
Load Balanced Particle Simulation with
Automated Algorithm Selection

Philipp Neumann, Fabio Gratl, Steffen Seckler, and Hans-Joachim Bungartz

Abstract ls1 mardyn is a molecular dynamics (MD) simulation framework for mul-
tiphase andmulticomponent investigations at small scales with application in process
engineering. AutoPas is a library that employs auto-tuning for various particle sim-
ulation algorithms, data structures, and node-level parallelization patterns.

In the last year, we have focussed on improving the interfaces of AutoPas to
support massively parallel, distributed-memory simulations. In this scope, we have
revised the incorporation of AutoPas into ls1 mardyn and extended ls1 mardyn by
diffusive load balancing.

1 Introduction

Molecular dynamics (MD) simulations have become a valuable tool for engineering
applications. Based on Newton’s laws of motion

d2xp

dt2
= 1

mp
Fp,

P. Neumann (B)
Helmut-Schmidt-Universität Hamburg, Department of Mechanical Engineering,
Holstenhofweg 85, 22043 Hamburg, Germany
e-mail: philipp.neumann@hsu-hh.de

F. Gratl · S. Seckler · H.-J. Bungartz
Technical University of Munich, Department of Informatics,
Boltzmannstr. 3, 85748 Garching, Germany
e-mail: gratl@in.tum.de

S. Seckler
e-mail: seckler@in.tum.de

H.-J. Bungartz
e-mail: bungartz@in.tum.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
W. E. Nagel et al. (eds.), High Performance Computing in Science and Engineering ’20,
https://doi.org/10.1007/978-3-030-80602-6_33

503

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80602-6_33&domain=pdf
mailto:philipp.neumann@hsu-hh.de
mailto:gratl@in.tum.de
mailto:seckler@in.tum.de
mailto:bungartz@in.tum.de
https://doi.org/10.1007/978-3-030-80602-6_33


504 P. Neumann et al.

the positions xp of individual particles p can be tracked virtually. These particles
move due to forces Fp = ∑

q �=p
Fpq , arising from interacting forces between particles

p, q. We will concentrate on short-range interactions: only particles within a pre-
scribed distance—the so-called cut-off radius rc—interact with each other. This can
be efficiently realized algorithmically by sorting the particles into Cartesian grid cells
(linked cell method) that exhibit the mesh size rc, or by storing potential interaction
partners for each particle in lists (Verlet lists) [9]; to avoid the expensive construction
of particle pair lists, these lists are only built every few time steps and comprise all
particle pairs within a distance rc + s where s is the so-called skin radius. If s is
rather large, the lists have to be built less frequently, but this comes at increasing
particle pair traversal cost.

Amongst others,MDsimulations canbe used to sample thermodynamic properties
from large systems of small molecules. This allows, e.g., to determine equations of
state for complex fluids, to investigate bubble formation [5], interfacial flows [6] or
droplet coalescence [10].

In a long-standing, interdisciplinary collaboration of computer scientists and
mechanical engineers, the MD simulation software ls1 mardyn has evolved to
assess such systems [7, 15]. ls1 mardyn supports vectorization, shared- as well as
distributed-memory parallelism [2, 14, 16] including dynamic load balancing which
allows accounting for load imbalances due to heterogeneous particle distributions or
due to the use of heterogeneous hardware [11, 12].

Besides load balancing on distributed-memory systems, another grand challenge
is given by the fact that a great variety of algorithmic realizations are available to
simulate short-rangeMDsystems [1, 4, 8, 9, 17].Anoptimal algorithm/data structure
layout/parallelization approach (at shared-memory level) strongly depends on both
the underlying hardware and the actual problem to solve. With new hardware rapidly
evolving and with the heterogeneity of hardware design still increasing in the HPC
sector, finding and incorporating the best algorithm into a simulation software is thus
demanding.

Over the last years, the authors have developed the particle simulation library
AutoPas [3], which provides various data structures, particle traversal schemes, and
shared-memory parallelization approaches and which automatically selects the opti-
mal combination thereof at run time.

