collagen 
Turnover

The advent of electron microscopy (EM), its 
application to living systems and the recent 
extension of its capacity to produce highly-
detailed 3-D serial reconstructions of tendon 
nanoscale structure has advanced our understand-
ing of tendon morphology and development tre-
mendously (Fig.  3.5a, b) (Birk et  al. 1990b; 
Starborg et al. 2013; Trelstad et al. 1982). EM has 
sufficient resolution to observe the details of cell/
matrix interaction with nearly molecular resolu-
tion. However, EM requires dehydration and fix-
ation of tissue, it thus cannot address the critical 
question of directionality or magnitude of the 
flux of molecules, leaving matrix assembly and 
degradation dynamics an indirect and speculative 
endeavor. While it is possible to image “single” 

collagen fibrils and collagen matrix remodeling 
with label-free methods such as second harmonic 
generation (SHG, Fig. 3.5c) (Campagnola et al. 
2002; Cox et al. 2003; Theodossiou et al. 2006), 
differential interference contrast (DIC) (Petroll 
and Ma 2003; Bhole et  al. 2009) and confocal 
reflection (Brightman et  al. 2000; Kim et  al. 
2006), these methods are also limited by a num-
ber of constraints: SHG reportedly has nanoscale 
resolution [recently claimed at 30 nm (Bancelin 
et  al. 2014)] but only captures fibrils with non-
centrosymmetric organization because it relies 
on a lack of inversion symmetry (Campagnola 
et al. 2002). DIC cannot resolve fibrils in dense 
tissue and is subject to orientation angle contrast 
dependency (Siadat et  al. 2021a) and confocal 
reflection microscopy has resolution limitations 
and density/contrast difficulties as well. In addi-
tion, all of them are unable to track the fate of 
single molecules during their transit to and from 
the matrix.

The ultimate goal of labelling is to determine 
the spatial and temporal fates of target molecules 
from their translation to the site of action to 
removal from service, all in real time in a living 
animal. It would be even better if their exact loca-
tions and orientation with structures could be 
determined as well (Alzola et  al. 2021). 
Fortunately, the labelling and tracking of matrix 
molecules has been proceeding apace for years 
secondary to advances in labelling techniques 
and microscopy methods. As far as we can tell, 
no combination of molecular probe and imaging 
method has met this lofty standard to study ten-
don extracellular matrix. However, there are a 
number of probe/microscopy combinations that 
can reasonably be used to ask particular, circum-
scribed questions with excellent results.

3.5.3.1	 �Collagen-Binding Protein 
Labels

Collagen labels based on a bacterial adhesion 
protein with specificity for collagen (CNA35) 
and on an integrin (GST-α1I) were recently dem-
onstrated in Krahn et al. (2006) The labels were 
shown to be more specific than dichlorotriazinyl 
aminofluorescein (DTAF) which has been the 
standard for tracking collagen formation. CNA5 
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had better affinity for collagen than GST-α1I and 
did not show substantial cross-reactivity with 
NCPs in the matrix. The binding of the probe is 
reversible which makes it “unlikely” to affect 
matrix production and permits time course inves-
tigations of matrix development. However, the 
probe is not specific for type I and also binds col-
lagen III and IV.  An interesting application for 
the probe was one in which the probe was bound 
to collagen and made “activatable” via MMP-2 
proteolysis (Xia et al. 2011). More recently, the 
same group added six genetically encoded colla-
gen probes produced in bacteria that fuse CNA35 
to fluorescent proteins across the visible spec-
trum in an engineered, collagen rich tissue 
(Fig. 3.5d) (Aper et  al. 2014). There have been 
multiple collagen binding proteins discovered 

which can be used to label collagen (Chilakamarthi 
et al. 2014), which would all operate in a manner 
similar to CNA35. While the primary utility of 
these probes is the real-time, multi-color imaging 
of live tissue, in situ, the multiple color probes 
could make it possible to perform sequential col-
lagen deposition tracking experiments provided 
the reversibility of previously bound probe does 
not permit exchange with newly added probes. 
However, the size of the probe could inhibit 
proper assembly of matrix given that the molecu-
lar weight is the combination of the CNA35 
(35  kDa) and the fluorophore (e.g. 93  kDa for 
tdTomato). Furthermore, there is a troubling lack 
of investigations, demonstrating the effect of col-
lagen binding proteins on collagen assembly 
kinetics.

