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Preface

This volume is the result of a collaboration among scholars having different compe-
tences, albeit the majority of them can be classified to be applied mathematicians or
mechanicians.

It is really pitiful how knowledge is being lost so quickly and so systematically in
the span of few scholars’ generations. A text written in Latin, or even in a modern
language different from the modern Lingua Franca English, cannot be read by the
greatest majority of scholars that are active in present times. This means that a
wide part of human knowledge risks to be forgotten and lost, in the worse case, or
rediscovered several times, in different places, times and languages, in the best case.
In our opinion, this circumstance risks to be very detrimental for the advancement of
human knowledge in general, and could cause some regressions in both the human
technological capacities and quality of life.

The eldest editor did experience the very sad sensation of realizing how big are
the risks of regression in science when he heard an otherwise very clever scholar
arguing that «something not written in English is virtually non-existing». Being
Italian, he is accustomed to see his mother language treated as a kind of lost dialect
whose knowledge is useful only for understanding some ancient songs. For this
reason one can understand why the revolutionary works by Gabrio Piola are nearly
completely ignored in the modern literature of mechanical sciences. Piola wrote his
works in Italian: his ideology considered the concept of Nation so important that
he was ready to sacrifice the diffusion of his ideas for it. He could have written
them in French, so that the audience of his works would have been somehow larger.
However, a reader may comment that French is not English and, therefore, the
previously mentioned scholar, whose mother language is American English, would
have similarly argued that also if Piola had written in French, unavoidably, his work
would have been, very similarly, ignored. And this reader could be considered to be
right, because to the same editor it happened to see how a historical paper about
mechanics was rejected by a journal with the following argument: «there are too
many French excerpts inside it». Needless to say: the editor tried to explain to the
Editor-in-Chief that the French sentences were already duly translated into English
in the submitted manuscript to prevent any problem that could arise with readers
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vi Preface

who cannot read French. The answer was: «it is not interesting to discuss about
what Lagrange wanted to say, arriving to examine his own words, by checking if his
thought was faithfully translated into English». The problem, most likely, was that
Lagrange wrote in French and because of that his ideas cannot be so interesting. Even
though such a statement was not explicitly expressed, it was implicitly assumed. We
believe, instead, that every interesting contribution must be studied, independent of
the language it has been written in. This work wants to send the following message:
In Mechanics and also in other sciences, there are very interesting ideas written in
languages different from English. These ideas deserve to be translated into English
and should not be forgotten.

There are also two more interesting points that have attracted our attention.
The first point concerns the study of the origins of scientific theories as a tool for
understanding how novel scientific theories must be formulated. Since we cannot
teach to younger generations an infallible method for formulating well-posed and
efficient theories capable to predict observed and not yet observed phenomena, we
must behave as the ancient Renaissance Maestri teaching an art to their pupil. We
must show them how available theories were invented, hoping that this lesson will
guide them.

The second point concerns the role of scholars that, while not fully understanding
a specific theory, still actively participate to the process of transmitting it. The role
of Tartaglia in the transmission of Archimedes’ works to posterity is examined as
a prototype of many similar behaviors, as observed in many scholars in every age,
époque, place and generation. We could list many modern epigones of Tartaglia; but
this will be considered to be gossip, or an act of academic political battles. We will
refrain from this kind of disputes, as we want to describe the following phenomenon.
A scholar, aiming for the sinecure represented by an academic position, strives to
prove the world that his intellectual work deserves to be paid by a public institution.
Therefore, he tries to make the other scholars believe to have done a great job with
his contributions. If he is not as clever as he believes, then he needs to reformulate,
translate or make precise what had been written by his predecessors. Tartaglia
himself declared, in the title of one of his works, that «here I make clear what
was not possible to understand in the original Greek works». Now, Heiberg, in
his monumental work gathering all the available opus of Archimedes, proved that
Tartaglia was not able to write in correct Latin. Therefore, we believe that it is almost
impossible that Tartaglia could have translated from the Doric Greek of Archimedes
to Latin a text that, in addition, is very difficult, as it contains complex mathematical
concepts. Unfortunately, this argument was buried in the Prolegomena of Heiberg’s
Archimedes Edition.

In this volume, we present an annotated translation of Heiberg’s Prolegomena
together with a description of the sociological phenomena involved in the transmis-
sion of knowledge. The importance of these phenomena is enormous if we want to
understand how novel theories were formulated at first, in order to train the younger
generations of scientists. The phenomenon of science transmission has many inter-
esting aspects and we cannot hope to deal with all of them. A particularly important
one concerns the role of encyclopedias. They allow for a synthetic account for large
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bodies of knowledge and are very precious for younger generations of scholars,
when a global understanding of the state of the art in a scientific field is required.
Hellinger’s encyclopedia article describing the state of the art of continuum mechan-
ics in 1913 is astonishing. It proves that continuum mechanics had been blocked in
its development by the fact that the article was written in German and that no trans-
lation into English was available. In fact, the lucid analysis by Hellinger had been
ignored by too many scholars in Mechanics simply because it was written in German.
Probably the fact that the author was Jewish increased the speed of erasure of his
contribution from the consciousness of scholars in Mechanics. The great scholarly
work by Hellinger could have given a stronger momentum to continuum mechanics
if it had been properly evaluated by the scientific community. Unfortunately, it had
been ignored and mentioned only in a critical way by the few authors who believed
that this reference was necessary. The motivations of this sociological phenomenon
deserves to be understood, if one wants to organize Academia in a more efficient
way.

Rome, Stuttgart Francesco dell’Isola
May 2021 Simon R. Eugster

Mario Spagnuolo
Emilio Barchiesi
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Chapter 1
The study of the genesis of novel mathematical
and mechanical theories provides an inspiration
for future original research

Mario Spagnuolo, Francesco dell’Isola and Antonio Cazzani

1.1 Introduction

This introductory Chapter is conceived in order to make explicit the motivations that
led the authors and the editors to work on this volume. The reader will find additional
arguments and considerations on some of the epistemological and methodological
questions discussed here in the Chapter referred to in [41]: we will however try to
present self-consistent reasonings, so that one is not expected to complement this
chapter with other readings, if she/he does not wish. The question we want to face
is simply stated as follows: Can we find a meta-theory teaching us to formulate
a set of specific theories each of them being suitable to describe a well-precise
set of phenomena? Unfortunately, it seems that to this question there are not fully
satisfactory answers yet. There is not, in fact, any kind of algorithm following
which one can construct a reasonably efficient theory: whatever it may be said by
the supporters of Data Science it is not possible, in this moment of the scientific
development, to replace the creativity act of a scholar in formulating a model with any
kind of Big Data algorithm. We do not want to say that such a possibility is precluded
to humankind: after having invented robots that relieved us from the greatest part of
manual work, it is possible, if not likely, that in future we will be relieved by Artificial
Intelligence from the greatest part, or maybe from all, the intellectual work. What has
to be clear is that, notwithstanding the trends and pretensions of many, the ambitious
program of replacing human mind in its formulation of mathematical models is by
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2 Mario Spagnuolo, Francesco dell’Isola and Antonio Cazzani

far out of the reach of present times science. We will not dare to give some timeline
indication concerning the occurrence of such a gigantic innovation, as the second
author did remember very well when a famous scientist, who was his professor in
electronics, announced that it was not conceivable the construction of a computer
which could beat a human champion in a chess game. It was not earlier than 1983,
and Deep Blue in 1996 did manage in the endeavor. We want to underline that we
are, however, confident that such a progress will occur, and, that it will revolutionize
our life, possibly our species biology and, surely, it will open a new era in Natural
History. However, exactly as Eugenics did not represent any true advancement of
science (nothing even barely comparable with modern molecular genetics, whose
successes seem to be limitless), present time Data Science seems to be a fashion
that is simply exploited by some scholars who are trying to get more academic
(and maybe economical) power. The situation, as realistically presents itself in the
current historical moment, is really clear: one can teach to young generations how to
formulate a scientific model in only one way, that is by showing them how successful
scientific models were at first formulated. This aim motivates the entire content of
this work.

1.2 The process of knowledge transmission: a sociological
problem that needs to be studied by using the scientific
method

The present work has been produced by the collaboration of scholars whose com-
petences are relatively varied. However, all of them never accepted a deleterious
concept that is at the basis of modern organization of scientific research: that which
lead to fragmentation of knowledge into hyper-specialized sub disciplines rigidly
divided by sharp boundaries.

Fragmentation of culture brings to inability to deal with complexity

Albeit nearly all authors and editors can be defined to be (Applied) Mathematicians,
Physicists (or Mechanicians) or Engineering Scientists, all of them were exposed
to humanistic culture and greatly value multidisciplinar studies. They all agreed
that it is really dangerous, and surely pitiful, that, in the modern more fashionable
attitudes of academic milieux, the fundamental unity of human knowledge is being
unrecognized as a founding and strong feature of scholarly activity. As a consequence,
quickly and systematically, Western Culture has experienced a decay of the capacity
of addressing complex problems with a unitary vision of all their various facets.

In the short span of few scholars’ generations there was a dramatic change in the
perception of the role of a scholar: in present times the fields of expertise are being
more and more carefully delimited by boundaries that are more and more difficult to
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trespass. Therefore one may wonder if, in present days, a scholar like Johan Ludvig
Heiberg (1854-1928) would have been produced by the current academic system.
Heiberg not only mastered fully the Ancient Greek language, in its main versions,
including Doric Greek, together with Latin. What makes his personality really unique
is that he has systematically shown to master some not easy parts of mathematics,
as he could perfectly understand very deep texts by Archimedes, those contained
in the famous Palimpsest. Postponing to the subsequent chapters of this work some
relevant and more detailed discussion about this text, we start recalling here that it is a
parchment codex palimpsest, containing, after having scratched the first written text,
some prayers. How it could be possible that a scholar did manage to abrade a text by
the greatest recognized scientist who ever wrote in Greek language has to be studied
carefully, and is one of the problems that we signal for future scientific investigations.
In fact, the original text is a Byzantine Greek copy of a compilation of works by many
authors among whom Archimedes seems to be the most prominent. This original
text contained two previously unknown very important texts by Archimedes i.e.
the Stomachion and the Method of Mechanical Theorems (which is shortly referred
to as The Method). Moreover, it contains also the only surviving original Greek
manuscript of the celebrated Archimedean work on On Floating Bodies. Heiberg,
following the tradition of Western Culture, did translate the Greek Archimedean
text into Latin, whose role of lingua franca had been recognized nearly universally.
Unfortunately, after the 1906 Heiberg’s discovery and the subsequent publication of
his Archimedis Opera Omnia (i.e. The complete works of Archimedes), and after a
short period in which French seemed to have replaced Latin, English has established
itself as the modern, possibly even more universal, lingua franca.

As a consequence of this sudden change, a text written in Latin (but unfortunately
also if it was written in any living language different from English) became not
readable by nearly every modern scholar (sometimes even by some professor of Latin
Language!). As it always happened when a change of the used language in science
occurred, there is a very likely phenomenon that systematically occurs: a large part
of the knowledge accumulated in the old language is forgotten and lost. Another part
of this knowledge resurfaces in the new dominant language (the part of Archimedean
results that resurfaced thanks to Tartaglia gives an example of such a phenomenon,
see the following chapters) and is rediscovered several times. These rediscoveries
occur in several different space locations, in different times (many anachronisms
may be explained in this way) and also in different languages. Useless to say, this
process of systematic rediscovery slows down a lot the advancement of science and
is really detrimental, as it systematically causes regressions in technology.

An example of the rediscovery of a body of knowledge lost because of linguistic
barriers that we will examine concerns the works by Gabrio Piola (see [46, 47, 40,
42, 43]). Piola’s work were nearly completely ignored for a long period and had
been recovered because of a series of fortuitous events. Piola’s works were written
in Italian and because of the wrong choice of the used language their diffusion
was strongly limited. In this work, we will prove that there are, also in mechanical
science, very interesting ideas that were originally written in different languages than
English.
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The aim of the present work is to prove that, differently from what has been too
often conjectured, scientific knowledge transmission is not a simple process: the
vision of science as a continuous and endless progress from less advanced to more
advanced stages has been falsified even too many times in the history of science.
Surely there are the problems related to linguistic barriers, when the lingua franca
changes because of one of the many possible social reasons. Many scientific ideas
were lost in translation! However, there are also some psychological and barely
survival mechanisms that causes erasures, loss and deformation of the scientific
knowledge in its transmission process. These mechanisms play a crucial role in the
advancement of science, whatever may be believed by some right-thinking scholars.
These scholars believe that one has to avoid the consideration, when studying knowl-
edge transmission processes, of the social phenomena related to jealousy, revenge,
inflated self-esteem, bare ignorance, arrogance, need of earning from academic po-
sitions, every form of nepotism and use of scientific knowledge for getting any form
of power. Many are embarrassed when the existence of these social and psycholog-
ical mechanism are evoked and when one expresses the opinion that they may play
a crucial role in the rise of any form of Dark Ages. In fact, their consideration is
considered not politically correct and trying to take into account their influence in
history of science a form of mental disorder of the kind of paranoia. Instead, exactly
as Alfred Kinsey has scientifically shown how important is sexuality in human life
and in the psychopathology of humankind, we believe that the social forces that are
shaping human psychology are of great relevance in the mechanisms that produce
scientific research. Such an obvious statement, as a similarly obvious consequence,
implies that it is possible that a deep scientific theory, a useful body of knowledge or
an effective mathematical model may be erased, lost, or, in the best case, forgotten
for a while in a scientific group, simply because of a series of socio-psychological
reasons which are completely unrelated to their absolute scientific merit. Afore-
mentioned right-thinking scholars will claim that science is objective and that even
considering the possibility of any influence of the dark side of human mind on its
development is harmful for humankind. This reasoning may be considered equiva-
lent to believing that one can defeat an epidemics simply ignoring its existence: an
action whose consequences are well-known. The story of the struggles of Tartaglia
(1499-1557) to persuade all his contemporaries that he could understand and trans-
late the Archimedean works, as reconstructed objectively by Heiberg, gives us a
paradigmatic and incontrovertible evidence that our thesis is very well-grounded.

Why to try to establish how and when a scientific theory was first
formulated? Difficulties in this endeavour

In the discussion that we will develop in our work, we will focus on at least two
important aspects of the considered question. The first aspect concerns the impor-
tance of study of the true origins of the scientific theories. One may argue that the
value of a scientific theory resides in its predictive capacity, and that it is enough
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to supply a whatsoever rigorous and precise formulation for it. If one accepts this
point of view then, when a theory is formulated in a way or in another equivalent
way then she/he can choose the preferred way based on any reasonable and useful
criterion. Our point of view is, instead, that if one wants to learn how to formulate
a completely new theory, a theory that was never formulated before, she/he has to
learn, in absence of the meta-theory invoked and dreamed before, how the success-
ful theories have been formulated first, and how they were subsequently developed.
To see how old and established theories were born may be of use in the process
of inventing a completely new one. Indeed, we do not have, presently, any way to
supply to younger generations any other well-working method for teaching them how
to build theories that are efficiently capable to give the correct predictions for both
observed and not-yet-observed phenomena.

As a consequence we are obliged to follow the educational methods of those
ancient Renaissance Maestri, who trained their pupils to sculpture or painting simply
by showing them as the Maestro was painting or sculpting. Unfortunately, there are
very few great Maestri alive in a certain historical moments and, moreover, their
workshops are already full of pupils. Therefore one has to show to those young
scholars, who aspire to invent something original, how the available theories, relevant
in the chosen disciplines, were first conceived and developed: in this way we hope
that the lesson given by great scholars example will guide new generations. For this
reason a presentation of available theories must follow, as carefully as possible, the
original invention process that led their inventors to get them1.

The second aspect, on which our analysis will particularly focus, concerns the
process of transmission of knowledge from competent scholars to competent schol-
ars via intermediate scholars who are not so competent. Albeit the transmission of
science is based on written texts, the role of the scholars participating to the editing
of the texts and using them as textbooks for their young pupils cannot be neglected.
When the books were handwritten, their relatively enormous economical value in-
troduced a further selection filter in knowledge transmission: the economical costs
imposed a selection of what could be copied and what deserved oblivion. In this
choice the Archimedean Palimpsest was sacrificed for a book of prayers against dis-
eases, a subject that seemed more “practical” than abstract mathematics. A scholar
choosing what kind of textbook deserves to be transmitted plays a relevant role also
in the era of printed books: many books are not reprinted and remain in fewer and
fewer exemplars in the storages of libraries, virtually disappearing from the attention
of younger generations. In our (unfortunate) époque of citations metrics another
method has been conceived to condemn to oblivion certain textbooks, authors or
theories: it is enough to forget to cite them, and soon nobody will find these works in
the mare magnum of modern literature, which is literally overflown with too many
repetitive and not original papers and textbooks.

Finally, an influential compiler of a textbook, having many students may influence
many of them with his biased choices. In the milieux of mechanical sciences there
are many textbooks that were very successful in transmitting the correct ideas to

1 The second author is greatly indebted to Prof. Roberto Stroffolini (Università di Napoli Federico
II) for having shown him how such a teaching method has to be pursued.
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clever students, albeit it is clear that their compilers did not understand very much
the scientific results that they had carefully copied from reliable sources. There are,
also, examples of textbooks that deformed the true intent of their sources, imposing
to too many younger scholars wrong points of view or making for them every
original research extremely difficult. We will fully describe, under the guidance of
the authoritative Heiberg’s analysis, how Tartaglia did manage to have a relevant
role in the translation in the language used by Western Science of some of the
most relevant works by Archimedes. Albeit this may seem rather simple (and most
likely also very useful), we will not try to establish any relationship between the
publishing (and survival) strategy chosen by Tartaglia and that chosen by (too) many
more modern scientists. The need of getting a salary seems to allow for any kind
of deplorable choice, while Tartaglia features a “representative” scholar, belonging
to a specific kind. This kind of scholar is observed nearly ubiquitously in history
of science: one can find examples of it in any social group, language, scientific
discipline, historical period, geographical location and economical and political
organization.

Instead of looking for specific examples of such kind of scholar, we will try to
phenomenologically describe their behavior, the effects of their existence on science
transmission and on its accumulation and loss. We will try to apply the scientific
method in our phenomenological description and in our first efforts of looking
for a model of it. The phenomenology can be shortly resumed as follows: in the
competition that they need to accept in order to have recognized their own scientific
capacities, many scholars systematically want to ignore any signal indicating that
they are not original enough to deserve an academic position. They badly need the
sinecure that they believe to be associated to it, and therefore try to prove, in any
possible way, that they do deserve highly ranked positions. If they meet somebody
indicating how weak their scientific skills are, then they may react in two different
ways: i) they start believing that there is a conspiracy against them or ii) albeit
they may understand that the criticism against them is well-founded, they manage
to persuade themselves that since there are so many incompetent scholars, then
their own exclusion from academia is not moral. These scholars, either if they are
conscious of their weaknesses or if they sincerely believe to be clever enough for
their ambitions, try to make their best to persuade all other scholars that they can
be considered original thinkers. Sometimes, exactly as it was done by Tartaglia,
these self-proclaimed scientists reformulate, make rigorous, translate, clarify or
make more precise works that they have found in the literature. Exactly as Tartaglia
included in the title of one of his presumed translations the following statement:
“here I make clear what was not possible to understand in Archimedes works”, his
epigones manage to declare that they “clarified” the previously “obscure” theories,
while in fact they are completely misunderstanding them.
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To unveil the real contribution of Tartaglia (and his encyclopaedic
or polymath epigones) to science is not easy

The capacity of some scholars in avoiding any discussion about the merit of their
scientific contributions is legendary. They manage to bend even mathematical argu-
ment to their aims, making any discussion about what they claim to have discovered
completely useless. One has to avoid any effort in trying to prove that a single specific
scholar is not producing any original contribution or any original view in presenting
already known results. Instead it is very useful to describe from a general point of
view the kind of effect that the existence of the aforementioned type of scholars has
on science transmission and development. If this phenomenology is understood then,
most likely, some countermeasures can be acted to limit the unavoidable impact of
such scholars on the destinies of science.

Albeit this information seems to have been somehow forgotten, Heiberg hap-
pened to discover, while reordering and preparing for his edition the whole available
texts by Archimedes, that, in reality, the only merit one can attribute to Tartaglia,
for what concerns the appreciation of Archimedes work, is purely propagandistic.
Tartaglia contributed to revive the interest in Archimedes. Heiberg, while prefacing
his Complete Works by Archimedes, gathered all necessary evidence to prove that
Tartaglia’s capacity in writing in a correct Latin was rather scarce. One can deduce
therefore that he could never have the possibility to translate, from the Doric Greek
used by Archimedes into Latin, a complex text of advanced mathematics.

Heiberg’s argument seems to us very detailed, serious and careful: unfortunately,
this argument was buried in the Prolegomena of the famous Archimedes Edition.
We could say it was buried since this Prolegomena (as well as the whole translation
of Greek text) was written in Latin. While there are many valuable translations into
English of Heiberg’s Latin text, the Prolegomena, to our knowledge, were never
translated into any modern language. Therefore, we were motivated to translate in
this work aforementioned Prolegomena and to add our own comments to it, in order
to highlight those aspects of the phenomenology of knowledge to which we are
particularly interested. The sociological and cultural phenomena that are surfacing
from this reading deserve, in our opinion, a great attention.

Their importance cannot, indeed, be underestimated: if one wants to describe
carefully the process of birth of a novel theory she/he must establish exactly when,
how and in which formulation, it was first conceived. This description is essential
for pedagogical aims: younger generations of scientists must learn how to formulate
novel theories by looking at the invention process of the most successful ones. The
phenomenon of science transmission is rather complex and manifold: one can find
many of its aspects that are of great relevance. One that plays an important role con-
cerns the systematizing and paradigmatic role of Encyclopaedias and encyclopaedic
compilations. Because of their true nature, they gather many important aspects of
knowledge into a well-organized and unitary way, by using a common formalism and
vision. Moreover, they give a synthetic account of all human knowledge, in the most
ambitious projects, or for a specific group of disciplines, in other cases. Encyclopae-
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dias supply a precious support for subsequent generations of scholars, as they supply
a global understanding of the state of the art, in a given group of scholars, place and
époque. By sacrificing some technical details, they resume large bodies of knowledge
in an agile presentation and indicate where the interested scholar can find the details
that she/he may need. However, the existence of encyclopaedic summaries makes
more difficult to understand if a certain scholar did really master her/his discipline,
or if she/he did simply adsorb superficially one of the available Compendia.

Our attention has been attracted, in this context, by the 1913 Hellinger’s Entry
of the German Encyclopaedia of Mathematics whose aim was to give an overview
of the then current state of the art in Continuum Mechanics and list some research
perspectives that seemed promising to the author. This text has not been translated
into English until recently (see [69, 70, 71]) and proves that, in fact, Continuum
Mechanics has been “frozen” because of the establishment of English as the novel
lingua franca, and by the incapacity of the community of experts in Mechanics to
read French, Italian or German.

The summary and the analysis presented by Hellinger is really clear and far
reaching. The research perspectives, read by somebody in 2021, seem to be even
visionary: only recently some of them are being developed. It is remarkable that
Hellinger could forecast the main directions of future development of Continuum
Mechanics with such a large anticipation. The question therefore is: why Hellinger’s
work has been removed by the list of the most used sources of the 20th century by
the great majority of scholars in Mechanics? A partial answer is that it was written
in German. Moreover, the author was Jewish and, unfortunately, this did not help the
diffusion of his work in the milieu of German speaking Mechanicians, at least until
the end of Second World War.

Such an erasure resulted in a great damage to the advancement of Mechanical
Sciences. The loss of the consciousness of Hellinger’s analysis in the German speak-
ing Mechanics community had rather singular effects. Indeed, while many authors
showed to be aware of the results presented in his work, the information about
the fundamental fact that these results were, for the first time, obtained by using
variational principles was lost. Therefore, exactly as it was done by Tartaglia, the
secondary sources from Hellinger (some of them emigrated in the USA, together
with their authors) presented some reworks of Hellinger’s Compendium in such a
way that it was impossible to get from them any hint about the heuristic method
used for finding the presented results. These Compendia were presented as if they
were a completely original contribution of their authors, who seemed to have had an
out of the blue inspiration. This feeling impresses on the readers the false belief that
science is an epic endeavor where few, particularly gifted scientists, wake up one
morning and without any apparent cause, simply because they are geniuses, manage
to invent a novel theory. In fact, any theory is the result of a choral work of genera-
tions of scholars: what is found in some modern textbooks in Continuum Mechanics
is the elaboration, hiding the variational procedure first used for finding them, of
the contribution to the discipline given by many scholars, starting from Lagrange
[108, 107, 20], Piola [46, 47, 40, 128, 151], the Cosserat brothers [38, 4, 8, 58, 120],



1 The study of the genesis of novel theories as inspiration for future research 9

and continuing with Sedov [137, 135, 136], Toupin [144] and Mindlin [116], among
many others [68, 76, 88, 87, 105, 72].

The Entry by Hellinger represents a deep scientific contribution to Mechanics,
as it originally reorganizes, with the rigor of a gifted mathematician, all results
available up to 1913. It could have given an impressive impulse to the development
of 20th century Continuum Mechanics if only it had been understood by the scientific
community.

It has to be said that there is a possible misuse of the Encyclopaedic Entries, and
this misuse concerned also that by Hellinger: indeed, the results presented in this
kind of Compendia may be adsorbed and reworked by Tartaglia’s epigones, who will
present them from different, and sometimes twisted, points of view. The existence
of Encyclopaedic Entry make possible the existence of so-called polymath scholars:
these scholars, who probably have the access to Encyclopaedia Entry, are claimed to
have a universal knowledge. Instead, most probably, they simply had access to a, very
often lost, Encyclopaedic Entry. In particular Hellinger’s work is surely the starting
point of the reworking of Continuum Mechanics as presented by those scholars who
do refuse Variational Postulation. Knowing in advance the correct results it is easy
to deduce them by a series of ad hoc postulates, claiming that they are induced by
experimental evidence. We will more diffusely present this point in the following
sections of this Chapter. Of course this misuse was not intended by Helinger when
he conceived his Entry. Unfortunately, until very recently, as a direct source this
Entry was completely ignored. We could find a few fugitive mentions of it, where
it has been rather harshly criticized. What we have just described is another of the
sociological phenomena that must be studied and understood. Understanding it will
have an important consequence: thanks to the obtained insight one can find operative
methods for organizing the recruitment of academic bodies in a more efficient way.

Archimedes: “The Method of Mechanical Theorems” is an
authoritative source confirming our thesis

To our knowledge, Archimedes is the first known scientist who described explic-
itly a heuristic way for finding novel theories, theorems and mathematical models.
Archimedes’ mastering of the concept of “model” of physical reality by using math-
ematical deductive theories has pushed us to conjecture that his epistemological
vision may be considered, in essence, to be that of a falsificationist.

This statement may need further deepening: here we consider sufficient to quote,
once more, and to give some further few comments, what Archimedes wrote at
the beginning of his “The Method of Mechanical Theorems, for Eratosthenes”. The
Archimedean text was written in Doric Greek, and it is a difficult issue to decide which
English translation transmits more faithfully the original ideas and spirits. It seems
that the scholarly work of those who are capable to understand mathematics, physics,
model theory and Doric Greek is very useful also nowadays. The English text which
we are going to reproduce here is the final result of many transformations: the Greek
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text found by Heiberg was translated by Heiberg himself into (Modern) Latin (in his
celebrated Edition of Archimedes’ Works). Heiberg’s Latin text was then translated
into Dutch by E. J. Dijksterhuis in 1938 and then into English by C. Dikshoorn in 1956
(see [56]). Notwithstanding this subsequent translations, we manage to see clearly
the original ideas of Archimedes. Instead, Hellinger’s ideas [69, 70, 71] have been
reformulated into English [146] without citing them directly, in a way that blurs the
original spirit. There are also some hints about the way in which Hellenistic culture
organized science in this text. Archimedes starts his “cover letter” by recognizing to
Eratosthenes a scholarly preeminence but only as a “manager of scientific research”
and as “editor-in-chief” of the publications and manuscripts produced by the library
of Alexandria: “Since, as I said, I know that you are diligent, an excellent teacher of
philosophy, and greatly interested in any mathematical investigations that may come
your way, I thought it might be appropriate to write down and set forth for you in
this same book a certain special method, by means of which you will be enabled to
recognize certain mathematical questions with the aid of mechanics.”

This preamble may be interpreted as a kind of captatio benevolentiae. Now, from
all sources we know how great was the fame that Archimedes enjoyed also during
his life. Why did he need to be so careful in sending his paper to Eratosthenes? One
can conjecture that also in Hellenistic scientific milieux it was possible to observe a
phenomenon that to a much larger extent has been developed later: the diffusion of
culture happens to be controlled by few powerful scholars, whose decision can
greatly influence the destiny of any scientific work, including those written by
outstanding persons, as Archimedes was already recognized to be. The existence
of “well-established” scientific personalities who had the power to control what can
be published or what must be bound to oblivion seems to be therefore attested already
at the époque of the library of Alexandria, and seems to be an unavoidable side effect
of any form of organization of Big Science.

Eratosthenes of Cyrene (c. 276 – c. 195/194 BC) was probably one of the most
influential personality of Hellensitic science. Obviously, having the control and
full access to the biggest source of scientific knowledge of antiquity, he is often
described as a polymath. It is interesting to remark here that the etymology of the
word “polymath” goes back to ancient Greek. The Greek word πολυμαθής can be
translated as follows: “[somebody] having learned much”. The translation that has
been more often used in Latin is: homo universalis. i.e., “universal man”. We believe
that too often polymaths are simply scholars who managed to better reorganize
the results found by other, more original, scientists. Very often the compiler of
Compendia or Encyclopaedia Entries are this kind of erudite polymath. The most
skilled among polymaths, however, are very precious: they allow for the diffusion of
specialist theories among a wider set of scholars: we believe that Hellinger, being an
original mathematician himself, when accepting to write an Entry about Continuum
Mechanics did cleverly master the subject and then could give the best indications
about its future paths of development.

Eratosthenes’ interests apparently spanned mathematics, poetry, geography, as-
tronomy and music theory. In fact, most likely he was an erudite who managed to
persuade the Pharaoh Ptolemy III Euergetes to nominate him as a “chief-librarian”
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at the Library of Alexandria in the year 245 BC. One has to consider that the choice
was really appropriate: as head of such an institution one needs indeed a true and
gifted polymath. He was the leader of the group of scientists and technicians that
founded scientific geography and he is best known for having directed the group of
scholars that obtained a careful calculation of the circumference of the Earth and the
tilt of the Earth’s axis. He introduced the first global planar projection of the world,
by using parallels and meridians. Most likely he has also calculated the distance
from the Earth to the Sun and understood the need of the leap day for a precise
Calendar. In number theory, the sieve of Eratosthenes, an efficient algorithm for
calculating prime numbers is attributed to him. In the entry of the Suda2 concerning
Eratosthenes it is reported that his critics called him Beta (that is: the “second”, as
beta is the second letter of the Greek alphabet). This scornful attribute had been
chosen to underline that he was the second biggest expert in all his domains of com-
petence. On the other hand, without denying this circumstance and even confirming
it, his supporters called him Pentathlos after the Olympian Athletes competing in the
pentathlon, i.e. athletes being “well-rounded” in five different sports. Eratosthenes’
approach to science can be positively interpreted by stating that he tried to dominate
the complexities of reality (in fact his appointment at the Library required this kind
of skills!) and, for this reason, he had to prove to have talents in a large variety
of disciplines. He was capable to understand many things and wanted to use every
kind of information which he could achieve. As a consequence he could not be the
best expert in anything, but he could play a role in transmitting knowledge from one
discipline to another. In fact, as reported by Strabo: Eratosthenes was regarded to be
a mathematician among geographers and a geographer among mathematicians3.

His skills placed Eratosthenes in a very privileged position: he could decide
what had to be published becoming a book stored in the library of Alexandria,
and therefore, considering the importance of this library, which book could be
transmitted to future generations. Without any doubt, Eratosthenes belonged to the
timocratic scientific élite, i.e. the dominant group of intellectuals of his epoch.
Archimedes, who usually could not hide his great self-esteem (see [56, 97]), was
obliged to treat with great reverence such an important person. He, therefore, called
him a “diligent”, “an excellent teacher of philosophy”, and “greatly interested in
any mathematical investigations that may come your way”. Archimedes, as modern
scholars are often doing when submitting a paper, writes clearly to the editor-in-chief
about its motivations:

I am convinced that this [heuristic method] is no less useful for finding the proofs of these
same theorems. For some things, which first became clear to me by the mechanical method,

2 The Suda is a Byzantine encyclopedia, written during the 10th-century after Christ. It is a Greek
lexicon, having 30,000 entries and including many drawings copied from ancient sources, sources
which have been, unfortunately, subsequently lost. The name derives probably from the Byzantine
Greek word “souda”, which means “stronghold [of knowledge]”. Eustathius, misunderstanding the
etymology of the title, declared that Suda was a deformation of the name Suidas, that was his
author’s name.
3 This destiny is bounded to modern mathematical physicists: they are neither mathematicians nor
physicists. However they can be useful in allowing for the communication among the two groups.



12 Mario Spagnuolo, Francesco dell’Isola and Antonio Cazzani

were afterwards proved geometrically, because their investigation by the said method does
not furnish an actual demonstration.

The reader must remember here that the expression “proved geometrically” is a
precise calque of the Greek original expression. It has to be understood, in modern
language, as follows: “proved with mathematical rigor”. Archimedes has a great
standard of mathematical rigor. He states that something is “proven” only when he
finds a logically precise sequence of statements which can be deduced, one after
the other, from his axioms. A heuristic reasoning is NOT a theorem, for every
mathematician since the Greek invention of rigorous mathematics. The use of the
word “geometry” in Archimedes’ text is simply related to the fact that, in Hellenistic
science, the theory of real numbers was formulated in terms of geometrical entities
like segments, areas and volumes (see e.g. [37]). The argument of Archimedes
continues as follows:

For it is easier to supply the proof when we have previously acquired, by the method, some
knowledge of the questions than it is to find it without any previous knowledge. That is the
reason why, in the case of the theorems, the proofs of which Eudoxus was the first to discover,
viz. on the cone and the pyramid, that the cone is one-third [of the volume] of the cylinder
and the pyramid one-third of the prism having the same base and equal height, no small
share of the credit should be given to Democritus, who was the first to state the fact about
the said figure, though without proof.

Archimedes is aware of the importance of both the heuristic, creative invention act
which leads to the conjecture of a mathematical result and the technical rigorous
demonstration which is needed to state that such a theorem is true. He distinguishes
between the inventor of a mathematical proof and the discoverer, who is aware of a
well-conceived conjecture, whose result is left to be proven. Then, he discusses the
specific heuristic procedure, based on his understanding of a problem of mechanics,
which led him to calculate the area of a parabolic section:

My own experience is also that I discovered the theorem now published, in the same way
as the earlier ones [the theorems conjectured by Democritus and proven by Eudoxus]. I
now wish to describe the method in writing, partly, because I have already spoken about it
before, that I may not impress some people as having uttered idle talk

Archimedes wants to underline that his creative work has to be split into two parts:
i) the conjecture of the statement of the theorem, based on a heuristic argument, and
ii) the rigorous proof of the theorem, based on a logical procedure, starting from
the axioms he has accepted. It has to be remarked here explicitly that Archimedes
calculates the aerea of a parabolic section by what will be called later an integration
method. For doing so, he needs the rigorous definition of the set of real numbers,
which Archimedes attributes to Eudoxus of Cnidus. On the other hand he conjectures
that the area of the parabolic section has a certain value by means of an experimental
measure. Archimedes, following a habit that is unfortunately too often spread among
pure mathematicians, communicated his rigorous proof without any reference to his
heuristic mental process. However, he had spoken about it while discussing with his
colleagues: he feels the need to describe it in a written form. He is doing this in order
to keep his reputation of serious scientist, who is not talking in vain. To keep his own
high reputation is not the only reason for which he discloses his way of reasoning:
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partly because I am convinced that it will prove very useful for mathematics; in fact, I
presume there will be some among the present as well as future generations who by means
of the method here explained will be enabled to find other theorems which have not yet fallen
to our share.

Archimedes wants to show to future generations how a theorem is conjectured: he
is not happy to give the rigorous proof of it, only. As he has not a technique of
discovery which can be formally presented to the reader, he explains his own mental
process, based on a clear understanding of mechanical phenomena. Finally, he gives
us the specific technical details concerning his theorem

We will now first write down what first became clear to us by the mechanical method, viz.
that any segment of an orthotome4 is larger by one-third than the triangle which has the
same base and equal height, and thereafter all the things that have become clear in this way.
At the end of the book we will give the geometrical proofs of the theorems whose propositions
we sent you on an earlier occasion.

The few sentences cited above were considered by Heiberg, their modern dis-
coverer, as possibly the most important ones uttered by Archimedes. Archimedes
transmits to us the mental process which occurred in his mind during his mathe-
matical creation. Rather seldom such a clear perspective is given in a mathematical
text. Hellenistic Mathematics, and also all subsequent mathematical tradition, is
characterized and founded on the logical rigor of the presentation. The economy
of thought and its precise formulation are considered the prevalent criterion when
presenting mathematical results. A mathematical text, since Hellenistic mathemati-
cians, is a sequence of logical conclusions, obtained with correct deduction rules,
starting from the accepted hypotheses, conceived in such a way that the theses are
related to the hypotheses by a irrefutable reasoning. While this demand of rigor is
essential for the development of hard sciences, it is also undoubtedly true that this
style of presentation, giving the synthetic final result of the process of demonstration,
is ignoring the equally important demand of understanding the reasons which led the
mathematician to the presented demonstration and the heuristic method using which
this demonstration was found for the first time. Risking to spoil the myth of his own
genius, Archimedes reveals spontaneously how himself, before even starting to try
to prove his theorems, conjectured their theses and managed to be persuaded that
they were true.

1.3 An epistemological intermezzo: inductivism versus
falsificationism

Without any hope to succeed in presenting an exhaustive report of the epistemological
knowledge that led us to understand how scientific theories are built, for seek of

4 An old name first used by Menaechmus to designate the particular conic section resulting from
cutting a right-angled cone by a plane which is perpendicular to its surface, thus producing a
parabola
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self-consistency, we sketch here those most fundamental ideas that should guide a
mathematical physicist in his scientific practice.

We have been sometimes very surprised in discovering that otherwise very gifted
scholars may have a too naive vision about the epistemological concepts which are
needed for correctly guiding their scientific research. In general, for what concerns
the postulation scheme used in Continuum Mechanics, we have seen too many pre-
sentations in which a series of ad hoc postulates are accepted based on experimental
evidence or even claiming that they are induced by experience. These approaches
led to an occlusion of Continuum Mechanics in a stage that was already recognized
to be too particular in the works of Gabrio Piola [46, 47, 40, 43, 42, 122, 128].

In order to get rid of the limiting scheme of Continuum Mechanics as elabo-
rated by Cauchy and imposed in Engineering Sciences by its undoubted successes
in predicting deformative behavior of bodies, it is necessary to resort to a truly fal-
sificationist approach in the comparison of different mathematical models used for
describing reality.

Relation between Science and Technology: a view back through
History of Science

For the kind of analysis we want to conduct, it is of primary importance to ask
what is the effective relationship between Science and Technology. Is there a theory
that describes the birth, growth and decay of Scientific Theories and Scientific
Technology? To get answers in this direction, it is necessary to refer to concepts that
are the specific object of History and Philosophy of Science. If thinking about History
of Science does not confuse us, because we can easily recognize in it the ordered set
of observed facts, discussing Philosophy of Science may induce misunderstandings.
We refer to Philosophy of Science as that meta-theory which, by organizing the
set of available information about the way in which well-established theories were
constructed, tries to supply efficient methodologies apt to formulate new theories.
In the perspective of a mathematical physicist, therefore, a Philosophy of Science is
indispensable.

But let’s go back to the original question that we believe has a basic importance:
what is the relationship between the development of an organized Science and
the technological progress of a society? The answer to this question is extremely
complex, but we can already get a clear idea by considering on an imaginary time line
the focal points of human technological development and then, on the same time line,
place the cornerstones of scientific development. What would immediately appear
is that for about two million years man has used chops and more or less polished
stones for hunting, working skins, cutting wood and other subsistence activities. A
few thousand years before Christ, man began to build the first instruments. Gradually
technological advances have increased, but there has been an incredible acceleration
in correspondence with the birth of Hellenistic Science: the ballista, the Syracusia
ship, the astronomical calculator of Antikythera, just to name a few. It has to be
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remarked that the existence of the disk of Nebra (we will give details about it in the
following) seems to indicate that, albeit we do not have any written evidence about
it, the great development of the technology related to the Bronze Age may be related
to a first elaboration of a proto-Science.

One can follow this imaginary timeline up to the present day by observing how
the relationship between scientific development and technological development is
inextricably linked. A society that abandons Science, after a suitable time-delay,
goes through three successive phases:

i. it no longer produces any kind of new technological development,
ii. it loses the knowledge related to the use of technological tools developed in a

previous era of scientific flowering and
iii. transforms (in the best case) such tools into religious objects.

We will see how this decline of Science, and consequently of Technology, is in-
exorable when certain conditions are created in a given society. One can possibly
explain the fall of Western Roman Empire relating it to the loss of awareness about
the importance of Hellenistic Science and the related slower, but equally inexorable,
loss of technological capacity. We believe that there is an exemplary case that de-
serves to be shortly discussed here: we mean the use of gravity aqueduct. Hellenistic
hydraulics did know a form of the law that has been named after Bernoulli. This
theoretical knowledge allows for the conception and construction of the cheaper
pressurized aqueduct. In fact, in Pompei we can see a network of pipes distributing
the water in the city with a small local pressurized aqueduct. However, building
a large aqueduct is not a very frequent need. In the Pergamon Museum in Berlin
important parts of a large pressurized aqueduct serving the Pergamon Acropolis are
shown. We do not know when the needed theoretical knowledges of hydraulics were
lost: for serving Rome, unfortunately, engineers who ignored hydraulics built gravity
aqueducts, causing a large economical loss. A sum of such losses most likely made
the difference of the destiny between Western and Eastern Roman Empires. One may
consider that for some unknown reason the advanced topographic knowledge needed
for building a gravity aqueduct were not lost in the passage between Hellenistic and
Roman cultures: the reasons for which Romans did manage to preserve a part of
Engineering Sciences (Topography) while loosing another part (Hydraulics) may be
related to an arbitrary choice of a librarian who could not understand the mathe-
matically difficult arguments in Hydraulics while could catch the simpler reasonings
used in Topography, probably because this last can be synthesized using drawings
and simple Euclidean Geometry.

An interesting philosophical question that arises spontaneously when we try to
organize the phenomenology of scientific progress of human societies is to wonder
if the path of human history is a progression of stages that has been repeated many
times, independently by different groups, in the same order or if each progress has
occurred only once and then it has consequently widespread. This distinction between
social determinism and diffusionism finds its basis in the thought of Giambattista
Vico, who wrote
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Similar ideas that originate from entire peoples unknown to each other must have a common
basis of truth.

We tend, differently by what appears in Vico’s thought, towards a diffusionist
approach. This approach explains better the phenomena related to the scientific
flowering which occurred in the Renaissance. Is there really anyone who can believe
that the Renaissance evolved in a completely autonomous way? Can anyone really
continue to deny the very strong influences that Hellenistic thought had on Renais-
sance thought? And if there are still few who deny such influences, why, instead, are
there still so many who deny the importance of Hellenistic Science and even deny it
a classification as a truly “modern” Science?

The library of Cardinal Bessarion is the first fundamental part of Marcian Library
in Venice and was constituted mainly by Greek codices. Based on the transport
of Hellenistic Science via Greek manuscripts arriving in Europe, the main charac-
ters of Italian Renaissance started the re-discovery of ancient Science not always
recognizing their debt towards their sources.

Approaches to Science: Falsificationism or Inductivism?

In the formulation of a scientific theory at least two alternative approaches can
be used. Following the standard nomenclature in the literature, they are called in-
ductivism and falsificationism. We are aware of the fact that more sophisticated
conceptual frames have been adopted in Philosophy of Science. However, discussing
only these two approaches is enough for our aims. Both of these visions can be
traced back throughout the History of Science. As far as we will discuss in the
following of this chapter, we are interested in how they were declined in Hellenistic
thought, as we will analyze the development and decline of the models introduced
for the description of the motion of the planets, and how they were used within the
group of scientists who in the 19th century and later developed modern Continuum
Mechanics.

As for Hellenistic Science, as we shall see, unfortunately surviving sources are so
rare that it is difficult to tell in which form the debate on inductivism and falsifica-
tionism took place among Hellenistic scientists. The echoes of this debate, however,
are resonating in a significantly later period: Proclus (412-485) discusses the nature
of epicycles (we will see below the details of the deferent-epicle model) and asks
himself whether they exist or are pure mathematical hypotheses in his treatise Hypo-
typosis (i.e. Exposition of Astronomical Hypotheses). As we will see, for scientists
of the Hellenistic age, as Apollonius of Perga who first introduced planet models
using deferents and epicycles, it was obvious that these were simple mathematical
objects and that they are not objects in the physical world. They loose every mean-
ing if not contextualized in the model where they were introduced. As Proclus is a
post-scientific philosopher, he seems to report about an ancient debate and, being
completely unable to fully understand its content, he manages to deny the validity of
both positions. However, Proclus claims to be a follower of the philosophical thought
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of the Platonic school: therefore, he should be able to see a difference between math-
ematical and physical objects, albeit believing that one can experience, in the world
of mathematical ideas, some experiences leading mathematicians to mathematical
theorems.

When Platonism is adopted in the development of mathematical thought, then
extreme positions are generated. In fact, according to Hardy [96], mathematical
platonism is based on the statement

Mathematical reality lies outside of us and our function is to discover and observe it and
the theorems we prove [...] are simply the accounts of our observations.

According to mathematical Platonism, then, physicists discover physical reality
while mathematicians deal with mathematical reality. As we will see with examples
taken from both the development of models for the motion of the planets and the
development of modern Continuum Mechanics, it is very dangerous to confuse,
or even identify, mathematical entities with the physical entities of which they are
assumed to be models. Moreover, there are some mathematical entities for which
one cannot find any physical correspondence: these mathematical entities are useful
only in the logical development of the formulated mathematical model. When one
confuses the mathematical model with the physical reality, it may happen that,
instead of concluding that the specific model is not suitable to describe physical
evidence, one could believe that reality is not self-consistent and may arrive at the
conclusion that nature is intrinsically paradoxical. This ontological point of view
should be avoided if one wants to have any hope to describe and predict physical
phenomenology.

The confusion between models and physical reality is carefully avoided by Pla-
tonic mathematicians: therefore, such a philosophical position is not impeaching
the needed distinction between mathematical objects and the physical objects they
are modeling. Once one has distinguished between mathematical models and real
objects, it is easy to confute the so-called inductivist vision of Philosophy of Science.

Inductivism has been considered for too long time as the true scientific method that
has to be practiced by diligent scientists. Unfortunately, it is still a commonplace view
in many scientific milieux to believe that one can induce from many observations
some physical laws, that belong to physical reality and can be established once forever.
Such a vision of the scientific method is not efficient and effective to develop scientific
theories, as an efficient process like induction of a physical law cannot be established.
In fact, inductivism is based on the belief that a systematic research approach exists,
that involves an inductive reasoning (whatever it may mean) enabling scientists, when
applied with due diligence, to objectively discover the unique true theory describing
every phenomenon. The prescription of inductivism, when examined attentively,
presents a very ambiguous clause: the scientist must apply due diligence. Therefore,
when an induced physical law reveals some limits, naive inductivists are simply
stating that the scientist formulating it was not diligent enough. Such a point of view
is not at all scientific: how can a scientist know which is the due diligence necessary
for being sure that his law is “true”? The position of naive inductivists has been
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ridiculed by Bertrand Russel with his famous anecdote about the inductivist chicken
[131, Ch. 6, p. 47]:

Domestic animals expect food when they see the person who usually feeds them. We know
that all these rather crude expectations of uniformity are liable to be misleading. The man
who has fed the chicken every day throughout its life at last wrings its neck instead, showing
that more refined views as to the uniformity of nature would have been useful to the chicken.

In a more picturesque way, Chalmers in [34] reformulates it as follows:

[We present] a gruesome example attributed to Bertrand Russell. It concerns a turkey who
noted on his first morning at the turkey farm that he was fed at 9 am. After this experience
had been repeated daily for several weeks the turkey felt safe, in drawing the conclusion “I
am always fed at 9 am”. Alas, this conclusion was shown to be false in no uncertain manner
when, on Christmas eve, instead of being fed, the turkey’s throat was cut. The turkey’s
argument led it from a number of true observations to a false conclusion, clearly indicating
the invalidity of the argument from a logical point of view.

More seriously and shortly, but maybe in a more effective way, Einstein also
criticizes inductivism:

Any amount of experiments may prove that I am right; a single experiment can prove that I
am wrong [A. Einstein, letter to Max Born on the December 4th of 1926].

In conclusion, the idea that theories can be derived from, or established on the
basis of, facts is a statement with an empty meaning, and we believe that the same
use of the world “theory” is not appropriate. In fact, a theory is, etymologically
a sequence of statements deduced logically from a conjectured set of postulates.
The commonplace statement which we have quoted before should be rephrased by
introducing instead the world “physical laws” if one could give a meaning to such
an expression.

Inductivism was formulated, in our opinion, while misunderstanding Hellenistic
sources that stressed the importance of the experimental verification of formulated
mathematical theories. Inductivism was developed during four centuries and Francis
Bacon was one of its champions. Western Europe’s prevailing epistemological ap-
proach, in the époque of Bacon, was the so-called scholasticism. Also scholasticism
was based presumably on a misunderstanding of Hellenistic sources: the philoso-
phers of this school believed that, based on preconceived beliefs, one could, without
any interrogation of experimental evidence, forecast the behavior of physical phe-
nomena. Clearly, scholasticism was accepting only partially what we presume was
the true formulation of ancient falsificationism. The falsificationist approach, which
consists in conjecturing a model having the aim of describing a set of observed facts,
verifies only a posteriori how much can be predicted on the basis of the assumed
conjecture.

In fact, falsificationism bases its analysis of natural phenomena, and the corre-
sponding formulation of theories, on the conjecture of some basic postulates from
which the scientist must deduce consequences, to be used, when possible, to predict
physical phenomena. Therefore, while the stress of scholasticism was presumably
focused on the first part of the process of scientific invention as described by ancient
falsificationism and neglected the important required check obtained by experiments,
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inductivism stressed only on experimental evidence, by loosing the deductive part
so highly considered in ancient falsificationism. It is clear that the scholars of Mid-
dle Ages, having a partial understanding of their sources, could catch only a part
of the original complex epistemological vision. This vision has been completely
reconstructed only at the beginning of 20th century, when it was necessary in or-
der to formulate really novel physical theories like Quantum Mechanics or General
Relativity.

A falsificationist does not try to induce his postulates, he only checks that all
the logical consequences of his postulates, for which this is possible, are verified
experimentally. Falsificationism has shown to be extremely advantageous in the
advancement of scientific progress, compared to a naive inductivism. We claim that
one of the first implicit expositions of falsificationism can be found in Archimedes’
Treatise on Method, in which the Syracusan scientist provides guidance on how
to proceed in conjecturing new theories correctly. If it were not for the fact that
modern Science is Archimedes’ progeny, we could say that Archimedes has all the
characteristics of a modern scientist!

Contrary to what History of Science has shown so far, i.e. that only a scientific
knowledge produces advances in Technology (therefore, we claim that the only
possible way to produce new technological advances is to develop new theories
that allow us to observe phenomena never observed before), unfortunately today
scientific progress appears to be stuck in the pointless debate on a data driven or
theory driven Science. This debate represents the modern rephrasing of the debate
between inductivism and falsificationism, that seems to have been evoked by Proclus.

Proponents of the data driven strategy, strengthened by the fact that today there
is a relative overabundance of data available and computing capacity, argue that
the description of reality can be simply induced by means of the manipulation of
experimentally collected data. We will see, in the following, a fundamental example
of how even the modern critical interpretation of Hellenistic Science is sometimes
given in a data driven key. In fact, while Hipparchus of Nicaea conjectured a priori
the precession motion of the rotation axis of the Earth, today’s modern inductivists,
who are data driven, let us believe that Hipparchus induced the precession law from
a comparison of the positions of certain stars as measured by him and those reported
in a star catalog compiled 150 years before him. We believe, and we will describe
extensively the reasoning that leads us to this belief, that, instead, Hipparchus first
conjectured Earth’s axis precession and only after then, based on his conjecture,
explained the discrepancies between the two catalogs. Albeit we do not have the
relevant sources available (imagine if we could find Hipparchus counterpart of
Archimedes’ On the Method!), we can suppose that, after having seen the motion
of a spinning top (see below for more details), Hipparchus, knowing what he was
looking for, checked the star catalog for obtaining a confirmation of his conjecture.

The debate between inductivists and falsificationists is being repeated nowadays,
for instance, also in the research field devoted to the invention of new materials with
properties which are not observed spontaneously (i.e. not too frequently) in nature.
In this area, which is also discussed extensively in other chapters of this work, a “data
driven” strategy is not only impractical, but also conceptually wrong and econom-
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ically disadvantageous. Therefore, we claim that an awareness of epistemological
basic concepts is needed also in nowadays researchers studying basic problems in
Engineering Sciences.

Underdetermination of Scientific Theories: a problem for
Inductivism?

In the conceptual framework we have discussed up to now, when formulating a new
theory, a fundamental role is played by the basic hypotheses, or physical postulates. In
the falsificationist approach, starting from the basic hypotheses (postulates), and us-
ing rigorous logical procedures, one can deduce consequences that can be confronted
with experimental data. It has no sense wondering a priori whether hypotheses are
true or false: hypotheses can be only judged on the basis of the comparison between
the whole set of their consequences and available experience. Moreover, hypotheses
have to be contextualized in the model for which they are formulated. It is a very
common misunderstanding the confusion between the hypotheses of a specific model
and the hypotheses of another model treating a different aspect of the same physical
system. Also if two models are describing the same physical entity, this does not im-
ply that one has to assume the same hypotheses in both of them, if the phenomena to
be described are sufficiently different. We present here some paradigmatic examples
of this underdetermination of scientific theories.

We do not believe into the inductivist approach, because, obviously, a collection
of phenomena concerning a physical system does not uniquely determine the true
and only scientific theory to be used for describing it. In fact, and as we have stressed
before, the used hypotheses may change when choosing a model or another model
for the same physical object. A very famous example of the underdetermination of
scientific theories is given by Archimedean study of the mechanical behavior of
Oceans.

Let us start from a strong ontological statement, clearly accepted by Archime-
des: oceans exists and are always the same physical object where tides occur and
on which vessels float! Now Archimedes knows that the phenomena involving the
floating of vessels can be described by the model of planar surface of oceans. Indeed,
Archimedes uses the hypothesis that the surface of seawater is a horizontal plane (in
the treatise On floating bodies) as a basic one when he wants to establish the stability
conditions for ships hull in the vertical configuration. Archimedes had to develop his
famous buoyancy law to found this specific theory. However, somewhere else (we
conjecture this happened when he was preparing the model for describing tides, that
we know has been developed by Seleucus) Archimedes also proves, starting from
other postulates, that the surface of the Oceans has to be spherical!

He knew how to use different hypotheses, depending on the different type of
phenomena he wanted to describe. Can we find a contradiction between the two
models for the surface of Oceans? Is Archimedes, as it is claimed by some modernistic
historians of Science, a primitive and confused scholar? In fact, the two visions
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of Nature, as described by the two Archimedean models, can be reconciled. The
floating phenomena of vessels, actually, can be described either by assuming a
planar ocean surface or by a spherical surface with a much bigger Earth radius
than the dimensions of the vessel. We can, then, easily agree with the fact that a
collection of phenomena does not uniquely determine a scientific theory and that
the basic hypotheses may change when considering different models formulated for
describing different phenomena involving the same physical object.

How can we decide if the Earth surface is not more complicated than a sphere?
The ancient Greek observation that one sees at a distance the sails of a ship before
seeing its hull can be explained in different ways, attributing to the surface of the
Earth different shapes. An application of Occam razor suggests that it is wise to
start with the simplest conjecture: that it is a sphere. However, every surface locally
similar to a sphere can, in principle, be adopted. Once more naive inductivism seems
to find an insurmountable obstacle.

Another useful example is given by the many different models introduced for
describing the physical objects planets (and specifically the Earth). The possibility
that one can model Earth as a moving material point (as it is done in Celestial
Mechanics), or as a rigid sphere (in elementary Astronomical Geography), or as
a rigid geoid (in advanced Astronomical Geography), or as a deformable geoid
(in Seismology), or as a multi-phase deformable solid (in Geochronology), implies
that there are not preferential true hypotheses to adopt, but that for a given set of
phenomenological evidences a most suitable mathematical model is conceivable
and that the discussed underdetermination can be solved with a kind of minimization
principle, that is Occam razor.

In conclusion, we share the belief that (i) the basic postulates of a theory are
statements whose truth value can be uniquely posed a priori and (ii) only their
being false can be determined once for all. The previous statement is the essence of
falsificationist approach, while naive inductivism believes that the basic postulates
of a theory can be proven to be true by means of a series of experiments. To believe
into inductivism is a (negative) change of perspective dating back to more recent
times (i.e. Newton) with respect to the Hellenistic view. This perspective change, we
believe, corresponds to a diminution of epistemological awareness.

In fact, Archimedes accepts that a certain theory is valid to describe the phenom-
ena of buoyancy and understands that for this theory to be predictive it is necessary
that a certain theorem be true, starting from some basic postulates. So he commits
himself to prove this theorem with mathematical rigor.

The example, to which we refer, requires the application of the law of buoyancy
and the demonstration of a theorem, which is given by Archimedes by an argument of
exhaustion. Archimedes understands that formulating postulates is an important step
in the procedure of developing any scientific theory and that experimental evidence
cannot be used to prove theorems, that is the consequences of the accepted postulates.

The clarification of the role of mathematical deduction from postulates and of
their comparison with experiment represents the main ideas contained in his treatise
On the Method. The epistemological ideas at the basis of that treatise are mani-
festly more modern than many contained in works that claim to be milestones in
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modern Science. Paraphrasing Archimedes, we can say that the fact that the law
of buoyancy produces some predictions that can be experimentally verified (using
modern language) does not imply that the equality is mathematically true, on the
contrary it must be, in fact, proven starting from the mathematical definition of
the set of real numbers. Archimedes is confident of the descriptive capacity of his
model in explaining buoyancy phenomena. Therefore, he is ready to assume that
the entire mathematical architecture needed in the deductive part of his theory is
correct, and that the predictivity of his model points the way to a demonstration of
the mathematical theorem that must be true.

In doing so, we believe that Archimedes proves to be a falsificationist. Moreover,
he is so aware of the importance of his Method that, as we have already previously
remarked, he claims:

I am persuaded that it [the Method of Mechanical Theorems] will be of no little service to
mathematics; for I apprehend that some, either of my contemporaries or of my successors,
will, by means of the method when once established, be able to discover other theorems in
addition, which have not yet occurred to me.

History of Science teaches: developing mathematical models for describing new
phenomena can lead to unexpectedly useful results not only in inventing new tech-
nological artifact, and predicting the existence of new phenomena, but also in con-
jecturing new mathematical theorems. This point will be made clearer in the next
sections.

1.4 From the world reality to its mathematical model and from
the model to the replacement of the world reality

In this section we present two paradigmatic cases of how several times human society
has seen the birth and subsequent decline of Science. A very interesting aspect lies
in the fact that the state of decline is generally not universally recognized except by a
few voices that are however isolated and, if possible, silenced. The picture that comes
out from the analysis of many cases of decline that have affected human society is
disconcerting: it could seem that this decline is the result of an extremely organized
operation rather than the result of a series of unhappy choices, of either political or
social nature. The question arises spontaneously: who would benefit most from the
decline of a scientific society? Who would have the courage to condemn the human
society to a sort of Dark Ages in order to favor their own interest?

The answer is not uniquely determined. Certainly when in human society a few
groups of unscrupulous individuals assume the leadership and replace in power
people who are prepared and work for the common good, the decline is already
at a very advanced stage. One aspect which is common to all moments of decline
is the relative importance that bureaucrats acquire. Bureaucrats who should limit
themselves to facilitating the choices of politicians replace them and ensure that
society remains entangled in useless discussions. When, in the late Byzantine era, the
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highest scientific-philosophical discussion of the intelligentsia of the time concerned
the sex of angels, society had already been in decline since long time and the conquest
of Constantinople with the consequent collapse of the Eastern Roman Empire in 1453
represented only the formal end of an era that had already ended long before.

The process that determines the decline of a society does not merely ensure its
end at a given historical moment, but often also ensures that not enough traces of
its civilization survive to determine a new cultural and scientific flowering at a later
time. This results in a veritable erasure of certain theories or of the name of their
founders.

A notable example that reaches us from Greek antiquity is given by the case of
Archytas of Tarentum, who was several times strategos (i.e. general) of Tarentum
(and therefore his name could not be erased completely from history). He was
the first to introduce the Principle of Virtual Work in the study of mechanical
systems, but knowledge of this was lost until a few years ago when the treatise
Mechanica Problemata historically attributed to Aristotle was recognized to be
likely authored by Archytas, according to T. N. Winter (2007). On the other hand,
it was not lost the information that he had invented a mechanical bird and a toy
called ratchet. It is interesting to see that not only his name was erased from the
Mechanica Problemata (which, by the way, could be an exercise book associated
with a much deeper theoretical text), but it was transmitted to us only that his main
contribution in Mechanics was the invention of toys. Instead, we believe that he was
considering these toys as a way for explain the basic mechanical principles exactly
as Heron of Alexandria did later in his Mechanica and Automata. The process of
cancellation is systematic: not only it does eliminate all original sources that it can,
but when it cannot manage to eliminate them altogether it makes them sound less
authoritative. It is not easy to establish if the erasure process which cancels the name
of great scientists and deforms or removes completely their theories is conscious or a
consequence of the lack of intelligence and capacity of understanding. This dilemma
appears also when discussing the motivations of those politicians mentioned before,
whose choices produce the cultural and scientific collapse of the societies that they
lead. Most likely the behavior of both scholars and politicians whose disastrous
choices were mentioned before can be described by a famous Friedrich Schiller’s
quote5:

Against stupidity the very gods themselves contend in vain.

One of the most frequent phenomena occurring in the phase of degeneration
of the scientific culture in a social group consists in the systematic confusion of a
mathematical model with the physical object that this mathematical model is aimed
to describe. Of course, this confusion is deadly because it poses a series of apparent
paradoxes which may lead to believe that the predictive limits of the model represent
instead an intrinsic self-contradicting nature of reality. The destructive ontological
consequences of these phenomena may lead to a violent reaction against the process

5 Die Jungfrau von Orleans (The Maid of Orleans) (1801), Act III, sc. vi (as translated by Anna
Swanwick)
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of mathematical modeling, that can be exemplified by the skeptic philosophy that
led Sextus Empiricus to abjure Hellenistic Science.

We can recognize a repetitive pattern of growth, decline and collapse of scientific
theories and scientific cultures, so that we tend to generalize the analysis by Gi-
ambattista Vico, originally limited to the cyclic repetition of social structures, also
to history of Science.

In order to show how the decline of a scientific society generally occurs, we pro-
pose in the following two examples of models that, in the progress of time, have been
confused with reality itself and have, therefore, generated atrocious misunderstand-
ings. The first case consists in the observation of how the mathematical model for the
motion of the planets, formulated in an extremely accurate way and also by means
of advanced mathematics in the Hellenistic age, has been abused and completely
misunderstood until producing in the Middle Ages the idea that the planets actually
moved on metallic guides placed in the heavens. The second case that we will deal
with is that of Continuum Mechanics, where starting from a certain époque, the con-
cept of force, which was introduced only to simplify the mathematical formulation
of the Principle of Virtual Work, has assumed a completely unjustified fundamental
role in the postulation of basics Mechanics principles. We observe here that it is pos-
sible to recognize a process of materialization or transformation into a real object
for the completely abstract concept of force. In a kind of Platonistic delirium many
scholars managed to persuade themselves, and to persuade their pupils, that forces
are real objects that one can meet in everyday life: the resulting confusion between
physical objects and mathematical objects used in a model for describing real world
phenomena is extremely misleading. Those who believe in the reality of forces want
to give at any cost to this object a wrong ontological essence.

1.5 Reconstruction, partly conjectural, of the birth and decline of
the mathematical models for planetary motion

We now want to mention a reconstruction, clearly partly conjectural, of the evolution
of the mathematical models for the motion of the planets. It is necessary to make two
premises: (1) the purpose of what we will describe is not the in-depth historical study
of given scientific theories (for this there are several texts available in the literature
[37, 35]), but rather to show a sociological aspect of the transmission of scientific
culture, which, of course, can be studied only by resorting to the development of the
models in non-negligible periods of time; (2) the reconstruction that we will present
of the evolution of the motion of the planets is obviously conjectural, in the sense
that not all sources are available, but, from the few sources that have come down to
us and from secondary sources, it is possible to conjecture the scientific panorama
of the Hellenistic age to obtain a vision about Hellenistic Science that is, in many
aspects, really surprising.
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An example of precursory proto-model before Hellenistic
Astronomy

Before properly analyzing Greek astronomy, it is appropriate that we mention an
object dating back to the Bronze Age recently found near the German town of Nebra.
It is a bronze disc with gold applications representing the sky, which was most likely
used in the period 2100–1700 BC. Specifically one can recognize the crescent Moon,
the Pleiades and a disk that could be the Full Moon or the Sun. Two arches are affixed
to the edges of the disk. In more recent times it has been added a small arch that
could represent a solar boat, typical of a religious representation and also found in
other cultures such as the Egyptian one.

It has been conjectured that the disk could be used to precisely determine the
equinoxes and solstices, aligning it with the stars at certain times of the year and
taking into account the orography of the place where it was found. So it would be a
rudimentary scientific instrument used for determining the calendar of agricultural
activities: it is therefore one of the first available examples of a technological tool
developed on the basis of a predictive model about the universe but used for practical
applications. The subsequent affixing of the solar boat suggests that the scientific
instrument has been transformed into an object of cult and then was finally buried in
a tomb. The story of the disk of Nebra is the story of a scientific society, obviously
in its embryonic state, that arises and produces useful instruments and then declines
making what is no longer understood to become a religious cult. The fact that the fate
of a scientific instrument, which is no longer useful because it has been transformed
into a cultic object, is the tomb is very explanatory.

The disk of Nebra gives a strong support to the vision of history of Science that
considers cyclic cultural declines as frequent social phenomena. It supports Giambat-
tista Vico’s vision of cyclicality of social phenomena and completely falsifies the
belief that human progress is only proceeding towards higher cultural consciousness.

Eudoxus and the model of homocentric spheres

The first known scientific model describing the motion of the planets is due to
Eudoxus of Cnidus (408–355 BC). Eudoxus was a mathematician and astronomer.
He is one of the fathers of mathematics. Pupil of Archytas of Tarentum, among other
things he studied the problem of finding the algorithm (with ruler and compass) for
the duplication of the cube. The problem of the duplication of the cube is an absolutely
non-trivial problem, since to be treated properly one must master the concept of
irrational numbers, that before Eudoxus most likely had not been developed. It has to
be remarked that, when Pythagoreans discovered that the hypothenuse of an isosceles
right triangle is incommensurable with the catheti, the first reaction was to believe
that nature was paradoxical. In fact, Pythagoreans did confuse the mathematical
model rational numbers with the concept of length of a segment: when it was proven
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that the above-mentioned hypothenuse could not be represented by a fraction they
were led to believe that such hypothenuse did not exist. The reader is invited to
consider this as a paradigmatic example of the disastrous potential consequences of
the epistemological and ontological mistake which is intrinsic in the confusion of a
mathematical model with the physical object that one intends to describe.

It is not a coincidence, then, that Archimedes attributes to Eudoxus the invention
of the concept of real number in its geometric definition. Unfortunately, all Eudoxus’
works are lost: we have only secondary sources. But these are enough to give us an
idea of the level of depth of Eudoxus’ discoveries. Among the secondary sources,
we recall the treatise of Theodosius of Bithynia Sphaericae, which is probably
based on his work. Of his other works we have received only the titles: Eclipses of
the Sun, Octaeterides (solar lunar cycle of eight years), Phenomena and Entropon
(spherical astronomy based on observations made in Egypt and Cnidus), In motion.
As mechanicians we were ready to pay a very high price for having a copy of this
last text, as it could give us a clear vision of the first true scientific stage of our
discipline and could guide us in the development of novel models. Eudoxus’ passion
for astronomy was not, of course, only theoretical, but had significant practical
implications and, in fact, he built an astronomical observatory.

Eudoxus’ fame is related to the model of homocentric spheres. This model de-
scribes a universe divided into spheres having a single center of rotation. At the
center Eudoxus put the Earth surrounded by spheres in uniform circular motion. The
outermost sphere contained the fixed stars. On the other spheres moved the planets.

To better understand the mechanics of the model of Eudoxus, we use the words
of G. V. Schiaparelli [134]:

“Eudoxus thus imagined, almost as Plato had done before him, that every celestial body was
set in motion by a sphere revolving over two poles, and endowed with uniform rotation; he
further supposed that the body was attached to a point of the equator of this sphere, so as
to describe, during the rotation, a maximum circle, placed in the plane perpendicular to the
axis of rotation of the same. To account for the variations in the speed of the planets, their
retrograde motion, and their deviation to the right and left in the direction of latitude, this
hypothesis was not sufficient, and it was necessary to suppose that the planet was moved
by several movements analogous to the first, which overlapped and produced that unique
movement, apparently irregular, which is what is observed. Eudoxus therefore established
that the poles of the sphere carrying the planet were not immobile, but were carried by a
larger sphere, concentric to the first, rotating itself in turn with uniform motion and with its
own speed around two poles different from the first ones. And since even with this supposition
it was not possible to represent the observations of any of the seven celestial bodies, Eudoxus
attached the poles of the second sphere inside a third one, concentric to the first two and
larger than them, to which he also attributed other poles and another speed of its own. And
where three spheres were not enough, he added a fourth sphere, including in itself the first
three, carrying in itself the two poles of the third, and also rotating with its own speed around
its own poles. And examining the effects of these movements combined, Eudoxus found that,
choosing conveniently the positions of the poles and the speeds of rotation, the movements
of the Sun and Moon could be represented well, assuming each of them carried by three
spheres; the more variegated movements of the planets he found required four spheres each.
The driving spheres of each celestial body he assumed to be independent of those that served
to move the others. [. . . ]



1 The study of the genesis of novel theories as inspiration for future research 27

Thus the total number of moving spheres was 26, plus one for the fixed stars. What was the
cause of these rotating movements, and how they communicated from one sphere to another,
is not found that Eudoxus had looked for; nor what was the material and size of the spheres
themselves; nor what were their diameters and their intervals. [...] Eudoxus therefore totally
omitted to research what did not matter to his main problem, the geometrical representation
of phenomena; and in this we see another proof of his sober and rigorous genius. He did
not care at all to connect the driving spheres with those of the planet immediately above and
the planet immediately below, and assumed that the spheres involved in the movement of
each planet formed an isolated system independent of the rest. In short, everything leads to
believe that the spheres were for him the elements of a mathematical hypothesis, not physical
entities; from which he was wrongly reproached for having closed the universe in crystal
vaults, and for having multiplied them without necessity.”

Eudoxus was not a mere observer of the sky: certainly it was by observing the
sky that he formulated his conjecture at the basis of the model of the homocentric
spheres. In fact, he was a great mathematician: this last characterization leads us
to conjecture that he was probably aware that his model was not reality, but only
an attempt to describe it. This conjecture is strongly supported by the recognition
found in Archimedes sources about Eudoxus invention of irrational numbers: only a
sophisticated epistemological understanding could have led Eudoxus to his solution
of Pythagoreans apparent paradox. It is significant that many scientists even today
are unable to distinguish their model from the reality they claim to describe it.

The geocentric model of Eudoxus did not succeed in any case to explain com-
pletely the planets retrograde motions and also failed to give an explanation of the
variation of brightness of the planets during their motion (which instead is obvious if
we consider that the distance of the given planet from the Earth is variable in time).
Remaining within a geocentric model, the system was refined by Apollonius of Perga
(262–190 BC) who first introduced the concept of deferents and epicycles (which
we will discuss in more detail when we present the algorithm of Claudius Ptolemy).
Apollonius considered the motion of the planets as a composition of several uniform
circular motions and in this way he was able to approximate the retrograde motions
and to give a convincing explanation of the variation of apparent brightness. Also
in this case, as for Eudoxus, we can say with some confidence that the model with
deferents and epicycles was perceived by Apollonius as a mere mathematical model
and that he was not confusing his model with physical reality. Unfortunately, the
same cannot be said about Ptolemy.

Aristarchus: an ancient Copernicus? Or more likely Copernicus is
the modern Aristarchus?

The progress in the development of a model for the description of the motion of the
planets obtained by Eudoxus is the basis of the huge advances made by Aristarchus of
Samos (310–230 BC). As we mentioned in the previous section, probably Eudoxus
knew that his model did not coincide with reality, but that it was only a description of
it, a certainly imperfect and obviously perfectible description: the attempt to describe
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in some way the retrograde motion of the planets by adding extra spheres represents
the most evident proof that Eudoxus had a clear idea of the concept of successive
(mathematical) approximations of reality. This idea will be fully developed by the
sources of Ptolemy as it is evident by inspecting his computation method based
on the introduction of deferents and epicycles. If one wants to build a model to
describe the motion of the planets, the first step is to obtain kinematical estimates
that are consistent (if not overlapping) with observational data. This is what Eudoxus
did. Aristarchus goes a step further and introduces the first heliocentric model.
He wonders how well the representation of the cosmos given by Eudoxus closely
describes reality. Certainly today everyone should be able to agree with the fact
that to pass from the geocentric model to the heliocentric one is a simple change of
reference and that, once fixed the correct transformation from a reference to the other,
there is absolutely no difference in using one reference or the other one. Actually,
another possible, if not preferable, choice would be to place the reference in the
center of mass of the solar system and consider the motion of all celestial bodies,
including the Sun, around this center of mass. In fact, for the scientist of the third
century BC the change of reference is an absolutely not trivial conceptual step. We
will see how in the Archimedes’ planetary stolen by Marcellus and described by
Cicero this change of observer was included in the mechanism.

Let us try to reconstruct the various stages that occur in the research of the
Hellenistic scientist to arrive at the heliocentric model. The first observation, the
most obvious one, concerns the motion of the Sun and Moon, which describe an
arc in the sky during the day and the night. We consider already overcome any kind
of religious conception that can come out from such observations and we consider
already established the knowledge of the sphericity of the Earth (since Parmenides
onwards this was well known to the Greeks!). Based simply on the observations of the
positions of the Sun and Moon, it is then licit, for the Hellenistic scientist, to imagine
that these two celestial bodies rotate around the Earth, which instead remains fixed.
The big jump in quality of mathematical modeling is made in the attempt to explain
the retrograde motions of the planets (to observe and record which quite advanced
technologies are already required, because it is impossible to think that with the bare
eye one can record with precision the positions of all planets and constellations).
A second fundamental observation in the path towards heliocentrism concerns the
motion of the fixed stars, which, without apparently changing their inter-distance on
the sky, rotate all together. As we will see, the fixed stars constitute a problem for
heliocentrism (but Aristarchus responds extremely lucidly to the objection made to
him, see below).

So, this is the picture from which the Hellenistic scientist starts:

i. Sun and Moon follow arcs of circumference;
ii. planets show regular and retrograde motions;
iii.fixed stars have an immutable reciprocal inter-distance on the celestial sphere that

rotates instead on a yearly basis cycle.

The phenomena (i) and (iii) are perfectly described by Eudoxus’ model of homo-
centric spheres. Retrograde motions require a complexified explanation by means
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of various spheres, with contained relative motions, associated to the same celestial
body. To be predictive, Eudoxus’ model becomes very cumbersome. In addition,
the tendency to the search of the most economical logical reasoning, typical of the
Hellenistic scientist, who was trained on Euclid’s Geometry and therefore is accus-
tomed to reasoning as simple as possible, cannot explain why a few celestial bodies
(planets) behave differently from the other celestial bodies and go back and forth in
the sky. We can imagine Aristarchus’ astonishment when he realizes that fixing the
reference system on the Sun and not on the Earth, the motions of the planets become
all nearly-circular (or possibly elliptical): from a complex and cumbersome descrip-
tion, modified ad hoc for each celestial body, this Hellenistic scientist is passing to a
unified description that treats all the motions of the celestial bodies in the same way.
Once heliocentrism is introduced, it will not be possible anymore to come back to
other models!

It remains to be settled, in the proposed model, the question of the fixed stars: if
the observation is made from the Earth, which according to the heliocentric model
is itself in rotation around the Sun, why should the fixed stars appear to have a fixed
relative distance? Aristarchus, who, like all his contemporary scientists, knew deeply
Geometry, answered in an ingenious and at the same time obvious way: the distance
between the Earth and the fixed stars is enormously greater than the diameter of the
Earth’s orbit, so that, for what concerns our measurements of relative distances of
very distant stars, it makes absolutely no difference to fix the observer reference on
the Earth or on the Sun. This will be understood again in modern age with Giordano
Bruno and Galileo Galilei only.

Obviously, as we will underline in the following discussion about Hipparchus of
Nicea, the relative positions between the so-called fixed stars are not at all immutable,
but vary on a time scale much longer than the life of a man because of their natural
motion. The reason for the very slow variation of the apparent-from-Earth relative
distances is related to the enormous distance between the Solar System and these stars
when compared with the diameter of the Solar System: exactly the same explanation
given by Aristarchus to establish that heliocentrism and geocentrism are equivalent
models for what concerns the description of the phenomenology concerning the
motion of fixed stars. We believe that this explanation must have been obviously
understandable for those who first came to formulate the heliocentric theory, but we
have no sources available to know Aristarchus’ thought regarding this issue.

Unfortunately, the work of Aristarchus on the heliocentric theory has been lost
and we have available only some fragments reported by secondary sources. The only
work which survived is On the dimensions and distances of the Sun and Moon. In
this work Aristarchus gives another proof of the high level reached by Hellenistic
science. With an extremely simple reasoning he succeeds in deducing dimensions
and distances ratios from the Earth to the Moon and to the Sun based on the powerful
results of Euclidean Geometry and his own results which are based on trigonometric
functions.

The whole reasoning of Aristarchus is based on the fact that, when the Moon is in
quadrature, i.e. it is illuminated by half, it forms a right triangle with the Earth and the
Sun. By measuring in this condition the angle between the Earth-Sun direction and
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the Earth-Moon direction it is possible to calculate the ratio between their distances
using trigonometric arguments.

To calculate dimensions and distance ratios, Aristarchus is forced to invent a way
to approximate the calculation of the tangent of the angle. The tangent of an angle is a
function that assumes values throughout the whole set of the real numbers, eventually
diverging. In fact, as the angle approaches a right angle, the tangent function tends
to diverge, i.e. small changes in the angle correspond to huge changes in its tangent.
This implies that if the angle in question is almost a right angle then small errors in
the measurement of the angle produce large errors in the calculation of its tangent
and therefore in the estimation of distance ratios. The estimate of Aristarchus was,
in fact, wrong by several orders of magnitude. Nevertheless, the algorithm invented
by Aristarchus for the calculation of the tangent of an angle is correct and it will be
very useful for the subsequent development of Hellenistic Science (and of Science
tout court).

A final note on how many paradoxes may arise while describing the process
of transmission of Science is needed. In many modern texts Aristarchus, who first
introduced the heliocentric model, is referred to as the ancient Copernicus (who
lived almost two thousand years later). As we have repeatedly seen in other chapters
of this work, often in the history of Science those who come after claim authorship
of an idea, even if this idea was developed by others long before. In the present
case, obviously, it was not Copernicus, who probably knew very well the works
of Hellenistic Science, to claim the paternity of heliocentrism. In fact, Copernicus
clearly attributes to Aristarchus the formulation of such important mathematical
hypothesis (see [97]). The causes of this absurd misunderstanding are to be found
in the works of modern scholars. Why this reversal of ideas? Why not calling
Copernicus the modern Aristarchus but, instead, doing the opposite? It may appear
as if Aristarchus had in some way wanted to refer to the ideas of Copernicus. The
reasons of this aberrant time-reversal are found, in our opinion, in that very modern
attitude that sees with extreme disregard the ancient Science (and indeed, many
contemporary scholars warn that one should never speak of science in antiquity!)
and that wants to show how well we can manage ignoring our past. But it should be
considered that if removed from the shoulders of giants the dwarfs will fall into the
void.

A mature Science is sometimes too complex to be transmitted to
posterity: Hipparchus’s explanation of the precession of the
equinoxes

Once the heliocentric model has been acquired, Hellenistic Science continued to
refine its models by focusing on the study of further available phenomenology.
There is, as we have extensively emphasized in the section on Philosophy of Science
and Epistemology, an important requirement that a theory must fulfill: not only
it must be able to reproduce available phenomenology, but also it has to allow,
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giving directions to experimental research, for new discoveries by indicating where
and how new measurements have to be made. Precisely framed in this panorama,
Hipparchus of Nicaea (200–120 BC) is the first who was able to accurately predict
the eclipses of the Sun and the Moon and, demonstrating profound and pronounced
skills as a mathematical physicist, as we would say today, he could explain the
discrepancies found between the star catalog compiled at the turn of the fourth and
third centuries BC by Timocharis (of Alexandria) and Aristyllus (which were based
on previous measurements of the Babylonian Chaldeans) and his own star catalog:
indeed, between the two catalogs there is a time-lapse of about 150 years and, for
this reason, the apparent positions of the stars on the sky show small variations.

Aristarchus, following the hypothesis first suggested by Heraclides Ponticus (c.
390 – c. 310 BC), whose works are however lost, had attributed to the Earth, in
addition to the motion of revolution around the Sun, also a motion of rotation around
its own axis. He had, moreover, established that, to take into account the alternation
of the seasons, it was sufficient that the axis of the Earth’s rotation was inclined
with respect to the plane of the orbit around the Sun (also known as the ecliptic
plane). While Aristarchus probably had no idea that the direction of this axis was not
constant in time, Hipparchus of Nicaea conjectured the presence of one between the
two motions nowadays attributed to the Earth’s axis. Hipparchus, in fact, introduced
the Earth’s axis precession motion, which consists in the rotation of the Earth’s
axis around the normal to the ecliptic plane: today we also introduce the nutation
motion, which consists in a further periodic oscillation of the Earth’s axis during the
precession motion.

The reasons why Aristarchus assumed the inclination of the Earth’s axis should
be nowadays part of general culture, albeit they are not at all trivial, as it is needed to
explain the alternation of seasons. On the other hand understanding how Hipparchus
was able to deduce the motion of precession is an extremely challenging question,
which deserves some explanations here.

As we said before, Hipparchus compares two stellar catalogs, that of Timocharis
and Aristyllus (based on data already collected by the Babylonian Chaldeans) and his
own. The two catalogs have differences in the measured position of some stars (for
example Spica). It is possible that Hipparchus formulated his hypothesis of Earth’s
axis precession from the discrepancies between these measurements. We believe
that such a precise hypothesis cannot be the result of this comparison alone, without
the aid of a complex modeling procedure and postulation. In fact, once it has been
established by Aristarchus that the Earth rotates around its axis and that this axis is
inclined with respect to the ecliptic plane, the Hellenistic scientist probably tried to
formulate a model of the motion of the planet Earth around its axis, by conceptually
separating this motion from that of the rest of the universe. If this simplifying
hypothesis is well-grounded, then the model-seeking scientist will as a first step
attempt to represent the Earth’s axis motion as a superposition of simpler motions.
In this aspect, Hipparchus works in continuity with the Hellenistic tradition that
represents celestial motions using sub-sequent epicycles. By conceptually isolating
the Earth in its motion, it is likely that Hipparchus could have established a parallelism
with the motion of a spinning top. It is well attested the use of spinning tops in
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Hellenistic époque and possibly earlier. Callimachus from Cyrene (c. 310/305–240
BC) reports the use of spinning tops as toys in his first Epigram [Call. Epigr. 1, 9-10]:

Those, some children, played with rapid spinning tops twirling them in the wide crossroads.

It is also attested, as proven by the role of Archytas (c. 435/410 – c. 360/350
BC) as inventor of pedagogical toys for children, that Hellenistic scientists aimed
to exemplify physical phenomena by means of toys, a tradition which was also
continued by Heron of Alexandria (c. 10 – c. 70 AD). It can be assumed, therefore,
that Hipparchus, knowing that analogous mathematical descriptions can be used to
describe different physical phenomena (today, following Feynman [75], we would
say that the same equations may model different phenomena), was bound to attempt
the description of the physical system “Earth rotating around an inclined axis” using
the knowledge acquired in the already known areas of the Science of his time, i.e.
“spinning top rotating around its axis”. It is widely known that the Greeks knew
the spinning top even before Callimachus: in the VII book of the Iliad Homer (late
eighth or early seventh century BC) describes the motion of a stone thrown by Ajax
Telamonius against Hector as the motion of a spinning top

An even bigger stone [...]
Telamonius grasped and his strong

right hand twirled it like a stone thrown from a slingshot.

If Homer could describe a stone thrown by Ajax as a spinning top, why Hipparchus
could not think of modeling the Earth rotating around its axis as a spinning top?
Which is exactly what Maxwell will do in his treatise on spinning tops [115]. If one
observes a spinning top rotating then he will see: (i) the rotation of the spinning top
around its axis, (ii) the direction of the axis changing in time (precession); (iii) the
variation of the inclination of the axis due to a certain oscillation (nutation).

The question we have to ask ourselves now is: is it easier to deduce the precession
motion by observing the discordance of the measures or to conjecture it by observing
the motion of a spinning top thrown by children playing in the street?

It is attested that Hipparchus did conjecture the nutation motion of the Earth’s axis.
We claim that the genius of Hipparchus consists in imagining the similitude between
the spinning top and the Earth and, consequently, in interpreting the discrepancies
between the measures reported in the two catalogs not as an indication that the oldest
measures could be wrong but as a proof that the Earth could actually be described
as a spinning top. It is clear that an essential prerequisite for the advancement of
knowledge is that one generation of scientist can rely on the results obtained and
transmitted to them by the previous generation. It is therefore to be blamed the
modernistic attitude of considering everything coming from the past as unavoidably
primitive.

The hypothesis of Hipparchus, contained in his lost work On the displacement of
the solstitial and equinoctial signs, is applied to the analysis of the longitude of the
apparent position of the star Spica during a lunar eclipse. The method adopted by
Hipparchus to measure the longitude is known because it was reported by Claudius
Ptolemy (c. 100 – c. 170 AD) in his Almagest. After the measurement, Hipparchus
compared it with the longitude of Spica reported in the catalog of Timocharis and
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Aristyllus and he noted that this longitude had varied by 2◦ in about 150 years.
From this observation, he made the hypothesis that the fixed stars have shifted with
time and estimated a precession of 48” per year. It is remarkable that the precession
measured by Hipparchus with the instruments of his epoch is so close to the value
measured with today’s instruments and expressed as 50.26” per year. It is singular
that Hipparchus’s estimate is also considerably better than that obtained by Claudius
Ptolemy (36” per year) about three centuries later.

The measurements made by Hipparchus to validate his hypothesis of precession of
the equinoctial points obviously require the use of instruments, both theoretical and
practical, which are extremely accurate. This is how trigonometry and the astrolabe
were born. As far as trigonometry is concerned, Aristarchus had already introduced
some basic concepts, very much linked to the formulation in terms of Euclidean
geometry. In Hipparchus, we find trigonometry in its modern formulation, except for
the use of a different symbology. In fact, the symbology used in modern times, as it
is well known, was introduced only by Euler (1707 – 1783).

Other achievements of Hellenistic Science in the study of the
motion of the planets: Seleucus’ explanation of ocean tides and the
Antikythera calculator

So far, we have described the genesis and development of the heliocentric model,
but except for the indirect evidence we have mentioned, neither Aristarchus nor
Hipparchus had given a demonstration of it. According to Plutarch (46 AD – after
119 AD), Seleucus of Seleucia (floruit 150 BC) gave a formal proof of the heliocentric
theory. We believe that Plutarch with the word demonstration meant the deduction
from more fundamental postulates. If our interpretation is correct this could imply
that Seleucus had invented a form of dynamics. We will see that Middle Ages echoes
of dynamical theories seem to support our conjecture. Another indirect support
for it can be found in the explanation, also attributed to Seleucus, of the complex
phenomenology involved in ocean tides.

In fact, from a reconstruction based on secondary sources (because even of
Seleucus nothing has come down to us) it can be said that the greatest contribution
of Seleucus to Hellenistic Science consists in the in-depth study of the tides. Now,
while it can be simply understood that the tides are related to the combined interaction
of Sun, Moon and Earth, the specific phenomenology, especially in its quantitative
aspects, requires a very detailed analysis. Indeed, if one wants to reproduce with
some accuracy the experimental observations, the extremely simplified vision where
the tidal phenomenon is described by static interactions with celestial bodies is not
sufficient. Today, we use an extremely complex model based on a dynamic approach,
introduced by Laplace (1749-1827), which takes into account also the inertial effect
of the ocean motion relative to the Earth. In that formulation, the well-known Coriolis
force needs also to be introduced.
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An interesting aspect resulting from the few secondary sources of Seleucus’
thought is that he related tides not only to the position of the Moon and the Sun, but
also to the motions of the Earth. The main sources from which we get information
about Seleucus are Strabo (64/63 BC – 24 AD) and Aetius (1st or 2nd century
AD), and the latter reports, in an extremely confused way, this idea, which in some
ways recalls the dynamic model of Laplace. In this regard, Galileo Galilei (1564-
1642) had already tried to give a dynamic interpretation of the phenomenon, but
produced not very clear results. We believe that both Galilei and Laplace were at
least inspired by the words of Seleucus (probably not by the confusing version of
Aetius, but by another clearer source that has not reached us). Some authors, with
philological evidence, have tried to interpret the text reported by Aetius and to relate
it to the information referred by Plutarch about the presumed demonstration of the
heliocentric theory presented by Seleucus, but we will not delve here into this subject.

The scientific progress of the Hellenistic age was not only theoretical but also had
strong practical implications. One of the most paradigmatic proofs of the technolog-
ical development induced by the theoretical advancement of Hellenistic astronomy
is represented by the calculator of Antikythera (150–100 BC). This famous astro-
nomical calculator, which even for the complexity of the gears that compose it gives
fundamental information on the high level reached by Greek metallurgy, was able to
predict an enormous number of celestial phenomena, as well as provide a series of
calendars. By turning the crank on the side, it was not only possible to calculate the
exact position of each planet and the phases of the moon, but also the eclipses of the
Sun and Moon. Since, of course, information about the positions of the planets was
given relative to the latitude of a chosen point on the surface of the Earth, some have
speculated that, using a sort of inverse method, the calculator could be used on sea
voyages to estimate latitude based on a comparison of the positions of the planets in
the sky and those determined using the astronomical calculator.

The astronomical calculator of Antikythera shows the position of the planets in
a reference centered on the Earth. In this case the choice of the geocentric model
is justified by the fact that the scientific instrument has a specific purpose and, if it
is true the hypothesis that the calculator provided the latitude by comparison with
the sky, then it is logical that the represented system be geocentric. Obviously, in
order to describe the complexity of the apparent motions of the celestial bodies in
the geocentric system, it was necessary to have an extremely precise and reliable
computational algorithm. The algorithm used and realized by means of numerous
gears was that due to Apollonius of Perga, who decomposed the motion of the planets
in circular motions on deferents and epicycles. For each planet the Antikythera
calculator has a series of gears for the deferent and for the various epicycles.

The discovery of the astronomical calculator of Antikythera has shown us an
aspect of the geocentric system that is rarely emphasized. To the question of why
the ancients had begun to study the sky and the motion of celestial bodies, the right
answer is not, as it is often trivially suggested, the wonder that the uncultured ancient
man felt in observing the starry sky. This is a romantic view that we should learn to
circumstantiate. The fundamental reason why it was necessary to study the sky lies
in the fact that until before the invention of the compass this was the only reliable
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way to get orientation. So it is also understandable why, although it was already
clear with Aristarchus that the heliocentric system was more effective in describing
phenomena than the geocentric one, the geocentric description of planetary motions
has never been abandoned and, indeed, has been gradually refined: it is absolutely
necessary to obtain precise estimates of the positions of the planets in the reference
centered on the Earth and thus be able to orient. In short, we could say that the
Hellenistic scientists knew very well that at the center of the planetary system there
was the Sun, but they needed to put the Earth at the center of the solar system for
using the theory to obtain practical results.

Using modern language, the study of heliocentric theory represents pure research,
while the study of apparent positions of celestial bodies in a geocentric reference
frame represents applied research. Archimedes (287–212 BC) did succeed in making
theory and practice dialogue fruitfully and it is not a coincidence if in the famous
planetarium belonging to Archimedes, as Cicero reports, one could, depending on
the needs, fix the Sun or the Earth and observe directly the motions of the planets
from the heliocentric view-point or from the geocentric one.

The death of Archimedes as a metaphor of the beginning of the
end: the slow decline leading to Dark Ages did begin with the end of
Hellenistic Science

Archimedes was one of the greatest scientists and mathematicians of human history.
In several parts of this work we have spoken of his outstanding scientific discover-
ies and especially of his way of approaching the scientific research, which, while
remaining strongly connected to physical reality, had the merit of being lucidly for-
mulated in precise and rigorous mathematical terms. As for the topic we discuss in
this section, we limit our attention to two aspects, one of technical and the other of
historical nature, which are related to the death of the great scientist, after the end of
the Roman siege of Syracuse in 212 BC led by consul Marcellus. The technical as-
pect is reported by Cicero (and we have mentioned it previously): Marcellus brought
in the booty of war taken in Syracuse the famous planetarium of Archimedes. Cicero
speaks of this planetarium several times, in the De Re Publica and in the Tusculanae
Disputationes. In the latter work he reports:

“Nam cum Archimedes lunae solis quinque errantium motus in sphaeram inligavit, effecit
idem quod ille, qui in Timaeo mundum aedificavit, Platonis deus, ut tarditate et celeritate
dissimillimos motus una regeret conversio. Quod si in hoc mundo fieri sine deo non potest, ne
in sphaera quidem eosdem motus Archimedes sine divino ingenio potuisset imitari.” [Cicero,
Tusculanae Disputationes I, 63]

“In fact, when Archimedes bound in a sphere the motions of the Moon, the Sun, and the five
errant planets, he obtained the same result as [the Demiurge] who in Timaeus constructed
the universe, i.e. the Plato’s god, so that a single revolution governed motions very different
from each other in slowness and speed. If it is not possible for this to happen in this world
without the intervention of a god, certainly not even in his sphere Archimedes would have
been able to imitate the same movements without a divine intelligence.”
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Archimedes’ planetarium probably represents the highest point of Hellenistic
Science, and today we can only have a vague idea of it by looking at the astronomical
calculator of Antikythera, which was in all probability a portable version of the
planetarium.