In the following, we detail recent developments that build upon and extend the
load balancing capabilities of ls1 mardyn as well as our prototypical integration of
AutoPas and ls1 mardyn from the previous report [13]. We discuss the integration of
an alternative load balancing library, cf. Sect. 2, and elaborate on challenges when
integrating AutoPas and ls1 mardyn for distributed-memory simulations, cf. Sect. 3.
We close with a summary and an outlook to future work in Sect. 4.

Parts of this work have been submitted for publication [11].



Load Balanced Particle Simulation with Automated Algorithm Selection 505

2 Load Balancing

So far, ls1 mardyn employed a kd-tree-based decomposition to balance the load
between MPI processes. Its recursive bisectioning is an efficient means to partition
and distribute loads. Yet, the implemented method bears some disadvantages. Due
to successive bisectioning, every dimension is visited a multiple number of times in
the partitioning process. Besides, a global collection of computational loads, that is
particle or at least cell-averaged data, is required and re-balancing can potentially
alter the overall topology of the simulation partitioning significantly from one to the
next time step.

Due to these points, the A Load-balancing Library (ALL)1 which is developed
at the Jülich Supercomputing Center has been incorporated as an alternative to the
existing kd-tree implementation. Still following the hierarchical/recursive splitting
approach, ALL allows to split the domain into multiple subsections in one recursion
step and limits the number of splits along every dimension to one. Moreover, to avoid
rigorous repartitioning, diffusive load balancing was incorporated into ls1 mardyn.
Since the diffusive load balancing algorithm operates (more or less) strictly locally,
loads are migrated between neighboring processes only. This limits the significance
of changes in the parallel topology.

The diffusive load balancing in conjunction with the ALL-based partitioner was
evaluated in various scenarios, including

– scenario droplet coalescence: the coalescence of two nanodroplets that are sus-
pended in a vapor phase, cf. Fig. 1(a),

– scenario spinodal decomposition: a fluid is rapidly cooled down and separates into
vapor and liquid phases, cf. Fig. 1(b),

– scenario exploding liquid: a compressed, hot liquid expands in vacuum, cf.
Fig. 1(c).

While noperformance improvementswere observed in the spinodal decomposition—
which was expected, since the occurring inhomogeneities are rather fine-scale—,
both kd-tree- and diffusive ALL-based load balancing significantly boosted perfor-
mance in the droplet coalescence. This is in accordance with expectations since the
merging process of the two droplets is relatively slow and thus, load changes occur on
rather long time scales. In contrast, diffusiveALL-based load balancing outperformed
the kd-tree approach significantly for the exploding liquid: here, the overall particle
distribution in the entire computational domain changes drastically, with particles
getting sucked outward at the beginning and bouncing back from the outer bound-
aries afterwards. This rather directedmotion of the film fragments is well reflected by
the diffusive load balancing algorithm, which effectively propagates loads between
spatially neighbored subdomains and MPI processes, respectively.

1 https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/ALL_
library/tensor_method/readme.html.

https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/ALL_library/tensor_method/readme.html
https://e-cam.readthedocs.io/en/latest/Meso-Multi-Scale-Modelling-Modules/modules/ALL_library/tensor_method/readme.html


506 P. Neumann et al.

Fig. 1 Scenarios considered in our work. (a) Droplet coalescence. (b) Spinodal decomposition.
(c) Exploding liquid; the liquid is initially placed in a vertical box-like form in the middle of the
domain and expands/breaks up towards the left and the right of the computational domain

3 Integrating AutoPas and Ls1 Mardyn for
Distributed-Memory Simulations

In a prior report [13], we had commented on the integration of AutoPas into ls1
mardyn, enabling an “on-the-fly” exchange of data structures, particle pair traversal
schemes, and parallelization methods during an MD simulation. AutoPas already
comprised a few implementations and configuration possibilities in terms of data
structures, linked cell-based particle traversal schemes, and linked cell-based shared-
memory parallelization approaches. At this stage, it had already been possible to
execute the spinodal decomposition in node-level simulations and to automatically
tune over some configurations.