Fig. 3.5  Tools for labelling collagen synthesis, remod-
eling, and incorporation. (A) 3View® analysis of resin 
embedded sample of a newborn mouse tendon. Colors 
represent different cells/bundles of fibrils. From Starborg 
et al. (2013) with permission. (B) Conventional transmis-
sion electron micrograph of collagen formation in a devel-
oping chick tendon showing the details of the cell-fibril 
interface. From Trelstad et  al. (1982) with permission. 
Scale bar is 300 nm. (C) Label free, confocal SHG images 
of collagen in frozen rat foot flexor tendon in transmission 
mode; 880  nm pumping frequency. From Theodossiou 
et al. (2006) with permission. (D) Labelling of engineered 
collagen-rich cardiac tissue. Collagen is stained with 
reversible collagen binding dye produced in bacteria: 
CNA35-m Turquoise2. Cells: green; mitochondria: red. 
Modified from Aper et al. (2014) with permission. Scale 
bar is 100μm. (E) Endogenous label incorporation The 
GFPtopaz and mCherry labels indicate that individual col-
lagen molecules are incorporated into the same network 

of forming fibers. From Lu et al. (2018) with permission. 
(F) Fret labelled Fibronectin (Fn-FRET) and type 1 
Collagen mechanochemical interaction probed from 
Kubow et al. (2015) with permission. Collagen was shown 
to colocalize principally with unloaded FN (yellow). 
Scale bar is 20μm. (G, top) GFP labelled collagen I 
zebrafish line generation. The N-terminal region of the 
collagen I α2 chains were selected for placement of the 
label. GFP-tagged alpha chain trimerises with unlabeled 
“a” and “b” chains. A mix of heterotrimers (labeled and 
unlabeled) are capable of forming fibrils with the label 
residing in the intratrimer gaps. (G, bottom) Progression 
of the closing of incision wound in the flank skin of trans-
genic zebrafish. Wound gape due to tension release shown 
at 4 dpi is closed with loose network of deposited collagen 
fibrils showing poor organization at 5 dpi. The collagen 
network is repaired over the next 11 days and reorganized 
into an orthogonal pattern by 16 dpi. Scale bars are 15μm. 
(Modified from Morris et al. (2018) with permission)
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3.5.3.2	 �Bio-orthogonal Labels
Advances in bio-orthogonal chemistry have led 
to the development of a series of functionalized 
metabolites that act as chemical reporters 
(Grammel and Hang 2013; Dieterich et al. 2006). 
These can be viewed as analogous to the early 
radio tracer experiments with the exception that 
they are non-toxic, easily incorporated with little 
regulation, have low off target effects and can be 
readily illuminated fluorescently with high reso-
lution, in vitro and in vivo. The process involves 
separating the incorporation of the reporter from 
its detection. This prevents the addition of bulky 
fluorophores until a readout is desired, which 
also presents opportunities for pulse chase exper-
iments. Proteome tagging using non-canonical 
amino acids with reactive handles has the poten-
tial to revolutionize live cell imaging and track-
ing of molecular moieties. Non-canonical amino 
acids are incorporated into the target molecule 
using the cell’s own machinery. Amgarten et al. 
labelled collagen with azido-proline (N3-Pro) in 
fetal ovine osteoblast culture via supplementa-
tion of the growth medium with cis-4-azido-L-
proline (Amgarten et al. 2015). The incorporation 
of the N3-Pro minimally affects collagen forma-
tion as expected, and provides a substrate for 
dibenzooctyne (DIBO) fluorescent probe. While 
they show that the N3-Pro did not affect cell via-
bility, the DIBO reacted with some intracellular 
components including actin increasing back-
ground fluorescence which required additional 
treatment to reduce. Nonetheless, bio-orthogonal 
collagen labelling has enormous potential as a 
live cell and in vivo imaging technique. In 2014, 
Mirigian et  al. performed bio-orthogonal pulse 
chase experiments in dermal human fibroblasts 
with and without a type I collagen chain mutation 
(Mirigian et  al. 2014). They incorporated the 
non-canonical amino acid azidohomoalanine 
(Aha), a methionine (Met) analog, into cell 
secreted collagen by supplementing Met and 
Cys-free DMEM with Aha. They reported quiet 
incorporation of the Aha into the collagen with 
no discernible effect on post-translational modifi-
cation, stability or structure of the triple helix. 
The utility of the tracing was demonstrated by 
successful measurement of pro-collagen folding 

kinetics in a normal and osteogenesis imperfecta 
patient’s cells, which is a highly challenging 
pulse-chase experiment due to the short pulse 
window.