The siege of Syracuse is also sadly known because it was during this siege that
Archimedes lost his life. Plutarch, in his Life of Marcellus, reports three different
versions of the death of Archimedes: all versions agree in the fact that he died by
the hand of a Roman soldier, although the Syracuse scientist is said to have been
extremely appreciated by Marcellus, who seemed to be grieved by his death and gave
him an honorable burial.

The death of Archimedes marks a symbolic point of no return for Hellenistic
Science: after this event the phase of decline begins. As we will see, the decline
is not immediately recognizable as such, but is usually preceded by a phase of
mannerist fashion in which there are no more original ideas, but only repetitions and
progressive refinements of pre-existing ideas. We believe that the siege of Syracuse
and the consequent decline of Hellenistic Science started an inexorable process that,
centuries later, will lead to the Dark Ages.

In the artistic domain, the Renaissance was followed by Mannerism, which in
its most negative sense is depicted as the artistic current in which the artist no
longer seeks inspiration in nature, but limits himself to attempting to imitate the
works of the three great Renaissance artists, Leonardo, Michelangelo and Raphael
(thus losing the instinct of originality that had characterized the Renaissance artist).
Similarly, Roman art limited itself to copy and reproduce Hellenistic masterpieces.
In the same way, and we could say cyclically, in every stage of history of Science one
recognizes a phase of maximum development followed by a mannerist phase, which
preludes to an imminent decline eventually followed by another growth stage: we
believe to be followers of Giambattista Vico’s doctrine. The great scientific advances
of the Hellenistic period, which in the restricted field of Astronomy the available
sources attribute mainly to Eudoxus, Aristarchus and Hipparchus, are followed by
a phase of stagnation in which attention is focused on computational aspects and
loses, therefore, that originality which had characterized the scientific revolution of
the 4th-3rd century BC.

In this mannerist framework stands Claudius Ptolemy (100–170 AD), whose
greatest contribution to ancient Science consists in the refinement of the algorithm,
originally due to Apollonius of Perga, that allowed to calculate precisely the positions
of the planets of the Solar System. Ptolemy worked in Alexandria when probably
the Library still existed and therefore had at his disposal the largest database in the
world to which one could have access in that time. It is peculiar that, while Ptolemy
was concentrated purely on the problem of calculating apparent motions of stars in
a geocentric reference, his successors attributed to him the choice of the geocentric
model of Eudoxus. We do not believe that Ptolemy had consciously refused the he-
liocentric model of Aristarchus: like many modern engineers he was only interested
in practical calculations, and spent all his time in describing calculation algorithms.
In any case, it is necessary to point out that, as we mentioned when discussing
the Antikythera calculator, the calculation by deferents and epicycle had been in-
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troduced by Apollonius of Perga centuries before Ptolemy. From this consideration
Ptolemy appears to be a compiler of already known results rather than the inventor
of something new.

Ptolemy’s algorithm turns out however to be a computational tool more precise
than the algorithm developed by Apollonius of Perga and capable of giving estimates
of the positions of the planets with sufficient precision for the astronomy of his time.
We stress that his time is quite different from the centuries in which Eudoxus,
Aristarchus and Hipparchus operated and in fact, for example, the estimate given by
Hipparchus of precession is significantly more accurate than that made by Ptolemy
three centuries later. The algorithm is based on a system of successive approximations
made of compositions of uniform circular motions on circles of different sizes and
with the centers located at ad hoc chosen points. An epicycle is a circumference
whose center is placed on the circumference of a larger circle called deferent. In
the model of Apollonius of Perga, therefore, the planetary orbits are represented as
a composite motion of the revolution of the planet along the epicycle and of the
epicycle along the deferent. By increasing the number of epicycles, one can obtain
more and more accurate estimates of the orbits of the planets: one can conjecture that
Apollonius of Perga was aware of the fact that increasing the number of epicycles
one could reduce the error in the estimates of the kinematics of planets. We doubt
that Ptolemy had this awareness. This multiplication of epicycles has been widely
criticized in the past by the followers of Copernicus (1473-1543), against the opinion
of some Jesuit erudites: the fact that more precise estimates could be obtained by
increasing the number of epicycles was seen as an unnecessary complication of the
model. In fact, the controversy between Copernicans and some Jesuits was based
on a fundamental misunderstanding: while Copernicans considered the number of
circumferences involved in the mathematical description of Solar System as a part
of a postulation scheme, and therefore wanted to reduce it using Occam razor, their
Jesuit opponents stressed the mathematical aspect of the question, remarking that
periodic motions can be approximated better and better by increasing the number of
epicycles.

As reported by Gallavotti [80], since Schiaparelli’s analysis [134] the approxi-
mation technique via epicycles for the periodic motion of planets can be recognized
as an initial form of Fourier analysis. As it is well known, Fourier (1768-1830)
joined Napoleon’s Egyptian campaign in 1798. The development of his analysis,
conversely, dates from 1822. We have, in the present work, repeatedly conjectured,
sometimes even demonstrated, that in the history of the transmission of scientific
thought the often unmentioned source of works that are perceived as revolutionary
and forerunners for modern Science is to be found in works of the Hellenistic age,
which are nowadays (perhaps not by accident) lost.

It is clear that Fourier could have simply been inspired by what was already
known about this technique. It is purely speculative to believe that he could have
found other sources while campaigning in the place where the largest Library in
the ancient world had risen. It is also clear that Apollonius’ model and Ptolemy’s
algorithm were known, at the expense of Aristarchus’ heliocentrism, throughout the
Middle Ages and were considered basic until Kepler (1571-1630).
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The materialization of Eudoxus’ model

It is remarkable that during Dark Ages a choice among available models for the
Universe was made. Soon one model was confused with reality. In fact, it was
the simplest, and less predictive, model to be confused with reality for at least
six centuries (the time interval between the fall of the Western Roman Empire,
i.e. 476 AD, and the small Renaissance of Frederick II Hohenstaufen, who lived
between 1194 and 1250). The complexity of all models formulated after Eudoxus
was totally out of the understanding possibilities of nearly every intellectual of
that Ages. Therefore, what could not be understood because of its sophistication
and complexity was rejected as false, a useless and empty complex philosophy,
soon associated with useless mathematics. Instead, naive and primitive models were
promoted to crystal clear truths, that one could not dispute without risking to be
considered heretical.

Moreover, the concept of mathematical description of phenomena and the role of
mathematical entities used to predict them were completely lost and therefore, while
describing Eudoxus’ model, it was felt necessary to materialize the hinged rotating
spheres assuming (as also it has been recalled explicitly by Schiaparelli) that the
Universe was closed by crystal vaults mechanically interconnected one to the other.

One can get a clear idea of how much the thinking has regressed with respect to
the Hellenistic period by considering that Bede the Venerable (672-735), one of the
greatest scholars of the period immediately following the collapse of the Western
Roman Empire, is remembered for having invented a method of counting up to a
million with the fingers of the hands. So great is the devastation following the end
of Hellenistic Science that mankind had to learn again how to count!

The lowest point in the scientific understanding during the Dark Ages occurs
with the materialization of Eudoxus’ model of homocentric spheres. Paradoxically,
in opposition to the state of intellectual disruption produced by this materialization,
from an artistic point of view the distorted view of Eudoxus’ model generates a series
of masterpieces in figurative art that perhaps had, at least, the merit of inspiring
the efforts of Renaissance scholars to restart the systematic study of the problems
addressed by Hellenistic scientists.

The materialization of the model of the homocentric spheres leads to two misun-
derstandings, the former of a purely scientific nature and the latter of a socio-cultural
nature. The first misunderstanding concerns the vision of the universe that the man
of the Middle Ages has: the Sun and the planets not only rotate around the Earth, but
also they are stuck on metal rings (or crystal vaults) hinged to each other and rotating
around the center of the Earth. This abnormal misunderstanding is generated by the
literal interpretation that the majority of the medieval intellectuals were able to give
of the drawings representing the homocentric spheres or of their practical realization
in the ancient Greek armillary spheres (and in fact the armillary spheres begin to be
spread again in Europe in the Late Middle Ages).

The second misunderstanding, as we said above, is of socio-cultural character
and concerns the perception that the modern History of Science has of Eudoxus
and his model. As we have repeatedly emphasized, relying also on the opinion of
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Schiaparelli, Eudoxus was fully aware that his model was not the physical reality
and that, for example, the homocentric spheres represented only the elements of a
mathematical model of reality and absolutely not the reality itself. Instead, partly
because of medieval misunderstandings about it, the common perception of much of
the modern scientific world is that Eudoxus, and Hellenistic scholars in general, had
a very naive idea of reality and of its mathematical modeling. With due differences,
it is as if in a thousand years from now our descendants will report that we were
convinced that electrons are yellow balls with an arrow stuck along one of their
diameters just because in some physics textbooks similar images are proposed to give
an approximate idea of the spin. Of course, there are in present times some physicists
who have such a belief: however, nobody attributes it to Wolfgang Pauli (1900-1958)!
Similarly, we should respectfully appreciate Eudoxus’ vision of Science.

We can attribute to two factors of fundamental importance the fact that after
a thousand years of darkness the flowering of the Renaissance revived scientific
interest. The first and inescapable factor consists in the fact that during all the Middle
Ages the only scientific discipline that continued to be taught and transmitted from
maestro to pupil was Euclidean Geometry. The presence of Euclidean Geometry in
the cultural background of the first humanists certainly allowed them to appreciate
the importance of the content of the ancient Greek texts of the Hellenistic school
and to be able to read them. Obviously, not all humanists had the same skills and
the same preparation and, for example, as discussed in detail in other chapters of
this work, Tartaglia is not able to fully understand the reasoning of Archimedes and
therefore modifies Archimedes’ figures considering them wrong.

The second very important factor is given by the Byzantine cultural school, which,
differently from the Western one, had remained active until the fall of the Byzantine
Empire, which occurred in 1453 with the fall of Constantinople. One of the most
important intellectuals of the 9th century Byzantium is Leo the Mathematician or
the Geometer (790-869). This erudite had all the skills which will be found in the
future humanist and, indeed, we due to him and to his farsightedness, probably,
the first spark of Humanism and Renaissance in Europe. Leo the Mathematician
commissioned the copy of many Hellenistic scientific manuscripts and, among the
others, of the works of Archimedes. At least three manuscript containing the works
of Archimedes were produced under his responsibility, today known as codices A, B
and C. When Byzantium was sieged and conquered by the Crusaders in 1204, Leo’s
library was dismembered and a part of the manuscripts stored in it was brought to
Europe. The presence of all these Hellenistic works in Europe gave rise to a strong
revival of interest in science, and for the first time in a thousand years scientific
progress started again. The Renaissance had begun.
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1.6 The postulations of Mechanics, forces and their
materializations

From now on we will focus on another materialization of mathematical concepts
which is still occurring in many scientific milieux. While armillary spheres are not
believed to be real anymore, there are too many contemporary scholars who managed
to persuade themselves about the reality of forces. These scholars talk about forces as
if they were objects one can observe in real world: forces seem to have, in somebody’s
words, the same ontological reality as walls, boats, wind, pulleys.

The recovery of ancient Hellenistic Mechanics: Middle Ages
mechanicians

It has to be remarked that many historians talk about the “Renaissance of the 12th
century” as a period in which in Western Europe the Latin translation of Greek and
Arabic works, especially in Natural Science, Philosophy and Mathematics, greatly
changed the cultural standing of Latin-speaking culture. In this period, and after
it, we meet many erudites and scholars who tried to recover the lost Hellenistic
knowledge.

While we have some ancient sources about the Mechanics of material points, we
can only conjecture the existence of a Hellenistic Mechanics of deformable bodies.
The most meaningful hint indicating its existence can be found in the works of Galileo
Galilei [19]. Exactly as he tries to reconstruct Seleucus’ theory of tides, and as he
tries to reconstruct the theory of planetary system by Hipparchus, Galilei also tries
to understand the theory of deformable beams: though, we must say, without great
success [19]. In fact, Galilei did not manage to understand how bending stiffness of a
beam depends on the geometry of the beam’s cross-section: his deduction starts from
a wrong conjecture about the deformation field inside the section. By the way, the
fact that there is an evidence that Leonardo da Vinci (1452-1519) tried to understand
the theory of beams is another hint about the existence of an Hellenistic source in
the subject, as Leonardo is known to be a great estimator of Greek Science.

The difficult point that Galileo did not manage to fully understand concerns the
deduction of a theory of a 1-dimensional continuum (the simplest being Euler-
Bernoulli beam theory) from a more detailed 3-dimensional continuum theory. In
fact, the process of micro-macro identification has been fully developed only when
the variational postulations of Mechanics have been recovered [23, 26, 18, 16, 15].
Galileo did not conjecture the right linear dependence of the contact force intensity
on the distance from the neutral axis in the beam theory: clearly, it is extremely useful,
if one wants to develop generalized beam theories, to understand how the progenitor
theory has been formulated [104, 143, 145, 102, 103, 33, 31, 148, 150, 152, 147, 151].

The existence of more ancient (and sometimes partially lost) sources may con-
tribute to explain the reasons why in Mechanical sciences one observes very often,
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especially when considering Middle Age texts, some oddities in the diachrony of
Mechanics development. One observes more advanced texts which are precedent to
less advanced ones and to definitely primitive others. The existence of linguistic and
social barriers does not seem enough to explain the mentioned observed evidence:
we believe that some scholars could access to sources that were very faithful to the
original Hellenistic thought while others had access to worse sources or, even, could
not understand really the content of such sources.

The strangeness in the diachrony of the development of Mechanics leads us to
conjecture the following hypothesis: the distribution and accessibility of the ancient
Hellenistic Science texts, often available in a single copy, modulate the speed and
readiness of the rebirth of scientific thought. With the fall of the Western Roman
Empire, the few remaining elements of unity in scientific thought collapsed, and the
enormous progresses made in the 4th and 3rd centuries BC were relegated to the
monasteries that owned the only medieval libraries. And in the monastery libraries
these texts were sometimes lost and the genealogy of scholars, with a Maestro ex-
plaining to the pupils the content of the ancient texts, was broken. The practically null
scientific preparation of medieval westerner scholars decreed the loss of many Greek
scientific works. One who does not understand what she/he reads prefers to believe
that what she/he is reading is, at least, useless and, therefore, unworthy of being
transmitted to posterity. Thus, unlike works of literature, philosophy, historiography
and other non-scientific disciplines, not only scientific texts were not copied, but
often the very expensive parchment on which they were written was reused. This
is precisely what unfortunately happened to codex C of Archimedes’ works: the
parchment was scraped off to make space for prayers against the flu.

It is not surprising that one of the greatest intellectuals of this period was Bede
the Venerable (672-735)! The only significant aspect in the scientific sphere of
this period is that the habit of studying Geometry remained almost intact and that
Euclid’s Elements remained one of the essential texts even during the Middle Ages:
in fact, geometry was taught to all scholars. It seems that one of the few copies of
the Elements of Euclid was preserved to posterity by the family Hohenstaufen and,
in particular, by Frederick the Second. We can make the following conjecture: it was
only thanks to the education in abstract thought provided by Geometry that a return
to Science was possible in the Renaissance. Or, at least, this return required less
time than it would have been necessary if Euclidean Geometry had not been taught
during the Middle Ages.

Perhaps the clearest sign of the scientific regression of the Middle Ages is the
theory of the nine medieval heavens, which is directly induced by the complete
misunderstanding of the theory of the motion of the planets. At the beginning of
the previous section we showed the sad fate of a proto-scientific theory, the one that
was supposed to be at the basis of Nebra’s disc: with the demise of the society that
produced the theory and the birth of a non-scientific society, the scientific content
of an abstract theory is completely lost and subsequently distorted into a religious
belief.

After the small Renaissance of Frederick II Hohenstaufen there was a slow redis-
covery of the distinction between model and real object: the basis of this slow process
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was the return to the study of Logic, which provided a structure for the subsequent
return to scientific thought. An important role in this rediscovery process was played
by William of of Occam (1285-1347), whose Summa logicae (c. 1323) constitutes a
kind of meta-theory necessary to formulate theories. In fact, an important first step
towards the rediscovery of scientific thought is represented by the so-called Occam’s
razor6:

Pluralitas non est ponenda sine necessitate7

It was only after 1100 AD that Latin translations of textbooks on Logic developed
in Arab cultural circles started to arrive in Christian Europe. In Arab Science, in
fact, we find the eminent scholar Avicenna (980-1037) that tried to propose a proto-
inductivist system of Logic which is alternative to the Aristotelian one. Avicenna’s
Logic also influenced Western thought and we can say that, in a certain sense,
Avicenna can be considered one of the founders of scientific inductivism, which will
be discussed shortly below.

If we want to get an idea of how much the collapse of the Western Roman
Empire influenced the collapse of scientific thought, we can consider the apparent
anachronism observed in the cultural milieux of the capital of the Eastern Roman
Empire, Byzantium (i.e. Costantinople), where the cultural ferment that had char-
acterized Hellenistic circles survived for a few centuries. Byzantine intellectuals,
whose works would only be rediscovered later in Western Europe, provided the
first westerner humanists with a key for decoding Greek scientific thought, and, in
particular, Greek Mechanics. John Philoponus (490-570), for example, proposed the
concept of impetus, which seems strongly related to the concept of inertia, about
a thousand years before Galileo and Newton. Moreover, Byzantium also represents
a sort of reduced Alexandria, collecting the knowledge of the time and organizing
it for later dissemination. Among the various examples of this Byzantine ferment,
we cannot forget the already mentioned Leo the Mathematician, promoter of the
renaissance of mathematical studies and of the rediscovery of Archimedes’ scientific
personality. Here, we will limit ourselves to recall that it is to him that we owe
the rescue and transmission of many of Archimedes’ texts, which only reached our
hands thanks to the copies he commissioned. Several wars and an unfortunate Cru-
sade that diverted Christians from the liberation of the Holy Sepulchre to the sack
of Constantinople, which occurred in 1204, later, disseminated throughout Europe
the famous Archimedean codices A, B and C. Albeit he was living several centuries
before, Leo the Mathematician can be considered a true Renaissance man.

In fact, the role of the scientific ferment of Byzantium is crucial in the development
of the Italian Renaissance, albeit it would still need almost five hundred years for
westerner intellectuals to stop discussing about the sex of angels and to devote
themselves to problems of a less elevated nature, perhaps, but certainly more useful
to the progress of humanity. On the path to the Renaissance, we can at least mention

6 Some modern scholars misunderstood Occam razor spirit and believed that it was forbidding
theories in which too many parameters appear: in this way they exclude, a priori, any possibility to
model complex mechanical systems, as those studied, for instance, in [55, 54, 68, 124, 88].
7 Plurality has not to be posed without necessity.
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some scholars who characterized the slow rediscovery of mature scientific thought.
Thomas Bradwardine (Doctor Profundus, floruit 1330) distinguished kinematics
from dynamics, introduced the concept of instantaneous velocity and discussed
the law of falling bodies. Nicolas d’Oresme (c. 1320/1325-1382), institutor of the
Dauphin of France, studied the Universe with mathematical methods: in particular
he formulated a Galilean invariance principle and established the foundations of
Analytical Geometry. Many others would deserve to be cited: however, we simply
want to stress here that we know for sure that at least in one époque the main work
of scholars consisted in reading ancient books whose content was perceived as very
profound albeit resulting very obscure.

In fact, we believe to recognize in modern times the slow rediscovery of ancient
theories. Albeit this rediscovery occurs in restricted disciplinary subgroups of schol-
ars, the features of the sociological process seem to be the same. Of course, the fact
that other contemporary groups had not lost the knowledge which is being recovered
for sure helps in the rediscovery endeavor. We believe that in theoretical Continuum
Mechanics the rediscovery of Lagrange-Piola postulation for generalized continua in
the group of scholars following Truesdell orthodoxy has been held by the existence
of Landau textbook in Theoretical Physics8.

Fundamental concepts and frequent misconceptions in the field of
Mechanics of materials

In the previous sections we dealt with the Mechanics of material points and its
applications to the description of the planetary motion, from now on we will focus
on the Mechanics of deformable bodies. However, we will base our analysis on
available sources, which are much more modern. It will be clear that the same
sociological phenomena involved in the transmission of knowledge observed in the
transmission of the Mechanics of material points through the centuries occur also in
the transmission of the Mechanics of deformable bodies. Our description of historical
development of the Mechanics of deformable bodies starts with the works of Gabrio
Piola (1794-1850) [46, 47] and continues until contemporary times: all sources are
fully available.

Mechanics of deformable bodies studies how the equilibrium shapes of bodies
change because of their interactions with the external world. A given body is as-
sumed to be constituted, in every of its material points, by a specific material. The
current shape of a body is kinematically modeled, since the fundamental work by
Lagrange (1736-1813) [107], by means of a placement function. Each material is
mathematically modeled, in its range of elastic deformation, by the corresponding
deformation energy density, depending objectively on the gradient of placement.

8 Richard Toupin admitted (personal communication) that, since his studies on Landau’s lecture
notes, he always believed that Mechanics had to be founded on variational principles, notwithstand-
ing what advocated by Truesdellians.
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Further constitutive functions and kinematical descriptors need to be introduced for
modeling damage, plastic phenomena, etc.

In this context, it seems absolutely meaningless the expression natural material.
One may argue, in fact, that human activity did modify everything in the world
(think, as an example, about forests: almost all of them have their present shape as
the result of a human design). From an Engineering point of view, we can only talk
about materials that have a simple microstructure (i.e. the more often used, up to
now, in Engineering) and materials that have a complex microstructure. We do not
share the primitivistic belief that natural is equivalent to simple, also because the
definition of simplicity depends on the particular historical period.

Every material which exists is natural. Of course, we may ask ourselves if it is pos-
sible to find an existing material whose behavior can be described by certain consti-
tutive functions. It is, therefore, meaningful to establish some physical admissibility
criteria for logically conceivable constitutive functions. For instance, by introduc-
ing constitutive functions for a material which allows some deformative cycles that
produce energy, one can get a mechanical system which contradicts the Principle of
conservation of energy. Clearly, such constitutive functions would not be physically
admissible. In [27], it is clearly stated that, unlikely what believed by Truesdellian
school, there are no elastic materials which are not also hyperelastic. Truesdell wants
to try that there are relationships between stress and strain, in first gradient materials,
which do not derive from a principle of minimum of energy in a stable equilibrium
configuration. He wants to prove that a postulation based on the laws of balance of
forces and moments of forces is more general than a postulation based on the Princi-
ple of Virtual Work. This effort, as we will discuss later, is vain as Gabrio Piola has
proven [46, 47, 55] that in every generalized theory of continua balance of forces
and moments of forces are necessary conditions for the validity of the Principle of
Virtual Work, while there are generalized continua (for instance, second gradient
continua [82, 83, 57, 84, 85, 86, 137, 135, 136, 144, 2, 3, 51, 52, 138, 139, 140]) for
which the balance of forces and moments of forces are not sufficient conditions to
ensure the validity of the Principle of Virtual Work. This principle seems to be the
most fundamental one in Mechanics. Therefore, the important question “what is a
natural material?” can have a simple answer: it is a material which may exist.

Therefore, the theory of metamaterials, if one wants to avoid ontological para-
doxes, cannot be defined as the theory of those materials which are not natural,
because otherwise we were dealing with non-existing materials. Another possibility
is to define metamaterials as those materials whose mechanical behavior is “exotic”.
Now the obvious question arises: what is an exotic mechanical behavior? The an-
swer could be: an exotic mechanical behavior is a behavior which has not been yet
observed. Of course, what is exotic in a certain historical moment may become stan-
dard in another one. For instance, Lamé (1795-1870), Navier (1785-1836), Cauchy
(1789-1857), Poisson (1781-1840), all considered a material with negative Poisson’s
ratio as very exotic, and some scholars of their époque did even believe that such
a material was unphysical (see [19, 73, 74]) and could not exist. Instead, auxetic
metamaterials do exist and play a relevant role in modern Engineering.
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Also in the group of scholars in Mechanics, albeit this theory is the eldest one
in mathematical physics, some epistemological misconceptions are rather common.
The main among these misconceptions are:

i. confusing a mathematical model for a material with the physical material itself
(the same ontological misconception occurred to Eudoxus’ model);

ii. believing that particular assumptions accepted for describing particular phenom-
ena are universally valid in every physical situation (the same extreme platonistic
or inductivistic misconception occurred in the school of Truesdell, where it is
believed that every existing material must be modeled by first gradient continua,
whose properties have been induced with experiments);

iii. refusing the Principle of Occam Razor by constructing theories with a series of
ad hoc assumptions guided by experience (naive inductivism);

iv. believing that, simply manipulating a lot of data without any postulated model,
one can predict, maybe using large computers, the behavior of physical systems (a
modernistic form of naive inductivism, by means of which many want to find new
metamaterials by simply divining in a random way metamaterial microstructures).

Concerning the confusion of a mathematical model postulated for a material with the
physical material itself (ontological misconception), we must say that this is an old
misconception that is very often met in history of Science. The example about the
models of planetary systems can be considered a prototypal social phenomenon of
this kind, because entire groups of scholars fall in this mistake. Usually, we have heard
in debates among experts of Continuum Mechanics the following wrong statement:
Second gradient materials do not exist because used materials in Engineering do not
show their properties and standard theoretical framework does not forecast them. In
this statement, one can find many layers of misunderstanding based on the following
misconceptions:

(a)confusing first gradient continuum model (a mathematical model) with existing
materials in nature (a physical object);

(b)believing that the standard theoretical framework, which has been paradigmatic
in a school of Mechanics, includes every conceivable phenomena (this misunder-
standing is induced by naive inductivism);

(c)confusing the standard first gradient continuum model with all used materials in
Engineering (that includes both presently used and all usable in future physical
objects);

(d)believing that, without having a theory describing it, one cannot use a material
even when such a material is in her/his hands, with the paradoxical consequence
that the material would not exist.
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Mathematics designs the world: metamaterials, a change of
paradigm

The mathematical modeling of physical phenomena has shaped the world, notwith-
standing what practical people may believe. In fact, in Engineering Sciences the
following phenomenon occurs: a theory is formulated, it applies to a specific set
of physical objects and physical situations, therefore in Engineering practice only
these objects and situations are considered for Engineering artifacts. The fact that
one does not have a model describing the behavior of a physical system, or some
physical situations where a physical system can occur, or can be observed, implies
that physical systems and situations which are not described, have to be carefully
avoided in Engineering applications. For instance, if one has the capacity of cal-
culating the deformed shape of a body only when linearized equations apply, then
she/he limits the functioning regime of the artifacts which are built according to the
above-mentioned theory to small loads, small deformations and small displacements.

Many engineers declare as a consequence that non-linear phenomena are not
of interest in Engineering, with a typical process of removal of the complexity. In
Engineering, non-linear phenomena are important; however, when they could not be
fully studied with available mathematical tools, then they are avoided.

Therefore, the limits of our mathematical capacities limit consequently our pre-
dictive capacity and then our design capacity. For instance, sky-scrapers could not
be built until Structural Mechanics became sophisticated enough to be able to design
them. What can be mathematically conceived by means of a model can be trans-
formed into an Engineering artifact, while every data-driven series of subsequent
trials never produced any functioning Engineering solution. Data-driven research
has produced, maybe, some interesting technical software solutions: however, when
not guided by a clear modeling vision, it could not predict novel phenomena and
seems to be a modern version of naive inductivism. On the other hand, in general,
Engineering Sciences choose among available and conceivable systems those which
can be mathematically modeled and limit its designing efforts to those for which
mathematical predictions are possible, given the available computing tools. In few
situations, on the contrary, Engineering Sciences attack a very difficult problem:
that happens, for instance, when, given a mathematical model, the goal is to find a
physical system which can be carefully described by that model.

On the basis of what we have discussed so far, it should be clear that a good theory
is useless without suitable computational tools. This concept, which may perhaps
seem trivial, assumes considerable importance if contextualized in the historical
perspective that we have presented in the previous sections. The epistemological
appreciation of the quality of a theory cannot prescind from the availability of suitable
computational tools that allow for its use in getting predictions. A very detailed
theory that cannot produce quantitative predictions is useless. If one theoretically
tries to take into account too many phenomena, without considering the technical and
computing difficulties which are found when applying such a detailed theory, then
he/she does not supply the Engineering practice with a useful tool: being potentially
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capable to predict everything leads to the incapacity to predict anything. The classical
example is given by the efforts of Navier [19] to develop a theory for predicting the
deformation of a beam by starting from a molecular model: such a detailed model
could not produce any prediction, due to calculation difficulties. Therefore, Navier
was obliged to homogenize his discrete equations, for obtaining a computable model:
his averaging hypotheses led him to believe that Poisson’s ratio for isotropic materials
could only assume the value 0.3, which is clearly against evidence.

Not only simplicity in the involved computing process must be required to a
modeling effort, but also conceptual simplicity in the model formulation, that implies
dramatic simplifications in the prediction process. Consider, as an example for this
last statement, the relationship between the predictive capacity of Eudoxus’ model
of homocentric spheres and that of Aristarchus’ heliocentric model: as we have seen,
Eudoxus was unable to explain correctly, even by greatly increasing the number
of spheres associated with a given planet, its retrograde motion, while it could be
explained, instead, extremely clearly by Aristarchus.

Quantitative predictive capacity is inescapable in mathematical modeling and in
its applications to Engineering Sciences [28, 29, 30, 32, 148, 150, 12, 15, 81]: in fact,
there is no scientific designing without accurate quantitative prediction. Furthermore,
from a technological point of view, it is certainly easier to build a mechanism for
getting predictions by using a model where all planets travel more regular orbits
around the Sun, than a model in which the planets move seemingly randomly in
the sky, traveling very irregular orbits, although the latter model, being geocentric,
seems more faithful to observational reality.

In general, a model producing some theoretically correct or physically intuitive
equations that cannot be efficiently solved is technologically (and scientifically!) of
little significance.

A similar example is provided by what happens much later, when the Copernican
system replaced the Ptolemaic system. Behind the process of substituting one model
for another there is a technical consideration: predictions are obtained via computa-
tions and model development is constrained by available computational tools. The
Copernican system did not give much more accurate predictions than Ptolemaic
system. In fact, by adding a suitable number of epicycles, as rigorously proven by
Gallavotti [80], one can approximate the apparent motion of planets as seen from
the Earth as accurately as possible. Moreover, the kinematics of both systems are
based similarly on the principle of the composition of circular motions. But the
Copernican system is enormously simpler conceptually and allows for less labori-
ous calculations, as Cicero did observe when describing Archimedes’ planetarium
mechanism. Technological capacities, in a sense, introduce a hierarchical ordering in
the set of models: those models, for which simpler computing methods are available,
become preferable.

We believe that both Eudoxus and Aristarchus did have falsificationist points of
view when they formulated their models and that the debate inside Hellenistic Science
about their competing models did involve only the models predictivity capacity. It was
only after the decline of Hellenistic Science that models started to be confused with
reality and that true models were opposed to false models: the loss of epistemological



48 Mario Spagnuolo, Francesco dell’Isola and Antonio Cazzani

consciousness led scientists towards a vain search for ultimate truth. Therefore, after
many centuries in which scholars were looking for ultimate truth and believed that
such truth could be attained, the contraposition between geocentric and heliocentric
models developed the characteristics of a religion war. Instead of debating about the
predictive capacity of one model as compared with the other, the scholarly debate was
involved in scientifically irrelevant questions concerning the role of religion, ethics
and vision of life in Science. On the contrary, we believe that the true debate between
scholars was not about the ultimate truth of geocentrism or heliocentrism but about
the real aim of scientific research: is Science looking for ultimate truth (assuming
that such a truth can be established once forever) or is Science formulating one after
the other a series of conjectures to be tested with experimental evidence and possibly
changed when such evidence requires it? Paradoxically, Cardinal Bellarmino (1542-
1621), whose intention was to reaffirm that only theology had the capacity to reach
ultimate truths, following the orthodoxy of St. Thomas Aquinas (1225-1274) and
St. Augustine of Hippo (354-430), tried to get from Galileo a simple falsificationist
statement about heliocentrism, while Galileo remained in an inductivist position,
albeit formally changing his position in order to avoid to be condemned to be burned
at the stake.

In a sense, a contemporary version of the debate involving geocentrism and helio-
centrism is represented by the debate between the supporters of Cauchy postulation
and d’Alembert postulation for the foundations of Mechanics. The Truesdellian sup-
porters of Cauchy postulation believe that it is an ultimate and experimentally proven
truth, which cannot but be improved by adding some epicycles, i.e. small corrections.
Their attitude blocked the growth of generalized models in Continuum Mechanics.
Another important circumstance to be taken into account, both when describing
the paradigmatic change between geocentric and heliocentric models or between
Cauchy continua and Generalized continua, is the development and improvement
of computing tools that occurred during the change. While in Hellenistic times
the only computing tools were based on a geometric understanding of the concept
of real numbers, so producing mechanical computing devices like the Antikythera
mechanism or the Archimedean planetarium, after the Renaissance of Science, first
Copernicus rediscovered ancient heliocentrism. Subsequently, Kepler could exploit
the method of calculations based on Napier (1550-1617) tables of logarithms and
finally Newton, by using Cartesian geometry, could get a prediction of the planetary
motions without computing mechanisms. Therefore, it seems that, while being ini-
tially blocked in an inductivistic epistemological view point, modern Science could
improve its understanding of the planetary phenomenology, when compared with
Hellenistic Science, only because the development of modern computation tools,
based on algebra.

Coming back to Continuum Mechanics, we limit ourselves, here, to describe
some fundamental points in the process that led to the introduction of Generalized
Continuum Mechanics [114, 1, 10, 6, 7, 4, 8, 9, 11, 13, 63].

As we will see, Gabrio Piola introduced in 1848 the generalized continuum
model based on the use of deformation energies depending on the 𝑛−th gradients of
displacement, being aware of the conjectural nature of such mathematical models
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[122]. However, Cauchy and his followers did try to formulate the ultimate continuum
model, based on induced true properties of matter, at macroscopic level. It is paradig-
matic, in this context, the unconditional acceptance by Cauchy and his followers of
the so-called Cauchy postulate, stating that contact forces, inside continua, can be
only forces per unit area which, moreover, depend only on the normal to Cauchy cuts.
Even though Piola was well aware of the limits of this conjecture, whose applicability
is limited only to a particular class of materials, and even though Piola himself wrote
clearly that Cauchy postulate had to be regarded as a constitutive equation, in a large
group of scholars Cauchy postulate has been accepted as a religious ultimate truth
that cannot be doubted. It is remarkable that Gurtin, who had started from an ortho-
dox Cauchy-Truesdellian viewpoint, in his subsequent papers [93, 94] changed his
fundamental postulation approach and, albeit ignoring Lagrange, attributes, with a
typical modernist attitude, to an explicit Lagrangian follower (i.e. Toupin) the choice
of what seems to be the most appropriate postulation of Mechanics. Piola’s works
were reappreciated only at the end of the 20th century, while his models had been
rediscovered already 50 years before and had became the object of in-depth study in
view of their potential technological application [82, 83, 116, 137, 135, 136, 144].
What has changed in the century and half that separates Piola’s pioneering work from
his (slow) rediscovery? Why did the Continuum Mechanics of the Cauchy school
ignore (and in part still tries to ignore) Piola’s results for over a century?

In Cauchy’s version of Continuum Mechanics a number of ad hoc limitations
are inserted, including the fact that the deformation energy of a continuum medium
can only depend objectively on the first gradient of the displacement field. A priori,
nothing would limit a dependence on higher order gradients, but the simplest choice,
consistent with the phenomenology disclosed by Cauchy continuum model, is to limit
oneself to the first gradient of the displacement. Piola, as we have said, introduces,
for a purely logical need, the higher displacement gradients in the calculation of the
deformation energy, and argues to characterize those microstructures for which ho-
mogenized models must be of this more general kind. Unfortunately, the differential
geometric tools available to Piola did not allow him to characterize internal contact
forces in the case of second and higher gradient continua: instead, he did manage to
do so in the case of first gradient continua. It is not a coincidence that exactly when
Piola succeeded in finding a representation for contact forces in first gradient con-
tinua, Cauchy (who probably met Piola in Italy during his exile following French July
Revolution of 1830) developed his postulation scheme based on balance of forces and
balance of moment of forces. It is only after more than a century that Paul Germain
showed, in his fundamental work [122], which is the structure of contact forces in
second gradient continua, by remarking that so-called Cauchy postulate is not valid
for these continua and that edge contact forces may arise (see also [52, 51, 53]).
Moreover, in [119, 23, 60, 44] it is proven that models where the second gradient
of displacement acquires a non-negligible role, at macroscopic level, are obtained
by homogenization starting from a microstructure, or architecture, at a lower scale
in a continuum medium where high contrasts of stiffnesses are present. We believe
that Piola had guessed this result: see [46, 47]. Therefore, in order to become able to
evaluate and reveal experimentally the effects of the presence of the second gradient
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of the displacement field, it is necessary to have a technology which is capable of
producing a microstructured material [126, 5, 23, 26, 62, 118, 154] and, above all, a
material whose microstructure shows the suitable highly contrasted stiffness fields,
so that, at the macroscopic level, the terms used by Piola and Germain in the deforma-
tion energy do appear (examples in which the required technology has successfully
produced such microstructured materials can be found in [17, 16, 110, 149]). This
is a very clear example of how the limited technological capacity of an epoch can
indeed block also its scientific development. As long as the lack of technological
capacity does not reach a level where the results introduced in the new theories can
be tested, the new theories will remain blocked, ignored and, definitely, unusable.
The absurdity of contemporary situation lies in the fact that despite the technologi-
cal ability to produce materials whose behavior is described by Piola’s theory (and
cannot be described in the framework of Cauchy models), there are still scholars
who are obstinate in denying its usefulness.

The mathematical challenge that researchers in the field of Continuum Mechan-
ics face today, therefore, is to design metamaterials that can be described within
the framework of a generalized theory [10, 6, 11, 50, 109, 117]. These materials,
as we shall see, are conceived in order to possess mechanical properties that are
significantly more performing than those of the commonly called natural materials.

Therefore, the fundamental problem in modern theory of metamaterials consists
in the problem of synthesis of microstructures producing a specific desired macro-
behavior [2, 18, 119, 121, 125, 129]. In fact, the modern challenge in the theory
of metamaterials consists in finding that microstructure, or that micro-architecture,
which, at the macroscopic level, produces a specifically required mechanical behav-
ior. In this context, the most difficult problem to face from a mathematical point
of view is to connect micro-structures and macro-behaviors. So, given a macro-
scopic theory (appropriate action functionals and consequent stationary conditions)
one wants to find an algorithm to calculate the microstructure that, once homog-
enized, at the macroscopic level is described by the chosen macroscopic model
[87, 133, 153, 77, 79, 24, 78]. In this context it is important to remark that a major
change in the research tools has been induced by the use of powerful computers to
find suitable motions for minimizing postulated action functionals: in fact, especially
in non-linear regimes, it is simply inconceivable to find closed form solutions and
therefore only by means of suitably conceived algorithms it is possible to design and
to predict the behavior of novel metamaterials [90, 39, 91, 30, 113, 92, 89].

The basic ideas in the field of the synthesis of metamaterials may be borrowed
from the ancient theory of synthesis of analog circuits. In this theory, it was possible
to prove that every passive linear 𝑛-port element is algorithmically synthesized using
inductors, capacitors, resistors and transformers [106, 22, 21]. In fact, it has been
proven that, given the desired passive impedance, one can build a graph and can
find for each branch of the graph a suitable circuital element such that the resulting
discrete circuit has the chosen impedance.

The classical theory by Kron and McNeal [106, 112] allows us, given quadratic
Lagrangian and Rayleigh’s potentials, to algorithmically determine the graph struc-
ture of the searched electric circuit and its elements synthesizing the given linear
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𝑛-port element. This latter is mathematically characterized by its Lagrangian and
Rayleigh’s potentials. Therefore, at least in the theory of circuits, by starting from
a finite number of basic microstructures and reproducing them at different length-
scales, it is possible to devise a most general microstructure. The big challenge, now,
consists in conjecturing that this method can be also applied to the synthesis of non-
linear mechanical (and multiphysics) systems [22]. Some papers [49, 61, 141, 142]
can be referred to for well understanding the fundamental role of the synthesis
process in metamaterial theory.

It has to be remarked that the theory of analog circuits has been partially lost and
generally forgotten. The reason is that in the early ’60s digital computing methods be-
came dominant and analog computers were considered obsolete. As a consequence,
it is becoming more and more difficult to find the sources in the theory of synthesis
of analog circuits and a sudden change of paradigm occurred also in the textbooks
of Mechanics and, in particular, of Structural Mechanics. In fact, many textbooks in
Structural Mechanics in the ’50s were full of schemes of analog circuits, considered
very important for practical applications. One could have believed, by consulting
such textbooks, that a structural engineer could not become a skilled professional
without knowing the theory of circuits. It is ironic that after few decades the great
majority of civil engineers do ignore even the existence of inductors and capacitors,
not to mention transformers. This sociological phenomenon, that occurred in an
époque when books are not easily lost and when a large number of scholars are
active, proves three important theses:

i. loss of knowledge is a sociological process, which is always active in every group
of scholars and in every society;

ii. in Science every knowledge may be useful in every other research field;
iii. there is no such thing as obsolete knowledge!

The Principle of Virtual Work and its correct application produces
(generalized) Continuum Mechanics

Let us now proceed to examine in greater detail the distortion of sources and modi-
fication of basic principles that occurred in Continuum Mechanics. Unlike the con-
jectural study we have made of the development of planetary models in Hellenistic
Science, in the case of Continuum Mechanics all modern (since d’Alembert’s Traité
de dynamique, 1743 [111]) sources are available and therefore the reconstruction
that we present here is not conjectural. However, in the evaluation of modern sources,
we still have to consider a problem that may be considered logically absurd, and that
yet, unfortunately, is having, also now, a considerable weight in the development
of Continuum Mechanics: some fundamental sources in this field are not written in
English (e.g. they are written instead in French and Italian) and, as a consequence,
some scholars believe to be allowed to ignore them. This point can be fully developed
when one details the study of Gabrio Piola’s contribution to Continuum Mechanics.
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Continuum Mechanics has been based by d’Alembert on the Principle of Virtual
Work only. This principle allows for the calculation of the equations of equilibrium
of a continuum and it is easily connected to the Principle of the Minimum Poten-
tial Energy for a stable equilibrium. As we will see, starting from Cauchy, Navier
and Poisson, a very strong current of thought has been developed which has, in
fact, replaced this fundamental principle with the independent postulation of the
balance of forces and of the moments of forces, introducing some auxiliary con-
cepts such as forces and attributing to them a fundamental role in Mechanics and
in the phenomenology that it aims to describe. One must, however, agree on the
fact that, especially when the physical system under examination is very complex,
the Principle of Virtual Work is not only easier to apply, but it is also applicable
when the balances of forces and moments of forces are not sufficient to characterize
equilibrium.

We want to stress, in this context, that it is not by chance that mechanical systems,
of interest in Engineering Sciences, were first studied through the application of this
principle, introduced by Archytas of Tarentum in his Mechanica Problemata. While
we do not know how Archytas had formulated the Principle of Virtual Work, it is
evident that in his opus he uses it to study problems of applicative relevance such as
the functioning of machines and levers (which are sometimes still studied in middle
schools based on this principle, even before the concept of force itself is introduced).

An interesting problem related to the Mechanica Problemata is given by the
following question: should it be considered as an exercise book whose reading had
to be combined with a more theoretical work? Could the theoretical work have been
lost? To give a definite answer to this question is not possible: however, we can make
some conjectures, by considering the analogy with other pre-Hellenistic authors. It
is, in fact, now widely accepted that, for instance, the production of Plato (c. 428/427
– c. 348/347 BC) was of a twofold nature: one part of the works, those dedicated
to his pupils, was of an extremely technical nature and specific for experts, with
a level of complexity equal to the surviving works of Aristotle; a second part of
Plato’s works was of a rather popular nature. The latter were written in the form of
dialogues and were thus more accessible to the general public. For what concerns
Plato, the most technically difficult works were lost and only the popularizing ones
were transmitted to us, while the opposite happened to Aristotle (384–322 BC).
We remark here that one finds an enormous body of critical works commenting
philosophical, historical and literary ancient production, while such an analysis is
not dedicated to ancient scientific texts, so that the reasons for this kind of selection
of transmitted scientific works were not deeply investigated. In any case, it is a
reasonable conjecture to assume that Archytas may have written a simplified and
applied version (i.e. the Mechanica Problemata) of a more complex work, in which,
for instance, the Principle of Virtual Work was formulated in a more explicit way. If
this conjecture is true (remember that there are still many texts of Hellenistic Science
that are preserved in libraries and remain forgotten because today it is rare to find
a scholar who knows mathematics, Greek, Armenian, etc.), it would imply that the
presumably lost text of Archytas was extremely more abstract than the Mechanica
Problemata and, therefore, that constituted a masterpiece in the field of Mechanics.
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Its importance could consist in the clarification of the mental process that led the
first scholars in Mechanics to find its conceptual bases.

However, we cannot exclude the other possibility to be considered about Archytas’
text: that it was an autonomous and self-contained work. This would support a
different hypothesis of historical and epistemological relevance: perhaps, in the early
phases of Mechanics, theory and exercises were mixed up in a single treatise. Perhaps
the approach to complex problems was deliberately simplified by the proposal of
a series of applied examples. This approach is the one preferred by some modern
textbooks in Physics [95], based on the idea that a student will understand general
concepts by inducing them on the basis of many examples. This approach is, instead,
considered not efficient by those who study Mechanics from a deductive postulation
point of view [57, 82, 83, 84, 86, 137, 135, 136, 116]. The reader will understand
that knowing how the Principle of Virtual Work was first formulated could be very
important to settle this controversy. In any case, the text of the Mechanica Problemata
that has come down to us is already rather abstract. In some places it seems to refer
to concepts already known to the reader, just as one often reads in a modern text
of solved exercises! For this reason we believe that the possibility of a second work
that dealt with a complete and rigorous treatment of the theory behind the practical
examples cannot be excluded.

We now want to discuss, in an obviously simplified and concise way, some aspects
of fundamental importance in the formulation of the Principle of Virtual Work. A
first aspect to underline lies in the fact that, as we also mentioned before, it is
well-known and universally accepted, at least since the works of Archimedes, that
to a stable equilibrium configuration corresponds a minimum of the total energy
(Total Potential Energy Minimum Principle). It can be also demonstrated, using
some mathematical reasonings, that the Total Potential Energy Minimum Principle
implies a stationary condition (the first variation of Total Potential Energy is zero in
its minima) that, on its turn, can be regarded as a particular form of the Principle of
Virtual Work. Therefore, the validity of this form of the Principle of Virtual Work
can be deduced as a consequence of the Total Potential Energy Minimum Principle.
The Total Energy Minimum Principle can be formulated as follows:

Total Potential Energy Minimum Principle: The stable equilibrium configurations are
the only ones for which the total potential energy has a local minimum.

A necessary condition for stable equilibrium can be formulated if the total potential
energy is differentiable with respect to the variation of configuration.

Necessary condition for equilibrium: Starting from a stable equilibrium configuration, the
first variation of the total energy corresponding to each virtual displacement is zero.

A virtual displacement is simply a small variation (more precisely, an infinitesi-
mal one) of the body’s configuration (but respectful of internal constraints and of
kinematic boundary conditions) to be added to the tentative minimum energy con-
figuration in the verification process aiming that such tentative minimum energy
configuration is effectively of equilibrium. This formulation requires the deduc-
tion of a number of non-trivial mathematical results, which make the treatment of
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Mechanics by means of variational principles complex, whose esoteric content is
reserved to scholars having a deep knowledge of complex mathematical theories. It
is very presumable that this is the fundamental reason why some scholars decide to
ignore completely this approach to Mechanics and turn, instead, to the simpler, but
somehow incomplete (and surely unfit for the discovery of novel models) formula-
tion based on the postulation of balance of forces and moments of forces. To give an
idea of the mathematical difficulties implied by the postulation of Mechanics based
on variational principles [48, 18, 39, 98, 123, 124], one must think that there is a
whole branch of mathematics, the Calculus of Variations, which was developed to
supply the needed conceptual tools to Mechanicians. It is suggestive to think that
Calculus of Variations has deep roots in Hellenistic Science, as witnessed by the fact
that isoperimetric problems are traditionally called also Dido’s problems. As it is
reported by [132], our conjecture is not too much daring. In fact, in the Synagoge by
Pappus of Alexandria (c. 290 – c. 350 AD), as well as in the commentary by Theon
of Alexandria (c. 335 – c. 405 AD) on Ptolemy, which both were transmitted to us,
Zenodorus (c. 200 – c. 140 BC) treated isoperimetric plane problems in a treatise
which was lost. It is remarkable that Dido’s problem was formulated and solved by
Zenodorus, albeit we do not know the methods that he had used.

We can make a list of the main mathematical difficulties to be faced when deciding
to resort to a formulation of Mechanics based on the Total Potential Energy Minimum
Principle; indeed to this aim it is necessary:

i. to introduce the concept of infinitesimal variation of a configuration (otherwise
called small displacement);

ii. to introduce the concept of work done by an interaction on a virtual displacement
and the concept of virtual displacement itself;

iii. to define the first variation of a functional in terms of Taylor series developments
(which, despite the simplicity and elegance of this powerful mathematical tool,
appears to be indigestible to many scholars).

As mentioned above, the Total Potential Energy Minimum Principle implies the
more general Principle of the Virtual Work, which can be also formulated in a simpler
way from a mathematical point of view. Probably, in order to be able to understand
in detail the efficacy of the variational approach to Mechanics, and, at the same time,
in order not to be discouraged by the mentioned difficulties, it can be useful to refer
directly to the formulation of the Principle of the Virtual Work given by d’Alembert,
who was the first, in the modern age, to found Mechanics on it. In fact, in his treatise
of 1743, d’Alembert formulated the Principle of Virtual Work in a more modern lan-
guage with respect to that found in Archytas’ Mechanica Problemata. d’Alembert’s
formulation generalized the previous formulation of stationary condition implied by
Total Potential Energy Minimum Principle, and, because of its greater generality, it
allows for a better focus on the key points of the variational approach:

Principle of Virtual Work (d’Alembert, 1743): A system is in equilibrium in a given
configuration when the total work done by all interactions involving the system is zero for
each virtual displacement from that configuration.
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From a correct application of the Principle of Virtual Work, one can obtain
the equations of equilibrium of a mechanical system, also known as its Euler-
Lagrange equations. It is to Lagrange that we owe the application of this principle to a
wider class of mechanical systems. In the last version of his Mécanique Analytique,
Lagrange formulated the Principle of Virtual Work for a continuum system and
applied it to the study of the motion of fluids. In his nomenclature, Lagrange called
power what will later be called force, and momentum what we know today as power.
He claimed to prefer this nomenclature as it had been previously chosen by Galileo
Galilei: we agree with his motivations, and we regret that unfortunately his suggestion
has not been accepted in mechanical literature. Some, rather naively, from this
different nomenclature used for the mathematical objects used by Lagrange, deduce
that Lagrange did not understand the problem he was formulating. Once again, we
observe this modernist attitude that wants to judge the past by current conventions.
Quoting Shakespeare9:

“What’s in a name? That which we call a rose
By any other name would smell as sweet”.

To show how the ideas of d’Alembert were elaborated and improved by Lagrange,
it is very useful, finally, to introduce the formulation given by Lagrange10:

Principle of Virtual Velocities (Lagrange): If a system constituted by bodies or points,
each of which is pushed by any power, is in equilibrium and if a small movement is given
to this system, by virtue of which each point will cover an infinitesimally small distance that
will express its virtual velocity, then the sum of the powers multiplied by the distance covered
by the points where it is applied along the line of application of this same power will be
equal to zero, if we consider as positive the small distances covered in the same direction of
the power and as negative the distances covered in the opposite direction.

Although a modern formulation of this principle usually includes the use of concepts
from functional analysis, tensor algebra and mathematical analysis, one has to agree
on these points:

i. Lagrange’s formulation seems so general that it includes all the versions that have
been formulated so far;

ii. this formulation uses the minimum possible mathematical concepts (i.e. only
concepts from Euclidean geometry) that are sufficient to rigorously express the
principle in its full generality.

We can, therefore, conclude that it has been correct to call, in the past, mathematical
physicists with the attribute of Geometricians, as it was the geometrical language
that allowed for the first formulation of mechanical theories.

The life-long work by Piola consisted in completing the work that Lagrange
had left to be completed after his death. Piola, also formulating a micro-macro
identification procedure, in 1848 published a fundamental work [122] where:

9 W. Shakespeare, Romeo and Juliet, Act II, Scene I.
10 The translation has been performed by the authors of this Chapter from the Lagrange’s original
text.
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i. he deduced a macroscopic model describing the overall behavior of a system of
a large number of interacting particles, obtaining also macroscopic constitutive
equations in terms of microscopic geometric and mechanical properties;

ii. he introduced 𝑛th-gradient continua, determining the conditions for which they
must be used in order to describe correctly the behavior of microscopically
complex mechanical systems;

iii. he determined the structure of contact forces for first gradient continua, as studied
by Cauchy, and discussed in his own work of 1822.

It has to be remarked that until 2012 [53] the determination of the correct form
for contact interactions in 𝑛th-gradient continua was not obtained. Piola did not
have at his disposal the mathematical tools from differential geometry, that were
developed also, together with Gauss and Riemann, by the Italian school of Piola’s
scientific lineage, i.e. Francesco Brioschi (1824-1897), Eugenio Beltrami (1835-
1900), Gregorio Ricci Curbastro (1853-1925) and Tullio Levi-Civita (1873-1941).
However, Piola could prove, for a generic 𝑛th-gradient continuum, the following
theorem, starting from the Principle of Virtual Velocities:

Balance of forces and moment of forces (Piola): if a deformable 𝑛th-gradient continuum
body is in an equilibrium configuration, then the resultant and resultant moment of applied
external forces vanish.

Piola, following d’Alembert and Lagrange, defines resultant forces and resultant
moment of forces as the vectors needed to represent the work of a system of forces
in a rigid virtual motion. Therefore, these concepts are mathematical abstract con-
structions that can be used to calculate equilibrium configurations. Resultant forces
and resultant moment of forces are mathematically defined in order to allow for the
characterization of equilibrium configurations and do not correspond to any directly
measurable physical quantity. Remark that, while for first gradient continua Cauchy
has proven that this necessary condition is also sufficient, in general, for a subclass of
second gradient continua [144] and for all 𝑛th-gradient continua with 𝑛 ≥ 3 balance
of forces and moment of forces select a set of configurations greater than the set of
equilibrium configurations. In fact, in higher order continua contact interactions are
not limited to forces and couples.

One can assume that the equilibrium necessary conditions, given by resultant
forces balance and resultant moment of forces balance, represent all Euler-Lagrange
conditions of the Total Potential Energy functional for first-gradient continua only,
and as such, in this case, directly provide the governing equations in strong form; it
is clear, however, that in a numerical approximation setting it is always convenient
to reformulate such conditions in weak form, and for this purpose the use of a
variational principle is preferable because it lends itself directly to providing the
governing equations in an easily discretizable form.
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Confusing a necessary condition with the fundamental Principle:
the materialization of forces, i.e. auxiliary mathematical concepts

As we have seen in the previous section, forces, and, in particular, contact forces,
are a mathematical artifice introduced in order to deduce some consequences of the
fundamental postulate of Mechanics, the Principle of Virtual Work, and, as such, they
are of no use outside this context. Contact forces are, then, a mathematical invention,
developed in the centuries to find some logical consequences of the above-mentioned
Principle. The genesis of the concept of force and all the misunderstandings to which
it was subject deserve an in-depth analysis, which is beyond the scope of this work
(but see [100]). It is remarkable, however, that Archimedes did introduce in his On
the floating bodies the concept of pressure and that the first textbooks in modern
Mechanics (those, already cited, by d’Alembert and Lagrange) did apply the Principle
of Virtual Work to deduce the equations of equilibrium and motion of perfect fluids.

The main idea that leads to the definition of resultant forces and resultant moment
of forces can be traced back, in modern Continuum Mechanics literature, at least
to Gabrio Piola. It is unfortunate that the complete works by Euler had not been
published in an English translation until the second half of the twentieth century.
The enormous corpus of the works by Euler, all written in Latin, may include some
applications of the Principle of Virtual Work, or of the Total Potential Energy Mini-
mum Principle, leading to the definition of resultant forces and resultant moments of
forces, as the tradition in Mechanical literature attributes to Euler the introduction of
these necessary conditions for equilibrium. We could not find any textbook clarify-
ing this point and the original works by Euler are not easily accessible: however, see
[19], Euler did deduce the equations of Elastica by using the Total Potential Energy
Minimum Principle. It is remarkable that Truesdell wrote more than 400 pages in
the series of Springer volumes gathering Euler Opus, without translating a single
word of Euler’s text.11

In order to characterize equilibrium configurations by using the Principle of Vir-
tual Work, one can consider for every involved body those rigid virtual displacements
that are allowed by applied constraints. In absence of applied constraints, therefore
when we have a free body, the work done by externally applied loads on rigid dis-
placements can be represented as linear functionals on the pair of vectors composed
by translation and rotation velocities. By Riesz (1880-1956) representation theorem,
these linear functionals are uniquely determined by two vectors when using the inner
product for calculating the represented functionals images. The vector whose inner
product with translation virtual velocity gives the virtual work done is called resul-
tant force of the applied loads, while the corresponding vector giving the virtual work
in correspondence with virtual angular velocity is called resultant moment of forces
of the applied loads. It is therefore clear that the concept of force is generated while
developing a mathematical theory to be used for deducing logical consequences

11 Leonhardi Euleri Opera Omnia: Opera mechanica et astronomica. The rational mechanics of
flexible or elastic bodies, 1638-1788 : introduction to Leonhardi Euleri opera omnia, vol. X et XI
seriei secundae / C. Truesdell, Volume 10. Springer, Zurich, 1960.
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from the basic principles of Mechanics. Albeit it is of great importance, it does not
correspond to any directly measurable physical quantity and is a pure superstruc-
ture of use in mathematical reasonings: exactly as it happened for Eudoxus’ spheres
or Apollonius’ epicycles. When a free body is in equilibrium, then the total work
done on rigid displacements from equilibrium configurations must vanish, and, as a
consequence, the resultant force and resultant moment of forces must vanish. It has
to be remarked that also when the body is deformable such necessary conditions
must be verified, whatever may be said by some scholars of Truesdellian orthodoxy.
Moreover, by introducing Lagrange multipliers, one can add to active forces also
reactive forces, in presence of constraints. Including reacting forces in the set of
applied external loads, one gets the validity of fundamental balance equations for
Mechanics (i.e. resultant forces equal to zero and resultant moment of forces equal
to zero) also in the case of deformable constrained bodies.

When trying to calculate equilibrium configurations using analytical methods,
fundamental balance equations are the most useful tool to be used in calculations.
However, when using numerical computational tools one must resort either to the
Total Potential Energy Minimum Principle or to the Principle of Virtual Work.

The most recent materialization of abstract mathematical concept can be observed
when, within the framework of Truesdell’s presentation of Continuum Mechanics,
one finds statements attributing to the concept of forces a physical reality and when
one reads that the laws of balance of forces and moments of forces are based on
physical evidence. It is as if one could measure a functional defined in a Sobolev
space and could get information about it based on physical intuitions.

Just as Eudoxus’ model made sense and clearly served a certain purpose even
though it had no pretension of being a pictorial description of physical reality,
so the concept of force has a very precise reason for existing in the context of
the theory where it was formulated: d’Alembert, Lagrange, Piola used this purely
mathematical object to formulate a theorem by means of which the equilibrium
equations of a mechanical system could be derived. The aim of this formulation
was in fact to obtain a way of characterizing equilibrium, similarly as Eudoxus’
aim was to find a way to describe the motions of the planets, including retrograde
motions. When, however, the scientific epistemological consciousness decays, then
there are those extemporary scholars who fail to understand the difference between
models and reality, and, in the total resulting confusion, it happens that objects of
secondary importance, such as the homocentric spheres for Eudoxus or the forces
for Continuum Mechanics, become preponderant.

The confusion becomes total when Cauchy tries to deduce the equilibrium con-
ditions in Continuum Mechanics by postulating the existence of the stress vector,
in order to calculate resultant forces and moments of forces on sub-bodies of de-
formable bodies. Cauchy devised the ideal Cauchy’s cut and corresponding contact
interactions: he supposed to remove a part of a body and to replace this part with an
equivalent system of forces, which are able to maintain the body in equilibrium. In
fact, there may be a number of mathematical abstract concepts, in a model, which
have the sole purpose of bringing together the various observable pieces of a theory,
but having no relevance from an observational point of view. But the quantities at
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the basis of the model must be measurable: in the case of Mechanics, these mea-
surable quantities are the kinematical ones. One remarks here that it is impossible
to imagine an experiment able to measure Cauchy’s stress vector. Cauchy started
from some ad hoc assumptions, like the so-called Cauchy postulate, which is not
a postulate, with the same logical status as the Principle of Virtual Work, but, on
the contrary, a constitutive assumption [51, 52, 53, 45, 127, 59, 123, 130, 14]. Then
he continued by postulating balance of forces and of moments of forces, proving
the existence of a stress tensor by means of which he wrote a particular form of the
Principle of Virtual Work that, for him, became a theorem. Therefore, in Truesdellian
orthodoxy one finds oxymora like: the theorem of the Principle of Virtual Work. For
continua whose deformation energy depends only on the first gradient of displace-
ment, one could believe that d’Alembertian postulation of Cauchy postulation are
two equivalent points of view. However, if one lists the higher number of basic as-
sumptions needed to develop Cauchy postulations, when compared with those used
in d’Alembertian one, then he will conclude, by using Occam razor, that the latter
is much preferable. As expected, the Principle of Virtual Work postulation allows
for easier generalization of the proposed models [51, 52, 53, 45], while keeping the
Cauchy postulation renders nearly impossible any generalization if not adding a long
series of ad hoc further assumptions [25, 64, 65, 67, 66, 101]. It is clear that, if one
has postulated a Principle of Virtual Work and finds a series of Euler-Lagrange con-
ditions that are logical consequence of the postulated principle, she/he will manage
to repostulate the same mechanical model based on a list of balance laws, one for
each independent equation obtained from the original Principle of Virtual Work. It
has to be investigated if Cauchy was aware in 1823 of the results by Piola (made
public in 1822) about the nature of contact forces in first gradient continua.

At this point, some questions arise spontaneously: what is a force and how to
measure it? An extremely common answer, but accepted by many with a total lack
of critical spirit, is to say that a force is what is measured using a dynamometer.
However, even the most naive scholar knows that a dynamometer measures displace-
ments and that the value of the measured force provided by such an instrument is
obtained by applying theoretical concepts, i.e. Hooke’s law. And this, after all, simply
shows that force, albeit being a very important concept, is really a merely theoretical
artifice, without any direct observational meaning. No direct experimental evidence
concerns forces.

In conclusion, we can say that Cauchy, Navier and Poisson decided to postulate
(instead of the mathematically too difficult Principle of Virtual Work) the balance
of force and moments of forces, at the cost of losing the possibility of generalizing
their model: contrarily to what done by Piola, they thus only considered continua
whose deformation energy depends on the first gradient of displacement. To make
their postulate convincing, they then materialized the concept of force by trying
to convince themselves that this mathematical concept (vector used to express a
variation of energy) is intuitive and physically understandable. We believe that it
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is absurd that this materialization process12 occurred in the modern age and we
absolutely agree with d’Alembert (1743):

I have completely banned the forces associated with the body in motion, dark and metaphys-
ical beings, capable of doing nothing more than spreading darkness over a science that is
clear in itself.

1.7 Conclusive remarks

In this chapter we have started a discussion about some aspects of the sociolog-
ical phenomena involved in transmission and re-elaboration of scientific theories.
The study of the modalities of transmission of an original theory and the involved
transformation induced in the transmission process is crucial. In this context, the
most problematic feature is represented by the determination of the first or original
sources of scientific theories. We are not interested in a personalistic research of the
first genius who formulated a certain theory: the formulation of scientific models
is, indeed, a choral endeavor where single contributions are like small bricks in a
large building. Certainly, there are lucky bricklayers who manage to contribute by
building a keystone: Einstein (1879-1955) did formulate, supposedly with the help
of his wife Mileva Marić (1875-1948), the basic ideas of General Relativity. How-
ever, he himself admitted that without Levi-Civita and Ricci absolute calculus he
would never had the possibility to even write his celebrated equations. Instead, we
are interested in the study of the logical process that leads to the formulation of novel
and predictive theories as we believe that this study may teach us how to invent such
newer theories.

A very frustrating, and often even denied, phenomenon that is systematically
observed in the History of Science regards the distortion of scientific models from
their original form due to the decline that periodically afflicts human societies. In fact,
many historians imagine the History of Science as the accumulation of knowledge
with a permanent increase of scientific understanding and technological capacity,
albeit admitting that the rate of this increase has been varying in different periods.
Instead, it is our belief that, unfortunately and dangerously, human technological
capacity and scientific understanding of reality may experience regression.

We have argued about our thesis by presenting two clarifying examples of how,
during two of these decline periods, ideas, on which the human scientific progress
had been founded, were misunderstood and how even simple logical concepts could
be hard to understand for scholars during the decline ages. The more common epis-
temological regression phenomenon which can be observed in this context consists
in the complete inability to recognize the difference between a model and the ob-
ject that is described by this model. This loss of clarity of thought brings, in the
end, to a complete detachment of the so-called intellectuals with the world reality

12 Perhaps the similar materialization process occurred to Eudoxus’ model is more understandable,
considering the enormous regression of scientific knowledge that led to the Middle Ages.
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and technology: this detachment produces the widespread belief that theoreticians
are absolutely unable to respond to demands from practical needs. Such a belief
seems to ignore, just to name few Greek scientists, that Archimedes or Archytas of
Tarentum did prove, with their lives, that theoretical knowledge and technology are
indissolubly linked.

As a first example we have reported the case of the materialization of the Eu-
doxus’ planetary motion model. As we have frequently remarked along the chapter,
this model was not the best fruit of the Hellenistic Science, but it had strong pos-
sibilities to be pictorially represented. When the scientific knowledge of Roman
society became insufficient to fully understand Aristarchus’ model together with the
techniques introduced by Apollonius, the Eudoxus’ model, simpler from the point
of view of mathematical detail, was chosen and used as a faithful representation of
reality. Unfortunately, we see many modern engineers to make similar choices, with
consequences that are wrongly used to discredit Scientific Engineering.

We want to stress that, in that so dark (from a knowledge point of view) historical
period starting with the Roman domination on the Hellenistic colonies in Sicily, at
least the study of Euclidean geometry was preserved, probably simply following a
well-rooted educational tradition. As Euclidean geometry was necessary to under-
stand and manage the few scientific elements that were left in place after the collapse
of Hellenistic societies, it can be conjectured that the persistence of Euclidean ge-
ometry teaching has been probably the main reason why the early humanists were
still able to interpret, or at least perceive in its importance, a very complex scientific
corpus such as Archimedes’.

Eudoxus’ model, which may seem naive today (albeit some flat Earth groups
still believe that it is too complicated), at the time when it was introduced probably
represented a conceptual revolution comparable to the formulation of the theory of
caloric. Instead, the scientific advances introduced by Aristarchus’ model, sticking
to the same metaphor, could be considered as the advances induced by the invention
of Fourier’s theory of heat. With the regression of scientific awareness, due to its
possibility to be pictorially represented, Eudoxus’ model ended up being taken as a
part of reality.

The second example we have focused on is the materialization of the abstract
mathematical concept of force. In this case, as we have repeatedly remarked, the
substitution process observed is more sophisticated and serious and, from certain
points of view, more difficult to explain than the similar one occurred to Eudoxus’
model. The materialization of force did manage to persuade many scholars that a
purely mathematical object had, instead, a physical reality: this mental process seems
more misleading than the materialization of rails along which planets are running.
In fact, at least planet have a physical reality.

We wish to emphasize that we do not intend here to pursue a modernist attitude
according to which what happened to Eudoxus’s model would be less serious just
because it happened about two thousand years ago. The reader will certainly be in
no doubt that we are convinced that the scientific advancement of the Hellenistic age
was equal, if not in some aspects superior, to that occurred in the 18th century. The
less dangerous decline of Hellenistic Science is, probably, due to the fact that this
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decline occurred in correspondence to a socio-cultural-political reversal of enormous
momentum, such as the decline of Hellenistic states and the establishment and fall
of the Roman Empire. Of course, as we have repeatedly suggested, one can associate
the decline of society to its scientific decline (recall the discussion about Roman
aqueducts), albeit there is a time delay between the loss of scientific knowledge and
the subsequent technological collapse.

The case of the materialization of the concept of force, on the other hand, is much
more alarming. In fact, this confusion has occurred in a time period when scientific
culture continues to develop and still manages to induce remarkable technological
developments. The fact that this avant-garde science continues to develop on some-
times an extremely confused conceptual basis leads us to reflect on the possible
aberrations it could produce (and it is not certain that the aberration process is not
already at an advanced stage). This pessimistic view can be counterbalanced by an-
other consideration: in present times, most likely, we have a number of active living
scientists which is greater than the cumulated number of scientists who ever lived on
our Earth. In fact, one can consider that the quality of this group of scientists is not
as homogeneous as it was during, for instance, the flourishing of Hellenistic Science
or Illuminism. Therefore, it could be that we are observing simultaneously the rise
of some scientific societies in some disciplines and countries together with the de-
cline of other scientific societies and disciplines. Therefore, the net advancement of
scientific knowledge is the result of a dynamic process where declining effects are
counterbalanced by development effects. In conclusion, one can say that, until the
number of scientific groups that are capable to base technological advancement on
solid scientific grounds is great enough, we may hope that Dark Ages kind of decline
can still be prevented.

One might say: actually, why bother with the fact that an epistemological miscon-
ception leads to the materialization of the concept of force? In the end, the concept
of force is something that is used within the model anyway! No one today (apart
from possibly the flat Earth groups, if they were able to understand it) could ever
believe that Eudoxus’ model is reality, that is, that the planets are stuck on spheres
hinged to rotate rigidly relative to each other. Instead, it is commonplace, even among
scientists, to believe that forces are something observable, despite so much evidence
to the contrary. Let us consider a derived quantity, such as velocity: one does not
need profound scientific knowledge to agree that it is not possible to measure veloc-
ity directly. Velocity can be estimated only by measuring space and time intervals,
and only then one can derive an estimate of velocity from its kinematic definition.
Similarly, in order to give a meaning to the concept of force, it is necessary to intro-
duce a mathematical model: as clearly stated by d’Alembert, forces are mathematical
concepts derived from basic postulates. In fact, the previously cited excerption by
d’Alembert, concerning the obscurity of the concept of force, is completed by the
following words13:

13 The translation from French of this excerpt is by the authors of this Chapter. This is also true,
in general, unless otherwise specified, for all other translations from Italian, French and Latin
presented in this Chapter.
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“[...] I must warn [the reader] that, in order to avoid circumlocutions, I often used the
obscure term “force”, and some other terms that are commonly employed when treating the
Motion of Bodies; but I have never demanded to attach to this term other ideas than the ones
resulting by the Principles that I have established, both in this Preface and in the first Part
of this Treatise” [d’Alembert, Traité de dynamique, 1743]

Forces are introduced in Mechanics as those vectors by means of which we can
calculate virtual work using their inner product with virtual velocities: a very abstract
definition indeed! Piola’s theorem establishes a necessary condition for equilibrium,
i.e the condition imposing that the resultant force and resultant moment of forces are
both vanishing in an equilibrium configuration: a very abstract property indeed!

The so-called direct measures of forces are not direct at all. One measures other
quantities and via the used theory the searched value of the force which she/he
feels the need to talk about are determined. In a dynamometer one measures the
deformation of, for example, a spring, then by further theoretical hypotheses (for
example, one assumes that the measured deformation is purely elastic) and, finally,
through the model (in the chosen example, Hooke’s law) the value of the force can
be calculated. If one presents the argument in this way, it is finally evident that force
is a mere abstract object belonging to the used mathematical model.

Looking closely at the ontological misconception concerning the armillary
spheres and the concept of force, the question naturally arises: why does the confu-
sion between reality and model happen so often and remain so widespread?

As it will become clear from reading the following chapters, scientific progress
has often been held hostage by power groups who, for political and power related
reasons (or for mere ignorance), have blocked the development of certain ideas in
favor of others. The fact that Newton’s equations are common knowledge in the
scientific world, while Euler-Lagrange’s equations are still seen as an unnecessary
mathematical complication, gives us a really clear indication of how and why scien-
tific progress in Continuum Mechanics has taken the unfortunate path that we have
described.

The present chapter intentionally serves as a (long) introduction to this Volume,
whose ultimate aim is to analyze the influence of modalities of sources transmission
on the development of scientific theories. As it will become clearer to the reader
once she/he will be engaged in the various themes we have chosen to develop in this
Volume, the role of sources transmission phenomena in the development of Science
is central. This fact is certainly obvious in its positive aspects: Einstein could not have
written the equations of Special Relativity without Poincaré (1854-1912) or those
of General Relativity without Levi-Civita’s and Ricci’s contributions to differential
geometry. However, the sources transmission modalities play an important role
also in contexts involving less noble scientifically and much less humanly edifying
actions. This circumstance emerges very clearly, for instance, from Heiberg’s text of
the Prolegomena of his critical edition of the Archimedean opus, and it has strongly
prompted us to offer an English translation of its more relevant passages, which
otherwise remained readable only in Latin. Heiberg demonstrates with philological
methods how the process of transmission of a work is by no means simple and, indeed,
is conditioned by a myriad of successive modifications and alterations. An aspect
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that Heiberg underlines in the text of the Prolegomena, and that we are sure will strike
the reader, consists in the philological deduction, that Heiberg only suggests but that
Marshall Clagett [36] (and other modern scholars [56, 99]) clearly demonstrates, of
the fact that in his presumed translation into Latin of Archimedes’ work Niccolò
Tartaglia (1499/1500-1557) heavily used an earlier translation, due to William of
Moerbeke (1215/35-1286 AD), without ever mentioning him. This is very striking
because it is not unique in the History of Science: periodically, someone appropriates
the results of others, probably relying on the scarcity of available sources and on
linguistic barriers. For example, the only copy of Moerbeke’s translation, which
even seems to be autograph, has been longly lost and was only found in 1885 by
the German classicist Valentin Rose (1829-1916) bound to other texts. Sometimes,
some sources are only available in a certain language different from the current
lingua franca and this circumstance, unfortunately, constitutes a insurmountable
barrier for a large part of the scientific community: indeed, it is as if somebody were
exploiting purposely linguistic barriers for hiding the true origins of sources. We
have mentioned in this chapter, and will discuss in detail in a later chapter, the sad
fate of Gabrio Piola’s works, forgotten for about a century and a half, just because
they were written in Italian. Forgotten or willingly ignored? The reader is invited to
consider that the libraries of the most important universities in the world contained
copies of Piola’s works, and that even theories such as Peridynamics, which Piola
introduced in the 19th century, were rediscovered in the 21th century.

We believe that the studies and analyses we presented in this work can be useful
for those who want to seriously approach the study of Science, not stopping at the
external appearance and the universally accepted version of its development. We
hope that in the future it will no longer be possible for some people to deliberately
steal the work of others (sometimes even without understanding it, and therefore
distorting it), hiding or destroying the name of the true authors. Today we know,
although the official version still struggles to recognize them, of the invaluable
contributions of Archytas, William of Moerbecke, Piola and many others. We are
certain that the memory of many other scholars has been completely destroyed. It is
to them that we want to dedicate our work.

Appendix: A Literary support to our theses

Albeit we tried to argue carefully about our point of view for the necessary revisitation
of the History of Mechanics, we are aware that many criticisms may be attracted by
the content of this chapter. In fact, in order to avoid to be considered inappropriate,
many scholars preferred to insinuate some of our previous statements by using the
artifice of hiding them in literary works, sometimes in the field of Science Fiction.
Our attention has been particularly attracted by the masterpiece of Alfred Bester:
The stars, my destination. We quote here some of the most relevant excerptions, in
the sense we have specified, of this work.
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BETWEEN MARS AND JUPITER is spread the broad belt of the asteroids. Of the thousands,
known and unknown, most unique to the Freak Century was the Sargasso Asteroid, a tiny
planet manufactured of natural rock and wreckage salvaged by its inhabitants in the course
of two hundred years.
They were savages, the only savages of the twenty-fourth century; descendants of a research
team of scientists that had been lost and marooned in the asteroid belt two centuries before
when their ship had failed. By the time their descendants were rediscovered they had built
up a world and a culture of their own, and preferred to remain in space, salvaging and
spoiling, and practicing a barbaric travesty of the scientific method they remembered from
their forebears. They called themselves The Scientific People. The world promptly forgot
them.
S.S. “Nomad” looped through space, neither on a course for Jupiter nor the far stars, but
drifting across the asteroid belt in the slow spiral of a dying animalcule. It passed within a
mile of the Sargasso Asteroid, and it was immediately captured by The Scientific People to
be incorporated into their little planet. They found Foyle.
He awoke once while he was being carried in triumph on a litter through the natural and
artificial passages within the scavenger asteroid. [...]
A crowd around the litter was howling triumphantly. “Quant Suff!” they shouted. A woman’s
chorus began an excited bleating: Ammonium bromide gr .11/2 Potassium bromide gr .3
Sodium bromide gr .2 Citric acid quant. suff. “Quant Suff!” The Scientific People roared.
“Quant Suff!” Foyle fainted. [...]
The distant sun blazed through; the air was hot and moist. Foyle gazed around dimly. A devil
face peered at him. Cheeks, chin, nose, and eyelids were hideously tattooed like an ancient
Maori mask. Across the brow was tattooed JOSEPH. The “0” in JOSEPH had a tiny arrow
thrust up from the right shoulder, turning it into the symbol of Mars, used by scientists to
designate male sex.
“We are the Scientific Race,” Joseph said. “I am Joseph; these are my people.” He gestured.
Foyle gazed at the grinning crowd surrounding his litter. All faces were tattooed into devil
masks; all brows had names blazoned across them. [...]
“You are the first to arrive alive in fifty years. You are a puissant man. Very. Arrival of the
fittest is the doctrine of Holy Darwin. Most scientific.”
“Quant Suff!” the crowd bellowed.
Joseph seized Foyle’s elbow in the manner of a physician taking a pulse. His devil mouth
counted solemnly up to ninety-eight.
“Your pulse. Ninety-eight-point-six,” Joseph said, producing a thermometer and shaking it
reverently. “Most scientific.”
“Quant Suff!” came the chorus. Joseph proffered an Erlenmeyer flask. It was labeled: Lung,
Cat, c. s., hematoxylin & eosin. “Vitamin?” Joseph inquired. When Foyle did not respond,
Joseph removed a large pill from the flask, placed it in the bowl of a pipe, and lit it. He
puffed once and then gestured. Three girls appeared before Foyle. Their faces were hideously
tattooed. Across each brow was a name: JOAN and MOIRA and POLLX. The “0” of each
name had a tiny cross at the base.
“Choose.” Joseph said. “The Scientific People practice Natural Selection. Be scientific in
your choice. Be genetic.”
[Alfred Bester, “The stars my destination”]
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Chapter 2
Translation of Heiberg’s Prolegomena

Mario Spagnuolo, Francesco dell’Isola, Beatrice Gerber and Antonio M. Cazzani

2.1 Translators’ preface

In this chapter, we present the translation of the main excerpts of Heiberg’s Prolegom-
ena to his Archimedes Edition. This text was originally written in Latin [Heiberg, J.
L. (1910). Archimedis Opera omnia cum commentariis Eutocii: Vol. 1-3. In aedibus
BG Teubneri.] and contains the evidence of interesting phenomena in the transmis-
sion of ancient scientific texts. Considering the nature of the present work, which
is rather interested in problems concerning the transmission and degradation of sci-
entific knowledge through the centuries, the following translation concerns mainly
the pages in which issues related to this type of problem are addressed. We have,
however, omitted the translation of extremely technical parts of the philologist’s
work, which are beyond the scope of the present work. The original page numbering
is preserved and indicated by margin notes. Accordingly, the footnotes from the
original text are within the running text. The footnotes of this chapter are used to
annotate the translation in order to clarify certain passages.

Mario Spagnuolo, e-mail: mario.spagnuolo@unica.it
DICAAR, Università degli Studi di Cagliari, Cagliari, Italy.
International Research Center on Mathematics and Mechanics of Complex Systems, University of
L’Aquila, L’Aquila, Italy.
Francesco dell’Isola, e-mail: francesco.dellisola.aquila@gmail.com
DICEAA and International Research Center on Mathematics and Mechanics of Complex Systems,
University of L’Aquila, L’Aquila, Italy.
Beatrice Gerber, e-mail: batrice_gerber@hotmail.com
Antonio M. Cazzani, e-mail: antonio.cazzani@unica.it
DICAAR, Università degli Studi di Cagliari, Cagliari, Italy.

75© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. dell'Isola et al. (eds.), Evaluation of Scientific Sources in Mechanics,
Advanced Structured Materials 152, https://doi.org/10.1007/978-3-030-80550-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80550-0_2&domain=pdf


2.2 Prolegomena. On the Archimedean codices

VII PROLEGOMENA.
On the Archimedean codices

by
J. L. Heiberg

When two years ago I searched for Archimedes’ codices to properly analyze them,
and the last part of Archimedes’ Questions (Quaestiones Archimedeae, Chapter VI,
Copenhagen 1879) is the most valuable about this analysis, I could not escape what
the critic of the Torelliana Edition1 (Jenaer Literaturzeitung 1795 p. 610 sq.) had
already figured out, namely that the Florentine codex was the most excellent of all,
connected with a very close link to the very ancient codex of Giorgio Valla2. Having
no information about the age of this codex, except that Bandinius3 had attributed it
to the 13th century, I was inevitably persuaded by it to establish that the Florentine
codex is itself as old as that of Valla, from which the Parisian codices B and C
were copied. But difficulties remained both in the text of individual passages and
especially in explaining how that codex had finally reached the Laurentian library;
even that letter that was the premise of the first book On the Sphere and Cylinder
seemed to be better preserved in codex B (Quaest. Arch. p. 130). So, I tried to
explain these difficulties as well as I could (Quaest. Arch. p. 132 sq.). In fact, I was
already beginning to doubt Bandinus’ judgment even then. And after I had diligently
examined and compared the Florentine codex by myself, I was persuaded that this
codex in no way could be the same as Valla’s codex, but rather his antigraph, copied
with such diligence that the copyist reproduced the form even of the letters often
with pedantic solicitude. So, I decided to correct this whole piece.

1 Giuseppe Torelli (Verona, 1721-1781) is credited with a plentiful and meticulous edition of the
Works of Archimedes in Greek and Latin, published in Oxford in 1792 by A. Robertson. Torelli’s
most important book is Archimedis quae supersunt omnia, cum Eutocii Ascalonitae commentariis,
ex recensione Josephii Torelli Veronensi cum nova versione latina (accedunt versiones variantes ex
codd. Mediceo et Parisiensibus), “a typographically splendid work” [A. Frajese, 1974. Archimede:
Opera (Italian). Turin: Unione tipografico-editrice torinese.]; Torelli also conducted a first, careful
chronological reorganization of the Archimedean works. For more information about Torelli, one
can refer to [Bagni, G. T. (1997). Un’intuizione dell’infinitesimo attuale: De nihilo geometrico
(1758) di Giuseppe Torelli.].
2 Giorgio Valla (1447-1500) was an Italian Humanist, presumably a relative of Lorenzo. He teached
rhetoric in Pavia (1466-1477) and then in Genoa. Finally, in 1481, he moved to Venice. In 1496, he
was arrested for politics, but he was later reintegrated into the professorship. He translated in Latin
Greek philosophical and scientific works (Ptolemy, Galen, Alexander of Aphrodisia, Aristotle). He
also collected many ancient codices and among them the codex A of Archimedes’ works.
3 Angelo Maria Bandini (1726-1803) was an Italian religious, librarian and art collector, as well
as a cleric, scholar and bibliophile. Nowadays, he is best known for his work as a librarian. In fact,
as their director, he elevated the Biblioteca Marucelliana and the Biblioteca Medicea to very high
cultural heights. For these libraries, he compiled a monumental catalog, to which Heiberg refers
several times in his Prolegomena.
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VIIILet’s start by describing the Florentine codex.
Well, the Florentine codex of the Laurentian Medicean library plut. XXVII, 4 is

made of parchment, it is written on thick parchments without any trace of strings,
and it is very well preserved. It consists of 179 very large pages, which a recent
hand has rather negligently marked with numbers; a previous hand had marked at
the bottom right of the back page of each tenth sheet, the numbers of the fascicles
and the first words of the following page. The codex quite clearly, though not very
elegantly, has been written with many abbreviations; accents and spirits are omitted
rather frequently; these, where they are present, have the square or shape, very
rarely the curved one, as we use today; here and there both spirit and accent have
been placed on the same syllable, but never joined with the same trait. The first page
has been written with all the accents with a rather faded ink, the title and the initial
A are red. The following topics are contained in this codex:

(i) On the Sphere and Cylinder I-II, (ii) Measurement of a circle, (iii) On Conoids
and Spheroids, (iv) On Spirals, (v) On the equilibrium of planes, (vi) The Sand-
reckoner, (vii) Quadrature of the Parabola, (viii) Eutocius’4 comments in the books
II On the Sphere and Cylinder, in the booklet Measurement of a circle and in the
books II On the equilibrium of planes, Heron’s5 excerptions about the measurements.
At the end of the book the title is always repeated; moreover, at the end of the book
Quadrature of the Parabola it also has:
εὐτυχοίης λέον γεώμετρα
πολλοὺς εἱς λυκάβαντας ἴοις πολὺ φίλτατε μούσαις6

and at the end of Eutocius’ comments in the books about the sphere and the cylinder
Εὐτυκίου πινυτοῦ γλυκερὸς πόνος, ὅν ποτ᾿ ἐκεῖνος
γράψεν τοῖς φθονεροῖς πολλὰκι μεμψὰμενος7

The mathematical figures were always drawn with the same hand as the rest of the
codex; in his work the copyist used ruler and compass, he refrained from using tools
with which to draw conical sections and spirals; the reason for which he drew the
latter so roughly, as if they were arcs of circumferences, is that he depicted them

4 Eutocio of Ascalona (about 480-540?) was a Byzantine mathematician. Of his production, only
few comments remain today on the books On the Conics of Apollonius of Perga and some works by
Archimedes. These comments, especially those on the works of Archimedes, offer a very eloquent
insight into Greek scientific development.
5 Heron of Alexandria (I-III century A.D.) was an ancient Greek scientist, very skilled in the
study of Mechanics (among his most famous inventions there is the Eolipila, the first steam engine
known). He was a teacher of technical disciplines at the Museum of Alexandria. Heron carefully
studied the works of Euclid and Archimedes. A strong conviction of his was the need for a complete
preparation, made of theory and practice. Heron’s masterpiece is the treatise on Mechanics, in
which he systematizes the theoretical and practical aspects of Mechanics.
6 “May you have a good fate, O Leo the Geometrician, and for many years you may proceed widely,
beloved of the Muses.” Leo the Mathematician (790-869) – also known as the Geometrician – was
a Byzantine philosopher and mathematician. In the 9th century, he was responsible for producing
three codices containing the works of Archimedes in Constantinople: codex A, codex𝔅 and codex
C. The Valla’s codex is recognized to be codex A. The vicissitudes of these three codices will be
discussed in a further article.
7 By the wise Eutocius gentle work, that once that famous man wrote, strongly blaming the envious.
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without any help in a very poor and extremely negligent way. At the end of the codex
neither

IX the word τὲλος [end] nor any other sign, showing that the code is finished, has been
added; the last page is empty and is used as a cover. Cfr. Bandinii catalogus II p. 14.

I demonstrated that the Parisian codices 2360 (B) and 2361 (C) were copied from
the ancient codex of Valla (Quest. Arch. p. 124 sq.) and, in this point, I will briefly
recall the reasons.

In the Parisian codex B at the edge of page 120 the copyist has noted this: These
things are copied from that illustrious very ancient antigraph, former property of
Giorgio Valla and that later became of the renowned sovereign Alberto Pio of Carpi8;
this antigraph was, as we have said, very ancient and it had a great lack of clarity
and not quantifiable because of the errors; moreover innumerable excerpts are not
explained in any place. [...] 9

So, the B codex was copied from Valla’s one. Also, in codex C we found this short
preamble by George d’Armagnac10: “Do not be offended, diligent reader, to see this
Author

X without any recommendation for himself or any preface: so the condition of the first
page in the old exemplar, from which it was copied, had been worn and consumed by
old age, that not even the name of Archimedes could be recognized, nor at that time
was there anything else left in Rome by which this πρόσωπον [front page] could
be restored. Every sign of both accent and spirit was missing everywhere; in the
remaining parts it is intact and clear except for the second page of the last sheet of
the book on measurements ἥρωνος [by Heron], was entirely deleted such as the name
of Archimedes. However, in order for Gallia to rejoice at such a recommendation
from the Author, I preferred in any way that a copy of it be produced for you [reader]
at my expense, albeit that to mathematical lovers my guilt appears more negligent in
this part.” And at the edge of the codex, the copyist wrote this note: Here the German
Christopherus Auverus ended the treatise on the first day of 1544, at the expense
of the very respected bishop of Rodez George d’Armagnac who was ambassador
to [the Pope] Paul III in the Holy Church diocese in Rome for Francis King of the
Celts, who was highly praised and held in the highest esteem. From this Greek text
it is clear that the codex C of Rome was copied in 1544 by Christoferus Auverus

8 Alberto Pio, Prince of Carpi (1475-1531) was an Italian Renaissance prince and had a prominent
role in the humanistic panorama. His education was directed by the humanist Giovanni Pico della
Mirandola and the famous founder of Aldine Press in Venice, Aldo Manuzio. He played a leading
role in the politics of relations between the Papacy and the Kingdom of France.
9 In the original, this text is in Greek. Examples of errors and misunderstandings that the copyist
highlights follow and are omitted here.
10 Georges d’Armagnac (1501-1585), French Catholic cardinal and archbishop, was bishop of Rodez
in 1530 and then was nominated ambassador to Venice (1536) and Rome (1540) and finally state
councillor to Francis I. He was an important Maecenas for men of letters who put in communication
with Francis I.
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at the expense of George d’Armagnac. Already Guillaume Philandrier11, who was,
according to the letters, with George d’Armagnac and followed him both in Venice
in 1541 and then in Rome, has in Vitruvius’ edition (Lugdunum [Lion] 1552 and
reprinted in 1586) these things on p. 357: “I had written these things, since, with the
benevolence of Cardinal Pius Rodolphus of Carpi12, I was given the ease of visiting
and writing, while my Maecenas [i.e. George d’Armagnac] edited the volume on
the sphere and the cylinder with the commentary of Eutocius, as an ornament in
the future of the very august and well-stocked Library that You [Francis the First]
established at the Fontainebleau. This volume had belonged to Georgius Valla and
in it, because of the property of Doric language and the omission of spirits and
accents, which would have produced any difficulty in reading, there are then notes
of syllables and expressions, which are often not even recognized by the Greeks”.
So, there is hardly

XIany doubt that George d’Armagnac edited that codex of Valla, of which he made
a copy for Philandrier, transcribing it to donate this antigraph to the Fontainebleau
library. Consequently, it follows that codex C was also copied from Valla’s codex,
which is also confirmed by itself, since he arrived in the Paris library from the
Fontainebleau one.

The Parisian paper codex 2360, once Medicean, contains the same works of
Archimedes and the comments of Eutocius in the same order. After the book Quadra-
ture of the Parabola presents the same verses. Some argue that it was written by
Philandrier and hence attribute it to the 16th century; but this cannot be at all related
to Philandrier’s words attached above; in fact he says that he transcribed only from
Valla’s codex, i.e. he took note from it of those things that could be useful to him
in the commentary to Vitruvius, and that if he had not copied everything, he would
have remembered only the books On the Sphere and Cylinder; it seems that he only
consulted these books and did not examine the others. Moreover, it appears from
that inscription of the bookshelf, that the archetype codex, when codex B was copied
from it, belonged to Albertus Pius; in fact, if already at that time it had been given
to Rodolphus Pius, the name of him, not of Albertus, would have placed or certainly
would have mentioned itself, too. For this reason, since Giorgius Valla died in 1499,
and Albertus Pius in 1531, it must be concluded that codex B was written between
these years.

Paris codex 2361 (C) is made of Fontainebleau paper and has the same works of
Archimedes and Eutocius in the same order, as well as Heron’s measurements, such
as the Florentine codex. From this codex, F. Hultsch13 has published the Heron’s
ones: Heron, reliq. p. 188–207. After the Heron’s measurements, furthermore, two

11 Guillaume Philandrier (1505-1563) was a French humanist and a friend of François Rabelais.
He was also a cleric of Rodez. He became secretary of Bishop Georges d’Armagnac, whom he
accompanied to Venice and Rome. He was involved in humanistic studies especially concerning
Quintilian and Vitruvius.
12 Rodolfo Pio di Carpi (1500-1564), cardinal and Italian archbishop, was Alberto’s nephew.
13 Friedrich Otto Hultsch (1833-1906) was a German classical philologist and a historian of ancient
mathematics. He studied and then lectured in Leipzig.
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fragments follow περὶ σταθμῶν 1) [on weights] and περὶ μέτρων [on measures],
which he published from this codex (Metrolog. Script. 83–84. I p. 267–272; cfr.
praef. p. XVII). All these same things are also found in the same order in the
Florentine codex, except that the last fragment περὶ μέτρων which is a little longer
in this last one.

1) In Hultsch it is reported περὶ ταλάντων, but in the codex there is περὶ σταθμων,
according to Charles Graux, and in the same way it is reported in the Florentine codex.