Over the last year, AutoPaswas significantly extended. In particular, Verlet lists as
an alternative to the linked cell method to traverse particle pairs for force interactions



Load Balanced Particle Simulation with Automated Algorithm Selection 507

(a) Exploding liquid, mid of simulation, inho-
mogeneous

(b) Spinodal decomposition, start of simulation,
homogeneous

Fig. 2 Snapshot of simulation performance during the auto-tuning phase. In this phase, 48 algo-
rithmic configurations are tested, employing an exhaustive search. Data points are colored by their
traversal choice and the symbol is used to identify the particle container; note that further vari-
ants (AoS vs SoA data structures; Newton3-optimization to reduce computations; load balancing
schemes) are partly employed and varied (resembling multiple occurrences of the same symbols
in the plot). Always exactly three data points represent the same configuration, corresponding to
three samples being taken. The x-axis shows the number of iterations, the y-axis shows the time for
a single iteration. (a) Exploding liquid; the configuration, that is tested last, is chosen and is taken
over for the following 5000 iterations. (b) Spinodal decomposition.

were incorporated, including a vectorizing variant thereof (cluster lists, as used in
the software Gromacs, for example). This yields a total of> 70 discrete algorithmic
configurations, cf. [11] for details.

In Fig. 2, the performance behavior of the exhaustive search tuning strategy is
visualized. Every available algorithmic configuration is measured over three iter-
ations each. Afterwards, the fastest one is selected for the next period of—in this
case—5000 iterations. Verlet lists appear to be fluctuating in performance. This is,
however, due to the fact that in their first iteration, the neighbor lists are built, which
is taken into account here. As the two setups differ in their structure, differences
in the performance profiles can be seen, especially between the faster configura-
tions. It also becomes apparent, that there is still work to be done in a) improving
the average performance of individual configurations and b) only testing promising
configurations. Both of these tasks are subject to current research.

A specific challenge, however, arises when distributed-memory, that is MPI-
parallel, MD simulations shall be supported by AutoPas. Due to potential particle
distribution inhomogeneities over all MPI processes, cf. Sect. 2, every MPI process
might require a different AutoPas configuration to execute at optimal performance,
cf. Fig. 3. In particular, one MPI process might make use of Verlet lists, which
requires less MPI-based particle data exchange with neighboring processes (i.e.,
some information only needs to be exchanged every few time steps), while another
MPI process might employ linked cells which require particle data exchange in every
time step. This also renders the handling of particles at the interface of the embedding
simulation (ls1 mardyn in our case) andAutoPas challenging, since particle exchange
and updates need to be carried out consistently.



508 P. Neumann et al.

Fig. 3 MPI-parallel use ofAutoPas in ls1 mardyn. AutoPasmay execute different configurations on
different MPI processes. Yet, a common interface and semantics is required to bridge all potential
particle simulation configurations of AutoPas

To solve this, the interface to AutoPas was designed such that it follows the Verlet
list idea, in the sense that the particle container ofAutoPas is only being updated every
few time steps. This implies that the linked cell implementation of AutoPas needs to
operate on slightly enlarged cells, corresponding to the skin radius s that is typically
added to the cut-off radius rc in the Verlet list approach to avoid frequent list rebuilds.
Yet, refined linked cells are also supported, which means that more neighbor cells
need to be searched. Although the Verlet-like approach comes with rather good
code maintainability features and performance, the overall usability of the library,
especially the particle exchange in theAutoPas-embeddingMD simulation, becomes
slightly more advanced.