3.5.3.3	 �ECM Proteins Conjugated 
to Labels

Rather than add proteins or peptides that target 
and bind to ECM components already in the tis-
sue, it is sometimes possible to add labelled ECM 
proteins themselves to the system as participating 
tracking molecules. The theory behind this 
approach is that ECM proteins will behave as 
they would whether they are secreted by the cell 
or added to the system. Collagen has a long his-
tory of being directly labelled and added exoge-
nously to living systems where it has shown an 
ability to “home” to its proper morphological 
position. Stopak et al. injected covalently labelled 
(FITC) collagen type I into chick limb buds to 
track its incorporation into tissue rudiments 
including tendon (Stopak et al. 1985).

In an excellent demonstration of the utility of 
conjugated ECM protein labels, Sivakumar et al. 
added fibronectin (FN) conjugated to AlexaFluor 
488 or 555 (Sivakumar 2006). These FN labels 
were dynamically tracked throughout the con-
struction of matrix by osteoblast cells in a culture 
system showing a remarkable view of matrix 
assembly dynamics (Kadler et  al. 2008). In an 
extension of this concept, exogenous FN label-
ling can be adapted in conjunction with Förster 
resonance energy transfer (FRET) to produce 
mechano-sensitive imaging (Kubow et al. 2015). 
In a seminal report, Kubow et  al. added FRET 
labels to plasma FN such that mechanical unfold-
ing of the molecule displaced the FRET labels 
and produced a detectable signal in a live culture 
system (Fig.  3.5f). The co-localization of the 
fibronectin FRET signal with collagen (immuno-
labelled) permitted the observation of collagen 
and FN interaction principally when the FN was 
relaxed and not under load. The collagen-FN 
mechanochemical reciprocal relationship was 
also recently probed in a cell-free system whereby 
collagen fibril nucleation was catalyzed by FN 
under conditions of extensional strain (Paten 
et  al. 2019). Because labels can interfere with 
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functionality of the protein, efforts have been 
made to reduce the size and degree of labelling of 
the probe (Siadat et  al. 2021b). An interesting 
alternative approach was recently described by 
Doyle which attempts to preserve the intermo-
lecular lysines for association in fibrils rather 
than labelling sites (Doyle 2018). To do this, 
Doyle labels the collagen (atto-488 NHS-ester 
dye) as a formed gel, then reverts the gel back to 
the molecular state and dilutes the labelled mono-
mers with unlabeled collagen (~2:98%). 
Reformation of the mixed collagen produces a 
bright collagen network suitable for cell culture.

3.5.3.4	 �Endogenous Labels
Some of the most impressive work has been done 
with endogenous labels in live cultures and in liv-
ing animals. While in vitro systems have substan-
tial and well-known limitations relative to in vivo 
systems, there are a number of advantages which 
permit excellent observational fidelity. One of the 
more striking examples of in vitro imaging of 
labelled collagen assembly dynamics was per-
formed using the osteoblast-like cell line MLO-
A5 (Lu et  al. 2018). The cells were transfected 
with GFPtpz and mCherry-collagen expression 
plasmids with careful attention paid to the place-
ment of the label (Fig. 3.5e). The dual collagen 
labels permitted the dynamic observation of the 
interface that developed between differentially-
labelled cell systems. Co-cultures of two differ-
ent colored collagen expressing cells, produced a 
collagenous ECM that fused both colors, indicat-
ing a mixing of collagen molecules from each 
construct to form new fibrils (Fig. 3.5e). While 
labelling in cell culture is quite informative, it is 
always striking to see labelling performed well in 
a living system. In a recent and elegant paper, 
Morris et  al. label type I collagen in a living 
zebrafish and dynamically track the progress of 
repair of a wound in skin (Morris et al. 2018). In 
their experiment, they drove expression of 
col1a2-GFP using a krtt1c19e promoter known 
to express in the basal epidermis which produces 
skin collagen type I in early development 
Tg(krt19:col1a2-GFP). The placement of the 
GFP label at the N-terminal region of the colla-
gen molecule ostensibly minimizes the effect of 