XII Even so, it is likely that the Florentine codex and codices B and C are related,
and this is proved by other very reliable documents. First of all, we have seen that
the codex of Valla was mutilated at the beginning, and for this reason the codex C is
lacking of the greater part of the cover letter preceding the first book On the Sphere
and Cylinder. In the Florentine codex too, the first page is in a different handwriting
and with many lacunas, and in B the same passage is equally corrupted (cfr. vol. I p. 3
not.); the copyist added: Ἀρχιμήδους τοῦ περὶ σφαίρας καὶ κυλίνδρου τὸ προοίμιον
λείπει· ἡ πρώτη γὰρ σελὶς τοῦ ἁντιγράφου ᾿φανῆς ἦν, ὡς ὁρᾶις14. Furthermore,
in vol. III p. 4, 18 there is a lacuna between σύγκειται and τῇ ΑΒΓΔ in all codices;
the copyist of codex B wrote: ἓν ὅλον σελίδιον ἢ καὶ δύο λείπει [at least one
page or even two are missing]. Finally, the numbers of the propositions of the book
περὶ κωνοειδέων [on conoids] are completely confused and reversed in the same
way in all codices (cfr. Quaest. Arch. p. 123 sq.). Therefore, since the Florentine
codex cannot have been copied by the Parisian codices, it remains established that
Florentine codex is either the codex of Valla or derives from it. And I will explain
why now I think this is true.

From the aforementioned note by George d’Armagnac taken from codex C, it
becomes clear that the first and the last page of the codex of Valla indeed included
written text but it could not be read because of their age and incomprehensibility.
But in the Florentine codex, the first page is completely empty at the beginning, and
eventually the omitted part of the cover letter has been added by another hand1), and
there is neither any trace of an older script that has been obliterated, nor has anything
ever been written in the lacunas. And the last part of Heron’s fragments has been
written brilliantly and plainly, like the rest of the codex, and after that nothing was
written. I have said above that the last fragment in the Florentine codex is a little

1) Nicolaus Anziani, librarian of the Laurentian library, believes that the first page was written
by the same hand as the rest of the codex. But the handwriting seems to me different, albeit not
so much, and H. Menge and Charles Graux, who ascribe this part to XVI century, agree with me.
For sure this fact is of interest, because in this part almost all accents and spiritus [rough or smooth
breathing] are lacking.

XIII longer; therefore, the copyist could read [the text of] this codex a bit larger in the
archetype than what the copyist of codex C could either read about fifty years later
or believed to increase the value of the work. The fact that he was unable to read
the archetype of the Florentine codex in its final part leads us to suppose that in

14 The preface of the Archimedes’ book “On the Sphere and Cylinder” is incomplete: in fact, the
first page of the antigraph was lacking, as you can see.
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the Florentine codex nor [the word] τέλος [end] nor any other sign with which the
copyists have the habit to mark the completion of the work is found.

Moreover, that cover letter contains a disagreement with codex B, which cannot
have been copied in this part from codex F; see firstly vol. I p. 4, 6: [...]15; and in
all these passages the writing of codex F is so clear that there is no doubt about this
matter. Therefore, it had to be stated that that lacuna in codex F has finally been
filled out later, when codex B was copied from it. This can be a casual independent
event; but it is, nevertheless, verisimilar that the copyist of codex B, who in so many
words deviates from the sources from which he is transcribing, then wrote that he
had taken the preface from another copy, especially because he wrote this preface:
Ἀρχιμήδους τοῦ περὶ σφαίρας καὶ κυλίνδρου τὸ προοίμιον λέιπει, ὡς ὁρᾶις [the
preface of the book On the Sphere and Cylinder by Archimedes is incomplete 1), as
you can see]. I do not believe that these words could be taken by any other manuscript
than that antigraph, which he has followed throughout the book.

Finally, certain passages among those that Valla translated from his codex into
Latin are found, where Valla obviously did not have a corrupted writing of the
Florentine codex but a good one of the codices B and C before his eyes:

[...]16
1) I.e. it is incomplete (not: it is lacking), as it appears from the added wordsὡς ὁρᾶις; in fact,

the preface is written by the same hand as the rest. Cfr. Quaest. Archim. p. 121 not.

XIVHaving Valla himself barely reconstructed these passages by conjecture, what will
be understood by those who have enlightened the errors repeated by him, from
evidences in Valla and from the union of the B C codices, it follows that in these
passages the text in Valla’s codex was different and also more correct, as it is in the
Florentine codex (de III p. 76, 26; 124, 22 u. infra)17.

Even from those abbreviations, which are said to be obvious in Valla’s codex by
the copyist of codex B, a very strong evidence can be obtained, from which one
can prove what we have proposed. There, in fact, (p. IX) instead of the syllable -οις
this abbreviation is indicated; but in the Florentine codex this [abbreviation] of
this form is not found anywhere, instead a vertical and round 𝜕, which is a more
recent form of this abbreviation (O. Lehmann: Die Tachygraphischen Abkürzungen
der Griechischen Handschriften (1880) p. 70–71).

And although generally this is the nature of those passages, in which B C codices
offer better writing than F code, so that it cannot be said that the copyists of B C
codices could not have corrected a manifest and easy error on their own initiative in
the same way, however, not only those better versions, which are frequent enough,
can be found quite easily, if we establish that B C codices were derived from the
same source as F codex, but there are also certain passages where the correction was
more difficult and not such that two not too much cultured copyists seemed to have
come across it by chance; such as in codex F at I p. 6, 11 there is τοτε αξιωμα, but

15 It follows a list of discrepancies between the two codices.
16 It follows a list of comparisons between codices B C and F.
17 The Translator’s Note in footnote 29 on page 84 refers to the previous sentence.
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codices B and C report the right form (τά τε ἀξιώματα); at I p. 8, 11: in codices B
and C it can be read τομέα δὲ στερεὸν καλῶ, instead in codex F it appears that in a
first stage there was only τομε; later, the same hand, which added the cover letter to
the first page, filled the lacuna except that στερεόν is omitted leaving a small lacuna.

Finally, we must remember (in fact, this way of demonstrating especially in
this codex is misleading and uncertain) that the form itself of the letters sometimes
indicates a more recent origin. With regard to this, I, first of all, rely upon the judgment
of Charles Graux18, who, having diligently examined a photographic image, from
which the table added to volume II was printed, of our codex so judged: what seems
to me the most probable thing at

XV the moment is that the [codex] Laurentino in question is the product of a 15th century
copyist who had a ninth or tenth century manuscript as a model and tried to imitate
it scrupulously even in the form of the letters19. So, I found elsewhere the same
statement that I also had deduced myself having progressed in other ways. But on the
contrary, Guilelmus Gardthausen20, to whom I had passed on the same image, did not
think that this statement was to be rejected, although he himself preferred to attribute
the codex to the 11th century from the form itself of the letters, unless documentary
evidences could be obtained from another place to confirm that opinion; which I
seem to have done here. The most important impediment, as both of those expert
palaeographers pointed out, is the form of the letter φ, as it appears to have been
written in a single line (see table, lines 1, 3, 4, 5, 6, etc.), which, apart from the form,
does not appear before the 15th century (Gardthausen: Griech. Paleogr. p. 208)21.
Moreover, this fact is also favorable to this opinion, namely that the writing, which at
the beginning of the codex is very diligent and very sharp, becomes rather negligent
towards the end and offers a less ancient appearance, and the accents, which are
generally omitted, here and there, and indeed especially towards the end, are more
frequent, just as the custom of the copyist seems to have meanwhile overcome the
will to transmit the antigraph reliably. Finally, also the parchments reveal both by
typology and by species a more recent time.

After examining all these things, we must admit that the Florentine codex is not
the Valla’s codex, but the latter is the common source of F B C codes. Then about our
F codex itself we must acknowledge that Angelo Poliziano22 wrote in Venice in 1491
to Lorenzo de’ Medici (u. Fabronius: vita Laurentii II p. 285): in Venice, I found
some books by mathematicians Archimedes and Heron, which we lack ... and other

18 Charles Graux (1852-1882) was a French scholar in the field of classical and humanistic disci-
plines. He published important critical editions of works by Xenophon and Plutarch and pioneering,
descriptive catalogs of the medieval copies of ancient Greek texts preserved in the libraries of Spain
and Denmark. Source Wikipaedia.
19 This text is in French, in the original Heiberg’s essay.
20 In the opinion of the translators, here Heiberg refers to Victor Emil Gardthausen (1843-1925),
ancient historian, palaeographer, librarian.
21 This piece on the form of the letter 𝜙 shows that Valla’s codex should not be the Florentine codex.
22 Angelo Ambrogini, known as Poliziano (1454-1494), was an Italian poet, humanist and philol-
ogist. He is generally considered the greatest of the Italian poets of the 15th century. He was also
the author of works in Latin, Greek, and achieved extensive philological expertise.
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good things. So much so that Papa Janni23 has something to write about for a piece24.
Since Giorgio Valla from 1486 to 1499 was teaching in Venice (Neue Jahrb. Suppl.
XII p. 377), and Valla’s codex, as we have recognized above, besides Archimedes
also contained some fragments of Heron, we can hardly doubt that Angelo Poliziano

XVIdealt with describing Valla’s codex. But this means that Joannes Rhosos1) would
have copied Archimedes’ codex, copy that was not actually done. In fact, the codex
F could not have been written by him, as it seems clear having compared some other
codices 2) written by him, which are very numerous, with our photographic table.

So, the F code was copied from Valla’s own codex in 1491 or shortly after, while
the B C codices were copied not much earlier. It therefore remains to be understood
which of these three quasi-sister versions should be believed to be more correct than
the others.

Then, I have demonstrated with documentary evidences, which I believe are quite
robust in (Quaest. Arch. p. 128–30), that the B code has been copied by an educated
copyist, who would have corrected many errors, many others would have tentatively
corrected rather badly, and many errors are occurring on almost every page [...]25.

But we can clearly demonstrate that the F codex has been copied more accurately
than the others. There are in fact certain passages in which we know by the inter-
pretation of Valla himself26 that in his codex there were the same foolish errors that
were in the codex F, but that they were corrected in BC:27

1) In fact, he is “Papa Janni”, as N. Anziani advised me. About Joannes Rhosos Cretean
presbyter, very active copyist, it can be read Gardthausen p. 326 sq.

2) In Florence, I compared Laurentian codices XXXII, 6; LV, 9; LXXXI, 23; LXXXVI, 18,
with the F codex itself.

XVII[...]28
From these passages, one can understand how great and how pedantic the diligence

of the copyist of codex F was; in fact, although this is hardly credible, it is clear
that he could not correct these silly mistakes, as instead the copyists of B C codices
did, because he wanted to return the archetype with the utmost fidelity. Therefore,
it is clear that even where B C agree against the authority of the F codex, we must
judge very cautiously about the scripture of the archetype from the latter, and that
the Florentine codex also now must be considered the main source.

23 Papa Janni, a Greek copyist, following the opinion of T. C. Dandolo, “Firenze sino alla caduta
della Repubblica: studii”, Milano, Ubicini 1843 (p. 381). In the following note, Heiberg identifies
Papa Janni as John Rhosos.
24 From Poliziano’s Italian, in the original Heiberg’s essay.
25 Here Heiberg gives examples of such errors.
26 Giorgio Valla, selected pieces from “De expetendis et fugiendis rebus opus”, Venice 1501.
27 In footnote 4), Heiberg cites his work where this point is fully discussed. Together with
Henri Lebègue, he finds many errors in the Giuseppe Torelli’s edition of the Archimedes’ works
Archimedis quae supersunt omnia, cum Eutocii Ascalonitae commentariis, ex recensione Josephii
Torelli Veronensi cum nova versione latina (accedunt versiones variantes ex codd. Mediceo et
Parisiensibus).
28 Here Heiberg reports various examples of errors.
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In short, the interpretation of Valla29 coincides with F completely except in a few
passages that I reported above on p. XIII. But also from other hints, we can conclude
how much the codex F expresses an accurate image of the archetype. In fact, first
of all most of the letters show a form far older than the 15th century, as can be
understood from our photographic table, which represents a page taken from the first
part of the codex (I p. 156, 10–160, 11 editionis). And the usage of abbreviations,
the omission of accents and spiritus, their square form where they are present,

XVIII all these things suggest that the codex is ancient and [these circumstances] agree
with [the hypothesis that] the transcription of Valla’s codex was done by the copyist
of the codex B in a very accurate way. Then, the mutilated part of the cover letter
placed before the first book on the sphere and on the cylinder (I p. 2–6, 6), which
was consumed in the first page of the archetype for usage and age, also in codex F is
placed on the first page neither more or less [...]30.

Then, the copyist of the codex F with the same diligence, with which he imitated
the form of the letters, he seems to have followed also the features of the antigraph,
exactly as he made so that there was a correspondence page by page and even line
by line. 1)

Thus, it may be possible that with the richness of these three codices, first of all
the Florentine one, we recompose a certain [faithful] image of that archetype

1) See also what Jordan Hermes wrote about the Marciano codex 247 copied with similar
diligence from the Marciano codex 246, XIV p. 264 sq.

XIX once owned by Giorgio Valla. Undoubtedly it [Valla’s codex] was written in the 9th
or 10th century, as Charles Graux1) conjectures from the clues given by the ancient
form of the letters observed in F, moreover it was very similar to the Oxonian31

codex of Euclid (Bodleian. d’Orville ms. X, 1. Inf. 2. 30; examples of it have been
published in Paleographical Society tab. 65–66) with all the habits then in use in the
summaries. It was copied quite diligently from an exemplar [written by] some man
who was not inexperienced in mathematics; and in fact, those scholia found in almost
all books are not added in the margin, [and are] especially very often present in in
the books On the Sphere and Cylinder 2). Those things that show a greater knowledge
of mathematics than those that were known at the time could be improved by this
copyist himself of the codex. It [Valla’s codex] was provided with mostly excellently
and diligently copied figures, but it was often wrong in the letters affixed to the
figures and also in the figures and words themselves of Archimedes, which fact the
copyist of the codex B (p. IX) noticed; examples from the codex F can be collected
Quaest. Archim. p. 125 sq., and several can be added. [...]32

29 See the sentence preceeding footnote 17 on page 81 .
30 From here on various examples of comparisons of F codex and B C codices, where, in partic-
ular, the discrepancies with Torelli’s edition are reported. This technical analysis is necessary for
supporting Heiberg’s conclusions.
31 From Oxford.
32 A list of this kind of errors then is included in Heiberg’s text to support the last statement. In par-
ticular, Heiberg remarks that the text of demonstrations is corrupted by repetition and homoteleutic
words.
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1) In this regard the Valla’s codex is called παλαιότατος [the most ancient] by the copyist of
the codex B (u. supra p. IX), what he could not state about the Florentine codex itself.

2) However, it seems to me at least likely that these additions do not all come from the same
man. I consider more ancient the additions that, being most of them in Doric, are inserted in the
books on conics and spirals; the books on the sphere and the cylinder and on the measure of the
circle seem to have been translated into a more standard [Greek] language and at the same time
polluted by numerous additions only in a more recent period.

XX[...]33
This codex therefore, once Giorgio Valla (1499) died, passed to Alberto Pio di

Carpi who also acquired the other codices of Valla and probably his entire library, as
it is clear from the inscription of a certain Scorialensis34 codex (Miller: Catalogue
de mss. grecs Escur. p. 454): Donato

XXIBonturello35 copied from the antigraph, which, previously owned by Giorgio Valla
(and in fact he copied by his own hand), later became of the illustrious sovereign
Alberto Pio of Carpi [the Greek text continues in the narration of the passages of the
Valla’s codex]. About the destiny of the library of Alberto [Pio di Carpi], Stefano
Borgia (Anecdot. litterar. Romae 1773 ff. I p. 81) passes the following information
on. Alberto himself gave it as a gift to Agostino Steuco Eugubino, whose brother
Fabio gave part of it to Cardinal Marcello Cervinio. It came from him by testament
to Cardinal Guglielmo Sirleto, and since he died it was bought by Cardinal Ascanio
Colonna. Then, through the hands of many, it finally was acquired by the Vatican.
But it appears clearly that our codex had a different fate 1); we see in fact that in
1544 it was owned by Rodolfo Pio, son of Alberto’s brother, and in the catalogue
of Sirleto’s library (Miller p. 323–324) there is no mention of Archimedes’ codex.
Thus, perhaps because of its singular antiquity, it was kept in the Pious family. But
we do not know where it would later arrive, nor one knows whether it was lost or
happened to be in some library in Italy, which seems to me quite likely.

By now we see what relationship there may be between the other critical works
and the Valla’s and Florentine codices.

First, therefore, it appears that Pope Niccolò V had a codex of Archimedes, which
he had taken care to have translated into Latin. In fact, Cardinal Nicola Cusano writes
to him as follows (Opera p. 1004): “You have in fact given me in these previous days
the Geometry of the great Archimedes presented to you in Greek and thanks to your

33 Before this text here, the page continues with a list of errors and writing conventions including:
the repetition of the same words, the exchange of apparently similar abbreviations, the omission
of abbreviations, the very frequent permutation of vowels and syllables, the frequent confusing
replacement of the connective particles δέ [but] and δή [therefore] in mathematical demonstrations,
the presence of some abbreviations omitting terminal letters, the frequent short notations for double
consonants. Finally, Heiberg remarks that the copyist of Valla’s codex pertinaciously repeats the
same errors many times in all his manuscripts.
34 Scorialensis – The library of the Royal site of San Lorenzo de El Escorial.
35 Donato Bernardino (Bonturello), 1483-1543, lived and worked at the court of the Pious in Carpi.
He was preceptor of Rodolfo Pio and transcribed various Greek codices.
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care translated into Latin”. Who was Nicola’s translator, we find out from the preface
of the Basel edition (fol. 2 verso)36:

1) Also, Ambr. Morandus in its life of Steuchio (Steuchii opera. Venet. 1591, I praef. fol. 4 verso)
does not tell that Alberto had given all the books to Steuchio. In fact, his words are: Fabio brother
of Steuco, who had received it as a gift from Alberto Pio prince of Carpi, gave this magnificent
library in great part to Marcello Cervino.

XXII “He (Regiomontanus37) freely accepting his first invitation in Italy as soon as he
reached a great fame of his name, saw many Greek books stolen during the defeat
of Constantinople and copied out many by his own hands . Then, among others,
[Regiomontanus] diligently copied Archimedes’ books, which had been given to him
by some friends, on the sphere and the cylinder, on the measure of the circle and
on other things not only useful but also necessary for mankind, as it is clear from
reading these books, that Iacopo Cremonese38, because the demand of Niccolò V
Roman Pontiff, had already since long translated into Latin. [Iacopo Cremonese
was] a man at those times worthy of double honor, being learned in Greek, since
he seemed [to Pope Niccolò V] the only one who could absolve this work helped by
[his] practice of languages. [Regiomontanus placed] many additions to the margins
in Greek (since he also had a copy of the codices in Greek), where Cremonese’s
translation seemed him either to have been translated rather difficultly or to have
been somehow corrupted in the copy”39. This translation by Iacopo Cremonese was
recovered in the Basel edition, as its same title alludes to: “Works ... by Archimedes,
which undoubtedly are better than all the others, once already donated to Latinity
and now published for the first time”. For this reason, it is therefore legitimate to
speculate about the codex of Pope Niccolò V. Right at once it seems clear that it
was closely linked to Valla’s codex; in fact that same lacuna vol. III p. 4, 18, which
originated in that place as attested by the copyist of the codex B (see supra p. XII),
since one or more sheets of Valla’s codex had been lost (nor could it happen that that
copyist hesitated in understanding such an easy thing, since the latter himself had in
his hands Valla’s codex), this lacuna, I said, was at this point in Niccolò V’s codex. In
fact, in Iacopo Cremonese’s translation on p. 2 it is written: “unam autem lineam in
plano quocunque modo connexam quamvis sive ex rectis pluribus connectatur [sive
ex curvis sive ex rectis pluribus connectatur ex ea connexione postulat appellari]”40

36 Heiberg refers to the editio princeps published at Basel in 1544 by Thomas Gechauff Venatorius.
37 Regiomontanus, pseudonym of Johannes Müller of Königsberg (1436-1476), was a German
mathematician, astronomer and astrologer.
38 Iacopo da San Cassiano, also known as Iacobus Cremonensis, (between 1395 and 1413-
1453/1454), was an Italian humanist and mathematician. He translated into Latin the corpus of
the writings of Archimedes.
39 This preface excerpt seems written by using a Latin style which is anticipating Baroquism, so
that we have split into three parts a single sentence which occupied in the original text sixteen lines.
40 Here Heiberg reports a truncated and reconstructed sentence in Cremonese’s translation at the
end of which Cremonese writes “Here a page in the Greek exemplar is lacking.”. A possible
translation of the reconstructed sentence is “whereas a single line in the plane connected in any
way either by numerous lines [or by curves or by numerous lines is connected, he postulates that it
is named after that connection].”
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From here it necessarily follows that Niccolò’s codex either was Valla’s codex
itself, a fact which had been suspected in Quaest.

XXIIIArch. p. 139–140, or had been copied from that. 1) This last statement now seems
to me verisimilar, since those words which in the previous text41 were closed in
parentheses, with which I do not know who tried to fill the lacuna, had preserved
traces of the Greek text origin; in fact, “eam ex ea connexione” seems to be a word
by word translation of the Greek words τὴν ἐκ τῆς συνάψεως. And for this reason,
the copyist of Pope Niccolò’s codex added these words to fill the lacuna in Valla’s
codex up to a certain point.

A copy of Iacopo Cremonese’s translation was copied by Regiomontanus with
his hand, this circumstance is referred by Venatorius42 (u. supra p. XXII) and by
Regiomontanus himself in presence of Gassendi (Opera V p. 469: the translation
is by Iacopo Cremonese, but corrected in some passages), and this copy is still in
the library of the city of Nuremberg. Heinrich Menge was the first to warn about
this fact (Neue Jahrb. f. Philologie 1880 p. 110). Later, myself examined this codex,
having the Nuremberg Senate allowed without any restraint that it was sent to me to
Copenhagen. The codex is made of paper centur. V, 15, and contains Archimedes’
books and Eutocius’ comments in this order: Archimedes’ books On the Sphere
and Cylinder I-II, Measurement of a circle, On Conoids and Spheorids, On Spirals,
On the equilibrium of planes I-II, Quadrature of the Parabola, the Sand-reckoner,
Eutocius’ comments on the books On the Sphere and Cylinder, Measurement of a
circle, On the equilibrium of planes. Greek words were noted on the margins in
many places, just as we noticed that Venatorius had said (supra p. XXII). On the first
page we read “I belong to Thomas Venatorius” and on the last page it is written by
Venatorius “Ioannes de Monte Regio was born in the year 1436 on the 6th of June
at 4 and 40 minutes ... in the afternoon. Moreover, Regiomontanus dies in the year
1476 almost on the 8th of July”. In addition to Greek words Regiomontanus

1) And the translation is clearly, in the discrepancy of the writing, in accordance with the
Florentine Codex. When this accordance does not happen, the circumstance is to be attributed
either to the copyist of Niccolò’s codex, who, as we shall see, does not abstain from interpolation,
or to Regiomontanus. As an example of the accordance is the fact that the dittography of the codex
F III p. 172, 17, which B C had corrected, was also before Cremonese’s eyes p. 36, 7.

41 See the sentence in Latin on page XXII.
42 Thomas Gechauff, also known as Venatorius (1488-1551) is a Protestant geometer and theologian.
Friend of the imperial adviser Pirckheimer, he edited the works of Archimedes.
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XXIV not infrequently added on the margin corrections of Latin words, which were all
accepted by Venatorius, which from this same codex generated the Latin translation
added to its edition (Basel 1544).

From those passages that Regiomontanus annotated from his Greek codex, I
suspect, as I proposed in Quaest. Archim. p. 138, it is strongly confirmed that
Regiomontanus, friend of Bessarione43, used our Venetian codex, which was once
Bessarione’s (u. infra). In fact, since it is not possible to conclude anything about
Bessarione’s codex from the many passages extracted from it by Regiomontanus,
since the words used there are the same of all or many of our codices, in no passage,
however, the errors proper to this class of codices, of which the Venetian codex is
the main one, are also recurring in Regiomontanus’ edition. And I will report these
errors:

[...]44
And sometimes Regiomontanus alludes with [the following] clear words to the
exemplars of Bessarione, as he annotated with regard to the book On the equilibrium
of planes II, 8: “so it is written in the exemplar of the Cardinal [Bessarione] and it
is likely that it was translated from Greek. But it was done badly”; with regard to
the book On the equilibrium of planes I, 15 [Regiomontanus writes]: “it is bad. See
the exemplar in both Latin and Greek by “dominus Nicenus”. See also the ancient
exemplar that is with Magister Paulus”1). In fact,

1) In these passages, my collection of sources has been partly confirmed and partly corrected
with benevolence by Frommannus, prefect of the Germanic Museum of Nuremberg, as I solicited
him.

XXV the “dominus Nicenus” is Bessarione, who appears to have obtained the archbishopric
of Nicea in 1436. His exemplar, of which Regiomontanus speaks, is in Latin and is
preserved in Venice; it is the Latin codex CCCXXVII of the 15th century (“once
of Bessarione”, cf. Marci bibliotheca codd. Mss. paraeside L. Theupolo. Venet.
1741 p. 140), which contains Archimedes’ books On the Sphere and Cylinder I-II
with the presentation of Eutocius, Measurement of a circle with the presentation of
Eutocius, On Conoids and Spheroids, On Spirals, On the equilibrium of planes with
Eutocius, Quadrature of the Parabola, the Sand-reckoner. Although the name of the
translator is omitted in said codex, it cannot be doubted that it is the apograph of
the translation of Iacopo Cremonese; in fact, an order of books like this is found
only in the translation of Iacopo Cremonese; in all other sources the booklet The
Sand-reckoner is placed before the book Quadrature of the Parabola. One might
therefore have believed that Regiomontanus had copied this same codex; in reality it
seems that he used another copy, of which he then brought together the apograph with
Bessarione’s Latin codex. In fact, in the book Quadrature of the Parabola 14 words
“sicut autem ba ad bf, ita mensula de ad spacium q. spacium igitur q spacio r maius
est. Nam hoc ostensum est”, which are missing in the Greek codices, in the Basel
translation on p. 149 are instead enclosed in brackets; Regiomontanus also enclosed

43 Bessarion, born perhaps Basil (1403-1472), was a Byzantine cardinal, humanist, and philosopher.
44 Here Heiberg reports the comparison between the texts of the Regiomontanus edition, of the
Venetian codex and of the Torelliana edition.
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them in brackets and then in the margin wrote “there is a void”1) and just below
“in the exemplar of the dominus [Nicenus] there was an addition”, something that
was undoubtedly taken from the Latin codex, not from the Greek one of Bessarione,
as well as “exemplar of Cardinal B” in the above note (in plan. aequil. II, 8). The
same thing can be deduced from the note in pl. aeq. I, 15. But above, on p. XXII,
we see that Regiomontanus, according to the testimony of Venatorius, had a copy of
several Greek codices, and this is confirmed by that annotation we have recalled on p.
XXIV. A subsequent part of it [he reports]: “see also an ancient exemplar belonging
to magister Paulus” is certainly written by Regiomontanus’ hand, but with a different
kind of ink

1) I take this from the Greek codices.

XXVIand very clearly added quite a bit later. With the same ink, with which this addition
was made, other numbers of the propositions, beginning with proposition 18, were
added to the book on spiral lines. Here in the margin Regiomontanus annotated:
“those notes of the propositions from the new1) Greek exemplar”. [...]45 Since all these
[substitutions in the numbering] completely match the numbers of the Florentine
codex (with regard to the other codices, here we know nothing for sure; in the
published ones the series of numbers has been corrected, except in the Cremonese
translation [where] the number 19 is omitted), as will be clarified by our annotations,
it is legitimate to suspect that that old exemplar of Magister Paulus was the same
codex of Valla. And if this conjecture is true, from here we obtain a new evidence
about the destiny of Valla’s codex, that is, that before it came into Valla’s possession,
it belonged to “magister Paulus”. He can hardly be any other than Paulus (Albertini)
Veneto, born around 1430, died in 1475, a monk not unknown at that time, who also
in a commemorative medal is called “M.”, that is magister (Tiraboschi: Storia della
letterat. Ital. VI p. 288 sq.).

Now we go to the codices in worse conditions. These codices are:
Codex Veneto Marciano CCCV on parchment, XV century (V) containing the

same books of the Florentine codex and in the same order; after Archimedes and
Eutocius it follows the same fragment of Heron (see Morellius: Biblioth. Manuscr.
I p. 186). On the first page we read κτῆμα βησσαρίωνος καρδηναλέως [property
of Cardinal Bessarione], and Bessarione corrected the most serious errors here and
there, but numerous corrections seem to have been made by the copyist himself.
Near the scholio περὶ ἑλίκ. 10 Bessarione added: σῆ. τοῦτο σχόλιόν

1) This means without doubt “from the Greek codex that I examined later”; in fact, it cannot be
referred to the age of the codex

XXVIIἐστι εἰς τό ι θ(εὼρημα) ὡραῖον πάνυ. In Eratosthenes’ epigram the same verse
is different, above he wrote στίχοι ἡρωελεγεῖοι, then in volume III p. 114, 3 he
corrected συνημῶν in συνηβῶν. The figures were perhaps added later by Bessarione
himself.

The Parisian codex 2359, made of paper, once Medici, dates back to the 16th
century (A); it contains the same works of Archimedes and Eutocius as contained

45 In the following sentences Heiberg lists the propositions with the new numbering.
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in the Venetian codex. This codex was written by the hand of two copyists, one
of whom, starting from sheet 33, according to the testimony of Charles Graux is
Nicolaus Murmuris, who around 1541-42 copied many codices in Venice.

The Parisian codex 2362, made of paper, [from the Library of] Fontainebleau,
dating back to the 16th century (D), contains the same texts as codex A.

If we first rightly established that the Florentine codex was written precisely in
1491, it cannot happen that the Venetian codex, as I had previously believed, was
copied from it, since Bessarione had already died in 1472 and the Venetian codex had
arrived with all his Library in the Marciana Library in 1468. So, one must believe
that the enormous similarity between these codices was forcefully caused by the fact
that both codices are derived from the same archetype, that ancient codex by Giorgio
Valla, so that from here it would be confirmed the reliability of the copyist of codex
F in returning the antigraph not in a mediocre way. [...]46

XXVIII [...]47
So at least it can be questioned whether the F codex also in these parts of the

text translated the archetype more reliably than all the other codices, although it
may happen that the writing of Valla’s codex was certainly authentic. Yet there are
circumstances that confirm that the Venetian codex was not copied from the F codex
itself. First of all it must be remembered that the fragment of Heron or rather of
Epiphanus, added to it also in the Venetian codex as in the Parisian codex C (p.
XI), is slightly shorter than in codex F (but nevertheless four words longer than in
codex C); for this reason the copyist of codex V was not even able to elaborate an
explanation to remove the difficulties in this part of the deteriorated archetype as
much as the one who copied codex F. In fact, if the Venetian codex had been copied
from codex F, it is not clear why the last part, equally easy to read as the others, was
not transposed into the Venetian codex. [...]48

XXIX So, we must conclude that the V codex does not derive from the codex F, but from
its antigraph.

I already proved in Quaest. Archim. p. 133 that the Parisian codices A and D, due
to their many common lacunae, derive from code V. It remains questionable whether
codex D was copied directly from codex V, which fact I now consider plausible, or
from codex A; see H. Menge: Neue Jahrbücher 1880 p. 111–112; Quaest. Archim.
p. 137. A diligent comparison of the V, A and D codices will settle this matter, if
this question is worth of work. The following fact can certainly be considered sure,
namely that codex A is the apograph of codex V, and it is of absolutely no value that
the Parisian codex D was copied from codex V or from codex A.

In what follows it is presented the discussion about the codices of Tartaglia.

46 Here Heiberg reports some examples of the versions given by the Venetian codex and the F
codex.
47 The examples started on the previous page continue here.
48 Here Heiberg reports a series of examples in order to show that the V codex does not derive from
the F codex but directly from the antigraph.
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Niccolò Tartaglia, from Brescia, a very famous mathematician († 1557) published
in Venetia in the year 1543 the Latin translation of many works of Archimedes
(On the centers of gravity or aequerepentibus I-II, Quadrature of the Parabola,
Measurement of a circle and the De insidentibus aquae I49), in whose preface he
wrote on the second page50: “When by some chance certain books written in Greek
of that very famous Philosopher Archimedes came into my hands, books which were
broken and barely legible, I tried hard and carefully to the aim that the readable
parts could be translated into our language, aim which was quite difficult. In fact,
because of their age and of the negligence of those who held these books, I would like
you to know that several mistakes have had to be corrected. Having seen the titles
of these books and having examined all the work of this Philosopher, I knew that he
had been considered by great and constant fame to be very outstanding, but now he
is believed even more famous. That is why (as I have said) I looked greedily through
these books, I went 1) through them systematically and finally examined everything
very carefully,

1) [In the original text procurri]. Typographical error; it stands for: percurri. In general,
Tartaglia’s book is full of such errors, as can be seen from my note to the books περὶ ὀχουμένων.
To amuse, I’m just going to add two examples here: fol. 2v: valde aequerepentibus stands for: vel
de aeq.; fol. 19: de centrum gravitatis vel duplationis aequerepentibus. Below it says “oppositis”
instead of “appositis”.

XXXbut when I found many distorted passages and certain inappropriate figures, which
had nothing to do with it, I was almost forced to stop my plan. But I was consumed
with an incredible desire to examine this work in order to purge it largely of errors,
and I thought it worthy of seeing the light once I had adapted myself the figures and
the words which seem to be particularly contradictory, and mainly I considered this
part [of the work] to be worthy of seeing the light, part which I had made clear with
words and examples as well as I could, instead the whole work, which will be done
by me in a short time (I hope), will be wholly free of mistakes.” Then, in 1565, two
books On the equilibrium of planes from the notes of Tartaglia were published by
the Venetian book seller Curzio Troiano (from the preface: for this reason, because I
[Curzio Troiano] still have with me the Archimedes’ book “De insidentibus aquae”
as made known by Niccolò himself and, as well as he [Tartaglia] could improve the
manuscript, amended it from the mistakes of the copyist and, finally, made it vivid with
his lucubrations, it seems to me to defraud all scholars of its possession until I have
published all the things I still have of this ingenious man). Both books are preceded
by a separate title page in this edition and show the signature of the typographer
and the same preface is preceding both books. The first book has been completely
formatted as [done] by Tartaglia himself, except that the beginning and the end of
the pages are not always the same because of larger figures (nevertheless, both books
are bound together with four and a half pages); moreover, in the Tartaglia’s edition
the title is: Archimedes’ book “De insidentibus aquae” (in the end: it is explicitly

49 In Greek it is περὶ ὀχουμένων – On floating bodies
50 Heiberg reports this excerpt from the preface also to have the possibility of statuing that Tartaglia
did not know Latin language well enough.
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written de insidentibus aquae liber), instead for Curzio: Archimedes’ first book “De
insidentibus aquae” (in the end: it is explicitly written de insidentibus aquae liber
primus). Nothing is changed in the book itself except for some further mistakes made
by the typesetter.

Because Tartaglia has added book 1 “De insidentibus aquae” to the other books
that he claims to have taken from the Greek codex without any reference to a new
source, you could rightly believe that he found it in that old codex as well. But that is
why we doubt this statement. In fact, at first, although the translation of the first book
On floating bodies περὶ ὀχουμένων, if you look at it at the beginning, is similar to
the translation of the rest of the books both in its whole style and in the reproduction
of single words in Greek and Latin, the

XXXI Greek codex, nevertheless, seems to add something of its own; firstly, the Greek
syntax, whose in the remaining books hardly a trace is discovered, is very accurately
observed here, such as the genitive after a comparative instead of the ablative and
similar things. 1) Moreover, it is clear that Tartaglia had in his hands no Greek codex
eight years later; in fact, in the book “Reasonings about his troubled invention”
[Ragionamenti sopra la sua travagliata inventione] (Venice 1551) it is written51:
“Since Your Lordship, o magnificent lord Count, in the last few days reasoned
with me about the work of Archimedes Syracusan published myself and especially
about that part, which is entitled “de insidentibus acquae”, that part whose [Your
Lordship] told me he was very eager to find and see the Greek original, from which
that part was translated. For this reason, I understood that Your Lordship was
looking for this original because of the darkness of the text, which is amplified in
the aforementioned Latin translation. In order to avoid Your Lordship this effort
to search for the Greek original (which perhaps you would find darker and more
incorrect than the aforesaid Latin translation) I have clarified and detailed this part
in this first reasoning of mine.” Although it cannot be concluded with certainty that
Tartaglia himself never had in his hands a Greek codex of this book, we cannot be
surprised that this codex is so completely forgotten, after such a small period of
years, that Tartaglia himself could not indicate to his patron, who seemed to ask for
it very eagerly, the source of his translation. Moreover, the words: which perhaps
you would find darker and more incorrect52 would be rather surprising, if he himself
had taken his translation from this Codex. The whole passage seems to me to be
explainable quite simply if we have conjectured

1) In fact, it can be stated without any doubt that this and the other books edited by Tartaglia
have been translated from Greek and not from the Arabic language, as someone might believe,
since in sheet 11 we read “Archimenidis”, a form of the name propagated by the Arabs through
many medieval Latin translations. But the language and form of these books is such that it is to be
believed that they necessarily flowed from a Greek source, as Tartaglia says.

51 We completely agree with Bernardino Baldi [Cronica de matematici: overo Epitome dell’ istoria
delle vite loro, Urbino, Angelo Antonio Monticelli, 1707] where he states that the use of the
Italian language by Tartaglia “move a riso talhora chi legge le cose sue” that is “causes sometimes
amusement in those who read his works”. We find Tartaglia’s Italian to be rather dialectal also when
compared to his contemporary authors.
52 Italian text in the original: qual forsi piu oscuro e incorretto lo ritrovaria.
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XXXIIthat Tartaglia never had, at least this part of, the Greek codex in his hands. It is
also worth mentioning that Tartaglia speaks about this book in such a way that he
makes it clear that he obtains his Greek text from his own source and from others
different place (l’original greco, dove che tal parte era stata tradotta [Italian text]).
Moreover, to this evidence it is added the witnessing of Fr. Commandino, who was
a man extremely educated in Greek mathematics and tirelessly searched the codices
of this kind. Not so many years later (Bologna 1565), in the preface to the edition
of the books On floating bodies περὶ ὀχουμένων on the second page, he writes the
following: “When, in fact, the Greek codex of Archimedes had not yet come to light,
not only the translator who gave it to Latinity was wrong in many places, but also
the codex itself has been corrupted and is lacking [parts] for the old age, as also
the translator confesses.” It is evident that these words, which I have taken from
Commandino’s preface above, refer to Tartaglia and to the transcribed copy of the
codex used by Tartaglia, and we wonder why Commandino did not name Tartaglia.
Moreover, it can be concluded from the aforementioned passage that Commandino
believed that the books On floating bodies could be found in the same codex together
with the other works. But even if this fact were true, one can conclude that Tartaglia
did not know the Greek codex even from hearsay. By all these facts, I would be
leaning rather towards believing that it was Tartaglia himself that translated the
remaining books into Latin from that very ancient and broken Greek codex, but the
first book of the “De insidentibus aquae”, as well as the second, were offered to
him already translated from Greek into Latin I do not know in which way. 1) If this
opinion is true, we must evidently suspect that that codex, which Tartaglia speaks
about, was the codex of Valla, which was roughly copied at about the same time
(1544) by the writer of codex C (supra p. X). In fact, it is not enough verisimilar,

1) Regarding the origin and authoritativeness of the fragment published by Angelo Mai, it is a
difficult question to judge. At least it is certain that the translation of Tartaglia was not made from
this form of the text, but from a much better one. I would consider that fragment to be insignificant
and that the one who included propositions alone without demonstration, apart from the first one,
did try to translate backwards into Greek the Latin translation of some learned man of the Middle
Ages, the same thing which was attempted by Rivalto himself. Thurot’s opinion seems identical.

XXXIIIthat there were two codices of Archimedes in Italy at the same time, both of which
were corrupted by age and partly difficult to read1), and both having been completely
lost in our time2), especially because between Valla’s codex and that of Tartaglia the
commonality and affinity of the spelling mistakes is great. I will give some examples
of this commonality and affinity:

[...]53
1) Even though it appears that Tartaglia, in the books to be chosen to be published first, preferred

the shorter one, it is verisimilar that the lacuna at the beginning of Book I on the sphere and the
cylinder also dissuaded him from publishing these books, since he himself says he published those
parts that could be read with the least effort.

2) Regarding the corrupted figures in Valla’s codex, information that Tartaglia has transmitted
about his codex (p. XXXI), even the copyist of the codex B complains about it (see supra p. IX).

53 Examples of the affinities between the codex of Valla and the codex of Tartaglia as reconstructed
by Heiberg.



94 Mario Spagnuolo, Francesco dell’Isola, Beatrice Gerber and Antonio M. Cazzani

XXXIV [...]
Also, in Tartaglia, as well as in our codices, the propositions 1-2 of the book

I On the equilibrium of planes read without numbers, so that the numbers of the
propositions throughout the book are by two less.

In the books Quadrature of the Parabola and Measurement of a circle, Tartaglia
caught another translation, although he does not even mention this fact with a
single word (this fact creates the belief that he may have used a different source
from the one used for the other books On floating bodies, even though he does not
mention this circumstance clearly). In fact, the books Quadrature of the Parabola
and Measurement of a circle had already been published in 1503 by Luca Gaurico54

in Latin (Tetragonism55 i.e. the quadrature of the circle discovered by Campano
[Giovanni Campano da Novara], Archimedes of Syracuse and Boetius, who were
very gifted in mathematics. In the preface [one finds]: Luca Gaurico of Gifuni from
the Kingdom of Naples hails the scholars of mathematics: [datum in] given in the
University of Padua [Almo Studio Patavino] 1503, 15 Kal. of August (July, the 17th).
In the end of the book [one finds]: printed in Venice by Ioan. Bapt. Sessa a.D. 1503
August, the 28th.), and Tartaglia seized this translation literally keeping both the
extremely inept mistakes and the perverse punctuation. He filled very few gaps and
changed1) partly the figures and letters of the figures. From this source, Tartaglia
seized the title on the 19th page: The Tetragonism of Archimedes, which title in the
translation of Gaurico

1) Only, to my knowledge, Mazzucchelli recalled this fact: Notizie istoriche intorno alla vita,
alle invenzioni ed agli scritti di Archimede siracusano [Historical facts on the life, the inventions
and the works of Archimedes of Syracuse], Brescia 1737. 4. p. 95. After I came across this passage
so long consigned to an unworthy oblivion, I myself became aware of a specimen of this very rare
book, owned by the Royal Library in Copenhagen.

XXXV is the common title of both books; hence, the titles of the individual books in
both Gaurico and Tartaglia are as follows: Incipit Archimenidis (“Archimedis” in
Tartaglia) quadraturae parabolae, et: Archimedis Syracusani liber. What code he
had followed, Gaurico does not specify; in the preface on the second page, he
only writes the following: since the proof of Campano56 and Archimedes about the
tetragonism of the circle has come into our hands, I do not believe that it should be
concealed. Therefore, it is not even clear whether he himself had translated these
books from Greek or found a Latin translation. However, despite this, it is clear that
his translation, which is by far worse than that of Iacobus of Cremona and follows
so carefully the Greek [version] that he often deviates not only from the use of the
Latin language but from any sense, is derived from a codex that is very similar to the
codex of Valla, or exactly from it. In fact, not only in its archetype, as in the F codex
and undoubtedly in Valla’s codex, the propositions of the book on the quadrature of

54 Luca Gaurico (1475-1558) was an Italian Catholic bishop and astrologer.
55 Whose title was in Latin “Tetragonismus id est circuli quadratura”
56 Campano di Novara, or Giovanni Campano (1220-1296), was an Italian mathematician, as-
tronomer and astrologer. One of the most important scientists and mathematicians of the 13th
century.
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the parabola had absolutely no numbers, indicating that he very often divided the
chapters very badly by connecting two and split one into two or more (Tartaglia has
added the numbers of the chapters and has mostly followed the divisions of Gaurico,
who only marked them in capital letters); but also most errors of Valla’s codex are
repeated here, such as:

[...]57

[...]

Codex Vallae Gauricus Tartalea Cremonensis
II p. 310, 26: quam ad spa- quam ad spa- quam ad f. qua-

ποτι τὸ Ζ· ὥστε tium z quam tium z. ergo re f spacium
μεἱζόν ἐστι τὸ spatium k. spatium z ma- ipso k maius
Ζ τοῦ Κ. ior est quam existit.

spatium k.

In the last listed comparison, in Gaurico for a mistake of the typograph it is corrupted
the sentence: “quare maius est spatium z” due to the homeoteleuton58; Tartaglia filled
the lacuna clearly without having the Greek code in his hands (in fact the order of
the words is different), and in this he made a mistake (maior59) shameful even for
a child. For this reason, it must be deduced that even in the other corrections to
Gaurico’s errors Tartaglia did not use his codices, but he relied on his intuition1).

Now, we go back to Tartaglia’s codices. If, as it was done above on p. XXXII,
we have suspected that the codex “damaged and barely legible”, of which Tartaglia
speaks, was the same as Valla’s codex, then it must be admitted that Tartaglia is the
first to complain about the nature of the codex too much, as it appears by comparison
with the Parisian codex C, which was correctly copied at about the same time by the
same archetype; but perhaps Tartaglia was poorly versed in reading Greek codices.
Thereupon, Tartaglia for his codex did not use the care and conscientiousness as
he ought to have done, since in the book on the equilibrium of plane surfaces II,
9, instead of a presentation of a true [translation], he caught a manipulated and
shortened Eutocius’ paraphrase, as if it was originated from a true Archimedes’
text (Quaest., Arch., p. 97) 2). Finally, Tartaglia corrected and changed many text
passages, for doing that he seems to have used some other codex which he only
mentioned clearly in one place; in fact,

57 Here there starts a list of errors repeated in the book edited by Gaurico and in Valla’s codex. This
list continues for many pages, between page XXXVI and page XLIV. We omit this list.
58 The homoteleuton (in the original text, this word is in Greek) is the repetition of the ending
of consecutive words. The sentence is replaced by “quam ad spatium z quam spatium k”. The
Cremonensis’ translation is the most faithful to the Greek original.
59 Here Heiberg quickly refers to the previously reproduced comparative table. Tartaglia uses the
adjective “maior” i.e. “greater than” without inflecting it, an error which is by illiterates. In his
work Cronica [Cronica de matematici: overo Epitome dell’ istoria delle vite loro, Urbino, Angelo
Antonio Monticelli, 1707], Bernardino Baldi writes “Attese nondimeno così poco alla bontà della
lingua, che move a riso talhora chi legge le cose sue” (He studied so little to learn languages, that
sometimes he provokes laughter to those who read his works).

XLV

XXXVI
–XLIV
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1) In addition, Tartaglia at the beginning of the book Quadrature of the Parabola for two times
in place of “Archimenides” (in Gaurico) wrote “Archimedes”, and in place of “mathematicam” II
p. 294, 11; 298, 2 “mecanicam”.

2) Perhaps the faithful presentation in Valla’s codex seemed to Tartaglia more difficult to read;
what certainly results is that this codex gave him no reason to confuse Eutocius’ presentation with
the real one.

in the book On the equilibrium of planes II, 9 after the recovered demonstration of
Eutocius on page 16𝑣 it is added: “In another Greek copy one could read in this way”.
But before we carefully investigate this codex, we must say some few things about
the Greek codex of Nuremberg cent. V app. 12 fol., whose existence I knew at first
due to Menge (Neue Jahrb. 1880 p. 110); but after that I knew about it, I managed
to bring it with me to Copenhagen. It is a codex of paper written in the 16th century,
containing the same writings of Archimedes and Eutocius as codex F and in the same
order. Venatorius, who corrected many mistakes with his own hand, partly on the
margin, partly with strips of paper glued to the edge, used this codex to produce the
main edition; moreover, he has improved many things to smartly change the script of
the codex by scraping, adding lines or extending; for this reason, the corrections of
this kind were very difficult to find and very often they took away the older writing
altogether; some of them, however, seem to have been made by an older hand and
perhaps the first hand who wrote the codex. In between, Venatorius has also written
down notes that the typographer must read, so that it appears that this codex itself was
in the hands of the typographers. In order to know the nature of these comments, an
example should suffice; I p. 22–24, where the propositions in codex Na are divided
in the same way as in codex F, he wrote on a strip of paper: “ὁμοίως [similar]
paragraph. φανερὸν δέ [clear indeed] paragraph. δεικτέον δέ [to be proven indeed]
demonstration of a new proposition. The note of the number ς should be prefixed”,
and this has been done in the edition Basil. p. 4. This codex Na was written in Rome
or has certainly come to Nuremberg from Rome to Bilibaldus Pirckheymerus (ed.
Basil. On the second page of Preface one reads: Bilibaldus Pirckheymerus, whom
you have experienced, as long as he lived, could not be difficultly admitted to be the
most scholarly amongst the scholars, as he was a man of outstanding talent, having
received a Greek writing copy of our Archimedes in Rome from some friend after a
long expectation, he let the codex live as a guest of honor in his house).

The codex Na shows to be of the same class as the other codices for the lacuna at
the beginning of the first book On the Sphere and Cylinder and there is also a match
of all the most serious errors altogether (Cfr. Quest. Arch. p. 138).

On these pages a technical philological analysis of many Archimedean codices is
presented. This analysis seems to prove without doubt that Tartaglia did not master
the subject to be a reliable editor and translator. Here Heiberg gives evidences
that are used by Clagett [Clagett, M. The Use of the Moerbeke Translations of
Archimedes in the Works of Johannes de Muris Isis, Vol. 43, No. 3 (Sep., 1952),
pp. 236–242, p. 237] to state that: “Heiberg further observed that the Moerbeke
translations of the Dimensio circuli and the De quadratura parabolae were published
by Gauricus in Venice, 1503. These same two translations and those of the De centris
gravium and Book I of the De insidentibus aquae were published by Tartaglia in

XLVI

XLVII
–LXXXIX



2 Translation of Heiberg’s Prolegomena 97

Venice in 1543. Tartaglia leaves us with the distinct and erroneous impression
that the translation is original with him. We can note finally the publication in
1565 of the Moerbeke translation of the whole of the De insidentibus aquae by
Trojanus Curtius in Venice and by Commandino in Bologna”. Moreover, also adding
his own philological analysis to the enormous work by Heiberg, Clagett [Vol III
Chapt. 4 Sect. 2 p. 540] concludes that: “The central thrust of my argument on
Tartaglia’s role in Archimedean studies is that Tartaglia’s knowledge of the works
of Archimedes primarily derived from the translations of William of Moerbeke,
although he certainly was familiar with the various extracts that appeared in Giorgio
Valla’s “De expetendis et fugiendis rebus” and no doubt also with the Cremonensis
translations either in the Venice manuscript or in the edition princeps of Basel,
1544.”
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Chapter 3
Hellinger’s 1913 encyclopedia article on the
fundamentals of the mechanics of continua

Simon R. Eugster

3.1 Translator’s preface

Ernst Hellinger (*September 30, 1883 - †March 28, 1950), who was born in Striegau,
formerly Germany, enjoyed his scientific education at the Universities of Heidelberg,
Breslau and Göttingen, [109]. As a pupil of D. Hilbert, he received his doctoral de-
gree from the University of Göttingen in 1907. After two more years in Göttingen, as
assistant of Hilbert, he moved to Marburg where he accepted a position as “Privat-
dozent”. During that time, Hellinger had written his masterpiece on the foundations
of continuum mechanics and finished in 1913 his fundamental review article Die
Allgemeinen Ansätze der Mechanik der Kontinua, which appeared in the “Encyk-
lopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen”,
Bd. IV-4, Hft. 5. As it used to be, Hellinger wrote the article in German. More
than a hundred years had to pass, until recently, the author of this chapter together
with F. dell’Isola have published an exegetic series about Hellinger’s encyclopedia
article, see [59, 61, 62, 60]. Besides a complete annotated translation into English,
these articles give a critical analysis about the advancement of science. Then, due to
the establishment of English as the upcoming scientific language and due to the re-
fusal of a variational formulation of continuum mechanics in the subsequent period,
Hellinger’s contribution to the foundations of continuum mechanics had been ig-
nored for decades and had almost fallen into oblivion. Solely, the Hellinger-Reissner
principle has made its way directly into theoretical and numerical mechanics.

The work of Hellinger covers an incredible amount of still contemporary topics
in modern continuum mechanics and testifies how advanced theoretical mechanics
was at the beginning of the twentieth century. Even though Hellinger focused on the
fundamentals of continuum mechanics, he presented within the very same variational
framework the physics of optics, electrodynamics, thermodynamics and the theory
of relativity. Accordingly, Hellinger’s paper can be understood as a contribution to
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continuum physics in general. In the same spirit, one has to consider the contribution
given by [111].

With a side-by-side translation of Hellinger’s article, also non-German speaking
people should get the possibility to enjoy the reading of a crystal-clear and still
topical article whose content has some enlightening parts. To make the reading as
authentic as possible, the typesetting remains as close as possible to the original,
the old-fashioned mathematical notation is left untouched and the original page-
numbering is kept. The comparison of the translation with the original allows the
reader to directly review the quality of the translation1. Despite the risk of some
translated sentences being a bit clunky, a word-by-word translation has been carried
out to avoid any implicit interpretation of the original text. Any additional word that
has no correspondence in the German text is included in square brackets as follows:
[xxxx].

The reader will immediately observe almost everywhere the antiquated mathe-
matical notation, which can be viewed as an an intermediate notation towards index
notation established by Ricci and Levi-Civita for tensor algebra and tensor calculus.
However, the reader will also notice that Hellinger internalized the tensorial charac-
ter of the introduced mathematical objects better than many contemporary scientists
who are using the even more fashionable algebraic notation, which avoids the use of
components but which requires the definitions of a myriad of operations. Moreover,
the used notation is clarified at the very beginning for the vectorial equation

𝑥 = 𝑥 + 𝜉 (𝑥, 𝑦, 𝑧; 𝜎)
(𝑥, 𝑦, 𝑧
𝜉, 𝜂, 𝜁

)
with the following explanation: «This signature and the analogous ones which follow,
denote that besides the equation being written-out also those [equations] are valid,
which arise by simultaneous cyclic permutation of 𝑥, 𝑦, 𝑧 and 𝜉, 𝜂, 𝜁 .» In index nota-
tion, one prefers denoting 𝑥, 𝑦, 𝑧 and 𝜉, 𝜂, 𝜁 by 𝑥1, 𝑥2, 𝑥3 and 𝜉1, 𝜉2, 𝜉3, respectively,
in order to write

𝑥𝑖 = 𝑥𝑖 + 𝜉𝑖 (𝑥 𝑗 ; 𝜎) .

In an algebraic notation, very commonly, lower case bold symbols are used to denote
elements of the tree-dimensional Euclidean vector space resulting in

x̄ = x + 𝝃 (x; 𝜎) .

The internal virtual work appearing on p. 615 in Eq. (4) is another example for which
we want to give a notational translation. In the expression

−
∭
(𝑉 )

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

(
𝑋𝑥

𝜕𝛿𝑥

𝜕𝑥
+ 𝑋𝑦

𝜕𝛿𝑥

𝜕𝑦
+ 𝑋𝑧

𝜕𝛿𝑥

𝜕𝑧

)
𝑑𝑉

1 Some translated excerpts of Hellinger’s paper can also be found in Maugin [106].
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Hellinger used the notation of Kirchhoff to denote the stress components of the stress
tensor in the actual configuration, nowadays mostly referred to as the Cauchy stress
and often denoted by 𝝈. Hence one can relate the components with respect to an
orthonormal frame by

𝜎11 = 𝑋𝑥 , 𝜎12 = 𝑋𝑦 , . . . , 𝜎33 = 𝑍𝑧 .

With the virtual displacement field 𝛿𝒙 defined over the current configuration, the
components of its gradient ∇(𝛿𝒙) translate as

𝜕𝛿𝑥1
𝜕𝑥1

=
𝜕𝛿𝑥

𝜕𝑥
,
𝜕𝛿𝑥1
𝜕𝑥2

=
𝜕𝛿𝑥

𝜕𝑦
, . . . ,

𝜕𝛿𝑥3
𝜕𝑥3

=
𝜕𝛿𝑧

𝜕𝑧
.

Using index notation together with Einstein’s summation convention, which tacitly
assumes summation over the range of the indices that appear twice in a term, we
obtain the following compact form of the internal virtual work

−
∭
(𝑉 )

3∑
𝑖, 𝑗=1

𝜎𝑖 𝑗
𝜕𝛿𝑥𝑖
𝜕𝑥 𝑗

𝑑𝑉 = −
∭
(𝑉 )

𝜎𝑖 𝑗
𝜕𝛿𝑥𝑖
𝜕𝑥 𝑗

𝑑𝑉 = −
∭
(𝑉 )

𝜎𝑖 𝑗𝛿𝑥𝑖, 𝑗𝑑𝑉.

Note, in the last equality, we have used the quite common notation to abbreviate par-
tial derivatives. After a coordinate independent definition of the double contraction,
often denoted by a colon, the internal virtual work can also be written as

−
∭
(𝑉 )

𝝈 : ∇(𝛿𝒙)𝑑𝑉.

Every notation has its advantages and disadvantages and it is rather a matter of taste
which notation one prefers. While Hellinger’s notation doesn’t require any education
in tensor algebra and tensor calculus, the much more compact algebraic notation
requires many conventions and can sometimes be even cryptic, if the operations
are not introduced adequately. Nevertheless, notation is just notation and without
the corresponding piece of prose the equations decompose into a collection of
meaningless symbols. As a mathematical physicist, Hellinger mastered this difficulty
brilliantly and presented in a unified way all field theories which had already been
formulated at his times, assuming as fundamental paradigm for physics the concept
of field. It is remarkable that the work of Hellinger seems to have given the starting
point to the works of Paul Germain, Richard Toupin, and Leonid I. Sedov [39, 78,
77, 14, 38]. In a sense, the effort by Hellinger in framing continuum mechanics by
using variational principles opened the way to the modern theory of metamaterials
[37, 20, 142, 88]: in fact, the problem of synthesis of tailored metamaterials can be
confronted more successfully when continuum models are introduced to describe
the desired mechanical behavior [51].

Following the side-by-side translation, the chapter closes with a section in which
several interesting parts of the work are analyzed and are set into context with more
modern sources.
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IV 30. DIE ALLGEMEINEN ANSÄTZE DER
MECHANIK DER KONTINUA.

Von

E. Hellinger
IN MARBURG A. L.

Inhaltsübersicht.

1. Einleitung.
2. Der Begriff des Kontinuums.

a) Das Kontinuum und seine Deformation.
b) Adjunktion physikalischer Parameter, insbesondere Dichte und Orien-

tierung.
c) Zwei- und eindimensionale Kontinua.

I. Die Grundansätze der Statik.
3. Das Prinzip der virtuellen Verrückungen.

a) Kräfte und Spannungen.
b) Aufstellung des Prinzips der virtuellen Verrückungen.
c) Anwendung auf stetig deformierbare Körper.
d) Beziehungen zur Mechanik starrer Körper.
e) Zwei- und eindimensionale Kontinua im dreidimensionalen Raume.

4. Erweiterung des Prinzips der virtuellen Verrückungen.
a) Auftreten höherer Ableitungen der Verrückungen.
b) Medien mit orientierten Teilchen.
c) Auftreten von Nebenbedingungen.

II. Die Grundansätze der Kinetik.
5. a) Die Bewegungsgleichungen des Kontinuums.

b) Übergang zu dem sog. Hamiltonschen Prinzip.
c) Das Prinzip des kleinsten Zwanges.
d) Ansätze allgemeiner Natur.

III. Die Formen der Wirkungsgesetze.
A. Formulierung der allgemeinen Typen

6. Die Typen der Abhängigkeit der Kraftwirkungen von den Deformationsgrössen.
7. Medien mit einer charakteristischen Zustandsfunktion.

a) Das gewöhnliche Potential und seine nächsten Verallgemeinerungen.
b) Der Potentialansatz für Medien mit orientierten Teilchen.



IV 30. FUNDAMENTALS OF THE
MECHANICS OF CONTINUA.

By

E. Hellinger
IN MARBURG A. L.

Contents.

1. Introduction.
2. The notion of a continuum.

a) The continuum and its deformation.
b) Introduction of physical parameters, in particular density and orientation.
c) Two- and one-dimensional continua.

I. The foundations of statics.
3. The principle of virtual displacements.

a) Forces and stresses.
b) Formulation of the principle of virtual displacements.
c) Application to continuously deformable bodies.
d) Relation to the mechanics of rigid bodies.
e) Two- and one-dimensional continua in the three-dimensional space.

4. Enhancement of the principle of virtual displacements.
a) Appearance of higher order derivatives of displacements.
b) Media with oriented particles.
c) Appearance of constraints.

II. The foundations of kinetics.
5. a) The equations of motion of the continuum.

b) Transition to the so-called Hamilton’s principle.
c) The principle of least constraint.
d) Principles of general nature.

III. The forms of constitutive laws.
A. Formulation of general classes.

6. The classes with dependence of the force effects on the deformation quantities.
7. Media with one characteristic state function.

a) The common potential and its closest generalizations.
b) The potential-based approach for media with oriented particles.
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c) Der Potentialansatz für zwei- und dreidimensionale Kontinua.
d) Die Bedeutung des wirklichen Minimums.
e) Direkte Bestimmung der Spannungskomponenten.
f) Die entsprechenden Ansätze für die Kinetik.

8. Grenzfälle des gewöhnlichen dreidimensionalen Kontinuums.
a) Unendlich dünne Platten und Drähte.
b) Medien mit einer kinematischen Nebenbedingung.

B. Individualisierung für einzelne Gebiete.

9. Eigentliche Elastizitätstheorie.
10. Dynamik idealer Flüssigkeiten.
11. Innere Reibung und elastische Nachwirkung.
12. Kapillarität.
13. Optik.
14. Beziehungen zur Elektrodynamik.
15. Einfügung der thermodynamischen Ansätze.
16. Beziehungen zur Relativitätstheorie.

Litteratur.
Spezielle den vorliegenden Gegenstand betreffende Lehrbücher und Monographien liegen z. Z.

in der Litteratur nicht vor. Von den wiederholt zu nennenden Werken seien hier folgende besonders
zusammengestellt:
A. v. Brill, Vorlesungen zur Einführung in die Mechanik raumerfüllender Massen, Leipzig 1909.
E. und F. Cosserat, Théorie des corps déformables, Paris 1909. Ursprünglich als Appendix zur

französischen Ausgabe von O. D. Chwolson, Traiteé de physique, t. II, Paris 1909 erschienen.
Ein Auszug ist als Note an P. Appell, Traité de mécanique rationelle, t. III, 2. éd. (Paris 1909)
beigefügt.

P. Duhem, Traité d’énergétique ou de thermodynamique générale, 3 vols, Paris 1911.
G. Hamel, Elementare Mechanik, Leipzig u. Berlin 1912.
J. L. Lagrange, Mécanique analytique, 4. éd. = Oeuvres complètes, Bd. 11 u. 12, (éd. par G.

Darboux), Paris 1888/89.
W. Voigt, Kompendium der theoretischen Physik. Bd. 1 u. 2. Leipzig 1895/96.

Vgl. ausserdem die entsprechenden Abschnitte in den Lehrbüchern der Mechanik (s. die Über-
sichten in IV 1, Voss, IV 6 Stäckel, IV 11, Heun, IV 23,
Müller-Timpe).

1. Einleitung. Das vorliegende Referat soll unter einheitlichem Gesichtspunkte
einen zusammenfassenden Überblick über die verschiedenen Formen der Ansätze
geben, durch die man in den einzelnen Gebieten der „Mechanik der Kontinua“
im weitesten Sinne, d. h. der Mechanik und Physik kontinuierlicher ausgedehnter
Medien, den zeitlichen Ablauf oder auch den Gleichgewichtszustand der zu unter-
suchenden Vorgänge bestimmt; dabei wird immer nur an solche Kontinua gedacht,
die nicht vermöge irgendwelcher einschränkender
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c) The potential-based approach for two- and one-dimensional continua.
d) The relevance of the effective minimum.
e) Direct determination of the stress components.
f) The appropriate approaches to kinetics.

8. Limit cases of the ordinary three-dimensional continuum.
a) Infinitely thin plates and wires.
b) Media with one kinematic constraint.

B. Individualization for particular fields.

9. Effective theory of elasticity.
10. Dynamics of ideal fluids.
11. Internal friction and elastic hysteresis.
12. Capillarity.
13. Optics.
14. Relations to electrodynamics.
15. Introduction of the thermodynamical foundations.
16. Relations to the theory of relativity.

Literature.
Specific textboooks and monographs on the topic at hand are in the literature at the moment not

available. From the repeatedly referred works, the following are listed in particular:
A. v. Brill, Vorlesungen zur Einführung in die Mechanik raumerfüllender Massen, Leipzig 1909.
E. und F. Cosserat, Théorie des corps déformables, Paris 1909. Appeared originally as appendix to

the french edition of O. D. Chwolson, Traiteé de physique, t. II, Paris 1909. An extract is added
as a note to P. Appell, Traité de mécanique rationelle, t. III, 2. éd. (Paris 1909) beigefügt.

P. Duhem, Traité d’énergétique ou de thermodynamique générale, 3 vols, Paris 1911.
G. Hamel, Elementare Mechanik, Leipzig u. Berlin 1912.
J. L. Lagrange, Mécanique analytique, 4. éd. = Oeuvres complètes, Bd. 11 u. 12, (éd. par G.

Darboux), Paris 1888/89.
W. Voigt, Kompendium der theoretischen Physik. Bd. 1 u. 2. Leipzig 1895/96.

Cf. furthermore the corresponding sections in the textbooks of mechanics (for reviews see IV
1, Voss, IV 6 Stäckel, IV 11, Heun, IV 23,
Müller-Timpe).

1. Introduction. With respect to a consistent point of view, the paper at hand shall
give a recapitulatory overview on various forms of the axiomatic foundations, which
in the particular fields of the “mechanics of continua” in the broadest sense, i. e. the
mechanics and physics of continuously extended media, enable the determination of
the time behavior or also the state of equilibrium of the analyzed processes; thereby
these continua are kept in mind, which, due to any restricting
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Bedingungen speziell endlich viele Freiheitsgrade besitzen. Die Möglichkeit, die
Grundgleichungen verschiedener Disziplinen in analoge Formen zu bringen, hat
man früh bemerkt: die „mechanischen“ Theorieen der Physik, die das physikalische
Geschehen auf Bewegungserscheinungen der Materie zurückführen wollen, haben
formal-mathematisch betrachtet geradezu den Inhalt, dass sie die Gleichungen der
Physik als Sonderfälle der Gleichungen eines allgemeinen Systems bewegter Massen
bzw. Massenpunkte erscheinen lassen; sie müssen also jene Analogien in Evidenz
treten lassen.

Neben den eigentlichen mechanischen Theorien, die mehr oder weniger detail-
lierte Bilder vom Aufbau der Materie voran stellen, hat man zum Teil schon in
den Anfängen, besonders aber seit der Mitte des 19. Jahrhunderts einen anderen
an J. L. Lagranges analytischer Mechanik orientierten Weg eingeschlagen; so wie
dort sämtliche zur Untersuchung kommenden Probleme wenigen sehr allgemeinen
Prinzipien untergeordnet werden, so bemühte man sich die Grundansätze immer
weiterer physikalischer Disziplinen in die Formen jener Prinzipien zu bringen, indem
man die in ihnen auftretenden Grössen — Energie, Kräfte, usw. — von rein phänome-
nologischen Gesichtspunkten aus mit gewissen physikalischen Grössen identifizierte.
Für Systeme mit endlich vielen Freiheitsgraden knüpft diese Entwicklung namentlich
an die von W. Thomson (Lord Kelvin), J. J. Thomson und H. v. Helmholtz inauguri-
erten Untersuchungen über zyklische Systeme und deren Anwendungen und über
die Reziprozitätssätze der Mechanik an.

Nun wendete bereits Lagrange seine Prinzipien direkt auf gewisse kontinuierliche
Systeme (Flüssigkeiten, biegsame Fäden und Platten u. dgl.) an1); im Anschluss
an die weitere Ausbildung dieser Ansätze, besonders durch die an A. L. Cauchy 2)
anknüpfende Entwicklung der Elastizitätstheorie, sowie unter der Einwirkung des
Ausbaues anderer physikalischer, speziell optischer Theorien gewöhnte man sich
immer mehr, auch ein kontinuierliches System als ein selbständiges Objekt der
Mechanik (mit unendlich vielen Freiheitsgraden) zu betrachten, das sich seinerseits
zwar in formaler Analogie zu der altbekannten Punktmechanik, aber doch völlig
unabhängig von ihr behandeln lässt. Die so als selbständige Disziplin entwickelte
„Mechanik des deformierbaren Kontinuums“ umfaßt den formalen Ansätzen nach
neben der gewöhnlichen Elastizitätstheorie und Hydrodynamik sämtliche hier in

1 Vgl. insbesondere 1. part., sect. IV, § II der „Mécanique analytique“.
2 Entscheidend waren hier seine Untersuchungen über den Spannungsbegriff vom Jahre 1822 (Bull.
de la Soc. philom. 1823, p. 9). Nähere Angaben s. in IV 23, Nr. 3a, Müller-Timpe.
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conditions, in particular are not reduced to continua with finitely many degrees of
freedom. The possibility, to bring the fundamental equations of various theories into
similar forms, has been noticed soon: the “mechanical” theories of physics, which
try to explain the physical phenomena only by the motion of matter, contain from a
formal-mathematical point of view the essence that the equations of physics appear
as special cases of equations of a general system with moving masses or mass points;
thus such [mechanical] theories must generate those analogies.

Besides the intrinsic mechanical theories, which put more or less detailed images
of the constitution of matter at the basis [of their formulation], one has, partially
in the beginning, but in a wider extent in the mid-19th-century, developed a new
path following J. L. Lagrange’s analytical mechanics; indeed as in there all analyzed
problems are based on a few very general principles, one has tried to bring the
foundations of more and more physical disciplines into the form of those principles,
by identifying the appearing quantities — energy, forces, and so on — with certain
physical quantities [previously introduced] from a purely phenomenological point
of view. For systems with finitely many degrees of freedom this development is
presented in particular in the analysis inaugurated by W. Thomson (Lord Kelvin),
J. J. Thomson and H. v. Helmholtz on cyclic systems with its applications and on the
reciprocity theorems of mechanics.

Already Lagrange applied his principles directly to certain continuous systems
(fluids, flexible wires and plates and similar ones)1); in connection with the further
developments of these fundamentals, particularly with that one concerning the de-
velopment of the theory of elasticity by following A. L. Cauchy 2), as well as under
the influence of the extension of other physical, especially optical theories, one got
increasingly accustomed to consider a continuous system as an independent object
of study in mechanics (with infinitely many degrees of freedom), which has to be
in formal analogy to the well-known point mechanics, but which can be treated
independently. This “mechanics of the deformable continuum” developed as an in-
dependent discipline, contains, due to the formal approaches [used], in addition to
the common theory of elasticity and hydrodynamics all

1 cf. especially 1. part., sect. IV, § II of “Mécanique analytique”.
2 Crucial were his analyses on the notion of stress from 1822 (Bull. de la Soc. philom. 1823, p. 9).
For further details see IV 23, No. 3a, Müller-Timpe.
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Betracht zu ziehende physikalischen Erscheinungen in kontinuierlich ausgedehnten
Medien. Die Fortbildung dieser Betrachtungen wurde wesentlich beeinflusst durch
die Thermodynamik, die prinzipiell das Gesamtgebiet der Physik zu umfassen strebt,
und die dadurch, daß sie überall die Energiefunktion bzw. das Potential voranstellt,
naturgemäss die Grundgleichungen der verschiedenen Einzelgebiete in analogen
Formen liefert.

Alle diese Beziehungen sind in der mechanischen und physikalischen Literatur
vielfach behandelt worden; vieles, was ausdrücklich nur in der Punktmechanik bzw.
für Systeme von endlich vielen Freiheitsgraden ausgesprochen ist, lässt sich unmit-
telbar auf kontinuierliche Systeme ausdehnen. Es seien hier vorweg nur die Namen
einiger Autoren genannt, die die hier in Betracht kommenden Beziehungen besonders
berücksichtigt haben und die daher auch im folgenden häufig zur Geltung kommen:
W. Voigt 3), P. Duhem 4) und E. und F. Cosserat.5) 6)

Der Zweck dieses Referates bedingt es, dass im folgenden das rein formal-
mathematische Moment im Vordergrund steht: die Formulierung des Ansatzes der
verschiedenen Probleme sowie ihre Zusammenfassung in eine einheitliche möglichst
einfache und bequeme Formel. Sowohl die Untersuchung der mechanischen und
physikalischen Bedeutung der Grössen und Gleichungen als auch die eigentlich ana-
lytisch-mathematische Theorie ist in den verschiedenen Referaten der Bände IV und
V über die besonderen Disziplinen enthalten.

Als einheitliche mathematische Form, der sich die sämtlichen Einzelansätze am
leichtesten einfügen, wird die des Variationsprinzipes verwendet. Allerdings genügt
nicht die Gestalt, die in der eigentlichen Variationsrechnung in der Regel betrachtet
wird, wo die unbekannten Funktionen so zu bestimmen sind, dass ein gewisses sie en-
thaltendes bestimmtes Integral einen Extremwert annimmt. Vielmehr handelt es sich
hier vorzugsweise um diejenige Form, die die Variationsrechnung als notwendiges
Kriterium des Extremums ergiebt, und in

3 Neben vielen einzelnen Arbeiten besonders in seinem Kompendium der theoretischen Physik, 2
Bde., Leipzig 1895/96.
4 In zahlreichen späterhin zu zitierenden Arbeiten; vgl. auch seinen Traité d’énergétique ou de
thermodynamique générale, t. I. II, Paris 1911.
5 Vgl. die als Appendix zur französischen Ausgabe von O. D. Chwolson, Traité de physique er-
schienene „théorie des corps déformables“ (Paris 1909), von der ein Auszug der 2. Aufl. des 3. Bds.
von P. Appell Traité de mécanique rationelle (Paris 1909) als Note beigefügt ist.
6 Auch von Entwicklungen ähnlicher Art die D. Hilbert in einigen seiner Göttinger Vorlesungen
gab, ist das folgende vielfach beeinflusst.
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physical phenomena which are accounted for in [the theory of] continuously ex-
tended media. The advancement of this theory has been influenced significantly by
thermodynamics, which aims to cover the entire field of physics, and by considering
the energy function or rather the potential as the most fundamental concept, naturally
yields the fundamental equations of various specific fields in similar forms.

All these equations have been treated in the mechanics and physics literature in
many cases; much that has been stated explicitly in point mechanics or for systems
with finitely many degrees of freedom, can immediately be extended to continuous
systems. At a preeminent place, just the names of a few authors are mentioned, which
have especially considered the relations treated here which often show to be useful
in the following: W. Voigt 3), P. Duhem 4) and E. and F. Cosserat.5) 6)

The objective of this paper requires that the purely formal-mathematical aspect
must have priority in what follows: The formulation of the ansatz of various problems
as well as their collection to a unified and at most simple and convenient formula.
Both the analysis of mechanical and physical interpretation of the quantities and
equations as well as the essential analytic-mathematical theory of the particular
disciplines are covered by various papers in the volumes IV and V.

As unifying mathematical form, in which all individual [methodological] fun-
damentals are included the easiest, the variational principle is applied. Although,
the form commonly considered in the calculus of variations, in which the unknown
function has to be determined such that a certain definite integral, containing the
function, has an extremum, is not adequate. On the contrary, it concerns here partic-
ularly the form, which the calculus of variations yields as the necessary criterion of
the extremum, and the form in

3 Besides many individual works especially in his compendium of theoretical physics, 2 Bde.,
Leipzig 1895/96.
4 In numerous works to cite later on; cf. also his Traité d’énergétique ou de thermodynamique
générale, t. I. II, Paris 1911.
5 Cf. “théorie des corps déformables” (Paris 1909), appearing as appendix to the french edition of
O. D. Chwolson, Traité de physique, and which is added partially as a note to the 2. Edn. of the 3.
vol. of P. Appell Traité de mécanique rationelle (Paris 1909).
6 The following is influenced in many ways also from similar developements treated in some of the
Göttinger lectures of D. Hilbert.
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der man von altersher das Prinzip der virtuellen Arbeit ausdrückt: „Gegeben sind
eine Reihe von Grössen 𝑋, . . . , 𝑋𝑎, . . . in ihrer Abhängigkeit von den unbekannten
Funktionen 𝑥, . . . von 𝑎, . . . , 𝑐 und deren Ableitungen; diese Funktionen sollen der
Bedingung genügen, dass ein bestimmtes Integral einer mit jenen 𝑋, . . . , 𝑋𝑎, . . .
als Koeffizienten gebildeten linearen Form der willkürlichen Funktionen 𝛿𝑥, . . . von
𝑎, . . . 𝑐 und ihrer Ableitungen∫

· · ·
∫ {

𝑋𝛿𝑥 + · · · + 𝑋𝑎
𝜕𝛿𝑥

𝜕𝑎
+ · · ·

}
𝑑𝑎 · · · 𝑑𝑐

— oder eine Summe solcher Integrale — identische für alle (oder doch für alle
gewissen Nebenbedingungen genügenden) 𝛿𝑥, . . . verschwindet.“

Der Vorteil, den die Verwendung eines solchen Variationsprinzipes als Grundlage
gegenüber anderen möglichen Formulierungen oder auch der direkten Inbetracht-
nahme der Grundgleichungen gewährt, besteht ganz besonders darin, dass das Varia-
tionsprinzip im Stande ist, in einer Formel das Verhalten des betrachteten Mediums
an allen Stellen und zu jedem Zeitpunkt zu bestimmen, speziell also auch neben
den Gleichungen für das Innengebiet die Randbedingungen und die Anfangsbedin-
gungen zu umfassen. Es ist zudem in seiner prägnanten Kürze in gewisser Hin-
sicht übersichtlicher als die Gleichungen und hat infolgedessen für die Behandlung
neuer Gebiete, für die Aufstellung weiterer Verallgemeinerungen u. dgl. wesentliche
heuristische Bedeutung; diese wird besonders betont durch die innige Beziehung
des Variationsprinzipes zur Thermodynamik, durch deren Anspruch auf Allge-
meingültigkeit es für die Begründung physikalischer Theorien beweisenden Wert
bekommt. Auch bei der Durchführung von Koordinatentransformationen ist das
Variationsprinzip gegenüber den expliziten Gleichungen im Vorteil; es lässt vielfach
die invariantentheoretische Natur des betrachteten Problems, die Frage nach den
Transformationsgruppen, die es ungeändert lassen, bequemer erkennen, ohne daß es
der Einführung einer besonderen Symbolik bedarf. —

Nach einigen einleitenden Erörterungen über den Begriff des Kontinuums und
seine Kinematik werden in dem ersten Abschnitt des Referates die Grundansätze der
Statik, im zweiten die der Kinetik behandelt, jedesmal ohne Rücksicht darauf, was
für Kraftwirkungen im einzelnen es sind, die das Kontinuum beeinflussen. Die Natur
dieser Kraftwirkungen, speziell ihre Abhängigkeit von der Lage und Bewegung des
Kontinuums (Dynamik) wird im dritten Abschnitt erörtert, wobei dann die einzelnen
Disziplinen einzuordnen sind; hierbei kommen schliesslich auch in einer kurzen
Skizze einerseits die Beziehungen zu den Ansätzen der Thermodynamik, andererseits
das Verhalten der ein-
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which the principle of virtual work is expressed of old: “Given a series of quantities
𝑋, . . . , 𝑋𝑎, . . . depending on the unknown functions 𝑥, . . . on 𝑎, . . . , 𝑐 and on the
derivatives thereof; these functions shall satisfy the condition, that a definite integral
of a linear form on the arbitrary functions 𝛿𝑥, . . . of 𝑎, . . . 𝑐 and their derivatives
composed with those [functions] 𝑋, . . . , 𝑋𝑎, . . . as coefficients∫

· · ·
∫ {

𝑋𝛿𝑥 + · · · + 𝑋𝑎
𝜕𝛿𝑥

𝜕𝑎
+ · · ·

}
𝑑𝑎 · · · 𝑑𝑐

— or the sum of such integrals — vanishes identically for all (or however for all
constraint satisfying) 𝛿𝑥, . . ..

The advantage, which the application of such a variational principle as founda-
tion allows versus other possible formulations or also the direct consideration of the
fundamental equations, consists especially therein that the variational principle is
capable to determine the behavior of the considered media in all points and to every
instant of time in a single formula, in particular to contain besides the equations
for the interior also the boundary conditions and the initial conditions. Furthermore
from a certain point of view, it is in its concise brevity clearer as the equations and
consequently it is [more suitable] for the treatment of new fields, for the formulation
of further generalizations and it is therefore of essential heuristic relevance; this [cir-
cumstance] is emphasized especially through the profound relation of the variational
principle to thermodynamics, as through requirement of generality it gains evident
value for the foundations of physical theories. Also for the evaluation of coordinate
transformations the variational principle is in advantage versus the explicit equations;
in many cases it is possible to identify the invariance of the considered problem, i. e.
the question of the transformation group letting the problem unchanged, easier and
without the requirement to introduce a specific symbolism. —

Subsequent to some introductory discussions about the notion of a continuum and
the kinematics thereof, in the first section of the paper the foundations of statics, in the
second the foundations of kinetics are treated, each time without any consideration
of what classes of force effects influence the continuum in particular. The nature of
these force effects, especially their dependence on the position and the motion of
the continuum (dynamics) is discussed in the third section, whereat the individual
disciplines are classified; in this connection, on the one hand the relation to the
methods of thermodynamics, on the other hand the behavior of the
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zelnen Wirkungsgesetze gegen Transformationen der Raum-und Zeitkoordinaten
und damit auch die Auffassungen der Relativitätstheorie der Elektrodynamik zur
Geltung.

2. Der Begriff des Kontinuums.
2a. Das Kontinuum und seine Deformation. Das allgemeine dreidimensional

ausgedehnte kontinuierliche Medium, auf das sich die folgenden Betrachtungen
beziehen, bedeutet — unter Abstraktion von allen individuellen Eigenschaften der
Materie — eine Gesamtheit von materiellen Teilchen, die erstens voneinander un-
terscheidbar sein und zweitens den Raum bzw. einen stetig begrenzten Raumteil
stetig ausfüllen sollen. Die erste Eigenschaft kommt darin zum Ausdruck, dass jedes
Teilchen durch Angabe dreier Parameterwerte 𝑎, 𝑏, 𝑐 identifiziert wird, derart, dass
verschiedene Teilchen in jedem Zustand, in dem man das Kontinuum etwa betrachtet,
stets verschiedene Lagen haben; der von stetigen geschlossenen Flächen 𝑆0 begrenzte
Variabilitätsbereich𝑉0 dieser 𝑎, 𝑏, 𝑐 charakterisiert das Quantum der Materie, das in
Betracht gezogen wird. Die zweite Forderung besagt, dass die Lagen aller Teilchen
einen von stetigen geschlossenen Flächen 𝑆 begrenzten Raumteil 𝑉 erfüllen. Bes-
timmt man die Lage eines Teilchens durch seine kartesischen Koordinaten, so wird
ein solcher Zustand analytisch gegeben durch drei Funktionen von 𝑎, 𝑏, 𝑐

(1) 𝑥 = 𝑥(𝑎, 𝑏, 𝑐), 𝑦 = 𝑦(𝑎, 𝑏, 𝑐), 𝑧 = 𝑧(𝑎, 𝑏, 𝑐),

die 𝑉0 auf 𝑉 abbilden, und deren Funktionaldeterminante

(2) Δ =
𝜕 (𝑥, 𝑦, 𝑧)
𝜕 (𝑎, 𝑏, 𝑐)

innerhalb 𝑉0 von Null verschieden, etwa positiv, ist. Man kann für 𝑎, 𝑏, 𝑐 die Koor-
dinaten einer fest gewählten Ausgangslage nehmen; dann sind 𝑥 − 𝑎, 𝑦 − 𝑏, 𝑧 − 𝑐
die Komponenten der Verschiebung, die jedes Teilchen beim Übergang zur Lage (1)
erleidet, und die Funktionen (1) werden stetige Funktionen von 𝑎, 𝑏, 𝑐, sofern man
die übliche Annahme macht, dass ursprünglich benachbarte Teile stets benachbart
bleiben. Wir werden darüber hinaus stets voraussetzen, dass die Funktionen (1) hin-
reichend viele stetige Differentialquotienten nach ihren Argumenten haben; nur an
einzelnen Punkten, Linien oder Flächen sollen Unterbrechungen dieser Stetigkeit
stattfinden können (vgl. IV 1, Nr. 9, Voss). Die gleichen Voraussetzungen werden
wir im allgemeinen stillschweigend für die weiterhin auftretenden, physikalische
Vorgänge darstellenden Funktionen zu machen haben.

Jedes Funktionensystem (1) beschreibt vollständig einen bestimmten Deforma-
tionszustand des Kontinuums; im allgemeinen gilt jeder De-
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individual constitutive laws with respect to transformations of space-time-co-
ordinates and thereby the concept of the theory of relativity of electrodynamics
eventually are profitably presented together in a short outline.

2. The notion of a continuum.
2a. The continuum and its deformation. The general three-dimensional ex-

tended continuous medium, on which the following presentation relates to, stands
— under abstraction of all more specific properties of matter — for an aggregate of
material particles, which first of all are distinguishable from each other and second
which continuously occupy the space or rather a continuously bounded part of the
space. The first property finds its expression [by assuming] that every particle is iden-
tified by the specification of three variable values 𝑎, 𝑏, 𝑐 such that different particles
always have different positions in every state in which the continuum can be consid-
ered by any chance; [and that] the domain of variability 𝑉0 of these 𝑎, 𝑏, 𝑐, bounded
by the continuous and closed surfaces 𝑆0, characterizes the portion of matter, which
is taken into consideration. The second requirement states, that the positions of all
particles occupy a part of the space 𝑉 bounded by a continuous and closed surface
𝑆. Determining the position of a particle by cartesian coordinates, analytically such
a state is given by three functions of 𝑎, 𝑏, 𝑐,

(1) 𝑥 = 𝑥(𝑎, 𝑏, 𝑐), 𝑦 = 𝑦(𝑎, 𝑏, 𝑐), 𝑧 = 𝑧(𝑎, 𝑏, 𝑐),

mapping 𝑉0 to 𝑉 , and by their Jacobian

(2) Δ =
𝜕 (𝑥, 𝑦, 𝑧)
𝜕 (𝑎, 𝑏, 𝑐)

being different from zero within 𝑉0, for instance positive. For 𝑎, 𝑏, 𝑐 one can take
the coordinates of a fixed chosen initial position; then 𝑥 − 𝑎, 𝑦 − 𝑏, 𝑧 − 𝑐 are the
components of the displacement, which every particle undergoes by shifting them to
the position (1), and the functions (1) become continuous functions of 𝑎, 𝑏, 𝑐, as long
as the common assumptions are taken, that initially neighboring particles always
remain neighboring. Moreover, we will always assume the functions (1) to have
sufficiently many continuous difference quotients with respect to their arguments;
only at individual points, lines or surfaces, discontinuities may occur (cf. IV 1, No.
9, Voss). In general, we will have to make the same assumptions tacitly for the
upcoming functions which describe physical processes.

Every system of functions (1) describes entirely a certain state of deformation of
the cotinuum; in general every
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formationszustand, d. h. jedes Funktionentripel (1), das nur den soeben charakter-
isierten Stetigkeitsvoraussetzungen genügt, als zulässig; Be-schränkungen in der Art
der möglichen Funktionen werden besondere Eigenschaften spezieller Medien zum
Ausdruck bringen. In jedem Falle bestimmen die partiellen Ableitungen der Funktio-
nen (1) in bekannter Weise die Verschiebungen, Verdrehungen und Formänderungen,
die jedes sehr kleine Quantum (Volumelement) bei der Deformation erleidet (vgl.
IV 14, Nr. 16, Abraham).

Die Grundlage für die Untersuchung der Gleichgewichtsverhältnisse irgendeines
Deformationszustandes (1) erhalten wir, wenn wir ihn mit einer sog. unendlichk-
leinen virtuellen Verrückung überlagern, die virtuell heisst, insofern sie willkürlich
zu dem reell stattfindenden Deformationszustand hinzutritt.7) Um diesen Begriff in
mathematisch präziser Form zu erhalten, ohne die bequeme übliche Bezeichnung und
Verwendung der „unendlichkleinen“ Grössen aufzugeben, betrachte man zunächst
eine der Deformation (1) übergelagerte noch von einem Parameter 𝜎 abhängige und
mit 𝜎 = 0 verschwindende Deformation, die das ursprünglich an der Stelle (𝑥, 𝑦, 𝑧)
befindliche Teilchen an die Stelle

𝑥 = 𝑥 + 𝜉 (𝑥, 𝑦, 𝑧; 𝜎)
(𝑥, 𝑦, 𝑧
𝜉, 𝜂, 𝜁

)
8)

überführt; dabei sind 𝜉, 𝜂, 𝜁 gegebene Funktionen von 𝑥, 𝑦, 𝑧 und von dem Parameter
𝜎, der in einem (beliebig kleinen) 𝜎 = 0 umgebenden Bereich variieren kann.
Vermöge (1) kann man auch unter Elimination von 𝑥, 𝑦, 𝑧 die so entstehenden neuen
Deformationen in der alten Gestalt schreiben:

(3) 𝑥 = 𝑥(𝑎, 𝑏, 𝑐; 𝜎), wo 𝑥(𝑎, 𝑏, 𝑐; 0) = 𝑥 (𝑥, 𝑦, 𝑧).

Ist 𝑓 irgendein von den Deformationsfunktionen (1) und ihren Ableitungen ab-
hängiger Ausdruck, so bezeichnen wir allgemein als seine „Variation“ den Ausdruck

𝛿 𝑓 (𝑥, . . . , 𝑥𝑎, . . . ) =
{

𝜕

𝜕𝜎
𝑓 (𝑥, . . . , 𝑥𝑎, . . . )

}
𝜎=0

, wo 𝑥𝑎 =
𝜕𝑥

𝜕𝑎
, . . . ;

7 So in Übereinstimmung mit der Terminologie von Voss (IV 1, Nr. 30), die auch in den Lehrbüchern
vielfach üblich ist. Andere (z. B. Voigt, Kompendium I, p. 27) sprechen von „virtuellen“ Verrück-
ungen erst dann, wenn die sonst beliebigen Verrückungen mit den für das System etwa bestehenden
Bedingungen verträglich sind; C. Neumann (Ber. Ges. Wiss. Leipzig 31 (1879), p. 53 ff.) hat gele-
gentlich den Vorschlag von Gauss aufgenommen, dann von fakultativen Verrückungen zu reden.
8 Diese Signatur und die analogen in der Folge bedeuten, dass neben der angeschriebenen Gleichung
auch diejenigen gelten, die durch gleichzeitige zyklische Vertauschung von 𝑥, 𝑦, 𝑧 und 𝜉 , 𝜂, 𝜁
aus ihr entstehen.
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state of deformation, i. e. every triple of functions (1), which satisfies the just char-
acterized continuity assumptions, is admissible; Restrictions on the kind of possible
functions express particular properties of special media. In any case, the partial
derivatives of the functions (1) assign in the well-known manner the displacements,
the rotations and the shape change, which each very little portion (volume element)
undergoes during its deformation (cf. IV 14, No. 16, Abraham).

We obtain the basis for the analysis of the equilibrium conditions of an arbitrary
state of deformation (1), by superimposing it with a so-called infinitesimal virtual
displacement, called virtual, since it is added arbitrarily to the actually occurring
state of deformation.7) To obtain this notion in a mathematical rigorous way, without
dropping the convenient and common expression and application of “infinitesimal”
quantities, one considers at first a deformation, depending on a parameter 𝜎, super-
imposed on the deformation (1) which vanishes for 𝜎 = 0 and shifts the particle
being at the initial position (𝑥, 𝑦, 𝑧) to the position

𝑥 = 𝑥 + 𝜉 (𝑥, 𝑦, 𝑧; 𝜎)
(𝑥, 𝑦, 𝑧
𝜉, 𝜂, 𝜁

)
; 8)

thereby 𝜉, 𝜂, 𝜁 are known functions of 𝑥, 𝑦, 𝑧 and of the parameter 𝜎, which varies
in an (arbitrary small) surrounding of 𝜎 = 0. Using (1) for the elimination of 𝑥, 𝑦, 𝑧,
one can also write these new arising deformations in the old form:

(3) 𝑥 = 𝑥(𝑎, 𝑏, 𝑐; 𝜎), where 𝑥(𝑎, 𝑏, 𝑐; 0) = 𝑥 (𝑥, 𝑦, 𝑧).

Let 𝑓 be any expression depending on the deformation functions (1) and their
derivatives, then we generally denote its “variation” by the expression

𝛿 𝑓 (𝑥, . . . , 𝑥𝑎, . . . ) =
{

𝜕

𝜕𝜎
𝑓 (𝑥, . . . , 𝑥𝑎, . . . )

}
𝜎=0

, with 𝑥𝑎 =
𝜕𝑥

𝜕𝑎
, . . . ;

7 Thus in coincidence with the terminology of Voss (IV 1, No. 30), which is also often common in
textbooks. Others (e. g. Voigt, Kompendium I, p. 27) speak of “virtual” displacements only when
the otherwise arbitrary displacements are admissible with respect to any constraints of the system;
C. Neumann (Ber. Ges. Wiss. Leipzig 31 (1879), p. 53 ff.) occasionally has adopted the suggestion
of Gauss, to speak then of optional displacements.
8 This signature and the analogous ones which follow, denote that besides the equation being
written-out also those [equations] are valid, which arise by simultaneous cyclic permutation of
𝑥, 𝑦, 𝑧 and 𝜉 , 𝜂, 𝜁 .
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dabei bleiben während der Differentiation 𝑎, 𝑏, 𝑐 konstant; die Operation 𝛿 ist daher
mit der Differentiation nach 𝑎, 𝑏, 𝑐 vertauschbar:

𝛿
𝜕 𝑓

𝜕𝑎
=

𝜕𝛿 𝑓

𝜕𝑎
.