Putting things together, we have combined ALL-based diffusive load balancing
and AutoPas-based automated node-level algorithm selection. Figure4 shows the
different algorithm choices per subdomain of an exemplary load balanced domain
decomposition for the scenario droplet coalescence. We simulated the three afore-
mentioned scenarios droplet coalescence, exploding liquid and spinodal decom-
position with this simulation technology on two platforms. Due to the HLRS
machine HAWK getting set up in 2019, we first established and tuned simulations
on SuperMUC-NG at LRZ during that time. Figure5 shows the scalability for the
exploding liquid on both machines. We can first observe that, expectedly, the per-
node performance on HAWK is significantly better than on SuperMUC-NG in terms
of simulated time steps per second. The ALL-based load balancing with auto-tuning
via AutoPas exhibits best performance on SuperMUC-NG compared to the other
configurations. This approach also scales well up to 8 nodes on HAWK. For larger
node counts, however, the curve currently flattens. Reasons for this lie in one node
featuring 8 NUMA domains; since we use one MPI process per NUMA domain, this
yields significantly more MPI processes on HAWK compared to SuperMUC-NG.



Load Balanced Particle Simulation with Automated Algorithm Selection 509

Fig. 4 Algorithm selection on a load-balanced simulation of droplet coalescence. c08, sli, c18,
c01, c04 correspond to OpenMP parallelization schemes that operate on linked cells. In contrast,
VL, VL-Cells, VL-Build are parallel schemes that operate on Verlet lists

Fig. 5 Scalability of the scenario exploding liquid on two platforms SuperMUC-NG and HAWK.
–ALL: ALL-based diffusive load balancing; –sdd: standard domain decomposition; –noAP-sdd:
standard domain decomposition with ls1 mardyn kernels instead of using AutoPas; –noAP-kdd:
kd-tree decomposition with ls1 mardyn kernels instead of using AutoPas



510 P. Neumann et al.

Besides, logging was not deactivated for AutoPas on both machines, which impedes
performance even more on HAWK, again, due to the increased number of MPI pro-
cesses. More detailed analysis and performance tuning on HAWK is subject to the
current investigation.

4 Summary and Outlook

We presented recent advances in our particle simulation software ls1 mardyn. Auto-
mated algorithm selection has been enabled in ls1 mardyn via the library AutoPas,
yielding optimal node-level performance. We further improved parallel performance
by incorporating diffusive balancing. The node-level throughput on HAWK sug-
gests very high performance for the three scenarios that we discussed in the future.
However, performance gains in the multi-node case are currently not optimal on
HAWK, due to the recent porting of our software to this architecture. This requires
further performance analysis and more tuning of the number of MPI processes and
OpenMP threads per node. Current and future work further focus on techniques to
improve auto-tuning in AutoPas: testing all combinations of algorithms is tedious
and requires many time steps. Therefore, Bayesian and other data analysis methods
are being evaluated in this scope.

Acknowledgements The presented work was carried out in the scope of the Large-Scale Project
Extreme-Scale Molecular Dynamics Simulation of Droplet Coalescence, acronym GCS-MDDC,
of the Gauss Centre for Supercomputing. Financial support by the Federal Ministry of Education
and Research, project Task-based load balancing and auto-tuning in particle simulations (TaLPas),
grant numbers 01IH16008A/B, is acknowledged.

References

1. M. Abraham, T. Murtola, R. Schulz, S. Páll, J. Smith, B. Hess, E. Lindahl, GROMACS: high
performance molecular simulations through multi-level parallelism from laptops to supercom-
puters. SoftwareX 1–2, 19–25 (2015)

2. W. Eckhard et al., 591 TFLOPS multi-trillion particles simulation on SuperMUC, in Super-
computing. ISC 2013. ed. by J.M. Kunkel, T. Ludwig, H.W.Meuer. Lecture Notes in Computer
Science. (Springer, Berlin, Heidelberg, 2013), pp. 1–12. https://doi.org/10.1007/978-3-642-
38750-0_1

3. F. Gratl, S. Seckler, N. Tchipev, H.-J. Bungartz, P. Neumann, AutoPas: auto-tuning for parti-
cle simulations. in 2019 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), (2019), pp. 748–757

4. C.Hu,X.Wang, J. Li, X.He, S. Li, Y. Feng, S.Yang,H.Bai, Kernel optimization for short-range
molecular dynamics. Comput. Phys. Commun. 211, 31–40 (2017)