the label on the assembly kinetics and morphol-
ogy of collagen fibrils formed from them. This 
work stunningly demonstrates the progression of 
collagen disruption, organizational control and 
deposition during repair of a skin wound in the 
zebrafish (Fig. 3.5g).

3.5.3.5	 �Collagen Hybridizing Peptide
While labelling intact and functional collagen is 
informative, it is also quite important to develop 
labels which can identify collagen that is dam-
aged. The principal role of collagen as a load 
bearing material makes understanding its failure 
mechanisms and subsequent repair critical to the 
development and timely application of clinical 
treatments for a broad range of injuries. Collagen 
molecular damage has been evaluated by a num-
ber of different methods including increased 
digestion susceptibility (Willett et al. 2007) and 
changes in denaturation endotherms (Willett 
et al. 2008). However, in 2012 Li et al. presented 
a paper on a caged collagen mimetic peptide 
(CMP) or collagen hybridizing peptide (CHP) 
which could be photo-triggered to fold into a tri-
ple helix capable of binding heat-denatured or 
MMP-digested collagen (Li et al. 2012). Zitnay 
et  al. convincingly demonstrated that the CHP 
would bind preferentially to damaged collagen in 
12% strain-overloaded rat tail tendon fascicles 
using transmission electron microscopy (TEM) 
and gold nanoparticle labelled CHP (Zitnay et al. 
2017). The intensity of CHP staining of 
cyclically-loaded tendon increased with the fre-
quency and number of the load cycles. More 
recently, the authors used this technique to mea-
sure the molecular damage to rat tail tendon fas-
cicle collagen during cyclic fatigue loading 
(Zitnay et al. 2020), which has significant impli-
cations for our understanding of overuse injury.

3.6	 �Conclusions and Avenues 
for Future Work

We review here the large body of work investigat-
ing the formation, assembly, and maintenance of 
the tendon extracellular matrix. It is clear that a 
vast majority of this work has historically focused 
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on embryonic and postnatal development, and 
despite nearly a century of research, there are still 
knowledge gaps and debates among the experts 
regarding how collagen fibrils form and assemble 
into the intricate tendon hierarchical structure. 
The exact growth mechanisms in tendon are still 
currently unknown. We still do not understand 
how cells and matrix work together to establish 
initial continuity in the mechanical structure of 
developing animals. It remains unclear if 
mechanical force drives fibril assembly at the 
molecular level or if fibrils are synthesized first 
and then organized. While it has been established 
that traction forces applied by resident cells are 
necessary for fibril formation, the precise mecha-
nism and location that cells use these forces to 
convert soluble collagen monomers into fibrils 
are still to be determined. Furthermore, the ques-
tion of how fibrils lengthen in a growing tendon 
under load while preserving mechanical integrity 
remains unresolved. We are also still understand-
ing how collagen molecules within a matrix that 
endures high mechanical forces and a large num-
ber of cycles have such a long half-life.

There are also still a number of open questions 
regarding the mechanisms of adult matrix turn-
over or adaptation. If we ultimately want to 
understand how chronic matrix degeneration 
occurs, as in the case of tendinopathy, we want to 
identify the initiators of matrix remodeling and 
what events would make this process go awry. 
One of the missing gaps in this field is a lack of 
understanding in the repair of sub-failure damage 
or microdamage and how these mechanisms are 
different from a massive injury response. In addi-
tion, it would be beneficial to know where and 
how microdamage is initiated and to develop 
methods to track this damage. Since mechanical 
function and tissue structure are highly depen-
dent on functional needs, it’s possible that the 
turnover of individual matrix proteins is also 
functionally specific. Protein turnover in func-
tionally distinct tendons varies with protein type 
but relative turnover rates for individual proteins 
between tendon types remain to be determined. 
Moreover, it is possible that turnover at the junc-
tion of tendon with another dissimilar tissue, 

such as at the enthesis or the myotendinous 
junction, is more rapid than in the midsubstance. 
Answers to these questions would dramatically 
improve our understanding of adult tissue main-
tenance and potentially provide clues to chronic 
degeneration.