Verschwinden die 3 Funktionen(
𝜕𝑥

𝜕𝜎

)
𝜎=0

=

(
𝜕𝜉

𝜕𝜎

)
𝜎=0

= 𝛿𝑥(𝑥, 𝑦, 𝑧) (𝑥, 𝑦, 𝑧),

die vermittels (1) als Funktionen von 𝑥, 𝑦, 𝑧 angesehen werden können, nicht identisch
in 𝑥, 𝑦, 𝑧, so kann man unter den üblichen Stetigkeitspostulaten setzen

(3′) 𝑥 = 𝑥 + 𝜎𝛿𝑥(𝑥, 𝑦, 𝑧) (𝑥, 𝑦, 𝑧),

falls 𝜎 so klein gewählt ist, dass 𝜎2 hinreichend klein gegenüber 𝜎 wird; die so
gegebene unendlich kleine virtuelle Verrückung des Kontinuums ist also bis auf
den Faktor 𝜎 durch die 3 Funktionen 𝛿𝑥, 𝛿𝑦, 𝛿𝑧 bestimmt. Man kann diese Verrück-
ung unmittelbar dem Begriff der in der Kinematik elastischer Medien betrachteten
„unendlichkleinen Deformationen“ einordnen (vgl. IV 14, Nr. 18, Abraham) und
findet insbesondere, dass die durch sie bedingte „virtuelle Formänderung“ jedes
Volumelements durch die 6 Grössen

(4)
𝜕𝛿𝑥

𝜕𝑥
,
𝜕𝛿𝑦

𝜕𝑦
,
𝜕𝛿𝑧

𝜕𝑧
,
𝜕𝛿𝑦

𝜕𝑧
+ 𝜕𝛿𝑧

𝜕𝑦
,
𝜕𝛿𝑧

𝜕𝑥
+ 𝜕𝛿𝑥

𝜕𝑧
,
𝜕𝛿𝑥

𝜕𝑦
+ 𝜕𝛿𝑦

𝜕𝑥
,

ihre „virtuelle Rotation“ durch

(4′)
1
2

(
𝜕𝛿𝑧

𝜕𝑦
− 𝜕𝛿𝑦

𝜕𝑧

)
,

1
2

(
𝜕𝛿𝑥

𝜕𝑧
− 𝜕𝛿𝑧

𝜕𝑥

)
,

1
2

(
𝜕𝛿𝑦

𝜕𝑥
− 𝜕𝛿𝑥

𝜕𝑦

)
bestimmt wird — jedesmal abgesehen von dem Faktor 𝜎.

Eine Bewegung des Kontinuums wird als eine vom Zeitparameter 𝑡 abhängige
Folge von Deformationszuständen aufgefasst und demgemäss durch die drei nun
noch von 𝑡 abhängigen Deformationsfunktionen

(5) 𝑥 = 𝑥(𝑎, 𝑏, 𝑐; 𝑡), 𝑦 = 𝑦(𝑎, 𝑏, 𝑐; 𝑡), 𝑧 = 𝑧(𝑎, 𝑏, 𝑐; 𝑡)
dargestellt, die als Funktionen aller vier Variablen im notwendigen Umfange stetig
und differenzierbar sind; bei festem 𝑎, 𝑏, 𝑐 stellt (5) die Bahn eines bestimmten
Teilchens dar.

Ganz wie oben betrachtet man dann, indem man in die Formeln nur die Variable 𝑡
hineinnimmt, neben der Bewegung (5) noch die für 𝜎 = 0 in (5) übergehende Schar
von Bewegungen

(6) 𝑥 = 𝑥(𝑎, 𝑏, 𝑐; 𝑡; 𝜎) = 𝑥 + 𝜎𝛿𝑥(𝑥, 𝑦, 𝑧; 𝑡) (𝑥, 𝑦, 𝑧)
für kleine Werte des Parameters 𝜎 und bezeichnet 𝛿𝑥, 𝛿𝑦, 𝛿𝑧 als Bestimmungsstücke
dieser der Bewegung (5) übergelagerten virtuellen Verrückung.
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thereby 𝑎, 𝑏, 𝑐 remain constant during the differentiation; thus, the operation 𝛿 com-
mutes with the differentiation with respect to 𝑎, 𝑏, 𝑐:

𝛿
𝜕 𝑓

𝜕𝑎
=

𝜕𝛿 𝑓

𝜕𝑎
.

When the 3 functions(
𝜕𝑥

𝜕𝜎

)
𝜎=0

=

(
𝜕𝜉

𝜕𝜎

)
𝜎=0

= 𝛿𝑥(𝑥, 𝑦, 𝑧) (𝑥, 𝑦, 𝑧),

which, due to (1), can be seen as functions of 𝑥, 𝑦, 𝑧 do not vanish identically in
𝑥, 𝑦, 𝑧, then one can set according to the common continuity postulates

(3′) 𝑥 = 𝑥 + 𝜎𝛿𝑥(𝑥, 𝑦, 𝑧) (𝑥, 𝑦, 𝑧),

provided 𝜎 is so small, that 𝜎2 becomes sufficiently small with respect to 𝜎; up
to the factor 𝜎, the infinitesimal virtual displacement of the continuum as given is
determined by the 3 functions 𝛿𝑥, 𝛿𝑦, 𝛿𝑧. One can immediately bring these displace-
ments into line with the notion of “infinitesimal deformations” considered in the
kinematics of elastic media (cf. IV 14, No. 18, Abraham) and finds particularly, that
the “virtual shape change” of each volume element is determined by the 6 quantities

(4)
𝜕𝛿𝑥

𝜕𝑥
,
𝜕𝛿𝑦

𝜕𝑦
,
𝜕𝛿𝑧

𝜕𝑧
,
𝜕𝛿𝑦

𝜕𝑧
+ 𝜕𝛿𝑧

𝜕𝑦
,
𝜕𝛿𝑧

𝜕𝑥
+ 𝜕𝛿𝑥

𝜕𝑧
,
𝜕𝛿𝑥

𝜕𝑦
+ 𝜕𝛿𝑦

𝜕𝑥
,

and its “virtual rotation” is determined by

(4′)
1
2

(
𝜕𝛿𝑧

𝜕𝑦
− 𝜕𝛿𝑦

𝜕𝑧

)
,

1
2

(
𝜕𝛿𝑥

𝜕𝑧
− 𝜕𝛿𝑧

𝜕𝑥

)
,

1
2

(
𝜕𝛿𝑦

𝜕𝑥
− 𝜕𝛿𝑥

𝜕𝑦

)
caused [by the virtual displacement] — in each case apart from the factor 𝜎.

A motion of the continuum is considered as a sequence of states of deformations
depending on a time parameter 𝑡 and is hence represented by the three [following]
deformation functions which are now also depending on 𝑡

(5) 𝑥 = 𝑥(𝑎, 𝑏, 𝑐; 𝑡), 𝑦 = 𝑦(𝑎, 𝑏, 𝑐; 𝑡), 𝑧 = 𝑧(𝑎, 𝑏, 𝑐; 𝑡) ,

which as functions of all four variables are sufficiently continuous and differentiable;
for fixed 𝑎, 𝑏, 𝑐, (5) represents the trajectory of a certain particle.

As above by taking the variable 𝑡 into the formulas, one considers then besides
the motion (5) also the family of motions

(6) 𝑥 = 𝑥(𝑎, 𝑏, 𝑐; 𝑡; 𝜎) = 𝑥 + 𝜎𝛿𝑥(𝑥, 𝑦, 𝑧; 𝑡) (𝑥, 𝑦, 𝑧)

holding for small values of the parameter 𝜎 and implying (5) for 𝜎 = 0 and [one]
denotes 𝛿𝑥, 𝛿𝑦, 𝛿𝑧 as the characteristic quantities of the virtual displacements being
superimposed on the motion (5).
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2b. Adjunktion physikalischer Parameter, insbesondere Dichte und Ori-
entierung. Jede physikalische Eigenschaft eines Mediums wird durch eine oder
mehrere Funktionen von 𝑎, 𝑏, 𝑐, 𝑡 beschrieben, die zu den Deformationsfunktionen
hinzutreten.

Von einer solchen Eigenschaft wird im folgenden allgemein Gebrauch gemacht
werden: der Existenz einer unveränderlichen Masse 𝑚 für jedes Quantum 𝑉 ′

0 des
Mediums, die sich als über𝑉 ′

0 erstrecktes Integral einer für das Medium charakteris-
tischen Dichtefunktion 𝜚0 = 𝜚0 (𝑎, 𝑏, 𝑐) ausdrückt. Durch Übergang zur deformierten
Lage (1) ergibt sich als wirkliche Massendichte 𝜚 der Verteilung des Mediums

(7) 𝜚 =
𝜚0
Δ

,

und die Masse im Teil 𝑉 ′ von 𝑉 ist

𝑚 =

∭
(𝑉 ′)

𝜚 𝑑𝑥 𝑑𝑦 𝑑𝑧 =

∭
(𝑉 ′

0 )

𝜚0 𝑑𝑎 𝑑𝑏 𝑑𝑐.

Veränderungen der Lage des Kontinuums legen an sich bezüglich des Verhaltens
eines solchen adjungierten physikalischen Parameters noch nichts fest; man lässt
indessen stets die Masse eines jeden Quantums, d. h. die Funktion 𝜚0 (𝑎, 𝑏, 𝑐) bei
einer virtuellen Verrückung ungeändert und ersetzt daher die Dichte 𝜚 derart durch

(8) �̄� = �̄�(𝑥, 𝑦, 𝑧; 𝜎) = 𝜚 + 𝜎𝛿𝜚(𝑥, 𝑦, 𝑧),

dass (entsprechend der Kontinuitätsbedingungen, vgl. IV 15, Nr. 7, p. 59 f. A. E. H.
Love):

(8′) 𝛿𝜚0 = 𝛿(𝜚Δ) = 0 oder 𝛿𝜚 + 𝜚
𝜕 (𝛿𝑥)
𝜕𝑥

+ 𝜚
𝜕 (𝛿𝑦)
𝜕𝑦

+ 𝜚
𝜕 (𝛿𝑧)
𝜕𝑧

= 0.

Entsprechendes soll bei einer Bewegung gelten, d. h. 𝜚0 (𝑎, 𝑏, 𝑐) soll von 𝑡 unab-
hängig und 𝜚 alsdann durch (7) gegeben sein.

Noch von einer hierhin gehörigen Begriffsbildung wird häufig Gebrauch zu
machen sein, der Annahme nämlich, dass für jedes Teilchen des Kontinuums die
verschiedenen von ihm ausgehenden Richtungen charakteristisch verschiedene Be-
deutung besitzen, und dass daher die Angabe seiner Orientierung wesentlich zur
Beschreibung der Situation des Kontinuums gehört. Solche Vorstellungen sind in
der Molekulartheorie entstanden, indem man sich Körper von kristallinischer Struk-
tur als Moleküle dachte, und bereits S. D. Poisson 9) hat sie zur Gewinnung einer
besseren Molekulartheorie der Elastizität zu verwenden versucht. Neuerdings haben
E. und F. Cosserat 10) ohne Heranziehung von Mole-

9 Paris, Mém. de l’Acad. 18 (1842), p. 3, sowie in einigen vorangehenden Arbeiten; vgl. die
ausführlichen Angaben in IV 23, Nr. 4c, p. 39 (Müller-Timpe).
10 Paris C. R. 145 (1907), p. 1409; 146 (1908), p. 68. Eine zusammen-
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2b. Introduction of physical parameters, in particular density and orienta-
tion. Every physical property of a medium is described by one or more functions of
𝑎, 𝑏, 𝑐, 𝑡, which [may need to be] added to the deformation functions.

Subsequently, it will be generally made use of the following property: the existence
of a fixed mass 𝑚 for any portion 𝑉 ′

0 of the medium, expressed by the integral over
the domain 𝑉 ′

0 with the integrand being a density function 𝜚0 = 𝜚0 (𝑎, 𝑏, 𝑐) which is
characteristic for the medium. By transition to the deformed position (1) the actual
mass density 𝜚 of the distribution of the medium appears as

(7) 𝜚 =
𝜚0
Δ

,

and the mass within the part 𝑉 ′ of 𝑉 is

𝑚 =

∭
(𝑉 ′)

𝜚 𝑑𝑥 𝑑𝑦 𝑑𝑧 =

∭
(𝑉 ′

0 )

𝜚0 𝑑𝑎 𝑑𝑏 𝑑𝑐.

Changes in the position of the continuum determine nothing with regard to the
behavior of such an introduced physical parameter; the mass of any portion, i. e. the
function 𝜚0 (𝑎, 𝑏, 𝑐) is in the meanwhile left unchanged for virtual displacements and
one exchanges therefore the density 𝜚 by

(8) �̄� = �̄�(𝑥, 𝑦, 𝑧; 𝜎) = 𝜚 + 𝜎𝛿𝜚(𝑥, 𝑦, 𝑧),

such that (analogous to the continuity conditions, cf. IV 15, No. 7, p. 59 f.
A. E. H. Love):

(8′) 𝛿𝜚0 = 𝛿(𝜚Δ) = 0 or 𝛿𝜚 + 𝜚
𝜕 (𝛿𝑥)
𝜕𝑥

+ 𝜚
𝜕 (𝛿𝑦)
𝜕𝑦

+ 𝜚
𝜕 (𝛿𝑧)
𝜕𝑧

= 0.

The same shall hold for a motion, i. e. 𝜚0 (𝑎, 𝑏, 𝑐) shall be independent of 𝑡 and 𝜚 is
consequently determined by (7).

Additionally, it will be frequently made use of a conceptualization which must
be presented here, namely the assumption, that for any particle of the continuum
different directions radiating from these particles may present characteristically
different behavior, and that therefore the specification of its orientation is essential
in the description of the state of the continuum. Such perceptions have been developed
in the molecular theories, in which the bodies of crystalline structure are thought of
as molecules, and already S. D. Poisson 9) has tried to use [such perceptions] to arrive
at a better molecular theory of elasticity. Recently, without referring to molecular
perceptions, E. and F. Cosserat 10)

9 Paris, Mém. de l’Acad. 18 (1842), p. 3, as well as some preceding works; cf. the detailed citations
in IV 23, No. 4c, p. 39 (Müller-Timpe).
10 Paris C. R. 145 (1907), p. 1409; 146 (1908), p. 68. They have given a sum-
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kularvorstellungen solche in jedem Teilchen mit einer bestimmten Orientierung
behafteten Kontinua weitgehend behandelt.

In allgemeinster Weise kann dieser Begriff der orientierten Teilchen des Kontin-
uums analytisch formuliert werden11), indem man sich jedem Teilchen 𝑎, 𝑏, 𝑐 des
Kontinuums ein rechtwinkliges Axenkreuz angeheftet denkt, dessen 3 Axen jew-
eils die Richtungskosinus 𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 (𝑖 = 1, 2, 3) haben; drei unabhängige Parameter
𝜆, 𝜇, 𝜈 (z. B. die Eulerschen Winkel), die die Orientierung eines solchen Dreikants in
bezug auf das 𝑥−𝑦−𝑧-Koordinatensystem bestimmen, müssen neben den Funktionen
(1) als Funktionen von 𝑎, 𝑏, 𝑐 bekannt sein:

(9) 𝜆 = 𝜆(𝑎, 𝑏, 𝑐), 𝜇 = 𝜇(𝑎, 𝑏, 𝑐), 𝜈 = 𝜈(𝑎, 𝑏, 𝑐),

um den Zustand eines solchen Mediums völlig zu beschreiben.
Mit jeder virtuellen Verrückung des Kontinuums wird man jetzt eine virtuelle

Drehung dieser Dreikante verbinden, indem man eine von einem Parameter 𝜎 ab-
hängige und für 𝜎 = 0 verschwindende Schar von Drehungen aus der Lage (9) heraus
zugrunde legt und 𝜆, 𝜇, 𝜈 unter Beschränkung auf hinreichend kleine Werte von 𝜎
durch

(10) �̄� = �̄�(𝑎, 𝑏, 𝑐; 𝜎) = 𝜆 + 𝜎𝛿𝜆(𝑎, 𝑏, 𝑐) (𝜆, 𝜇, 𝜈)

ersetzt. Dabei kann man übrigens sowohl 𝜆, 𝜇, 𝜈 als 𝛿𝜆, 𝛿𝜇, 𝛿𝜈 stets entweder als
Funktionen von 𝑎, 𝑏, 𝑐 oder mit Hilfe von (1) als solche von 𝑥, 𝑦, 𝑧 auffassen.
Die Variationen 𝛿𝛼1, . . . , 𝛿𝛾3 der Richtungskosinus der 3 Axen selbst sind lin-
eare homogene Funktionen der 𝛿𝜆, 𝛿𝜇, 𝛿𝜈 die man aus den expliziten Ausdrücken
von 𝛼1, . . . , 𝛾3 durch Differentiation nach 𝜎 erhält; die Komponenten 𝛿𝜋, 𝛿𝜅, 𝛿𝜚
der Winkelgeschwindigkeit der virtuellen Drehung nach den 3 Axen, die mit
𝛿𝛼1, . . . , 𝛿𝛾3 durch die Formeln

(11) 𝛿𝜋 = 𝛽1𝛿𝛾1 + 𝛽2𝛿𝛾2 + 𝛽3𝛿𝛾3 = −(𝛾1𝛿𝛽1 + 𝛾2𝛿𝛽2 + 𝛾3𝛿𝛽3)
(
𝜋, 𝜅, 𝜚

𝛼, 𝛽, 𝛾

)
,

(11′) 𝛿𝛼𝑖 = 𝛾𝑖𝛿𝜅 − 𝛽𝑖𝛿𝜚
(
𝑖 = 1, 2, 3; 𝛼, 𝛽, 𝛾

𝜋, 𝜅, 𝜚

)
zusammenhängen und die übrigens, im Gegensatz zu dem bisherigen Gebrauch des
Zeichens 𝛿, nicht Variationen bestimmter Funktionen von 𝑎, 𝑏, 𝑐 sind, werden also
gleichfalls lineare homogene Funktionen von 𝛿𝜆, 𝛿𝜇, 𝛿𝜈, wir setzen

(12) 𝛿𝜆 = 𝑙1𝛿𝜋 + 𝑚1𝛿𝜅 + 𝑛1𝛿𝜚
(
𝜆, 𝜇, 𝜈

1, 2, 3

)
.

fassende Darstellung haben sie in ihrer „théorie des corps déform.“5) gegeben. Vgl. auch IV 11, II.
Teil, K. Heun.
11 Vgl. eine Bemerkung von P. Duhem, Ann. Éc. Norm. (3) 10 (1893), p. 206.
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have extensively treated continua in which any particle is given a certain orientation.
In the most general way such a notion of oriented particles of the continuum can

be formulated analytically11), by thinking that every particle 𝑎, 𝑏, 𝑐 of the continuum
is endowed with an attached orthonormal triad, whose 3 axes have the directional
cosines𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 (𝑖 = 1, 2, 3); besides the functions (1), three independent parameters
𝜆, 𝜇, 𝜈 (e. g. Euler angles) must be given as functions of 𝑎, 𝑏, 𝑐 to determine the
orientation of such a triad with respect to the 𝑥-𝑦-𝑧-coordinate system:

(9) 𝜆 = 𝜆(𝑎, 𝑏, 𝑐), 𝜇 = 𝜇(𝑎, 𝑏, 𝑐), 𝜈 = 𝜈(𝑎, 𝑏, 𝑐),

in order to describe the state of such a medium completely.
With every virtual displacement of the continuum a virtual rotation comes along

by taking a family of rotations with respect to the orientation of the triads (9)
depending on a parameter 𝜎 which vanishes for 𝜎 = 0 and by exchanging 𝜆, 𝜇, 𝜈 for
sufficiently small values of 𝜎 by

(10) �̄� = �̄�(𝑎, 𝑏, 𝑐; 𝜎) = 𝜆 + 𝜎𝛿𝜆(𝑎, 𝑏, 𝑐) (𝜆, 𝜇, 𝜈).

Thereby, incidentally one can consider both 𝜆, 𝜇, 𝜈 and 𝛿𝜆, 𝛿𝜇, 𝛿𝜈 always either as
functions of 𝑎, 𝑏, 𝑐, or with the help of (1) as functions of 𝑥, 𝑦, 𝑧. The variations
𝛿𝛼1, . . . , 𝛿𝛾3 of the directional cosines of the three axes are themselves linear ho-
mogeneous functions of 𝛿𝜆, 𝛿𝜇, 𝛿𝜈 being obtained by differentiation of the explicit
expression of 𝛼1, . . . , 𝛾3 with respect to 𝜎; the components 𝛿𝜋, 𝛿𝜅, 𝛿𝜚 of the angular
velocity of the virtual rotation with respect to the 3 axes, which are connected to
𝛿𝛼1, . . . , 𝛿𝛾3 by the formulas

(11) 𝛿𝜋 = 𝛽1𝛿𝛾1 + 𝛽2𝛿𝛾2 + 𝛽3𝛿𝛾3 = −(𝛾1𝛿𝛽1 + 𝛾2𝛿𝛽2 + 𝛾3𝛿𝛽3)
(
𝜋, 𝜅, 𝜚

𝛼, 𝛽, 𝛾

)
,

(11′) 𝛿𝛼𝑖 = 𝛾𝑖𝛿𝜅 − 𝛽𝑖𝛿𝜚
(
𝑖 = 1, 2, 3; 𝛼, 𝛽, 𝛾

𝜋, 𝜅, 𝜚

)
and which by the way, in contrast to the former application of the symbol 𝛿, are not
variations of a particular function of 𝑎, 𝑏, 𝑐, are in the same way linear homogeneous
functions of 𝛿𝜆, 𝛿𝜇, 𝛿𝜈, and we set

(12) 𝛿𝜆 = 𝑙1𝛿𝜋 + 𝑚1𝛿𝜅 + 𝑛1𝛿𝜚
(
𝜆, 𝜇, 𝜈

1, 2, 3

)
.

marizing version in their “théorie des corps déform.”5). Cf. also IV 11, II. Teil, K. Heun.
11 Cf. a note of P. Duhem, Ann. Éc. Norm. (3) 10 (1893), p. 206.
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Daher bestimmen auch 𝛿𝜋, 𝛿𝜅, 𝛿𝜚 (als Funktionen von 𝑎, 𝑏, 𝑐 oder 𝑥, 𝑦, 𝑧 gegeben)
die virtuelle Verdrehung des Kontinuums.12)

Alle diese Formeln lassen sich durch Aufnahme des Zeitparameters 𝑡 sofort auf
den Fall der Bewegung ausdehnen.

2c. Zwei- und eindimensionale Kontinua. Durch Unterdrückung eines bzw.
zweier der drei Parameter 𝑎, 𝑏, 𝑐 erhält man endlich unmittelbar auch die Ansätze
zur Behandlung zwei- und eindimensionaler Kontinua, die im dreidimensionalen
Raume gelegen sind.13) Ihre Lage in jedem Zustand wird gegeben durch

(13) 𝑥 = 𝑥(𝑎, 𝑏) bzw. 𝑥 = 𝑥(𝑎) (𝑥, 𝑦, 𝑧);

die Parameter variieren in einem Bereich 𝑆0 bzw. 𝐶0 der 𝑎-𝑏-Ebene bzw. der 𝑎-
Axe, welcher durch (13) auf eine Fläche 𝑆 bzw. eine Kurve 𝐶 abgebildet wird.
Auch hier kann man jedem Teilchen ein Axenkreuz aus drei zueinander senkrechten
Richtungen zugeordnet denken 14), das durch die Funktionen bestimmt wird

(14) 𝜆 = 𝜆(𝑎, 𝑏) bzw. 𝜆 = 𝜆(𝑎) (𝜆, 𝜇, 𝜈).

I. Die Grundansätze der Statik.

3. Das Prinzip der virtuellen Verrückungen.
3a. Kräfte und Spannungen. Um auf diesem kinematischen Schema die dy-

namischen Eigenschaften des Kontinuums aufzubauen, knüpfen wir an den Arbeits-
begriff an. Der Gesamtheit der auf das Kontinuum infolge seines gegenwärtigen
Deformationszustandes, infolge seiner Lage im Raume oder infolge irgendwelcher
äusserer Umstände wirkenden Kräfte und Spannungen aller möglichen Arten —
zunächst als Ganzes ohne Rücksicht auf ihren Ursprung betrachtet — ist gemein-
sam, dass sie bei jeder virtuellen Verrückung eine „virtuelle Arbeit“ 𝛿𝐴 leisten;
diese sehen wir als primär an und bestimmen sie folgendermassen: 𝛿𝐴 sei als lin-
eare homogene Funktion der Gesamtheit der Werte der Verrückungskomponenten
𝛿𝑥, 𝛿𝑦, 𝛿𝑧 innerhalb des Kontinuums gegeben und sei eine skalare, von der Wahl des
Koordinatensystems unab-

12 Es sind die bekannten kinematischen Methoden der Flächentheorie (vgl. etwa III D 3, Nr. 10,
R. v. Lilienthal und G. Darboux, Leçons sur la théorie générale des surfaces), die E. und F. Cosserat
hier zur Anwendung bringen (s. die ausführliche Darstellung in den „corps déform.“ ).
13 In gewissem Sinne sind diese Probleme einfacher als die dreidimensionale Medien betreffenden;
in der Tat gehören einzelne von ihnen zu den am frühesten eingehend behandelten Aufgaben der
Mechanik der Kontinua (vgl. IV, 6, Nr. 22—24, P. Stäckel und IV 11, Nr. 19, 20, K. Heun).
14 Vgl. die bei den in 10) zitierten Pariser Noten von E. u. F. Cosserat und Cap. II, III ihrer „corps
déform.“
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Thus 𝛿𝜋, 𝛿𝜅, 𝛿𝜚 (given as functions of 𝑎, 𝑏, 𝑐 or 𝑥, 𝑦, 𝑧) determine the virtual rotation
of the continuum.12)

By adding the time parameter 𝑡, all these formulas can immediately be extended
to the case of a motion.

2c. Two- and one-dimensional continuua. By suppressing one or two of the three
parameters 𝑎, 𝑏, 𝑐, one obtains immediately the basis for the treatment of two- and
one-dimensional continua, which are embedded in the three-dimensional space.13)
The position in every state is given by

(13) 𝑥 = 𝑥(𝑎, 𝑏) or 𝑥 = 𝑥(𝑎) (𝑥, 𝑦, 𝑧);

the parameters vary in the domains 𝑆0 and 𝐶0 of the 𝑎-𝑏-plane and the 𝑎-axis,
respectively, which are mapped by (13) onto a surface 𝑆 and a curve 𝐶, respectively.
Here, too, one can think of every particle with an attached triad consisting of three
orthogonal directions14), which is determined by the functions

(14) 𝜆 = 𝜆(𝑎, 𝑏) or 𝜆 = 𝜆(𝑎) (𝜆, 𝜇, 𝜈).

I. The foundations of statics.

3. The principle of virtual displacements.
3a. Forces and stresses. To build the dynamic properties of the continuum on this

kinematic scheme, we take up the notion of work. The collection of forces and stresses
of any kind which act on the continuum due to the current state of deformation, due
the position in space or due to any external circumstances — for the moment in its
entirety without considering its cause — they have in common, that for any virtual
displacement they expend a “virtual work” 𝛿𝐴; we see this [virtual work] as primitive
and determine it as follows: Let 𝛿𝐴 be a linear homogeneous function of the entirety
of values of the displacement components 𝛿𝑥, 𝛿𝑦, 𝛿𝑧 within the continuum and let it
be a scalar quantity, independent of the choice of the coordinate system.

12 There are the known kinematic methods of the geometry of surfaces (cf. for instance III D 3,
No. 10, R. v. Lilienthal and G. Darboux, Leçons sur la théorie générale des surfaces), which are
applied here by E. and F. Cosserat (see for the detailed version in “corps déform.”).
13 In a certain manner these problems are easier than the ones for three-dimensional media; In fact,
a few of them belong to the earliest problems which have been treated thoroughly in the mechanics
of continua; (cf. IV, 6, No. 22—24, P. Stäckel and IV 11, No. 19, 20, K. Heun).
14 Cf. the notes of Paris referred to in 10) of E. and F. Cosserat and Cap. II, III of their “corps
déform.”
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hängige Grösse. Die Koeffizienten, mit denen die Einzelwerte von 𝛿𝑥, . . . in 𝛿𝐴
eingehen, sind die Bestimmungsstücke der einzelnen wirkenden Kraftsysteme; dass
sie von den virtuellen Verrückungen selbst unabhängig sind (d. h. die Linearität des
𝛿𝐴), bringt die Annahme zum Ausdruck, dass diese Verrückungen ihrer Kleinheit
halber die auf jedes Teilchen ausgeübten Kraftwirkungen nicht modifizieren.

Um die sämtlichen Ansätze der Mechanik der Kontinua zu umfassen, ist es nicht
notwendig, von dem allgemeinsten Ausdruck der beschriebenen Art für 𝛿𝐴 auszuge-
hen, der aus einer Summe von linearen Funktionen der Werte von 𝛿𝑥, 𝛿𝑦, 𝛿𝑧 und
ihren Ableitungen an irgendwelchen einzelnen Stellen des Kontinuums sowie von
Linien-, Flächen- und Raumintegralen solcher Ausdrücke bestehen würde. Wir be-
trachten vielmehr zunächst einen Ausdruck — den wir später noch erweitern werden
—, der aus einem über das ganze Gebiet𝑉 des Kontinuums erstreckten Raumintegral
sowie einem über seine Oberfläche 𝑆 erstreckten Flächenintegral besteht und dabei
in dem ersteren noch eine Linearform der 9 Ableitungen der 𝛿𝑥, 𝛿𝑦, 𝛿𝑧 nach 𝑥, 𝑦, 𝑧
enthält15):

(1)

𝛿𝐴 =

∭
(𝑉 )

𝜚(𝑋𝛿𝑥 + 𝑌𝛿𝑦 + 𝑍𝛿𝑧)𝑑𝑉 = 𝛿𝐴1

−
∭
(𝑉 )

(𝑋𝑥 𝜕𝛿𝑥
𝜕𝑥

+ 𝑋𝑦
𝜕𝛿𝑥

𝜕𝑦
+ · · · + 𝑍𝑧

𝜕𝛿𝑧

𝜕𝑧

)
𝑑𝑉 + 𝛿𝐴2

+
∬
(𝑆)

(𝑋𝛿𝑥 + 𝑌𝛿𝑦 + 𝑍𝛿𝑧)𝑑𝑆 + 𝛿𝐴3

Die 15 hier auftretenden und sogleich näher zu diskutierenden Koeffizienten der
Verrückungsgrössen sollen nun für jede Deformation des betrachteten Mediums bes-
timmte überall endliche und nebst ihren Ableitungen, event. mit Ausnahme einzelner
Flächen, stetige Funktionen von

15 Solche Ansätze für die virtuelle Arbeit sind als naheliegende Verallgemeinerungen der Formeln
der Punktmechanik bei vielen speziellen Problemen früh entwickelt worden. Fast selbstverständlich
war die Form der Summanden 𝛿𝐴1, 𝛿𝐴3, die ja nur das Summenzeichen der Punktmechanik durch
das Integral ersetzen (vgl. etwa Lagrange, Méc. an., 1. part, IV, 11); aber auch Terme von der Form
𝛿𝐴2 nur sehr spezialisiert, hat Lagrange schon z. B. bei der Behandlung der ausdehnbaren Fadens
und der kompressiblen Flüssigkeit benutzt, Terme nämlich, die der Variation der Länge bzw. der
Variation der Dichte proportional sind (s. Méc. an., 1. part, V, 42; VIII,1). Darüber hinaus ist die
Ausbildung des allgemeinen Ansatzes (5) jedenfalls durch die Auffassung der virtuellen Arbeit als
Variation eines „Potentiales“ (s. Nr. 7) angeregt worden, wie sie C. L. Navier in die Elastizitätstheorie
einführte (s. IV 23, Nr. 5, Müller-Timpe).
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The coefficients, which enter 𝛿𝐴 together with the values of 𝛿𝑥, . . . , are the charac-
teristic quantities of the individual acting force systems; the independence of these
components of the virtual displacements (i. e. the linearity of 𝛿𝐴), expresses the
assumption that these displacements, due to their smallness, do not modify the force
effects exerted on every particle.

In order to include all fundamental equations of the mechanics of continua, it is
not necessary to begin with the most general expression of the described form of 𝛿𝐴,
which would consist of a sum of linear functions of values of 𝛿𝑥, 𝛿𝑦, 𝛿𝑧 and their
derivatives at certain locations of the continuum as well as line, surface and volume
integrals of such expressions. Instead, we consider at first an expression — which we
will extend later on —, which consists of a volume integral over the whole domain𝑉
of the continuum as well as a surface integral of its surface 𝑆 and thereby the former
includes in addition a linear form of the 9 derivatives of 𝛿𝑥, 𝛿𝑦, 𝛿𝑧 with respect to
𝑥, 𝑦, 𝑧15):

(1)

𝛿𝐴 =

∭
(𝑉 )

𝜚(𝑋𝛿𝑥 + 𝑌𝛿𝑦 + 𝑍𝛿𝑧)𝑑𝑉 = 𝛿𝐴1

−
∭
(𝑉 )

(𝑋𝑥 𝜕𝛿𝑥
𝜕𝑥

+ 𝑋𝑦
𝜕𝛿𝑥

𝜕𝑦
+ · · · + 𝑍𝑧

𝜕𝛿𝑧

𝜕𝑧

)
𝑑𝑉 + 𝛿𝐴2

+
∬
(𝑆)

(𝑋𝛿𝑥 + 𝑌𝛿𝑦 + 𝑍𝛿𝑧)𝑑𝑆 + 𝛿𝐴3

The 15 coefficients of the displacement quantities, which appear in here and which
are going to be discussed immediately in more detail, shall be, for any deformation
of the considered medium, definite functions of 𝑥, 𝑦, 𝑧 or 𝑎, 𝑏, 𝑐 being along with
their derivatives everywhere bounded and, possibly with exceptions at individual
surfaces, continuous;

15 Such fundamental equations for the virtual work have early been developed as obvious gener-
alization to the formulas of point mechanics for many special problems. Almost naturally was the
form of the summands 𝛿𝐴1, 𝛿𝐴3, which replaces merely the sigma sign from point mechanics
with the integral (cf. for instance Lagrange, Méc. an., 1. part, IV, 11); but also terms of the form
𝛿𝐴2 only in very special form have been used by Lagrange e. g. for the treatment of the extensible
wire and the compressible fluid, namely terms, which are proportional to the variation of the length
or density, respectively (see Méc. an., 1. part, V, 42; VIII,1). Moreover, the development of the
generalized approach (5) has been initiated by the opinion to consider the virtual work as variation
of a “potential” (see No. 7), as introduced by C. L. Navier in the theory of elasticity (see IV 23,
No. 5, Müller-Timpe).
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𝑥, 𝑦, 𝑧 oder 𝑎, 𝑏, 𝑐 sein; dann ist der anschauliche Sinn des Ansatzes (1), dass lediglich
im allgemeinen stetig über den Raum sowie über einzelne Oberflächen verteilte
Kräfte und stetig verteilte Spannungen berücksichtigt werden.

Zunächst sind nämlich der erste und letzte Summand von 𝛿𝐴 den bekannten
Arbeitsausdrücken der Punktmechanik ganz analog gebaut, nur dass als Faktor die
Masse eines Volumelementes 𝜚𝑑𝑉 bzw. das Flächenelement 𝑑𝑆 auftritt; daher sind
𝑋,𝑌, 𝑍 als Komponenten der auf die Masseneinheit des Mediums und 𝑋,𝑌, 𝑍 als
Komponenten der auf die Flächeneinheit der Oberfläche berechneten an der betr.
Stelle wirkenden Kraft zu deuten. Da 𝛿𝑥, 𝛿𝑦, 𝛿𝑧 Axenprojektionen eines polaren
Vektors sind, und da 𝛿𝐴 als Skalar bei Koordinatentransformationen invariant bleibt,
substituieren sich diese Kraftkomponenten bei Änderungen des rechtwinkligen Ko-
ordinatensystemes wie 𝛿𝑥, 𝛿𝑦, 𝛿𝑧16): diese Kräfte sind polare Vektoren.

Eigentlich für die Mechanik der Kontinua charakteristisch ist der Summand 𝛿𝐴2.
Die 9 Koeffizienten 𝑋𝑥 , 𝑋𝑦 , . . . , 𝑍𝑧 — in der bekannten Kirchhoffschen17) Bezeich-
nung —, die die Einwirkung der einzelnen Bestimmungsstücke der virtuellen De-
formation auf die Arbeitsleistung messen, wird man als die Komponenten des Span-
nungszustandes (stress) an der betr. Stelle deuten, berechnet nach seiner Wirkung
auf die Volumeneinheit. Ihr Verhalten bei Koordinatentransformationen ergiebt sich
aus der Bemerkung, dass die 9 Ableitungen 𝜕𝛿𝑥

𝜕𝑥 , . . . , 𝜕𝛿𝑧𝜕𝑧 von Vektorkomponen-
ten sich bei orthogonalen Koordinatentransformationen wie die 9 Produkte aus den
Komponenten zweier Vektoren (eine sog. Dyade18))

𝑋1 · 𝑋2, 𝑋1 · 𝑌2, . . . , 𝑍1 · 𝑍2

16 Vgl. IV 14, Nr. 2, Abraham.
17 J. f. Math. 56 (1858) = G. Kirchhoff Ges. Abhandl. (Leipzig 1882), p. 287.
18 Die hiermit angedeutete Definition der Dyade als Komplex von Grössen mit bestimmtem Verhal-
ten gegenüber den rechtwinkligen Koordinatentransformationen („Hauptgruppe“ der räumlichen
Änderungen), die durchaus im Kreise der F. Kleinschen Auffassung der Geometrie, Vektoranalysis
usw. liegt (vgl. insbesondere Zeitschr. f. Math. Phys. 47 (1902), p. 237 und Math. Ann. 62 (1906),
p. 419, die Darstellung in IV 14, Abraham sowie F. Klein, Elementarmath. v. höh. Standp. aus,
Bd. 2, 2. Aufl., Leipzig 1913, p. 90 ff., p. 534) scheint bisher noch nicht zur Grundlage einer selb-
ständigen Darstellung gemacht zu sein. Der Name „dyadics“ stammt von J. W. Gibbs (s. Gibbs und
Wilson, Vektor Analysis, New York 1901, p. 260 ff.), der sie aus sog. linearen Vektorfunktionen
entstehen lässt; von hier aus sind sie auch in die deutsche Litteratur übergegangen (vgl. IV 11, Nr.
1c, K. Heun). Fasst man eine Dyade als Matrix von 3 · 3 Elementen auf, so ist der Dyadenkalkul in
dem Cayleyschen Matricenkalkul enthalten (vgl. über diesen I A 4, Nr. 10 19), Study).
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in that case, the concrete meaning of the ansatz (1) is that we merely consider
forces, which are in general continuously distributed on spatial domains as well as
on individual surfaces, and [that we only take] continuously distributed stresses [into
account].

To begin with, the first and the last summand of 𝛿𝐴 are similar to the familiar
work expressions of point mechanics, besides the appearance of the mass of a volume
element 𝜚𝑑𝑉 and the surface element 𝑑𝑆 as factor, respectively; thus 𝑋,𝑌, 𝑍 and
𝑋,𝑌, 𝑍 are to be interpreted as components of forces per unit mass of the medium and
per unit area, respectively, acting at their corresponding position. Since 𝛿𝑥, 𝛿𝑦, 𝛿𝑧
are the components of a polar vector, and since 𝛿𝐴 remains as scalar invariant under
coordinate transformations, for a change of the orthogonal coordinate system these
force components transform like 𝛿𝑥, 𝛿𝑦, 𝛿𝑧16): these forces are polar vectors.

Rather characteristic for the mechanics of continua is the summand 𝛿𝐴2. The
9 coefficients 𝑋𝑥 , 𝑋𝑦 , . . . , 𝑍𝑧 — in the familiar notation of Kirchhoff 17) —, which
measure the influence of the individual characteristic quantities of the virtual de-
formation on the expended work, can be interpreted as components of the stress
state at the corresponding position, computed by their action per unit volume. Their
behavior under coordinate transformation follows from the remark, that the 9 deriva-
tives 𝜕𝛿𝑥

𝜕𝑥 , . . . , 𝜕𝛿𝑧𝜕𝑧 of vector components transform under an orthogonal coordinate
transformation in the same way as the 9 products of the components of two vectors
(a so called dyad18))

𝑋1 · 𝑋2, 𝑋1 · 𝑌2, . . . , 𝑍1 · 𝑍2

16 Cf. IV 14, No. 2, Abraham.
17 J. f. Math. 56 (1858) = G. Kirchhoff Ges. Abhandl. (Leipzig 1882), p. 287.
18 The herewith indicated definition of the dyad as complex of quantities with a particular behavior
with respect to an orthogonal coordinate transformation (“basic group” of spatial transformations),
which lies definitively within the notion of F. Klein’s geometry, vector analysis and more (cf.
in particular Zeitschr. f. Math. Phys. 47 (1902), p. 237 and Math. Ann. 62 (1906), p. 419, the
presentation in IV 14, Abraham as well as F. Klein, Elementarmath. v. höh. Standp. aus, Bd. 2,
2. Aufl., Leipzig 1913, p. 90 ff., p. 534) seems hitherto not to be the basis of an independent
presentation. The name “dyadics” originates from J. W. Gibbs (see Gibbs and Wilson, Vektor
Analysis, New York 1901, p. 260 ff.), who gives rise to them starting with so called linear vector
functions; from here they have been transmitted to the German literature (cf. IV 11, No. 1c, K. Heun).
If one considers a dyad as a matrix of 3 · 3 elements, then the dyadic calculus is included within
Cayley’s matrix calculus (cf. for this I A 4, No. 10 19), Study).
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verhalten, während das bilineare Aggregat 𝑋𝑥 · 𝜕𝛿𝑥𝜕𝑥 + · · · invariant bleibt; daher
müssen sich die Spannungskomponenten selbst wiederum wie Dyadenkomponenten
transformieren, so dass man von einer Spannungsdyade spricht. Man kann diese, wie
jede Dyade, zerspalten in einen (symmetrischen) Bestandteil von 6 Komponenten
(ein Tensortripel19))

(2) 𝑋𝑥 , 𝑌𝑦 , 𝑍𝑧 ,
1
2 (𝑌𝑧 + 𝑍𝑦), 1

2 (𝑍𝑥 + 𝑋𝑧), 1
2 (𝑋𝑦 + 𝑌𝑥)

und einen (schiefsymmetrischen) Bestandteil von 3 Komponenten

(2′) 𝑍𝑦 − 𝑌𝑧 , 𝑋𝑧 − 𝑍𝑥 , 𝑌𝑥 − 𝑋𝑦 ,

der einen axialen Vektor darstellt. Diese Zerlegung entspricht der in Nr. 2 angegebe-
nen Hervorhebung zweier gesonderter Bestandteile (4), (4′) der virtuellen Deforma-
tion des Kontinuums, und ist aus ihr direkt zu entnehmen, wenn man den Integranden
von 𝛿𝐴2 so zerlegt:∑

( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

{
𝑋𝑥

𝜕𝛿𝑥

𝜕𝑥
+ 1

2 (𝑌𝑧 + 𝑍𝑦)
(
𝜕𝛿𝑦

𝜕𝑧
+ 𝜕𝛿𝑧

𝜕𝑦

)
+ (𝑍𝑦 − 𝑌𝑧) 1

2

(
𝜕𝛿𝑧

𝜕𝑦
− 𝜕𝛿𝑦

𝜕𝑧

) }
.20)

(Vgl. die Entwicklung in IV 14, Nr. 19, Abraham.)
Insbesondere folgt hieraus, dass die 6 Grössen (2) denjenigen Teil des Span-

nungszustandes bestimmen, der bei einer unendlichkleinen reinen Formänderung
des Kontinuums Arbeit leistet, also die eigentlichen elastischen Wirkungen, der Vek-
tor (2′) aber denjenigen, der bei einer virtuellen Drehung der Volumenelemente,
auch ohne Formänderung, in Betracht kommt, also die durch den Spannungszustand
bedingten Drehmomente. Aus dem negativen Vorzeichen in (1) ergibt sich weiter,
dass bei positivem 𝑋𝑥 positive Arbeit bei negativem 𝜕𝛿𝑥

𝜕𝑥 geleistet wird, dass also
Druck positiv gemessen ist.

Um endlich die Bedeutung der Spannungskomponenten als Flächen-kräfte aus
dem Ansatz (1) zu gewinnen21), denke man sich den Teil der virtuellen Arbeit
berechnet, den die Spannungen innerhalb eines von der geschlossenen Fläche 𝑆1
begrenzten Teilbereiches

19 In der Bezeichnung von W. Voigt; vgl. darüber IV 14, Nr. 17 M. Abraham.
20 Die Indizes am Summenzeichen und die analogen in der Folge bedeuten, daß die zu summierenden
Ausdrucke durch gleichzeitige zyklische Vertauschung von 𝑥, 𝑦, 𝑧 und 𝑋,𝑌 , 𝑍 entstehen
21 Das Folgende enthält die Überlegungen, die man seit C. L. Navier und G. Green macht, um aus
dem Ansatz des elastischen Potentiales die Grundgleichungen nebst ihrer anschaulichen Bedeutung
zu erhalten; man vergleiche das historische Referat in IV 23, Nr. 5 (Müller-Timpe) sowie z. B. die
Darstellung in H. v. Helmholtz, Vorles. über theoret. Phys. II (Leipzig 1902), § 23.
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while the bilinear aggregate 𝑋𝑥 · 𝜕𝛿𝑥
𝜕𝑥 + · · · remains invariant; hence the stress

components must also transform like the components of a dyad, with the result that
one speaks of a stress dyadic. One can compose it, as any dyad, into a (symmetric)
part with 6 components (a tensor triple19))

(2) 𝑋𝑥 , 𝑌𝑦 , 𝑍𝑧 ,
1
2 (𝑌𝑧 + 𝑍𝑦), 1

2 (𝑍𝑥 + 𝑋𝑧), 1
2 (𝑋𝑦 + 𝑌𝑥)

and a (skew-symmetric) part with 3 components

(2′) 𝑍𝑦 − 𝑌𝑧 , 𝑋𝑧 − 𝑍𝑥 , 𝑌𝑥 − 𝑋𝑦 ,

representing an axial vector. This decomposition corresponds to the two separate
parts (4), (4′) of the virtual deformation of the continuum considered in No. 2, and
is obtained directly by decomposing the integrand of 𝛿𝐴2 as follows:∑

( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

{
𝑋𝑥

𝜕𝛿𝑥

𝜕𝑥
+ 1

2 (𝑌𝑧 + 𝑍𝑦)
(
𝜕𝛿𝑦

𝜕𝑧
+ 𝜕𝛿𝑧

𝜕𝑦

)
+ (𝑍𝑦 − 𝑌𝑧) 1

2

(
𝜕𝛿𝑧

𝜕𝑦
− 𝜕𝛿𝑦

𝜕𝑧

) }
.20)

(Cf. the derivation in IV 14, No. 19, Abraham.)
In particular it follows, that the 6 quantities (2) determine this part of the stress

state, which expends work for an infinitesimally pure shape change of the continuum,
i. e. the actual elastic action, the vector (2′) on the other hand determines that part,
which can be considered for a virtual rotation of the volume element, also without
shape change, i. e. torques induced by the stress state. From the negative sign of
(1) it follows furthermore, that for positive 𝑋𝑥 and negative 𝜕𝛿𝑥

𝜕𝑥 positive work is
expended, such that pressure is consequently measured positive.

To obtain from the ansatz (1) finally the interpretation of the stress components
as surface forces 21), one considers the virtual work contribution expended by a
subdomain 𝑉1 bounded by a closed surface 𝑆1,

19 In the notation of W. Voigt; cf. in addition IV 14, No. 17 M. Abraham.
20 The indices of the sigma sign and similar ones in the following denote that the expressions to be
summed arise by simultaneous cyclic permutation of 𝑥, 𝑦, 𝑧 and 𝑋,𝑌 , 𝑍
21 The following includes the ideas, which are set since C. L. Navier and G. Green, to obtain from
the ansatz concerning the elastic potential the fundamental equations in addition with its intuitive
explanation; one should compare the historical presentation in IV 23, No. 5 (Müller-Timpe) as well
as e. g. the presentation in H. v. Helmholtz, Vorles. über theoret. Phys. II (Leipzig 1902), § 23.
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𝑉1 des Kontinuums leisten, d. i. das über 𝑉1 erstreckte Teilintegral von 𝛿𝐴2; sind
die Spannungskomponenten innerhalb 𝑉1 ausnahmslos stetig, so geht dies durch
partielle Integration (Anwendung des „Gaussschen Satzes“ , s. IV 14, p. 12) über in∭

(𝑉1)

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

( 𝜕𝑋𝑥
𝜕𝑥

+ 𝜕𝑋𝑦

𝜕𝑦
+ 𝜕𝑋𝑧

𝜕𝑧

)
𝛿𝑥 · 𝑑𝑉

+
∬
(𝑆1)

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

(𝑋𝑥 cos 𝑛𝑥 + 𝑋𝑦 cos 𝑛𝑦 + 𝑋𝑧 cos 𝑛𝑧)𝛿𝑥 · 𝑑𝑆1,

wo 𝑛 die nach𝑉1 hin gewendete Normalenrichtung der Fläche 𝑆1 an der Stelle des El-
ementes 𝑑𝑆1 bedeutet. Durch Vergleich mit (1) folgt also, dass der Spannungszustand
in 𝑉1 die gleiche virtuelle Arbeit leistet, d. h. gerade so wirkt, als ob neben Volu-
menkräften in 𝑉1 auf das Flächenelement 𝑑𝑆1 von 𝑆1 pro Flächeneinheit berechnet
die Kraft

(3) 𝑋𝑛 = 𝑋𝑥 cos 𝑛𝑥 + 𝑋𝑦 cos 𝑛𝑦 + 𝑋𝑧 cos 𝑛𝑧, (𝑋,𝑌, 𝑍)

wirkt. Dieses Cauchysche „Drucktheorem“ liefert dann bekanntlich durch Spezial-
isierung der Richtung von 𝑛 unmittelbar die Bedeutung der 9 Komponenten (vgl. IV
23, Nr. 3a, Müller-Timpe).

3b. Aufstellung des Prinzips der virtuellen Verrückungen. Auf Grund dieser
Begriffsbildungen lässt sich das Prinzip der virtuellen Verrückungen, das die Statik
der diskontinuierlichen mechanischen Systeme beherrscht22), unmittelbar auf die
Mechanik der Kontinua übertragen: In einem bestimmten Deformationszustand ist
ein kontinuierliches Medium, in dem gewisse Volumen- und Oberflächenkräfte 𝑋, . . .
und 𝑋, . . . und ein gewisser Spannungszustand 𝑋𝑥 , . . . bestehen, dann und nur dann
im Gleichgewicht, wenn die gesamte virtuelle Arbeit dieser Kräfte und Spannungen
für jede virtuelle Verrückung, die mit den dem Kontinuum etwa auferlegten Nebenbe-
dingungen verträglich ist, verschwindet:

(4)
∭
(𝑉 )

{
𝜚

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

𝑋𝛿𝑥 −
∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

(
𝑋𝑥

𝜕𝛿𝑥

𝜕𝑥
+ 𝑋𝑦

𝜕𝛿𝑥

𝜕𝑦
+ 𝑋𝑧

𝜕𝛿𝑥

𝜕𝑧

)}
𝑑𝑉

+
∬
(𝑆)

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

𝑋𝛿𝑥 · 𝑑𝑆 = 0.

Diese Übertragung hat tatsächlich bereits J. L. Lagrange 23) vollzogen, nachdem
er das Bernoullische Prinzip der virtuellen Verrückungen

22 Vgl. IV 1, Nr. 30, Voss.
23 Mécan. anal., 1. part., sect. IV. § II, sowie bei einer Reihe spezieller Probleme in sect. V—VIII.
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which is the integral over the part 𝑉1 of 𝛿𝐴2; for continuous stress components
within 𝑉1, [this virtual work contribution] is transformed further by integration by
parts (using the “Theorem of Gauss”, s. IV 14, p. 12), to∭

(𝑉1)

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

( 𝜕𝑋𝑥
𝜕𝑥

+ 𝜕𝑋𝑦

𝜕𝑦
+ 𝜕𝑋𝑧

𝜕𝑧

)
𝛿𝑥 · 𝑑𝑉

+
∬
(𝑆1)

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

(𝑋𝑥 cos 𝑛𝑥 + 𝑋𝑦 cos 𝑛𝑦 + 𝑋𝑧 cos 𝑛𝑧)𝛿𝑥 · 𝑑𝑆1,

where 𝑛 denotes the normal of the surface 𝑆1 at the position of the element 𝑑𝑆1
pointing in direction of 𝑉1. By comparison with (1) it follows consequently, that the
stress state in𝑉1 expends the same virtual work, i. e. acts equally as if besides volume
forces in 𝑉1 the force per area

(3) 𝑋𝑛 = 𝑋𝑥 cos 𝑛𝑥 + 𝑋𝑦 cos 𝑛𝑦 + 𝑋𝑧 cos 𝑛𝑧, (𝑋,𝑌, 𝑍)

were acting on the surface element 𝑑𝑆1 of 𝑆1. This “pressure theorem” of Cauchy
provides then, by specializing the directions of 𝑛, immediately the interpretation of
the 9 components (cf. IV 23, No. 3a, Müller-Timpe).

3b. Formulation of the principle of virtual displacements. Due to these concep-
tualizations the principle of virtual displacements, dominating the statics of discrete
mechanical systems22), can be adopted immediately for the mechanics of continua:
A continuous medium in a particular state of deformation, for certain volume and
surface forces 𝑋, . . . and 𝑋, . . . , respectively, and for a certain stress state 𝑋𝑥 , . . . ,
is in equilibrium if and only if the total virtual work of these forces and stresses van-
ish for every virtual displacement, which is admissible with respect to the possibly
imposed constraints of the continuum:

(4)
∭
(𝑉 )

{
𝜚

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

𝑋𝛿𝑥 −
∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

(
𝑋𝑥

𝜕𝛿𝑥

𝜕𝑥
+ 𝑋𝑦

𝜕𝛿𝑥

𝜕𝑦
+ 𝑋𝑧

𝜕𝛿𝑥

𝜕𝑧

)}
𝑑𝑉

+
∬
(𝑆)

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

𝑋𝛿𝑥 · 𝑑𝑆 = 0.

This adoption has been implemented in fact already by J. L. Lagrange 23), after
postulating Bernoulli’s principle of virtual displacements

22 Cf. IV 1, No. 30, Voss.
23 Mécan. anal., 1. part., sect. IV. § II, as well as for a series of particular problems in sect. V—VIII.
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zur Grundlage seiner analytischen Mechanik gemacht hatte; für ihn ist eine selb-
stverständliche Folge der Gültigkeit dieses Prinzips in der Punktmechanik seine
Anwendbarkeit auf die ihm zugänglichen Probleme der Mechanik der Kontinua, wo
immer er den Arbeitsausdruck durch einen Grenzübergang von diskontinuierlichen
Systemen aus oder durch direkte Intuition aufzustellen vermag. Man hat seither
auch auf den weiteren der Behandlung erschlossenen Gebieten der Mechanik der
Kontinua das Prinzip der virtuellen Verrückungen zur Geltung gebracht und hat sich
dabei häufig, wie Lagrange, auf die Vorstellung gestützt, dass man das Kontinuum
durch Systeme von endlichvielen Massenpunkten, und gleichzeitig alle physikalis-
chen Vorgänge im Kontinuum durch entsprechende Vorgänge in diesen approx-
imierenden Systemen annähern kann; freilich scheint eine axiomatische Präzisierung
dieses Zusammenhanges, die vor allem die zur Umwandlung jener Analogisierun-
gen in strenge Deduktionen notwendigen Stetigkeitsforderungen zu postulieren hätte,
bisher nicht gegeben worden zu sein. Man mag es daher inzwischen vorziehen, für
die Mechanik der Kontinua das eingangs formulierte Prinzip selbst als oberstes Ax-
iom an die Spitze zu stellen (vgl. IV I, p. 72, Voss); man wird diesen Standpunkt um
so lieber einnehmen, wenn man die Vorstellung kontinuierlich ausgedehnter Medien
für naturgemässer hält als die abstrahierten „Massenpunkte“ der Punktmechanik.24)
Die Gewissheit der Richtigkeit dieses Axioms liegt einerseits darin begründet, dass
ein solcher Ansatz unsern allgemeinen physikalischen Anschauungen und Denkge-
wohnheiten entspricht, vor allem aber darin, dass er anpassungsfähig genug ist, um
die Erfahrungstatsachen hinreichend gut darzustellen.

3c. Anwendung auf stetig deformierbare Kontinua. Die bekannten formalen
Operationen der Variationsrechnung gestatten es in jedem Falle leicht, das Prinzip
der virtuellen Verrückungen in eine Anzahl von Gleichungen zwischen den Kräften
und Spannungen umzusetzen.25) Betrachten wir zunächst nur als typisch das in
keiner Weise durch Nebenbedingungen beschränkte beliebig stetig deformierbare
Medium, so muß die Bedingung (4) für jedes System stetiger Funktionen 𝛿𝑥, 𝛿𝑦, 𝛿𝑧
erfüllt sein. Die Umformung von (4) durch

24 Diese Anschauung hat neuerdings besonders G. Hamel (Math. Ann. 66 (1908), p. 350 und
Jahresb. d. Math.-Ver. 18 (1909), p. 357; vgl. auch sein Lehrbuch „Elementare Mechanik“, Leipzig
1912) vertreten; er giebt dort eine vollständige Axiomatik der Mechanik der Kontinua, die das eine
Grundprinzip, wie es hier benutzt ist, in eine Reihe unabhängiger Sätze auflöst
25 So ist schon Lagrange in der Méc. an. bei den dort behandelten Probleme vorgegangen; s. Anm.
23.
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as foundation of his analytical mechanics; for him the natural consequences of the
validity of this principle of point mechanics is its applicability to problems of the
mechanics of continua accessible for himself, whenever he is able to obtain the
work expression by a limit process of discrete systems or by direct intuition. Since
then one has also applied the principle of virtual displacements to further fields
of the mechanics of continua, and has, like Lagrange, often based oneself on the
perception, to be able to approximate the continuum by a system of finitely many
mass points and that at the same time all physical processes in the continuum can be
approximated by corresponding processes in these approximated systems; however
it does not seem that such an axiomatic clarification of this connection have already
been given, [a clarification] concerning the transformation of those intuitions into
rigorous deductions would particularly have to postulate the necessary continuity
requirements. Thus one may prefer in the meantime for the mechanics of continua,
to choose the principle formulated at the beginning as the highest axiom (cf. IV I,
p. 72, Voss); one prefers to take up this position anyway, when one considers the
concept of continuously distributed media as more natural than the abstract “mass
points” of point mechanics.24) The certainty of the validity of this axiom is justified
that such an ansatz corresponds with our general physical intuition and habitual ways
of thinking, but in particular therein, that it is adaptive to represent the empirical
facts sufficiently enough.

3c. Application to continuously deformable bodies. The established formal
operations of the calculus of variations enable easily, to transform the principle of
virtual displacements into a number of equations between forces and stresses.25)
Consider at first only the aribtrarily continuously deformable medium which is
typically not at all constrained, then the condition (4) must be satisfied for every
system of continuous functions 𝛿𝑥, 𝛿𝑦, 𝛿𝑧.

24 This perception has recently been represented in particular by G. Hamel (Math. Ann. 66 (1908),
p. 350 and Jahresb. d. Math.-Ver. 18 (1909), p. 357; cf. also his textbook “Elementare Mechanik”,
Leipzig 1912); therein he introduces a complete axiomatic system of the mechanics of continua, in
which the fundamental principle, used here, follows from a sequence of independent theorems.
25 AlreadyLagrange proceeded in the Méc. an. in this way to treat the problems therein; see remark
23.
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partielle Integration ergiebt dann, falls Kräfte, Spannungen und deren partielle
Ableitungen überall in 𝑉 stetig sind, die Gleichungen:

1) an jeder Stelle des Bereiches 𝑉

(5a)
𝜕𝑋𝑥
𝜕𝑥

+ 𝜕𝑋𝑦

𝜕𝑦
+ 𝜕𝑋𝑧

𝜕𝑧
+ 𝜚𝑋 = 0 (𝑋,𝑌, 𝑍),

2) an jeder Stelle der Oberfläche 𝑆 mit der äusseren Normalenrichtung 𝑛

(5b) 𝑋𝑥 cos 𝑛𝑥 + 𝑋𝑦 cos 𝑛𝑦 + 𝑋𝑧 cos 𝑛𝑧 = 𝑋 (𝑋,𝑌, 𝑍).

Damit sind die sog. „Spannungsgleichungen“ nebst den zugehörigen Ober-
flächenbedingungen gewonnen, die die notwendigen und hinreichenden Bedingungen
dafür geben, dass ein bestimmtes in einer gewissen Lage auf ein frei deformierbares
Kontinuum wirkendes Kraft- und Spannungssystem im Gleichgewicht ist.26) Freilich
genügen diese Bedingungen keineswegs, um die Spannungs- und Kraftkomponen-
ten zu bestimmen: dazu müssen noch die erst später zu behandelnden Relationen
hinzutreten, die die Abhängigkeit der Kräfte und Spannungen von der wirklich stat-
tfindenden Deformation des Kontinuums oder von irgendwelchen äusseren Ursachen
zum Ausdruck bringen (vgl. IV 6, Nr. 26, Stäckel und IV 23, 3b, Müller-Timpe).

In (4), (5) sind die unabhängigen Variablen Koordinaten im deformierten Zus-
tand des Kontinuums, und auch Kraft- und Spannungskomponenten finden ihre an-
schauliche Bedeutung als Wirkungen auf Massen- bzw. Flächeneinheiten des Medi-
ums im deformierten Zustand. Demgegenüber verwendet man seit S. D. Poisson 27)
vielfach auch die 𝑎, 𝑏, 𝑐, aufgefasst als Koordinaten in der Ausgangslage des Medi-
ums als unabhängige Variable; das führt zwar auf Kraftkomponenten von weniger
unmittelbarer physikalischer Bedeutung, ist aber analytisch für viele Zwecke beque-
mer. Es wird nämlich, wenn

(6) 𝑘 · 𝑑𝑆0 = 𝑑𝑆

26 Die Gleichungen gehen auf A. L. Cauchy zurück, Exerc. de math. 2 (1827) = Oeuvres 7, sér. II,
p. 141. Vgl. die weiteren Angaben hierüber in IV 23, Nr. 3b, Müller-Timpe.
27 Paris Mém. de l’Acad. 8 (1829), p. 387; J. éc. polyt. 20 (1831), p. 54. Dieser Unterschied ist
vielfach übersehen worden, da er bei der Betrachtung unendlichkleiner Deformationen von einem
spannungslosen Ruhezustande aus tatsächlich verschwindet; so ist er erst in der Entwicklung der
Elastizitätstheorie endlicher Deformationen recht zur Geltung gekommen (vgl. unten Nr. 7 und 9).
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For forces, stresses and partial derivatives being continuous everywhere in 𝑉 , the
transformation of (4) yields by integration by parts the equations:

1) for every point of the domain 𝑉

(5a)
𝜕𝑋𝑥
𝜕𝑥

+ 𝜕𝑋𝑦

𝜕𝑦
+ 𝜕𝑋𝑧

𝜕𝑧
+ 𝜚𝑋 = 0 (𝑋,𝑌, 𝑍),

2) for every point on the surface 𝑆 with outward pointing normal direction 𝑛

(5b) 𝑋𝑥 cos 𝑛𝑥 + 𝑋𝑦 cos 𝑛𝑦 + 𝑋𝑧 cos 𝑛𝑧 = 𝑋 (𝑋,𝑌, 𝑍).

Thereby the so-called “equations of stress” together with the corresponding sur-
face conditions are obtained, which give the necessary and sufficient conditions that
a particular force and stress system, acting on a freely deformable continuum in a
certain position, is in equilibrium.26) Certainly these conditions are not enough, to
determine the stress and force components: To this we must add the relations which
will be treated later on and which express the dependence of forces and stresses on
the actual deformation of the continuum or on any external causes (cf. IV 6, No. 26,
Stäckel and IV 23, 3b, Müller-Timpe).

In (4), (5) the independent variables are the coordinates of the deformed state of
the continuum, and also force and stress components have their descriptive meaning
as effect per unit mass or surface of the medium in the deformed state. On the
other hand, since S. D. Poisson 27) one often refers to 𝑎, 𝑏, 𝑐, being the coordinates
of the initial position of the medium as independent variables; indeed, this leads to
force components of physical interpretation less immediate, but it is for many cases
analytically more convenient. Setting

(6) 𝑘 · 𝑑𝑆0 = 𝑑𝑆

26 These equations can be traced back to A. L. Cauchy, Exerc. de math. 2 (1827) = Oeuvres 7, sér.
II, p. 141. Cf. the further references about this in IV 23, No. 3b, Müller-Timpe.
27 Paris Mém. de l’Acad. 8 (1829), p. 387; J. éc. polyt. 20 (1831), p. 54. This difference has been
frequently overlooked, since it vanishes in fact for the consideration of infinitesimal deformations
from a stress free state of equilibrium; so it has shown to be useful only when the development of
the theory of elasticity of finite deformations (cf. below No. 7 and 9) [was achieved].
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gesetzt und Nr. 2, (7) berücksichtigt wird:

(7) 𝛿𝐴 =

∭
(𝑉0)

[
𝜚0

∑
(𝑥𝑦𝑧)

𝑋𝛿𝑥 −
∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

(
𝑋𝑎

𝜕𝛿𝑥

𝜕𝑎
+ 𝑋𝑏

𝜕𝛿𝑥

𝜕𝑏
+ 𝑋𝑐

𝜕𝛿𝑥

𝜕𝑐

)]
𝑑𝑉0

+
∬
(𝑆0)

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

𝑋𝑘𝛿𝑥 · 𝑑𝑆0,

wobei

(8) Δ · 𝑋𝑥 = 𝑋𝑎
𝜕𝑥

𝜕𝑎
+ 𝑋𝑏

𝜕𝑥

𝜕𝑏
+ 𝑋𝑐

𝜕𝑥

𝜕𝑐
(𝑋,𝑌, 𝑍; 𝑥, 𝑦, 𝑧).

Daher sind, wie durch Auflösung und Vergleich mit (3) folgt, 𝑋𝑎, 𝑌𝑎, 𝑍𝑎 die Kom-
ponenten der Flächenkraft, die auf ein Element der Fläche 𝑎 = const. vermöge
des Spannungszustandes in der nach der Seite wachsender 𝑎 hin gelegenen Materie
wirkt, berechnet auf die Einheit der Fläche in der Ausgangslage im 𝑎-𝑏-𝑐-Raum.28)
Aus (7) entsteht eine neue Form der Gleichgewichtsbedingungen28) genau so wie
(5a), (5b) aus (4) entstehen:

(9a)
𝜕𝑋𝑎
𝜕𝑎

+ 𝜕𝑋𝑏
𝜕𝑏

+ 𝜕𝑋𝑐
𝜕𝑐

+ 𝜚0𝑋 = 0 innerhalb 𝑉0 (𝑋,𝑌, 𝑍),

(9b) 𝑋𝑎 cos 𝑛0𝑎 + 𝑋𝑏 · cos 𝑛0𝑏 + 𝑋𝑐 cos 𝑛0𝑐 = 𝑘𝑋 auf 𝑆0 (𝑋,𝑌, 𝑍);

hierbei bedeutet 𝑛0 die äussere Normalenrichtung des Flächenelementes 𝑑𝑆0 im
𝑎-𝑏-𝑐-Raum.

3d. Beziehungen zur Mechanik starrer Körper. Man kann die Gleichgewichts-
bedingungen (5) noch in etwas anderer Weise aus dem Prinzip (4) herleiten und er-
hält dadurch den Zusammenhang mit dem nach dem Vorgange von A. L. Cauchy 29)
vielfach zu ihrer direkten Aufstellung benutzten „Erstarrungsprinzip“, dass jeder
aus dem deformierten Kontinuum herausgeschnittene Teil unter der Einwirkung
der in seinem Inneren angreifenden Volumkräfte und der an seiner Oberfläche an-
greifenden Kräfte (3) wie ein starrer Körper im Gleichgewicht sein muss. Zu diesem
Ende braucht man nur gewisse unstetige Verrückungen zu betrachten, die freilich
den Zusammenhang des stetig deformierbaren Kontinuums verletzen und für die 𝛿𝐴
daher zunächst

28 Vgl. IV 23, Nr. 6 (Müller-Timpe) und etwa die ausführliche Darstellung (die freilich Symmetrie
der Spannungsdyade voraussetzt) bei E. und F. Cosserat; Ann. de Toulouse, X (1896), p. 146;
die Schreibweise 𝑋𝑎 , 𝑋𝑏 , . . . erscheint konsequenter als die dort gebrauchte 𝐴𝑥 , 𝐵𝑥 , . . . , da sie
grosse Buchstaben für die Bezeichnung der Komponenten, die Indizes aber für die Charakter-
isierung des betrachteten Flächenelemente beibehält.
29 Bull. soc. philomath. 1823, p. 9 und Exerc. de math. 2 (1827) = Oeuvres, sér. II, t. 7, p. 141; vgl.
die Angaben in IV 6, Nr. 26, Stäckel und IV 23, Nr. 3b, Müller-Timpe.
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and considering No. 2, (7), we obtain namely:

(7) 𝛿𝐴 =

∭
(𝑉0)

[
𝜚0

∑
(𝑥𝑦𝑧)

𝑋𝛿𝑥 −
∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

(
𝑋𝑎

𝜕𝛿𝑥

𝜕𝑎
+ 𝑋𝑏

𝜕𝛿𝑥

𝜕𝑏
+ 𝑋𝑐

𝜕𝛿𝑥

𝜕𝑐

)]
𝑑𝑉0

+
∬
(𝑆0)

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

𝑋𝑘𝛿𝑥 · 𝑑𝑆0,

where

(8) Δ · 𝑋𝑥 = 𝑋𝑎
𝜕𝑥

𝜕𝑎
+ 𝑋𝑏

𝜕𝑥

𝜕𝑏
+ 𝑋𝑐

𝜕𝑥

𝜕𝑐
(𝑋,𝑌, 𝑍; 𝑥, 𝑦, 𝑧).

Therefore, by solving and comparing with (3) it follows, that 𝑋𝑎, 𝑌𝑎, 𝑍𝑎 are the
components of the surface force, computed per unit area of the initial position in
the 𝑎-𝑏-𝑐-space, which due to the stress state acts via an element of the surface
𝑎 = const. on the matter lying on this side for which 𝑎 is increasing.28) From (7) a
new form of the equilibrium conditions28) arises, in the same manner as (5a), (5b)
arise from (4):

(9a)
𝜕𝑋𝑎
𝜕𝑎

+ 𝜕𝑋𝑏
𝜕𝑏

+ 𝜕𝑋𝑐
𝜕𝑐

+ 𝜚0𝑋 = 0 in 𝑉0 (𝑋,𝑌, 𝑍),

(9b) 𝑋𝑎 cos 𝑛0𝑎 + 𝑋𝑏 · cos 𝑛0𝑏 + 𝑋𝑐 cos 𝑛0𝑐 = 𝑘𝑋 on 𝑆0 (𝑋,𝑌, 𝑍);

hereby 𝑛0 denotes the outward pointing normal direction of the surface element 𝑑𝑆0
in the 𝑎-𝑏-𝑐-space.

3d. Relation to the mechanics of rigid bodies. It is also possible to derive the
equilibrium conditions (5) in a slightly different way starting with the principle (4)
and thereby one obtains the connection to the “rigidifying principle”, frequently used
for the direct derivation of the equilibrium conditions according to the approach of
A. L. Cauchy 29), stating that every part cut out of the deformable continuum exposed
to the volume forces applied within the part and the forces applied on the surface
(3) must be in equilibrium like a rigid body. For this, one only has to consider
certain discontinuous displacements, which certainly violate the connection of the
continuously deformable continuum and for which 𝛿𝐴 does

28 Cf. IV 23, No. 6 (Müller-Timpe) and for instance the detailed presentation (which presumes
certainly the symmetry of the stress dyad) of E. and F. Cosserat; Ann. de Toulouse, X (1896),
p. 146; the notation 𝑋𝑎 , 𝑋𝑏 , . . . seems to be more consistent than 𝐴𝑥 , 𝐵𝑥 , . . . , used there,
since it remains the capital letters for the denotation of the components, but the indices for the
characterization of the considered surface element.
29 Bull. soc. philomath. 1823, p. 9 and Exerc. de math. 2 (1827) = Oeuvres, sér. II, t. 7, p. 141; cf.
the references in IV 6, No. 26, Stäckel and IV 23, No. 3b, Müller-Timpe.
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nicht zu verschwinden braucht: man kommt aber zum Ziele, wenn man sie durch
eine Schar stetiger virtueller Verrückungen approximiert.

So werde eine Verrückung, die in einem Teilgebiet 𝑉1 von 𝑉 mit der Grenzfläche
𝑆1 konstante Werte 𝛿𝑥 = 𝛼, 𝛿𝑦 = 𝛽, 𝛿𝑧 = 𝛾 hat, außerhalb 𝑉1 aber 0 ist (d. i. eine
Translation des Bereiches 𝑉1), durch stetige virtuelle Verrückungen angenähert,
indem 𝑉1 mit einem beliebig kleinen Gebiete 𝑉2 umgeben wird, innerhalb dessen
𝛿𝑥, 𝛿𝑦, 𝛿𝑧 von 𝛼, 𝛽, 𝛾 nach 0 stetig abfallen. Für eine solche virtuelle Verrückung
folgt aus (4):∭

(𝑉1)

𝜚(𝑋𝛼 + 𝑌 𝛽 + 𝑍𝛾)𝑑𝑉1 +
∬
(𝑆1)

(𝑋𝑛𝛼 + 𝑌𝑛𝛽 + 𝑍𝑛𝛾)𝑑𝑆1

+
∭
(𝑉2)

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

(
𝜚𝑋 + 𝜕𝑋𝑥

𝜕𝑥
+ 𝜕𝑋𝑦

𝜕𝑦
+ 𝜕𝑋𝑧

𝜕𝑧

)
𝛿𝑥 · 𝑑𝑉2 = 0,

wo 𝑛 die von 𝑉1 fortzeigende Normale von 𝑑𝑆1 ist. Lässt man nun 𝑉2 immer
kleiner werden, so wird das zweite Integral beliebig klein, da die 𝑋, 𝑋𝑥 , . . . und
ihre Ableitungen endlich bleiben, und es ergeben sich, da 𝛼, 𝛽, 𝛾 beliebig ist, drei
Gleichungen

(10)
∭
(𝑉1)

𝜚𝑋𝑑𝑉1 +
∬
(𝑆1)

𝑋𝑛𝑑𝑆 = 0 (𝑋,𝑌, 𝑍).

Das sind genau die Gleichungen, die durch Anwendung des sog. Schwerpunktsatzes
auf den im oben geschilderten Sinne starr gedachten und aus dem Kontinuum her-
ausgeschnittenen Teil 𝑉1 entstehen. Wegen der Willkür des Bereiches 𝑉1 kann man
dann bekanntlich aus (10) die Gleichungen (5a) gewinnen (vgl. IV 23, Müller-Timpe,
p. 23).

Geht man in ähnlicher Weise von einer starren Drehung eines Teilbereiches 𝑉1
mit den Komponenten 𝑞𝑧 − 𝑟𝑦, 𝑟𝑥 − 𝑝𝑧, 𝑝𝑦 − 𝑞𝑥 aus, so folgen drei Gleichungen:

(11)
∭
(𝑉1)

{𝜚(𝑍𝑦 − 𝑌𝑧) + 𝑌𝑧 − 𝑍𝑦}𝑑𝑉1+
∬
(𝑆1)

(𝑍𝑛𝑦 − 𝑌𝑛𝑧)𝑑𝑆1 = 0 (𝑋,𝑌, 𝑍).

Das stimmt nur dann mit dem auf 𝑉1 als starren Körper angewandten Flächen-
satz überein, wenn man den Momenten der räumlich verteilten Kräfte 𝑋,𝑌, 𝑍
und der Flächenkräfte 𝑋𝑛, 𝑌𝑛, 𝑍𝑛 noch ein direkt am Volumelement angreifendes
Drehmoment entgegengesetzt gleich dem Vektorbestandteil (2′) der Spannungs-
dyade hinzurechnet. Postuliert man also den Flächensatz in der üblichen Form, dass
die Summe der Momente der Volumen- und Flächenkräfte verschwindet, so folgt
daraus unmittelbar die Symmetrie der Spannungsdyade.30)

30 Diese Forderung hat G. Hamel 24) als „Boltzmannsches Axiom“ unter seine Axiome der
Mechanik der Volumenelemente aufgenommen.
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not have to vanish at first: though one succeeds by approximating it with a family of
continuous virtual displacements.

Hence, a displacement, which on a subset 𝑉1 of 𝑉 with boundary 𝑆1 has constant
values 𝛿𝑥 = 𝛼, 𝛿𝑦 = 𝛽, 𝛿𝑧 = 𝛾, but is 0 outside of 𝑉1 (which is a translation of the
domain 𝑉1), is approximated by continuous virtual displacements, by surrounding
𝑉1 with an arbitrary small region 𝑉2, in which 𝛿𝑥, 𝛿𝑦, 𝛿𝑧 decrease continuously from
𝛼, 𝛽, 𝛾 to 0. For such a virtual displacement it follows from (4):∭

(𝑉1)

𝜚(𝑋𝛼 + 𝑌 𝛽 + 𝑍𝛾)𝑑𝑉1 +
∬
(𝑆1)

(𝑋𝑛𝛼 + 𝑌𝑛𝛽 + 𝑍𝑛𝛾)𝑑𝑆1

+
∭
(𝑉2)

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

(
𝜚𝑋 + 𝜕𝑋𝑥

𝜕𝑥
+ 𝜕𝑋𝑦

𝜕𝑦
+ 𝜕𝑋𝑧

𝜕𝑧

)
𝛿𝑥 · 𝑑𝑉2 = 0,

where 𝑛 is the normal of 𝑑𝑆1 being outward pointing with respect to 𝑉1. Letting 𝑉2
become smaller and smaller, the second integral gets arbitrary small, since 𝑋, 𝑋𝑥 , . . .
and the derivatives thereof remain finite, and since 𝛼, 𝛽, 𝛾 are arbitrary, one obtains
the three equations

(10)
∭
(𝑉1)

𝜚𝑋𝑑𝑉1 +
∬
(𝑆1)

𝑋𝑛𝑑𝑆 = 0 (𝑋,𝑌, 𝑍).

These are precisely the equations obtained by the application of the so-called center-
of-mass theorem on the part 𝑉1 being cut out of the continuum and being regarded
as rigid in the above mentioned manner. Due to the arbitrariness of the domain
𝑉1, as is generally known, one can gain from (10) the equations (5a). (cf. IV 23,
Müller-Timpe, p. 23).

Proceeding on the assumption of a rigid rotation of the subset𝑉1 with components
𝑞𝑧 − 𝑟𝑦, 𝑟𝑥 − 𝑝𝑧, 𝑝𝑦 − 𝑞𝑥, consequently three equations follow:

(11)
∭
(𝑉1)

{𝜚(𝑍𝑦 − 𝑌𝑧) + 𝑌𝑧 − 𝑍𝑦}𝑑𝑉1+
∬
(𝑆1)

(𝑍𝑛𝑦 − 𝑌𝑛𝑧)𝑑𝑆1 = 0 (𝑋,𝑌, 𝑍).

This coincides exactly with the law of equal area applied to 𝑉1 if one adds to the
moments of the spatially distribute forces 𝑋,𝑌, 𝑍 and the surface forces 𝑋𝑛, 𝑌𝑛, 𝑍𝑛
an opposed torque exerted directly at the volume element corresponding to the vector
components (2′) of the stress dyad. By postulating the law of equal areas in the usual
form, i. e. the sum of the moments of the volume and surface forces vanishes, thereof
the symmetry of the stress dyad follows immediately.30)

30 This requirement denoted as “Boltzmann axiom” has been included by G. Hamel 24) into his
axioms of the mechanics of volume elements.
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In nahem Zusammenhange mit diesen Tatsachen steht eine andere Auffassung
des Prinzipes der virtuellen Verrückungen, die von vornherein nur die eigentlichen
Kräfte, die Massenkräfte 𝑋,𝑌, 𝑍 und die Flächenkräfte 𝑋,𝑌, 𝑍 , als gegeben betra-
chtet; es ist die folgende leichte Fortbildung der Formulierung von G. Piola 31) : Für
das Gleichgewicht ist notwendig, dass die virtuelle Arbeit der angeführten Kräfte∭

(𝑉 )

(𝑋𝛿𝑥 + 𝑌𝛿𝑦 + 𝑍𝛿𝑧)𝑑𝑉 +
∬
(𝑆)

(𝑋𝛿𝑥 + 𝑌𝛿𝑦 + 𝑍𝛿𝑧)𝑑𝑆

verschwindet für alle rein translatorischen virtuellen Verrückungen des ganzen Bere-
iches 𝑉 . Drückt man diese Nebenbedingung für die Verrückungen, nämlich durch
die 9 partiellen Differentialgleichungen aus:

𝜕𝛿𝑥

𝜕𝑥
= 0,

𝜕𝛿𝑥

𝜕𝑦
= 0, . . . ,

𝜕𝛿𝑧

𝜕𝑧
= 0,

so kann man nach dem bekannten Kalkül der Variationsrechnung 9 zugehörige
Lagrangesche Faktoren −𝑋𝑥 ,−𝑋𝑦 , . . . ,−𝑍𝑧 einführen und erhält dann genau die
Gleichung (4) des alten Prinzips, wobei sich also die Komponenten der Spannungs-
dyade als Lagrangesche Faktoren gewisser Starrheitsbedingungen erweisen. Sie
werden natürlich durch dieses Variationsprinzip nicht bestimmt, spielen vielmehr
genau die gleiche Rolle wie die inneren Spannungen in den statisch unbestimmten
Problemen der Mechanik starrer Körper.32)

Stellt man die gleiche Forderung für alle starren Bewegungen von 𝑉 über-
haupt (statt nur für die Translationen), so erhält man genau den in IV 23, p. 23
wiedergegebenen Piolaschen Ansatz, der gemäss den 6 Nebenbedingungen nur 6
Lagrangesche Faktoren und damit eine symmetrische Spannungsdyade, liefert.

3e. Zwei- und eindimensionale Kontinua im dreidimensionalen Raume. Alle
diese Ansätze lassen sich unmittelbar auch für die am Ende von Nr. 2 berührten
zwei- und eindimensionalen Kontinua, die im dreidimensionalen Raume gelegen
sind, aufstellen.33) Die einzige Modifikation ist, dass sich die Dimension der Inte-
grationsgebiete ändert, und dass statt der Ableitungen der virtuellen Verrückungen
nach den drei Raumkoordinaten diejenigen nach den zwei bzw. der einen Koordinate
innerhalb des deformierten Mediums eingehen.

31 Modena Mem. 24, parte 1 (1848), p. 1; vgl. IV 23, Nr. 3b, Müller-Timpe.
32 Vgl. auch IV 6, Nr. 26 (Stäckel) , p. 550 und IV 23, Nr. 3b (Müller-Timpe), p. 24.
33 Für eine Reihe besonderer Probleme finden sich auch diese Ansätze schon in Lagrange, Mécan.
anal.; s. 1. part, sect IV, Nr. 25 ff.; sect. V, chap. III.
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In close relationship to these facts is another notion of the principle of virtual
displacements considering at first only the actual forces, i. e. the forces per unit mass
𝑋,𝑌, 𝑍 and the surface forces 𝑋,𝑌, 𝑍 , as given; it is the following slightly advanced
formulation of G. Piola 31): For the equilibrium it is necessary that the virtual work
of the applied forces∭

(𝑉 )

(𝑋𝛿𝑥 + 𝑌𝛿𝑦 + 𝑍𝛿𝑧)𝑑𝑉 +
∬
(𝑆)

(𝑋𝛿𝑥 + 𝑌𝛿𝑦 + 𝑍𝛿𝑧)𝑑𝑆

vanishes for all purely translational virtual displacements of the whole domain 𝑉 .
Expressing these constraints of the displacements identical to the 9 partial differential
equations:

𝜕𝛿𝑥

𝜕𝑥
= 0,

𝜕𝛿𝑥

𝜕𝑦
= 0, . . . ,

𝜕𝛿𝑧

𝜕𝑧
= 0,

then, due to the well-known calculus of variations one can introduce 9 corresponding
Lagrange multipliers −𝑋𝑥 ,−𝑋𝑦 , . . . ,−𝑍𝑧 and [one] obtains precisely equation (4)
of the old principle, whereas the components of the stress dyad appear as Lagrange
multiplier of certain rigidity constraints. Certainly, they are not determined by this
variational principle and play in fact exactly the same role as the internal stresses of
the statically indeterminate problems of rigid body mechanics.32)

Assuming the same requirement for all rigid motions of 𝑉 at all (instead of
mere translations), one obtains precisely Piola’s ansatz given in IV 23, p. 23, which
provides due to the 6 constraints only 6 Lagrange multipliers and consequently a
symmetric stress dyad.

3e. Two- and one-dimensional continua in the three-dimensional space. All
these fundamentals can immediately be formulated also for two- and one-dimensional
continua being embedded in the three-dimensional space, which have been men-
tioned at the end of No. 2.33) The only modification is the change in the dimension
of the domain of integration and that instead of the derivatives of the virtual dis-
placements with respect to the three spatial directions, the derivatives with respect
to the two or one coordinate within the deformed medium enter.

31 Modena Mem. 24, parte 1 (1848), p. 1; vgl. IV 23, No. 3b, Müller-Timpe.
32 Cf. also IV 6, No. 26 (Stäckel) , p. 550 and IV 23, No. 3b (Müller-Timpe), p. 24.
33 For a series of particular problems these fundamentals can already be found in Lagrange, Mécan.
anal.; s. 1. part, sect IV, No. 25 ff.; sect. V, chap. III.



3e. Zwei- und eindimensionale Kontinua im dreidimensionalen Raume. 621

Betrachten wir im einzelnen zunächst ein zweidimensionales Kontinuum, das
im deformierten Zustande ein einfach zusammenhängendes Flächenstück 𝑆 mit der
Randkurve 𝐶 bildet; auf 𝑆 sei ein — der Einfachheit halber — orthogonales Param-
etersystem 𝑢, 𝑣 festgelegt, Längen- und Flächenelement sei durch

𝑑𝑠2 = 𝐸𝑑𝑢2 + 𝐺𝑑𝑣2, 𝑑𝑆 = ℎ𝑑𝑢𝑑𝑣, ℎ =
√
𝐸𝐺

gegeben, und es bezeichne 𝜚 die Flächendichte der Massenbelegung. Dann betra-
chten wir die virtuelle Arbeit:

(12) 𝛿𝐴 =

∬
(𝑆)

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

{
𝜚𝑋𝛿𝑥 −

( 𝑋𝑢√
𝐸

𝜕𝛿𝑥

𝜕𝑢
+ 𝑋𝑣√

𝐺

𝜕𝛿𝑥

𝜕𝑣

)}
𝑑𝑆 +

∫
(𝐶)

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

𝑋𝛿𝑥𝑑𝑠.

Hier bedeuten 𝑋,𝑌, 𝑍 , 𝑋,𝑌, 𝑍 die Komponenten der an der Masseneinheit innerhalb
𝑆 bzw. an der Längeneinheit auf 𝐶 angreifenden Kraft, über die Grössen 𝑋𝑢 , . . .
aber lassen sich ganz analoge Aussagen entwickeln, wie oben über 𝑋𝑥 , . . . ; sie
bewirken einerseits gewisse an den auf 𝑆 gelegenen Massen angreifende Kräfte,
andererseits einen innerhalb 𝑆 herrschenden Spannungszustand derart, dass auf jedes
in 𝑆 gelegene Linienelement vermöge des Spannungszustandes auf einer Seite pro
Längeneinheit eine Kraft

(13) 𝑋𝜈 = 𝑋𝑢 cos(𝜈, 𝑢) + 𝑋𝑣 cos(𝜈, 𝑣)

wirkt; hierin bedeutet 𝑛 die innerhalb 𝑆 gelegene nach der betrachteten Seite hin
weisende Normalenrichtung des Elementes.

Für ein Medium, das alle stetigen Verrückungen zulässt, kann man die Bedingung
𝛿𝐴 = 0 des Prinzips der virtuellen Verrückungen in 6 Gleichgewichtsbedingungen34)
auflösen, indem man 𝛿𝐴 durch die bekannten Methoden der partiellen Integration
umformt:

(14a)
1
ℎ

(
𝜕
√
𝐺𝑋𝑢
𝜕𝑢

+ 𝜕
√
𝐸𝑋𝑣
𝜕𝑣

)
+ 𝜚𝑋 = 0 auf 𝑆 (𝑋,𝑌, 𝑍),

(14b) 𝑋𝑢 cos 𝜈𝑢 + 𝑋𝑣 cos 𝜈𝑣 = 𝑋 auf 𝐶 (𝑋,𝑌, 𝑍),

hier bedeutet 𝜈 diejenige Richtung, die innerhalb der Fläche 𝑆 normal auf 𝐶 steht
und von dem betrachteten Flächenstück abgewandt ist. — Auch diese Gleichungen
kann man leicht auf die Anfangsparameter 𝑎, 𝑏 transformieren, wenn man von dem
transformierten Aus-

34 Die allgemeine Form dieser Gleichungen unter den verschiedensten Auffassungen geben E. und
F. Cosserat, Corps déform., chap. III, übrigens sogleich für den Fall orientierter Teilchen (s. Nr. 4b;
vgl. auch IV 11, Nr. 20, K. Heun). Über die seit Lagranges Ansätzen 33) behandelten speziellen
Probleme vgl. ausserdem IV 6, Nr. 24, Stäckel.
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At first, we consider in particular a two-dimensional continuum, which consists
in the deformed state of a simply connected surface 𝑆 with boundary curve 𝐶; on 𝑆
let — for the sake of simplicity — 𝑢, 𝑣 be an orthogonal system of parameters and
let the line and surface elements be

𝑑𝑠2 = 𝐸𝑑𝑢2 + 𝐺𝑑𝑣2, 𝑑𝑆 = ℎ𝑑𝑢𝑑𝑣, ℎ =
√
𝐸𝐺

and 𝜚 denotes the surface density of the mass distribution. Then we consider the
virtual work [expression]:

(12) 𝛿𝐴 =

∬
(𝑆)

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

{
𝜚𝑋𝛿𝑥 −

( 𝑋𝑢√
𝐸

𝜕𝛿𝑥

𝜕𝑢
+ 𝑋𝑣√

𝐺

𝜕𝛿𝑥

𝜕𝑣

)}
𝑑𝑆 +

∫
(𝐶)

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

𝑋𝛿𝑥𝑑𝑠.

Herein 𝑋,𝑌, 𝑍 , 𝑋,𝑌, 𝑍 denote the components of the applied forces in 𝑆 per unit
mass and on 𝐶 per unit length, for the quantities 𝑋𝑢 , . . . similar conclusions can be
drawn as above for 𝑋𝑥 , . . . ; on the one hand they result in certain forces exerted on
the masses of 𝑆, on the other hand [they cause] a stress state within 𝑆 such that due to
this stress state on one side of every line element lying on 𝑆 the force per unit length

(13) 𝑋𝜈 = 𝑋𝑢 cos(𝜈, 𝑢) + 𝑋𝑣 cos(𝜈, 𝑣)

acts; herein 𝑛† denotes the normal direction lying within 𝑆 and pointing in direction
of the considered side of the element.

For a medium, which allows for all continuous displacements, one can solve the
condition 𝛿𝐴 = 0 of the principle of virtual displacements with respect to 6 equilib-
rium conditions34), by transforming 𝛿𝐴 using the familiar methods of integration by
parts:

(14a)
1
ℎ

(
𝜕
√
𝐺𝑋𝑢
𝜕𝑢

+ 𝜕
√
𝐸𝑋𝑣
𝜕𝑣

)
+ 𝜚𝑋 = 0 on 𝑆 (𝑋,𝑌, 𝑍),

(14b) 𝑋𝑢 cos 𝜈𝑢 + 𝑋𝑣 cos 𝜈𝑣 = 𝑋 on 𝐶 (𝑋,𝑌, 𝑍),

here 𝜈 denotes the direction which is within the surface 𝑆 and is normal to the curve
𝐶 pointing away from the considered surface. — Also these equations can easily
be transformed with respect to the initial parameters 𝑎, 𝑏, when starting with the
transformed

† Most probably, it should be a 𝜈 – (TN)
34 The general form of these equations from different viewpoints are given by E. and F. Cosserat,
Corps déform., chap. III, by the way directly for the case of oriented particles (see No. 4b; cf.
also IV 11, No. 20, K. Heun). For the particular problems treated since Lagrange’s fundamental
studies 33) cf. also IV 6, No. 24, Stäckel.
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druck der virtuellen Arbeit

(15) 𝛿𝐴=

∬
(𝑆0)

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

{
𝜚0𝑋 −

(
𝑋𝑎

𝜕𝛿𝑥

𝜕𝑎
+ 𝑋𝑏

𝜕𝛿𝑥

𝜕𝑏

)}
𝑑𝑎𝑑𝑏 +

∫
(𝐶0)

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

𝑋𝛿𝑥
𝑑𝑠

𝑑𝑠0
𝑑𝑠0

ausgeht, wobei

(16) ℎ
𝜕 (𝑢, 𝑣)
𝜕 (𝑎, 𝑏) 𝑋𝑢 = 𝑋𝑎

𝜕𝑢

𝜕𝑎
+ 𝑋𝑏

𝜕𝑢

𝜕𝑏
(𝑋,𝑌, 𝑍; 𝑢, 𝑣);

durch Vergleich mit (13) ergiebt sich, dass 𝑋𝑎, . . . die vermöge des Spannungszu-
standes auf Linienelemente 𝑎 = const., 𝑏 = const. wirkenden Kräfte bedeuten,
berechnet auf Längeneinheiten in der 𝑎-𝑏-Ebene.

Ganz analog gestaltet sich alles bei eindimensionalen Kontinuis.35) Ist 𝑠 (0 � 𝑠 �
𝑙) die Bogenlänge auf der in deformierter Gestalt gebildeten Kurve, so hat man

(17) 𝛿𝐴=

𝑙∫
0

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

{
𝜚𝑋𝛿𝑥 − 𝑋𝑠

𝜕𝛿𝑥

𝜕𝑠

}
𝑑𝑠 +

[∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

𝑋𝛿𝑥
] 𝑠=𝑙
𝑠=0

,

wo die Bedeutung der einzelnen Größen sich ganz wie soeben ergiebt, und bei
willkürlichen stetigen Variationen lauten die Gleichgewichtsbedingungen

(18a)
𝑑𝑋𝑠
𝑑𝑠

+ 𝜚𝑋 = 0 für 0 < 𝑠 < 𝑙 (𝑋,𝑌, 𝑍)

(18b) 𝑋𝑠 = 𝑋 für 𝑠 = 0, 𝑠 = 𝑙 (𝑋,𝑌, 𝑍).