5. K. Langenbach, M. Heilig, M. Horsch, H. Hasse, Study of homogeneous bubble nucleation
in liquid carbon dioxide by a hybrid approach combining molecular dynamics simulation and
density gradient theory. J. Chem. Phys. 148, 124702 (2018)

6. G. Nagayama, P. Cheng, Effects of interface wettability on microscale flow by molecular
dynamics simulation. Int. J. Heat Mass Transf. 47, 501–513 (2004)

https://doi.org/10.1007/978-3-642-38750-0_1
https://doi.org/10.1007/978-3-642-38750-0_1


Load Balanced Particle Simulation with Automated Algorithm Selection 511

7. C. Niethammer, S. Becker, M. Bernreuther, M. Buchholz, W. Eckhardt, A. Heinecke, S. Werth,
H.-J. Bungartz, C. Glass, H. Hasse, J. Vrabec, M. Horsch, ls1 Mardyn: the massively parallel
molecular dynamics code for large systems. J. Chem. Theory Comput. 10(10), 4455–4464
(2014)

8. S. Páll, B. Hess, A flexible algorithm for calculating pair interactions on SIMD architectures.
Comput. Phys. Commun. 184(12), 2641–2650 (2013)

9. D. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cam-
bridge, 2004)

10. L. Rekvig, D. Frenkel, Molecular simulations of droplet coalescence in oil/water/surfactant
systems. J. Chem. Phys. 127, 134701 (2007)

11. S. Seckler, F. Gratl, M. Heinen, J. Vrabec, H.-J. Bungartz, P. Neumann, Autopas in ls1 mardyn:
massively parallel particle simulations with node-level auto-tuning. J. Comput. Sci. 50, 101296
(2021)

12. S. Seckler, N. Tchipev, H.-J. Bungartz, P. Neumann, Load balancing for molecular dynamics
simulations on heterogeneous architectures. in 2016 IEEE 23rd International Conference on
High Performance Computing (HiPC), (2016), pp. 101–110

13. S. Seckler, F. Gratl, N. Tchipev, M. Heinen, J. Vrabec, H.-J. Bungartz, P. Neumann, Load
balancing and auto-tuning for heterogeneous particle systems using ls1 MARDYN. in: High
Performance Computing in Science and Engineering 2019 (2019), To be published

14. N. Tchipev, Algorithmic and Implementational Optimizations of Molecular Dynamics Simu-
lations for Process Engineering (2020), Dissertation

15. N. Tchipev, S. Seckler, M. Heinen, J. Vrabec, F. Gratl, M. Horsch, M. Bernreuther, C.W.
Glass, C. Niethammer, N. Hammer, B. Krischok, M. Resch, D. Kranzlmüller, H. Hasse, H.-J.
Bungartz, P. Neumann, Twetris: twenty trillion-atom simulation. Int. J. High Perform. Comput.
Appl. 33(5), 838–854 (2019)

16. N. Tchipev, A. Wafai, C. Glass, W. Eckhardt, A. Heinecke, H.-J. Bungartz, P. Neumann,
Optimized force calculation in molecular dynamics simulations for the intel Xeon phi, in
Euro-Par 2015: Parallel Processing Workshops. Euro-Par 2015. ed. by S. Hunold. Lecture
Notes in Computer Science. (Springer International Publishing, Cham, 2015), pp. 774–785.
https://doi.org/10.1007/978-3-319-27308-2_62

17. X. Wang, J. Li, J. Wang, X. He, N. Nie, Kernel optimization on short-range potentials compu-
tations in molecular dynamics simulations, in Big Data Technology and Applications. BDTA
2015. ed. by W. Chen. Communications in Computer and Information Science. (Springer,
Singapore, 2016), pp. 269–281. https://doi.org/10.1007/978-981-10-0457-5_25

https://doi.org/10.1007/978-3-319-27308-2_62
https://doi.org/10.1007/978-981-10-0457-5_25

	 Load Balanced Particle Simulation with Automated Algorithm Selection
	1 Introduction
	2 Load Balancing
	3 Integrating AutoPas and Ls1 Mardyn for Distributed-Memory Simulations
	4 Summary and Outlook
	References