Age-related cellular mechanisms are likely to 
blame for the dysfunction of normal tissue 
homeostasis that could lead to chronic degenera-
tion, but the mechanisms behind these deficits 
have not been fully established. It is uncertain 
whether there are changes in mechanosensing or 
mechanotransduction, preventing cells from 
sensing and converting appropriate mechanical 
signals to elicit remodeling, or whether the dys-
function is in the processes of matrix remodeling 
itself, limiting the synthesis, assembly or incor-
poration of new ECM. More work is needed to 
identify what these cellular changes are and how 
they influence the ability to maintain tissue archi-
tecture. In addition, while cellular changes have 
been studied extensively in tendon stem cells and 
particularly in relation to the injury response, 
fewer studies have investigated age-related 
changes in mature tenocytes which we expect to 
be responsible for local tissue repair in the 
absence of inflammatory cell recruitment. Finally, 
it is important to note that many of the ‘hallmarks 
of aging’ are extremely interconnected and most 
of them have not yet been directly investigated in 
tendon; therefore, there are likely aging mecha-
nisms that influence matrix homeostasis that have 
yet to be uncovered.

There are also still major deficits in our basic 
knowledge of the tendon composition and struc-
ture, specifically in the non-collagenous matrix 
and the cell populations present. Much of the 
research presented has focused on regulation of 
the collagen structure, with considerably less 
attention placed on the regulation of the non-
collagenous compartment, specifically the inter-
fibrillar and interfascicular matrix as well as 
paratenon and epitenon. Studying the non-
collagenous matrix is quite challenging due to 
low abundance and difficulty in precise extrac-
tion, as well as absence of in vitro systems focus-
ing on it. In addition, in vivo models permitting 
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genetic modification (rodents) lack an interfas-
cicular compartment posing another hurdle in the 
study of the non-collagenous matrix, whilst 
larger animal models (horse) have an interfascic-
ular compartment but do not lend themselves to 
genetic modification and longitudinal studies due 
to time and cost constraints.

Furthermore, this chapter focuses on the regu-
lation and dysregulation of the tendon ECM 
throughout life, all of which is cell-mediated. 
However, we still do not have a complete under-
standing of the specific cell populations that are 
present in whole tendon and their localization. 
Recent studies have focused on identifying and 
characterizing cell populations, highlighting the 
vast heterogeneity and complexity of the popula-
tion within tendon compartments. With the 
advent of single-cell sequencing, investigation of 
cell heterogeneity within tissues has been made 
possible and its recent use in tendon research has 
unveiled several tendon cell subtypes that could 
be responsible for matrix remodeling (Paolillo 
et  al. 2019; Harvey et  al. 2019; Kendal et  al. 
2020; De Micheli et  al. 2020; Yin et  al. 2016). 
Therefore, there appear to be many different sub-
populations of cells responsible for producing 
ECM but the role of the identified clusters in the 
development, maintenance, and aging of tendon 
still remains to be elucidated.

Many of these questions will still require years 
of research to answer, but the development of 
novel models and tools to study ECM remodeling 
provide substantial promise for future investiga-
tion. With the ability to label and track collagen, 
and hopefully someday non-collagenous pro-
teins, mechanisms of matrix incorporation and 
linear growth that have evaded detection in previ-
ous years may now be uncovered. Increased 
knowledge of the processes controlling matrix 
growth and incorporation could provide guidance 
for tissue engineering approaches. Furthermore, 
if key regulators of matrix homeostasis during 
adulthood and into aging are identified, it may 
become possible to identify the tipping point 
between positive adaptation and degeneration 
leading to progressive tendinopathy. Not only 
will this allow us to understand the process of 
degeneration, it will also put research one step 

closer to developing therapeutics and/or 
preventative interventions for tendon injury and 
disease.
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