Auch hier ist es mitunter zweckmässig, unter Benutzung der Formel

(19) 𝛿𝐴=

𝑙0∫
0

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

{
𝜚0𝑋𝛿𝑥 − 𝑋𝑎

𝜕𝛿𝑥

𝜕𝑎

}
𝑑𝑎 +

[∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

𝑋𝛿𝑥
]𝑎=𝑙0
𝑎=0

, 𝑋𝑠
𝑑𝑠

𝑑𝑎
= 𝑋𝑎

den Anfangsparameter 𝑎 als Unabhängige einzuführen.
4. Erweiterungen des Prinzipes der virtuellen Verrückungen.
4a. Auftreten höherer Ableitungen der Verrückungen. Man kann an dem in

Nr. 3 formulierten Ansatz des Prinzipes der virtuellen Verrückungen noch eine Reihe
von Erweiterungen anbringen, die es erst in weitestem Masse befähigen, alle in der
Mechanik der Kontinua auftretenden Gesetze zu umfassen. Am nächsten liegt es, in
die virtuelle Arbeit pro Volumenelement eine Linearform der 18 zweiten Ableitungen
der virtuellen Verrückungen 𝜕2 𝛿𝑥

𝜕𝑥2 , . . . aufzunehmen. In der Tat haben Probleme, bei
denen es sich als nötig erwies, die

35 Vgl. E. und F. Cosserat, Corps déformables, chap. II sowie IV 11, Nr. 19 (K. Heun) und IV 6,
Nr. 23 (P. Stäckel).
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expression of the virtual work

(15) 𝛿𝐴=

∬
(𝑆0)

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

{
𝜚0𝑋 −

(
𝑋𝑎

𝜕𝛿𝑥

𝜕𝑎
+ 𝑋𝑏

𝜕𝛿𝑥

𝜕𝑏

)}
𝑑𝑎𝑑𝑏 +

∫
(𝐶0)

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

𝑋𝛿𝑥
𝑑𝑠

𝑑𝑠0
𝑑𝑠0

where

(16) ℎ
𝜕 (𝑢, 𝑣)
𝜕 (𝑎, 𝑏) 𝑋𝑢 = 𝑋𝑎

𝜕𝑢

𝜕𝑎
+ 𝑋𝑏

𝜕𝑢

𝜕𝑏
(𝑋,𝑌, 𝑍; 𝑢, 𝑣);

a comparison with (13) results in the interpretation, that 𝑋𝑎, . . . denote the forces
due to the stress state acting at the line elements 𝑎 = const., 𝑏 = const., computed
with respect to the unit of length in the 𝑎-𝑏-plane.

Everything is entirely analogous for one-dimensional continua.35) Let 𝑠 (0 � 𝑠 �
𝑙) be the arc length of the curve representing the deformed state, then one has

(17) 𝛿𝐴=

𝑙∫
0

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

{
𝜚𝑋𝛿𝑥 − 𝑋𝑠

𝜕𝛿𝑥

𝜕𝑠

}
𝑑𝑠 +

[∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

𝑋𝛿𝑥
] 𝑠=𝑙
𝑠=0

,

in which the interpretation of each quantity is obtained as above, and for arbitrary
continuous variations the equilibrium conditions are

(18a)
𝑑𝑋𝑠
𝑑𝑠

+ 𝜚𝑋 = 0 for 0 < 𝑠 < 𝑙 (𝑋,𝑌, 𝑍)

(18b) 𝑋𝑠 = 𝑋 for 𝑠 = 0, 𝑠 = 𝑙 (𝑋,𝑌, 𝑍).

By using the formula

(19) 𝛿𝐴=

𝑙0∫
0

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

{
𝜚0𝑋𝛿𝑥 − 𝑋𝑎

𝜕𝛿𝑥

𝜕𝑎

}
𝑑𝑎 +

[∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

𝑋𝛿𝑥
]𝑎=𝑙0
𝑎=0

, 𝑋𝑠
𝑑𝑠

𝑑𝑎
= 𝑋𝑎

it is also here convenient to introduce the initial parameter 𝑎 as independent quantity.
4. Enhancement of the principle of virtual displacements.
4a. Appearance of higher order derivatives of displacements. One can apply

a number of enhancements to the ansatz of the principle of virtual displacements
presented in No. 3, which enable it to cover in the broadest sense all laws appearing
in the mechanics of continua. The most obvious is to add to the virtual work per
unit volume a linear form of the 18 second derivatives of the virtual displacements
𝜕2 𝛿𝑥
𝜕𝑥2 , . . . . In fact there have been problems, in which it was necessary

35 Cf. E. and F. Cosserat, Corps déformables, chap. II as well as IV 11, No. 19 (K. Heun) and IV 6,
No. 23 (P. Stäckel).



4a. Erweiterung d. Prinzips d. virt. Verrückungen: Höhere Ableitungen. 623

Energiefunktionen von den zweiten Ableitungen der Deformationsfunktionen abhän-
gen zu lassen, auf hierhin gehörende Ausdrücke geführt; in erster Linie kommt dies
für die ein- und zweidimensionalen Kontinua (Drähte und Platten) in Betracht.36)

Eine eingehende Behandlung dieses Ansatzes vom allgemeinen Standpunkte aus
scheint nicht vorzuliegen, und sie erübrigt sich durch die Bemerkung, dass man
durch partielle Integration die neuen Zusatzglieder des Volumenintegrals auf Glieder
zurückführen kann, die lediglich die ersten Ableitungen der 𝛿𝑥, 𝛿𝑦, 𝛿𝑧 enthalten; die
neuen Wirkungen im Innern des Körpers ordnen sich also dem alten Begriff der
Spannungsdyade ein. Freilich tritt dabei ein Oberflächenintegral von der Gestalt

(1)
∬
(𝑆)

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

(
𝑋 𝑥

𝜕𝛿𝑥

𝜕𝑥
+ 𝑋 𝑦

𝜕𝛿𝑥

𝜕𝑦
+ 𝑋 𝑧

𝜕𝛿𝑥

𝜕𝑧

)
𝑑𝑆

neu hinzu, das einmal das Vorhandensein einer Oberflächenspannung beweist, wie
sie in Nr. 3e bei einem selbständig existierenden zweidimensionalen Kontinuum
betrachtet wurde, darüber hinaus aber im allgemeinen noch in (12) von Nr. 3e nicht
enthaltene Terme besitzt, die von den Ableitungen der 𝛿𝑥, . . . normal zur Fläche ab-
hängen. Diese neuen an der Oberfläche angreifenden Spannungswirkungen scheinen
noch keine Anwendung gefunden zu haben, während jene anderen Glieder lediglich
zu den alten Randbedingungen (5b) von Nr. 3 einen Beitrag von der Form der in (14a)
auftretenden Glieder liefern und allenfalls an Grenzlinien oder Unstetigkeitslinien
der Oberfläche noch Linienkräfte vom Typus (14b) ergeben.37)

4b. Medien mit orientierten Teilchen. Dehnen wir ferner unsere Betrachtungen
auf die in Nr. 2b definierten Medien mit orientierten Teilchen aus, so muss die neue
Annahme in Kraft treten, dass auch bei jeder virtuellen Rotation des Kontinuums eine
virtuelle Arbeit geleistet wird, die eine lineare homogene Funktion der Gesamtheit
der Werte der Rotationskomponenten 𝛿𝜋, 𝛿𝜅, 𝛿𝜚 ist für die wir den Nr. 3, (1) analogen
Ansatz machen:

(2)
∭
(𝑉 )

𝜚(𝐿𝛿𝜋 + 𝑀𝛿𝜅 + 𝑁𝛿𝜚)𝑑𝑉 +
∬
(𝑆)

(𝐿𝛿𝜋 + 𝑀𝛿𝜅 + 𝑁𝛿𝜚)𝑑𝑆

−
∭
(𝑉 )

(
𝐿𝑥

𝜕𝛿𝜋

𝜕𝑥
+ 𝐿𝑦

𝜕𝛿𝜋

𝜕𝑦
+ · · · + 𝑁𝑧

𝜕𝛿𝜚

𝜕𝑧

)
𝑑𝑉.

36 Vgl. die Erörterungen der Potentialansätze in Nr. 7a, p. 645 sowie auch Nr. 8a, p. 660.
37 Vgl. unten Nr. 12.
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to let the energy function depend on the second derivatives, which have led to
expressions belonging to here; primarily this comes into consideration for one- and
two-dimensional continua (wires and plates).36)

A thorough treatment of this [new] ansatz from a more general point of view
seems not to be available [in the literature] and becomes unnecessary by remarking,
that one can transform using integration by parts the new additional terms in the
volume integral to terms which include merely the first derivatives of 𝛿𝑥, 𝛿𝑦, 𝛿𝑧;
hence, the new effects within the body are classified in the sense of the old notion of
the stress dyad. Certainly, a new surface integral of the form

(1)
∬
(𝑆)

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

(
𝑋 𝑥

𝜕𝛿𝑥

𝜕𝑥
+ 𝑋 𝑦

𝜕𝛿𝑥

𝜕𝑦
+ 𝑋 𝑧

𝜕𝛿𝑥

𝜕𝑧

)
𝑑𝑆

appears, which at one point proves the existence of a surface tension as it has been
considered in No. 3e for an independently existing two-dimensional continuum, it
may contain in addition expressions which are not included in (12) of No. 3e [and]
which depend on the derivatives of the 𝛿𝑥, . . . normal to the surface. These new
effects of stresses interactions applied at the surface, seem not to have found any
application so far,while in contrast the other [remaining] terms simply contribute to
the old boundary conditions (5b) of No. 3 in the same form as the terms appearing in
(14a), and possibly lead to line distributed forces in the sense of (14b) at interfaces
or lines of discontinuities.37)

4b. Media with oriented particles. When we enhance our consideration further-
more to the media with oriented particles defined in No. 2b, then a new assumption
must become valid, that, also for every virtual rotation of the continuum, virtual
work is expended being a linear homogeneous function of the totality of values of the
rotational components 𝛿𝜋, 𝛿𝜅, 𝛿𝜚 for which we make the ansatz analogous to No. 3,
(1):

(2)
∭
(𝑉 )

𝜚(𝐿𝛿𝜋 + 𝑀𝛿𝜅 + 𝑁𝛿𝜚)𝑑𝑉 +
∬
(𝑆)

(𝐿𝛿𝜋 + 𝑀𝛿𝜅 + 𝑁𝛿𝜚)𝑑𝑆

−
∭
(𝑉 )

(
𝐿𝑥

𝜕𝛿𝜋

𝜕𝑥
+ 𝐿𝑦

𝜕𝛿𝜋

𝜕𝑦
+ · · · + 𝑁𝑧

𝜕𝛿𝜚

𝜕𝑧

)
𝑑𝑉.

36 Cf. the discussions about the potential-based approaches in No. 7a, p. 645 as well as No. 8a,
p. 660.
37 Cf. below No. 12.
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Hieran kann man völlig analoge Erörterungen wie in Nr. 3a schliessen, wobei man
als selbstverständlich wieder die Voraussetzung der Endlichkeit und Stetigkeit der 15
neu auftretenden Koeffizienten übernimmt. Zunächst stellen 𝐿, 𝑀, 𝑁 bzw. 𝐿, 𝑀, 𝑁
die Komponenten je eines axialen Vektors dar, der als das auf eine Stelle innerhalb
des Körpers (pro Masseneinheit) bzw. auf eine Stelle der Oberfläche (pro Flächenein-
heit berechnete) Drehmoment aufzufassen ist; denn in der Tat haben wir hier eine
Kraftwirkung von genau der in der Mechanik starrer Körper so bezeichneten Art.
Die 9 Grössen 𝐿𝑥 , . . . , 𝑁𝑧 weiterhin verhalten sich bei Koordinatentransformationen
wie die Komponenten einer Dyade mit der Modifikation, dass sie bei Spiegelungen
das Vorzeichen wechseln38); ihre Bedeutung kann man darin finden, dass

(3) 𝐿𝑛 = 𝐿𝑥 cos 𝑛𝑥 + 𝐿𝑦 cos 𝑛𝑦 + 𝐿𝑧 cos 𝑛𝑧 (𝐿, 𝑀, 𝑍)

die Komponenten des Drehmoments darstellt, das auf ein Flächenelement durch die
auf der Seite der positiven Normalenrichtung 𝑛 gelegene Materie ausgeübt wird,
berechnet auf die Flächeneinheit.

Wir übernehmen nun das Prinzip der virtuellen Verrückungen für das neue Kon-
tinuum in der erweiterten Form, dass in der durch die 6 Funktionen Nr. 2, (1) und (9)
beschriebenen Gleichgewichtslage die durch (2) ergänzte virtuelle Arbeit für jedes
zulässige System virtueller Verrückungen verschwinden soll. Für das völlig frei stetig
deformierbare Kontinuum, für das auch die Axenkreuze unabhängig voneinander
und von der Grösse der Verrückungen drehbar sind, sind dann 𝛿𝑥, . . . , 𝛿𝜋, . . . 6 völ-
lig willkürliche stetige Funktionen, und durch Wiederholung der Überlegungen von
Nr. 3c findet man, dass die dort aufgestellten Bedingungen (5) ungeändert bleiben
und nur durch folgende zuerst von W. Voigt 39) aufgestellten und neuerdings in dem
Cosseratschen Werke40) ausführlich betrachteten 2 Gleichungs-

38 Für Tensorkomponenten (d. h. bei einer symmetrischen Dyade) hat W. Voigt (vgl. Lehrbuch
der Kristallphysik, Leipzig 1910, p. 132 ff.) das entsprechende Verhalten durch das Beiwort axial
ausgedrückt, gegenüber polaren Tensoren, deren Komponenten bei Inversion ihr Vorzeichen nicht
wechseln. Man vergleiche über diese Klassifikation auch die in 18) zitierte Litteratur.
39 Gött. Abhandl. 34 (1887), p. 11, wo Voigt an die Poissonschen Vorstellungen9) anschliesst. Vgl.
auch das Referat in Voigts Vortrag auf dem internat. Physiker-Kongress in Paris 1900 (Rapp. prés.
au congr. T. I, p. 277 = Gött. Nachr., math.-phys. Kl. 1900, p. 117) und die von direkter Bezugnahme
auf Molekularvorstellungen freie Darstellung in Voigts Kompendium I, p. 219 ff.
40 E. u. F. Cosserat, Corps déform., chap. IV, inbes. p. 137. Vgl. auch IV 11, Nr. 21, K. Heun.
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Here one can an discuss similar arguments as in No. 3a, where one naturally assumes
again the requirements of the finiteness and the continuity of the 15 emerging
coefficients. At first 𝐿, 𝑀, 𝑁 and 𝐿, 𝑀, 𝑁 represent the components of an axial
vector, which has to be understood as a torque at a point within the body (per unit
of mass) or at a point on the surface (per unit of area), respectively; then in fact
we have here a force effect of exactly the same kind as in rigid body mechanics.
Under coordinate transformations, the quantities 𝐿𝑥 , . . . , 𝑁𝑧 still transform like the
components of a dyad with the modification that the sign changes for reflections38);
their interpretation can be found therein, that

(3) 𝐿𝑛 = 𝐿𝑥 cos 𝑛𝑥 + 𝐿𝑦 cos 𝑛𝑦 + 𝐿𝑧 cos 𝑛𝑧 (𝐿, 𝑀, 𝑍)†

represents the components of the torque per unit area, which is exerted via a surface
element on the matter being on the side of the positive normal direction 𝑛.

We now assume the principle of virtual displacements for the new continuum in
enhanced form, that in the equilibrium position described by the 6 functions No.
2, (1) and (9), the virtual work augmented by (2) must vanish for every admissible
set of virtual displacements. Being assured that the continuously deformable con-
tinuum is completely free, for which the triads can be each other relatively rotated
independently also of the magnitude of the displacements, then 𝛿𝑥, . . . , 𝛿𝜋, . . . are
6 completely arbitrary continuous functions, and by repeating the considerations of
No. 3c one finds, that the conditions (5) formulated therein remain unchanged and
that they have to be completed only by following two sets of three equations formu-
lated first by W. Voigt 39) and recently discussed in detail in the work of Cosserat 40):

38 For tensor components (i. e. for a symmetric dyad) W. Voigt (cf. Lehrbuch der Kristallphysik,
Leipzig 1910, p. 132 ff.) has denoted the corresponding behavior using the adjective axial, in contrast
to polar tensors, whose components do not change sign under inversion. About this classification
one compares also the literature cited in 18).
† It should rather be (𝐿, 𝑀, 𝑁 ) – (TN)
39 Gött. Abhandl. 34 (1887), p. 11, where Voigt builds on the notions of Poisson.9). Cf. also the
discussion in Voigts presentation at the international congress of physicists in Paris 1900 (Rapp.
prés. au congr. T. I, p. 277 = Gött. Nachr., math.-phys. Kl. 1900, p. 117) and the exposition in Voigts
Kompendium I, p. 219 ff, being free of any direct reference to molecular perceptions.
40 E. and F. Cosserat, Corps déform., chap. IV, in particular p. 137. Cf. also IV 11, No. 21, K. Heun.
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tripel zu ergänzen sind41):

(4a)
𝜕𝐿𝑥
𝜕𝑥

+ 𝜕𝐿𝑦

𝜕𝑦
+ 𝜕𝐿𝑧

𝜕𝑧
+ 𝜚𝐿 = 0 in 𝑉 (𝐿, 𝑀, 𝑁),

(4b) 𝐿𝑥 cos 𝑛𝑥 + 𝐿𝑦 cos 𝑛𝑦 + 𝐿𝑧 cos 𝑛𝑧 = 𝐿 auf 𝑆 (𝐿, 𝑀, 𝑁).

Auch diese Gleichungen kann man wieder auf die Anfangsparameter 𝑎, 𝑏, 𝑐 trans-
formieren, indem man die virtuelle Arbeit der inneren Flächenmomente auf die Form

(2′) −
∭
(𝑉0)

( ∑
( 𝜋 𝜅 𝜚
𝐿𝑀𝑁)

𝐿𝑎
𝜕𝛿𝜋

𝜕𝑎
+ 𝐿𝑏

𝜕𝛿𝜋

𝜕𝑏
+ 𝐿𝑐

𝜕𝛿𝜋

𝜕𝑐

)
𝑑𝑉0

transformiert, wo

(5) Δ · 𝐿𝑥 = 𝐿𝑎
𝜕𝑥

𝜕𝑎
+ 𝐿𝑏

𝜕𝑥

𝜕𝑏
+ 𝐿𝑐

𝜕𝑥

𝜕𝑐
(𝐿, 𝑀, 𝑁; 𝑥, 𝑦, 𝑧),

und wo 𝐿𝑎, 𝑀𝑎, 𝑁𝑎 das auf ein Element der Fläche 𝑎 = const wirkende, auf die
Flächeneinheit im undeformierten Zustande berechnete Drehmoment bedeuten. An
die Stelle von (4) treten dann neben Nr. 3, (9) die Gleichungstripel42):

(6a)
𝜕𝐿𝑎
𝜕𝑎

+ 𝜕𝐿𝑏
𝜕𝑏

+ 𝜕𝐿𝑐
𝜕𝑐

+ 𝜚0𝐿 = 0 in 𝑉 (𝐿, 𝑀, 𝑁),

(6b) 𝐿𝑎 cos 𝑛0𝑎 + 𝐿𝑏 cos 𝑛0𝑏 + 𝐿𝑐 cos 𝑛0𝑐 = 𝑘𝐿 auf 𝑆 (𝐿, 𝑀, 𝑁).

Auch hier kann man wieder den Zusammenhang mit den Gleichgewichtsbedin-
gungen am starren Körper erhalten, indem man einmal von einer Translation, dann
von einer Rotation eines aus 𝑉 herausgeschnittenen und starr gedachten Teilbere-
iches 𝑉1 ausgeht, innerhalb dessen man sich nun auch die Axenkreuze starr mit
dem Kontinuum verbunden, also parallel mit sich fortgeführt bzw. starr mitgedreht
denkt; approximiert man diese unstetige Verrückung genau wie in Nr. 3d durch
stetige virtuelle Verrückungen, so findet man einmal ungeändert die Gleichungen
Nr. 3 (10) des Schwerpunktssatzes wieder, dann aber an Stelle der Formeln (11) drei
Gleichungen

(3.7)
∭
(𝑉1)

{
𝜚(𝑍𝑦 − 𝑌𝑧 + 𝐿) + 𝑌𝑧 − 𝑍𝑦

}
𝑑𝑉1

+
∬
(𝑆1)

{𝑍𝑛𝑦 − 𝑌𝑛𝑧 + 𝐿𝑛} 𝑑𝑆1 = 0
(𝐿, 𝑀, 𝑁
𝑋,𝑌, 𝑍

)
,

41 Diese Gleichungen sind, abgesehen von der Festsetzung der Vorzeichen, noch insofern von denen
von Voigt und Cosserat verschieden, als dort das gesamte auf ein Teilchen wirkende Drehmoment
𝜚𝐿 +𝑌𝑧 − 𝑍𝑦 , . . . mit einem Buchstaben bezeichnet ist.
42 In etwas verschiedener Bezeichnung bei E. u. F. Cosserat, Corps déformables, p. 132.
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(4a)
𝜕𝐿𝑥
𝜕𝑥

+ 𝜕𝐿𝑦

𝜕𝑦
+ 𝜕𝐿𝑧

𝜕𝑧
+ 𝜚𝐿 = 0 in 𝑉 (𝐿, 𝑀, 𝑁),

(4b) 𝐿𝑥 cos 𝑛𝑥 + 𝐿𝑦 cos 𝑛𝑦 + 𝐿𝑧 cos 𝑛𝑧 = 𝐿 on 𝑆 (𝐿, 𝑀, 𝑁).41)

Also these equations can be transformed to be formulated with respect to the
initial parameters 𝑎, 𝑏, 𝑐, by transforming the virtual work of the internal surface
torques to the form

(2′) −
∭
(𝑉0)

( ∑
( 𝜋 𝜅 𝜚
𝐿𝑀𝑁)

𝐿𝑎
𝜕𝛿𝜋

𝜕𝑎
+ 𝐿𝑏

𝜕𝛿𝜋

𝜕𝑏
+ 𝐿𝑐

𝜕𝛿𝜋

𝜕𝑐

)
𝑑𝑉0,

where

(5) Δ · 𝐿𝑥 = 𝐿𝑎
𝜕𝑥

𝜕𝑎
+ 𝐿𝑏

𝜕𝑥

𝜕𝑏
+ 𝐿𝑐

𝜕𝑥

𝜕𝑐
(𝐿, 𝑀, 𝑁; 𝑥, 𝑦, 𝑧),

and where 𝐿𝑎, 𝑀𝑎, 𝑁𝑎 denote the torque acting on an element of the surface
𝑎 = const, computed with respect to the unit of area in the undeformed state. The
equations of (4) are then substituted besides No. 3, (9) by the triple of equations42):

(6a)
𝜕𝐿𝑎
𝜕𝑎

+ 𝜕𝐿𝑏
𝜕𝑏

+ 𝜕𝐿𝑐
𝜕𝑐

+ 𝜚0𝐿 = 0 in 𝑉 (𝐿, 𝑀, 𝑁),

(6b) 𝐿𝑎 cos 𝑛0𝑎 + 𝐿𝑏 cos 𝑛0𝑏 + 𝐿𝑐 cos 𝑛0𝑐 = 𝑘𝐿 on 𝑆 (𝐿, 𝑀, 𝑁).

Also here one can obtain a connection to the equilibrium conditions of the rigid
body, by starting in one case with a translation, then with a rotation, of a subset
𝑉1 cut out of 𝑉 thought of as being rigid, within which the triads are rigidly fixed
with the continuum, considering them consequently to be carried along in parallel
and rigidly, respectively; approximating these discontinuous displacements exactly
as in No. 3d by continuous displacements, one finds on the one hand the unchanged
equations No. 3 (10) of the center-of-mass theorem, but then one finds instead of the
formulas (11) three equations

(3.7)
∭
(𝑉1)

{
𝜚(𝑍𝑦 − 𝑌𝑧 + 𝐿) + 𝑌𝑧 − 𝑍𝑦

}
𝑑𝑉1

+
∬
(𝑆1)

{𝑍𝑛𝑦 − 𝑌𝑛𝑧 + 𝐿𝑛} 𝑑𝑆1 = 0
(𝐿, 𝑀, 𝑁
𝑋,𝑌, 𝑍

)
,

41 Except for the assignment of the signs, these equations are insofar different from the ones of Voigt
and Cosserat, because there the entire torque 𝜚𝐿 +𝑌𝑧 − 𝑍𝑦 , . . . acting on a particle is denoted by
a single letter.
42 In a slightly different notation in E. and F. Cosserat, Corps déformables, p. 132.



626 IV 30. E. Hellinger. Die allgemeinen Ansätze der Mechanik der Kontinua

die den Flächensatz unter den jetzt stattfindenden Umständen ausdrücken. Aus diesen
6 Integralbedingungen, die für jeden Teilbereich 𝑉1 gelten sollen, kann man wieder
die Gleichgewichtsgleichungen (4) herleiten.43)

Sind die Dreikante nicht mehr frei beweglich, so modifizieren sich die Gle-
ichgewichtsbedingungen (4) und Nr. 3, (5), da man dann die bei den Summanden
(2) und Nr. 3, (1) der virtuellen Arbeit nicht mehr gesondert behandeln darf. Es
sei hier nur auf den Fall hingewiesen, dass die Axen des Dreikants fest mit dem
Medium verbunden sind; dann wird eine jede virtuelle Verrückung eine Verdrehung
der Dreikante mit den Grössen Nr. 2, (4′) als Komponenten zur Folge haben, und
daher werden insbesondere neue Glieder zu den Komponenten der Spannungsdyade
additiv hinzutreten. Man hat das benutzt, um auch unter Verwendung einer sym-
metrischen Spannungsdyade (𝑋𝑦 = 𝑌𝑥 , . . . ) das Auftreten von Drehmomenten zu
deuten.44)

Bei zwei- und eindimensionalen Medien mit orientierten Teilchen (s. Nr. 2c)
ergiebt sich ganz analog, dass bei Verwendung der früheren Bezeichnungen zu der
virtuellen Arbeit für die Fläche (Nr. 3e, (12)) der Summand

(8)
∬
(𝑆)

∑
( 𝜋 𝜅 𝜚
𝐿𝑁 𝑀)

{
𝜚𝐿𝛿𝜋 −

( 𝐿𝑢√
𝐸

𝜕𝛿𝜋

𝜕𝑢
+ 𝐿𝑣√

𝐺

𝜕𝛿𝜋

𝜕𝑣

)}
𝑑𝑆 +

∫
(𝐶)

∑
( 𝜋 𝜅 𝜚
𝐿𝑁 𝑀)

𝐿𝛿𝜋𝑑𝑠,

für die Kurve (Nr. 3e, (17)) ein entsprechender

(9)
𝑙∫

0

∑
( 𝜋 𝜅 𝜚
𝐿𝑁 𝑀)

{
𝜚𝐿𝛿𝜋 − 𝐿𝑠

𝜕𝛿𝜋

𝜕𝑠

}
𝑑𝑠 +

[ ∑
( 𝜋 𝜅 𝜚
𝐿𝑁 𝑀)

𝐿𝛿𝜋
] 𝑙

0

hinzutritt; demgemäss erhält man im ersten Falle neben Nr. 3e, (14)) noch die
Gleichgewichtsbedingungen45)

(10)
1
ℎ

(
𝜕
√
𝐺𝐿𝑢

𝜕𝑢 + 𝜕
√
𝐸𝐿𝑣

𝜕𝑣

)
+ 𝜚𝐿 = 0 auf 𝑆

𝐿𝑢 cos 𝜈𝑢 + 𝐿𝑣 cos 𝜈𝑣 = 𝐿 auf 𝐶
(𝐿, 𝑀, 𝑁),

43 So geht Voigt, Kompendium I, p. 219 vor.
44 Siehe etwa J. Larmor, London math. Soc. Proc. 23 (1892), p. 127, Combébiac, Bull. soc. de
math. 30 (1902), p. 108, 242.
45 Vgl. F. und E. Cosserat, Corps déform., chap. III, sowie IV 11, Nr. 20, (K. Heun).
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which express the law of equal areas in the current context. From these 6 integral
conditions, which have to be satisfied for every subset 𝑉1, one can again derive the
equilibrium conditions (4).43)

When the triads are not any more free to move, then the equilibrium conditions
(4) and No. 3, (5) are modified, since the summands (2) and No. 3, (1) of the virtual
work cannot be treated separately anymore. We just want to mention the case when
the axes of the triad are fixed to the medium; then for every virtual displacement this
will imply a rotation of the triad with the magnitude No. 2, (4′) as components, and
thus in particular new terms will be added to the components of the stress dyad. One
has used this to interpret the appearance of torques even when using a symmetric
stress dyad (𝑋𝑦 = 𝑌𝑥 , . . . ).44)

For two- and one-dimensional media with oriented particles (see No. 2c) it yields
similarly, by the application of the earlier used notation, that to the virtual work of
the surface (No. 3e, (12)) the summand

(8)
∬
(𝑆)

∑
( 𝜋 𝜅 𝜚
𝐿𝑁 𝑀)

{
𝜚𝐿𝛿𝜋 −

( 𝐿𝑢√
𝐸

𝜕𝛿𝜋

𝜕𝑢
+ 𝐿𝑣√

𝐺

𝜕𝛿𝜋

𝜕𝑣

)}
𝑑𝑆 +

∫
(𝐶)

∑
( 𝜋 𝜅 𝜚
𝐿𝑁 𝑀)

𝐿𝛿𝜋𝑑𝑠,

is added and that to the virtual work of the curve (No. 3e, (17)) a corresponding
[term]

(9)
𝑙∫

0

∑
( 𝜋 𝜅 𝜚
𝐿𝑁 𝑀)

{
𝜚𝐿𝛿𝜋 − 𝐿𝑠

𝜕𝛿𝜋

𝜕𝑠

}
𝑑𝑠 +

[ ∑
( 𝜋 𝜅 𝜚
𝐿𝑁 𝑀)

𝐿𝛿𝜋
] 𝑙

0

is added; accordingly, one obtains in the first case in addition to No. 3e, (14), the
equilibrium equations45)

(10)
1
ℎ

(
𝜕
√
𝐺𝐿𝑢

𝜕𝑢 + 𝜕
√
𝐸𝐿𝑣

𝜕𝑣

)
+ 𝜚𝐿 = 0 on 𝑆

𝐿𝑢 cos 𝜈𝑢 + 𝐿𝑣 cos 𝜈𝑣 = 𝐿 on 𝐶
(𝐿, 𝑀, 𝑁),

43 In this way Voigt, Kompendium I, p. 219 proceeds.
44 See for instance J. Larmor, London math. Soc. Proc. 23 (1892), p. 127, Combébiac, Bull. soc.
de math. 30 (1902), p. 108, 242.
45 Cf. F. and E. Cosserat, Corps déform., chap. III, as well as IV 11, No. 20, (K. Heun).
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im zweiten Falle neben Nr. 3e, (18)) noch diejenigen46)

(11)
𝑑𝐿𝑠

𝑑𝑠 + 𝜚𝐿 = 0 für 0 < 𝑠 < 𝑙

𝐿𝑠 = 𝐿 für 𝑠 = 0, 𝑠 = 𝑙
(𝐿, 𝑀, 𝑁).

Auch die Deutung der 𝐿𝑢 , . . . als spezifische Drehmomente bezogen auf den de-
formierten Zustand ergiebt sich analog zu Nr. 3e; sie hängen mit den entsprechenden
auf den undeformierten Zustand bezogenen Grössen zusammen durch Gleichungen
vom Typus

(12) ℎ
𝜕 (𝑢, 𝑣)
𝜕 (𝑎, 𝑏) 𝐿𝑢 = 𝐿𝑎

𝜕𝑢

𝜕𝑎
+ 𝐿𝑏

𝜕𝑢

𝜕𝑏
bzw. 𝐿𝑠

𝑑𝑠

𝑑𝑎
= 𝐿𝑎 .

4c. Auftreten von Nebenbedingungen. Bisher wurde das Prinzip der virtuellen
Verrückungen vorzugsweise auf solche Fälle angewandt, in denen das Kontinuum in
jeder möglichen Weise stetig deformierbar war. In der Formulierung des Prinzipes
sind aber unmittelbar auch solche Kontinua umfasst, deren Beweglichkeit durch Be-
dingungen irgendwelcher Art beschränkt ist, und tatsächlich betreffen gerade einige
der ersten Probleme der Mechanik der Kontinua, die Lagrange 47) behandelt hat,
solche Fälle. Diese Bedingungen drücken sich in erster Linie durch Gleichungen für
die die Deformation beschreibenden Funktionen (1), (9) von Nr. 2 aus, in welche
übrigens neben den Funktionen selbst auch ihre Ableitungen nach 𝑎, 𝑏, 𝑐 eingehen
können; typisch ist eine Gleichung

(13) 𝜔(𝑎, 𝑏, 𝑐; 𝑥, 𝑦, 𝑧; 𝑥𝑎, . . . , 𝑧𝑎;𝜆, 𝜇, 𝜈;𝜆𝑎, . . . , 𝜈𝑐)=0,wo 𝑥𝑎 =
𝜕𝑥

𝜕𝑎
, . . .

für jeden Punkt des Bereiches𝑉0, doch kann man ähnliche Gleichungen auch nur für
Teilbereiche, Grenzflächen oder dgl. aussprechen. In jedem Falle werden dadurch
die möglichen Deformationen bzw. die möglichen Verdrehungen der adjungierten
Dreikante eingeschränkt, oder es werden auch bestimmte Beziehungen zwischen
Verdrehung des Dreikants und Deformation gefordert (z. B. eine bestimmte Orien-
tierung der Dreikante gegen den Raum oder gegen das Medium; vgl. oben S. 626);
das Auftreten von 𝑎, 𝑏, 𝑐 in (13) besagt, dass die Art der Bedingung von Teilchen zu
Teilchen wechseln kann. Setzt man nun in (13) die variierte Deformation Nr. 2, (3)
bzw. (10) ein, so

46 Vgl. F. und E. Cosserat, Corps déform., chap. II, sowie IV 11, Nr. 19, (K. Heun).
47 Mécan. anal., 1. Part., Sect. V, Chap. III (unausdehnbarer Faden u. dgl.), Sect. VIII (inkompress-
ible Flüssigkeit).
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in the second case one obtains in addition to No. 3e, (18)) the following46)

(11)
𝑑𝐿𝑠

𝑑𝑠 + 𝜚𝐿 = 0 for 0 < 𝑠 < 𝑙

𝐿𝑠 = 𝐿 for 𝑠 = 0, 𝑠 = 𝑙
(𝐿, 𝑀, 𝑁).

Also the interpretation of 𝐿𝑢 , . . . as specific torques formulated with respect to the
deformed state is obtained similarly to No. 3e; they are connected to the corre-
sponding quantities formulated with respect to the undeformed configuration with
the equations of the kind

(12) ℎ
𝜕 (𝑢, 𝑣)
𝜕 (𝑎, 𝑏) 𝐿𝑢 = 𝐿𝑎

𝜕𝑢

𝜕𝑎
+ 𝐿𝑏

𝜕𝑢

𝜕𝑏
or 𝐿𝑠

𝑑𝑠

𝑑𝑎
= 𝐿𝑎 .

4c. Appearance of constraints. Hitherto the principle of virtual displacements
has been applied particularly for cases in which the continuum was continuously
deformable in all possible ways. In the formulation of the principle also such continua
are immediately included whose movability is constrained by restrictions of any kind,
and in fact just some of the first problems in the mechanics of continua, treated by
Lagrange 47), are cases of this kind. Primarily, these constraints are expressed by
equations for the functions (1), (9) of No. 2 describing the deformation, in which
besides the functions also their derivatives with respect to 𝑎, 𝑏, 𝑐 can enter; typically
is an equation

(13) 𝜔(𝑎, 𝑏, 𝑐; 𝑥, 𝑦, 𝑧; 𝑥𝑎, . . . , 𝑧𝑎;𝜆, 𝜇, 𝜈;𝜆𝑎, . . . , 𝜈𝑐)=0,where 𝑥𝑎 =
𝜕𝑥

𝜕𝑎
, . . .

for every point of the domain𝑉0, but it is also possible to formulate similar equations
for subsets, interfaces or similar ones. In any case thereby possible deformations or
possible rotations of the adjoint triads are restricted, or particular relations between
rotation of the triad and the deformation are demanded (e. g. a particular orientation
of the triad with respect to the space or the medium; cf. above p. 626); The appearance
of 𝑎, 𝑏, 𝑐 in (13) indicates, that the type of the condition can vary from particle to
particle. Inserting the variation of the deformation No. 2, (3) or (10) in (13), then

46 Cf. F. and E. Cosserat, Corps déform., chap. II, as well as IV 11, No. 19, (K. Heun).
47 Mécan. anal., 1. Part., Sect. V, Chap. III (inextensible wire and similar ones), Sect. VIII (incom-
pressible fluid).
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ergiebt sich durch Differentiation nach 𝜎

(14) 𝛿𝜔 ≡
∑

(𝑥 𝑦 𝑧)

( 𝜕𝜔
𝜕𝑥

𝛿𝑥 + 𝜕𝜔

𝜕𝑥𝑎
𝛿𝑥𝑎 + 𝜕𝜔

𝜕𝑥𝑏
𝛿𝑥𝑏 + 𝜕𝜔

𝜕𝑥𝑐
𝛿𝑥𝑐

)
+

∑
(𝜆 𝜇 𝜈)

( 𝜕𝜔
𝜕𝜆

𝛿𝜆 + 𝜕𝜔

𝜕𝜆𝑎
𝛿𝜆𝑎 + 𝜕𝜔

𝜕𝜆𝑏
𝛿𝜆𝑏 + 𝜕𝜔

𝜕𝜆𝑐
𝛿𝜆𝑐

)
= 0,

und da nach Nr. 2, S. 608 die 𝛿𝑥𝑎, . . . mit den Ableitungen der 𝛿𝑥, . . . übereinstim-
men, liegt hier eine lineare homogene Bedingung für die virtuellen Verrückungen
vor.

Das Prinzip der virtuellen Verrückungen fordert dann, dass 𝛿𝐴 für alle (14) genü-
genden Funktionen 𝛿𝑥, . . . verschwindet, und das kann man, wenn die Gleichungen
(14) nicht zufällig die Elimination einer der Verrückungskomponenten gestatten,
durch Einführung eines Lagrangeschen Faktors48) 𝜆 in die Form

(15) 𝛿𝐴 +
∭
(𝑉 )

𝜆𝛿𝜔𝑑𝑉 = 0 für alle 𝛿𝑥, . . .

umsetzen, die genau der des ursprünglichen Prinzipes entspricht; an Stelle des Rau-
mintegrales treten event., wenn (13) nur längs einzelner Flächen oder Kurven beste-
hen soll, oder das Kontinuum überhaupt nur eine Fläche oder Kurve erfüllt, Flächen-
oder Kurvenintegrale. Über die Bedeutung des Faktors 𝜆 als „Druck“ wird später
(Nr. 8b, S. 662) noch zu sprechen sein.

Endlich ist noch der Möglichkeit zu gedenken, die gleichfalls aus der Mechanik
diskreter Systeme wohlbekannt ist, dass „einseitige“ Ne-benbedingungen auftreten,
die die Form von Ungleichungen haben — sei es z. B., dass die Grenzfläche des
Kontinuums in ihrer Beweglichkeit nur nach einer Seite hin eingeschränkt ist, sei
es dass die Deformationsgrössen im Inneren gewissen Ungleichungen unterliegen
(man denke etwa an Körper, die keine Kompression über eine gewisse Grenze hin-
aus gestatten, oder ähnliche Festsetzungen). Dann wird auch hier das Gleichgewicht
gegeben durch die Fouriersche Formulierung49) des Prinzips der virtuellen Ver-
rückungen, dass nämlich für jedes den Nebenbedingungen genügende System von
virtuellen Verrückungen die virtuelle Arbeit negativ oder Null ist:

𝛿𝐴 � 0.

48 Die Behandlung mehrdimensionaler Variationsprobleme mit dieser Methode wurde von Lagrange
an den in 47) genannten Problemen das erste Mal entwickelt; vgl. II A8, p. 622, Kneser.
49 Vgl. IV 1, Nr. 34, Voss; die Formulierung bei Gauss (Principia generalia theoriae figurae fluidorum
in statu aequilibrii, Gott. Comment. rec. 7 (1830) = Werke 5, p. 35, deutsch von R. H. Weber in
Ostwald’s Klassiker der exakten Wiss. Nr. 135, Leipzig 1903) berücksichtigt von vornherein die
Ausdehnung auf Kontinua.
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differentiation with respect to 𝜎 yields

(14) 𝛿𝜔 ≡
∑

(𝑥 𝑦 𝑧)

( 𝜕𝜔
𝜕𝑥

𝛿𝑥 + 𝜕𝜔

𝜕𝑥𝑎
𝛿𝑥𝑎 + 𝜕𝜔

𝜕𝑥𝑏
𝛿𝑥𝑏 + 𝜕𝜔

𝜕𝑥𝑐
𝛿𝑥𝑐

)
+

∑
(𝜆 𝜇 𝜈)

( 𝜕𝜔
𝜕𝜆

𝛿𝜆 + 𝜕𝜔

𝜕𝜆𝑎
𝛿𝜆𝑎 + 𝜕𝜔

𝜕𝜆𝑏
𝛿𝜆𝑏 + 𝜕𝜔

𝜕𝜆𝑐
𝛿𝜆𝑐

)
= 0,

and since due to No. 2, p. 608 the 𝛿𝑥𝑎, . . . coincide with the derivatives of 𝛿𝑥, . . . ,
there is a linear homogeneous condition for the virtual displacements.

The principle of virtual displacements then claims, that 𝛿𝐴 vanishes for all
functions 𝛿𝑥, . . . which satisfy (14), and this can be realized, when equation (14)
does not allow accidentally the elimination of a displacement component, by the
introduction of a Lagrange multiplier48) 𝜆 in the form

(15) 𝛿𝐴 +
∭
(𝑉 )

𝜆𝛿𝜔𝑑𝑉 = 0 for all 𝛿𝑥, . . .

which corresponds exactly with the original principle; instead of volume integrals
possibly there appear surface or curve integrals, when (13) exists only along indi-
vidual surfaces or curves, or when the continuum is in fact merely a surface or a
curve. The denotation of the factor 𝜆 as “pressure” will be addressed later on (No. 8b,
p. 662).

Finally, one should think of the possibility, likewise well-known from the me-
chanics of discrete systems, that “unilateral” constraints appear, which have the
form of inequalities — let it be e. g., that the boundary of the continuum is restricted
in its movability in one direction, let it be that the deformation quantities in the inside
are subjected to certain inequalities (one can think of bodies, which do not allow
any compression beyond a certain threshold, or similar conditions). Then also here,
the equilibrium will be determined by Fourier’s formulation49) of the principle of
virtual displacements, that for any system of virtual displacements, satisfying the
constraints, the virtual work is negative or zero:

𝛿𝐴 � 0.

48 The treatment of multidimensional variational problems has been developed for the first time by
Lagrange for the problems referred to in 47); cf. II A8, p. 622, Kneser.
49 Cf. IV 1, No. 34, Voss; The formulation in Gauss (Principia generalia theoriae figurae fluidorum
in statu aequilibrii, Gott. Comment. rec. 7 (1830) = Werke 5, p. 35, german of R. H. Weber in
Ostwald’s Klassiker der exakten Wiss. No. 135, Leipzig 1903) a priori considers the enhancement
to continua.



5a. Kinetik: die Bewegungsgleichungen des Kontinuums. 629

II. Die Grundansätze der Kinetik.

5a. Die Bewegungsgleichungen des Kontinuums. Aufgabe der Kinetik ist
festzustellen, welche Bewegung in dem bisher betrachteten Kontinuum eintritt, wenn
irgendwie in der Zeit gegebene Kraftwirkungen in ihm stattfinden, oder umgekehrt,
welche Wirkungen zur Aufrechterhaltung einer bestimmten Bewegung notwendig
sind. Dabei sind die Wirkungskomponenten wie in der Statik als Koeffizienten des
Arbeitsausdruckes 𝛿𝐴 gegeben gedacht, während die Art ihrer Abhängigkeit von
den Bewegungsfunktionen zunächst offen bleibt. Wir befassen uns vorerst nur mit
den gewöhnlichen in Nr. 3 betrachteten Medien. Der Übergang von der Statik zur
Kinetik kann dann genau wie in der Mechanik der diskontinuierlichen Systeme mit
Hilfe des d’Alembertschen Prinzips (vgl. IV 1, Nr. 36, Voss) geschehen; seine Über-
tragung auf kontinuierliche Systeme bietet sich fast von selbst dar, wenn man sich
wie in der Statik (S. 616) von dem Gedanken eines Grenzüberganges zum Kontin-
uum leiten lässt, bzw. direkt im Sinne der Analogie zwischen Punktsystemen und
Kontinuis vorgeht. Von diesen Gesichtspunkten aus hat bereits Lagrange 50) die von
ihm behandelten Probleme der Hydrodynamik angefasst.

Demnach kann man ganz entsprechend der von d’Alembert 51) selbst entwick-
elten Auffassung für die allgemeine Mechanik der Kontinua das folgende Prinzip
aussprechen: Betrachtet man die während der Bewegung in einem bestimmten Zeit-
moment auf das Quantum 𝑉0 des Mediums wirkenden Kräfte und Spannungen, so
befinden sie sich im statischen Gleichgewicht im früheren Sinne, wofern man ihnen
an jeder Stelle noch Kräfte („Trägheitskräfte“) hinzufügt, deren Komponenten auf
die Masseneinheit des Kontinuums berechnet den Komponenten der Beschleunigung
entgegengesetzt gleich sind:

−𝜕2𝑥

𝜕𝑡2
= −𝑥 ′′, −𝜕2𝑦

𝜕𝑡2
= −𝑦′′, −𝜕2𝑧

𝜕𝑡2
= −𝑧′′.52)

Erweist es sich auch vielfach als zweckmässig, diesen Satz als Axiom an die
Spitze der Kinetik zu stellen, so bleibt die Frage offen, in welche unabhängigen
Bestandteile man ihn zerlegen kann und wie weit diese von den statischen Axiomen
unabhängig sind — eine Frage, die in genau der gleichen Bedeutung schon in der
Mechanik der diskontinuierlichen Systeme auftritt. Es sei daher hier

50 Vgl. insbesondere Méc. anal., 2. part., Sect. XI, § I.
51 Traité de dynamique, Paris 1743. Vgl. IV 1 Voss, p. 77 209).
52 Mit Akzenten werden im folgenden stets die Ableitungen der Bewegungsfunktionen (1) nach 𝑡
bei konstantem 𝑎, 𝑏, 𝑐 bezeichnet.
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II. The foundations of kinetics.

5a. The equations of motion of the continuum. It is the task of kinetics to
determine, what motion arises within the continuum considered so far, when force
effects occur in it somehow specified in time, or vice versa, which effects are required
for the maintenance of a particular motion. As in statics, the effects are thereby
thought as given by the coefficients of the expression of work 𝛿𝐴, while the kind of
their dependence on the function of motion remains open at first. For now, we address
only ordinary media considered in No. 3. The transition from statics to kinetics can
occur as in the mechanics of discrete systems with the help of d’Alembert’s Principle
(cf. IV 1, No. 36, Voss); its generalization to continuous systems is offering itself
almost automatically, if one let lead oneself as in statics (S. 616) by the idea of a
limit process to the continuum, or if one proceeds directly in the sense of the analogy
between point systems and continua. From these points of view, already Lagrange 50)
has tackled those problems of hydrodynamics which he considered.

According to [this last analogy] one can state the following principle which is in
full correspondence with the notion of the general mechanics of continua developed
by d’Alembert 51) himself: Considering the forces and stresses which act during the
motion at a particular instant of time on the quantum 𝑉0 of the media, then they are
in static equilibrium in the former sense, provided that one adds in every position
additional forces (“forces of inertia”), whose components computed per unit of mass
of the continuum are the same but opposite to the accelerations:

−𝜕2𝑥

𝜕𝑡2
= −𝑥 ′′, −𝜕2𝑦

𝜕𝑡2
= −𝑦′′, −𝜕2𝑧

𝜕𝑡2
= −𝑧′′.52)

Even if it frequently seems to be convenient to put this principle as an axiom on
the top of kinetics, the question remains, in which independent constituent parts one
can divide it and how much are these independent of the static axioms — a question,
which appears in the very same sense already in the mechanics of discrete systems.
Therefore it should be

50 Cf. in particular Méc. anal., 2. part., Sect. XI, § I.
51 Traité de dynamique, Paris 1743. Cf. IV 1 Voss, p. 77 209).
52 In the following, apostrophes denote the derivatives of the functions of motion (1) with respect
to 𝑡 for constant 𝑎, 𝑏, 𝑐.



630 IV 30. E. Hellinger. Die allgemeinen Ansätze der Mechanik der Kontinua

nur kurz bemerkt, daß diess d’Alembertsche Prinzip einmal die wesentlich dem
zweiten Newtonschen Axiom äquivalente Tatsache enthält, dass die Beschleunigung
eines frei gedachten Volumelementes gleich der Summe aller auf dasselbe wirk-
enden Kräfte ist, daß es aber andererseits — worauf G. Hamel 53) nachdrücklich
hingewiesen hat — eine von diesem ersten Bestandteil logisch durchaus unab-
hängige Aussage enthält: Wirken auf ein Kontinuum solche Kräfte, dass die für
jedes Teilchen nach dem zweiten Newtonschen Gesetz folgenden Beschleunigungen
mit den kinematischen Bedingungen des Systemes verträglich sind, so treten diese
Beschleunigungen auch wirklich ein.

Führt man nunmehr in das d’Alembertsche Prinzip das Prinzip der virtuellen
Verrückungen als Gleichgewichtsbedingung ein, so erhält man das von Lagrange 54

) als Grundformel der Dynamik benutzte Variationsprinzip. Man denke sich für
jeden Moment 𝑡 die Bewegung wie in Nr. 2, (6) überlagert mit einer unendlichkleinen
virtuellen Verrückung, die mit den im Moment 𝑡 für das Kontinuum etwa bestehenden
kinematischen Bedingungen verträglich ist; dann muss die durch die Trägheitskräfte
ergänzte virtuelle Arbeit stets verschwinden:

(1) −
∭
(𝑉 )

𝜚(𝑥 ′′𝛿𝑥 + 𝑦′′𝛿𝑦 + 𝑧′′𝛿𝑧)𝑑𝑉 + 𝛿𝐴 = 0,

und dies für jeden Zeitpunkt 𝑡 des Bewegungsverlaufes. Im Falle eines beliebig stetig
deformierbaren Körpers folgen hieraus unter den gleichen Annahmen wie in Nr. 3c
als Gleichungen der Bewegung für jeden Punkt des Kontinuums und zu jeder Zeit:

(2) 𝜚𝑥 ′′ = 𝜚𝑋 + 𝜕𝑋𝑥
𝜕𝑥

+ 𝜕𝑋𝑦

𝜕𝑦
+ 𝜕𝑋𝑧

𝜕𝑧

(
𝑥, 𝑦, 𝑧

𝑋, 𝑌 , 𝑍

)
,

während die Randbedingungen (5b) von Nr. 3 ungeändert für jeden Zeitmoment
𝑡 bestehen bleiben. Diese Gleichungen bestimmen die Bewegung wiederum erst
dann, wenn der Zusammenhang der Kraft und Spannungskomponenten mit den
Bewegungsfunktionen festgelegt ist.

Was nun die Berücksichtigung kinematischer Nebenbedingungen anlangt, so
beziehen wir uns hier ausschliesslich auf den Fall sog. holonomer Bedingungen,
die keine zeitlichen Ableitungen der Bewegungsfunktionen enthalten.55) Eine solche
Bedingung unterscheidet sich von

53 G. Hamel, Math. Ann. 66 (1908), p. 354; p. 386 ist die Unabhängigkeit für die Mechanik starrer
Körper durch ein Beispiel gezeigt; vgl. auch die ausführlichere Darstellung in Hamels Elementarer
Mechanik, p. 306f.
54 Méc. analyt., 2. part., Sect. II.
55 Will man Probleme mit nichtholonomen Bedingungsgleichungen mit dem d’Alembertschen
Prinzip behandeln, so muss man in der Mechanik der Kontinua wie bereits in der Punktmechanik
davon absehen, dass die variierte
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noticed here just shortly, how such [a formulation of] d’Alembert’s principle incorpo-
rates the statement being equivalent to Newton’s second axiom: that the acceleration
of an imagined freely moving volume element is equal to the sum of all applied
forces to this element; that this principle incorporates on the other hand — which
has firmly been pointed out by G. Hamel 53) — a statement being logically indepen-
dent of this first constituent part: If there are forces acting on a continuum, such that
the accelerations of every particle following Newton’s second law are admissible
with respect to the systems kinematic constraints, then these accelerations really
occur.

By introducing now the principle of virtual displacements as equilibrium condi-
tion into d’Alembert’s principle, one consequently obtains the variational principle
used by Lagrange 54 ) as basic formula in dynamics. For every instant 𝑡, one thinks
of the motion as in No. 2, (6) superposed by an infinitesimal virtual displacement,
which is admissible with respect to the kinematic constraints of the continuum aris-
ing at the instant of time 𝑡; then the virtual work augmented by the inertia forces
must vanish always:

(1) −
∭
(𝑉 )

𝜚(𝑥 ′′𝛿𝑥 + 𝑦′′𝛿𝑦 + 𝑧′′𝛿𝑧)𝑑𝑉 + 𝛿𝐴 = 0,

and this for every instant of time 𝑡 of the path of motion. For the case of an arbitrarily
continuously deformable body and under the same assumptions as in No. 3c, one can
deduce as equations of the motion for every point of the continuum at any instant of
time [the following ones]:

(2) 𝜚𝑥 ′′ = 𝜚𝑋 + 𝜕𝑋𝑥
𝜕𝑥

+ 𝜕𝑋𝑦

𝜕𝑦
+ 𝜕𝑋𝑧

𝜕𝑧

(
𝑥, 𝑦, 𝑧

𝑋, 𝑌 , 𝑍

)
,

while the boundary conditions (5b) of No. 3 remain unchanged for every instant of
time 𝑡. However, these equations only determine the motion, when the connection of
the force and the stress components with the functions of motion is specified.

Concerning the consideration of kinematic constraints, we refer here exclusively
to the case of so called holonomic constraints, which contain no time derivatives of
the functions of motion.55) Such a constraint differs from

53 G. Hamel, Math. Ann. 66 (1908), p. 354; p. 386 the independence for the mechanics of rigid
bodies is demonstrated in an example; cf. also the extensive presentation in Hamel’s Elementarer
Mechanik, p. 306f.
54 Méc. analyt., 2. part., Sect. II.
55 If one wants to treat problems including nonholonomic constraints in the mechanics of continua
using d’Alembert’s principle, then, as in point mechanics, one has to refrain from considering that
the variation
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der in Nr. 4c betrachteten Form nur durch das explizite Auftreten von 𝑡:

(3) 𝜔(𝑎, 𝑏, 𝑐; 𝑥, 𝑦, 𝑧; 𝑥𝑎, . . . , 𝑧𝑐; 𝑡) = 0.

Für die virtuellen Verrückungen kommt nun nur die Form dieser Bedingung zur
Zeit 𝑡 in Betracht; die variierte Lage soll (für beliebig kleine 𝜎) der Bedingung (3)
für den betrachteten festen Wert von 𝑡 genügen, so daß durch Differentiation nach 𝜎
(„Variation der Bewegung bei festem t“) folgt

(3′)
∑
(𝑥𝑦𝑧)

𝜕𝜔

𝜕𝑥
𝛿𝑥 +

∑
(𝑥𝑦𝑧,𝑎𝑏𝑐)

𝜕𝜔

𝜕𝑥𝑎
𝛿𝑥𝑎 = 0 für jedes 𝑡.

Hieraus ergeben sich wie in Nr. 4c angedeutet die Bewegungsgleichungen.
5b. Übergang zu dem sog. Hamiltonschen Prinzip. Man kann nun auch weiter-

hin ganz analog bekannten Entwicklungen der Punktmechanik das d’Alembertsche
Prinzip in andere die Bewegung bestimmende Variationsprinzipe umformen; ins-
besondere handelt es sich hier darum, die von der Bewegung (den Trägheitskräften)
herrührenden Glieder in die Variation eines einzigen für jeden Bewegungsvorgang
bestimmten Ausdruckes überzuführen.

Grundlegend sind, wie bei Lagrange 56), die Identitäten

𝑥 ′′𝛿𝑥 =
𝑑

𝑑𝑡
(𝑥 ′ · 𝛿𝑥) − 𝛿( 1

2𝑥
′2) (𝑥, 𝑦, 𝑧),

die durch wiederholte Differentiation aus Nr. 2, (6) nach den voneinander unab-
hängigen Veränderlichen 𝜎, 𝑡 folgen. Trägt man das in (1) ein und berücksichtigt,
daß die Operationssymbole 𝑑

𝑑𝑡 und 𝛿 ohne Rücksicht auf den Faktor 𝜚 vor das Inte-
gral gezogen werden können, da nach Einführung der 𝑎, 𝑏, 𝑐 als Integrationsvariable
sowohl der Integrationsbereich 𝑉0 als auch der verbleibende Faktor (𝜚0 von von 𝜎
und 𝑡 unabhängig sind, so ergibt sich

(4) − 𝑑

𝑑𝑡

∭
(𝑉 )

𝜚
∑
(𝑥𝑦𝑧)

𝑥 ′𝛿𝑥 · 𝑑𝑉 + 𝛿𝑇 + 𝛿𝐴 = 0,

Bewegung für kleine 𝜎 den Bedingungen genügt — vielmehr wird die Bedingungsgleichung für
die Verrückungen rein formal durch Ersetzen der zeitlichen Differentiation durch die Operation 𝛿
gewonnen; vgl. unten p. 633. Man vergleiche hierzu IV 1, Nr. 37, 38 (Voss) und die dort zitierte
Litteratur, insbesondere O. Hölder, Gött. Nachr., math.-phys. Kl. 1896, p. 141–143, ferner die
seither erschienenen Darstellungen von G. Hamel, Zeitschr. Math. Phys. 50 (1904), p. 1 und Math.
Ann. 59 (1904), p. 416.
56 Mécan. anal., 2. part., sect. IV, art. 3.
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the form considered in No. 4c only by the explicit appearance of 𝑡:

(3) 𝜔(𝑎, 𝑏, 𝑐; 𝑥, 𝑦, 𝑧; 𝑥𝑎, . . . , 𝑧𝑐; 𝑡) = 0.

Now, for the virtual displacements this form of condition at time 𝑡 comes into
question only; the varied position shall (for arbitrarily small 𝜎) satisfy the condition
(3) for the considered fixed value of 𝑡, such that by differentiating with respect to 𝜎
(“variation of the motion for fixed t”) it follows

(3′)
∑
(𝑥𝑦𝑧)

𝜕𝜔

𝜕𝑥
𝛿𝑥 +

∑
(𝑥𝑦𝑧,𝑎𝑏𝑐)

𝜕𝜔

𝜕𝑥𝑎
𝛿𝑥𝑎 = 0 for every 𝑡.

As mentioned in No. 4c the equations of motion arise out of this.
5b. Transition to the so-called Hamilton’s principle. In a rather similar way to

the well-known derivations in point mechanics, one can still transform d’Alembert’s
principle into other variational principles which determine the motion; here the point
concerns in particular the transformation of the terms coming from the motion (the
inertia forces) into the variation of a single expression being determined for every
motion.

Essential are, as in Lagrange 56), the identities

𝑥 ′′𝛿𝑥 =
𝑑

𝑑𝑡
(𝑥 ′ · 𝛿𝑥) − 𝛿( 1

2𝑥
′2) (𝑥, 𝑦, 𝑧),

which follow from repeated differentiation of (6) from No. 2 with respect to the
independent variables 𝜎, 𝑡. By substituting that [relation] into (1), we obtain by
taking into account that regardless of the factor 𝜚 the operation-symbols 𝑑

𝑑𝑡 and 𝛿
can be dragged in front of the integral, because after introducing 𝑎, 𝑏, 𝑐 as variables
of integration, both the domain of integration 𝑉0 and the remaining factor 𝜚0 are
independent of 𝜎 and 𝑡

(4) − 𝑑

𝑑𝑡

∭
(𝑉 )

𝜚
∑
(𝑥𝑦𝑧)

𝑥 ′𝛿𝑥 · 𝑑𝑉 + 𝛿𝑇 + 𝛿𝐴 = 0,

of the motion for small 𝜎 satisfies the constraints — moreover the constraint equations for the
displacements are gained in a pure formal way by replacing the time differentiation by the operation
𝛿; cf. below p. 633. Hereto one shall compare IV 1, No. 37, 38 (Voss) and the cited literature
therein, in particular O. Hölder, Gött. Nachr., math.-phys. Kl. 1896, p. 141–143, furthermore the
presentations appeared so far from G. Hamel, Zeitschr. Math. Phys. 50 (1904), p. 1 and Math. Ann.
59 (1904), p. 416.
56 Mécan. anal., 2. part., sect. IV, art. 3.
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wobei zur Abkürzung die gesamte kinetische Energie

(5) 𝑇 = 1
2

∭
(𝑉0)

𝜚0
∑
(𝑥𝑦𝑧)

𝑥 ′2𝑑𝑉0 =
1
2

∭
(𝑉 )

𝜚
∑
(𝑥𝑦𝑧)

𝑥 ′2𝑑𝑉

eingeführt ist. Gl. (4) ist die von G. Hamel 57) und K. Heun 58) unter dem Namen La-
grangesche Zentralgleichung als Grundlage der Mechanik der Systeme mit endlich
vielen Freiheitsgraden verwendete Gleichung, die also auch in der Mechanik der
Kontinua im gleichen Sinne gilt59), und die mit (1) völlig äquivalent ist: die Bewe-
gung erfolgt so, dass für jede mit den etwa stattfindenden Bedingungen verträgliche
virtuelle Verrückung in jedem Moment die zeitliche Ableitung der virtuellen Arbeit
des Impulses (𝑥 ′, 𝑦′, 𝑧′) pro Masseneinheit gleich der Summe der Variation der
kinetischen Energie und der virtuellen Arbeit sämtlicher Kraftwirkungen ist.60)

Betrachtet man nun die Bewegung im Zeitintervalle 𝑡0 � 𝑡 � 𝑡1, so gilt (4) für
jeden Moment, und durch Integration nach 𝑡 in den Grenzen 𝑡0, 𝑡1, ergiebt sich,
wenn die virtuellen Verrückungen für die Momente 𝑡 = 𝑡0, 𝑡1 gleich Null genommen
werden, das sog. Hamiltonsche Prinzip 61): Lagert man über die Bewegung des
Kontinuums irgendwelche mit den etwa stattfindenden Bedingungen verträgliche virt-
uelle Verrückungen, die für die Momente durchweg verschwinden, so verschwindet
das von 𝑡0 bis 𝑡1 erstreckte Zeitintegral der Summe von virtueller Arbeit und Variation
der kinetischen Energie:

(6)
𝑡1∫

𝑡0

(𝛿𝑇 + 𝛿𝐴)𝑑𝑡 = 0.

Da in (6) die virtuellen Verrückungen für jedes Zeitintervall will-

57 G. Hamel, Zeitschr. Math. Phys. 50 (1904), p. 14.
58 K. Heun, Lehrbuch der Mechanik, T. 1: Kinematik (Leipzig 1906), p. 92. Vgl. auch IV 11, Nr. 11,
K. Heun.
59 Vgl. IV 11, Nr. 19 bis 21, K. Heun.
60 Variiert man auch den Zeitparameter 𝑡 , so kann man ebenso die von G. Hamel (Math. Ann.
59 (1904), p. 423) und K. Heun 58) als allgemeine Zentralgleichung bezeichnete Relation auf die
Mechanik der Kontinua übertragen; vgl. IV 11, Nr. 19 bis 21, K. Heun.
61 Dies Prinzip wurde für einzelne Teilgebiete der Mechanik der Kontinua von verschiedenen
Seiten sehr bald aufgestellt, nachdem man es einmal für die Punktmechanik besass (s. IV 1, Nr. 42,
Voss); man vergleiche ausser der später zu zitierenden Litteratur der Einzeldisziplinen A. Walter,
Anwendung der Methode Hamiltons auf die Grundgleichungen der math. Theorie der Elastizität,
Diss. Berlin 1868, sowie die zusammenfassenden Darstellungen in Kirchhoffs Mechanik, p. 117 f
und W. Voigts Kompendium I, p. 227 ff.
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where the abbreviation of the total kinetic energy

(5) 𝑇 = 1
2

∭
(𝑉0)

𝜚0
∑
(𝑥𝑦𝑧)

𝑥 ′2𝑑𝑉0 =
1
2

∭
(𝑉 )

𝜚
∑
(𝑥𝑦𝑧)

𝑥 ′2𝑑𝑉

has been introduced. Eq. (4) is the equation used by G. Hamel 57) and K. Heun 58)
under the name central equation of Lagrange as the foundation of mechanics of
systems with finitely many degrees of freedom, which holds in the same manner
also for the mechanics of continua59), and is completely equivalent to (1): the motion
happens to be such that for every virtual displacement being admissible with respect
to the possible constraints, the time derivative of the virtual work of the momentum
(𝑥 ′, 𝑦′, 𝑧′) per unit of mass is, at any instant, equal to the sum of the variation of the
kinetic energy and the virtual work of all force effects.60)

Considering now the motion within the time interval 𝑡0 � 𝑡 � 𝑡1, then (4) holds
for every instant, and by integrating in 𝑡 with the boundaries 𝑡0, 𝑡1, it follows the
so-called Hamilton’s Principle when the virtual displacements are taken to be zero
at the instants 𝑡 = 𝑡0, 𝑡161): By superimposing to the motion of the continuum any
virtual displacements which vanish without exception at the instants [𝑡0 and 𝑡1] being
admissible with respect to the possibly occurring constraints, then the time integral
from 𝑡0 to 𝑡1 of the sum of the virtual work and the variation of the kinetic energy
vanishes:

(6)
𝑡1∫

𝑡0

(𝛿𝑇 + 𝛿𝐴)𝑑𝑡 = 0.

Since for every time interval in (6) the virtual displacements

57 G. Hamel, Zeitschr. Math. Phys. 50 (1904), p. 14.
58 K. Heun, Lehrbuch der Mechanik, T. 1: Kinematik (Leipzig 1906), p. 92. Cf. also IV 11, No. 11,
K. Heun.
59 Cf. IV 11, No. 19 to 21, K. Heun.
60 By varying also the time-parameter 𝑡 , one can also obtain the relation denoted by G. Hamel
(Math. Ann. 59 (1904), p. 423) and K. Heun 58) as general central equation to the mechanics of
continua; cf. IV 11, No. 19 to 21, K. Heun.
61 This principle has been formulated very soon by different authors for individual branches of
the mechanics of continua, after one has got it for point mechanics (see IV 1, No. 42, Voss); one
shall compare besides the literature of individual disciplines cited later on A. Walter, Anwendung
der Methode Hamiltons auf die Grundgleichungen der math. Theorie der Elastizität, Diss. Berlin
1868, as well as the summarizing presentation in Kirchhoff’s Mechanik, p. 117 f. and W. Voigts
Kompendium I, p. 227 ff.
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kürlich gewählt werden können, kann man ebenso leicht rückwärts aus (6) auf (4)
oder (1) schliessen: diese Prinzipe sind völlig äquivalent.

Man kann nun weiterhin direkt aus diesen Sätzen das Prinzip der kleinsten
Wirkung in seinen verschiedenen Formen für die Mechanik der Kontinua herleiten62);
doch scheint es da — abgesehen von Fällen, die auf Systeme mit endlichvielen Frei-
heitsgraden zurückkommen — noch keine wesentliche Anwendung gefunden zu
haben.

5c. Das Prinzip des kleinsten Zwanges. Man kann die Trägheitsglieder im
d’Alembertschen Prinzip auch ohne die Integration nach der Zeit in die Variation
eines für jeden Bewegungszustand bestimmten nur vom Zustand im Moment 𝑡 ab-
hängigen Ausdruckes überführen, wobei freilich das Auftreten zweiter zeitlicher
Ableitungen zugelassen werden muß. So entsteht das Gausssche Prinzip des klein-
sten Zwanges63), das A. v. Brill neuerdings zum Ausgangspunkt einer systematischen
Behandlung der Mechanik der Kontinua gewählt hat.64)

Um dies Prinzip zu gewinnen, entnehmen wir die virtuelle Verrückung einer Schar
variierter Bewegungen Nr. 2, (6) von folgender besonderer Art: Jedes Teilchen 𝑎, 𝑏, 𝑐
soll in dem betrachteten Zeitmoment 𝑡 dieselbe Lage und dieselbe Geschwindigkeit
besitzen wie bei der wirklichen Bewegung, d. h. es soll für ebenjenen Wert 𝑡 gelten:

(7) 𝛿𝑥(𝑎, 𝑏, 𝑐; 𝑡) = 0, 𝛿𝑥 ′(𝑎, 𝑏, 𝑐; 𝑡) = 0 (𝑥, 𝑦, 𝑧),

während die Variationen 𝛿𝑥′′, 𝛿𝑦′′, 𝛿𝑧′′ der Beschleunigungen von Null verschieden
sind. Diese drei Funktionen kann man nun in jedem Falle als Bestimmungsstücke
der in (1) eingehenden Verrückung verwenden. Im Falle eines frei deformierbaren
Kontinuums ist das evident. Besteht aber eine Bedingung der Form (3), so ergiebt
sich durch zweimalige Differentiation nach 𝑡∑

(𝑥𝑦𝑧)

𝜕𝜔

𝜕𝑥
𝑥 ′′ +

∑
(𝑥𝑦𝑧,𝑎𝑏𝑐)

𝜕𝜔

𝜕𝑥𝑎
𝑥 ′′𝑎 + · · · = 0,

62 Beispielsweise die Betrachtungen von O. Hölder, Die Prinzipien von Hamilton und Maupertius
(Gött. Nachr., math.-phys. Kl. 1896, p. 122 ff.) lassen sich unmittelbar auf Kontinua ausdehnen.
63 Gauss’ Werke V, p. 23 = Journal f. Math. 4 (1829). Die erste analytische Formulierung dieses
von Gauss nur in Worten ausgesprochenen Prinzipes haben R. Lipschitz, Journ. f. Math. 82 (1877),
p. 321 ff. und wenig später J. W. Gibbs, Amer. Journ. 2 (1879), p. 49 = Scientif. Pap. II (New-York
1906), p. 1 gegeben. Über die weitere Litteratur s. IV 1, Nr. 39, A. Voss.
64 A. v. Brill, Vorlesungen zur Einführung in die Mechanik raumerfüllender Massen, Leipzig 1909.
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can be chosen arbitrarily, one can also easily imply the other way round that (4) or
(1) follow from (6): these principles are completely equivalent.

Furthermore, one can now derive directly from these propositions the principle
of least action in its various forms for the mechanics of continua62); nevertheless it
seems — except for cases reducing to systems with finitely many degrees of freedom
— that it has not found essential applications [up to now].

5c. The principle of least constraint. Also without the integration in time, one
can transform the inertia terms in d’Alembert’s principle into the variation of an
expression determined for every motion by the state at the instant [of time] 𝑡 only, in
which certainly the appearance of time derivatives of second order must be allowed.
In this way Gauss’s principle of least constraint emerges63), which A. v. Brill has
recently chosen as the starting point of a systematic treatment of the mechanics of
continua.64)

To obtain this principle, we take from the virtual displacements a familiy of varied
motions No. 2, (6) of the following special kind: For the considered instant of time 𝑡,
every particle 𝑎, 𝑏, 𝑐 shall have the same position and the same velocity as the actual
motion, i. e. it shall hold for that very value 𝑡:

(7) 𝛿𝑥(𝑎, 𝑏, 𝑐; 𝑡) = 0, 𝛿𝑥 ′(𝑎, 𝑏, 𝑐; 𝑡) = 0 (𝑥, 𝑦, 𝑧),

while the variations 𝛿𝑥 ′′, 𝛿𝑦′′, 𝛿𝑧′′ of the accelerations are different from zero. One
can now use these three functions as characteristic quantities of the displacements
involved in (1). In the case of a freely deformable continuum this is evident. However,
when there is a condition of the form (3), two times differentiation with respect to 𝑡
yields ∑

(𝑥𝑦𝑧)

𝜕𝜔

𝜕𝑥
𝑥 ′′ +

∑
(𝑥𝑦𝑧,𝑎𝑏𝑐)

𝜕𝜔

𝜕𝑥𝑎
𝑥 ′′𝑎 + · · · = 0,

62 For instance the considerations of O. Hölder, Die Prinzipien von Hamilton und Maupertius (Gött.
Nachr., math.-phys. Kl. 1896, p. 122 ff.) can be extended immediately to continua.
63 Gauss’ Werke V, p. 23 = Journal f. Math. 4 (1829). The first analytic formulation of this principle
proposed by Gauss only verbally has been given by R. Lipschitz, Journ. f. Math. 82 (1877), p. 321 ff.
and soon after by J. W. Gibbs, Amer. Journ. 2 (1879), p. 49 = Scientif. Pap. II (New-York 1906),
p. 1. For further literature see IV 1, No. 39, A. Voss.
64 A. v. Brill, Vorlesungen zur Einführung in die Mechanik raumerfüllender Massen, Leipzig 1909.
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wo durch die Punkte bekannte Funktionen der 𝑥, . . . , 𝑥𝑎, . . . , und ihrer ersten
zeitlichen Ableitungen angedeutet sind. Durch Variation, d. h. Differentiation nach
𝜎, folgt wegen (7) für den festen Moment 𝑡∑

(𝑥𝑦𝑧)

𝜕𝜔

𝜕𝑥
𝛿𝑥 ′′ +

∑
(𝑥𝑦𝑧,𝑎𝑏𝑐)

𝜕𝜔

𝜕𝑥𝑎
𝛿𝑥 ′′𝑎 = 0,

und das ist tatsächlich genau die oben für die 𝛿𝑥 aufgestellte Bedingung (3′). Die
Einführung der Funktionen 𝛿𝑥 ′′, . . . in (1) ist daher gestattet und ergiebt nach leichter
Umformung das folgende neue Prinzip65): Variiert man die wirkliche Bewegung eines
Kontinuums in einem bestimmten Moment so, dass Lage und Geschwindigkeit eines
jeden Teilchens erhalten bleiben, aber die Beschleunigung den etwa stattfindenden
Nebenbedingungen entsprechend geändert wird, so verschwindet stets die folgende
Integralsumme:

(8) − 𝛿

∭
(𝑉 )

1
2 𝜚

∑
(𝑥𝑦𝑧)

𝑥 ′′2𝑑𝑉 +
∭
(𝑉 )

(
𝜚
∑

(𝑋𝑌 𝑍 )
𝑋𝛿𝑥 ′′ −

∑
(𝑋𝑌 𝑍,𝑥𝑦𝑧)

𝑋𝑥
𝜕𝛿𝑥 ′′

𝜕𝑥

)
𝑑𝑉

+
∬
(𝑆)

∑
(𝑋𝑌 𝑍 )

𝑋𝛿𝑥 ′′𝑑𝑆 = 0.

An Stelle der hier auftretenden Variation einer der „mittleren Beschleunigung“
entsprechenden Größe66) kann man auch das genaue Analogon des Gaussschen
Zwanges einführen; denn ordnet man der variierten Bewegung die gleichen ungeän-
derten Kräfte zu, so kann man (8) schreiben

(8′) − 𝛿

{∭
(𝑉 )

1
2 𝜚

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

(𝑥 ′′ − 𝑋)2𝑑𝑉

}
−
∭
(𝑉 )

∑
(𝑋𝑌 𝑍,𝑥𝑦𝑧)

𝑋𝑥
𝜕𝛿𝑥 ′′

𝜕𝑥
𝑑𝑉

+
∬
(𝑆)

∑
(𝑋𝑌 𝑍 )

𝑋𝛿𝑥 ′′𝑑𝑆 = 0.

Die wesentliche Bedeutung dieses Prinzips besteht wie in der Punktmechanik darin,
dass es völlig ungeändert auch bei Systemen mit nichtholonomen Nebenbedingun-
gen Geltung hat. Besteht etwa eine solche Bedingungsgleichung, in der neben den
Bewegungsfunktionen und ihren räumlichen Ableitungen auch die ersten zeitlichen
Differentialquotienten auftreten:

𝜔(𝑎, 𝑏, 𝑐; 𝑥, 𝑦, 𝑧; 𝑥𝑎, . . . , 𝑧𝑐; 𝑥 ′, 𝑦, 𝑧′; 𝑥 ′𝑎, . . . , 𝑧′𝑐; 𝑡) = 0,

so erhält man durch einmalige Differentiation nach 𝑡 die Bedingung

65 Brill, a. a. O., p. 61 ff.
66 Sie ist zuerst von P. Appell, Paris C. R. 129 (1899), p. 317 und in einer Reihe weiterer Arbeiten
(s. IV 1, Nr. 38, Voss) in diesem Zusammenhange benutzt worden.
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where with the points some known functions 𝑥, . . . , 𝑥𝑎, . . . , and their first time
derivatives are indicated. By the variation, i. e. differentiation with respect to 𝜎, it
follows due to (7) for the fixed instant 𝑡∑

(𝑥𝑦𝑧)

𝜕𝜔

𝜕𝑥
𝛿𝑥 ′′ +

∑
(𝑥𝑦𝑧,𝑎𝑏𝑐)

𝜕𝜔

𝜕𝑥𝑎
𝛿𝑥 ′′𝑎 = 0,

and this is in fact exactly condition (3′) for the 𝛿𝑥 formulated above. Thus, the
introduction of the functions 𝛿𝑥 ′′, . . . in (1) is allowed and after slight transformations
the following new principle is obtained.65): Varying the actual motion of a continuum
in a certain instant in such a way that the position and the velocity of every particle
are conserved, but the acceleration is changed agreeing with the possible constraints,
then the following sum of integrals always vanishes:

(8) − 𝛿

∭
(𝑉 )

1
2 𝜚

∑
(𝑥𝑦𝑧)

𝑥 ′′2𝑑𝑉 +
∭
(𝑉 )

(
𝜚
∑

(𝑋𝑌 𝑍 )
𝑋𝛿𝑥 ′′ −

∑
(𝑋𝑌 𝑍,𝑥𝑦𝑧)

𝑋𝑥
𝜕𝛿𝑥 ′′

𝜕𝑥

)
𝑑𝑉

+
∬
(𝑆)

∑
(𝑋𝑌 𝑍 )

𝑋𝛿𝑥 ′′𝑑𝑆 = 0.

Instead of the variation of a quantity corresponding to an “averaged acceleration”
appearing here66) one can also introduce the exact analogy of Gauss’s constraint;
then by attributing to the varied motion the same unchanged forces, one can write
(8) as

(8′) − 𝛿

{∭
(𝑉 )

1
2 𝜚

∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

(𝑥 ′′ − 𝑋)2𝑑𝑉

}
−
∭
(𝑉 )

∑
(𝑋𝑌 𝑍,𝑥𝑦𝑧)

𝑋𝑥
𝜕𝛿𝑥 ′′

𝜕𝑥
𝑑𝑉

+
∬
(𝑆)

∑
(𝑋𝑌 𝑍 )

𝑋𝛿𝑥 ′′𝑑𝑆 = 0.

The significant relevance of this principle lies, as in point mechanics, in the fact
that it is valid completely unchanged for systems with nonholonomic constraints.
For instance, [when] such a constraint equation, in which besides the functions of
motion and their spatial derivatives also their first differential quotient with respect
to time appear:

𝜔(𝑎, 𝑏, 𝑐; 𝑥, 𝑦, 𝑧; 𝑥𝑎, . . . , 𝑧𝑐; 𝑥 ′, 𝑦, 𝑧′; 𝑥 ′𝑎, . . . , 𝑧′𝑐; 𝑡) = 0,

then one obtains by once differentiating with respect to 𝑡 the condition

65 Brill, op. cit. p. 61 ff.
66 It has been used in this context at first by P. Appell, Paris C. R. 129 (1899), p. 317 and in a series
of further works (s. IV 1, No. 38, Voss).
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für die Werte der Beschleunigung im festen Momente 𝑡, und durch Variation (Dif-
ferentiation nach 𝜎) ergiebt sich wegen (7)∑

(𝑥𝑦𝑧)

𝜕𝜔

𝜕𝑥 ′
𝛿𝑥 ′′ +

∑
(𝑥𝑦𝑧,𝑎𝑏𝑐)

𝜕𝜔

𝜕𝑥 ′𝑎
𝛿𝑥 ′′𝑎 = 0,

was nunmehr (8) als Nebenbedingung zuzufügen ist.
Ist 𝜔 speziell linear in den Geschwindigkeiten 𝑥 ′, . . . , 𝑥 ′𝑎, . . . so ist dies Resultat

dem Wesen nach identisch mit der Form, in der man das d’Alembertsche Prinzip
vielfach für nichtholonome Bedingungen ausspricht55), wobei an Stelle der dort nur
formal eingeführten virtuellen Verrückungen eben die Variationen der Beschleuni-
gung treten.

Ein weiterer Vorzug dieses Prinzips vor dem d’Alembertschen, der indessen in der
Mechanik der Kontinua bisher kaum ausgenutzt zu sein scheint, besteht darin, dass es
auch für die Behandlung kinetischer Probleme mit Ungleichungsnebenbedingungen
die geeignete Grundlage bietet: man hat nur zu fordern, dass der Ausdruck (8) für alle
nach den Nebenbedingungen im Moment 𝑡 bei fester Lage und Geschwindigkeit der
einzelnen Teilchen zulässigen Variationen der Beschleunigung kleiner oder gleich
Null ist — genau wie es für die Punktmechanik schon Gauss 67) besonders betont
hat.

5d. Ansätze allgemeinerer Natur. Von Ansätzen, die über die bisher umschriebe-
nen gewissermassen klassischen Formen der Grundgleichungen der Kinetik hinaus-
führen, ist an erster Stelle eine Verallgemeinerung des Hamiltonschen Prinzips zu
nennen, die ganz ähnlich bereits in der Dynamik der Systeme mit endlichvielen
Freiheitsgraden eine wichtige Rolle spielt68); sie besteht darin, daß man zur Bil-
dung der kinetischen Energie 𝑇 eine allgemeinere Funktion der Geschwindigkeits-
komponenten, insbesondere eine definite quadratische Form verwendet:69)

(9) 𝑇 = 1
2

∭
(𝑉 )

𝔗𝑑𝑉, wo 𝔗 = 𝜚11𝑥
′2 + 2𝜚12𝑥

′𝑦′ + · · · .

Alsdann folgen aus dem Hamiltonschen Prinzip (6) Bewegungsgleichungen, die sich
von (2) nur dadurch unterscheiden, dass an Stelle von 𝜚 · 𝑥 ′′, . . . tritt 𝑑

𝑑𝑡

(
𝜕𝔗
𝜕𝑥′

)
, . . . .

Die 6 Koeffizienten 𝜚11, . . . sind ge-

67 Gauss, Werke V, p. 27.
68 Vgl. IV 12, P. Stäckel
69 Diese Ansätze spielen in den älteren optischen Theorien Lord Rayleighs die entscheidende Rolle;
s. bes. Phil. Magaz. (4) 41 (1871), p. 519 (vgl. V 21, Nr. 29, A. Wangerin). Derselbe Ansatz bei
T. J. Bromwich, Lond. math. Soc. Proc. 34 (1902), p. 307.
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the values of the acceleration [have to satisfy] for the fixed instant 𝑡, and by calculating
the variation (differentiation with respect to 𝜎) [subject to conditions] (7) it follows∑

(𝑥𝑦𝑧)

𝜕𝜔

𝜕𝑥 ′
𝛿𝑥 ′′ +

∑
(𝑥𝑦𝑧,𝑎𝑏𝑐)

𝜕𝜔

𝜕𝑥 ′𝑎
𝛿𝑥 ′′𝑎 = 0,

which henceforth has to be added to (8) as a constraint.
Especially, when 𝜔 is linear in the velocities 𝑥 ′, . . . , 𝑥 ′𝑎, . . . , then this result is, by

its nature, identical to the form in which one frequently states d’Alembert’s principle
for nonholonomic conditions55), whereas the variations of the acceleration substitute
the virtual displacements formally introduced therein.

An additional advantage of this principle in contrast to d’Alembert’s [principle],
which has hardly been used so far in the mechanics of continua, lies therein, that
it provides a suitable basis for the treatment of kinetic problems with inequality
constraints: one only has to ask expression (8) to be smaller or equal to zero for all
variations of the acceleration which at an instant 𝑡 for a fixed position and velocity are
admissible with respect to the constraints — exactly as it already has been stressed
in particular by Gauss.67)

5d. Principles of general nature. To mention principles, which go beyond the so
far discussed classical forms of the fundamental equations of kinetics, one must cite
a generalization of Hamilton’s principle, which plays quite similarly an important
role in the dynamics of systems with finitely many degrees of freedom68); [the
generalization] lies therein, to use for the formation of the kinetic energy 𝑇 a more
general function in the components of velocities, particularly a definite quadratic
form:69)

(9) 𝑇 = 1
2

∭
(𝑉 )

𝔗 𝑑𝑉, where 𝔗 = 𝜚11𝑥
′2 + 2𝜚12𝑥

′𝑦′ + · · · .

Thereupon from Hamilton’s principle (6) there follows equations of motion, which
differ from (2) only in the point, that 𝜚 · 𝑥 ′′, . . . is substituted by 𝑑

𝑑𝑡

(
𝜕𝔗
𝜕𝑥′

)
, . . . . The

6 coefficients 𝜚11, . . . are

67 Gauss, Werke V, p. 27.
68 Cf. IV 12, P. Stäckel
69 These approaches play an essential role in older optical theories of Lord Rayleigh; see espe-
cially Phil. Magaz. (4) 41 (1871), p. 519 (cf. V 21, No. 29, A. Wangerin). The same approach in
T. J. Bromwich, Lond. math. Soc. Proc. 34 (1902), p. 307.
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gebene Funktionen von 𝑎, 𝑏, 𝑐; sie bestimmen gemeinsam die Dichte (Trägheits-
masse) des Mediums, die sonach von der Richtung abhängig ist (kinetische
Anisotropie).

Sehr viel weiter holt ein anderer Ansatz aus, der über die besondere Form der
kinetischen Energie bzw. der vermöge der Bewegung auftretenden „Trägheitskräfte“
ebensowenig eine Annahme macht, wie der Arbeitsausdruck in Nr. 3 bezüglich
der Natur der Kräfte und Spannungen: Man erweitere das Prinzip der virtuellen
Verrückungen durch die einer vierten unabhängigen Variablen — der Zeit 𝑡 —
entsprechenden Operationen (Integration nach 𝑡 und Hinzufügung von Gliedern mit
zeitlichen Ableitungen der 𝛿𝑥, . . . ) und bezeichne als virtuelle Arbeit des bewegten
Kontinuums im Zeitintervall 𝑡0, 𝑡1 bei einer virtuellen Verrückung der Bewegung das
vierfache Integral, in dem 𝑎, 𝑏, 𝑐, 𝑡 als Unabhängige aufgefasst sind):70)

(10)
𝑡1∫

𝑡0

𝑑𝑡

∭
(𝑉0)

𝑑𝑉0

( ∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

(
𝜚0𝑋𝛿𝑥 + 𝑋𝑡

𝜕𝛿𝑥

𝜕𝑡

)
−
∑

(
𝑥𝑦𝑧

𝑋𝑌 𝑍
; 𝑎 𝑏 𝑐

)𝑋𝑎 𝜕𝛿𝑥𝜕𝑎

)
.

Dabei sind die Impulskomponenten 𝑋𝑡 , . . . , die den Einfluss der Bewegung repräsen-
tieren, ebenso wie Kraft- und Spannungsgrössen 𝑋, . . . , 𝑋𝑎, . . . in ihrer Ab-
hängigkeit von den Bewegungsfunktionen gemäss der speziellen Natur des Kon-
tinuums gegeben zu denken; die bisher angenommenen geläufigen Trägheitskräfte
erhält man, wie (5), (6) zeigt, für 𝑋𝑡 = 𝜚0𝑥

′, während (9) einem allgemeinen linearen
Ansatz in 𝑥 ′, 𝑦′, 𝑧′ entspricht. Weiterhin können zu (10) wie in Nr. 3 noch analoge
Integrale über den Rand des Integrationsgebietes im 𝑎-𝑏-𝑐-𝑡-Raume hinzutreten.
Die Bewegung geht nun so vor sich, dass die virtuelle Arbeit (10) für jede un-
endlichkleine mit den etwa bestehenden Nebenbedingungen verträgliche virtuelle
Verrückung verschwindet; daraus kann man nach den bekannten Methoden leicht
die Bewegungsgleichungen entnehmen — beispielsweise folgt für ein beliebig stetig
deformierbares Kontinuum:

(11)
𝑑𝑋𝑡
𝑑𝑡
= 𝜚0𝑋 + 𝜕𝑋𝑥

𝜕𝑎
+ 𝜕𝑋𝑦

𝜕𝑏
+ 𝜕𝑋𝑧

𝜕𝑐
(𝑋,𝑌, 𝑍),

und analog ergeben sich die Randbedingungen. Ganz wie in Nr. 3c

70 Für den Spezialfall, dass diese virtuelle Arbeit die Variation eines „Wirkungsintegrales“ ist,
sind diese Ansätze systematisch aufgestellt und verfolgt von E. u. F. Cosserat, Corps déformables,
p. 156 ff. (vgl. Nr. 7b). — In einer durch die Anforderungen der Relativitätstheorie modifizierten
Form tritt derselbe Ansatz auf bei H. Minkowski, Grundgleichungen der elektromagnet. Vorgänge
in bewegten Körpern, Gött. Nachr. 1908, p. 106 (vgl. Nr. 16).



3 Hellinger’s encyclopedia article 173

known functions of 𝑎, 𝑏, 𝑐; they determine together the density (mass of inertia) of
the medium, which therefore depends on the direction (kinetic anisotropy).

Much further goes an another postulation, which makes on the particular form of
the kinetic energy or the “inertia forces” due to the motion just as little assumptions,
as the work expression in No. 3 on the nature of forces and stresses: One shall
augment the principle of virtual displacements with a fourth independent variable
— the time 𝑡 — [with] corresponding operations (integration in 𝑡 and addition of
terms with time derivatives of 𝛿𝑥, . . . ) and [one shall] denote the fourfold integral,
in which 𝑎, 𝑏, 𝑐, 𝑡 are considered to be independent, as virtual work of the moving
continuum in the time interval 𝑡0, 𝑡1:70)

(10)
𝑡1∫

𝑡0

𝑑𝑡

∭
(𝑉0)

𝑑𝑉0

( ∑
( 𝑥 𝑦 𝑧
𝑋𝑌 𝑍)

(
𝜚0𝑋𝛿𝑥 + 𝑋𝑡

𝜕𝛿𝑥

𝜕𝑡

)
−
∑

(
𝑥𝑦𝑧

𝑋𝑌 𝑍
; 𝑎 𝑏 𝑐

)𝑋𝑎 𝜕𝛿𝑥𝜕𝑎

)
.

Thereby, the components of momentum 𝑋𝑡 , . . . , representing the influence on the
motion, shall be seen in the same way as the force and the stress quantities 𝑋, . . . ,
𝑋𝑎, . . . in their relation to the functions of motion according to the special nature of
the continuum; one obtains the inertia forces commonly assumed so far, as (5), (6)
show, for 𝑋𝑡 = 𝜚0𝑥

′, while (9) corresponds to a general linear ansatz in 𝑥 ′, 𝑦′, 𝑧′. In
addition, there can be added to (10) as in No. 3 similar integrals over the boundary of
the domain of integration in the 𝑎-𝑏-𝑐-𝑡-space. The motion now takes place in such a
way, that the virtual work (10) vanishes for every infinitesimal virtual displacement
being admissible with respect to the possible constraints; According to the well
known methods, one can easily extract out of this the equations of motion — for
instance for an arbitrarily continuously deformable continuum [it] follows:

(11)
𝑑𝑋𝑡
𝑑𝑡
= 𝜚0𝑋 + 𝜕𝑋𝑥

𝜕𝑎
+ 𝜕𝑋𝑦

𝜕𝑏
+ 𝜕𝑋𝑧

𝜕𝑐
(𝑋,𝑌, 𝑍),

and the boundary conditions are obtained analogously. Like in No. 3c

70 For the special case, that this virtual work is the variation of an “action integral”, these approaches
are formulated and pursued by E. and F. Cosserat, Corps déformables , p. 156 ff. (cf. No. 7b). —
In a form modified by the requirements of the theory of relativity the same approach appears in
H. Minkowski, Grundgleichungen der elektromagnet. Vorgänge in bewegten Körpern, Gött. Nachr.
1908, p. 106 (cf. No. 16).
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kann man in (10), (11) 𝑥, 𝑦, 𝑧 statt 𝑎, 𝑏, 𝑐 als Unabhängige einführen71).
Ganz analog hat man die allgemeine Kinetik der in Nr. 4b betrachteten Medien mit

orientierten Teilchen auszubauen, wenn man diesen Teilchen einen Trägheitswider-
stand gegen Winkelbeschleunigungen zuschreibt: Man hat, um hier sogleich den
allgemeinsten Ausdruck zu formulieren, zu (10) nur das Nr. 4, (2) analoge Inte-
gral72)

(12)
𝑡1∫

𝑡0

𝑑𝑡

∭
(𝑉0)

𝑑𝑉0

( ∑
(𝐿𝑀𝑁

𝜋 𝜅 𝜚 )

(
𝜚0𝐿𝛿𝜋 + 𝐿𝑡

𝜕𝛿𝜋

𝜕𝑡

)
−

∑
(
𝐿𝑀𝑁

𝜋 𝜅 𝜚
; 𝑎 𝑏 𝑐

)𝐿𝑎 𝜕𝛿𝜋𝜕𝑎

)

hinzuzufügen, wo 𝐿𝑡 , . . . den Impuls der inneren Rotation bestimmen, und kann
hieraus wie in Nr. 4b in jedem Falle die Bewegungsgleichungen, die bei freier
Beweglichkeit der Dreikante ein zweites (11) analoges Tripel aufweisen, herleiten73)

Alle diese Betrachtungen sind mit leichten Modifikationen auch auf die Dynamik
zwei- und eindimensionaler Kontinua anwendbar.74)

III. Die Formen der Wirkungsgesetze.

A. Formulierung der allgemeinen Typen.

6. Die Typen der Abhängigkeit der Kraftwirkungen von den Deformation-
sgrössen. Während in den bisherigen Erörterungen die Wirkungskomponenten —
unter diesem Ausdruck seien der Kürze halber neben den Kräften und Spannun-
gen aller Arten auch die Impulsgrössen von Nr. 5d mitinbegriffen — nur formal
als Koeffizienten des Ausdrucks der virtuellen Arbeit in Betracht kamen, ist nun-
mehr von ihrem Zusammenhang mit den Bestimmungsstücken der Deformation bzw.
der Bewegung des Kontinuums Rechenschaft zu geben, der bestehen und bekannt
sein muss, wenn anders die angegebenen Grundgleichungen überhaupt die Defor-
mation bzw. Bewegung des Kontinuums bestimmen sollen. Er muss überdies die
anschaulich evidente Tatsache zum Ausdruck bringen, dass in jedem Kontinuum
durch Bewegungen und Deformationen gewisse Kraftwirkungen ausgelöst werden,
und dass umgekehrt durch einwirkende Kräfte und Spannungen Bewegungen und
Deformationen hervorgerufen werden. Dabei muss in

71 Vgl. E. u. F. Cosserat, a. a. O., p. 187 ff.
72 E. u. F. Cosserat, a. a. O., p. 156 ff., p. 167 ff.
73 Vgl. auch IV 11, Nr. 21c (K. Heun)
74 E. u. F. Cosserat, a. a. O., p. 121. Die Ansätze der Kinetik ein- und zweidimensionaler Kontinua
ordnen sich denen der Statik zwei- bzw. dreidimensionaler ein.
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in (10), (11), one can introduce 𝑥, 𝑦, 𝑧 instead of 𝑎, 𝑏, 𝑐 as independent [variables]71).
Completely analogously one has to extend the general kinetics of media with

oriented particles considered in No. 4b, if one associates to these particles a resistance
of inertia against angular accelerations: In order to formulate readily the most general
expression, one has to add to (10) only the integral being analogous to No. 4, (2)72)

(12)
𝑡1∫

𝑡0

𝑑𝑡

∭
(𝑉0)

𝑑𝑉0

( ∑
(𝐿𝑀𝑁

𝜋 𝜅 𝜚 )

(
𝜚0𝐿𝛿𝜋 + 𝐿𝑡

𝜕𝛿𝜋

𝜕𝑡

)
−

∑
(
𝐿𝑀𝑁

𝜋 𝜅 𝜚
; 𝑎 𝑏 𝑐

)𝐿𝑎 𝜕𝛿𝜋𝜕𝑎

)
,

where 𝐿𝑡 , . . . determines the momentum of the internal rotation, and [one] can
herefrom derive as in No. 4b in every case the equations of motion, which have for
a free movability of the triad a second triple [of equations] analogous to (11).73)

All these considerations are with slight modifications also applicable for the
dynamics of two- and one-dimensional continua.74)

III. The forms of constitutive laws.

A. Formulation of general classes.

6. The classes with dependence of the force effects on the deformation quan-
tities. While in the previous discussions the effects — for the sake of brevity this
expression includes besides forces and stresses of any kind also the momentum
quantities of No. 5d — have been considered in a mere formal way as coefficients
of the virtual work expression, henceforth, [we] have to account for their connection
with the characteristic quantities of the deformation or the motion of the continuum,
which has to exist and has to be known, when after all the stated fundamental equa-
tions shall determine the deformation or the motion of the continuum. Moreover,
[this connection] must express the clearly evident fact, that in every continuum due
to motions and deformations certain force effects are induced, and that vice versa
due to impressed forces and stresses motions and deformation are caused. Thereby

71 Cf. E. and F. Cosserat, op. cit. p. 187 ff.
72 E. and F. Cosserat, op. cit. p. 156 ff., p. 167 ff.
73 Cf. also IV 11, No. 21c (K. Heun)
74 E. and F. Cosserat, op. cit. p. 121. The postulations regarding the kinetics of one- and two-
dimensional continua can be based on those [used] in the statics of two- and three-dimensional
[continua], respectively.
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erster Linie der Unterschied zur Geltung kommen, ob die Kraftwirkungen äussere
sind, d. h. in den Beziehungen des betrachteten Mediums zu ausserhalb gelegenen
Medien oder Wirkungsquellen ihren Ursprung haben (Fernkräfte, Drucke an den
Grenzflächen usw.), oder innere, d. h. auf der materiellen Konstitution des einzelnen
Mediums und den gegenseitigen Einwirkungen seiner Teile beruhen. Die zuletzt
genannten Wirkungen sind für den vorliegenden Zweck wesentlicher; insofern die
gesuchten Gleichungen sie liefern, charakterisieren sie das eigentümliche dynamis-
che Verhalten eines jeden Mediums innerhalb der allen Kontinuis gemeinsamen
Formen und können daher geradezu als Stoffgleichungen bezeichnet werden.

Bei der Erörterung, wie diese Stoffgleichungen im allgemeinen beschaffen
sind, genügt es, in erster Linie auf die in Nr. 3 behandelten Medien und die
eigentlichen Spannungsgrössen 𝑋𝑥 , . . . , 𝑍𝑧 und allenfalls auf die Kraftkomponenten
𝑋,𝑌, 𝑍 Bezug zu nehmen. Danach lassen sich dann die entsprechenden allgemeinen
Schemata für die in Nr. 4, auftretenden Spannungsgrößen in weiterem Sinne und
für die Impulskomponenten von Nr. 5d leicht aufstellen — die bei diesen bisher
tatsächlich angewendeten Ansätze ordnen sich übrigens den speziellen in Nr. 7b,f zu
besprechenden Abhängigkeitstypen unter. Die Werte der Spannungskomponenten
𝑋𝑥 , . . . , 𝑍𝑧 die dem zur Zeit 𝑡 an der Stelle

(1) 𝑥 = 𝑥(𝑎, 𝑏, 𝑐; 𝑡), 𝑦 = 𝑦(𝑎, 𝑏, 𝑐; 𝑡), 𝑧 = 𝑧(𝑎, 𝑏, 𝑐; 𝑡)

befindlichen Teilchen 𝑎, 𝑏, 𝑐 entsprechen, müssen durch die Stoffgleichungen für
jede mögliche Bewegung des Kontinuums gegeben sein; sie werden also explizit
dargestellt als irgendwie geartete von 𝑎, 𝑏, 𝑐, 𝑡 und den Funktionen (1) abhängige
Ausdrücke, in die neben den Werten dieser Funktionen und ihrer örtlichen und
zeitlichen Ableitungen an der Stelle 𝑎, 𝑏, 𝑐, 𝑡 möglicherweise auch ihre Werte an
andern Stellen 𝑎, 𝑏, 𝑐, 𝑡 und überhaupt ihr Gesamtverlauf im Variabilitätsbereich ihrer
vier Veränderlichen (Integrale u. dgl.) eingehen — also, symbolisch geschrieben, in
der Form:

(2) 𝐹 (𝑎, 𝑏, 𝑐, 𝑡; 𝑥(𝑎, 𝑏, 𝑐, 𝑡), . . . . .).

Geht man zu einem andern rechtwinkligen Koordinatensystem 𝑥, 𝑦, 𝑧 über, so sind
diese neun Ausdrücke der Spannungskomponenten wie die Komponenten einer
Dyade zu transformieren (und ebenso die Ausdrücke für 𝑋,𝑌, 𝑍 wie Vektorkom-
ponenten usw.); handelt es sich um innere Kraftwirkungen, so müssen zwischen den
transformierten Komponenten und den neuen Koordinaten Gleichungen genau der
alten Form bestehen.
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primarily the [following] difference must be clarified, if the force effects are external,
i. e. [the effects] have their cause in the relation to media and sources of effects located
outside the considered medium (long-range forces, pressures at the boundary and
such like), or internal, i. e. [the effects] are based on the material constitution of
the particular medium and the mutual effects of the particles thereof. The last-
named effects are for the objective at hand more essential; provided that the desired
equations yield these [effects], they characterize the specific dynamic behavior of
each one medium within the common classes of all continua and can consequently
be denoted as material laws.

In the discussion, how these material laws are constituted in general, it is enough
to refer primarily to the media treated in No. 3 and to the effective quantities of
stress 𝑋𝑥 , . . . , 𝑍𝑧 and if necessary to the force components 𝑋,𝑌, 𝑍 . Thereafter,
the corresponding general schemes for the quantities of stress in the broader sense
appearing in No. 4 and for the components of momentum of No. 5d can be formulated
easily — after all, the formulations [of the material laws] for these [effects] being
effectively applied so far, can be deduced as special classes of dependence [which
need] to be discussed in No. 7b,f. The values of the stress components 𝑋𝑥 , . . . , 𝑍𝑧
corresponding to the particle 𝑎, 𝑏, 𝑐 located at time 𝑡 at the position

(1) 𝑥 = 𝑥(𝑎, 𝑏, 𝑐; 𝑡), 𝑦 = 𝑦(𝑎, 𝑏, 𝑐; 𝑡), 𝑧 = 𝑧(𝑎, 𝑏, 𝑐; 𝑡),

must be given by the material laws for every possible motion of the continuum; hence
[the values] are represented explicitly as expressions of any kind depending on 𝑎,
𝑏, 𝑐, 𝑡 and the functions (1). [These expressions] also include besides the values of
the functions [(1)] and their spatial and time derivatives at the positions 𝑎, 𝑏, 𝑐, 𝑡
possibly values at other positions 𝑎, 𝑏, 𝑐, 𝑡 and in general the complete history in the
domain of variability of the four variables (integrals and similar ones) — Hence,
symbolically written in the form:

(2) 𝐹 (𝑎, 𝑏, 𝑐, 𝑡; 𝑥(𝑎, 𝑏, 𝑐, 𝑡), . . . . .).

Changing over to another orthogonal coordinate system 𝑥, 𝑦, 𝑧, then these nine ex-
pressions of the stress components have to be transformed like the components of
a dyad (and similarly the expressions for 𝑋,𝑌, 𝑍 like vector components and so
on); if it concerns internal force effects, then there must exist equations between
the transformed components and the new coordinates [which are] exactly of the old
form.
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Wir betrachten nun der Reihe nach die einzelnen möglicherweise in den Span-
nungsausdrücken auftretenden Argumente; natürlich können die im folgenden
einzeln diskutierten Wirkungen auch gleichzeitig stattfinden. In erster Linie ist da
zu bemerken, daß explizites Vorkommen der Parameter 𝑎, 𝑏, 𝑐 auf Inhomogenität
des Mediums, d. h. Verschiedenheit seiner Eigenschaften von Teilchen zu Teilchen,
hindeutet; Auftreten des Zeitparameters 𝑡 bedeutet in ihrem zeitlichen Verlauf von
vornherein bestimmte, d. h. ohne Rücksicht auf die wirklich stattfindende Bewegung
gegebene äussere Einwirkungen.

Das eigentlich Wesentliche ist natürlich die Art des Eingehens der Funktionen (1)
selbst75); betrachten wir zunächst den Fall, daß nur ihr Wertverlauf in beliebig kleiner
Umgebung der Stelle 𝑎, 𝑏, 𝑐, 𝑡, d. h. die Werte der Funktionen und ihrer Ableitungen
an dieser Stelle, in (2) auftreten, daß also (2) von der Form ist

(3) 𝐹 (𝑎, ..., 𝑡; 𝑥(𝑎, ..., 𝑡), ...; 𝑥𝑎 (𝑎, ..., 𝑡), ..., 𝑥𝑡 (𝑎, ..., 𝑡); 𝑥𝑎𝑎 (𝑎, ..., 𝑡), ...).

Das Vorkommen der Lokalwerte von 𝑥, 𝑦, 𝑧 selbst bedeutet Wirkungen, die von
der wirklichen Lage der einzelnen Teilchen im Raum abhängen, wie es beispiel-
sweise äussere gegebene Kraftfelder (Schwere oder dgl.) sind. Charakteristischer für
die Kontinua sind indessen die Nahewirkungen, die sich im Auftreten von Spannun-
gen infolge lokaler Deformationen äussern. Als Bestimmungsstücke der gesamten
Deformation an einer Stelle (nicht bloss der reinen Formänderung der elementaren
Elastizitätstheorie) betrachtet man bekanntlich in erster Linie die Werte der neun
ersten örtlichen Ableitungen daselbst (vgl. IV 14, Nr. 16); die in Rede stehende
Wirkung kommt daher in expliziter Abhängigkeit der Spannungskomponenten von
den Werten 𝑥𝑎, . . . , 𝑧𝑐 an der Stelle 𝑎, 𝑏, 𝑐, 𝑡 zum Ausdruck. Die Art dieser Ab-
hängigkeit muss hervortreten lassen, ob und welche einzelnen Bestandteile der De-
formation alleinigen oder vorzugsweisen Einfluss auf die Spannung bzw. auf die
einzelnen Bestandteile der Spannung besitzen, wie später bei der Behandlung der
einzelnen Gebiete zur Geltung kommen wird.

Der Deformationszustand an einer Stelle wird genauer beschrieben, wenn man
neben den ersten noch höhere örtliche Ableitungen der Funktionen (1) heranzieht,
d. h. die Deformation in der Umgebung durch eine Transformation höheren Grades
statt durch eine lineare approximiert; die Abhängigkeit der Spannungen von der
Deformation wird also vollständiger wiedergegeben sein, wenn man auch diese
höheren

75 Die im folgenden zunächst anzuführenden Abhängigkeitstypen sind ihrer Form nach in der Regel
zuerst in der Entwicklung der Elastizitätstheorie aufgetreten; nähere Angaben werden unter IIIB in
den Nrn. 9—16 zu machen sein.
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We consider now successively each argument possibly appearing in the expres-
sions of stress; certainly, these effects which are discussed in the following individ-
ually can also appear simultaneously. Primarily, it has to be noted that the explicit
appearance of the parameter 𝑎, 𝑏, 𝑐 indicates inhomogeneity, i. e. difference of the
properties from particle to particle; [the] appearance of the time parameter 𝑡 in-
dicates given external excitations, whose progress in time is a priori determined,
irrespective of the actual occurring motion.

The bare essentials are certainly how the functions (1) themselves enter [in the
functional dependence expressed by (2)]75); to begin with, we consider the case that
[for the functions (1)] only their behavior in an arbitrary small vicinity of the position
𝑎, 𝑏, 𝑐, 𝑡, i. e. the values of the functions and their derivatives at this position, appear
in (2), hence that (2) is of the form

(3) 𝐹 (𝑎, ..., 𝑡; 𝑥(𝑎, ..., 𝑡), ...; 𝑥𝑎 (𝑎, ..., 𝑡), ..., 𝑥𝑡 (𝑎, ..., 𝑡); 𝑥𝑎𝑎 (𝑎, ..., 𝑡), ...).

The occurrence of local values of 𝑥, 𝑦, 𝑧 themselves corresponds with effects,
which depend on the actual position of the individual particles in space, as they are
for example external given force fields (gravity or similar ones). More characteris-
tic for continua are however short-range effects, which manifest themselves in the
appearance of stresses due to local deformations. As characteristic quantities of the
whole deformation at a position (not only the pure shape change of the elementary
theory of elasticity), one considers, as is well known, primarily the values of the nine
first spatial derivatives thereof (cf. IV 14, No. 16); thus, the considered effect at hand
expresses itself with an explicit dependence of the stress components on the values
𝑥𝑎, . . . , 𝑧𝑐 at the position 𝑎, 𝑏, 𝑐, 𝑡. The type of these dependences must clarify, if
and which individual elements of the deformation have exclusive or mainly influence
on the stress or on the individual elements of the stress, as it will become clear later
in the discussion of the particular fields.

The state of deformation at a position is described more precisely, if one uses be-
sides the first also higher spatial derivatives of the functions (1), i. e. the deformation
in the neighborhood is approximated by a transformation of higher order instead of
a linear one; the dependence of the stresses on the deformation will be represented
more completely, if one includes also these higher

75 The classes of dependence, quoted in the following to begin with, have according to their form
usually appeared at first in the development of the theory of elasticity; particulars are to be given in
IIIB for the Nos. 9—16.
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Ableitungen in die Stoffgleichungen hineinnimmt. Tatsächlich hat man bisher nicht
höhere als zweite Ableitungen in Betracht gezogen, und zwar wird das erst dann nötig,
wenn der Zustand des Mediums sehr rasch mit dem Ort variiert; die Spannungen
an einer Stelle hängen dann also auch von dem örtlichen Abfall der gewöhnlichen
Deformationsgrössen 1. Ordnung ab.

Ebenso wie die Lokalwerte der örtlichen Ableitungen können in der Kinetik auch
die Werte der zeitlichen Ableitungen der Funktionen (1) an der Stelle 𝑎, 𝑏, 𝑐, 𝑡 in
(3) explizit eingehen; man hat da namentlich die Geschwindigkeitskomponenten
𝑥 ′, 𝑦′, 𝑧′ der Teilchen selbst und die „Änderungsgeschwindigkeiten“ der Deforma-
tionsgrössen 𝑥 ′𝑎, . . . , 𝑧

′
𝑐 — die, mit 𝑑𝑡 multipliziert, auch als Komponenten der

Deformation der Umgebung des Teilchens 𝑎, 𝑏, 𝑐 vermöge der von 𝑡 bis 𝑡 + 𝑑𝑡 vor
sich gehenden Bewegung aufgefasst werden können76) — in Betracht gezogen. Diese
Ansätze werden den Erscheinungen der äusseren und inneren Reibung, der Zähigkeit
u. dgl. gerecht.

Bei allen Gesetzen vom Typus (3) ist die Frage von prinzipieller Bedeutung,
wie diese Gleichungen sich bei einer Transformation der Richtungen der 𝑎-𝑏-𝑐-
Parameterlinien durch diesen Punkt 𝑎, 𝑏, 𝑐 verhalten, während die 𝑥-𝑦-𝑧-Koordinaten
ungeändert bleiben. Dadurch wird nämlich bestimmt, ob und welche verschiedenen
Richtungen durch einen Punkt des Mediums für dessen Konstitution, soweit sie
sich in den betrachteten Stoffgleichungen äussert, gleichbedeutend sind, d. h. es
wird über Isotropie oder Aeolotropie des Mediums entschieden; unter besonderen
Verhältnissen ist dieser Zusammenhang in der Kristallphysik eingehend studiert
worden, wobei nur durch die Beschränkung auf unendlichkleine Deformationen der
Unterschied zwischen den Transformationen der 𝑎, 𝑏, 𝑐 und der 𝑥, 𝑦, 𝑧 nicht zur
Geltung kommt.77)

Für den allgemeineren Fall, dass in die Stoffgleichungen (2) auch die Werte
der Funktionen (1) an anderen Stellen und zu anderen Zeiten eingehen, ist der
charakteristische Ansatz von hinreichender Allgemeinheit — zunächst für die Statik
—, die Spannungskomponenten gleich Raumintegralen über das ganze Kontinuum
zu setzen

(4)
∭
(𝑉0)

𝑓 (𝑎, . . . ; 𝑥, . . . ; 𝑥𝑎, . . . ; 𝑎, . . . ; 𝑥, . . . ; 𝑥𝑎, . . . )𝑑𝑎 𝑑𝑏 𝑑𝑐,

76 Stokes, Cambridge Phil. Trans. 8 (1845) = Math. and Phys. Papers 1 (1880), p. 80; vgl. auch IV
15, Nr. 7, Love.
77 Vgl. etwa F. Neumann, Vorles. üb. d. Theorie der Elastizität (Leipzig 1885), p. 164; W. Voigt,
Abh. Ges. d. Wiss. Göttingen 34 (1887), 36 (1890), Kompendium I, p. 128 ff. und p. 333, sowie
besonders Lehrb. d. Krystallphysik (Leipzig 1910), § 286 ff., § 370 ff., § 414 ff., § 462.
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derivatives in the material laws. In fact, one has considered so far [derivatives which
are] not higher than second derivatives, this is namely required not until then, when
the state of the medium varies very quickly in space; the stresses at a position then
depends also on the spatial slope of the common deformation quantities of 1. order.

Equally to the local values of the spatial derivatives, in kinetics also the values
of the time derivatives of the functions (1) at the position 𝑎, 𝑏, 𝑐, 𝑡 can enter in (3)
explicitly; One has considered in particular the velocity components 𝑥 ′, 𝑦′, 𝑧′ of the
particles themselves and the “velocities of change” of the deformation quantities
𝑥 ′𝑎, . . . , 𝑧

′
𝑐 — which, multiplied by 𝑑𝑡, can also be interpreted as components of the

deformation of the neighborhood of the particle 𝑎, 𝑏, 𝑐 due to the ongoing motion
between 𝑡 and 𝑡 + 𝑑𝑡76). These basic approaches satisfy the phenomena of external
and internal friction, i. e. viscosity and similar ones.

For all laws of the class (3) the question, how these equations behave under a
transformation of the directions of the 𝑎-𝑏-𝑐 parameter lines through these points
𝑎, 𝑏, 𝑐, while the 𝑥-𝑦-𝑧-coordinates remain unchanged, is of fundamental evidence.
Thereby it is determined namely, if and which different directions through a point of
the medium are tantamount for its constitution, provided that it is expressed in the
considered material laws, i. e. it is decided on isotropy or aeolotropy of the medium;
for specific conditions this connection has been studied thoroughly in the physics of
crystals, where due to the mere restriction to infinitesimal deformation the difference
between transformations of 𝑎, 𝑏, 𝑐 and 𝑥, 𝑦, 𝑐 does not appear.77)

For the more general case, that within the material laws (2) also the values of the
functions (1) at different positions and for different times enter, the characteristic
ansatz is of sufficient generality — at first for statics —, to identify the components
of stress with volume integrals over the whole continuum

(4)
∭
(𝑉0)

𝑓 (𝑎, . . . ; 𝑥, . . . ; 𝑥𝑎, . . . ; 𝑎, . . . ; 𝑥, . . . ; 𝑥𝑎, . . . )𝑑𝑎 𝑑𝑏 𝑑𝑐,

76 Stokes, Cambridge Phil. Trans. 8 (1845) = Math. and Phys. Papers 1 (1880), p. 80; cf. also IV
15, No. 7, Love.
77 Cf. for instance F. Neumann, Vorles. üb. d. Theorie der Elastizität (Leipzig 1885), p. 164; W. Voigt,
Abh. Ges. d. Wiss. Göttingen 34 (1887), 36 (1890), Kompendium I, p. 128 ff. and p. 333, as well
as in particular Lehrb. d. Krystallphysik (Leipzig 1910), § 286 ff., § 370 ff., § 414 ff., § 462.
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deren Integranden gegebene Funktionen der Werte der Deformationsfunktionen (1)
und ihrer Ableitungen für die Teilchen 𝑎, 𝑏, 𝑐 und 𝑎, 𝑏, 𝑐 sind. Damit sind die Fer-
nwirkungen innerhalb des Mediums umfasst: eine Wirkung an der Stelle 𝑥, 𝑦, 𝑧
entsteht infolge der Zustände an allen anderen Stellen des Kontinuums. Aber neben
die aus der klassischen Mechanik bekannten von Massenteilchen zu Massenteilchen
wirkenden durch solche Ansätze dargestellten Kräfte nach Art der Attraktionskräfte
treten hier neu die von P. Duhem78) betrachteten Fernwirkungen („influence“) auf,
vermöge deren an jeder Stelle des Kontinuums sich superponierende Kräfte oder
Spannungen durch die an allen andern Stellen des Kontinuums stattfindenden De-
formationen ausgelöst werden.

In der Kinetik wird man diesen Ansatz noch dahin ausdehnen, dass man ein
Zeitintegral über den gesamten Bewegungsverlauf; oder vielmehr — unsern allge-
meinen Vorstellungen von Ursache und Wirkung entsprechend — über die Zeit vor
dem betrachteten Moment 𝑡 hinzunimmt; der Integrand enthält dabei die Werte der
Funktionen (1) sowie ihrer Ableitungen für die Momente 𝑡 und 𝑡 (−∞ < 𝑡 � 𝑡):

(5)
𝑡∫

−∞
𝑑𝑡

∭
(𝑉 )

𝑑𝑎 𝑑𝑏 𝑑𝑐 𝑓 (𝑎,..., 𝑡;𝑥,..., 𝑥𝑎;..., 𝑥𝑡 ;...; 𝑎,..., 𝑡; 𝑥,...; 𝑥𝑎;...𝑥𝑡 ;...).

Solche Ausdrücke für die Spannungskomponenten hat zuerst L. Boltzmann79) zur
Formulierung der Erscheinung der elastischen Nachwirkung verwendet, bei der die
in einem Moment stattfindenden Spannungen tatsächlich abhängen von allen Zustän-
den, die das Medium vorher durchlaufen hat. Neuerdings hat V. Volterra80) die Un-
tersuchung der durch diese Integralansätze entstehenden Probleme aufgenommen,
nachdem er in der Theorie der Integro-Differentialgleichungen ein neues Mittel zu
ihrer analytischen Behandlung sich geschaffen hatte; er läßt übrigens in (5) auch
mehrfache Integrationen nach der Zeit zu, wobei der Integrand von den Werten für
mehr als zwei Zeitmomente abhängt. Für die sämtlichen hier umfaßten Probleme,
bei denen die Wirkungen in einem Moment von der ganzen Vorgeschichte des Sys-
tems abhängen, nimmt er die von E. Picard 81) eingeführte Bezeichnung „hereditäre
Mechanik“ auf.

78 P. Duhem, J. de math. (4) 8 (1892), p. 311; Ann. de l’Éc. norm. (3) 10 (1893), p. 215, und 21
(1904), p. 117.
79 Wien. Ber. 70 (1874), p. 275 = Pogg. Annalen, Ergänzungsbd. 7 (1876), p. 624 = Wissensch.
Abh. I, p. 616.
80 Die allgemeinen Ansätze sind in den Roma, Acc. Linc. Rend. (5) 18, 2 (1909), p. 295 und Acta
math. 35 (1912), p. 295 enthalten.
81 Riv. di Scienz. 1 (1907), p. 14.
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whose integrands are given functions of the values of the deformation functions
(1) and their derivatives for the particles 𝑎, 𝑏, 𝑐 and 𝑎, 𝑏, 𝑐. Thereby long-range
effects are included within the medium: an effect at the position 𝑥, 𝑦, 𝑧 emerges in
consequence of the states at all other positions of the continuum. However, besides
forces represented by basic approaches known from classical mechanics acting from
mass particles to mass particles according to the class of forces of attraction, here
it appears anew the long-range effects (“influence”) considered by P. Duhem78), due
to which at every position of the continuum superposed forces or stresses are caused
by deformations taking place at all other positions of the continuum.

In the [field] of kinetics one will augment this ansatz such, that one adds a time
integral over the whole motion; or rather — corresponding with our general notion
of action and reaction — over the time before the considered instant 𝑡; thereby the
integrand contains the values of the functions (1) as well as their derivatives at the
instants 𝑡 and 𝑡 (−∞ < 𝑡 � 𝑡):

(5)
𝑡∫

−∞
𝑑𝑡

∭
(𝑉 )

𝑑𝑎 𝑑𝑏 𝑑𝑐 𝑓 (𝑎,..., 𝑡;𝑥,..., 𝑥𝑎;..., 𝑥𝑡 ;...; 𝑎,..., 𝑡; 𝑥,...; 𝑥𝑎;...𝑥𝑡 ;...).

Originally, L. Boltzmann79) has used such expressions for the stress components to
formulate the phenomenon of elastic residual effects, for which the stresses occurring
in one instant depend in fact on all states the medium has passed in advance.
Recently, V. Volterra80) has taken up the studies of problems arising from these
integral formulations, once he has created with the theory of integro-differential
equations a new tool for the analytical treatment thereof; by the way, he also allows
in (5) multiple integrations with respect to time, where the integrands depend on
the values of more than two instants of time. For all herein contained problems, for
which the effects at one instant depend on the whole previous history of the system,
he takes up the name “hereditary mechanics” introduced by E. Picard 81).

78 P. Duhem, J. de math. (4) 8 (1892), p. 311; Ann. de l’Éc. norm. (3) 10 (1893), p. 215, and 21
(1904), p. 117.
79 Wien. Ber. 70 (1874), p. 275 = Pogg. Annalen, Ergänzungsbd. 7 (1876), p. 624 = Wissensch.
Abh. I, p. 616.
80 The general fundamentals are included in Roma, Acc. Linc. Rend. (5) 18, 2 (1909), p. 295 and
Acta math. 35 (1912), p. 295.
81 Riv. di Scienz. 1 (1907), p. 14.
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Beschränkt man sich auf analytische Funktionen, so kann man unter entsprechen-
den Konvergenzvoraussetzungen das Zeitintegral (5) durch eine Funktion aller (un-
endlich vielen) zeitlichen Ableitungen der Funktionen 𝑥, . . . , 𝑥𝑎, . . . im Moment 𝑡
ersetzen, wie dies W. Voigt82) bei der Anwendung auf elastische Nachwirkung tut.

Alle diese Formen der Stoffgleichungen sind vorzugsweise in dem speziellen Falle
behandelt worden, dass die Deformationen des Kontinuums „unendlichklein“ sind
(vgl. IV 14, Nr. 16, Abraham). Die Funktionen (1) umfassen diesen Fall, wenn man
𝑎, 𝑏, 𝑐 als Raumkoordinaten des Teilchens in der Ausgangslage auffasst und (vgl.
Nr. 2a, p. 607) mit Hilfe eines auf beliebig kleine Werte beschränkten Parameters 𝜎
setzt:

(6) 𝑥(𝑎, 𝑏, 𝑐; 𝑡) = 𝑎 + 𝜎 · 𝑢(𝑎, 𝑏, 𝑐; 𝑡) + · · ·
(
𝑥, 𝑦, 𝑧

𝑢, 𝑣, 𝑤

)
,

wobei durchweg die höheren Potenzen von 𝜎 gegenüber den niederen zu vernachläs-
sigen sind. Hängt nun eine Wirkungskomponente von diesen Bewegungsfunktionen
durch ein Gesetz von der Form (3) ab, so hat man den Ausdruck 𝐹 durch die er-
sten Glieder seiner Entwicklung nach Potenzen von 𝜎 vermöge (6) zu ersetzen;
verschwinden die linearen Glieder in 𝜎 nicht identisch, so erhält man daher an Stelle
von (3) ein Gesetz der Form:

(3′) 𝐹 + 𝜎{𝐹𝑥 · 𝑢 + · · · + 𝐹𝑥𝑎 · 𝑢𝑎 + · · · + 𝐹𝑥𝑡 · 𝑢𝑡 + · · · + 𝐹𝑥𝑎𝑎 · 𝑢𝑎𝑎 + · · · }.

𝐹, 𝐹𝑥 , . . . sind die Werte der Funktion (3) und ihrer Ableitungen für 𝜎 = 0,
also bekannte Funktionen von 𝑎, 𝑏, 𝑐, 𝑡; das Wirkungsgesetz ist nunmehr linear
in den Lokalwerten der die unendlichkleine Deformation bestimmenden Funktionen
𝑢(𝑎, 𝑏, 𝑐; 𝑡), . . . , und ihrer Ableitungen — entsprechend dem Hookeschen Gesetz
der Elastizitätstheorie (vgl. IV 23, Nr. 4). Das von 𝜎 freie Glied entspricht den An-
fangskräften oder -spannungen, die in dem undeformierten Kontinuum möglicher-
weise herrschen können. Ebenso könnte man aber auch Spannungsgesetze betra-
chten, bei denen der Koeffizient von 𝜎1 verschwindet83); dann würden für un-
endlichkleine Deformationen die Spannungen mindestens quadratisch von den De-
formationen abhängen — entgegen dem Hookeschen Gesetz, das sonach auch für
unendlichkleine Deformationen nicht notwendig gelten muss.

82 Kompendium I, p. 458; vgl. auch Cl. Maxwell, Scientif. Papers 2, p. 623.
83 Hierauf hat bei der Diskussion über die Gültigkeit des Hookeschen Gesetzes besonders nach-
drücklich B. de Saint-Venant hingewiesen; vgl. seine Bemerkungen in Navier, De la résistance des
corps solides, 3e éd. (Paris 1864), p. 662 und Clebsch, Théorie de l’élasticité des corps solides
(Paris 1883), p. 39.
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By restricting oneself to analytic functions, then, under corresponding conver-
gence requirements, one can replace the time integral (5) by a function of all (in-
finitely many) time derivatives of the functions 𝑥, . . . , 𝑥𝑎, . . . at the instant of time
𝑡, as it is done by W. Voigt82) for the treatment of elastic residual effects.

All these forms of material laws have been treated mainly for the special case that
the deformations of the continuum are “infinitesimally small” (cf. IV 14, No. 16,
Abraham). The functions (1) include this case, when one considers 𝑎, 𝑏, 𝑐 as spatial
coordinates of the particle in the initial position and (cf. No. 2a, p. 607) by setting
[these functions] with the help of a parameter 𝜎, restricted to arbitrary small values,
to:

(6) 𝑥(𝑎, 𝑏, 𝑐; 𝑡) = 𝑎 + 𝜎 · 𝑢(𝑎, 𝑏, 𝑐; 𝑡) + · · ·
(
𝑥, 𝑦, 𝑧

𝑢, 𝑣, 𝑤

)
,

where throughout the higher powers of 𝜎 are neglected with respect to the lower
ones. If an effect depends now on these functions of motion by a law of the form
(3), then one has to replace the expression 𝐹 with the first terms of its expansion
with respect to the powers of 𝜎 due to (6); If the linear terms in 𝜎 do not vanish
identically, then one obtains as a result instead of (3) a law of the form:

(3′) 𝐹 + 𝜎{𝐹𝑥 · 𝑢 + · · · + 𝐹𝑥𝑎 · 𝑢𝑎 + · · · + 𝐹𝑥𝑡 · 𝑢𝑡 + · · · + 𝐹𝑥𝑎𝑎 · 𝑢𝑎𝑎 + · · · }.

𝐹, 𝐹𝑥 , . . . are the values of the function (3) and its derivatives for 𝜎 = 0, thus
known functions of 𝑎, 𝑏, 𝑐, 𝑡; the material law is now linear in the local values of
the functions 𝑢(𝑎, 𝑏, 𝑐; 𝑡), . . . determining the infinitesimal deformations, and the
derivatives [of these functions] — according to Hooke’s law of the theory of elasticity
(cf. IV 23, No. 4). The term without 𝜎 corresponds to initial forces or stresses, which
can possibly exist in the undeformed continuum. Similarly, one could even consider
stress laws, for which the coefficient of 𝜎1 vanishes83); then for infinitesimally small
deformations, the stresses would depend on the deformations at least quadratic —
contrary to Hooke’s law, which consequently does not have to be valid necessarily
even for infinitesimally small deformations.

82 Kompendium I, p. 458; cf. as well Cl. Maxwell, Scientif. Papers 2, p. 623.
83 With particular emphasis, B. de Saint-Venant has pointed this out in the discussion on the validity
of Hooke’s law; cf. his remarks in Navier, De la résistance des corps solides, 3e éd. (Paris 1864), p.
662 and Clebsch, Théorie de l’élasticité des corps solides (Paris 1883), p. 39.
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Haben die Stoffgleichungen die Integralform (4), (5), so ergiebt genau die gle-
iche Betrachtung Reduktion des Integranden auf eine lineare — möglicherweise
freilich auch auf eine höhere — Funktion der Werte der Verschiebungen und ihrer
Ableitungen an den Stellen 𝑎, 𝑏, 𝑐, 𝑡 und 𝑎, 𝑏, 𝑐, 𝑡; beispielsweise wird aus (4)

(4′)
∭
(𝑉0)

( 𝑓 + 𝜎{ 𝑓𝑥 · 𝑢 + 𝑓𝑥 · 𝑢 + · · · + 𝑓𝑥𝑎 · 𝑢𝑎 + 𝑓𝑥𝑎
· 𝑢𝑎 + · · · })𝑑𝑎 𝑑𝑏 𝑑𝑐,

und ähnlich vereinfacht sich im Falle zeitlicher Nachwirkung das Integral (5).
7. Medien mit einer charakteristischen Zustandsfunktion.
Besonders häufig werden in der Mechanik der Kontinua Medien mit solchen

Wirkungen betrachtet, deren charakteristische Gleichungen sich auf eine einzige
Funktion der Zustandsgrößen zurückführen lassen. Eine solche Reduktion entspringt,
wenn wir zunächst von der Statik reden, vor allem aus der Annahme, dass die in Be-
tracht kommende virtuelle Arbeit für jede virtuelle Verschiebung bis aufs Vorzeichen
gleich ist der Variation eines einzigen nur von dem jeweiligen Deformationszustande
abhängigen skalaren Ausdruckes, des „Potentials“ oder der „potentiellen Energie“
der wirkenden Kräfte oder Spannungen84); diese Annahme kann auf allgemeine
thermodynamische Sätze zurückgeführt werden.

7a. Das gewöhnliche Potential und seine nächsten Verallgemeinerungen. Die
einfachste Form dieses Potentials wird durch die Eigenschaft charakterisiert, dass
das Potential eines in Teile zerlegten Bereiches gleich der Summe der Potentiale Φ∗

der Teilbereiche 𝑉∗ ist85). Unter den naheliegenden Voraussetzungen, dass Φ∗ sich
stetig mit der Grenzfläche von𝑉∗ ändert, und dass der QuotientΦ∗ : 𝑉∗ gegen einen
bestimmten Grenzwert 𝜑 konvergiert, wenn 𝑉∗ sich unbegrenzt um eine bestimmte
Stelle 𝑥, 𝑦, 𝑧 zusammenzieht — und dies gleichmässig im ganzen Bereich 𝑉 —, folgt
leicht86), dass das Potential

84 Für einfache Fälle hat schon Lagrange in der Méc. anal. eine solche Annahme aus der Mechanik
diskreter Massen auf Kontinua übertragen (Prem. part., Sect. IV, Nr. 25) und sie speziell auf die
Hydrostatik angewendet, indem er der virtuellen Arbeit einen der Variation der Volumdilatation
proportionalen Term anfügt (1. part., sect VIII, Nr. 1); ihre weitere Ausbildung hat sie dann in der
Elastizitätstheorie erfahren, und zwar hat G. Green (Cambr. Phil. Soc. Trans. 1838 = Math. Papers
(London 1871), p. 245) zum erstenmal aus ihr die Grundgleichungen abgeleitet. Vgl. dazu IV 23,
Nr. 5b
85 Diese Annahme ist schon seit der ersten direkten Einführung des elastischen Potentiales als
selbstverständlich mehr oder weniger ausdrücklich verwendet worden. Eine ausführliche Darlegung
giebt P. Duhem, Le potential thermodynamique et la pression hydrostatique, Ann. Éc. Norm. (3)
10 (1893), p. 183.
86 Vgl. P. Duhem, l. c., p. 187 ff. Es liegt hier nur eine präzisere Formu-
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If the material laws are of the integral form (4), (5), then the same considerations
lead to a reduction of the integrand to a linear — certainly perhaps also to a higher
[order] — function of the values of the displacements and their derivatives at the
positions 𝑎, 𝑏, 𝑐, 𝑡 and 𝑎, 𝑏, 𝑐, 𝑡; for example, (4) becomes

(4′)
∭
(𝑉0)

( 𝑓 + 𝜎{ 𝑓𝑥 · 𝑢 + 𝑓𝑥 · 𝑢 + · · · + 𝑓𝑥𝑎 · 𝑢𝑎 + 𝑓𝑥𝑎
· 𝑢𝑎 + · · · })𝑑𝑎 𝑑𝑏 𝑑𝑐,

and similarly the integral (5) simplifies for the case of temporal residual effects.
7. Media with one characteristic state function.
In the mechanics of continua particularly often media are considered whose

characteristic equations can be reduced to one single function of the state variables.
In case we talk at first about statics, such a reduction originates particularly from the
assumption, that the virtual work coming into question is, up to sign, for every virtual
displacement equivalent to the variation of a single scalar expression depending
only on the corresponding state of deformation, [which is] the “potential” or the
“potential energy” of the acting forces and stresses84); this assumption can be traced
back to general theorems of thermodynamics.

7a. The common potential and its closest generalizations. The most simple
form of this potential is characterized by the property that the potential of a domain
dissected into parts is equal to the sum of the potentials Φ∗ of the [corresponding]
subdomains 𝑉∗

85). Under the obvious assumptions that Φ∗ changes continuously
with the boundary of 𝑉∗ and that the quotient Φ∗ : 𝑉∗ converges to a certain limit
value 𝜑, when 𝑉∗ contracts around a certain point 𝑥, 𝑦, 𝑧 indefinitely — and this
regularly in the whole domain 𝑉 —, it follows easily86) that the potential

84 For simple cases already Lagrange has interpreted in the Méc. anal. such an assumption from the
mechanics of discrete masses for continua (Prem. part., Sect, IV, No. 25) and applied it particularly
in hydrostatics, by adding to the virtual work a term being proportional to the variation of the volume
dilatation (1. part., sect VIII, No. 1); [this assumption] has undergone a further development in
the theory of elasticity, namely G. Green (Cambr. Phil. Soc. Trans. 1838 = Math. Papers (London
1871), p. 245) has derived from it the fundamental equations for the first time. Cf. thereto IV 23,
No. 5b
85 Already since the first direct introduction of the elastic potential, this assumption, as [being]
natural, has been used more or less explicitly. A detailed explanation is given by P. Duhem, Le
potential thermodynamique et la pression hydrostatique, Ann. Éc. Norm. (3) 10 (1893), p. 183.
86 Cf. P. Duhem, l. c., p. 187 ff. It is here merely a precise form-
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des gesamten Kontinuums 𝑉 (und ähnlich das eines jeden Teilbereiches) durch das
über 𝑉 erstreckte Raumintegral der Ortsfunktion 𝜑 dargestellt wird:

(1) Φ =

∭
(𝑉 )

𝜑 𝑑𝑥 𝑑𝑦 𝑑𝑧 =

∭
(𝑉0)

𝜑 𝑑𝑎 𝑑𝑏 𝑑𝑐, wo 𝜑 = 𝜑
𝜕 (𝑥, 𝑦, 𝑧)
𝜕 (𝑎, 𝑏, 𝑐) .

𝜑 ist die auf die Volumeinheit des deformierten Kontinuums, 𝜑 die auf die Vol-
umeinheit des Ausgangszustandes bezogene Energiedichte; es sind skalare Gössen,
die für jedes in einem bestimmten Deformationszustande betrachtete Kontinuum
stetige oder doch abteilungsweise stetige Funktionen von 𝑥, 𝑦, 𝑧 bzw. 𝑎, 𝑏, 𝑐 sind.
Die Beschaffenheit des Kontinuums unabhängig von der jeweils stattfindenden De-
formation ist bestimmt, wenn 𝜑 als Funktion des Gesamtverlaufes der Deforma-
tionsfunktionen gegeben ist; soll das Zerlegungsaxiom für jede Deformation gelten,
so kann 𝜑 nur die Werte der Funktionen und ihrer Ableitungen an der betrachteten
Stelle explizit enthalten:

(2) 𝜑 = 𝜑(𝑎, 𝑏, 𝑐; 𝑥(𝑎, 𝑏, 𝑐), . . . ; 𝑥𝑎 (𝑎, 𝑏, 𝑐), . . . ; 𝑥𝑎𝑎 (𝑎, 𝑏, 𝑐), . . . )

Handelt es sich um innere Kraftwirkungen, so muß diese Funktion gegenüber
rechtwinkligen Koordinatentransformationen im 𝑥-𝑦-𝑧-Raume invariant sein.

Wir nehmen zunächst an, dass nur die ersten Ableitungen auftreten. Um den
Zusammenhang mit den Wirkungskomponenten zu finden87), bilden wir das Poten-
tial für die variierte Deformation (Nr. 2a, (3)); dann ergiebt sich als Variation von
Φ

𝛿Φ =

∭
(𝑉0)

∑
(𝑥 𝑦 𝑧)

( 𝜕𝜑
𝜕𝑥

𝛿𝑥 + 𝜕𝜑

𝜕𝑥𝑎
𝛿𝑥𝑎 + 𝜕𝜑

𝜕𝑥𝑏
𝛿𝑥𝑏 + 𝜕𝜑

𝜕𝑥𝑐
𝛿𝑥𝑐

)
𝑑𝑎 𝑑𝑏 𝑑𝑐,

wobei in die Ableitungen von 𝜑 die unvariierten Werte von 𝑥, 𝑦, 𝑧 und ihren Ableitun-
gen einzusetzen sind. Aus der Identität

(3) 𝛿𝐴 = −𝛿Φ für alle 𝛿𝑥, 𝛿𝑦, 𝛿𝑧

folgen für ein Medium, das alle stetigen virtuellen Verrückungen gestattet, durch
Gleichsetzung der Koeffizienten der 𝛿𝑥, . . . und ihrer Ab-

lierung des von altersher in der Mechanik üblichen Prozesses der Umwandlung von Funktionen
eines Gebietes (wie Masse u. dgl.) in bestimmte Integrale vor. Übrigens braucht man die gleich-
mässige Konvergenz von Φ∗ : 𝑉 ∗ nur für eine bestimmte, 𝑉 im Limes erschöpfende Einteilung
vorauszusetzen und kann ausserdem natürlich Unterbrechungen der Stetigkeit und gleichmässigen
Konvergenz an einzelnen Flächen zulassen.
87 Es kommt hier lediglich das in der Variationsrechnung übliche Verfahren zur Bildung der ersten
Variation mehrfacher Integrale in Betracht, wie es Lagrange (Misc. Taur. 2 (1760/61) = Oeuvres 1,
p. 353) zuerst ausgebildet und in der Méc. anal. vielfach angewendet hat.
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of the whole continuum 𝑉 (and similarly that of any subdomain) is represented by
the volume integral, ranging over 𝑉 , of the spatial function 𝜑:

(1) Φ =

∭
(𝑉 )

𝜑 𝑑𝑥 𝑑𝑦 𝑑𝑧 =

∭
(𝑉0)

𝜑 𝑑𝑎 𝑑𝑏 𝑑𝑐, where 𝜑 = 𝜑
𝜕 (𝑥, 𝑦, 𝑧)
𝜕 (𝑎, 𝑏, 𝑐) .

𝜑 is the energy density per unit of volume of the deformed continuum, 𝜑 is [the energy
density] per unit of volume of the initial state; these are scalar quantities, which are
for every continuum considered in a certain state of deformation continuous or yet
piecewise continuous functions of 𝑥, 𝑦, 𝑧 and 𝑎, 𝑏, 𝑐, respectively. The nature of the
continuum, independent of each of the occurring deformation, is determined when
𝜑 is given as a function of the complete history of the deformation functions; if
the dissection axiom shall hold for every deformation, then 𝜑 can explicitly contain
only the values of the functions and their derivatives [evaluated] at the considered
position:

(2) 𝜑 = 𝜑(𝑎, 𝑏, 𝑐; 𝑥(𝑎, 𝑏, 𝑐), . . . ; 𝑥𝑎 (𝑎, 𝑏, 𝑐), . . . ; 𝑥𝑎𝑎 (𝑎, 𝑏, 𝑐), . . . )

If it is about internal force effects, this function must be invariant with respect to
orthogonal coordinate transformations in the 𝑥-𝑦-𝑧-space.

At first we consider, that only the first derivatives appear. To find the connection
with the effects87), we compute the potential of the varied deformation (No. 2a, (3));
Then the variation of Φ is obtained as

𝛿Φ =

∭
(𝑉0)

∑
(𝑥 𝑦 𝑧)

( 𝜕𝜑
𝜕𝑥

𝛿𝑥 + 𝜕𝜑

𝜕𝑥𝑎
𝛿𝑥𝑎 + 𝜕𝜑

𝜕𝑥𝑏
𝛿𝑥𝑏 + 𝜕𝜑

𝜕𝑥𝑐
𝛿𝑥𝑐

)
𝑑𝑎 𝑑𝑏 𝑑𝑐,

where in the derivatives of 𝜑 the unvaried values of 𝑥, 𝑦, 𝑧 and the derivatives thereof
have to be inserted. From the identity

(3) 𝛿𝐴 = −𝛿Φ for all 𝛿𝑥, 𝛿𝑦, 𝛿𝑧

[and] by equating the coefficients of 𝛿𝑥, . . . and the derivatives thereof, for a medium,
which allows for all continuous virtual displacements,

ulation of the process, common of old in mechanics, of the transformation of functions of a domain
(as e. g. mass) into certain integrals. By the way, one needs to assume the uniform convergence of
Φ∗ : 𝑉 ∗ only for a certain partition [which] in the limit tends to 𝑉 and can in addition certainly
allow disconnections of the continuity and the uniform convergence at individual surfaces.
87 Here, merely the approach common in the calculus of variations for the computation of the first
variation for multiple integrals comes into consideration, as Lagrange (Misc. Taur. 2 (1760/61) =
Oeuvres 1, p. 353) originally has formulated it and [as he has] applied it in the Méc. anal. in many
cases.
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leitungen unmittelbar die Stoffgleichungen. Verwendet man für 𝛿𝐴 etwa den Ansatz
Nr. 3c, (7), so wird88)

(4) 𝜚0𝑋 = −𝜕𝜑

𝜕𝑥
, 𝑋𝑎 =

𝜕𝜑

𝜕𝑥𝑎

( 𝑥, 𝑦, 𝑧
𝑋,𝑌 , 𝑍

; 𝑎, 𝑏, 𝑐
)
;

geht man mittels (8) von Nr. 3c und (1) zu den auf die deformierte Lage bezogenen
Grössen über, so erhält man89):

(5)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜚𝑋 = − 𝜕𝜑
𝜕𝑥 ,

𝑋𝑥 =
𝜕𝜑
𝜕𝑥𝑎

· 𝑥𝑎 + 𝜕𝜑
𝜕𝑥𝑏

𝑥𝑏 + 𝜕𝜑
𝜕𝑥𝑐

𝑥𝑐 + 𝜑,

𝑋𝑦 =
𝜕𝜑
𝜕𝑥𝑎

𝑦𝑎 + 𝜕𝜑
𝜕𝑥𝑏

· 𝑦𝑏 + 𝜕𝜑
𝜕𝑥𝑐

· 𝑦𝑐 ,
𝑋𝑧 =

𝜕𝜑
𝜕𝑥𝑎

𝑧𝑎 + 𝜕𝜑
𝜕𝑥𝑏

𝑧𝑏 + 𝜕𝜑
𝜕𝑥𝑐

𝑧𝑐 .

(𝑥 𝑦 𝑧
𝑋 𝑌 𝑍

)

Damit sind die sämtlichen in Nr. 5 betrachteten Stoffgleichungen auf die einzige
Gleichung (2) zurückgeführt, die 𝜑 bzw. 𝜑 als skalare Funktion des lokalen Defor-
mationszustandes giebt.

Hängt die Energiedichte (2) auch von den zweiten Ableitungen 𝑥𝑎𝑎, 𝑥𝑎𝑏 , . . . der
Deformationsfunktionen ab — was wiederum nur bei sehr rascher Änderung des
Zustandes mit dem Orte in Betracht kommt —, so werden in 𝛿Φ neue Glieder mit
den zweiten Ableitungen der virtuellen Verrückungen 𝛿𝑥𝑎𝑎 =

𝛿2 𝛿𝑥
𝛿𝑎2 , . . . auftreten,

und das kommt gerade auf die in Nr. 4a besprochenen Zusatzglieder zu dem ur-
sprünglichen Ausdruck der virtuellen Arbeit hinaus; alsdann hängen sowohl die
Komponenten dieser neuen Wirkung, deren Ausdrücke durch 𝜑 sich unmittelbar
ergeben, wie die alten Spannungskomponenten, deren Ausdrücke leicht zu modi-
fizieren sind, auch von den zweiten Ableitungen 𝑥𝑎𝑎, . . . ab.

Ein spezieller Fall, der sich hier einordnet, sei besonders hervorgehoben: dass
nämlich zu dem Potential (1) ein Integral über die Oberfläche des Kontinuums
additiv hinzutritt:

(6) Φ1 =

∬
(𝑆)

𝜓𝑑𝑆 =

∬
(𝑆0)

𝜓𝑑𝑆0,

wobei die „Flächendichte“ 𝜓 bzw. 𝜓 das Potentials von den Werten der

88 G. Kirchhoff, Sitzungsber. d. Akad. Wien, math.-nat., Kl. 9 (1852), p. 772.
89 J. Boussinesq, Mém. prés. p. div. sav., Paris 20 (1872), note 3. p. 591. Hier ist nur 𝜑 statt 𝜑
verwendet, aber, was das Wesentliche ist, es werden zum erstenmal die Komponenten 𝑋𝑥 , . . . statt
𝑋𝑎 , . . . bestimmt. Diese Formeln sind übrigens in der Elastizitätstheorie endlicher Deformationen
wiederholt neu hergeleitet und ausgebildet worden.
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the material laws follow immediately. If one uses for 𝛿𝐴 for instance the Ansatz
No. 3c, (7), then88)

(4) 𝜚0𝑋 = −𝜕𝜑

𝜕𝑥
, 𝑋𝑎 =

𝜕𝜑

𝜕𝑥𝑎

( 𝑥, 𝑦, 𝑧
𝑋,𝑌 , 𝑍

; 𝑎, 𝑏, 𝑐
)
;

changing over to the quantities related to the deformed position by use of (8) from
No. 3c and (1), then one obtains89):

(5)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜚𝑋 = − 𝜕𝜑
𝜕𝑥 ,

𝑋𝑥 =
𝜕𝜑
𝜕𝑥𝑎

· 𝑥𝑎 + 𝜕𝜑
𝜕𝑥𝑏

𝑥𝑏 + 𝜕𝜑
𝜕𝑥𝑐

𝑥𝑐 + 𝜑,

𝑋𝑦 =
𝜕𝜑
𝜕𝑥𝑎

𝑦𝑎 + 𝜕𝜑
𝜕𝑥𝑏

· 𝑦𝑏 + 𝜕𝜑
𝜕𝑥𝑐

· 𝑦𝑐 ,
𝑋𝑧 =

𝜕𝜑
𝜕𝑥𝑎

𝑧𝑎 + 𝜕𝜑
𝜕𝑥𝑏

𝑧𝑏 + 𝜕𝜑
𝜕𝑥𝑐

𝑧𝑐 .

(𝑥 𝑦 𝑧
𝑋 𝑌 𝑍

)

Thereby, all of the considered material laws in No. 5 are reduced to the single
equation (2), which gives 𝜑 or 𝜑 as scalar functions of the local state of deformation.

If the energy density (2) depends also on the second derivatives 𝑥𝑎𝑎, 𝑥𝑎𝑏 , . . . of
the deformation functions — which in turn only comes into consideration for very
quick changes in space of the state —, then new terms with second derivatives in the
virtual displacements 𝛿𝑥𝑎𝑎 =

𝛿2 𝛿𝑥
𝛿𝑎2 , . . . will appear in 𝛿Φ, and this results precisely

in the in No. 4a discussed additional terms to the original expression of the virtual
work; thereupon both the components of this new effect, whose expressions emerge
immediately from 𝜑, and the old stress components, whose expressions have to be
modified slightly, depend also on the second derivatives 𝑥𝑎𝑎, . . . .

A special case, which can be classified here, shall be emphasized especially:
namely, that to the potential (1) an integral over the surface of the continuum can be
added:

(6) Φ1 =

∬
(𝑆)

𝜓𝑑𝑆 =

∬
(𝑆0)

𝜓𝑑𝑆0,

where the “surface density” 𝜓 or 𝜓 of the potential depends on the values at the
surface 𝑆 of the

88 G. Kirchhoff, Sitzungsber. d. Akad. Wien, math.-nat., Kl. 9 (1852), p. 772.
89 J. Boussinesq, Mém. prés. p. div. sav., Paris 20 (1872), note 3. p. 591. Here only 𝜑 instead of
𝜑 is used, but, what is essential, for the first time the components 𝑋𝑥 , . . . instead of 𝑋𝑎 , . . . are
determined. By the way, in the theory of elasticity of finite deformations these formulas have been
repeatedly derived and formulated anew.
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Deformationsfunktionen und ihrer ersten Ableitungen an der Oberfläche 𝑆 abhängt;
ein solches Potential kann analog dem obigen die Form (1) bestimmenden Axiom
dadurch charakterisiert werden, dass sich Φ∗

1 : 𝑆∗ einem endlichen Werte 𝜓 nähert,
wenn sich das Oberflächenstück 𝑆∗ um eine Stelle zusammenzieht. Man kann (6)
tatsächlich in ein Raumintegral über 𝑉 oder einen Teilraum umformen, wenn man
zweite Ableitungen 𝑥𝑎𝑎, . . . hinzunimmt. Übrigens kann man 𝛿Φ1 auch direkt bilden
und bekommt dann für die virtuelle Arbeit unmittelbar ein Glied der in Nr. 4a, (1)
betrachteten Form.

Hängt 𝜓 speziell nur von den Werten der Deformationsfunktionen 𝑥, 𝑦, 𝑧 selbst,
nicht von ihren Ableitungen ab, so hat 𝛿Φ1 gerade die Form der Arbeit 𝛿𝐴3 der
an der Oberfläche des Kontinuums angreifenden Druckkräfte (Nr. 3, (1)), und zwar
werden deren Komponenten

(6a) 𝑋 =
𝜕𝜓

𝜕𝑥
, 𝑌 =

𝜕𝜓

𝜕𝑦
, 𝑍 =

𝜕𝜓

𝜕𝑧
.

Man kann diese Potentialansätze leicht derart ausdehnen, dass sie Kraftwirkun-
gen von der in Nr. 6 betrachteten allgemeineren Gestalt (4) liefern. Man braucht
dazu nur, nach dem Vorgange von P. Duhem90), an die Stelle des Axioms von der
additiven Zusammensetzung der Potentiale der Teilbereiche zum Gesamtpotential
die Annahme zu setzen, dass bei einer Zerlegung des Kontinuums in n Teilbereiche
𝑉1, . . . , 𝑉𝑛 das Potential Φ eine Doppelsumme

Φ =

𝑛∑
𝑖,𝑘=1

Φ𝑖𝑘

von 𝑛2 Summanden wird, deren jeder Φ𝑖𝑘 nur von dem Zustand zweier Teilbere-
iche 𝑉𝑖 , 𝑉𝑘 abhängt. Unter Hinzunahme ähnlicher Stetigkeitsannahmen, wie oben
angedeutet, wird dann Φ gleich einem sechsfachen, zweimal über 𝑉 bzw. 𝑉0 aus-
gedehnten Integral, dessen Integrand von den Werten der Deformationsfunktionen
und ihrer Ableitungen in zwei Argumentpunkten 𝑎, 𝑏, 𝑐 und 𝑎, 𝑏, 𝑐 abhängt91):

(7) Φ =

∭
(𝑉0)

∭
(𝑉0)

𝜑(𝑎, . . . ; 𝑥, . . . ; 𝑥𝑎, . . . ; 𝑎, . . . ; 𝑥, . . . ; 𝑥𝑎, . . . )𝑑𝑎 . . . 𝑑𝑐

(Speziell kann hierin, wenn 𝜑 einen von der Stelle 𝑎, 𝑏, 𝑐 unabhängigen Summanden
aufweist, auch ein Summand der Form (1) inbegriffen sein.) Die Variation von Φ
wird

𝛿Φ=

∭
(𝑉0)

∭
(𝑉0)

{ ∑
(𝑥 𝑦 𝑧)

( 𝜕𝜑
𝜕𝑥

𝛿𝑥 + 𝜕𝜑

𝜕𝑥
𝛿𝑥

)
+
∑

(𝑥 𝑦 𝑧;𝑎 𝑏 𝑐)

( 𝜕𝜑

𝜕𝑥𝑎
𝛿𝑥𝑎 + 𝜕𝜑

𝜕𝑥𝑎
𝛿𝑥𝑎

)}
𝑑𝑎...𝑑𝑐,

90 P. Duhem, l. c., p. 188.
91 P. Duhem, l. c., p. 205.
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deformation functions and the first derivatives thereof; such a potential can be
characterized analogously to the foregoing axiom, [which] determines the form (1),
that Φ∗

1 : 𝑆∗ approaches a finite value 𝜓, when the surface element 𝑆∗ contracts
around a point. In fact, one can transform (6) into a volume integral over 𝑉 , if one
adds second derivatives 𝑥𝑎𝑎, . . . . By the way, one can also compute 𝛿Φ1 directly
and obtains then for the virtual work immediately a term of the form considered in
No. 4a, (1).

If 𝜓 depends in particular only on the values of the deformation functions 𝑥, 𝑦, 𝑧
themselves, [and] not on the derivatives thereof, then 𝛿Φ1 has precisely the form
of the work 𝛿𝐴3 of the compressive forces applied at the surface of the continuum
(No. 3, (1)), and indeed their components become

(6a) 𝑋 =
𝜕𝜓

𝜕𝑥
, 𝑌 =

𝜕𝜓

𝜕𝑦
, 𝑍 =

𝜕𝜓

𝜕𝑧
.

One can easily extend such potential-based approaches in such a way, that they
yield force effects of the more general form (4) considered in No. 6. Thereto one
only needs, according to the procedure of P. Duhem90), to substitute the axiom of
the additive composition of the potential of the subdomains to the total potential by
the assumption, that for a dissection of the continuum into 𝑛 subdomains𝑉1, . . . , 𝑉𝑛,
the potential Φ becomes a double sum

Φ =

𝑛∑
𝑖,𝑘=1

Φ𝑖𝑘

of 𝑛2 summands, each of which Φ𝑖𝑘 depend only on the state of two subdomains
𝑉𝑖 , 𝑉𝑘 . By the application of similar continuity assumptions as mentioned above, Φ
becomes equal to a sixfold integral, [which is] twice over 𝑉 or 𝑉0, whose integrand
depends on the values of the deformation functions and the derivatives thereof in
two points 𝑎, 𝑏, 𝑐 and 𝑎, 𝑏, 𝑐 91):

(7) Φ =

∭
(𝑉0)

∭
(𝑉0)

𝜑(𝑎, . . . ; 𝑥, . . . ; 𝑥𝑎, . . . ; 𝑎, . . . ; 𝑥, . . . ; 𝑥𝑎, . . . )𝑑𝑎 . . . 𝑑𝑐

(In particular, when 𝜑 includes a summand independent of the point 𝑎, 𝑏, 𝑐, a sum-
mand of the form (1) can be included herein.) The variation of Φ becomes

𝛿Φ=

∭
(𝑉0)

∭
(𝑉0)

{ ∑
(𝑥 𝑦 𝑧)

( 𝜕𝜑
𝜕𝑥

𝛿𝑥 + 𝜕𝜑

𝜕𝑥
𝛿𝑥

)
+
∑

(𝑥 𝑦 𝑧;𝑎 𝑏 𝑐)

( 𝜕𝜑

𝜕𝑥𝑎
𝛿𝑥𝑎 + 𝜕𝜑

𝜕𝑥𝑎
𝛿𝑥𝑎

)}
𝑑𝑎...𝑑𝑐,

90 P. Duhem, l. c., p. 188.
91 P. Duhem, l. c., p. 205.
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und aus der Identität (3) folgen daher für ein Medium, das alle stetigen virtuellen
Verrückungen gestattet, als Kraft- und Spannungskomponenten an der Stelle 𝑎, 𝑏, 𝑐:

(8)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜚0𝑋 = −

∭
(𝑉0)

𝜕(𝜑+𝜑1)
𝜕𝑥 𝑑𝑎 𝑑𝑏 𝑑𝑐,

𝑋𝑎 =
∭
(𝑉0)

𝜕(𝜑+𝜑1)
𝜕𝑥𝑎

𝑑𝑎 𝑑𝑏 𝑑𝑐;

( 𝑥, 𝑦, 𝑧
𝑋,𝑌 , 𝑍

; 𝑎, 𝑏, 𝑐
)

dabei bedeutet 𝜑1 die aus 𝜑 durch Vertauschung der überstrichenen und nicht über-
strichenen Argumente entstehende Funktion. Wie oben ergeben sich hieraus so-
fort die Stoffgleichungen, die 𝑋𝑥 , . . . mit Hilfe der einen Funktion 𝜑 ausdrücken;
P. Duhem hat dies unter speziellen, den Verhältnissen der reinen Elastizitätstheorie
entsprechenden Annahmen ausführlich entwickelt.92) Ansätze von dieser Art sind es
im Grunde, die bei dem Aufbau der Mechanik der Kontinua auf Molekularvorstellun-
gen vielfach benutzt werden.93) Die Doppelsummen, die man da für die Potentiale
von Molekülsystemen ansetzt, werden durch die Grenzübergänge gerade zu Inte-
gralen vom Typus (7), und die Aufgabe der Theorie ist es, solche Annahmen zu
formulieren, daß sie sich bei richtiger Führung der Grenzübergänge in Potentiale der
einfachen Formen (1) bzw. (6) transformieren; man vergleiche etwa die Darstellung
von H. Minkowski in V 9, Nr. 14.

Besonders hervorzuheben ist wieder die Gestaltung der Potentialansätze in dem
Falle „unendlichkleiner“ Deformation des Kontinuums (Nr. 6, (6)). Die Ausdrücke
der Kraft- und Spannungskomponenten werden nach (4), bei Vernachlässigung
quadratischer Glieder in 𝜎94),

(9a) 𝜚0𝑋 = − 1
𝜎

𝜕�̃�

𝜕𝑢
, 𝑋𝑎 = − 1

𝜎

𝜕�̃�

𝜕𝑢𝑎
,

(𝑢, 𝑣, 𝑤
𝑋,𝑌, 𝑍

; 𝑎, 𝑏, 𝑐
)

dabei bedeutet �̃� diejenigen in 𝜎 linearen und quadratischen Gliedern der Potenzen-
twicklung der Energiedichte 𝜑, die von den in 𝜎 linearen Gliedern der Reihe (6) von
Nr. 6 herrühren:

(9b) �̃� = 𝜑0 + 𝜎(𝜑0
𝑥𝑢 + · · · + 𝜑0

𝑥𝑎
𝑢𝑎 + · · · )

+ 𝜎2

2
(
𝜑0
𝑥𝑥𝑢

2 + 𝜑0
𝑥𝑦𝑢𝑣 + · · · + 𝜑0

𝑥𝑥𝑎
𝑢𝑢𝑎 + · · · + 𝜑0

𝑥𝑎𝑥𝑎
𝑢2
𝑎 + 𝜑0

𝑥𝑎𝑥𝑏
𝑢𝑎𝑢𝑏 + · · · ) ,

92 P. Duhem Ann. Éc. Norm., (3) 21 (1904), p. 117 ff. Auch separat: Récherche sur l’élasticité, Paris
1906.
93 Z. B. in der Navierschen Theorie des elastischen Potentials (vgl. IV 23, Nr. 5a, Müller-Timpe)
und in der Theorie der Kapillarität von P. S. Laplace und C. Fr. Gauss (vgl. V 9, Nr. 13, Minkowski).
94 H. Poincaré, Leçons sur la théorie de l’Élasticité, Paris 1892, p. 54 ff.; E. u. F. Cosserat, Ann. de
la Fac. des Sciences de Toulouse 10 (l896), p. J. 70 ff.
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and from the identity (3) [it] therefore follows for a medium, which allows for all
continuous virtual displacements, the force and stress components at the point 𝑎, 𝑏, 𝑐:

(8)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜚0𝑋 = −

∭
(𝑉0)

𝜕(𝜑+𝜑1)
𝜕𝑥 𝑑𝑎 𝑑𝑏 𝑑𝑐,

𝑋𝑎 =
∭
(𝑉0)

𝜕(𝜑+𝜑1)
𝜕𝑥𝑎

𝑑𝑎 𝑑𝑏 𝑑𝑐;

( 𝑥, 𝑦, 𝑧
𝑋,𝑌 , 𝑍

; 𝑎, 𝑏, 𝑐
)

thereby 𝜑1 corresponds to the function arising from 𝜑 by the permutation of the
overlined and non-overlined arguments. As above the material laws, which express
𝑋𝑥 , . . . by means of the one function 𝜑, emerge directly out of this; P. Duhem has
developed this [Ansatz] with respect to special assumptions corresponding with the
circumstances of a pure theory of elasticity.92) Basically, there are approaches of
this type, which are frequently used for the foundations of the mechanics of continua
based on the perception of molecules.93) The double sums, which one formulates
there for the potentials of the systems of molecules, become within the limit processes
directly to integrals of type (7), and it is the question of the theory to formulate such
assumptions, that for a correct guidance of the limit processes they transform into
potentials of the simple forms (1) or (6); One confers for instance the presentation
of H. Minkowski in V 9, No. 14.

To be emphasized particularly is again the formulation of the potential-based
approaches for the case of “infinitesimal” deformation of the continuum (No. 6,
(6)). By neglecting the quadratic terms in 𝜎94), the expressions of force and stress
components turn according to (4) into

(9a) 𝜚0𝑋 = − 1
𝜎

𝜕�̃�

𝜕𝑢
, 𝑋𝑎 = − 1

𝜎

𝜕�̃�

𝜕𝑢𝑎
,

(𝑢, 𝑣, 𝑤
𝑋,𝑌, 𝑍

; 𝑎, 𝑏, 𝑐
)

thereby �̃� corresponds to those terms of the power series of the energy density 𝜑
being linear and quadratic in 𝜎, which arise from the terms linear in 𝜎 of the series
(6) of No. 6:

(9b) �̃� = 𝜑0 + 𝜎(𝜑0
𝑥𝑢 + · · · + 𝜑0

𝑥𝑎
𝑢𝑎 + · · · )

+ 𝜎2

2
(
𝜑0
𝑥𝑥𝑢

2 + 𝜑0
𝑥𝑦𝑢𝑣 + · · · + 𝜑0

𝑥𝑥𝑎
𝑢𝑢𝑎 + · · · + 𝜑0

𝑥𝑎𝑥𝑎
𝑢2
𝑎 + 𝜑0

𝑥𝑎𝑥𝑏
𝑢𝑎𝑢𝑏 + · · · ) ,

92 P. Duhem Ann. Éc. Norm., (3) 21 (1904), p. 117 ff. Also separately: Récherche sur l’élasticité,
Paris 1906.
93 E. g. in Navier’s theory of the elastic potential (cf. IV 23, No. 5a, Müller-Timpe) and in the theory
of capillarity of P. S. Laplace and C. Fr. Gauss (cf. V 9, No. 13, Minkowski).
94 H. Poincaré, Leç ons sur la théorie de l’Élasticité, Paris 1892, p. 54 ff.; E. and F. Cosserat, Ann.
de la Fac. des Sciences de Toulouse 10 (l896), p. J. 70 ff.
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worin die mit der Marke 0 versehenen Ableitungen von 𝜑 für 𝜎 = 0, d. h. für die
Argumente 𝑥 = 𝑎, . . . , 𝑥𝑎 = 1, 𝑥𝑏 = 0, . . . zu nehmen sind. Die Ausdrücke (9a)
haben in der Tat den in Nr. 6, (3′) betrachteten Typus des Hookeschen Gesetzes;
vorausgesetzt ist dabei natürlich, dass die �̃� zusammensetzenden Glieder der En-
twicklung von 𝜑 nicht identisch verschwinden. Die auf die deformierte Lage des
Kontinuums bezogenen Spannungskomponenten 𝑋𝑥 , . . . unterscheiden sich gemäß
Nr. 3c, (8) von den 𝑋𝑎, . . . um folgende in 𝜎 lineare Ausdrücke:

(10) 𝑋𝑥 − 𝑋𝑎 = 𝜎(−𝜑0
𝑥𝑎
(𝑣𝑏 + 𝑤𝑐) + 𝜑0

𝑥𝑏
𝑢𝑏 + 𝜑0

𝑥𝑐
𝑢𝑐), . . . ,

und diese werden nur dann Null bzw. von der Grössenordnung 𝜎2 der sonst vernach-
lässigten Grössen, wenn die durch 𝜑0

𝑥𝑎
gegebenen „Anfangsspannungen“ vor der un-

endlichkleinen Deformation verschwinden.95) — Es bedarf danach keiner genaueren
Ausführungen, wie man in ähnlicher Weise den allgemeineren Duhemschen Poten-
tialansatz (7), für unendlichkleine Deformationen umzubilden hat.

7b. Der Potentialansatz für Medien mit orientierten Teilchen. Nach dem Vor-
gange von E. und F. Cosserat96) kann man diesen Potentialansatz auch auf die Kon-
tinua ausdehnen, deren Teilchen mit einer bestimmten Orientierung behaftet sind;
man braucht nur anzunehmen, dass die sonst wie in Nr. 7a definierte Energiedichte
𝜑 ausser von den bisher betrachteten Grössen auch von den die momentane Orien-
tierung des Teilchens 𝑎, 𝑏, 𝑐 bestimmenden Parametern 𝜆, 𝜇, 𝜈 (Nr 2b, (9)) und deren
(ersten) Ableitungen nach 𝑎, 𝑏, 𝑐 abhängt:

(11) 𝜑 = 𝜑(𝜆(𝑎, 𝑏, 𝑐), . . . ;𝜆𝑎 (𝑎, 𝑏, 𝑐), . . . , 𝜈𝑐 (𝑎, 𝑏, 𝑐)).

Eine virtuelle Drehung der einzelnen Teilchen Nr. 2 (10) liefert zur Variation des
Potentials dann den folgenden Beitrag:

𝛿Φ =

∭
(𝑉0)

∑
(𝜆 𝜇 𝜈)

( 𝜕𝜑
𝜕𝜆

𝛿𝜆 + 𝜕𝜑

𝜕𝜆𝑎
𝛿𝜆𝑎 + 𝜕𝜑

𝜕𝜆𝑏
𝛿𝜆𝑏 + 𝜕𝜑

𝜕𝜆𝑐
𝛿𝜆𝑐

)
𝑑𝑎 𝑑𝑏 𝑑𝑐.

Führt man nun vermöge Nr. 2, (11), (12) die Winkelgeschwindigkeiten 𝛿𝜋, 𝛿𝜅, 𝛿𝜚
der virtuellen Verdrehung ein und beachtet, dass

𝛿𝜆𝑎 =
𝜕𝛿𝜆

𝜕𝑎
=

∑
( 𝑙𝑚𝑛

𝜋𝜅 𝜚)

( 𝜕𝑙1
𝜕𝑎

𝛿𝜋 + 𝑙1
𝜕𝛿𝜋

𝜕𝑎

) (𝜆, 𝜇, 𝜈
1, 2, 3 ; 𝑎, 𝑏, 𝑐

)
,

so ergeben sich durch Identifikation von −𝛿Φ mit dem Arbeitsausdruck Nr. 4, (2)
bzw. (2′) die folgenden Formeln für die auf die

95 J. Boussinesq, a. a. O.89), p. 598, E. u. F. Cosserat, l. c., p. J. 74 f.
96 E. und F. Cosserat, „Corps déformables“ 5), chap. IV, p. 122 ff.
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wherein the derivatives of 𝜑 signed with the label 0 have to be evaluated for 𝜎 = 0,
i. e. for the arguments 𝑥 = 𝑎, . . . , 𝑥𝑎 = 1, 𝑥𝑏 = 0, . . . . The expressions (9a) are in fact
of the class of Hooke’s law considered in No. 6, (3′); thereby [it] is naturally required,
that the terms of the expansion of 𝜑 constituting �̃� do not vanish identically. The
stress components with respect to the deformed position of the continuum 𝑋𝑥 , . . .
differ according to No. 3c, (8) from 𝑋𝑎, . . . by the following expressions linear in 𝜎:

(10) 𝑋𝑥 − 𝑋𝑎 = 𝜎(−𝜑0
𝑥𝑎
(𝑣𝑏 + 𝑤𝑐) + 𝜑0

𝑥𝑏
𝑢𝑏 + 𝜑0

𝑥𝑐
𝑢𝑐), . . . ,

and these become only zero or of the order of magnitude 𝜎2 of the otherwise
neglected quantities, when the “initial stresses” given by 𝜑0

𝑥𝑎
vanish before the

infinitesimal deformation.95) — Thereafter no more detailed presentation is required,
how one reformulates in a similar way the more general potential-based approach of
Duhem (7) for infinitesimal deformations.

7b. The potential-based approach for media with oriented particles.
According to the procedure of E. and F. Cosserat96) one can extend this potential-

based approach also to continua, whose particles are endowed with a certain ori-
entation; one only has to assume, that the energy density 𝜑, usually defined as in
No. 7a, depends besides the so far considered quantities also on the parameters
𝜆, 𝜇, 𝜈, [which] determine the actual orientation of the particle 𝑎, 𝑏, 𝑐 (No. 2b, (9)),
and the (first) derivatives with respect to 𝑎, 𝑏, 𝑐 of these [parameters]:

(11) 𝜑 = 𝜑(𝜆(𝑎, 𝑏, 𝑐), . . . ;𝜆𝑎 (𝑎, 𝑏, 𝑐), . . . , 𝜈𝑐 (𝑎, 𝑏, 𝑐)).

A virtual rotation of the individual particles No. 2 (10) then yields the following
contribution to the variation of the potential:

𝛿Φ =

∭
(𝑉0)

∑
(𝜆 𝜇 𝜈)

( 𝜕𝜑
𝜕𝜆

𝛿𝜆 + 𝜕𝜑

𝜕𝜆𝑎
𝛿𝜆𝑎 + 𝜕𝜑

𝜕𝜆𝑏
𝛿𝜆𝑏 + 𝜕𝜑

𝜕𝜆𝑐
𝛿𝜆𝑐

)
𝑑𝑎 𝑑𝑏 𝑑𝑐.

If one introduces now due to No. 2, (11), (12) the angular velocities 𝛿𝜋, 𝛿𝜅, 𝛿𝜚 of
the virtual rotation and by considering that

𝛿𝜆𝑎 =
𝜕𝛿𝜆

𝜕𝑎
=

∑
( 𝑙𝑚𝑛

𝜋𝜅 𝜚)

( 𝜕𝑙1
𝜕𝑎

𝛿𝜋 + 𝑙1
𝜕𝛿𝜋

𝜕𝑎

) (𝜆, 𝜇, 𝜈
1, 2, 3 ; 𝑎, 𝑏, 𝑐

)
,

then, by identification of −𝛿Φ with No. 4, (2) and (2′), respectively, the following
formulas for the

95 J. Boussinesq, op. cit.89), p. 598, E. and F. Cosserat, l. c., p. J. 74 f.
96 E. and F. Cosserat, “Corps déformables” 5), chap. IV, p. 122 ff.
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Massen- und Flächenelemente wirkenden Drehmomente97):

(12)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜚0𝐿 = −∑

(𝜆𝜇𝜈
123 )

{
𝜕𝜑
𝜕𝜆 · 𝑙1+

𝜕𝜑
𝜕𝜆𝑎

𝜕𝑙1
𝜕𝑎 +

𝜕𝜑
𝜕𝜆𝑏

𝜕𝑙1
𝜕𝑏 +

𝜕𝜑
𝜕𝜆𝑐

𝜕𝑙1
𝜕𝑐

}
,

𝐿𝑎 =
𝜕𝜑
𝜕𝜆𝑎

𝑙1 + 𝜕𝜑
𝜕𝜇𝑎

𝑙2 + 𝜕𝜑
𝜕𝜈𝑎

𝑙3.

(𝐿, 𝑀, 𝑁
𝑙, 𝑚, 𝑛

; 𝑎, 𝑏, 𝑐
)

Es ist vielfach zweckmäßig, in diese Formeln die den 𝛿𝜋, 𝛿𝜅, 𝛿𝜚 analogen
Winkelgeschwindigkeiten einzuführen, die bei der Überführung des zu einem
Teilchen gehörigen Dreikantes in das eines Nachbarteilchens auftreten; wir betra-
chten speziell die in der Richtung der Parameterlinien 𝑎, 𝑏, 𝑐 benachbarten Teilchen,
also die Winkelgeschwindigkeitskomponenten

(13) 𝑝𝑎 =
∑
(123)

𝛽1
𝜕𝛾1
𝜕𝑎

, 𝑞𝑎 =
∑
(123)

𝛾1
𝜕𝛼1
𝜕𝑎

, 𝑟𝑎 =
∑
(123)

𝛼1
𝜕𝛽1
𝜕𝑎

(𝑎, 𝑏, 𝑐).

Dann hat man analog den Relationen (12) von Nr. 2

𝜕𝜆

𝜕𝑎
= 𝑙1𝑝𝑎 + 𝑚1𝑞𝑎 + 𝑛1𝑟𝑎

(𝜆, 𝜇, 𝜈
1, 2, 3 ; 𝑎, 𝑏, 𝑐

)
,

und kann in dem Ausdruck (11) der Energiedichte die 𝜆𝑎, . . . , 𝜈𝑐 durch die
Winkelgeschwindigkeiten 𝑝𝑎, . . . , 𝑟𝑐 ersetzen:

(14) 𝜑 = 𝜑(𝜆, 𝜇, 𝜈; 𝑝𝑎, 𝑝𝑏 , . . . , 𝑟𝑐).

Bildet man aus diesem Ausdruck 𝛿Φ und berücksichtigt die aus (13) folgenden
Relationen (das Analogon der sog. „Übergangsgleichungen“98) der Kinetik)

𝛿𝑝𝑎 =
𝜕𝛿𝜋

𝜕𝑎
+ 𝑟𝑎𝛿𝜅 − 𝑞𝑎𝛿𝜚

(𝑝, 𝑞, 𝑟
𝜋, 𝜅, 𝜚

; 𝑎, 𝑏, 𝑐
)
,

so ergiebt sich durch analoge Betrachtungen, wie sie zu (12) führten97):

(15)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜚0𝐿 =−

{
𝜕𝜑
𝜕𝜆 𝑙1+

𝜕𝜑
𝜕𝜇 𝑙2+

𝜕𝜑
𝜕𝜈 𝑙3+

∑
(𝑎𝑏𝑐)

(
𝑞𝑎

𝜕𝜑
𝜕𝑟𝑎

− 𝑟𝑎
𝜕𝜑
𝜕𝑞𝑎

)} (
𝐿, 𝑀, 𝑁
𝑙, 𝑚, 𝑛

)
𝐿𝑎 =

𝜕𝜑
𝜕𝑝𝑎

.
(
𝐿, 𝑀, 𝑁
𝑝, 𝑞, 𝑟 ; 𝑎, 𝑏, 𝑐

)
Der Übergang zu den auf das deformierte Kontinuum bezogenen Drehmomen-

tkomponenten 𝐿𝑥 , . . . , 𝑁𝑧 ist mit Hilfe von Nr. 4b, (5) leicht zu vollziehen.

97 Diese Formeln finden sich in dem Cosseratschen Buche nicht explizit angegeben, da dort die
unten ausgeführte Annahme eines „Euklidischen“ Potentiales an der Spitze steht; sie sind indessen
in den Gleichungen von p. 132 ff. und 141 bzw. p. 130 ff. und 134 ff. enthalten; die Identifizierung
geschieht am leichtesten von den p. 138 ff. angegebenen Formeln für die Arbeit aus.
98 Sie gehen in diese über, wenn 𝑎 durch den Zeitparameter ersetzt wird; vgl. IV 6 (P. Stäckel),
No. 30, p. 584 f. und Anm.417) sowie IV 11 (K. Heun), No. 14c.
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torques acting at the mass and surface elements emerge97):

(12)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜚0𝐿 = −∑

(𝜆𝜇𝜈
123 )

{
𝜕𝜑
𝜕𝜆 · 𝑙1+

𝜕𝜑
𝜕𝜆𝑎

𝜕𝑙1
𝜕𝑎 +

𝜕𝜑
𝜕𝜆𝑏

𝜕𝑙1
𝜕𝑏 +

𝜕𝜑
𝜕𝜆𝑐

𝜕𝑙1
𝜕𝑐

}
,

𝐿𝑎 =
𝜕𝜑
𝜕𝜆𝑎

𝑙1 + 𝜕𝜑
𝜕𝜇𝑎

𝑙2 + 𝜕𝜑
𝜕𝜈𝑎

𝑙3.

(𝐿, 𝑀, 𝑁
𝑙, 𝑚, 𝑛

; 𝑎, 𝑏, 𝑐
)

Often it is useful to introduce in these formulas the angular velocities analogously
to the 𝛿𝜋, 𝛿𝜅, 𝛿𝜚, which appear in the transition from one triad of a particle to the
one of the neighboring particle; we consider especially the neighboring particles in
direction of the parameter lines 𝑎, 𝑏, 𝑐, i. e. the components of the angular velocities

(13) 𝑝𝑎 =
∑
(123)

𝛽1
𝜕𝛾1
𝜕𝑎

, 𝑞𝑎 =
∑
(123)

𝛾1
𝜕𝛼1
𝜕𝑎

, 𝑟𝑎 =
∑
(123)

𝛼1
𝜕𝛽1
𝜕𝑎

(𝑎, 𝑏, 𝑐).

Then one has analogously to the relation (12) of No. 2

𝜕𝜆

𝜕𝑎
= 𝑙1𝑝𝑎 + 𝑚1𝑞𝑎 + 𝑛1𝑟𝑎

(𝜆, 𝜇, 𝜈
1, 2, 3 ; 𝑎, 𝑏, 𝑐

)
,

and [one] can substitute the 𝜆𝑎, . . . , 𝜈𝑐 with the angular velocities 𝑝𝑎, . . . , 𝑟𝑐 in the
expression (11) of the energy density:

(14) 𝜑 = 𝜑(𝜆, 𝜇, 𝜈; 𝑝𝑎, 𝑝𝑏 , . . . , 𝑟𝑐).

If one computes 𝛿Φ with this expression and by considering the relation following
from (13) (the analogue to the so called “transition equations”98) of kinetics)

𝛿𝑝𝑎 =
𝜕𝛿𝜋

𝜕𝑎
+ 𝑟𝑎𝛿𝜅 − 𝑞𝑎𝛿𝜚

(𝑝, 𝑞, 𝑟
𝜋, 𝜅, 𝜚

; 𝑎, 𝑏, 𝑐
)
,

then similar considerations which lead to (12)97) result in:

(15)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜚0𝐿 =−

{
𝜕𝜑
𝜕𝜆 𝑙1+

𝜕𝜑
𝜕𝜇 𝑙2+

𝜕𝜑
𝜕𝜈 𝑙3+

∑
(𝑎𝑏𝑐)

(
𝑞𝑎

𝜕𝜑
𝜕𝑟𝑎

− 𝑟𝑎
𝜕𝜑
𝜕𝑞𝑎

)} (
𝐿, 𝑀, 𝑁
𝑙, 𝑚, 𝑛

)
𝐿𝑎 =

𝜕𝜑
𝜕𝑝𝑎

.
(
𝐿, 𝑀, 𝑁
𝑝, 𝑞, 𝑟 ; 𝑎, 𝑏, 𝑐

)
Using No. 4b, (5), the transformation to the components of the torques with

respect to the deformed continuum 𝐿𝑥 , . . . , 𝑁𝑧 can be carried out easily.

97 These formulas cannot be found explicitly in the book of the Cosserats, since therein the
assumption of a “Euclidean” potential, which is achieved below, forms the basis; however, they are
contained in the equations of p. 132 ff. and 141 or p. 130 ff. and 134 ff.; The identification occurs
easiest starting from the formulas for the work given on p. 138 ff.
98 They change into these [equations], when 𝑎 is replaced by a time parameter; cf. IV 6 (P. Stäckel),
No. 30, p. 584 f. and remark417) as well as IV 11 (K. Heun), No. 14c.
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E. und F. Cosserat betrachten insbesondere die durch diesen Ansatz dargestellten
inneren Wirkungen in einem Medium, bei denen 𝜑 als Funktion der 𝑥, . . . und
𝜆, . . . invariant gegen rechtwinklige Koordinatentransformationen im 𝑥-𝑦-𝑧-Raume
ist, oder — was dasselbe bedeutet — bei denen jede Bewegung des mitsamt den
adjungierten Dreikanten erstarrt gedachten Kontinuums das Potential ungeändert
lässt; ein solches Potential nennen sie ein euklidisches (action Euclidienne). Um diese
Klasse von Potentialen zu umschreiben, verwenden sie in jedem Punkte 𝑥, 𝑦, 𝑧 als
(bewegliches) Bezugssystem die momentane Lage des dem gerade dort befindlichen
Teilchen angehefteten Dreikantes; an Stelle der Komponenten 𝑝𝑎, . . . , 𝑟𝑐 treten
die Komponenten der gleichen Winkelgeschwindigkeiten in Bezug auf diese neuen
Axen:

(16a) 𝔭𝑎 =𝛼1𝑝𝑎+ 𝛽1𝑞𝑎+ 𝛾1𝑟𝑎 = 𝛼3
𝜕𝛼2
𝜕𝛼

+ 𝛽3
𝜕𝛽2
𝜕𝛼

+ 𝛾3
𝜕𝛾2
𝜕𝛼

(
𝔭, 𝔮, 𝔯
1, 2, 3 ; 𝑎, 𝑏, 𝑐

)
,

und in gleicher Weise mögen die 9 Deformationsgrössen 𝑥𝑎, . . . , 𝑧𝑐 transformiert
werden in:

(16b) 𝔵𝑎 = 𝛼1𝑥𝑎 + 𝛽1𝑦𝑎 + 𝛾1𝑧𝑎

(
𝔵, 𝔶, 𝔷
1, 2, 3 ; 𝑎, 𝑏, 𝑐

)
.

Dann ist das allgemeinste euklidische Potential, das höchstens von den ersten
Ableitungen der Deformationsfunktionen abhängt, eine willkürliche Funktion dieser
18 Grössen 𝔭𝑎, . . . 𝔷𝑐 , die ausserdem noch explizit 𝑎, 𝑏, 𝑐 enthalten kann99):

(17) 𝜑 = 𝜑(𝑎, . . . ; 𝔵𝑎, . . . , 𝔷𝑐; 𝔭𝑎, . . . , 𝔯𝑐).

Zur Herleitung der Gleichgewichtsbedingungen für diesen Ansatz führt man auch
die Komponenten der virtuellen Verrückung und Verdrehung nach den neuen be-
weglichen Axen ein:

𝛿𝔵 = 𝛼1𝛿𝑥 + 𝛽1𝛿𝑦 + 𝛾1𝛿𝑧,

𝛿𝔦 = 𝛼1𝛿𝜋 + 𝛽1𝛿𝜅 + 𝛾1𝛿𝜚;

(
𝔵, 𝔶, 𝔷
𝔦, 𝔧, 𝔨
1, 2, 3

)

dann hat man die „Übergangsgleichungen“

𝛿𝔵𝑎 =
𝜕𝛿𝔵
𝜕𝑎 + 𝔮𝑎𝛿𝔷 − 𝔯𝑎𝛿𝔶𝑎𝛿𝔨 − 𝔷𝑎𝛿𝔧,

𝛿𝔭𝑎 =
𝜕𝛿𝔦
𝜕𝑎 + 𝔮𝑎𝛿𝔨 − 𝔯𝑎𝛿𝔧

(
𝔵, 𝔶, 𝔷
𝔭, 𝔮, 𝔯; 𝑎, 𝑏, 𝑐
𝔦, 𝔧, 𝔨

)

und kann daher die Variation des mit (17) gebildeten Potentiales

𝛿Φ =

∭
(𝑉0)

∑(
𝔵,𝔶,𝔷
𝔭,𝔮,𝔯

; 𝑎, 𝑏, 𝑐
)
( 𝜕𝜑

𝜕𝔵𝑎
𝛿𝔵𝑎 + 𝜕𝜑

𝜕𝔭𝑎
𝛿𝔭𝑎

)
𝑑𝑎 𝑑𝑏 𝑑𝑐

99 E. u. F. Cosserat, „Corps déformables“ , p. 127.
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E. and F. Cosserat considered in particular the internal actions in a medium
represented by this ansatz[.] For these [actions] 𝜑 is, as a function of 𝑥, . . . and
𝜆, . . . , invariant with respect to orthogonal coordinate transformations in the 𝑥-𝑦-
𝑧-space, or — what implies the same — these [actions for which] every motion of
the continuum together with the adjoint triads being regarded as rigid leaves the
potential unchanged; they call such a potential a euclidean one (action Euclidienne).
To describe this class of potentials, they use in every point 𝑥, 𝑦, 𝑧 as (moving) frame
of reference the actual position of the triad attached to the particle just located there;
The components 𝑝𝑎, . . . , 𝑟𝑐 are substituted by the components of the same angular
velocities formulated with respect to these new axes:

(16a) 𝔭𝑎 =𝛼1𝑝𝑎+ 𝛽1𝑞𝑎+ 𝛾1𝑟𝑎 = 𝛼3
𝜕𝛼2
𝜕𝛼

+ 𝛽3
𝜕𝛽2
𝜕𝛼

+ 𝛾3
𝜕𝛾2
𝜕𝛼

(
𝔭, 𝔮, 𝔯
1, 2, 3 ; 𝑎, 𝑏, 𝑐

)
,

and in a similar way the 9 deformation quantities 𝑥𝑎, . . . , 𝑧𝑐 shall be transformed to:

(16b) 𝔵𝑎 = 𝛼1𝑥𝑎 + 𝛽1𝑦𝑎 + 𝛾1𝑧𝑎

(
𝔵, 𝔶, 𝔷
1, 2, 3 ; 𝑎, 𝑏, 𝑐

)
.

Then the most general euclidean potential, which depends at most on the first deriva-
tives of the deformation functions, is an arbitrary function of these 18 quantities
𝔭𝑎, . . . 𝔷𝑐 , [functions] which moreover can explicitly contain 𝑎, 𝑏, 𝑐99):

(17) 𝜑 = 𝜑(𝑎, . . . ; 𝔵𝑎, . . . , 𝔷𝑐; 𝔭𝑎, . . . , 𝔯𝑐).

For the derivation of the equilibrium conditions for this ansatz one also introduces
the components of the virtual displacement and rotation with respect to the new
moving axes:

𝛿𝔵 = 𝛼1𝛿𝑥 + 𝛽1𝛿𝑦 + 𝛾1𝛿𝑧,

𝛿𝔦 = 𝛼1𝛿𝜋 + 𝛽1𝛿𝜅 + 𝛾1𝛿𝜚;

(
𝔵, 𝔶, 𝔷
𝔦, 𝔧, 𝔨
1, 2, 3

)
then one has the “transition equations”

𝛿𝔵𝑎 =
𝜕𝛿𝔵
𝜕𝑎 + 𝔮𝑎𝛿𝔷 − 𝔯𝑎𝛿𝔶𝑎𝛿𝔨 − 𝔷𝑎𝛿𝔧,

𝛿𝔭𝑎 =
𝜕𝛿𝔦
𝜕𝑎 + 𝔮𝑎𝛿𝔨 − 𝔯𝑎𝛿𝔧

(
𝔵, 𝔶, 𝔷
𝔭, 𝔮, 𝔯; 𝑎, 𝑏, 𝑐
𝔦, 𝔧, 𝔨

)

and is therefore immediately able to compare the variation of the potential formulated
with (17)

𝛿Φ =

∭
(𝑉0)

∑(
𝔵,𝔶,𝔷
𝔭,𝔮,𝔯

; 𝑎, 𝑏, 𝑐
)
( 𝜕𝜑

𝜕𝔵𝑎
𝛿𝔵𝑎 + 𝜕𝜑

𝜕𝔭𝑎
𝛿𝔭𝑎

)
𝑑𝑎 𝑑𝑏 𝑑𝑐

99 E. and F. Cosserat, “Corps déformables”, p. 127.



7c. Der Potentialansatz für zwei- und eindimensionale Kontinua. 651

unmittelbar mit der folgenden Form der virtuellen Arbeit vergleichen:

𝛿𝐴 =

∭
(𝑉0)

∑
(
𝔛𝔜ℨ

𝔵𝔶 𝔷
; 𝔔𝔐𝔑
𝔦 𝔧 𝔨

)
{
𝜚0𝔛𝛿𝔵 + 𝜚0𝔏𝛿𝔦 −

∑
(𝑎𝑏𝑐)

(
𝔛𝑎

𝜕𝛿𝔵

𝜕𝑎
+ 𝔏𝑎 𝜕𝛿𝔦

𝜕𝑎

)}
𝑑𝑎 𝑑𝑏 𝑑𝑐,

in der die Komponenten der früher betrachteten Kräfte, Spannungen und Momente
in bezug auf das bewegliche Koordinatenkreuz auftreten. Es ergeben sich danach
Formeln100.) vom Typus

(18)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜚0𝔛 =

∑
(𝑎𝑏𝑐)

(
𝔯𝑎

𝜕𝜑
𝜕𝔶𝑎

− 𝔮𝑎 𝜕𝜑
𝜕𝔶𝑎

)
, 𝔛𝑎 =

𝜕𝜑
𝜕𝔵𝑎

𝜚0𝔏 =
∑

(𝑎𝑏𝑐)

(
𝔯𝑎

𝜕𝜑
𝜕𝔮𝑎

− 𝔮𝑎 𝜕𝜑
𝜕𝔯𝑎

+ 𝔷𝑎 𝜕𝜑
𝜕𝔶𝑎

− 𝔶𝑎 𝜕𝜑
𝜕𝔷𝑎

)
, 𝔏𝑎 =

𝜕𝜑
𝜕𝔭𝑎

.

7c. Der Potentialansatz für zwei- und eindimensionale Kontinua. Für die zwei-
und eindimensional ausgedehnten Kontinua im dreidimensionalen Raume kann man
den Potentialansatz ohne Schwierigkeit durch ganz analoge Betrachtungen gewin-
nen.101) Die Energiedichte 𝜑 — der als existierend vorausgesetzte Grenzwert des
Quotienten aus dem Potential eines immer kleiner werdenden Teiles des Kontinu-
ums und dessen Flächeninhalt bzw. Länge — wird eine gegebene Funktion der 6
Funktionen 𝑥, 𝑦, 𝑧, 𝜆, 𝜇, 𝜈 von 𝑎, 𝑏 (bzw. von 𝑎) und ihrer Ableitungen, das Potential
selbst also ein zwei- bzw. eindimensionales Integral:

Φ =

∬
(𝑆0)

𝜑 𝑑𝑎 𝑑𝑏 bzw. Φ =

𝑙∫
0

𝜑 𝑑𝑎.

Die Variation dieser Potentiale und daher die die auf die Anfangsparameter bezo-
genen Kraft-, Spannungs-, und Momentkomponenten ergeben sich unmittelbar aus
den entsprechenden Formeln des dreidimensionalen Falles durch Fortlassen der auf
𝑐 bzw. 𝑏 und 𝑐 bezüglichen Glieder; der Übergang zu den auf den deformierten
Zustand bezüglichen Grössen erfolgt dann nach Nr. 3e, (16) und Nr. 4b, (12).

Richtet man sein Augenmerk besonders auf orientierte Teilchen, so spielen die
wie in Nr. 7b definierten Winkelgeschwindigkeitskomponenten 𝑝𝑎, . . . wieder eine
wichtige Rolle, und zwar hat man jetzt natürlich nur 2 bzw. 1 Tripel dieser Grössen.
E. und F. Cosserat haben die Theorie solcher Medien unter Verwendung des jedem
Teilchen

100 E. u. F. Cosserat, l. c., p. 130 f.; vgl. auch IV 11 K. Heun Nr. 21.
101 Bereits Lagrange wendet ihn bei den von ihm behandelten Problemen aus diesem Gebiet23) an;
er wurde dann in der Theorie der elastischen Fäden und Platten (vgl. IV 6 (P. Stäckel), Nr. 23, 24
und IV 25, Kap. III, Tedone-Timpe), besonders aber auch in der Theorie der Kapillarität (vgl. V 9
(Minkowski), Nr. 2) weiterentwickelt.
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with the following form of the virtual work:

𝛿𝐴 =

∭
(𝑉0)

∑
(
𝔛𝔜ℨ

𝔵𝔶 𝔷
; 𝔔𝔐𝔑
𝔦 𝔧 𝔨

)
{
𝜚0𝔛𝛿𝔵 + 𝜚0𝔏𝛿𝔦 −

∑
(𝑎𝑏𝑐)

(
𝔛𝑎

𝜕𝛿𝔵

𝜕𝑎
+ 𝔏𝑎 𝜕𝛿𝔦

𝜕𝑎

)}
𝑑𝑎 𝑑𝑏 𝑑𝑐,

in which the components of the earlier considered forces, stresses and torques appear
with resepct to the moving coordinate triad. Accordingly, this results in formulas100)
of the type

(18)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜚0𝔛 =

∑
(𝑎𝑏𝑐)

(
𝔯𝑎

𝜕𝜑
𝜕𝔶𝑎

− 𝔮𝑎 𝜕𝜑
𝜕𝔶𝑎

)
, 𝔛𝑎 =

𝜕𝜑
𝜕𝔵𝑎

𝜚0𝔏 =
∑

(𝑎𝑏𝑐)

(
𝔯𝑎

𝜕𝜑
𝜕𝔮𝑎

− 𝔮𝑎 𝜕𝜑
𝜕𝔯𝑎

+ 𝔷𝑎 𝜕𝜑
𝜕𝔶𝑎

− 𝔶𝑎 𝜕𝜑
𝜕𝔷𝑎

)
, 𝔏𝑎 =

𝜕𝜑
𝜕𝔭𝑎

.

7c. The potential-based approach for two- and one-dimensional continua.
For the two- and one-dimensional extended continua in the tree-dimensional space,
one can gain the potential-based approach without any difficulties using rather sim-
ilar considerations.101) The energy density 𝜑 — as the assumed existing limit of the
quotient between the potential of a part of the continuum becoming continuously
smaller and the area or length thereof — becomes a given function of the 6 func-
tions 𝑥, 𝑦, 𝑧, 𝜆, 𝜇, 𝜈 of 𝑎, 𝑏 (or of 𝑎) and the derivatives thereof, the potential itself
[becomes] consequently a two- or one-dimensional integral:

Φ =

∬
(𝑆0)

𝜑 𝑑𝑎 𝑑𝑏 or Φ =

𝑙∫
0

𝜑 𝑑𝑎.

The variation of these potentials and therefore the force, stress and torque components
formulated with respect to the initial parameters are obtained immediately from
the corresponding formulas of the three-dimensional case by omitting the terms
concerning 𝑐 or 𝑏 and 𝑐; The transformation to the quantities formulated with
respect to the deformed state follows then according to No. 3e, (16) and No. 4b, (12).

If one focuses on oriented particles, then the angular velocities 𝑝𝑎, . . . as defined
in No. 7b play again a crucial role, and indeed one has now naturally only 2 or 1
triple of these quantities. E. and F. Cosserat have widely developed the theory of
such media using

100 E. and F. Cosserat, l. c., p. 130 f.; cf. also IV 11 K. Heun No. 21.
101 Already Lagrange applied [the ansatz] to the problems in this area which he considered23); [the
ansatz] was developed further in the theory of elastic wires and plates (cf. IV 6 (P. Stäckel), No. 23,
24 and IV 25, Kap. III, Tedone-Timpe), but particularly also in the theory of capillarity (cf. V 9
(Minkowski), No. 2).
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zugeordneten Dreikantes als beweglichen Bezugssystemes weitgehend ausgebaut102)
und haben auch hier die inneren Wirkungen betrachtet, die sich aus einem wie oben
definierten euklidischen Potential herleiten; der Ausdruck dieses Potentials und die
zugehörigen Kraft-, Spannungs-, und Momentformeln ergeben sich wiederum durch
Spezialisierung der Gleichungen (16) ff. von Nr. 7b.

7d. Die Bedeutung des wirklichen Minimums. Ein wesentlicher Vorteil der
Existenz eines Potentiales Φ der gesamten Kraftwirkungen ist die Möglichkeit, die
Gleichgewichtsbedingungen ohne explizite Verwendung unendlichkleiner Verrück-
ungen auszusprechen. Die Gleichgewichtsbedingung 𝛿Φ = 0 ist nämlich die Bedin-
gung dafür, dass Φ für die betrachtete Deformation einen Extremwert (Maximum
oder Minimum, ev. aber auch einen sog. „Sattelwert“) besitzt103): Für eine Gle-
ichgewichtslage des Quantums𝑉0 des Kontinuums wird also das Potential von𝑉0 ein
Extremwert (im weitesten Sinne), verglichen mit den Werten für alle benachbarten
nur den etwa stattfindenden Nebenbedingungen genügenden Deformationszustän-
den. Damit ordnet sich die Gleichgewichtsbedingung genau dem normalen Problem
der Variationsrechnung ein, innerhalb eines gegebenen Bereiches 𝑉0 der Variablen
𝑎, 𝑏, 𝑐 die Funktionen 𝑥, . . . , 𝜆, . . . von ihnen so zu bestimmen, dass ein gewisses
diese Funktionen und ihre Ableitungen enthaltendes Raum- und Oberflächeninte-
gral ein Extremum wird — bei möglicherweise noch unbestimmten Randwerten;
Differentialgleichungen und Randbedingungen, die hieraus nach den Regeln der
Variationsrechnung entspringen, sind genau die früher aufgestellten Gleichgewichts-
bedingungen.

Besonders hervorgehoben wird oft der Fall, dass Φ nur das Potential der im
Inneren des Kontinuums angreifenden Wirkungen ist; dann tritt zu −𝛿Φ in der
Gleichgewichtsbedingung noch ein Oberflächenintegral, die virtuelle Arbeit der
am Rande angreifenden äusseren Druckkräfte, hinzu, und 𝛿Φ selbst verschwindet
notwendig nur für diejenigen virtuellen Verrückungen, die auf 𝑆 den Wert Null
haben. Für eine Gleichgewichtslage also wird das Potential Φ der im Innern von 𝑉0
angreifenden Kräfte und Spannungen ein Extremum, verglichen mit allen benach-
barten, den etwa bestehenden Nebenbedingungen

102 Man sehe die ausführliche Darstellung in chap. II, III der „corps déformables“, wo die Gle-
ichgewichtsbedingungen solcher Medien mit euklidischem Potential bei Verwendung der ver-
schiedenen möglichen Koordinatensysteme und unter den mannigfachsten Spezialisierungen en-
twickelt sind.
103 Die Bedeutung dieser Auffassung hat Lagrange auch für die Kontinua in der Méc. anal. nach-
drücklich betont (s. 1. Part., sect. IV, § III).
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the triad associated with every particle as moving frame of reference102) and have
considered also here the internal actions, which are derived from a euclidean potential
as defined above; the expression of this potential and the corresponding force, stress
and torque formulas are again obtained by the specialization of the equations (16) ff.
of No. 7b.

7d. The relevance of the effective minimum. An essential advantage of the
existence of a potential Φ of the total force effects is the possibility to express
the equilibrium conditions without explicitly using infinitesimal displacements. The
equilibrium condition 𝛿Φ = 0 is namely the condition that Φ has for the considered
deformation an extremum (maximum or minimum, but possibly also a so called
“saddle point”)103): For an equilibrium position of the portion 𝑉0 of the continuum,
the potential of𝑉0 therefore becomes an extremum (in the broadest sense), compared
with the values for all neighboring states of deformations admissible with respect to
possibly occurring constraints. Hence, the equilibrium conditions can be classified
just as the common problem of the calculus of variations, to determine inside a given
domain 𝑉0 of the variables 𝑎, 𝑏, 𝑐 the functions 𝑥, . . . , 𝜆, . . . thereof, such that a
certain spatial and surface integral including these functions and their derivatives
becomes an extremum — for possibly yet undetermined boundary values; differen-
tial equations and boundary conditions, which originate herefrom according to the
rules of the calculus of variations, correspond exactly to the previously formulated
equilibrium conditions.

Particularly emphasized is often the case, thatΦ is only the potential of the effects
applied within the continuum; then to −𝛿Φ in the equilibrium condition a surface
integral, the virtual work of the external compressive forces applied to the boundary,
is added, and 𝛿Φ itself vanishes necessarily only for those virtual displacements,
which have the value zero on 𝑆. For an equilibrium position, thus the potential Φ of
the forces and stresses applied within 𝑉0 becomes an extremum, compared with all
neighboring states of deformations, admissible with respect

102 One shall have a look at the extensive presentation in chap. II, III of “corps déformables”, in
which the equilibrium conditions of such media with euclidean potential are developed using the
various possible coordinate systems and according to most manifold specializations.
103 In the Méc. anal. (see 1. Part., sect. IV, § III) Lagrange has particularly emphasized the relevance
of this perception also for continua.
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genügenden Deformationszuständen, für die jedes Grenzteilchen von 𝑉0 denselben
Ort innehat wie in der Gleichgewichtslage; die Lösung dieses Variationsproblems ist
natürlich nur dann bestimmt, wenn die Lage der Randteilchen, d. h. die Randwerte
der Deformationsfunktionen, direkt gegeben sind.

Das Hauptinteresse, das sich mit diesen Formulierungen verknüpft, gehört der
Frage, ob hier wie in der Mechanik diskreter Massen sich je nach der Art des
Extremums von Φ auch die Art des Gleichgewichts bestimmt, insbesondere, ob
das Dirichletsche Stabilitätskriterium104) gilt, dass für das Eintreten stabilen Gle-
ichgewichts das Stattfinden eines wirklichen Minimums entscheidend ist. Die all-
gemeine Beantwortung dieser Frage kann nur auf die Theorie der Bewegung des
Kontinuums gegründet werden, und zwar kommt es darauf an, ob eine durch kleine
Impulse aus einem Gleichgewichtszustand hervorgerufene Bewegung im Falle eines
wirklichen Minimums von Φ stets in beliebiger Nähe eben dieses Deformationszu-
standes verläuft. Freilich kann man dabei den Begriff der „beliebigen Nähe“ ver-
schieden interpretieren, je nachdem man die Entfernung jedes einzelnen Teilchens
von seiner Gleichgewichtslage beschränkt, oder diese Forderung nur im Mittel für
das ganze Kontinuum oder für einzelne Teilbereiche stellt; man erhält danach ver-
schiedene Arten von Stabilität.

Abgesehen von den Fällen der gewöhnlichen Elastizitätstheorie, wo die Verhält-
nisse sehr einfach liegen105), sind nur für wenige Probleme Stabilitätsuntersuchungen
vollständig durchgeführt worden; und meist wurde ihnen überdies das Dirichletsche
Kriterium oder ein äquivalenter Satz direkt zugrunde gelegt.106) Unter Hinweis
auf diesen Sachverhalt und auf die Schwierigkeiten, die der direkten Übertragung
des Dirichletschen Beweises auf Kontinua entgegenstehen, hat A. Kneser 107) die
Richtigkeit des Dirichletschen Kriteriums für die Kettenlinie gezeigt; für das Prob-
lem der elastischen Linie hat den Beweis M. Born108) unter ausdrücklicher Benutzung
des Osgoodschen Satzes109) der Variationsrechnung in einer auch auf andere eindi-
mensionale Probleme übertragbaren Weise erbracht. Allgemein jedoch,

104 P. L. Dirichlet, Journ. f. Math. 32 (1846), p. 85 = Werke II (Berlin 1897), p. 5.
105 Vgl. die Übersicht in IV 25, Nr. 21, Tedone-Timpe.
106 S. IV 25, Nr. 21, p. 211.
107 A. Kneser, Journ. f. Math. 125 (1903), p. 189.
108 M. Born, Untersuch. über die Stabilität der elastischen Linie. Preisschrift, Göttingen 1906,
Anhang.
109 W. F. Osgood, Amer. Trans. 2 (1901), p. 273; vgl. II A 8 a (H. Hahn u. E. Zermelo), Anm.11).
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to possibly occurring constraints, [and] for [those states of deformations in] which
every boundary particle of 𝑉0 is located at the same point as in the equilibrium
position; certainly, the solution of this variational problem is only determined when
the position of the boundary particles, i. e. the boundary conditions of the deformation
functions, are given directly.

The main interest, which is associated with this formulation, belongs to the
question, if here, as in the mechanics of discrete masses, depending on the type of
extremum ofΦ also the type of equilibrium is determined, in particular, if Dirichlet’s
stability criterion104) holds, that for the appearance of a stable equilibrium the
occurrence of an effective minimum is crucial. The general answer of this question
can only be founded on the theory of the motion of the continuum, and indeed it
depends, if in the case of an effective minimum Φ a motion out of the equilibrium
state caused by small impulses takes place always in the arbitrary neighborhood
of exactly this state of deformation. However, in doing that one can interpret the
notion of “arbitrary neighborhood” differently, depending on whether one bounds
the distance of every individual particle from its equilibrium position, or [one]
imposes this requirement only in average for the whole continuum or for individual
subdomains; one obtains accordingly various types of stability.

Apart from the cases of the ordinary theory of elasticity, where the circumstances
are very easy105), only for a few problems complete analyses of stability have been
carried out; and moreover, mostly Dirichlet’s criterion or an equivalent theorem is
taken directly as a basis.106) With reference to this circumstance and to the dif-
ficulty, which the direct transition of Dirichlet’s proof to continua is opposed to,
A. Kneser 107) has shown the validity of Dirichlet’s criterion for the catenary; for the
problem of the elastic line M. Born108) has elaborated the proof with explicit use of
Osgood’s theorem109) of the calculus of variations in a way [which is] also applicable
to other one-dimensional problems. Nevertheless in general,

104 P. L. Dirichlet, Journ. f. Math. 32 (1846), p. 85 = Werke II (Berlin 1897), p. 5.
105 Cf. the overview in IV 25, No. 21, Tedone-Timpe.
106 See IV 25, No. 21, p. 211.
107 A. Kneser, Journ. f. Math. 125 (1903), p. 189.
108 M. Born, Untersuch. über die Stabilität der elastischen Linie. Preisschrift, Göttingen 1906,
Appendix.
109 W. F. Osgood, Amer. Trans. 2 (1901), p. 273; cf. II A 8 a (H. Hahn and E. Zermelo), Remark 11).
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für mehrdimensionale Integrale, dürfte der Osgoodsche Satz und daher auch das
Dirichletsche Kriterium nicht ohne weiteres gelten.110)

7e. Direkte Bestimmung der Spannungskomponenten. Für manche Zwecke
wichtig ist eine Umformung des Prinzips vom Energieminimum, die der sog. kanon-
ischen Transformation der Dynamik diskreter Medien analog ist.111) Sie besteht
zunächst darin — wenn wir der Kürze halber uns nur auf den ersten Fall von Nr. 7a
beziehen — dass man an Stelle der 9 Ableitungen 𝑥𝑎, . . . , 𝑧𝑐 als neue unbekannte
Funktionen die 9 zugehörigen auf die Anfangsparameter bezogenen Spannungskom-
ponenten

(19) 𝑋𝑎 =
𝜕𝜑

𝜕𝑥𝑎
, 𝑋𝑏 =

𝜕𝜑

𝜕𝑥𝑏
, . . . , 𝑍𝑐 =

𝜕𝜑

𝜕𝑧𝑐

— unter Voraussetzung des Nichtverschwindens der entsprechenden Funktionalde-
terminants — einführt. Bestimmt man sodann

(20) 𝐻 = 𝜑 −
∑

(𝑥𝑦𝑧 ; 𝑎𝑏𝑐)
𝑥𝑎𝑋𝑎 = 𝐻 (𝑥, . . . ; 𝑋𝑎, . . . , 𝑍𝑐)

als Funktion der 𝑥, 𝑦, 𝑧 und der neuen Grössen 𝑋𝑎, . . . , 𝑍𝑐 so zeigt man leicht mit
Hilfe der bekannten Methoden der Variationsrechnung112), dass das Verschwinden
von 𝛿Φ gleichbedeutend ist mit dem Verschwinden der ersten Variation des Integrales

(21)
∭
(𝑉0)

(
𝐻 (𝑥, . . . ; 𝑋𝑎, . . . , 𝑍𝑐) +

∑
(𝑥𝑦𝑧 ; 𝑎𝑏𝑐)

𝜕𝑥

𝜕𝑎
𝑋𝑎

)
𝑑𝑎 𝑑𝑏 𝑑𝑐,

das als unbekannte Funktionen 𝑥, 𝑦, 𝑧 nebst ihren (linear auftretenden) Ableitungen
und ausserdem 𝑋𝑎, . . . , 𝑍𝑐 ohne Ableitungen enthält. Daraus ergiebt sich dann die
neue „kanonische“ Form der im Innern geltenden Gleichgewichtsbedingungen:

(22a)
𝜕𝑋𝑎
𝜕𝑎

+ 𝜕𝑋𝑏
𝜕𝑏

+ 𝜕𝑋𝑐
𝜕𝑐

− 𝜕𝐻

𝜕𝑥
= 0

(𝑋,𝑌, 𝑍
𝑥, 𝑦, 𝑧

)
,

(22b)
𝜕𝐻

𝜕𝑋𝑎
+ 𝜕𝑥

𝜕𝑎
= 0

(𝑋,𝑌, 𝑍
𝑥, 𝑦, 𝑧

; 𝑎, 𝑏, 𝑐
)
.

Die Gleichungen (22b) spielen dadurch, dass sie als Auflösung von (19) den ex-
pliziten Ausdruck der Deformation durch die Spannungskomponenten geben, in der
Elastizitätstheorie eine wesentliche Rolle.

110 Nach mündlicher Mitteilung von A. Haar. Haar hat jedoch bewiesen, dass ein analoger Satz
wieder gilt sowie hinreichend hohe Ableitungen im Integranden des Variationsproblemes auftreten
(vgl. den Bericht über einen Vortrag i. d. math. Ges. Göttingen, Jahresber. d. d. Math.-Ver. 19
(1910), p. 254.
111 Vgl. IV 12, P. Stäckel sowie etwa die Darstellung der Jacobi-Hamilionschen Theorie in II A 5,
Nr. 31, E. v. Weber. Eine Ausdehnung auf mehrere unabhängige Veränderliche giebt M. Born108),
Anhang.
112 Vgl. M. Born, l. c. 108) p. 91 ff.
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for multidimensional integrals, Osgood’s theorem and therefore also Dirichlet’s
criterion may not hold without further ado.110)

7e. Direct determination of the stress components. For some purposes a trans-
formation of the principle of minimum energy is important, which is analogue to the
so called canonical transformation of the dynamics of discrete media.111) At first it
involves — when for the sake of brevity, we refer only to the first case of No. 7a —
that one introduces in place of the 9 derivatives 𝑥𝑎, . . . , 𝑧𝑐 as new unknowns, the 9
corresponding components of stress formulated with respect to the initial parameters

(19) 𝑋𝑎 =
𝜕𝜑

𝜕𝑥𝑎
, 𝑋𝑏 =

𝜕𝜑

𝜕𝑥𝑏
, . . . , 𝑍𝑐 =

𝜕𝜑

𝜕𝑧𝑐

— provided that the corresponding Jacobians do not vanish. If one determines then

(20) 𝐻 = 𝜑 −
∑

(𝑥𝑦𝑧 ; 𝑎𝑏𝑐)
𝑥𝑎𝑋𝑎 = 𝐻 (𝑥, . . . ; 𝑋𝑎, . . . , 𝑍𝑐)

as a function of 𝑥, 𝑦, 𝑧 and the new quantities 𝑋𝑎, . . . , 𝑍𝑐 , then one shows easily with
the help of known methods form the calculus of variations112), that the vanishing 𝛿Φ
is equivalent to the vanishing of the first variation of the integral

(21)
∭
(𝑉0)

(
𝐻 (𝑥, . . . ; 𝑋𝑎, . . . , 𝑍𝑐) +

∑
(𝑥𝑦𝑧 ; 𝑎𝑏𝑐)

𝜕𝑥

𝜕𝑎
𝑋𝑎

)
𝑑𝑎 𝑑𝑏 𝑑𝑐,

which contains as unknown functions 𝑥, 𝑦, 𝑧 together with their (linearly appearing)
derivatives and moreover 𝑋𝑎, . . . , 𝑍𝑐 without derivatives. Thereof, the new “canon-
ical” form of the equilibrium conditions follow, [which] hold in the interior:

(22a)
𝜕𝑋𝑎
𝜕𝑎

+ 𝜕𝑋𝑏
𝜕𝑏

+ 𝜕𝑋𝑐
𝜕𝑐

− 𝜕𝐻

𝜕𝑥
= 0

(𝑋,𝑌, 𝑍
𝑥, 𝑦, 𝑧

)
,

(22b)
𝜕𝐻

𝜕𝑋𝑎
+ 𝜕𝑥

𝜕𝑎
= 0

(𝑋,𝑌, 𝑍
𝑥, 𝑦, 𝑧

; 𝑎, 𝑏, 𝑐
)
.

In the theory of elasticity, the equations (22b) play a crucial role, since they give as
solution of (19) an explicit expression of the deformation with respect to the stress
components.

110 According to a private communication of A. Haar. However, Haar has proven, that a similar
theorem holds again as soon as sufficiently high derivatives appear in the integrand of the variational
problem (cf. the report on a presentation in the math. Ges. Göttingen, Jahresber. d. d. Math.-Ver.
19 (1910), p. 254.[)]
111 Cf. IV 12, P. Stäckel as well as for instance the presentation of the Jacobi-Hamilion theory in
II A 5, No. 31, E. v. Weber. An extension to several independent variables is given by M. Born108),
Appendix.
112 Cf. M. Born, l. c. 108) p. 91 ff.
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Das Charakteristische dieses neuen Variationsprinzips, dass in ihm nicht sowohl
die Deformationsgrössen, als vielmehr die Spannungskomponenten hervortreten,
kommt noch deutlicher in dem speziellen Fall zum Ausdruck, dass die Energiedichte
𝜑 von den Werten der Deformationen 𝑥, 𝑦, 𝑧 selbst unabhängig ist, also nur von der
Formänderung (im weitesten Sinne) abhängt. Dann enthält also 𝐻 nur die Span-
nungskomponenten, und man kann (21) durch das folgende Variationsprinzip mit
Nebenbedingungen ersetzen, das dem in der Theorie der Fachwerke als Prinzip
von L. F. Menabrea und A. Castigliano113) bekannten analog ist: Es soll die erste
Variation des Integrales

(23)
∭

𝐻 (𝑋𝑎, 𝑋𝑏 , . . . , 𝑍𝑐)𝑑𝑎 𝑑𝑏 𝑑𝑐

verschwinden, wobei zum Vergleich alle Systeme von Funktionen 𝑋𝑎, . . . , 𝑍𝑐 zuge-
lassen werden, die den 3 Bedingungsgleichungen

(23a)
𝜕𝑋𝑎
𝜕𝑎

+ 𝜕𝑋𝑏
𝜕𝑏

+ 𝜕𝑋𝑐
𝜕𝑐

= 0 (𝑋,𝑌, 𝑍)

genügen; bezeichnet man mit 𝑥, 𝑦, 𝑧 drei diesen Nebenbedingungen zugeordnete La-
grangesche Faktoren, so ergeben sich hieraus in der Tat die Gleichungen (22b). Durch
Elimination dieser Lagrangeschen Faktoren aus (22b) folgen für die 9 unbekannten
Funktionen allein die 6 Gleichungen:

(24)
𝜕

𝜕𝑏

( 𝜕𝐻

𝜕𝑋𝑎

)
=

𝜕

𝜕𝑎

( 𝜕𝐻

𝜕𝑋𝑏

)
(𝑎, 𝑏, 𝑐; 𝑋,𝑌, 𝑍);

das sind die sog. Kompatibilitätsbedingungen114) der Elastizitätstheorie, die aus-
drücken, dass ein den Bedingungen (23a) genügendes Spannungssystem tatsächlich
Gleichgewichtssystem in einem Kontinuum mit der Energiedichte 𝜑 bzw. 𝐻 sein
kann. — Dies Castigliansche Prinzip wird besonders in solchen Fällen bedeut-
sam, wo in einem Medium nur Spannungen gewisser Art stattfinden können; die
diese Einschränkungen darstellenden Bedingungen können ihm ohne weiteres als
Nebenbedingungen hinzugefügt werden.115)

7f. Die entsprechenden Ansätze für die Kinetik. Auch bei bewegten Medien
kommen in erster Linie die bisher betrachteten

113 L. P. Menabrea, Torino Mem. (2) 25 (1871), p. 141 und A. Castigliano, Théorie d’équilibre des
systèmes élastiques (Turin 1879); vgl. IV 29a, Nr. 7 ff., M. Grüning. Vgl. auch E. und F. Cosserat,
Corps déform., p. 26 ff. für den Fall des eindimensionalen Kontinuums.
114 S. IV 24, Nr. 7a, Tedone; vgl. auch A. Haar u. Th. v. Kármán, Gött. Nachr., math.-phys. Kl. 1909,
p. 204 ff.
115 Haar u. Kármán, l. c. 114), p. 212.
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The characteristics of this new variational principle, that not only the deformation
quantities but rather the stress components do appear, finds expression even more
for the special case, that the energy density 𝜑 is independent of the values of the
deformation functions 𝑥, 𝑦, 𝑧, [that it] depends therefore only on the shape change
(in the broadest sense). Then 𝐻 contains thus only the stress components, and one
can substitute (21) with the following variational problem with constraints, which
is analogous to the [principle] known in the theory of frameworks as the principle
of L. F. Menabrea and A. Castigliano113): The first variation of the integral

(23)
∭

𝐻 (𝑋𝑎, 𝑋𝑏 , . . . , 𝑍𝑐)𝑑𝑎 𝑑𝑏 𝑑𝑐

shall vanish, where for comparison all systems of functions 𝑋𝑎, . . . , 𝑍𝑐 are allowed,
which satisfy the 3 equations

(23a)
𝜕𝑋𝑎
𝜕𝑎

+ 𝜕𝑋𝑏
𝜕𝑏

+ 𝜕𝑋𝑐
𝜕𝑐

= 0 (𝑋,𝑌, 𝑍);

If one denotes the Lagrange multipliers associated with these three constraints by
𝑥, 𝑦, 𝑧, then herefrom the equations (22b) are obtained after all. By elimination
of these Lagrange multipliers from (22b), for the 9 unknown functions just the 6
equations follow:

(24)
𝜕

𝜕𝑏

( 𝜕𝐻

𝜕𝑋𝑎

)
=

𝜕

𝜕𝑎

( 𝜕𝐻

𝜕𝑋𝑏

)
(𝑎, 𝑏, 𝑐; 𝑋,𝑌, 𝑍);

these are the so called compatibility conditions114) of the theory of elasticity, which
express, that a system of stresses being compatible with the conditions (23a) can in
fact be an equilibrium system in a continuum with energy density 𝜑 or 𝐻. — This
principle of Castigliano becomes particularly important in such cases, where in the
medium only stresses of a certain type can appear; the conditions representing these
restrictions can easily be added [to the principle] as constraints.115)

7f. The appropriate approaches to kinetics. In the first place, also for moving
media the so far considered

113 L. P. Menabrea, Torino Mem. (2) 25 (1871), p. 141 and A. Castigliano, Théorie d’équilibre des
systèmes élastiques (Turin 1879); cf. IV 29a, No. 7 ff., M. Grüning. Cf. also E. and F. Cosserat,
Corps déform., p. 26 ff. for the case of the one-dimensional continuum.
114 See IV 24, No. 7a, Tedone; cf. also A. Haar and Th. v. Kármán, Gött. Nachr., math.-phys. Kl.
1909, p. 204 ff.
115 Haar and Kármán, l. c. 114), p. 212.
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Wirkungen in Betracht, in die nur 𝑡 als Parameter eingeht. Fasst man zunächst
den Ansatz von Nr. 7a mit dem Ausdruck des Hamiltonschen Prinzips Nr. 5, (5),
(6) zusammen, so ergiebt sich der der Formulierung von 7d analoge Satz: Für die
wirkliche Bewegung des Kontinuums𝑉0 im Zeitintervall 𝑡0 � 𝑡 � 𝑡1 hat das vierfache
Integral

(25)
𝑡1∫

𝑡0

𝑑𝑡

∭
(𝑉0)

𝑑𝑉0
{ 1

2 𝜚0 (𝑥 ′2 + 𝑦′2 + 𝑧′2) − 𝜑
}

einen Extremwert gegenüber seinen Werten für alle benachbarten, den etwa stat-
tfindenden Nebenbedingungen genügenden Bewegungen, die zu den Zeiten 𝑡0 und 𝑡1
das Kontinuum in derselben Lage belassen.

Diesen Ansatz kann man, wie man es im Falle endlich vieler Freiheitsgrade tut,
sofort wesentlich ausdehnen, indem man von der speziellen Abhängigkeit des In-
tegranden von den zeitlichen Ableitungen abgeht. Man braucht dazu, um sogleich
auch den Fall orientierter Teilchen mit zu umfassen, nur an die Formeln (10), (12)
von Nr. 5d anzuschliessen und analog wie im Anfang von Nr. 7a zu fordern: Die
virtuelle Arbeit des bewegten Kontinuums im Zeitintervall 𝑡0, 𝑡1 soll für jede virtuelle
Verrückung gleich sein der Variation eines einzigen nur von dem jeweiligen Bewe-
gungszustande abhängigen Ausdruckes, der speziell ein vierfaches Integral über eine
bekannte Funktion der Bewegungsfunktionen und ihrer zeitlichen und räumlichen
Ableitungen sei:

(26) Φ=

𝑡1∫
𝑡0

𝑑𝑡

∭
(𝑉0)

𝑑𝑉0𝜑(𝑎, 𝑏, 𝑐, 𝑡;𝑥,..., 𝜈;𝑥𝑎,..., 𝜈𝑐;𝑥 ′,..., 𝜈′;𝑥 ′𝑎,..., 𝜈′𝑐),

und Wirkungsintegral (action) heisse.116) Dann bleiben die Formeln für Kraft-,
Spannungs- und Momentkomponenten im wesentlichen umgeändert, nur für die
Impulskomponenten treten die Gleichungen hinzu

(27) 𝑋𝑡 = − 𝜕𝜑

𝜕𝑥 ′
, 𝐿𝑡 = − 𝜕𝜑

𝜕𝜆′ 𝑙1 −
𝜕𝜑

𝜕𝜇′ 𝑙2 −
𝜕𝜑

𝜕𝜈′
𝑙3

(
𝑥, 𝑦, 𝑧; 𝐿, 𝑀, 𝑁

𝑙, 𝑚, 𝑛

)
.

E. und F. Cosserat117) haben auch hier die Annahme eines „euklidischen Poten-
tiales“ verfolgt, das sich bei einer jeden Bewegung des samt seinen Dreikanten
erstarrt gedachten Kontinuums nicht ändert; es wird ausser den Grössen (16) noch
die (nichtholonomen) Geschwindigkeitskoordinaten in bezug auf das bewegliche
Koordinatensystem

(28) 𝔵 = 𝛼1𝑥
′ + 𝛽1𝑦

′ + 𝛾1𝑧
′, 𝔭 = 𝛼3𝛼

′
2 + 𝛽3𝛽

′
2 + 𝛾3𝛾

′
2

(
𝔵, 𝔶, 𝔷
𝔭, 𝔮, 𝔯
1, 2, 3

)

116 Vgl. E. und F. Cosserat, Corps déform., p. 4.
117 „Corps déformables“, p. 156 ff.
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effects, in which only 𝑡 enters as parameter, come into consideration. If one summa-
rizes at first the ansatz of No. 7a with the expression of Hamilton’s principle No. 5,
(5), (6), then the theorem being analogous to the formulation of 7d is obtained: For
the actual motion of the continuum𝑉0 within the time interval 𝑡0 � 𝑡 � 𝑡1 the fourfold
integral

(25)
𝑡1∫

𝑡0

𝑑𝑡

∭
(𝑉0)

𝑑𝑉0
{ 1

2 𝜚0 (𝑥 ′2 + 𝑦′2 + 𝑧′2) − 𝜑
}

has an extremum with respect to its values for all neighboring motions being admis-
sible with respect to possibly occurring constraints, which, at the time instants 𝑡0
and 𝑡1, leave the continuum in the same position.

As one does it in the case of finitely many degrees of freedom, one can immediately
extend this ansatz, by giving up the special dependency of the integrand on the [terms
with] time derivatives. To readily include also the case of oriented particles, one only
needs to make the connection to the formulas (10), (12) of No. 5d and to demand
analogously like in the beginning of No. 7a: For every virtual displacement, the
virtual work of the moving continuum in the time interval 𝑡0, 𝑡1 shall be equal to the
variation of a single expression depending only on the respective motion, which shall
specifically be a fourfold integral over a known function of the functions of motion
and the temporal and spatial derivatives thereof:

(26) Φ=

𝑡1∫
𝑡0

𝑑𝑡

∭
(𝑉0)

𝑑𝑉0𝜑(𝑎, 𝑏, 𝑐, 𝑡;𝑥,..., 𝜈;𝑥𝑎,..., 𝜈𝑐;𝑥 ′,..., 𝜈′;𝑥 ′𝑎,..., 𝜈′𝑐),

and [shall] be called action integral.116) In that case, the formulas for the force, stress
and torque components remain basically unchanged, only for the components of
momentum additional equations do appear

(27) 𝑋𝑡 = − 𝜕𝜑

𝜕𝑥 ′
, 𝐿𝑡 = − 𝜕𝜑

𝜕𝜆′ 𝑙1 −
𝜕𝜑

𝜕𝜇′ 𝑙2 −
𝜕𝜑

𝜕𝜈′
𝑙3

(
𝑥, 𝑦, 𝑧; 𝐿, 𝑀, 𝑁

𝑙, 𝑚, 𝑛

)
.

Also here, E. and F. Cosserat117) have followed the assumption of a “euclidean
potential”, which does not change for an arbitrary motion of the continuum together
with its triads being regarded as rigid; Besides the quantities (16) it will also include
the (nonholonomic) velocity coordinates with respect to the movable coordinate
system

(28) 𝔵 = 𝛼1𝑥
′ + 𝛽1𝑦

′ + 𝛾1𝑧
′, 𝔭 = 𝛼3𝛼

′
2 + 𝛽3𝛽

′
2 + 𝛾3𝛾

′
2

(
𝔵, 𝔶, 𝔷
𝔭, 𝔮, 𝔯
1, 2, 3

)
,

116 Cf. E. and F. Cosserat, Corps déform., p. 4.
117 “Corps déformables”, p. 156 ff.
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enthalten, und hiernach lassen sich die in die Bewegungsgleichungen eingehenden
Komponenten analog (18) unmittelbar bestimmen.

Auch hier lässt sich analog zu Nr. 7e die kanonische Transformation durchführen;
transformiert man nur in Hinblick auf die zeitlichen Ableitungen, so entsteht, falls
𝜑 von 𝑡 unabhängig ist, in

𝐸 = 𝜑 −
∑
(𝔵 𝔶 𝔷)

𝔵
𝜕𝜑

𝜕𝔵
−

∑
(𝔭 𝔮 𝔯)

𝔭
𝜕𝜑

𝜕𝔭

die Energiedichte des bewegten Systems.118)
Neben dieser weittragenden Verallgemeinerung ist noch eine speziellere Art des

Eingehens der zeitlichen Ableitungen der Bewegungsfunktionen in die Wirkungs-
komponenten hervorzuheben, wie sie bei Reibungswirkungen u. dgl. auftritt und bei
der ein dem Potentialansatz in gewisser Weise analoger Ansatz auftritt. Beschränken
wir uns darauf, dass die Spannungsdyade einen von den zeitlichen Ableitungen der
9 Deformationsgrössen 𝑥 ′𝑎, . . . , 𝑧

′
𝑐 abhängigen Teil enthält, so handelt es sich um

die Besonderheit, dass die Spannungskomponenten gerade die Ableitungen einer
bekannten Funktion 𝐹 (𝑥 ′𝑎, 𝑥 ′𝑏 , . . . , 𝑧′𝑐) nach 𝑥 ′𝑎, . . . , 𝑧

′
𝑐 sind:

(29) 𝑋𝑎 =
𝜕𝐹

𝜕𝑥 ′𝑎
, 𝑋𝑏 =

𝜕𝐹

𝜕𝑥 ′𝑏
, . . . , 𝑍𝑐 =

𝜕𝐹

𝜕𝑧′𝑐
.

Zu der während der wirklichen Bewegung geleisteten Arbeit liefert diese Span-
nungsdyade den Beitrag (auf die Zeiteinheit berechnet):

(30) −
∑

(𝑥𝑦𝑧;𝑎𝑏𝑐)
𝑋𝑎

𝑑𝑥𝑎
𝑑𝑡
= −

∑
(𝑥𝑦𝑧;𝑎𝑏𝑐)

𝜕𝐹

𝜕𝑥 ′𝑎
· 𝑥 ′𝑎 = −𝐷 (𝑥 ′𝑎, . . . , 𝑧′𝑐).

Ist 𝐷 eine positiv definite Funktion seiner 9 Argumente, so wird während der Be-
wegung durch die Spannungen 𝑋𝑎, . . . stets Arbeit verzehrt, und zwar in einem
durch die Funktion 𝐷 gemessenen Betrage; 𝐷 heisst die zu der Spannung gehörige
Dissipationsfunktion.119) Tatsächlich wird übrigens lediglich der Fall benutzt, dass
𝐹 eine quadratische Funktion der 𝑥 ′𝑎, . . . ist; dann ist auch

(29′) 𝑋𝑎 =
1
2
𝜕𝐷

𝜕𝑥 ′𝑎
, 𝑋𝑏 =

1
2
𝜕𝐷

𝜕𝑥 ′𝑏
. . . , 𝑍𝑐 =

1
2
𝜕𝐷

𝜕𝑧′𝑐
.

In ganz ähnlicher Weise kann man auch die Abhängigkeit von höheren zeitlichen
Ableitungen in Betracht ziehen und die zugehörigen Dissipationsfunktionen bestim-
men; für lineare Abhängigkeit der 𝑋𝑎, . . . von den Ableitungen hat das W. Voigt120)
durchgeführt.

118 M. Born, l. c. p. 94 f.; E. und F. Cosserat, Corps déform., p. 171, 219.
119 Lord Rayleigh (J. W. Strutt), Lond. Math. Soc. Proc. 4 (1873), p. 357.
120 W. Voigt, Kompendium I, p. 459 ff.; Lehrbuch der Krystallphysik, Leipzig 1910, p. 792 ff.
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and according to this, the components entering the equations of motion can be
determined immediately analogously to (18).

Also here a canonical transformation, analogous to No. 7e, can be carried out;
if one transforms merely with respect to the time derivatives, then for 𝜑 being
independent of 𝑡 it appears

𝐸 = 𝜑 −
∑
(𝔵 𝔶 𝔷)

𝔵
𝜕𝜑

𝜕𝔵
−

∑
(𝔭 𝔮 𝔯)

𝔭
𝜕𝜑

𝜕𝔭

the energy density of the moving system.118)
Besides this far-reaching generalization there is to be pointed out additionally a

special kind of emergence of the temporal derivatives of the functions of motion
in the effects, which appears in frictional effects and similar ones and for which
an ansatz appears being in a way analogous to the potential-based approach. If we
restrict us, that the stress dyad contains a part depending on the time derivatives
of the 9 deformation quantities 𝑥 ′𝑎, . . . , 𝑧

′
𝑐 , then it is about the specialty, that the

stress components are just the derivatives of a known function 𝐹 (𝑥 ′𝑎, 𝑥 ′𝑏 , . . . , 𝑧′𝑐)
with respect to 𝑥 ′𝑎, . . . , 𝑧

′
𝑐:

(29) 𝑋𝑎 =
𝜕𝐹

𝜕𝑥 ′𝑎
, 𝑋𝑏 =

𝜕𝐹

𝜕𝑥 ′𝑏
, . . . , 𝑍𝑐 =

𝜕𝐹

𝜕𝑧′𝑐
.

Additional to the work done during the actual motion, the stress dyad contributes
with (computed per unit of time):

(30) −
∑

(𝑥𝑦𝑧;𝑎𝑏𝑐)
𝑋𝑎

𝑑𝑥𝑎
𝑑𝑡
= −

∑
(𝑥𝑦𝑧;𝑎𝑏𝑐)

𝜕𝐹

𝜕𝑥 ′𝑎
· 𝑥 ′𝑎 = −𝐷 (𝑥 ′𝑎, . . . , 𝑧′𝑐).

If 𝐷 is a positive definite function of its 9 arguments, then the stresses 𝑋𝑎, . . . always
use work, and indeed [they use work] in an amount measured by the function 𝐷; 𝐷
is called the dissipation function associated to the stresses.119) By the way, merely
the case of 𝐹 being a quadratic function of 𝑥 ′𝑎, . . . is effectively used; then it follows

(29′) 𝑋𝑎 =
1
2
𝜕𝐷

𝜕𝑥 ′𝑎
, 𝑋𝑏 =

1
2
𝜕𝐷

𝜕𝑥 ′𝑏
. . . , 𝑍𝑐 =

1
2
𝜕𝐷

𝜕𝑧′𝑐
.

In a quite similar way one can also consider the dependency on higher time
derivatives and determine the corresponding dissipation functions; this has been
carried out by W. Voigt120) for linear dependency of 𝑋𝑎, . . . on the derivatives.

118 M. Born, l. c. p. 94 f.; E. and F. Cosserat, Corps déform., p. 171, 219.
119 Lord Rayleigh (J. W. Strutt), Lond. Math. Soc. Proc. 4 (1873), p. 357.
120 W. Voigt, Kompendium I, p. 459 ff.; Lehrbuch der Krystallphysik, Leipzig 1910, p. 792 ff.
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8. Grenzfälle des gewöhnlichen dreidimensionalen Kontinuums. Endlich
bleibt noch zu erörtern, wie man durch gewisse typische Grenzübergänge aus der
Theorie des freien dreidimensionalen Kontinuums die bisher ohne direkten Zusam-
menhang mit ihr in rein formaler Analogie aufgestellten Ansätze für Kontinua an-
derer Art gewinnen kann; dabei genüge es, alles auf den Fall der Existenz eines
Potentials der einfachsten Art (Nr. 7a, Anfang) zu beziehen.

8a. Unendlichdünne Platten und Drähte. In erster Linie handelt es sich um
die Theorie der Medien, deren Ausdehnung nach einer oder zwei Dimensionen
hin als unendlichklein angesehen werden kann (Platten und Drähte). In Wahrheit
liegt hier jedesmal ein dreidimensional ausgedehntes Gebiet 𝔙 vor, das von einem
jene sehr kleinen Ausdehnungen messenden Parameter 𝜀 abhängt; die abstrakten
Grenzfälle unendlichkleiner Ausdehnung werden wir darstellen, wenn wir eine ganze
Schar von Gebieten 𝔙 betrachten, die sich im Limes 𝜀 = 0 dem bei der direkten
Behandlung (s. Nr. 2c) zugrunde gelegten Flächen- oder Linienstück — wir dürfen
noch annehmen: gleichmässig — annähern. Auf Grund dieser Vorstellung kann man
die Theorie der Platten und Drähte an die Theorie der dreidimensionalen Kontinua
anschliessen, und tatsächlich hat bereits S. D. Poisson in einem Falle121) konsequent
diesen Weg eingeschlagen: Man wird die charakteristischen Grössen für das Gebiet
𝔙 als Funktion von 𝜀 darstellen und dann durch ebenjenen Prozess lim 𝜀 = 0 bzw.
durch Beschränkung auf die ersten Glieder der Reihenentwicklung nach 𝜀 zu den
für den Grenzfall geltenden Gesetzen gelangen. Axiomatisch gesprochen würde
dieses Verfahren die Konsequenz eines allgemeinen Stetigkeitspostulates sein, das
man so formulieren kann: In einem Medium, dessen Gestalt oder physikalisches
Verhalten von einem kontinuierlich variablen Parameter abhängt, ändern sich die
Zustandsgleichungen ausnahmslos stetig mit diesem Parameter.

Die Ausführung dieses Verfahrens möge an das Variationsprinzip angeschlossen
werden122). Als typisches Beispiel werde ein Medium

121 Bei der Behandlung des Problems der elastischen Platte; Mém. de l’Acad., Paris 8 (1829),
p. 523 ff.
122 Solche Reihenentwicklungen und Grenzbetrachtungen liegen mehr oder weniger ausgesprochen
allen Theorien der Platten und Drähte seit Poisson zugrunde (s. IV 25, Nr. 13 ff., Tedone-Timpe);
nur wird die Übersicht dadurch erschwert, daß man sich von vornherein auf unendlichkleine De-
formationen in kleinen Teilgebieten beschränkt und erst hinterher unter Heranziehung von Hilfe-
hypothesen zu der endlichen Deformation des Ganzen übergeht. Der Text folgt der Darstellung, die
C. Carathéodory in einer Göttinger Vorlesung im W.-S. 1906/7 für die elastischen Linie vorgetragen
hat.
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8. Limit cases of the ordinary three-dimensional continuum. Eventually it
remains to be discussed how one can gain by certain typical limit processes from
the theory of the free three-dimensional continuum the foundations of other classes
of continua which [have been obtained] so far without direct connection by a purely
formal analogy; thereby it is sufficient to relate everything to the case of an existing
potential of the most simple form (No. 7a, beginning).

8a. Infinitely thin plates and wires. Primarily, it is about the theory of media
whose extension in one or two dimensions can be considered as infinitesimal (plates
and wires). In reality there exists always a three-dimensional extended domain 𝔙,
which depends on a parameter 𝜀 measuring those very small extensions; we will
express the abstract limit cases of infinitesimal extension, when we consider a whole
family of domains 𝔙, which in the limit 𝜀 = 0 — furthermore we may assume:
continuously — approach the surface or line element, which the direct approach
(s. No. 2c) is based on. Due to this perception, the theory of plates and wires
can be connected to the theory of three-dimensional continua, and in fact already
S. D. Poisson has chosen this way consistently for one case121): One is formulating
the characteristic quantities for the domain 𝔙 as a function of 𝜀 and arrives at the
laws holding for the limit case by the just mentioned process lim 𝜀 = 0 or else
by the restriction to the first terms in the series expansion with respect to 𝜀. From
an axiomatic point of view, this approach would be the consequence of a general
continuity postulate, which can be formulated as follows: In a medium, whose shape
or physical property depends on a continuously variable parameter, the equations of
state change without exception continuously with this parameter.

The presentation of this approach shall be based on the variational principle122).
As a typical example a medium

121 For the treatment of the problem of the elastic plate; Mém. de l’Acad., Paris 8 (1829), p. 523 ff.
122 Such series expansions and limit processes are since Poisson the more or less declared basis
for all theories of plates and wires (s. IV 25, No. 13 ff., Tedone-Timpe); but the overall view
is complicated by restricting oneself from the beginning to infinitesimal deformations in small
subdomains and only afterwards one changes over to the finite deformation of the whole under
citation of auxiliary hypotheses. The text follows the exposition, which C. Carathéodory presented
for the elastic line in a “Göttinger Vorlesung” in the winter term 1906/7.
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betrachtet, das im Anfangszustande das über einem Flächenstück 𝑆0 der 𝑎-𝑏-Ebene
gelegene Gebiet −𝜀 � 𝑐 � +𝜀 erfüllt; sein Potential sei:

(1) Φ =

∬
(𝑆0)

𝑑𝑎𝑑𝑏

+𝜀∫
−𝜀

𝑑𝑐𝜑(𝑎, 𝑏, 𝑐; 𝑥, . . . ; 𝑥𝑎, . . . ).

Die Gleichgewichtsfunktionen 𝑥 = 𝑥(𝑎, 𝑏, 𝑐), . . . , die unter gewissen Randbedin-
gungen Φ zum Minimum machen, werden nun von 𝜀 abhängen; sie mögen in eine
Potenzreihe in 𝜀 und 𝑐 entwickelbar sein:

(2) 𝑥 = 𝑥 (0) (𝑎, 𝑏) + 𝑐𝑥 (0)𝑐 (𝑎, 𝑏) + 𝜀𝑥 (1) (𝑎, 𝑏) + 𝜀𝑐𝑥 (1)𝑐 (𝑎, 𝑏) + · · · (𝑥, 𝑦, 𝑧).

Führt man diese Ausdrücke in 𝜑 ein und entwickelt danach 𝜑 selbst nach Potenzen
von 𝜀 und 𝑐, so ergiebt sich für Φ eine Reihe

(3) Φ = 𝜀

∬
(𝑆0)

𝜑0𝑑𝑎𝑑𝑏 + 𝜀2
∬
(𝑆0)

𝜑1𝑑𝑎𝑑𝑏 + · · ·

wo
𝜑0 = 2𝜑

(
𝑎, 𝑏, 0; 𝑥 (0) , . . . ;

𝜕𝑥 (0)

𝜕𝑎
,
𝜕𝑥 (0)

𝜕𝑏
, 𝑥 (0)𝑐 , . . .

)
lediglich von den Funktionen 𝑥 (0) , . . . , ihren ersten partiellen Ableitungen nach
𝑎, 𝑏 und den Funktionen 𝑥 (0)𝑐 , . . . abhängt, während in 𝜑1, . . . immer mehr der als
Entwicklungskoeffizienten der Reihen (2) auftretenden Funktionen von 𝑎, 𝑏 eingehen
können. Die eigentliche Aufgabe ist nun, die durch die Grenzfunktionen

lim
𝜀=0

𝑥(𝑎, 𝑏, 0) = 𝑥 (0) (𝑎, 𝑏) (𝑥, 𝑦, 𝑧)

bestimmte Gleichgewichtslage der „unendlichdünnen“ Platte (bzw. ihrer Mittelebene
𝑐 = 0) zu ermitteln. Daneben kann aber auch die Bestimmung weiterer Glieder der
Reihen (2) wichtig werden, z. B. der Funktionen 𝑥 (0)𝑐 (𝑎, 𝑏), die die neue Lage der
ursprünglichen Normalen der Platte d. h. die Verbiegung ihres Materials gegen die
geometrische Gestalt der Mittelebene bestimmen. Diese Funktionen gehören tat-
sächlich zu den Bestimmungsstücken der Deformation, eben weil es sich in Wahrheit
nicht um ein streng ein- bzw. zweidimensionales Medium handelt; bei der direkten
Theorie werden sie durch das Cosseratsche Dreikant geliefert.

Da nun Φ für jedes 𝜀 unter den angenommenen Randbedingungen ein Minimum
werden soll, so muss nach (3) in erster Linie auch

∬
𝑆0

𝜑0𝑑𝑎𝑑𝑏 ein Minimum werden;
dies ist aber gerade eine Bedingung für jene Funktionen 𝑥 (0) (𝑎, 𝑏), . . . , 𝑥 (0)𝑐 (𝑎, 𝑏),
. . . , wobei zum Vergleich alle die Funktionen zuzulassen sind, welche die aus den
gegebenen Randbedingungen mittels (2) für 𝑥 (0) , . . . , 𝑥 (0)𝑐 folgenden Randbedingun-
gen erfüllen.



3 Hellinger’s encyclopedia article 219

is considered, which in the initial state occupies the domain −𝜀 � 𝑐 � +𝜀 lying over
the surface element 𝑆0 of the 𝑎-𝑏-plane; let its potential be:

(1) Φ =

∬
(𝑆0)

𝑑𝑎𝑑𝑏

+𝜀∫
−𝜀

𝑑𝑐𝜑(𝑎, 𝑏, 𝑐; 𝑥, . . . ; 𝑥𝑎, . . . ).

The functions of equilibrium 𝑥 = 𝑥(𝑎, 𝑏, 𝑐), . . . , which under certain boundary
conditions make Φ to a minimum, will depend now on 𝜀; let them be expandable in
a series expansion of 𝜀 and 𝑐:

(2) 𝑥 = 𝑥 (0) (𝑎, 𝑏) + 𝑐𝑥 (0)𝑐 (𝑎, 𝑏) + 𝜀𝑥 (1) (𝑎, 𝑏) + 𝜀𝑐𝑥 (1)𝑐 (𝑎, 𝑏) + · · · (𝑥, 𝑦, 𝑧).

If one introduces these expressions in 𝜑 and subsequently expands 𝜑 itself with
respect to the powers of 𝜀 and 𝑐, then the [following] series for Φ is obtained

(3) Φ = 𝜀

∬
(𝑆0)

𝜑0𝑑𝑎𝑑𝑏 + 𝜀2
∬
(𝑆0)

𝜑1𝑑𝑎𝑑𝑏 + · · ·

where
𝜑0 = 2𝜑

(
𝑎, 𝑏, 0; 𝑥 (0) , . . . ;

𝜕𝑥 (0)

𝜕𝑎
,
𝜕𝑥 (0)

𝜕𝑏
, 𝑥 (0)𝑐 , . . .

)
depends merely on the functions 𝑥 (0) , . . . , their first partial derivatives with respect
to 𝑎, 𝑏 and the functions 𝑥 (0)𝑐 , . . . , while in 𝜑1, . . . more and more coefficients can
enter, [which] appear in the series expansion (2) as functions of 𝑎, 𝑏. The actual
problem is now to calculate the equilibrium position of the “infinitely thin” plate (or
rather its midsurface 𝑐 = 0) determined by the limit function

lim
𝜀=0

𝑥(𝑎, 𝑏, 0) = 𝑥 (0) (𝑎, 𝑏) (𝑥, 𝑦, 𝑧).

Besides, also the determination of further terms in the series (2) can be important,
for instance the functions 𝑥 (0)𝑐 (𝑎, 𝑏), which determine the new position of the initial
normals of the plate, i. e. the deflection of the material against the geometric shape of
the midsurface. These functions belong in fact to the characteristic quantities of the
deformation, just because in reality it is not about a strict one- or two-dimensional
medium; in the direct theory they are given by the Cosserat triad.

Now, since Φ with respect to the considered boundary conditions shall become a
minimum for every 𝜀, according to (3) primarily

∬
𝑆0

𝜑0𝑑𝑎𝑑𝑏 must become a mini-
mum; but this is directly a condition for those functions 𝑥 (0) (𝑎, 𝑏), . . . , 𝑥 (0)𝑐 (𝑎, 𝑏), . . . ,
where for comparison all the functions are allowed, which satisfy the boundary con-
ditions for 𝑥 (0) , . . . , 𝑥 (0)𝑐 induced by the given boundary conditions together with
(2).
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Es ist nun möglich, dass hierdurch die Funktionen 𝑥 (0) , . . . noch nicht völlig bes-
timmt werden, sondern dass sich nur gewisse Relationen zwischen ihnen ergeben.
Beschränkt man sich alsdann auf Funktionen, die diesen Relationen genügen, so
folgt zweitens, dass 𝑥 (0) (𝑎, 𝑏), . . . und die weiterhin noch in 𝜑1 eingehenden Funk-
tionen auch das zweite Glied der Reihe (3),

∬
(𝑆0) 𝜑1𝑑𝑎𝑑𝑏, zum Minimum machen,

wobei sich die Randbedingungen analog wie vorhin ergeben; lassen jene Relatio-
nen etwa die Elimination von 𝑥 (0)𝑐 , . . . zu, so kann dies neue Variationsprinzip
höhere Ableitungen der Funktionen 𝑥 (0) , . . . enthalten. Fährt man ev. mit dieser
Schlussweise fort, so bekommt man für die Funktionen 𝑥 (0) , . . . eine Reihe zwei-
dimensionaler Variationsprobleme, die höhere Ableitungen enthalten und zu denen
Nebenbedingungen hinzutreten können.

Bei der Durchführung dieses Ansatzes entsteht jedoch eine wesentliche Schwierig-
keit: es wird hierbei für die Lösung des dreidimensionalen Problems Entwickel-
barkeit in eine Reihe der Form (2) vorausgesetzt, d. h. es wird ein bestimmtes reg-
uläres Verhalten dieser Lösungen als Funktionen eines in der Randgleichung des
Kontinuums enthaltenen Parameters 𝜀 gefordert. Nun braucht der Wert 𝜀 = 0 für
Probleme dieser Art nicht nur keine reguläre Stelle zu sein, sondern er könnte sogar
eine wesentlich singuläre Stelle sein123); die Möglichkeit einer Entwicklung (2)
bleibt also zunächst durchaus problematisch. Solange daher nicht die Abhängigkeit
der Lösungen von Parametern in den Randbedingungen eingehend erforscht ist,
ist auf diesem Wege eine völlig befriedigende, über die Aufdeckung des formalen
Zusammenhanges mit den Eigenschaften der dreidimensionalen Medien hinausge-
hende Theorie der Platten und Drähte nicht zu erzielen, und die direkten Ansätze, wie
sie besonders E. und F. Cosserat ausgebildet haben (s. Nr. 3e, 7c) bleiben vorläufig
das einzige Auskunftsmittel.

8b. Medien mit einer kinematischen Nebenbedingung. Prinzipiell gleichwer-
tige Betrachtungen kann man anstellen, um aus der Theorie des frei deformierbaren
Kontinuums die Gesetze solcher Medien abzuleiten, die Nebenbedingungen unter-
worfen sind, und für die der direkte Ansatz in Nr. 4c gegeben wurde. Es handele
sich, um wieder nur einen typischen einfachen Fall zu erörtern, um ein Medium𝔐,
zwischen dessen Deformationsgrössen die Nebenbedingung

(4) 𝜔(𝑥, . . . ; 𝑥𝑎, 𝑥𝑏 , . . . ) = 0

besteht, die übrigens ev. auch 𝑎, . . . explizit enthalten kann. In

123 E. und F. Cosserat, Paris C. R. 145 (1907), p. 1139; 146 (1908), p. 169.
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Now it is possible, that the functions 𝑥 (0) , . . . are hereby not yet completely
determined, but that only certain relations between them emerge. If thereupon one
restricts oneself to functions, which satisfy these relations, then it follows secondly,
that 𝑥 (0) (𝑎, 𝑏), . . . and the functions still entering 𝜑1 make the second term in
the series

∬
(𝑆0) 𝜑1𝑑𝑎𝑑𝑏 to a minimum, where the boundary conditions emerge

analogously as before; if those relations allow for instance for the elimination of
𝑥 (0)𝑐 , . . . , then this new variational principle can contain higher derivatives of the
functions 𝑥 (0) , . . . . If one possibly continues with this procedure, then one obtains
for the functions 𝑥 (0) , . . . a series of two-dimensional variational problems, which
contain higher derivatives and to which constraints can be added.

Carrying out this ansatz, however, a crucial difficulty arises: for the solution of
the three-dimensional problem, hereby the expansibility into a series of the form
(2) is assumed, i. e. a certain regular behavior of these solutions as functions of a
parameter 𝜀 included in the boundary equation of the continuum is demanded. For
problems of this kind, the value 𝜀 = 0 now does not only need to be not a regular
point, but it could even be an essentially singular point123); the possibility of an
expansion (2) remains therefore a priori quite questionable. Hence, as long as the
dependency of the solutions on the parameters in the boundary conditions is not
explored in detail, in this way, a completely satisfying theory of plates and wires,
which goes beyond the disclosure of the formal connection with the properties of
the three-dimensional media, is not obtained, and the direct approaches, which have
especially been formulated by E. and F. Cosserat (see No. 3e, 7c) remain the only
reference for now.

8b. Media with one kinematic constraint. In principle, one can make equivalent
considerations to derive from the theory of the freely deformable continuum the laws
of such media which are subjected to constraints, and for which the direct ansatz
in No. 4c has been given. To discuss again only one typical easy case, it is about a
medium𝔐, for which there exists the constraint

(4) 𝜔(𝑥, . . . ; 𝑥𝑎, 𝑥𝑏 , . . . ) = 0

between its deformation quantities[;] by the way [the constraint] can also contain
𝑎, . . . explicitly. Now in

123 E. and F. Cosserat, Paris C. R. 145 (1907), p. 1139; 146 (1908), p. 169.
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Wahrheit wird nun ein solches Medium in der Natur niemals streng realisiert sein,
vielmehr liegt hier wiederum nur eine Abstraktion aus der Betrachtung solcher
Medien𝔐𝜀 , vor, die die Relation (4) nahezu erfüllen.𝔐𝜀 mag durch ein Potential
von der Gestalt Nr. 7, (1) mit der Energiedichte 𝜑𝜀 charakterisiert sein, und es soll
von einem Parameter 𝜀 derart abhängen, dass für jede Gleichgewichtslage durchweg

(5) |𝜔(𝑥, . . . ; 𝑥𝑎, . . . , 𝑧𝑐) | < 𝜀

bleibt. Solche Medien𝔐𝜀 betrachten wir nun für eine Schar gegen 0 konvergierender
Werte des Parameters 𝜀; nach dem oben ausgesprochenen allgemeinen Stetigkeit-
spostulat (S. 658) werden dann in der Grenze 𝜀 = 0 die Gesetze des Verhaltens von
𝔐 folgen.124)

𝜑𝜀 ist folgendermassen charakterisiert: es hänge ausser von den Deformations-
funktionen und ihren Ableitungen auch noch von dem Ausdruck 𝜔 explizit ab:

(6a) 𝜑𝜀 = 𝜑𝜀 (𝑥, . . . ; 𝑥𝑎, . . . ;𝜔(𝑥, . . . ; 𝑥𝑎, . . . )).

Betrachtet man 𝜑𝜀 speziell als Funktion des letzten Argumentes 𝜔, so soll 𝜕𝜑𝜀

𝜕𝜔
mit wachsendem 𝜔 stets wachsen, für 𝜔 = 0 identisch in allen andern Argumenten
verschwinden und in jedem 0 nicht enthaltenden Intervall für lim 𝜀 = 0 gleichmässig
den Grenzwert ±∞ (je nachdem 𝜔 ≷ 0) haben; ferner soll für den Wert 𝜔 = 0
𝜑𝜀 gleichmässig in dem in Betracht kommenden Variabilitätsbereich einen Limes
haben:

(6b) lim
𝜀=0

𝜑𝜀 (𝑥, . . . ; 𝑥𝑎, . . . ; 0) = 𝜑0 (𝑥, . . . ; 𝑥𝑎, . . . ).

Ein Beispiel einer derartigen Funktion wäre 𝜑𝜀 = 𝜑0 + 𝜔2

2𝜀 .
Die Gleichgewichtsdeformation von 𝔐𝜀 , wird nun, unter den betr. Randbedin-

gungen, durch das Variationsprinzip

(7) 𝛿

∭
(𝑉0)

𝜑𝜀 (𝑥, . . . ; 𝑥𝑎, . . . ;𝜔(𝑥, . . . ; 𝑥𝑎, . . . ))𝑑𝑎 𝑑𝑏 𝑑𝑐 = 0

bestimmt. Zur Vorbereitung des Grenzüberganges dient eine der kano-

124 Ein solcher Grenzübergang hat offenbar Lagrange vorgeschwebt, als er in seiner analytischen
Mechanik den zu 𝜔 = 0 gehörigen Multiplikator als „Kraft“ bezeichnet, die die Funktion 𝜔 zu
ändern bestrebt ist; man vergleiche insbesondere die Sect. II, Nr. 9, Sect. IV, Nr. 6, 18, Sect. V, Nr. 53,
Sect. VII, Nr. 21 des ersten Teiles, sowie die Noten von J. Bertrand hierzu — näher ausgeführt
ist der Übergang indessen nicht. Die Darstellung des Textes ist nach Hinweisen ausgestaltet, die
D. Hilbert in einer Göttinger Vorlesung im W.-S. 1906/7 für die Behandlung der inkompressiblen
Flüssigkeiten gegeben hat.
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reality such a medium will never be realized strictly in nature, moreover this here
is again only an abstraction from considerations of such media 𝔐𝜀 , which almost
satisfy the relation (4).𝔐𝜀 may be characterized by a potential of the form No. 7, (1)
with the energy density 𝜑𝜀 , and it shall depend on a parameter 𝜀, such that without
exception for every equilibrium position

(5) |𝜔(𝑥, . . . ; 𝑥𝑎, . . . , 𝑧𝑐) | < 𝜀

holds. We consider now such media 𝔐𝜀 for a family of values of the parameter 𝜀
converging to 0; according to the above declared general continuity postulate (p.
658), in the limit 𝜀 = 0 the laws of the behavior of𝔐 will follow.124)

𝜑𝜀 is characterized as follows: besides the deformation functions and the deriva-
tives thereof it depends also on the expression 𝜔 explicitly:

(6a) 𝜑𝜀 = 𝜑𝜀 (𝑥, . . . ; 𝑥𝑎, . . . ;𝜔(𝑥, . . . ; 𝑥𝑎, . . . )).

If one considers 𝜑𝜀 especially as a function of the last argument 𝜔, then with
increasing 𝜔, 𝜕𝜑𝜀

𝜕𝜔 shall increase continuously, for 𝜔 = 0 [it shall] vanish identically
for all other arguments and for every interval [which] does not contain 0, for lim 𝜀 = 0
[it shall] have uniformly the limit ±∞ (depending on whether 𝜔 ≷ 0); furthermore,
for the value 𝜔 = 0, [the function] 𝜑𝜀 shall have uniformly a limit within the domain
of variability coming into consideration.

(6b) lim
𝜀=0

𝜑𝜀 (𝑥, . . . ; 𝑥𝑎, . . . ; 0) = 𝜑0 (𝑥, . . . ; 𝑥𝑎, . . . ).

An example of such a function would be 𝜑𝜀 = 𝜑0 + 𝜔2

2𝜀 .
The equilibrium deformation of 𝔐𝜀 , considering the corresponding boundary

conditions, is now determined by the variational principle

(7) 𝛿

∭
(𝑉0)

𝜑𝜀 (𝑥, . . . ; 𝑥𝑎, . . . ;𝜔(𝑥, . . . ; 𝑥𝑎, . . . ))𝑑𝑎 𝑑𝑏 𝑑𝑐 = 0

For the preparation of the limit process

124 Apparently, Lagrange had such a limit process in mind, as he denoted in his analytical mechanics
the multiplier associated to 𝜔 = 0 as “force”, which tries to change the function 𝜔; one shall
compare in particular Sect. II, No. 9, Sect. IV, No. 6, 18, Sect. V, No. 53, Sect. VII, No. 21 of the
first part, as well as the notes of J. Bertrand hereto — meanwhile the transition is not carried out
in more detail. The presentation of the text is formulated following suggestions, which D. Hilbert
has given in a “Göttinger Vorlesung” in the winter term 1906/7 for the treatment of incompressible
fluids.
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nischen Transformation der Mechanik analoge Transformation112): aus

(8a)
𝜕𝜑𝜀 (𝑥, . . . ; 𝑥𝑎, . . . ;𝜔)

𝜕𝜔
= 𝜆

wird 𝜔 als Funktion von 𝜆 sowie 𝑥, . . . ; 𝑥𝑎, . . . ausgedrückt:

(8b) 𝜔 = 𝜔𝜀 (𝑥, . . . ; 𝑥𝑎, . . . ;𝜆)

und damit der Ausdruck

(9) 𝜑𝜀 (𝑥, . . . ; 𝑥𝑎, . . . ;𝜔) − 𝜔𝜀 · 𝜆 = 𝐻𝜀 (𝑥, . . . ; 𝑥𝑎, . . . ;𝜆)

als Funktion von 𝜆, 𝑥, . . . , 𝑥𝑎, . . . gebildet. Dann folgt aus bekannten Methoden der
Variationsrechnung112), dass (7) dem Variationsprinzip

(10) 𝛿

∭
(𝑉0)

{𝐻𝜀 (𝑥, . . . ; 𝑥𝑎, . . . ;𝜆) + 𝜆 · 𝜔(𝑥, . . . ; 𝑥𝑎, . . . )}𝑑𝑎 𝑑𝑏 𝑑𝑐 = 0

für die vier unbekannten Funktion 𝑥, 𝑦, 𝑧, 𝜆 äquivalent ist.
Hierin kann nun der Grenzübergang leicht vollzogen werden; nach den Annahmen

über 𝜑𝜀 konvergiert 𝜔𝜀 (𝑥, . . . ; 𝑥𝑎, . . . ;𝜆) mit abnehmendem 𝜀 gleichmässig gegen
0, und da aus (9)

𝜕𝐻𝜀 (𝑥, . . . ; 𝑥𝑎, . . . ;𝜆)
𝜕𝜆

= −𝜔

folgt, ergiebt sich unter Berücksichtigung von (6b) leicht die gleichmässige Existenz
des Limes
(11) lim

𝜀=0
𝐻𝜀 (𝑥, . . . ; 𝑥𝑎, . . . ;𝜆) = 𝜑0 (𝑥, . . . ; 𝑥𝑎, . . . ),

der unabhängig von 𝜆 ist. Also erhält man schliesslich als Grenzfall von (10) das
Variationsprinzip

(12) 𝛿

∭
(𝑉0)

{𝜑0 (𝑥, . . . ; 𝑥𝑎, . . . ) + 𝜆 · 𝜔(𝑥, . . . ; 𝑥𝑎, . . . )}𝑑𝑎 𝑑𝑏 𝑑𝑐 = 0;

hierin aber kann man endlich 𝜆 als Lagrangeschen Faktor ansehen und hat damit
tatsächlich genau den Ansatz von Nr. 4c für ein Medium mit der Energiedichte 𝜑0
und der Nebenbedingung (4) gewonnen. Obendrein kann man dieser Überlegung
noch die Bedeutung des Lagrangeschen Faktors entnehmen: nach (8a) steht 𝜆 zu der
Verbindung 𝜔 der Deformationsgrössen in der gleichen Beziehung, wie die Span-
nungskomponente 𝑋𝑎 zu der Deformationsgrösse 𝑥𝑎 (s. Nr. 7, (4)); es ist also gewis-
sermassen die dieser Verbindung 𝜔 zugehörige Spannungskomponente, genauer: der
Faktor von 𝛿𝜔 im Ausdruck der virtuellen Arbeit bei einem „nahezu“ der Bedingung
𝜔 = 0 genügenden Medium.124) So sind die aus dem Stattfinden von Nebenbedin-
gungen entspringenden Reaktionswirkungen als Grenzfälle den bisher durchgehends
betrachteten eingeprägten Wirkungen eingeordnet.125)

125 Vgl. oben Nr. 7e, S. 654 sowie Anm.111).
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a transformation is used [which is] analogous to the canonical transformation of
mechanics.112): Using

(8a)
𝜕𝜑𝜀 (𝑥, . . . ; 𝑥𝑎, . . . ;𝜔)

𝜕𝜔
= 𝜆

𝜔 is expressed as a function of 𝜆 as well as of 𝑥, . . . ; 𝑥𝑎, . . . :

(8b) 𝜔 = 𝜔𝜀 (𝑥, . . . ; 𝑥𝑎, . . . ;𝜆)

and thereby the expression

(9) 𝜑𝜀 (𝑥, . . . ; 𝑥𝑎, . . . ;𝜔) − 𝜔𝜀 · 𝜆 = 𝐻𝜀 (𝑥, . . . ; 𝑥𝑎, . . . ;𝜆)

as a function of 𝜆, 𝑥, . . . , 𝑥𝑎, . . . is set up. Then from the well-known methods of the
calculus of variations112) it follows that (7) is equivalent to the variational principle

(10) 𝛿

∭
(𝑉0)

{𝐻𝜀 (𝑥, . . . ; 𝑥𝑎, . . . ;𝜆) + 𝜆 · 𝜔(𝑥, . . . ; 𝑥𝑎, . . . )}𝑑𝑎 𝑑𝑏 𝑑𝑐 = 0

for the four unknown functions 𝑥, 𝑦, 𝑧, 𝜆.
Herein the limit process can easily be carried out; according to the assumptions

on 𝜑𝜀 , 𝜔𝜀 (𝑥, . . . ; 𝑥𝑎, . . . ;𝜆) converges with decreasing 𝜀 uniformly to 0, and since
from (9)

𝜕𝐻𝜀 (𝑥, . . . ; 𝑥𝑎, . . . ;𝜆)
𝜕𝜆

= −𝜔

follows, under consideration of (6b), the uniform existence of the limit

(11) lim
𝜀=0

𝐻𝜀 (𝑥, . . . ; 𝑥𝑎, . . . ;𝜆) = 𝜑0 (𝑥, . . . ; 𝑥𝑎, . . . ),

is easily obtained, which is independent of 𝜆. Hence, one obtains finally as limit case
of (10) the variational principle

(12) 𝛿

∭
(𝑉0)

{𝜑0 (𝑥, . . . ; 𝑥𝑎, . . . ) + 𝜆 · 𝜔(𝑥, . . . ; 𝑥𝑎, . . . )}𝑑𝑎 𝑑𝑏 𝑑𝑐 = 0;

herein one can consider 𝜆 finally as Lagrange multiplier and has therewith in fact
provided exactly the ansatz of No. 4c for a medium with energy density 𝜑0 and
constraint (4). Moreover one can gather from this consideration the relevance of
the Lagrange multiplier: according to (8a), 𝜆 is related to the connection of the
deformation quantities 𝜔 in the same sense as the stress components 𝑋𝑎 [are related]
to the deformation quantities 𝑥𝑎 (see No. 7, (4)); it is in a way the stress component
associated to this connection 𝜔, more precisely: the factor of 𝛿𝜔 in the expression
of the virtual work for a medium “almost” satisfying the constraint 𝜔 = 0.124) Thus,
the reactive effects originating from the occurrence of constraints are to be classified
as limit cases of the impressed effects thoroughly considered so far.125)

125 Cf. above No. 7e, p. 654 as well as remark111).
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B. Individualisierung für einzelne Gebiete.

9. Eigentliche Elastizitätstheorie. Es handelt sich nun darum aufzuweisen, an
welchen Stellen der in Teil A entwickelten allgemeinen Schemata sich die für die Be-
handlung der einzelnen Disziplinen der Mechanik der Kontinua bisher hauptsächlich
verwendeten Ansätze einordnen; beginnen wir mit der Elastizitätslehre im engeren
Sinne, die ja dieser ganzen Entwicklung den Weg gewiesen hat.

Ein vollkommen elastisches Medium ist dadurch charakterisiert, dass der Span-
nungszustand in ihm jeweils lediglich abhängt von denjenigen Verbindungen der
ersten Ableitungen der Deformationsfunktionen, die die reine Formänderung der
kleinsten Teile gegenüber der Ausgangslage bestimmen:

(1) 𝑒𝑎 =
1
2 (𝑥2

𝑎 + 𝑦2
𝑎 + 𝑧2

𝑎 − 1), 𝑔𝑏𝑐 = 𝑥𝑏𝑥𝑐 + 𝑦𝑏𝑦𝑐 + 𝑧𝑏𝑧𝑐 (𝑎, 𝑏, 𝑐);

diese Grössen bleiben bei rechtwinkligen Transformationen des 𝑥-𝑦-𝑧-Koordinaten-
systems, auf das die deformierte Lage bezogen ist, einzeln ungeändert, während sie
sich bei Transformationen der Anfangskoordinaten 𝑎, 𝑏, 𝑐 wie Komponenten einer
symmetrischen Dyade verhalten126). Bezieht man sich, wie man es in der Regel tut,
auf den Fall der Existenz eines Potentiales Φ der einfachsten Form von Nr. 7a, so
leiten sich also die inneren Spannungen aus einer Energiedichtenfunktion 𝜑 her, die
lediglich von den 6 Deformationskomponenten (1) abhängt127):

(2) 𝜑 = 𝜑(𝑒𝑎, 𝑒𝑏 , 𝑒𝑐 , 𝑔𝑏𝑐 , 𝑔𝑐𝑎, 𝑔𝑎𝑏);

dabei ist es irrelevant, ob man die Dichte pro Volumelement des deformierten oder
undeformierten Zustandes rechnet, da die event. als Faktor hinzutretende Volumdi-
latationΔ selbst lediglich von den Grös-sen (1) abhängt. Aus den Formeln (4), (5) von
Nr. 7 entnimmt man nun unmittelbar die verschiedenen Ausdrücke der Spannungs-

126 Vgl. IV 14, Nr. 17, 18, M. Abraham.
127 G. Green hat diesen Ansatz zuerst für unendlichkleine Deformationen entwickelt (Trans. Cambr.
Phil. Soc. 1838 = Math. Pap., London 1871, p. 248 ff.); später (Trans. Cambr. Phil. Soc. 1839 =
Math. Pap., p. 295 ff.) hat er ihn auch für endliche Deformationen ausgesprochen, ohne ihn indessen
bis zur Aufstellung der Gleichgewichtsbedingungen durchzuführen. Das hat zuerst G. Kirchhoff
(Sitzungsber. Wien, math.-phys. Kl. 9 (1852), p. 762) getan, allerdings nur im Hinblick auf isotrope
Körper, und später allgemein W. Thomson (Phil. Trans. Royal Soc. 153 (1863) = Math. Phys. Pap.,
London 1910, vol. III, p. 386 = Appendix C. zu Vol. I, 2 des Treat. on natur. philos. von Thomson
und Tait).
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B. Individualization for particular fields.

9. Effective theory of elasticity. Now, it is about to exhibit, at which places in
the general schemes developed in part A, the fundamentals for the treatment of the
particular fields of the mechanics of continua, mainly used so far, are integrated; let
us start with the theory of elasticity in the narrower sense, which has pointed this
whole development in the right direction.

A purely elastic medium is characterized in this way, that the stress state inside [the
medium] depends in each case merely on those expressions of the first derivatives of
the deformation functions, which determine the pure shape change of the smallest
parts with respect to the initial position:

(1) 𝑒𝑎 =
1
2 (𝑥2

𝑎 + 𝑦2
𝑎 + 𝑧2

𝑎 − 1), 𝑔𝑏𝑐 = 𝑥𝑏𝑥𝑐 + 𝑦𝑏𝑦𝑐 + 𝑧𝑏𝑧𝑐 (𝑎, 𝑏, 𝑐);

each of these quantities remain unchanged for orthogonal transformations of the 𝑥-
𝑦-𝑧-coordinate system being related to the deformed position, while they behave like
the components of a symmetric dyad for transformations of the initial coordinates 𝑎,
𝑏, 𝑐126). If one refers, as one usually does, to the case of the existence of a potentialΦ
of the most simple form of No. 7a, then the internal stresses are derived thus from the
energy density function 𝜑, which depends merely on the 6 deformation components
(1)127):

(2) 𝜑 = 𝜑(𝑒𝑎, 𝑒𝑏 , 𝑒𝑐 , 𝑔𝑏𝑐 , 𝑔𝑐𝑎, 𝑔𝑎𝑏);

thereby it is irrelevant, if one computes the density with respect to the volume element
of the deformed or undeformed state, since the volume dilatation Δ, appearing
possibly as a factor, depends itself merely on the quantities (1). From the formulas
(4), (5) of No. 7 one extracts immediately the various expressions of the stress

126 Cf. IV 14, No. 17, 18, M. Abraham.
127 G. Green has first developed this ansatz for infinitesimal deformations (Trans. Cambr. Phil. Soc.
1838 = Math. Pap., London 1871, p. 248 ff.); later (Trans. Cambr. Phil. Soc. 1839 = Math. Pap., p.
295 ff.) he also stated [this ansatz] for finite deformations, but without carrying out the derivation
of the equilibrium conditions. This has been done first by G. Kirchhoff (Sitzungsber. Wien, math.-
phys. Kl. 9 (1852), p. 762), however, only with respect to isotropic bodies, and later in general by
W. Thomson (Phil. Trans. Royal Soc. 153 (1863) = Math. Phys. Pap., London 1910, vol. III, p. 386
= Appendix C. to Vol. I, 2 of the Treat. on natur. philos. of Thomson and Tait).
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komponenten, insbesondere wird128)

(3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑋𝑥 =

∑
(𝑎𝑏𝑐)

𝜕𝜑
𝜕𝑒𝑎

𝑥2
𝑎 + 2

∑
(𝑎𝑏𝑐)

𝜕𝜑
𝜕𝑔𝑎𝑏

𝑥𝑎𝑥𝑏 + 𝜑

𝑋𝑦 =
∑

(𝑎𝑏𝑐)
𝜕𝜑
𝜕𝑒𝑎

𝑥𝑎𝑦𝑎 + 2
∑

(𝑎𝑏𝑐)
𝜕𝜑
𝜕𝑔𝑎𝑏

(𝑥𝑎𝑦𝑏 + 𝑥𝑏𝑦𝑎), .....,

und hieraus oder aus der Bemerkung, dass bei jeder starren Rotation des Mediums
sich die 𝑒𝑎, . . . nicht ändern, also auch 𝛿Φ und damit die virtuelle Arbeit der
Spannungsdyade verschwindet, folgen die wichtigen Relationen

(3′) 𝑋𝑦 = 𝑌𝑥 , 𝑌𝑧 = 𝑍𝑦 , 𝑍𝑥 = 𝑋𝑧 .

Es ist nun die Aufgabe der speziellen Elastizitätstheorie zu untersuchen, welche
Form die Funktion (2) von sechs Veränderlichen für die einzelnen Medien besitzt; in-
dessen ist dieser allgemeine Fall endlicher Deformationen zugunsten der unendlichk-
leinen Deformationen in der Elastizitätslehre sehr zurückgetreten129). Speziell her-
vorgehoben sei hier nur der Fall des isotropen elastischen Mediums; wegen der Gle-
ichwertigkeit der Richtungen im Medium können dann die 6 Formänderungskom-
ponenten nur durch Vermittlung ihrer 3 Orthogonalinvarianten gegenüber Transfor-
mationen des Koordinatensystems 𝑎, 𝑏, 𝑐 in (2) eingehen, d. h. es wird

(4) 𝜑 = 𝜑(𝐴, 𝐵, 𝐶)

wo 𝐴, 𝐵, 𝐶 die Koeffizienten der Fundamentalgleichung

(4a)

�������
𝑒𝑎 − Λ, 1

2𝑔𝑎𝑏 ,
1
2𝑔𝑎𝑐

1
2𝑔𝑎𝑏 , 𝑒𝑏 − Λ, 1

2𝑔𝑏𝑐 ,
1
2𝑔𝑎𝑐 ,

1
2𝑔𝑏𝑐 , 𝑒𝑐 − Λ,

������� ≡ −Λ3 + 𝐴Λ2 − 𝐵Λ + 𝐶

sind, an deren Stellen natürlich auch die Wurzeln dieser Gleichung (Axenlängen des
Deformationsellipsoides) treten können130). Diese Formeln umfassen ohne weiteres
auch den Fall, dass das Medium im

128 J. Boussinesq, Mém. prés. par div. sav., Paris 20 (1872), p. 594; die in 127) zitierten Autoren
haben nur die Ausdrücke für die auf die Anfangsparameter bezogenen Spannungskomponenten
𝑋𝑎 , . . . . Vgl. auch Chap. III der zusammenfassenden Darstellung von E. u. F. Cosserat, Ann. de
Toul. 10 (1896), p. J. 59.
129 𝜑 als homogene quadratische Funktion der 6 Argumente hat W. Thomson, a. a. O.127), p. 390,
andere für bestimmte Arten der Wellenfortpflanzung charakteristische Gestalten J. Hamadard,
Leçons sur la propagation des ondes (Paris 1903), p. 257 ff. betrachtet.
130 Konkrete Ansätze für den isotropen Körper finden sich bei G. Kirchhoff, a. a. O.127), p. 773 und
M. Brillouin, C. R. Paris 112 (1891), p. 1500.
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components, in particular [it] is128)

(3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑋𝑥 =

∑
(𝑎𝑏𝑐)

𝜕𝜑
𝜕𝑒𝑎

𝑥2
𝑎 + 2

∑
(𝑎𝑏𝑐)

𝜕𝜑
𝜕𝑔𝑎𝑏

𝑥𝑎𝑥𝑏 + 𝜑

𝑋𝑦 =
∑

(𝑎𝑏𝑐)
𝜕𝜑
𝜕𝑒𝑎

𝑥𝑎𝑦𝑎 + 2
∑

(𝑎𝑏𝑐)
𝜕𝜑
𝜕𝑔𝑎𝑏

(𝑥𝑎𝑦𝑏 + 𝑥𝑏𝑦𝑎), .....,

and herefrom or from the remark, that the 𝑒𝑎, . . . do not change for every rigid
rotation of the medium [and that] therefore also 𝛿Φ and consequently the virtual
work of the stress dyad vanishes, the important relations follows

(3′) 𝑋𝑦 = 𝑌𝑥 , 𝑌𝑧 = 𝑍𝑦 , 𝑍𝑥 = 𝑋𝑧 .

It is now the task of the particular theory of elasticity to study the form of the
function (2) of the six variables for the individual media; meanwhile this general
case of finite deformations recedes much in the theory of elasticity in favor of the
infinitesimal deformations129). Here only the case of the isotropic elastic medium
shall be emphasized especially; due to the equivalence of the directions in the
medium, the 6 components of the shape change can enter (2) just by using their 3
orthogonal invariants with respect to transformations of the coordinate system 𝑎, 𝑏,
𝑐, i. e. it becomes

(4) 𝜑 = 𝜑(𝐴, 𝐵, 𝐶)

where 𝐴, 𝐵, 𝐶 are the coefficients of the fundamental equation

(4a)

�������
𝑒𝑎 − Λ, 1

2𝑔𝑎𝑏 ,
1
2𝑔𝑎𝑐

1
2𝑔𝑎𝑏 , 𝑒𝑏 − Λ, 1

2𝑔𝑏𝑐 ,
1
2𝑔𝑎𝑐 ,

1
2𝑔𝑏𝑐 , 𝑒𝑐 − Λ,

������� ≡ −Λ3 + 𝐴Λ2 − 𝐵Λ + 𝐶,

which can be substituted certainly also by the square roots of this equation (lengths
of axes of the deformation ellipsoid)130). These formulas include readily the case,
that the medium

128 J. Boussinesq, Mém. prés. par div. sav., Paris 20 (1872), p. 594; the authors cited in 127) have
only expressions for the stress components with respect to the initial parameters 𝑋𝑎 , . . . . Cf. also
Chap. III of the summarizing presentation of E. and F. Cosserat, Ann. de Toul. 10 (1896), p. J. 59.
129 𝜑 as a homogeneous quadratic function of the 6 arguments has been considered by W. Thomson,
op. cit.127), p. 390, other forms, being characteristic for certain types of wave propagation, [have
been considered] by J. Hamadard, Leçons sur la propagation des ondes (Paris 1903), p. 257 ff.
130 Specific approaches for isotropic bodies can be found in G. Kirchhoff, op. cit.127), p. 773 and
M. Brillouin, C. R. Paris 112 (1891), p. 1500.
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undeformierten Anfangszustand „Selbstspannungen“ aufweist; andernfalls müssen
die Spannungskomponenten (3) für verschwindende 𝑒, 𝑔 verschwinden, d. h. es muss
die Potenzentwicklung von 𝜑 nach seinen 6 Argumenten mit quadratischen Gliedern
beginnen131).

Es sei noch erwähnt, dass P. Duhem seinen Potentialansatz (Nr. 7, (7)), der eine
direkte Einwirkung der Deformationszustände an je zwei verschiedenen Stellen
aufeinander annimmt, speziell auf isotrope elastische Medien angewandt hat.132)
Dabei sind die Variablen, die in 𝜑 eingehen, neben der Entfernung der beiden
betrachteten Stellen die 2 · 3 Invarianten der Formänderung an ihnen sowie die
Bestimmungsstücke der Orientierung der Deformationsellipsoide an beiden Stellen
gegeneinander und gegen die Verbindungsstrecke.

Die grösste Rolle in der Elastizitätstheorie spielt die Betrachtung unendlichkleiner
Deformationen. Die ersten, in 𝜎 linearen Glieder der Formänderungskomponenten
(1) sind alsdann in den früheren Bezeichnungen (Nr. 6, (6)) vom Faktor abgese-
hen:126)

(5) 𝜀𝑎 =
𝜕𝑢

𝜕𝑎
, 𝛾𝑏𝑐 =

𝜕𝑣

𝜕𝑐
+ 𝜕𝑤

𝜕𝑏

(𝑎, 𝑏, 𝑐
𝑢, 𝑣, 𝑤

)
;

die Funktion �̃� aber, aus der sich gemäss Nr. 7a, (9) die Spannungskomponenten

(6) 𝑋𝑎 =
1
𝜎

𝜕�̃�

𝜕𝑢𝑎
, . . .

als lineare Funktion der Verrückungskomponenten ergeben, wird

(6a) �̃�=𝜎𝜑1 (𝜀𝑎,𝛾𝑏𝑐)+𝜎2𝜑1

(
𝑢2

𝑎+𝑣2
𝑎+𝑤2

𝑎

2 ,𝑢𝑏𝑢𝑐+𝑣𝑏𝑣𝑐+𝑤𝑏𝑤𝑐

)
+𝜎2𝜑2 (𝜀𝑎,𝛾𝑏𝑐),

wo 𝜑1 bzw. 𝜑2, die linearen bzw. quadratischen Terme der Potenzentwicklung von
𝜑 nach seinen 6 Argumenten bedeutet, und der Kürze halber immer nur eines von je
3 Argumenten hingeschrieben ist133).

Treten keine Anfangsspannungen auf, so wird 𝜑 eine quadratische Form der 6
Komponenten der unendlichkleinen Formänderung, und das ist der Fall, der den
Ausgangspunkt der gewöhnlichen Elastizitätstheorie bildet (vgl. IV 24, Nr. 1, (1),
O. Tedone); dort wird dann insbesondere untersucht, welche Gestalten diese Funktion
je nach den Symmetrieeigenschaften, die das Medium in bezug auf die Richtungen

131 Auch für endliche Deformationen bereits angedeutet bei G. Green, a. a. O.127), p. 298. Vgl. auch
E. und F. Cosserat, a. a. O.128), p. J. 70.
132 P. Duhem, Ann. Éc. Norm., (3) 21 (1904), p. 117 ff.
133 Eine solche Entwicklung benutzte schon G. Green, a. a. O.127), p. 299.Vgl. auch H. Poincaré,
Leçons sur la théorie de l’élasticité, Paris 1892, p. 47 ff. sowie E. und F. Cosserat, a. a. O.128),
p. J. 73 f.
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has “residual stresses” in the undeformed initial state; otherwise for vanishing 𝑒, 𝑔,
the stress components (3) must vanish, i. e. the series expansion of 𝜑 with respect to
its six arguments must begin with quadratic terms131).

Furthermore, it has to be mentioned, that P. Duhem has applied his potential based
approach (No. 7, (7)), which considers a direct effect of the states of deformation at
two different points on each other, especially for isotropic elastic media.132) Thereby,
the variables which enter 𝜑 are besides the distance between the two considered
points, the 2 · 3 invariants of the shape change [at those positions] as well as the
characteristic quantities of the orientation of the deformation ellipsoids at both points
with respect to each other and with respect to the connecting line segment.

The biggest issue in the theory of elasticity is the consideration of infinitesimal
deformations. The first terms of the components of the shape change (1) being linear
in 𝜎 are then, apart from the factor, in the former notations (No. 6, (6)):126)

(5) 𝜀𝑎 =
𝜕𝑢

𝜕𝑎
, 𝛾𝑏𝑐 =

𝜕𝑣

𝜕𝑐
+ 𝜕𝑤

𝜕𝑏

(𝑎, 𝑏, 𝑐
𝑢, 𝑣, 𝑤

)
;

the function �̃� however, from which according to No. 7a, (9) the stress components

(6) 𝑋𝑎 =
1
𝜎

𝜕�̃�

𝜕𝑢𝑎
, . . .

emerge as linear functions of the displacement components, becomes

(6a) �̃�=𝜎𝜑1 (𝜀𝑎,𝛾𝑏𝑐)+𝜎2𝜑1

(
𝑢2

𝑎+𝑣2
𝑎+𝑤2

𝑎

2 ,𝑢𝑏𝑢𝑐+𝑣𝑏𝑣𝑐+𝑤𝑏𝑤𝑐

)
+𝜎2𝜑2 (𝜀𝑎,𝛾𝑏𝑐),

where 𝜑1 and 𝜑2 denote the linear and quadratic terms in the series expansion of 𝜑
with respect to its 6 arguments, respectively, and [where] due to the sake of brevity
throughout only one of each 3 arguments is written133).

If there appear no residual stresses, then 𝜑 becomes a quadratic form of the 6
components of the infinitesimal shape change, and this is the case which provides the
starting point of the ordinary theory of elasticity (cf. IV 24, No. 1, (1), O. Tedone);
there it is then studied in particular of what forms this function will be, depending
on the symmetry properties which the medium has with respect to the directions

131 Also already indicated for finite deformations by G. Green, op. cit.127), p. 298. Cf. also E. and
F. Cosserat, op. cit.128), p. J. 70.
132 P. Duhem, Ann. Éc. Norm., (3) 21 (1904), p. 117 ff.
133 Such an expansion has already been used by G. Green, op. cit.127), p. 299. Cf. also H. Poincaré,
Leçons sur la théorie de l’élasticité, Paris 1892, p. 47 ff. as well as E. and F. Cosserat,op. cit.128),
p. J. 73 f.
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durch einen Punkt etwa besitzt, von der allgemeinen Form mit 21 Konstanten (den
Elastizitätskoeffizienten) bis hin zu der speziellsten mit 2 Konstanten (beim isotropen
Medium) annehmen kann (vgl. IV 24, Nr. 2b, 2c). In diesem Falle nimmt das
transformierte Variationsprinzip (23) von Nr. 7e eine besonders einfache Form an,
indem 𝐻 bis aufs Vorzeichen gleich der Energiedichte wird; seine Koeffizienten sind
die Elastizitätsmoduln des Mediums.

Älter als dieser Gedankengang ist eine etwas andere Betrachtungsweise, die die
Annahme, dass alle möglichen Deformationen des Mediums unendlichklein seien,
mehr in den Vordergrund bringt. Das elastische Medium erscheint hier dadurch
charakterisiert, dass sein Potential 𝜑 lediglich von den Formänderungkomponenten
𝜀, 𝛾 der unendlichkleinen Deformation abhängt:134)

(7) 𝜑 = 𝜑(𝜀𝑎, 𝜀𝑏 , 𝜀𝑐 , 𝛾𝑏𝑐 , 𝛾𝑐𝑎, 𝛾𝑎𝑏),

während sich die Spannungskomponenten daraus als Ableitungen nach 𝑢𝑎, . . .
ergeben. Im einfachsten Fall des Mediums ohne Selbstspannungen macht das freilich
keinen Unterschied, sofern man sich wieder auf quadratische Glieder beschränkt.
Man hat aber diesen Ansatz auch zur Behandlung von Selbstspannungen135) und
auch zur Erzielung einer über das Hookesche Gesetz hinausgehenden Annäherung
an die Naturvorgänge durch Berücksichtigung von Gliedern dritter und höherer Di-
mension136) verwendet; natürlich treffen diese Ansätze dann für andersartige Medien
zu als die früheren.

Von einem ein wenig abweichenden Gesichtspunkte aus hat noch J. Finger137)
die Grundformeln der Elastizitätstheorie endlicher Deformationen auszubauen ver-
sucht; er zieht nicht nur die Formänderungskomponenten (1) in Betracht, sondern
lässt 𝜑 von allen 9 Ableitungen 𝑥𝑎, . . . , 𝑧𝑐 abhängen, wobei er — für ein isotropes
Medium — lediglich symmetrisches Auftreten der drei Koordinatenrichtungen sowie
Bestehen der Relationen (3′) voraussetzt und Glieder bis zur dritten Ordnung berück-
sichtigt.

Auch die Elastizitätslehre der Körper mit einer oder zwei unendlichkleinen Di-
mensionen ordnet sich dem Potentialsatz (für zwei bzw. eine

134 Dies ist der ursprüngliche Ansatz von G. Green, a. a. O.127), p. 249; vgl. auch IV 23, Nr. 5b,
Müller-Timpe.
135 Vgl. z. B. H. von Helmholtz, Dynamik kontinuierlich verbreiteter Massen (Leipzig 1902), p. 93.
136 W. Voigt (Gött. Nachr., 1893, p. 534, math.-phys. Kl. 1894, p. 33; Ann. d. Phys, (3) 52 (1894),
p. 536; Kompend. I, p. 339) zieht für isotrope Körper auch die Orthogonalinvariante dritter Ordnung
der 𝜀, 𝛾 heran.
137 J. Finger, Sitzungsber. Wien 103IIa (1894), p. 163, 231; s. speziell p. 175 ff.
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through a point[; is it] of the most general form with 21 constants (the elasticity
constants) [or is it] up to the most special [form] with 2 constants (for the isotropic
medium) (cf. IV 24, No. 2b, 2c). In this case the transformed variational principle
(23) of No. 7e is of particular simple form, as 𝐻 corresponds up to the sign with the
energy density; its coefficients are the elasticity moduli of the medium.

Older than this line of thought is another perspective, which gives priority to
the assumption, that all possible deformations of the medium shall be infinitesimal.
The elastic medium appears here to be characterized in this way, that its potential
𝜑 depends merely on the components of the shape change 𝜀, 𝛾 of the infinitesimal
deformation:134)

(7) 𝜑 = 𝜑(𝜀𝑎, 𝜀𝑏 , 𝜀𝑐 , 𝛾𝑏𝑐 , 𝛾𝑐𝑎, 𝛾𝑎𝑏),

while the stress components emerge thereout as derivatives with respect to 𝑢𝑎, . . . .
In the most simple case of a medium without residual stresses, this makes certainly
no difference, as far as one restricts oneself again to quadratic terms. However, one
has also used this ansatz for the treatment of residual stresses135) and also for reaching
an approximation of the natural processes going beyond Hooke’s law by considering
also terms of third and higher [polynomial] orders136); naturally, these approaches
apply for different media than for the former ones.

Starting from a slightly different point of view, J. Finger137) has tried to extend
the basic formulas of the theory of elasticity for finite deformations; He not only
considers the components of the shape change (1), but lets also depend 𝜑 on all 9
derivatives 𝑥𝑎, . . . , 𝑧𝑐 , whereby he assumes — for an isotropic medium — merely
symmetric appearance of the three coordinate directions as well as the existence of
the relation (3′) and [whereby he] considers terms up to third order.

Also the theory of elasticity of bodies with one or two infinitesimal dimensions
are subordinate to the potential-based approach (for two or one

134 This is the original ansatz by G. Green, op. cit.127), p. 249; cf. also IV 23, No. 5b, Müller-Timpe.
135 Cf. e. g. H. von Helmholtz, Dynamik kontinuierlich verbreiteter Massen (Leipzig 1902), p. 93.
136 W. Voigt (Gött. Nachr., 1893, p. 534, math.-phys. Kl. 1894, p. 33; Ann. d. Phys, (3) 52 (1894),
p. 536; Kompend. I, p. 339) uses for isotropic bodies also the orthogonal invariants of third order
of 𝜀, 𝛾.
137 J. Finger, Sitzungsber. Wien 103IIa (1894), p. 163, 231; see especially p. 175 ff.
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Dimension; Nr. 7c) unter; gegenüber den dreidimensionalen elastischen Medien
ist dabei neu das Auftreten höherer Ableitungen der Deformationsfunktionen in
der Energiedichte, wie es durch den Grenzübergang von Nr. 8a erklärt ist. Dies
Charakteristikum zeigt sich bereits bei dem Ausdruck des Potentiales

(8) Φ =

𝑙∫
0

𝜑 𝑑𝑎

der ebenen Elastika, d. h. eines an eine Ebene 𝑧 = 0 gebunden gedachten elastischen
Drahtes; es wird nämlich 𝜑 eine Funktion des Krümmungsradius 𝜚 der Kurve138)

(9) 𝜑 =
𝐸

2
· 1
𝜚2 =

𝐸

2

{( 𝑑2𝑥

𝑑𝑠2

)2
+
( 𝑑2𝑦

𝑑𝑠2

)2}
wofern als Nebenbedingung noch Unausdehnbarkeit der Kurve (𝑠 = 𝑎) zu der Be-
dingung des Potentialminimums hinzutritt — andernfalls erhält 𝜑 noch ein von der
Längsdilatation 𝑑𝑠

𝑑𝑎 abhängiges Glied. Durch den Grenzübergang von Nr. 8b kann
man die hier auftretenden Konstanten mit den Elastizitätskonstanten des dreidimen-
sional ausgedehnten Mediums in Zusammenhang bringen.

Bei der räumlichen Elastika kommt die oben (S. 659) bereits angedeutete Tat-
sache hinzu, dass auch die Verschiebung des Materiales des Drahtes gegen die Lage
seiner Zentralkurve die Energie beeinflusst. Die nähere Beschreibung geschieht am
bequemsten mit Hilfe des Cosseratschen Dreikants. Man denke das jedem Teilchen
der Kurve angeheftete rechtwinklige Dreikant in der Ruhelage so orientiert, dass die
dritte Axe in die Kurventangente fällt, während die andern beiden die Grenzlagen
der Hauptträgheitsaxen des Normalschnittes durch den betr. Punkt bei abnehmender
Dicke des Drahtes markieren; fügt man dann noch die Nebenbedingung hinzu, dass
die letzte Axe des Dreikants bei jeder Deformation die Kurve tangiert:

(10) 𝛼3 : 𝛽3 : 𝛾3 =
𝑑𝑥

𝑑𝑠
:
𝑑𝑦

𝑑𝑠
:
𝑑𝑧

𝑑𝑠
= 𝑥𝑎 : 𝑦𝑎 : 𝑧𝑎,

die von der in Nr. 4c betrachteten Form ist, so hat man ein Cosseratsches Medium,
das genau die Elastika darstellt. Der Eigenschaft elastischer Medien, ein nur von
den Formänderungskomponenten abhängiges Potential zu besitzen, entspricht hier
offenbar die Annahme eines euklidischen Potentials im Cosseratschen Sinne (Nr. 7b,
(17)), und

138 D. Bernoulli in einem Brief an Euler; P. H. Fuss, Cerresp. mathém. et phys., T. II, St. Péters-
bourg 1843, p. 507. Vgl. auch L. Euler, Methodus inveniendi lineas maximi minimive proprietate
gaudentes, Lausannae 1744, im Anhang „de curvis elasticis“.
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dimensions; No. 7c); compared to the three-dimensional elastic media, thereby the
appearance of higher derivatives of the deformation functions in the energy density
is new, as it is explained by the limit process of No. 8a. This characteristics arises
already in the expression of the potential

(8) Φ =

𝑙∫
0

𝜑 𝑑𝑎

of the planar elastica, i. e. an elastic wire thought to be constraint to the plane 𝑧 = 0;
namely, 𝜑 becomes a function of the curvature radius 𝜚 of the curve138)

(9) 𝜑 =
𝐸

2
· 1
𝜚2 =

𝐸

2

{( 𝑑2𝑥

𝑑𝑠2

)2
+
( 𝑑2𝑦

𝑑𝑠2

)2}
provided that the inextensibility of the curve (𝑠 = 𝑎) is added as a constraint to
the requirement of the minimum of the potential — otherwise 𝜑 is augmented by
a term depending on the longitudinal dilatation 𝑑𝑠

𝑑𝑎 . Due to the limit process of
No. 8b, one can relate the here appearing constants with the elasticity constants of
the three-dimensional extended medium.

For the spatial elastica the above mentioned (p. 659) fact is added to, that the
displacement of the material of the wire with respect to the position of the center
curve influences the energy. The detailed description is most conveniently done with
the help of the Cosserat triad. One thinks of the orthogonal triad attached to every
particle of the curve being oriented in the position of rest such that the third axis
coincides with the tangent of the curve, while the other two indicate the border
locations of the principal axes of the normal cut through the considered point for
decreasing thickness of the wire; if one adds then additionally the constraint, that for
every deformation the last axis of the triad is tangent to the curve:

(10) 𝛼3 : 𝛽3 : 𝛾3 =
𝑑𝑥

𝑑𝑠
:
𝑑𝑦

𝑑𝑠
:
𝑑𝑧

𝑑𝑠
= 𝑥𝑎 : 𝑦𝑎 : 𝑧𝑎,

which is of the form considered in No. 4c, then one has a Cosserat medium, which just
describes the elastica. The property of elastic media, to have a potential depending
only on the components of the shape change, corresponds here apparently with the
assumption of a euclidean potential in the sense of the Cosserats (No. 7b, (17)), and

138 D. Bernoulli in a letter to Euler; P. H. Fuss, Cerresp. mathém. et phys., T. II, St. Pétersbourg
1843, p. 507. Cf. also L. Euler, Methodus inveniendi lineas maximi minimive proprietate gaudentes,
Lausannae 1744, in the appendix “de curvis elasticis”.
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da aus (10) und Nr. 7, (16b) 𝔵𝑎 = 𝔶𝑎 = 0 folgt, kann die Energiedichte
nur noch abhängen von 𝔷𝑎, das die Dehnung des Drahtes bestimmt, und den
Winkelgeschwindigkeitskomponenten 𝔭𝑎, 𝔮𝑎, 𝔯𝑎, die die geometrische Krümmung
des deformierten Drahtes und den Drall (twist) des Materiales messen (vgl. IV 25,
Nr. 17, Tedone-Timpe)139):

(11) 𝜑 = 𝜑(𝔷𝑎, 𝔭𝑎, 𝔮𝑎, 𝔯𝑎)

Der spezielle Ansatz, der die Theorie der Elastika liefert, ist wiederum der einer
quadratischen Form, und zwar — wenn wie oben noch die Nebenbedingung der
Unausdehnbarkeit hinzugenommen wird — 140):

(12) 𝜑 =
𝐸

2
(𝐽1𝔭

2
𝑎 + 𝐽2𝔮

2
𝑎) +

𝐶

2
𝔯2𝑎;

hierbei sind 𝐸, 𝐽1, 𝐽2, 𝐶 Materialkonstanten; ist speziell 𝐽1 = 𝐽2 (was einem kre-
isförmigen Querschnitt des Drahtes entspricht), so tritt wie in (9) die Krümmung
1
𝜚2 = 𝔭

2 + 𝔮2 der Kurve auf. Durch Annahmen ähnlicher Art über die Verknüpfung
der Lage des Dreikants mit der Kurve kann man von dem gleichen Ansatz aus auch
alle übrigen in der Elastizitätstheorie behandelten Typen von Stäben, Drähten, Fäden
darstellen, wie das E. und F. Cosserat 141) ausführlich entwickelt haben.

Ganz analoge Betrachtungen gelten für die Theorie der Platten; sie seien hier nur
kurz angedeutet. Man kann die Platte ansehen als ein zweidimensionales Medium
mit orientierten Teilchen, deren Dreikante mit der dritten Axe stets normal zu der
vom Medium jeweils erfüllten Fläche stehen sollen142); dann ist 𝔷𝑎 = 𝔷𝑏 = 0 und

𝜑 = 𝜑(𝔵𝑎, 𝔶𝑎, 𝔵𝑏 , 𝔶𝑏; 𝔭𝑎, . . . , 𝔯𝑐)

hängt von der Dehnung und Krümmung der deformierten Fläche und der inneren
Verwindung der Materie auf ihr in orthogonal invarianter Weise ab. Auch hier haben
E. und F. Cosserat143) im einzelnen ausgeführt, wie man daraus den Energieansatz
für die übliche Näherungstheorie der elastischen Platte144) sowie überhaupt für alle
behandelten Typen elastischer Platten, Membrane und Schalen145) herleiten kann.

10. Dynamik idealer Flüssigkeiten. Die idealen Flüssigkeiten ordnen sich ohne
weiteres als Sonderfall denjenigen elastischen Medien

139 E. und F. Cosserat, Corps déformables, p. 37 ff.
140 Thomson-Tait, natural philos., new ed. I 2, p. 133 ff.; dort wird auch ein allgemeinerer quadratis-
cher Ansatz in Betracht gezogen. Vgl. auch IV 25, Nr. 17.
141 E. und F. Cosserat, Corps déformables, Nr. 15—28.
142 Vgl. E. und F. Cosserat, Corps déformables, p. 105 ff.
143 E. und F. Cosserat, Corps déformables, Nr. 41—46.
144 Thomson-Tait, a. a. O.140) I 2, p. 184 ff.
145 Vgl. insbesondere die Angaben in IV 26, Nr. 5, H. Lamb.
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since from (10) and No. 7, (16b) 𝔵𝑎 = 𝔶𝑎 = 0 follows, the energy density can only
depend on 𝔷𝑎, which determines the elongation of the wire, and the components of the
angular velocities 𝔭𝑎, 𝔮𝑎, 𝔯𝑎, which measure the geometric curvature of the deformed
wire and the twist (Drall) of the material (cf. IV 25, No. 17, Tedone-Timpe)139):

(11) 𝜑 = 𝜑(𝔷𝑎, 𝔭𝑎, 𝔮𝑎, 𝔯𝑎)

The special ansatz, which is provided by the theory of the elastica, is again the one
of a quadratic form, and indeed — when as above additionally the inextensibility
constraint is added — 140):

(12) 𝜑 =
𝐸

2
(𝐽1𝔭

2
𝑎 + 𝐽2𝔮

2
𝑎) +

𝐶

2
𝔯2𝑎;

hereby 𝐸, 𝐽1, 𝐽2, 𝐶 are material constants; If especially 𝐽1 = 𝐽2 (what corresponds
to a circular cross section of the wire), then the curvature 1

𝜚2 = 𝔭
2 + 𝔮2 of the curve

appears as in (9). By assumptions similar in kind about the relation between the
position of the triad and the curve, one can represent all other types of bars, wires,
strings treated in the theory of elasticity, how it has been developed extensively by
E. and F. Cosserat 141).

Very similar considerations apply to the theory of plates; which are treated here
only briefly. One can consider a plate as a two-dimensional medium with oriented
particles, whose triads shall stand [in such a way, that] the third axis stands always
normal to the surface filled with the medium142); then 𝔷𝑎 = 𝔷𝑏 = 0 and

𝜑 = 𝜑(𝔵𝑎, 𝔶𝑎, 𝔵𝑏 , 𝔶𝑏; 𝔭𝑎, . . . , 𝔯𝑐)

depends on the stretch and the curvature of the deformed surface and the internal
twisting of the matter on [the surface] in an orthogonal invariant manner. Also here,
E. and F. Cosserat 143) have carried out in detail, how one can derive thereout the
energy theorem for the common approximation theory of the elastic plate144) as well
as anyway for all types of elastic plates, membranes and shells145).

10. Dynamics of ideal fluids. The ideal fluids are subordinate readily as a special
case of those elastic media

139 E. and F. Cosserat, Corps déformables, p. 37 ff.
140 Thomson-Tait, natural philos., new ed. I 2, p. 133 ff.; there also a more general quadratic ansatz
is considered. Cf. also IV 25, No. 17.
141 E. and F. Cosserat, Corps déformables, No. 15—28.
142 Cf. E. and F. Cosserat, Corps déformables, p. 105 ff.
143 E. and F. Cosserat, Corps déformables, No. 41—46.
144 Thomson-Tait, op. cit.140) I 2, p. 184 ff.
145 Cf. in particular the statement in IV 26, No. 5, H. Lamb.
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unter, die beliebige endliche Deformationen gestatten; sie sind dadurch charakter-
isiert, dass Arbeit nur für solche Deformationen aufgewendet werden muss, die
mit einer Volumendilatation oder Kompression der kleinsten Teilchen verbunden
sind146), und dass also die Energiedichte 𝜑 allein von der durch die Funktionaldeter-
minante Δ gemessenen momentanen Volumdilatation an jeder Stelle abhängt147):

(1) 𝜑 = 𝜑(Δ)

Da Δ als Orthogonalinvariante der Deformation eine Funktion der Grössen 𝐴, 𝐵, 𝐶
(Nr. 9, (4a)) ist (Δ2 = 1 + 2𝐴 + 4𝐵 + 8𝐶), so ist (1) tatsächlich nur ein spezieller Fall
des Ansatzes (4) von Nr. 9. Aus Nr. 7, (5) ergeben sich leicht als Komponenten der
zu diesem Potential gehörigen inneren Spannung:

(2)

{
𝑋𝑥 = 𝑌𝑦 = 𝑍𝑧 =

𝑑𝜑
𝑑Δ = 𝑝,

𝑋𝑦 = 𝑌𝑥 = 𝑌𝑧 = 𝑍𝑦 = 𝑍𝑥 = 𝑋𝑧 = 0,

d. h. die Spannungsdyade bestimmt einen in jeder Richtung gleichmässig wirkenden
„Flüssigkeitsdruck“ 𝑝. Man erhält dasselbe Resultat auch direkter148), wenn man mit
Hilfe der Relation (vgl. Nr. 2, (8′))

𝛿Δ = Δ ·
( 𝜕𝛿𝑥
𝜕𝑥

+ 𝜕𝛿𝑦

𝜕𝑦
+ 𝜕𝛿𝑧

𝜕𝑧

)
die Variation des Gesamtpotentiales

∭
𝜑𝑑𝑉0 bestimmt und sie dem Ausdruck Nr. 3,

(1) der virtuellen Arbeit gleich setzt. — Diese Überlegungen gelten sowohl für die
Hydrostatik als für die Hydrodynamik; durch Einsetzen von (2) in die Gleichungen
von Nr. 3c bzw. Nr. 5a ergeben sich die bekannten Grundgleichungen.

Die Gleichung (1) erscheint in der Hydrodynamik gewöhnlich in einer etwas
anderen Gestalt. Da nämlich Δ umgekehrt proportional der Dichte 𝜚 des Mediums
ist (Nr. 2, (7)), so kann man sagen, dass sie 𝜑 als Funktion von 𝜚 giebt, und damit
ist nach (2) auch der Druck als Funktion von 𝜚 gegeben:

(3) 𝑝 =
𝑑𝜑

𝑑Δ
= 𝑝(𝜚);

umgekehrt ist durch (3) auch die Relation (1) im wesentlichen bestimmt. In der Form
(3) wird die „Zustandsgleichung“ der Hydrodynamik gewöhnlich gegeben149).

146 Lagrange, Méc. anal., 1. part., sect. VIII, Nr. 1
147 J. Hadamard, Leçons sur la propagation des ondes (Paris 1903), p. 247 ff.
148 Dies ist im wesentlichen das Verfahren von Lagrange146); vgl. auch sect. VII, Nr. 11.
149 Vgl. die näheren Angaben in IV 15, Nr. 5, Love.
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which allow for arbitrary finite deformations; they are characterized in this way,
that only work must be expended for such deformations which are related to the
volume dilatation or compression of the smallest particles146), and that the energy
density 𝜑 depends consequently only on the current volume dilatation measured by
the Jacobian Δ at every point147):

(1) 𝜑 = 𝜑(Δ)

Since Δ is as an orthogonal invariant of the deformation, a function of the quantities
𝐴, 𝐵, 𝐶 (No. 9, (4a)) (Δ2 = 1 + 2𝐴 + 4𝐵 + 8𝐶), (1) is in fact only a special case of
the ansatz (4) of No. 9. From No. 7, (5) the components of the internal stress related
to this potential easily emerge as:

(2)

{
𝑋𝑥 = 𝑌𝑦 = 𝑍𝑧 =

𝑑𝜑
𝑑Δ = 𝑝,

𝑋𝑦 = 𝑌𝑥 = 𝑌𝑧 = 𝑍𝑦 = 𝑍𝑥 = 𝑋𝑧 = 0,

i. e. the stress dyad determines a “fluid pressure” 𝑝 acting uniformly in every direc-
tion. One obtains the same result also more directly148), when one determines with
the help of the relation (cf. No. 2, (8′))

𝛿Δ = Δ ·
( 𝜕𝛿𝑥
𝜕𝑥

+ 𝜕𝛿𝑦

𝜕𝑦
+ 𝜕𝛿𝑧

𝜕𝑧

)
the variation of the total potential

∭
𝜑𝑑𝑉0 and by equating [the variation] with the

expression No. 3, (1) of the virtual work. — These considerations are valid both for
hydrostatics and for hydrodynamics; Using (2) in the equations of No. 3c and No. 5a,
respectively, the well-known fundamental equations are obtained.

In hydrodynamics, equation (1) appears usually in a slightly different form. Since
Δ is namely inversely proportional to the density 𝜚 of the medium (No. 2, (7)), one
can say, that [equation (1)] gives 𝜑 as a function of 𝜚, so that according to (2) also
the pressure is given as a function of 𝜚:

(3) 𝑝 =
𝑑𝜑

𝑑Δ
= 𝑝(𝜚);

the other way round, using (3), also the relation (1) is determined essentially. Usually,
the “equation of state” of hydrodynamics is given in the form (3)149).

146 Lagrange, Méc. anal., 1. part., sect. VIII, No. 1
147 J. Hadamard, Leçons sur la propagation des ondes (Paris 1903), p. 247 ff.
148 This is basically the procedure of Lagrange146); cf. also sect. VII, No. 11.
149 Cf. the details in IV 15, No. 5, Love.
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Eine grosse Rolle spielt bekanntlich der Fall der inkompressiblen Flüssigkeit, die
durch die Nebenbedingung

(4) Δ = 1

charakterisiert ist. Für ein solches Medium verliert die Zustandsgleichung (1) ihre
Bedeutung; approximiert man es aber nach Nr. 8b durch ein „nahezu inkompress-
ibles“ Medium, so wird der Druck 𝑝 = 𝑑𝜑

𝑑Δ in der Grenze zum Lagrangeschen
Faktor der Gleichung (4), wenn man sie direkt als Nebenbedingung dem Prinzip der
virtuellen Arbeit oder dem d’Alembertschen Prinzip hinzufügt, in das dann freilich
nur noch äussere bzw. Trägheitskräfte, keine inneren Spannungen mehr eingehen150).

Die üblichen Darstellungen der Hydrodynamik gehen meist nicht von dieser
Auffassung der Flüssigkeitsbewegung als einer der Elastizitätslehre einzuordnenden
endlichen Deformation aus, sondern stellen die sog. Eulersche Auffassung in den
Vordergrund, d. h. die Betrachtung des Geschwindigkeitsvektors 𝑥 ′, 𝑦′, 𝑧′ an jeder
Stelle. Der Flüssigkeitsdruck wird dann direkt gemäss den Gleichungen (2) zwischen
den Spannungskomponenten definiert151) und die Bewegungsgleichungen aus dem
d’Alembertschen oder aus dem Gaussschen Prinzip152)

𝛿

∭
(𝑉 )

1
2 𝜚

∑
(𝑥,𝑦,𝑧)

(𝑥 ′′ − 𝑋)2𝑑𝑉 −
∭
(𝑉 )

𝑝
∑

(𝑥,𝑦,𝑧)

𝜕𝛿𝑥 ′′

𝜕𝑥
𝑑𝑉 = 0

gewonnen — bei Inkompressibilität wird 𝑝 Lagrangescher Faktor.
Auch speziell der Hydrodynamik hat P. Duhem153) seinen verallgemeinerten Po-

tentialansatz Nr. 7, (7) angepasst, indem er die Energiedichte 𝜑 von den Dichtigkeiten
an beiden betrachteten Stellen und deren Entfernung abhängen lässt; damit umfasst
und verallgemeinert er Kräfte, die H. A. E. Faye 154) zur Erklärung der Kometen-
schweife in Betracht gezogen hat, nämlich Attraktionskräfte, deren Intensität von der
Dichte der wirkenden Teilchen abhängt.

11. Innere Reibung und elastische Nachwirkung. Bei bewegten elastischen Me-
dien und Flüssigkeiten treten neben den bisher erörterten Spannungen und Drucken
noch Zusatzspannungen auf, die

150 In Lagranges Darstellung ist die inkompressible Flüssigkeit das primäre; man vgl. jedoch die
Bemerkung in 124) (Nr. 8).
151 Das entspricht der Auffassung von Euler; vgl. IV 15, Nr. 2, 8, Love.
152 Vgl. die ausführliche Darstellung von A. Brill, Mechanik raumerf. Massen64), p. 84 ff.
153 P. Duhem, Ann. Éc. Norm. (3) 10 (1893), p. 183.
154 H. A. E. Faye, Paris C. R. 47 (1858), p. 939. 1043.
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As is generally known, the case of the incompressible fluid being characterized
by the constraint

(4) Δ = 1

looms large. For such a medium the equation of state (1) looses its meaning; however,
if one approximates it according to No. 8b as a “nearly incompressilbe” medium, the
pressure 𝑝 = 𝑑𝜑

𝑑Δ becomes in the limit the Lagrangian multiplier of equation (4), if
one adds [the equation] directly as a constraint to the principle of virtual work or to
the principle of d’Alembert, in which then certainly only external and inertial forces
and no more internal stresses enter150).

The common presentations of hydrodynamics do not start with this perception
of the fluid motion as a finite deformation subordinated to the theory of elasticity,
but give priority to the so called Eulerian perception, i. e. the consideration of the
velocity vector 𝑥 ′, 𝑦′, 𝑧′ at every point. According to the equations (2), the fluid
pressure is then directly defined between the stress components151) and the equations
of motion are gained from the principle of d’Alembert or the principle of Gauss152)

𝛿

∭
(𝑉 )

1
2 𝜚

∑
(𝑥,𝑦,𝑧)

(𝑥 ′′ − 𝑋)2𝑑𝑉 −
∭
(𝑉 )

𝑝
∑

(𝑥,𝑦,𝑧)

𝜕𝛿𝑥 ′′

𝜕𝑥
𝑑𝑉 = 0

— for incompressibility 𝑝 becomes a Lagrange multiplier.
Also especially for hydrodynamics P. Duhem153) has adapted his generalized

potential-based approach No. 7, (7), by letting the energy density 𝜑 depend on
the densities at both considered points and the distance between them; thereby he
includes and generalizes forces, which H. A. E. Faye 154) has taken into consideration
for the explanation of the cometary train, in fact, attractive forces, whose intensity
depend on the density of the acting particles.

11. Internal friction and elastic hysteresis. For moving elastic media and fluids
there appear besides the so far discussed stresses and pressures also additional
stresses, which

150 In Lagrange’s presentation the incompressible fluid is the primitive; however, one cf. the remark
in 124) (No. 8).
151 This corresponds to the perception of Euler; cf. IV 15, No. 2, 8, Love.
152 Cf. the extensive presentation of A. Brill, Mechanik raumerf. Massen64), p. 84 ff.
153 P. Duhem, Ann. Éc. Norm. (3) 10 (1893), p. 183.
154 H. A. E. Faye, Paris C. R. 47 (1858), p. 939. 1043.



11. Innere Reibung und elastische Nachwirkung. 671

durch innere Reibungen hervorgerufen werden, die also von den zeitlichen Ableitun-
gen der Deformationsgrößen abhängen155). Verwendet man zur Darstellung der Be-
wegung nach der sog. Eulerschen Manier die Geschwindigkeitskomponenten als
Funktionen des augenblicklichen Ortes jedes Teilchens

(1) 𝔲 = 𝑥 ′ = 𝔲(𝑥, 𝑦, 𝑧; 𝑡)
(𝑥, 𝑦, 𝑧
𝔲, 𝔳,𝔴

)
,

so können die 9 Ableitungen 𝑥 ′𝑎, . . . , 𝑧
′
𝑐 , die oben (Nr. 6, S. 640 und Nr. 7f, S. 657)

verwendet wurden, auch ersetzt werden durch die 9 Ableitungen 𝔲𝑥 , 𝔲𝑦 , . . . ,𝔴𝑧 die
lineare Funktionen von ihnen sind. Die Funktionen (1) bestimmen die unendlichk-
leine Deformation, die das Medium vermöge der Bewegung in einem Zeitelement
erleidet; die Komponenten der zugehörigen reinen Formänderung (vgl. Nr. 9, (5))
sind:

(2) 𝔢𝑥 =
𝜕𝔲

𝜕𝑥
, 𝔤𝑦𝑧 =

𝜕𝔴

𝜕𝑦
+ 𝜕𝔳

𝜕𝑧

(𝑥, 𝑦, 𝑧
𝔲, 𝔳,𝔴

)
,

und von diesen Grössen wird daher die innere Reibung allein abhängen, sofern
man analog zu den Verhältnissen bei elastischen Medien annimmt, dass durch
Drehgeschwindigkeiten der Teilchen keine Reibungswiderstände entstehen kön-
nen156). Man erkennt übrigens leicht, dass die Komponenten der durch (2) bes-
timmten symmetrischen Dyade in Bezug auf das 𝑎-𝑏-𝑐-Koordinatensystem gerade
die zeitlichen Ableitungen der Formänderungskomponenten Nr. 9, (1), sind.

Die Theorie der Reibungskräfte bei endlichen Deformationen ist bisher nur in der
Hydrodynamik vollständig ausgebildet; die Grundannahme dabei ist die der Existenz
einer Dissipationsfunktion 𝐷, die eine homogene quadratische Funktion der Grössen
(2) ist, und die obendrein — entsprechend der isotropen Konstitution der Flüssigkeit
— nur von deren Orthogonalinvarianten abhängt157):

(3) 𝐷 = 𝑎1 (𝔢𝑥 + 𝔢𝑦 + 𝔢𝑧)2 + 𝑎2 (𝔢2𝑥 + 𝔢2𝑦 + 𝔢2𝑧 + 1
2 (𝔤2

𝑥𝑦 + 𝔤2
𝑦𝑧 + 𝔤2

𝑧𝑥)).

Nach Nr. 7f, (29′) und nach Nr. 3c, (8) werden die zugehörigen, auf den deformierten
Zustand bezogenen Spannungskomponenten

(4)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑋 (1)
𝑥 = 1

2
∑

(𝑎𝑏𝑐)
𝜕𝐷
𝜕𝑥′𝑎

𝑥𝑎 =
1
2
𝜕𝐷
𝜕𝔲𝑥

= 𝑎1 (𝔢𝑥 + 𝔢𝑦 + 𝔢𝑧) + 𝑎2𝔢𝑥

𝑋 (1)
𝑦 = 1

2
∑

(𝑎𝑏𝑐)
𝜕𝐷
𝜕𝑥′𝑎

𝑦𝑎 =
1
2
𝜕𝐷
𝜕𝔲𝑦

= 1
2𝑎2𝔤𝑥𝑦 , . . .

155 Vgl. die historischen Angaben zu Nr. 12 von IV 15, Love.
156 G. G. Stokes, Cambr. Phil. Soc. Trans. 8 (1845) = Math. Phys. Papers I, p. 80.
157 W. Voigt, Kompendium I, p. 462 ff.; einen allgemeineren Ansatz giebt P. Duhem Anm. Éc. Norm.
(3) 21 (1904), p. 130 ff.
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are caused by internal friction, and therefore depend on the time derivatives of the
deformation quantities155). If one uses the velocity components as functions of the
actual position of every particle for the representation of the motion in the sense of
Euler

(1) 𝔲 = 𝑥 ′ = 𝔲(𝑥, 𝑦, 𝑧; 𝑡)
(𝑥, 𝑦, 𝑧
𝔲, 𝔳,𝔴

)
,

then the 9 derivatives 𝑥 ′𝑎, . . . , 𝑧
′
𝑐 , which have been used above (No. 6, p. 640 und

No. 7f, p. 657) can be substituted by the 9 derivatives 𝔲𝑥 , 𝔲𝑦 , . . . ,𝔴𝑧 which are
linear functions of the former [derivatives]. The functions (1) determine the in-
finitesimal deformation, which the medium undergoes due to the motion during one
time element; the components of the associated pure shape change (cf. No. 9, (5))
are:

(2) 𝔢𝑥 =
𝜕𝔲

𝜕𝑥
, 𝔤𝑦𝑧 =

𝜕𝔴

𝜕𝑦
+ 𝜕𝔳

𝜕𝑧

(𝑥, 𝑦, 𝑧
𝔲, 𝔳,𝔴

)
,

and from these quantities the internal friction will merely depend on, as long as one
considers analogously to the conditions in elastic media, that no frictional resistances
can occur due to angular velocities of the particles156). By the way, one recognizes
easily, that the components of the symmetric dyad determined by (2) with respect
to the 𝑎-𝑏-𝑐-coordinate system just correspond to the time derivatives of the shape
change components of No. 9, (1).

So far, the theory of friction forces for finite deformations is developed completely
only in hydrodynamics; the basic assumption thereby is the one of the existence of a
dissipation function 𝐷, which is a homogeneous quadratic function of the quantities
(2), and which moreover — according to the isotropic constitution of the fluid —
depends merely on the orthogonal invariants157):

(3) 𝐷 = 𝑎1 (𝔢𝑥 + 𝔢𝑦 + 𝔢𝑧)2 + 𝑎2 (𝔢2𝑥 + 𝔢2𝑦 + 𝔢2𝑧 + 1
2 (𝔤2

𝑥𝑦 + 𝔤2
𝑦𝑧 + 𝔤2

𝑧𝑥)).

In accordance with No. 7f, (29′) and No. 3c, (8) the corresponding stress components
with respect to the deformed state become

(4)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑋 (1)
𝑥 = 1

2
∑

(𝑎𝑏𝑐)
𝜕𝐷
𝜕𝑥′𝑎

𝑥𝑎 =
1
2
𝜕𝐷
𝜕𝔲𝑥

= 𝑎1 (𝔢𝑥 + 𝔢𝑦 + 𝔢𝑧) + 𝑎2𝔢𝑥

𝑋 (1)
𝑦 = 1

2
∑

(𝑎𝑏𝑐)
𝜕𝐷
𝜕𝑥′𝑎

𝑦𝑎 =
1
2
𝜕𝐷
𝜕𝔲𝑦

= 1
2𝑎2𝔤𝑥𝑦 , . . .

155 Cf. the historical details in No. 12 of IV 15, Love.
156 G. G. Stokes, Cambr. Phil. Soc. Trans. 8 (1845) = Math. Phys. Papers I, p. 80.
157 W. Voigt, Kompendium I, p. 462 ff.; a more general Ansatz is given by P. Duhem Anm. Éc. Norm.
(3) 21 (1904), p. 130 ff.
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Diese Spannungen treten also als Einfluss der inneren Reibung zu dem Flüs-
sigkeitsdruck hinzu; häufig spezialisiert man die beiden Konstanten noch durch
die Annahme, dass das arithmetische Mittel der drei resultierenden Normaldrucke
𝑝 + 𝑋 (1)

𝑥 , 𝑝 + 𝑌 (1)
𝑦 , 𝑝 + 𝑍 (1)

𝑧 gleich 𝑝 ist, was 𝑎1 = − 𝑎2
3 ergiebt158).

In der eigentlichen Elastizitätslehre hat man die innere Reibung nur erst für
unendlichkleine Deformationen in Betracht gezogen. In diesem Falle unterscheiden
sich die Grössen 𝔲, . . . ; 𝜕𝔲𝜕𝑥 , . . . ; 𝔢𝑥 , . . . ; 𝔤𝑥𝑦 , . . . nur durch den Faktor 𝜎 von 𝑢′, . . . ;
𝑢′𝑎, . . . ; 𝜀′𝑎, . . . ; 𝛾′

𝑏𝑐 , . . . (in der Bezeichnung von Nr. 6, (6) und Nr. 9, (5)), und
demgemäss wird die Dissipationsfunktion eine quadratische, die Spannungskompo-
nenten also lineare Formen der zeitlichen Ableitungen der Formänderungskompo-
nenten der unendlichkleinen Deformation. W. Voigt159) hat die Abhängigkeiten, die
hier auftreten können, eingehend untersucht.

In naher Beziehung zu diesen Ansätzen stehen die Versuche, die Erscheinungen
der elastischen Nachwirkung im Rahmen der Mechanik der Kontinua theoretisch
zu fassen, die freilich bisher an den grossen Komplex der hier zu umspannenden
Tatsachen noch nicht vollständig herangekommen sind160). Typisch ist hier in erster
Linie der Ansatz L. Boltzmanns161), der den elastischen Spannungskomponenten ein
Zeitintegral von der in Nr 6, (5) erörterten Form hinzufügt; er nimmt dabei — was
natürlich nur für unendlichkleine Deformationen gilt — den Integranden als lineare
Funktion der Formänderungskomponenten Nr. 9, (5) an von analoger Form, wie sie
die Spannungskomponenten im isotropen Medium haben:

(5)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑋𝑥 =

𝑡∫
−∞

[𝑎1 (𝑡 − 𝜏){𝜀𝑎 (𝜏)+ 𝜀𝑏 (𝜏)+𝜀𝑐 (𝜏)} + 2𝑎2 (𝑡 − 𝜏) · 𝜀𝑎 (𝜏)]𝑑𝜏,

𝑋𝑦 =
𝑡∫

−∞
𝑎1 (𝑡 − 𝜏)𝛾𝑎𝑏 (𝜏)𝑑𝜏.

E. Wiechert162) hat diese Formeln durch spezielle Annahmen über die

158 Stokes, a. a. O.156). Vgl. auch IV 15, Love, Nr. 12—14 und für jene Relationen H. Lamb,
Hydrodynamik (deutsche Ausg. Leipzig 1907), § 314.
159 Abhandl. Ges. d. Wiss. Göttingen 36 (1889); Kompendium I, p. 456 ff., 467 ff.; Lehrbuch der
Krystallphysik, Leipzig 1910, p. 792 ff.
160 Vgl. IV 31, Nr. 13 u. 19 (v. Kármán).
161 Ann. d. Phys. u. Chem., Ergänzungsb. 7 (1876), p. 630.
162 Ann. d. Phys. (3) 50 (1893), p. 335.
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Anyway, these stresses are added to the fluid pressure as influence of the internal
friction; often one specifies the two constants in addition with the assumption that the
arithmetic average of the three resulting normal pressures 𝑝 + 𝑋 (1)

𝑥 , 𝑝 +𝑌 (1)
𝑦 , 𝑝 + 𝑍 (1)

𝑧

is equal to 𝑝, what results in 𝑎1 = − 𝑎2
3 158).

In the effective theory of elasticity, so far, one has taken into consideration the
internal friction only for infinitesimal deformations. In this case the quantities 𝔲, . . . ;
𝜕𝔲
𝜕𝑥 , . . . ; 𝔢𝑥 , . . . ; 𝔤𝑥𝑦 , . . . and 𝑢′, . . . ; 𝑢′𝑎, . . . ; 𝜀′𝑎, . . . ; 𝛾′

𝑏𝑐 , . . . (in the notation
of No. 6, (6) and No. 9, (5)) differ only by the factor 𝜎, and accordingly the
dissipation function becomes a quadratic [form and] the stress components [become]
consequently linear forms of the time derivatives of the shape change components of
the infinitesimal deformation. W. Voigt159) has thoroughly studied the dependences
which can occur here.

In close relation to these approaches are the efforts to theoretically conceive the
appearance of the elastic hysteresis in the context of the mechanics of continua,
which however have not reached yet completely the large set of issues being treated
here160). Typically is here in the first place the ansatz of L. Boltzmann161), which adds
to the elastic stress components a time integral of the form as discussed in No. 6, (5);
thereby he assumes — what is certainly only valid for infinitesimal deformations —
the integrand as linear function of the shape change components No. 9, (5) to be of
similar form as the stress components are in the isotropic medium:

(5)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑋𝑥 =

𝑡∫
−∞

[𝑎1 (𝑡 − 𝜏){𝜀𝑎 (𝜏)+ 𝜀𝑏 (𝜏)+𝜀𝑐 (𝜏)} + 2𝑎2 (𝑡 − 𝜏) · 𝜀𝑎 (𝜏)]𝑑𝜏,

𝑋𝑦 =
𝑡∫

−∞
𝑎1 (𝑡 − 𝜏)𝛾𝑎𝑏 (𝜏)𝑑𝜏.

E. Wiechert162) has developed these formulas by special assumptions on the

158 Stokes, op. cit.156). Cf. also IV 15, Love, No. 12—14 and for the latter relation H. Lamb,
Hydrodynamik (German edition Leipzig 1907), § 314.
159 Abhandl. Ges. d. Wiss. Göttingen 36 (1889); Kompendium I, p. 456 ff., 467 ff.; Lehrbuch der
Krystallphysik, Leipzig 1910, p. 792 ff.
160 Cf. IV 31, No. 13 and 19 (v. Kármán).
161 Ann. d. Phys. u. Chem., Ergänzungsb. 7 (1876), p. 630.
162 Ann. d. Phys. (3) 50 (1893), p. 335.
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Funktionen 𝑎1, 𝑎2 von 𝑡 − 𝜏 ausgestaltet. Eine Reihe hierin gehöriger Probleme hat
neuerdings V. Volterra behandelt163) (vgl. S. 641).

Für den Fall bleibender Formänderungen, für plastische Medien also, haben
A. Haar und Th. v. Kármán164) aus ganz andern Gesichtspunkten Ansätze abgeleitet.
Sie gehen aus von dem Variationsprinzip Nr. 7, (23), in dem (vgl. S. 655) für isotrope
Medien 𝐻 die Energiedichte und gleich einer homogenen quadratischen Funktion der
ersten beiden Orthogonalinvarianten der (symmetrischen) Spannungsdyade wird:

(6) 2𝐻 = 𝑎1 (𝑋𝑥 + 𝑌𝑦 + 𝑍𝑧)2 + 𝑎2 (𝑋2
𝑦 + 𝑌2

𝑧 + 𝑍2
𝑥 − 𝑋𝑥𝑌𝑦 − 𝑌𝑦𝑍𝑧 − 𝑍𝑧𝑋𝑥)

Zu diesem Variationsproblem mit seinen drei Nebenbedingungen (23a), Nr. 7 tritt
nun als die für plastische Medien charakteristische Eigenschaft die Bedingung hinzu,
dass die grösste irgendwo auftretende Schubspannung einen festen Wert 𝐾 nicht
überschreitet, d. h. dass die Differenzen je zweier Wurzeln der Gleichung������

𝑋𝑥 − Λ, 𝑋𝑦 , 𝑋𝑧
𝑌𝑥 , 𝑌𝑦 − Λ 𝑌𝑧
𝑍𝑥 , 𝑍𝑦 𝑍𝑧 − Λ

������ = 0

absolut genommen unterhalb 𝐾 bleiben:

(7) |Λ1 − Λ2 | � 𝐾, |Λ2 − Λ3 | � 𝐾, |Λ1 − Λ3 | � 𝐾.

Eine Lösung dieses Variationsproblemes mit drei Gleichungs- und drei Ungle-
ichungsnebenbedingungen wird in verschiedenen Teilgebieten verschiedene Eigen-
schaften haben, je nachdem für sie in den Bedingungen (7) das Gleichheits- oder
Ungleichheitszeichen gilt. Gelten alle drei Ungleichheitszeichen, so kommt man
auf die Gleichgewichtsbedingungen der gewöhnlichen Elastizitätstheorie zurück,
andernfalls kommt man auf neue charakteristische „halbplastische“ oder „vollplas-
tische“ Zustände.

Prinzipiell wäre es ein leichtes, diesen Ansatz auf sandartige Massen (Erddruck-
stheorie) zu übertragen; an Stelle von (7) treten als Nebenbedingungen andere Un-
gleichungen, die ausdrücken, dass die Richtung der Spannung auf jedes Flächenele-
ment nicht ausserhalb eines gewissen „Reibungskegels“ fällt. Indessen fehlt es hier
an sicherer Kenntnis eines Ausdruckes (6) der Verzerrungsenergie, so dass dieser
Ansatz zunächst nur in dem extremen Fall brauchbar ist,

163 Rom. Acc. Linc. Rend. (5) 18, 2 (1909), p. 295, 577; (19) 1 (1910), p. 107, 239; (22) 1 (1913),
p. 529. Acta math. 35 (1912), p. 295.
164 Gött. Nachr., math.-phys. Kl., 1909, p. 212.
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functions 𝑎1, 𝑎2 of 𝑡 − 𝜏. A series of problems, belonging here, has been treated
recently by V. Volterra163) (cf. p. 641).

For the case of remaining shape changes, i. e. for plastic media, A. Haar and
Th. v. Kármán164) have formulated the foundations concerning completely different
aspects. They start with the variational principle No. 7, (23), in which (cf. p. 655) 𝐻
corresponds for isotropic media to the energy density and becomes a homogeneous
quadratic function of the first two orthogonal invariants of the (symmetric) stress
dyad:

(6) 2𝐻 = 𝑎1 (𝑋𝑥 + 𝑌𝑦 + 𝑍𝑧)2 + 𝑎2 (𝑋2
𝑦 + 𝑌2

𝑧 + 𝑍2
𝑥 − 𝑋𝑥𝑌𝑦 − 𝑌𝑦𝑍𝑧 − 𝑍𝑧𝑋𝑥)

To this variational problem with its three constraints (23a), No. 7, as characteristic
property for plastic media, now the condition is added, that the largest shear stress
appearing somewhere does not exceed a constant value 𝐾 , i. e. that the differences
between each of two roots of the equation������

𝑋𝑥 − Λ, 𝑋𝑦 , 𝑋𝑧
𝑌𝑥 , 𝑌𝑦 − Λ 𝑌𝑧
𝑍𝑥 , 𝑍𝑦 𝑍𝑧 − Λ

������ = 0

remain in absolute value below 𝐾:

(7) |Λ1 − Λ2 | � 𝐾, |Λ2 − Λ3 | � 𝐾, |Λ1 − Λ3 | � 𝐾.

A solution of this variational problem with three equality and three inequality con-
straints will have various properties in various cases, depending on whether in the
conditions (7) the equalities or inequalities hold. If all three inequalities hold, then
one comes back to the common theory of elasticity, otherwise one arrives at the
newly characteristic “semi-plastic” or “fully-plastic” states.

Basically, it would be a simple task to transfer this ansatz to sandy matter (theory
of lateral earth pressure); in place of (7) other inequalities appear as constraints[.
Inequalities] which express that the direction of the stress at every surface element
lies not outside a certain “cone of friction”. Meanwhile, there is missing here reliable
information about the expression (6) of the deformation energy, such that this ansatz
is so far only useful in the extreme case,

163 Rom. Acc. Linc. Rend. (5) 18, 2 (1909), p. 295, 577; (19) 1 (1910), p. 107, 239; (22) 1 (1913),
p. 529. Acta math. 35 (1912), p. 295.
164 Gött. Nachr., math.-phys. Kl., 1909, p. 212.
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wo zwei der Ungleichheitsnebenbedingungen als Gleichungen erfüllt sind; dann
resultieren nämlich Differentialgleichungen, die von der speziellen Form des En-
ergieausdruckes unabhängig sind165).

12. Kapillarität. Die Phänomene der Kapillarität enthalten den zuletzt betra-
chteten Erscheinungen gegenüber insofern ein wesentlich neues Moment, als sie an
das Auftreten von Grenzflächen verschiedenartiger Medien gegeneinander geknüpft
sind. Demgemäss wird man, sofern man an der Existenz eines Potentiales festhält,
die Kapillaritätswirkungen aus einem Potentialbestandteil der Gestalt (6) von Nr. 7a,
nämlich einem Integral über jene Grenzflächen herleiten:

(1) Φ =

∬
(𝑆)

𝜓 𝑑𝑆 =

∬
(𝑆0)

𝜓 𝑑𝑆0.

Der Ansatz für𝜓, den Gauss166) durch den oben (S. 647)93) angedeuteten Grenzüber-
gang hergeleitet hat, ist, dass𝜓 nur von der Beschaffenheit der aneinandergrenzenden
Medien, nicht von den Deformationsfunktionen abhängt; dann wird, falls nur homo-
gene Medien auftreten, Φ gleich einem linearen Aggregat der Inhalte 𝑆1, 𝑆2, . . . der
verschiedenen Grenzflächen (im deformierten Zustande)167):

(2) Φ = 𝐶1𝑆1 + 𝐶2𝑆2 + · · · .

Die Umformung von 𝛿Φ auf die Gestalt Nr. 3e, (15) ergibt die folgenden Wirkungen:
eine innerhalb der Fläche 𝑆𝑖 senkrecht zu jedem Linienelement 𝑑𝑠 wirkende Span-
nung 𝐶𝑖𝑑𝑠, die nur an den Grenzkurven der Flächenteile 𝑆𝑖 , zur Geltung kommt, und
eine normal zu jedem inneren Flächenelement gerichtete und bis auf den Faktor 2𝐶𝑖
seiner mittleren Krümmung gleiche Druckkraft.168)

Will man den Ansatz (1) enger mit der sonst im Vordergrunde stehenden Vorstel-
lung räumlicher Verteilung der Energie verknüpfen, als es durch die S. 646 erwähnte
rechnerische Transformation des Flächenintegrales in ein Raumintegral geschehen
kann, so gelingt das

165 Haar u. v. Kármán a. a. O.164), S. 217. Über die Erddrucktheorie vgl. IV 27 (Reissner), im
übrigen ausser der dort gegebenen Litteratur auch J. Sylvester Phil. Mag. (4) 20 (1860), p. 489
= Collected Papers, vol. 2, Cambridge 1908, p. 215 und J. Massau, Mémoire sur l’intégration
graphique des équations aux dérivées partielles, fasc. 2 et 3. Mons 1902 und 1904. (Extrait des
Annales des Ingénieurs sortis des Écoles spéciales de Gand.)
166 C. F. Gauss, Princ. generalia theoriae figurae fluiderum Comment. soc. reg. scient. Gotting.
recent. 7 (1830) = Werke V, p. 29.
167 A. a. O. Nr. 18.
168 Vgl. die ausführliche Darstellung dieser Entwicklung in V 9, Nr. 2 ff. (Minkowski).
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where two of the inequality constraints hold as equality; then [this] results namely
in differential equations which are independent of the special form of the energy
expression165).

12. Capillarity. The phenomena of capillarity include in contrast to the lastly
considered phenomena insofar an essential new aspect, as they are related to the
occurrence of interfaces of various media against each other. Hence, one will, as
long as one holds on to the existence of a potential, derive the effects of capillarity
from a potential constituent of the form (6) of No. 7a, namely from an integral over
those interfaces:

(1) Φ =

∬
(𝑆)

𝜓 𝑑𝑆 =

∬
(𝑆0)

𝜓 𝑑𝑆0.

The ansatz for 𝜓, which Gauss166) has derived by the above (p. 647)93) mentioned
limit process, is, that 𝜓 depends not on the deformation functions but only on the
constitution of the media adjacent to one another; then, when only homogeneous
media occur, Φ is equal to a linear aggregate of the areas 𝑆1, 𝑆2, . . . of the various
interfaces (in the deformed state)167):

(2) Φ = 𝐶1𝑆1 + 𝐶2𝑆2 + · · · .

The transformation of 𝛿Φ into the form No. 3e, (15) leads to the following efforts:
a stress 𝐶𝑖𝑑𝑠 which appears only on the boundary curves of the surface patches 𝑆𝑖
[and which] acts within the surface 𝑆𝑖 orthogonally to every line element 𝑑𝑠, and a
pressure force, oriented normally to each internal surface element, [which is] up to
the factor 2𝐶𝑖 equal to its mean curvature.168)

If one likes to relate the ansatz (1) closer to the usually prior perception of a
spatially distributed energy, as it can be achieved by the computational transformation
of the surface integral into a volume integral mentioned on p. 646, then one succeeds

165 Haar and v. Kármán op. cit.164), p. 217. On the theory of lateral earth pressure cf. IV 27
(Reissner), besides the literature given there [cf.] also J. Sylvester Phil. Mag. (4) 20 (1860), p. 489
= Collected Papers, vol. 2, Cambridge 1908, p. 215 and J. Massau, Mémoire sur l’intégration
graphique des équations aux dérivées partielles, fasc. 2 et 3. Mons 1902 and 1904. (Extrait des
Annales des Ingénieurs sortis des Écoles spéciales de Gand.)
166 C. F. Gauss, Princ. generalia theoriae figurae fluiderum Comment. soc. reg. scient. Gotting.
recent. 7 (1830) = Werke V, p. 29.
167 Op. cit. No. 18.
168 Cf. the extensive presentation of this derivation in V 9, No. 2 ff. (Minkowski).
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mit Hilfe eines Grenzüberganges, der dem in Nr. 8 zu verwandten Zwecken benutzten
analog ist.169) Beschränkt man sich der Einfachheit halber auf ein System von zwei
durch die Fläche S getrennten Medien, die die Raumteile 𝑉1, 𝑉2 erfüllen, so kann
man an seine Stelle setzen den den tatsächlichen Verhältnissen näher kommenden
Fall eines Kontinuums, dessen Zustand sich stetig, aber in der Nähe von S ausseror-
dentlich rasch ändert und das als abstrakten Grenzfall jenes System aus zwei Medien
einschließt. Die Energiedichte 𝜑 eines solchen Mediums wird (vgl. Nr. 7a, S. 645)
auch von den lokalen Ableitungen der Deformationsgrössen, d. h. von den zweiten
Ableitungen der Funktionen 𝑥(𝑎, 𝑏, 𝑐), . . . abhängen; man wird diese Abhängigkeit
nur in einem kleinen 𝑆 umschliessenden Gebiete 𝑉 (𝜀) zu berücksichtigen brauchen,
während in den Restgebieten 𝑉 (𝜀)

1 und 𝑉 (𝜀)
2 die Betrachtung der Abhängigkeit von

den Deformationsgrössen erster Ordnung genügt. Approximiert man nun mit dem
so beschriebenen Kontinuum das ursprüngliche System, indem man 𝑉 (𝜀) sich unbe-
grenzt um 𝑆 zusammenziehen und gleichzeitig𝑉 (𝜀)

1 ,𝑉 (𝜀)
2 gegen𝑉1,𝑉2 konvergieren

lässt, so wird in der Grenze bei passender Verfügung über 𝜑 im Gesamtpotential
neben dem räumlichen Potential von 𝑉1 und 𝑉2 gerade ein Flächenintegral vom
Typus (1) auftreten. Lässt man speziell, was von dem Ansatz Nr. 10, (1) der Hydro-
dynamik aus naheliegt, 𝜑 innerhalb𝑉 (𝜀) von der Ableitung 𝜕𝜚

𝜕𝑛 der Dichte normal zu
einem 𝑉 (𝜀) erfüllenden System von Parallelflächen zu 𝑆 abhängen, setzt also etwa
𝜑 = 𝐶 · 𝜕𝜚𝜕𝑛 , so tritt im Limes

𝐶 ·
∬
(𝑆)

(𝜚1 − 𝜚2)𝑑𝑆

zum Potential hinzu, wobei 𝜚1, 𝜚2 die Randwerte der Dichte in 𝑉1, 𝑉2 sind — d. i.
bei konstanten Dichten gerade die Form (2). Für die genaue Durchführung dieses
Ansatzes ist natürlich wieder (vgl. S. 660) Vorbedingung, dass die Gleichgewicht-
slage des approximierenden Systems in ihrer Abhängigkeit von dem Parameter 𝜀
untersucht ist.

13. Optik. Um die optischen Erscheinungen dem Schema der allgemeinen
Mechanik der Kontinua einzufügen, sieht man bekanntlich die Komponenten 𝑢, 𝑣, 𝑤
des Lichtvektors als Verschiebungskomponenten der Teilchen eines deformierbaren
raumerfüllenden Me-

169 Für die folgende Darstellung vgl. eine Bemerkung am Anfang der Nr. 5 in H. Minkowskis Referat
V 9; den gleichen Weg hat D. Hilbert in einer Göttinger Vorlesung im W.-S. 1906/07 eingeschlagen.
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with the help of a limit process, which is similar to the one being used in No. 8 for
related purposes.169) By restricting oneself for the sake of simplicity to a system with
two media divided by a surface 𝑆, [media] which occupy the spatial parts𝑉1,𝑉2, one
can substitute [the system] with one continuum representing the actual circumstances
better[. One continuum] whose state changes continuously, but in the neighborhood
of 𝑆 extraordinary fast and which includes as an abstract limit the system of the two
media. The energy density 𝜑 of such a medium (cf. No. 7a, p. 645) will depend also
on the local derivatives of the deformation quantities, i. e. on the second derivatives
of the functions 𝑥(𝑎, 𝑏, 𝑐), . . . ; one will need to consider this dependence only in
a small region 𝑉 (𝜀) which surrounds 𝑆, while in the remaining domains 𝑉 (𝜀)

1 and
𝑉 (𝜀)

2 the consideration of the dependence on the deformation quantities of first order
is enough. If one approximates now with such a described continuum the original
system, by contracting 𝑉 (𝜀) around 𝑆 indefinitely and simultaneously by letting
𝑉 (𝜀)

1 , 𝑉 (𝜀)
2 converge to 𝑉1, 𝑉2, then by appropriately controlling 𝜑 there will appear

in the total potential besides the spatial potential 𝑉1 and 𝑉2 just a surface integral
of the kind (1). If within 𝑉 (𝜀) , what from the ansatz No. 10, (1) of hydrodynamics
immediately suggests itself, one specially lets 𝜑 depend on the derivatives 𝜕𝜚

𝜕𝑛 of
the density normal to a system of parallel surfaces to 𝑆 occupying 𝑉 (𝜀) , by setting
something like 𝜑 = 𝐶 · 𝜕𝜚𝜕𝑛 , then in the limit

𝐶 ·
∬
(𝑆)

(𝜚1 − 𝜚2)𝑑𝑆

is added to the potential, whereby 𝜚1, 𝜚2 are the boundary conditions of the densities
in𝑉1,𝑉2 — this corresponds for constant densities just to the form (2). For the specific
computation of this Ansatz, certainly there is again (cf. p. 660) the assumption, that
the dependence of the equilibrium position of the approximated system on the
parameter 𝜀 is studied.

13. Optics. In order to introduce the optical phenomena within the scheme of
the general mechanics of continua, one considers as is well known the components
𝑢, 𝑣, 𝑤 of the light vector as displacement components of particles of a deformable
space-occupying me-

169 For the following presentation cf. a note at the beginning of No. 5 in H. Minkowskis paper V
9; the same procedure has been followed by D. Hilbert in a Göttinger Vorlesung in the winter term
1906/07.
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diums (Lichtäther) an; es genügt für die Zwecke der Optik, wenn man sich dabei
auf unendlichkleine Deformation beschränkt.170) Bei dieser Auffassung ist es aber
keinesfalls erforderlich, dem Lichtäther — wie in der eigentlichen elastischen
Lichttheorie — die Eigenschaften eines elastischen Mediums im engeren Sinne
zuzuschreiben; vielmehr erhält man die richtigen Formeln der Optik gerade dann
in einfachster Weise, wenn man nicht den Komponenten der reinen Formänderung
(Nr. 9, (5)), sondern denen der Rotation der Volumelemente

(1) 1
2𝜉 =

1
2

( 𝜕𝑤
𝜕𝑏

− 𝜕𝑣

𝜕𝑐

)
, 1

2𝜂 =
1
2

( 𝜕𝑢
𝜕𝑐

− 𝜕𝑤

𝜕𝑎

)
, 1

2 𝜁 =
1
2

( 𝜕𝑣
𝜕𝑎

− 𝜕𝑢

𝜕𝑏

)
die bestimmende Rolle für den Wert der Deformationsenergie zuschreibt. Diesen
Gedanken hat zuerst J. Mac Cullagh171) durchgeführt, und es gelang ihm auf diese
Weise nicht nur, die Differentialgleichungen, sondern auch — über die elastische
Lichttheorie hinaus — die richtigen Grenzbedingungen der Optik zu gewinnen.

Für isotrope durchsichtige Medien besteht Mac Cullaghs Ansatz darin, im
Lichtäther eine Energiedichte proportional dem Quadrate des Betrages des Rota-
tionsvektors (1) anzunehmen172):

(2) 𝜑 =
1
2
𝐴(𝜉2 + 𝜂2 + 𝜁2) = 1

2
𝐴

∑
( 𝑎𝑏𝑐
𝑢𝑣𝑤)

(𝑤𝑏 − 𝑣𝑐)2.

Dann folgt aus Nr. 9, (6) für die Spannungskomponenten

𝑋𝑎 = 𝑌𝑏 = 𝑍𝑐 = 0
𝑍𝑏 = −𝑌𝑐 = 𝐴𝜉, 𝑋𝑐 = −𝑍𝑎 = 𝐴𝜂, 𝑌𝑎 = −𝑋𝑏 = 𝐴𝜁,

und die Gleichungen Nr. 5, (2) für den Bewegungszustand lauten daher

(3a) 𝜚𝑢′′ = 𝐴
( 𝜕𝜂
𝜕𝑐

− 𝜕𝜁

𝜕𝑏

)
= 𝐴

(
Δ𝑢 − 𝜕 (𝑢𝑎 + 𝑣𝑏 + 𝑤𝑐)

𝜕𝑎

) (
𝑢,𝑣,𝑤
𝑎, 𝑏, 𝑐
𝜉 ,𝜂,𝜁

)
;

das sind, wenn man noch die Bedingung 𝑢𝑎 + 𝑣𝑏 + 𝑤𝑐 = 0 der Inkompressibil-
ität hinzufügt, genau die Schwingungsgleichungen der Optik. Ebenso aber sind die
Randbedingungen der Optik in den Randbedingungen enthalten, die sich analog
Nr. 3c, (5b) ergeben und die z. B. für die Grenzfläche zweier Medien mit verschiede-
nen Konstanten 𝐴

170 Von der Hinzufügung des unendlichkleinen Faktors 𝜎 wird im folgenden der Kürze halber
abgesehen.
171 Mac Cullagh, An essay towards a dynam. theory of cryst. reflexion and refraction, Trans. Roy.
Irish Acad., 21 (1839) = Coll. Works (Dublin 1880), p. 145. — Vgl. auch V 21, Nr. 24 (Wangerin)
und V 22, Nr. 1 (W. Wien).
172 Vgl. auch die Darstellung von W. Voigt, Kompendium II, p. 563.



3 Hellinger’s encyclopedia article 253

dium (light ether); it is enough for the purposes of optics to restrict oneself thereby
to infinitesimal deformations.170) For this perception it is not at all necessary, to
attribute to the light ether — as in the effective elastic theory of light — the property
of an elastic medium in the narrower sense; on the contrary one obtains the correct
formulas of optics just then in the most simple way, when one does not attribute to
the components of the pure shape change (No. 9, (5)) but to the one of the rotation
of the volume elements

(1) 1
2𝜉 =

1
2

( 𝜕𝑤
𝜕𝑏

− 𝜕𝑣

𝜕𝑐

)
, 1

2𝜂 =
1
2

( 𝜕𝑢
𝜕𝑐

− 𝜕𝑤

𝜕𝑎

)
, 1

2 𝜁 =
1
2

( 𝜕𝑣
𝜕𝑎

− 𝜕𝑢

𝜕𝑏

)
the determining role for the value of the deformation energy. This idea originates
from J. Mac Cullagh171), and he succeeded in this manner not only to achieve the
differential equations, but also — beyond the elastic theory of light — [to achieve]
the correct boundary conditions of optics.

For isotropic transparent media Mac Cullagh’s Ansatz lies therein to assume an
energy density proportional to the squares of the absolute value of the rotation vector
(1) within the light ether172):

(2) 𝜑 =
1
2
𝐴(𝜉2 + 𝜂2 + 𝜁2) = 1

2
𝐴

∑
( 𝑎𝑏𝑐
𝑢𝑣𝑤)

(𝑤𝑏 − 𝑣𝑐)2.

Then it follows from No. 9, (6) for the stress components

𝑋𝑎 = 𝑌𝑏 = 𝑍𝑐 = 0
𝑍𝑏 = −𝑌𝑐 = 𝐴𝜉, 𝑋𝑐 = −𝑍𝑎 = 𝐴𝜂, 𝑌𝑎 = −𝑋𝑏 = 𝐴𝜁,

and the equations No. 5, (2) for the motion reads therefore as

(3a) 𝜚𝑢′′ = 𝐴
( 𝜕𝜂
𝜕𝑐

− 𝜕𝜁

𝜕𝑏

)
= 𝐴

(
Δ𝑢 − 𝜕 (𝑢𝑎 + 𝑣𝑏 + 𝑤𝑐)

𝜕𝑎

) (
𝑢,𝑣,𝑤
𝑎, 𝑏, 𝑐
𝜉 ,𝜂,𝜁

)
;

which are, when one adds the condition 𝑢𝑎 + 𝑣𝑏 + 𝑤𝑐 = 0 of the incompressibility,
precisely the oscillation equations of optics. Likewise, the boundary conditions of
optics are included in the boundary conditions, which are obtained similarly to
No. 3c, (5b) and which express for instance for the interface between two media with
different constants 𝐴,

170 In what follows, we refrain for the sake of brevity from adding the infinitesimal factor 𝜎.
171 Mac Cullagh, An essay towards a dynam. theory of cryst. reflexion and refraction, Trans. Roy.
Irish Acad., 21 (1839) = Coll. Works (Dublin 1880), p. 145. — Cf. also V 21, No. 24 (Wangerin)
and V 22, No. 1 (W. Wien).
172 Cf. also the presentation of W. Voigt, Kompendium II, p. 563.
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aussagen, dass die für beide gebildeten Ausdrücke

(3b) 𝐴(𝜂 cos 𝑛𝑐 − 𝜁 cos 𝑛𝑏)
(𝜉, 𝜂, 𝜁
𝑎, 𝑏, 𝑐

)
übereinstimmen.

Das Integral der Energiedichte (2) gestattet eine Transformation, der zufolge es
bis auf Randintegrale mit dem Raumintegral von

1
2
𝐴

∑
(𝑢𝑣𝑤
𝑎 𝑏 𝑐)

{(𝑤𝑏 + 𝑣𝑐)2 − 4𝑣𝑏𝑤𝑐

}
übereinstimmt, d. i. aber die Energiedichte eines rein elastischen isotropen Mediums,
dessen Lameésche Konstanten 𝜆, 𝜇 in der Beziehung 𝜆 = −2𝜇 = −2𝐴 stehen. Ein
Medium dieser Konstitution gerade hat W. Thomson (Lord Kelvin) zur Erklärung der
optischen Phänomene herangezogen173)

Mac Cullagh hat seinen Ansatz insbesondere für die Optik kristallinischer Medien
durchgeführt, indem er 𝜑 gleich einer quadratischen Form von 𝜉, 𝜂, 𝜁 (mit konstanten
Koeffizienten)174) setzt:

(4) 2𝜑 = 𝐴11𝜉
2 + 2𝐴12𝜉𝜂 + · · · + 2𝐴23𝜂𝜁 + 𝐴33𝜁

2.

Ganz analog wie oben folgen dann als Differentialgleichungen

(4a) 𝜚𝑢′′ =
𝜕H
𝜕𝑐

− 𝜕Z
𝜕𝑏

, wo Ξ =
𝜕𝜑

𝜕𝜉

(
Ξ, H, Z
𝑢, 𝑣, 𝑤

; 𝜉, 𝜂, 𝜁
𝑎, 𝑏, 𝑐

)
während in den Randbedingungen die Ausdrücke auftreten:

(4b) H cos 𝑛𝑐 − Z cos 𝑛𝑏.
(
Ξ, H, Z
𝑎, 𝑏, 𝑐

)
E. und F. Cosserat haben darauf hingewiesen175), daß ihr „Euklidisches Potential“

auch diese Mac Cullaghschen Ansätze umfaßt.
Man kann auf dieser Grundlage versuchen, durch Erweiterung des Poten-

tialansatzes nach einer der in Nr. 7 erörterten Richtungen die sämtlichen für die
verschiedenen optischen Probleme notwendigen Gleichungen zu umfassen; in dieser
Weise ist W. Voigt in seinem Kompendium176) systematisch vorgegangen.

In erster Linie gewinnt er den Übergang zu der Abhängigkeit der optischen Er-
scheinungen von der Farbe (Schwingungsdauer 𝜏), indem

173 W. Thomson, Phil. Mag. (5) 26 (1888), p. 414 ff. Vgl. auch V 21, Nr. 31 (Wangerin).
174 Vgl. Mac Cullagh, works171), p. 156, wo (4) sogleich auf eine Summe von Quadraten transformiert
erscheint. Siehe auch die Darstellung in P. Volkmann, Vorles. über die Theorie des Lichtes, Leipzig
1891, p. 260, 294.
175 E. und F. Cosserat, Corps déform., p. 151.
176 S. namentlich V. Teil (Optik), § 7 (Bd. II, p. 563 ff.) sowie Kap. II, III dieses Teiles und vgl. auch
II. Teil, § 34 (Band I, p. 486 ff.), wo die Kraftwirkungen direkt ohne Vermittlung eines Potentiales
angesetzt werden.
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that both generated expressions

(3b) 𝐴(𝜂 cos 𝑛𝑐 − 𝜁 cos 𝑛𝑏)
(𝜉, 𝜂, 𝜁
𝑎, 𝑏, 𝑐

)
coincide.

The integral of the energy density (2) allows for a transformation, by virtue of
which [the result] coincides up to a boundary integral with the volume integral of

1
2
𝐴

∑
(𝑢𝑣𝑤
𝑎 𝑏 𝑐)

{(𝑤𝑏 + 𝑣𝑐)2 − 4𝑣𝑏𝑤𝑐

}
,

but this is the energy density of a purely elastic isotropic medium, whose Lamé
parameters 𝜆, 𝜇 are related according to 𝜆 = −2𝜇 = −2𝐴. W. Thomson (Lord Kelvin)
has used a medium of just this constitution for the explanation of optical phenom-
ena173)

Mac Cullagh has carried out his ansatz in particular for the optics of crystalline
media, by setting 𝜑 equal to a quadratic form of 𝜉, 𝜂, 𝜁 (with constant coefficients)174):

(4) 2𝜑 = 𝐴11𝜉
2 + 2𝐴12𝜉𝜂 + · · · + 2𝐴23𝜂𝜁 + 𝐴33𝜁

2.

Completely analogous as above the differential equations follow as

(4a) 𝜚𝑢′′ =
𝜕H
𝜕𝑐

− 𝜕Z
𝜕𝑏

, where Ξ =
𝜕𝜑

𝜕𝜉

(
Ξ, H, Z
𝑢, 𝑣, 𝑤

; 𝜉, 𝜂, 𝜁
𝑎, 𝑏, 𝑐

)
while in the boundary conditions the [subsequent] expressions appear:

(4b) H cos 𝑛𝑐 − Z cos 𝑛𝑏.
(
Ξ, H, Z
𝑎, 𝑏, 𝑐

)
E. und F. Cosserat have indicated175), that their “euclidean potential” includes

also these fundamental approaches of Mac Cullagh.
Based on this foundation, one can try, with an enhancement of the potential-based

approach according to the direction discussed in No. 7, to include all equations re-
quired for the various optical problems; in this way W. Voigt proceeded systematically
in his Kompendium.176)

In the first place, he gains the transition to the dependence of the optical appear-
ance of the color (oscillation duration 𝜏), by

173 W. Thomson, Phil. Mag. (5) 26 (1888), p. 414 ff. Cf. also V 21, No. 31 (Wangerin).
174 Cf. Mac Cullagh, works171), p. 156, where (4) readily emerges as a sum of squares. See also the
presentation in P. Volkmann, Vorles. über die Theorie des Lichtes, Leipzig 1891, p. 260, 294.
175 E. und F. Cosserat, Corps déform., p. 151.
176 See particularly V. Teil (Optik), § 7 (Bd. II, p. 563 ff.) as well as Kap. II, III of this part and cf.
also II. Teil, § 34 (Band I, p. 486 ff.), where the force effects are formulated directly without the
communication of a potential.
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er den Gliedern von (4) ebenso gebildete quadratische Formen der zeitlichen
Ableitungen 𝜉 ′, 𝜂′, 𝜁 ′ oder 𝜉 ′′, 𝜂′′, 𝜁 ′′ usw. hinzufügt, freilich unter gleichzeitiger
Beschränkung darauf, dass der Lichtvektor durchweg Sinusschwingungen mit der
Periode 𝜏 ausführt. Er verwendet nun das Hamiltonsche Prinzip in der Form Nr. 7,
(25), und kann durch partielle Integration nach der Zeit diese Zusatzglieder derart
umformen177), dass schliesslich wiederum eine quadratische Form von 𝜉, 𝜂, 𝜁 genau
wie (4) die Stelle der Energiedichte einnimmt, nur daß ihre Koeffizienten 𝐴 nun
Funktionen von 𝜏 sind; die Art dieser Funktionen hängt von dem Medium ab und
bestimmt sein Verhalten gegenüber den verschiedenen Farben.

In ähnlicher Weise zieht Voigt auch quadratische mit zeitlichen Ableitungen ver-
schiedener Ordnung der 𝜉, 𝜂, 𝜁 gebildete Terme heran und zeigt, dass man sie auf
einen wesentlich neuen charakteristischen Bestandteil der Energiedichte zurück-
führen kann:

(5) 𝐵1 (𝜁 ′𝜂 − 𝜂′𝜁) + 𝐵2 (𝜉 ′𝜁 − 𝜁 ′𝜉) + 𝐵3 (𝜂′𝜉 − 𝜉 ′𝜂);

dabei sind 𝐵1, 𝐵2, 𝐵3 gegebene Konstanten oder Funktionen von 𝜏.178) Die Zusatzglie-
der, die hiernach zu den Differentialgleichungen und Randbedingungen zu treten
haben, sind den allgemeinen Formeln leicht zu entnehmen; sie beschreiben die
Veränderung, die die Lichtbewegung durch ein magnetisches Feld erleidet (mag-
netische Aktivität), und zwar hängen die Grössen 𝐵, die sich wie Komponenten
eines axialen Vektors transformieren, von der Lage der magnetischen Axe an der
betrachteten Stelle und der magnetischen Feldstärke ab.179)

An dritter Stelle zieht Voigt endlich noch Aggregate von Produkten aus je einer
zeitlichen Ableitung von 𝑢, 𝑣, 𝑤 selbst und einer von 𝜉, 𝜂, 𝜁 in Betracht. Auch sie
haben, wie durch ähnliche Umformungen gezeigt wird180), das Auftreten einfacherer
Glieder im Ausdruck der virtuellen Arbeit zur Folge, für die typisch ist

(6) 𝐶 (𝑢𝛿𝜉 + 𝑣𝛿𝜂 + 𝑤𝛿𝜁).

Die Differentialgleichungen hierzu sind leicht herzustellen; sie liefern die Phänomene
in den natürlich aktiven Medien.181)

Mac Cullagh selbst hatte diese Medien gleichfalls in seine Betrachtungen einbe-
zogen, indem er der Energiedichte ein Ableitungen

177 A. a. O. 176), p. 569.
178 A. a. O. p. 568 ff.
179 A. a. O. p. 572, 679 ff.
180 A. a. O. p. 572 ff.
181 A. a. O. p. 574, 687 ff.
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adding to the terms of (4) equally generated quadratic forms of the time derivatives
𝜉 ′, 𝜂′, 𝜁 ′ or 𝜉 ′′, 𝜂′′, 𝜁 ′′ and so on, certainly with the simultaneous restriction that
the light vector realizes throughout sine oscillations with period 𝜏. Now he uses
Hamilton’s principle in the form No. 7, (25), and by integration by parts with respect
to time he can transform this additional terms such177), that eventually again a
quadratic form of 𝜉, 𝜂, 𝜁 just like (4) acquires the position of the energy density, save
that their coefficients 𝐴 are now functions of 𝜏; The type of these functions depend
on the medium and determine its behavior with respect to different colors.

In a similar way Voigt uses also quadratic terms formed with time derivatives of
different orders of 𝜉, 𝜂, 𝜁 and shows, that one can reduce them to one essentially new
characteristic constituent of the energy density:

(5) 𝐵1 (𝜁 ′𝜂 − 𝜂′𝜁) + 𝐵2 (𝜉 ′𝜁 − 𝜁 ′𝜉) + 𝐵3 (𝜂′𝜉 − 𝜉 ′𝜂);

thereby 𝐵1, 𝐵2, 𝐵3 are given constants or functions of 𝜏.178) The additional terms,
which appear consequently in the differential equations and the boundary conditions,
are extracted easily from the general formulas; they describe the change, which
the motion of light undergoes under [the influence] of a magnetic field (magnetic
activity), and indeed, the quantities 𝐵, which transform like the components of an
axial vector, depend on the position of the magnetic axis at the considered position
and the magnetic field strength.179)

In the third place, Voigt considers finally also aggregates of products between a
first time derivative of 𝑢, 𝑣, 𝑤 and one of 𝜉, 𝜂, 𝜁 . Also they have, which is shown by
similar transformations180), as a result the appearance of more simple terms in the
expression of the virtual work, for which it is typical [that]

(6) 𝐶 (𝑢𝛿𝜉 + 𝑣𝛿𝜂 + 𝑤𝛿𝜁).

The differential equations hereto are easily obtained; they provide the phenomena of
the naturally active media.181)

Mac Cullagh himself has considered these media in the same way, by giving the
energy density an additional term

177 Op. cit.176), p. 569.
178 Op. cit. p. 568 ff.
179 Op. cit. p. 572, 679 ff.
180 Op. cit. 572 ff.
181 Op. cit. p. 574, 687 ff.
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zweiter Ordnung enthaltendes Zusatzglied gab

(6′)
1
2
𝐶

∑
(𝑢𝑣𝑤

𝜉 𝜂 𝜁)
𝜉
( 𝜕2𝑢

𝜕𝑎2 + 𝜕2𝑢

𝜕𝑏2 + 𝜕2𝑢

𝜕𝑐2

)
.

Dann erhalten die Differentialgleichungen Ableitungen dritter statt wie bei Voigt
erster Ordnung als Zusatzglieder.182)

Den Übergang zu absorbierenden Medien gewinntVoigt, indem er unter Her-
anziehung einer als quadratische Form der Ableitungen 𝜉 ′, 𝜂′, 𝜁 ′ gegebenen Dissi-
pationsfunktion (Nr. 7f, S. 657, Nr. 11, S. 671)

(7) 2𝐷 = 𝑚11𝜉
′2 + 2𝑚12𝜉

′𝜂′ + · · · + 𝑚33𝜉
′2 (𝑠𝑜𝑙𝑙𝑡𝑒𝜁 𝑠𝑒𝑖𝑛)

der virtuellen Arbeit

(7a) −
( 𝜕𝐷
𝜕𝜉 ′

𝛿𝜉 + 𝜕𝐷

𝜕𝜂′
𝛿𝜂 + 𝜕𝐷

𝜕𝜁 ′
𝛿𝜁

)
hinzufügt; das bewirkt einfach ein Hinzutreten der Komplexe 𝜕𝐷

𝜕𝜉 ′ , . . . zu den Ξ, . . .
in den Formeln (4a), (4b).183)

Während alle diese Betrachtungen den Ausdruck der potentiellen Energie be-
treffen, kann man ebenso auch versuchen, Verallgemeinerungen des einfachsten
Ausdruckes 1

2 𝜚(𝑢′2 + 𝑣′2 + 𝑤′2) der kinetischen Energie, wie sie in Nr. 5d diskutiert
sind, in der Optik zu benutzen. In dieser Richtung liegt der bereits erwähnte Ansatz
von J. W. Strutt (Lord Rayleigh)184), die kinetische Energie pro Volumelement des
Lichtäthers als allgemeine quadratische Form der Geschwindigkeiten 𝑢′, 𝑣′, 𝑤′ anzu-
nehmen; dabei treten dann auf den linken Seiten der optischen Gleichungen lineare
Kombinationen der Beschleunigungen 𝑢′′, 𝑣′′, 𝑤′′ auf.

14. Beziehungen zur Elektrodynamik. Die Grundgleichungen der Elektrody-
namik sind ihrer Form nach bekanntlich im wesentlichen in den optischen Grund-
gleichungen und damit in dem allgemeinen Schema der Mechanik der Kontinua en-
thalten. Deutet man nämlich, um nur vom isotropen Medium zu reden, die zeitlichen
Ableitungen der Komponenten 𝑢, 𝑣, 𝑤 des soeben betrachteten Lichtvektors bis auf
einen konstanten Faktor als Vektor der elektrischen Feldstärke 𝔈:

𝑢′ = 𝛾1𝔈𝑎, 𝑣′ = 𝛾1𝔈𝑏 , 𝑤′ = 𝛾1𝔈𝑐 ,

und ebenso die Komponenten der Rotation eines Volumelements als

182 Mac Cullagh, Proc. R. Irish Ac. II (1841), p. 96 = Works, p. 187. Vgl. auch P. Volkmann, Theorie
des Lichtes, p. 414 ff.
183 A. a. O. p. 575 f., 708 ff.
184 J. W. Strutt, Phil Mag. (4) 41—43 (1871, 1872). Vgl. auch V 21, Nr. 29 (Wangerin).
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containing derivatives of second order

(6′)
1
2
𝐶

∑
(𝑢𝑣𝑤

𝜉 𝜂 𝜁)
𝜉
( 𝜕2𝑢

𝜕𝑎2 + 𝜕2𝑢

𝜕𝑏2 + 𝜕2𝑢

𝜕𝑐2

)
.

Then the differential equations obtain as additional terms derivatives of third instead
of first order as in Voigt.182)

Voigt gains the transition to absorbing media, by using a dissipation function
(No. 7f, p. 657, No. 11, p. 671) given as a quadratic form of derivatives 𝜉 ′, 𝜂′, 𝜁 ′

(7) 2𝐷 = 𝑚11𝜉
′2 + 2𝑚12𝜉

′𝜂′ + · · · + 𝑚33𝜉
′2 (𝑠𝑜𝑙𝑙𝑡𝑒𝜁 𝑠𝑒𝑖𝑛)

[and] adding to the virtual work

(7a) −
( 𝜕𝐷
𝜕𝜉 ′

𝛿𝜉 + 𝜕𝐷

𝜕𝜂′
𝛿𝜂 + 𝜕𝐷

𝜕𝜁 ′
𝛿𝜁

)
;

this leads simply to the addition of the complexes 𝜕𝐷
𝜕𝜉 ′ , . . . to the Ξ, . . . in the

formulas (4a), (4b).183)
While all this considerations concern the expression of the potential energy,

one can likewise try to use in optics generalizations of the most simple expression
1
2 𝜚(𝑢′2 + 𝑣′2 + 𝑤′2) of the kinetic energy, as they are discussed in No. 5d. In this
direction lies the already mentioned ansatz of J. W. Strutt (Lord Rayleigh)184), to as-
sume the kinetic energy per unit volume of the light ether as a general quadratic form
of the velocities 𝑢′, 𝑣′, 𝑤′; thereby linear combinations of accelerations 𝑢′′, 𝑣′′, 𝑤′′

do appear on the left hand side of the optical equations.
14. Relations to electrodynamics. The fundamental equations of electrodynam-

ics are in their form, as it is well known, essentially included in the optical fun-
damental equations and thereby [included] in the general scheme of the mechanics
of continua. To speak only of the isotropic medium, if one interprets namely the
time derivatives of the components 𝑢, 𝑣, 𝑤 of the just considered light vector up to a
constant factor as vector of the electric field strength 𝔈:

𝑢′ = 𝛾1𝔈𝑎, 𝑣′ = 𝛾1𝔈𝑏 , 𝑤′ = 𝛾1𝔈𝑐 ,

and likewise the components of the rotation of a volume element as

182 Mac Cullagh, Proc. R. Irish Ac. II (1841), p. 96 = Works, p. 187. Cf. also P. Volkmann, Theorie
des Lichtes, p. 414 ff.
183 Op. cit. p. 575 f., 708 ff.
184 J. W. Strutt, Phil Mag. (4) 41—43 (1871, 1872). Cf. also V 21, No. 29 (Wangerin).
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Komponenten der magnetischen Feldstärke ℌ:

𝜉 = 𝛾2ℌ𝑎, 𝜂 = 𝛾2ℌ𝑏 , 𝜁 = 𝛾2ℌ𝑐 ,

so gehen die Gleichungen (3a) und (1) von Nr. 13 bei passender Wahl der Konstanten
𝛾1, 𝛾2, 𝐴, 𝜚 über in

(1)
⎧⎪⎨⎪⎩
𝜕ℌ𝑐

𝜕𝑏 − 𝜕ℌ𝑏

𝜕𝑐 =
𝜀
𝑐𝔈

′
𝑎 (𝑎, 𝑏, 𝑐),

𝜕𝔈𝑐

𝜕𝑏 − 𝜕𝔈𝑏

𝜕𝑐 = − 𝜇
𝑐ℌ

′
𝑎 (𝑎, 𝑏, 𝑐),

und das sind gerade die Maxwellschen Grundgleichungen im freien Äther.185) Ein
weiteres, äusseren Kräften entsprechendes Glied, das die Gleichungen (3a) noch
enthalten können, findet im ersten Tripel (1) seine Deutung als elektrischer Strom.
Ähnlich kann man auch die elektromagnetischen Gleichungen für nichtisotrope Me-
dien gewinnen.

Bei den Darstellungen, die die allgemeinen Ansätze der Elektrodynamik jetzt
meist finden, geht man indessen in der Regel nicht von dieser Auffassung aus, die die
elektrischen und magnetischen Grössen mit den Verschiebungen eines Mediums in
so direkte Verbindung bringt; man sieht vielmehr diese Grössen als „physikalische
Parameter“ im Sinne von Nr. 2b an, die den Stellen des Kontinuums als Ortsfunk-
tionen zugeordnet sind, und von denen man allenfalls einige als abhängig von den
Bewegungsfunktionen eines immateriellen Mediums — der Elektrizität — deutet.
Daneben können dann noch die Bewegungsfunktionen des materiellen Mediums,
in dem der Vorgang sich abspielt, in Betracht kommen. Die Gleichungen der Elek-
trodynamik verknüpfen nun alle diese Größen direkt mit den Kräften, Spannungen,
Energiedichten. Die Variationsprinzipe, in die man sie nach dem Vorgange von
H. A. Lorentz186) und H. v. Helmholtz187) vielfach zusammengefaßt hat, sind dann in
gewisser Weise den mechanischen analog, nur daß sie durch die größere Anzahl
der in sie eingehenden Größen sehr viel komplizierter sind. Über diese Probleme
der speziellen Elektrodynamik vergleiche man die Referate von H. A. Lorentz, ins-
besondere V 13, Nr. 35—39 und V 14, Nr. 8, 9. Nur ein besonderer Fall sei noch
hervorgehoben, als typisch dafür,

185 Vgl. W. Thomson, Math. phys. pap. 3 (London 1890), p. 436 ff. Man kann auch die Rolle von
elektrischer und magnetischer Feldstärke gerade vertauschen; vgl. über die verschiedenen möglichen
Deutungen V 13, Nr. 42, H. A. Lorentz.
186 H. A. Lorentz, La théorie électromagn. de Maxwell (Leiden 1892), § 55 ff.)
187 H. v. Helmholtz, Das Prinzip der kleinsten Wirkung in der Elektrodynamik. Ann. d. Phys. 47
(1892) p. 1 = Wissensch. Abh. III (Leipzig 1895), p. 476.
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components of the magnetic field strength ℌ:

𝜉 = 𝛾2ℌ𝑎, 𝜂 = 𝛾2ℌ𝑏 , 𝜁 = 𝛾2ℌ𝑐 ,

then for a suitable choice of the constants 𝛾1, 𝛾2, 𝐴, 𝜚 the equations (3a) and (1) of
No. 13 transform to

(1)
⎧⎪⎨⎪⎩
𝜕ℌ𝑐

𝜕𝑏 − 𝜕ℌ𝑏

𝜕𝑐 =
𝜀
𝑐𝔈

′
𝑎 (𝑎, 𝑏, 𝑐),

𝜕𝔈𝑐

𝜕𝑏 − 𝜕𝔈𝑏

𝜕𝑐 = − 𝜇
𝑐ℌ

′
𝑎 (𝑎, 𝑏, 𝑐),

and these are just Maxwell’s Fundamental Equations in the free ether.185) A further
term corresponding to external forces that can be additionally included in equations
(3a) finds its interpretation as electric current in the first three equations of (1).
Similarly one can also obtain the electromagnetic equations for anisotropic media.

In the presentations, in which the general fundamentals of electrodynamics are
found, however, usually one does not start with the perception to relate the electric
and magnetic quantities with the displacements of a medium in such a direct way; one
considers these quantities rather as “physical parameters” in the sense of No. 2b, from
which, if necessary, one interprets some as dependent on the motion of an immaterial
medium — of the electricity. In addition also the motion of the material medium,
in which the process takes place, can be taken into consideration. The equations
of electrodynamics now relate all these quantities directly with forces, stresses,
energy densities. The variational principles, into which one has often condensed
them according to the approach of H. A. Lorentz186) and H. v. Helmholtz187), are then
in a certain sense analogous to the mechanical one, save that they are very much more
complicated due to the bigger amount of involved quantities. One shall compare the
papers of H. A. Lorentz on these problems of special electrodynamics, in particular
V 13, No. 35—39 and V 14, No. 8, 9. Only a special case shall be highlighted in
addition, in being typical

185 Cf. W. Thomson, Math. phys. pap. 3 (London 1890), p. 436 ff. One can also interchange the
role of the electric and magnetic field strength; cf. about the various possible interpretations V 13,
No. 42, H. A. Lorentz.
186 H. A. Lorentz, La théorie électromagn. de Maxwell (Leiden 1892), § 55 ff.)
187 H. v. Helmholtz, Das Prinzip der kleinsten Wirkung in der Elektrodynamik. Ann. d. Phys. 47
(1892) p. 1 = Wissensch. Abh. III (Leipzig 1895), p. 476.
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wie solche physikalischen Parameter in die Stoffgleichungen eines materiellen Medi-
ums im früheren Sinne eingehen können.

In einem elastischen Medium sei ein elektrisches Feld 𝔈 erregt; die Verallge-
meinerung des früheren Ansatzes ist dann die, dass die Energiedichte 𝜑 ausser von
den Deformationsgrössen 𝑒𝑎, . . . , 𝑔𝑎𝑏 , . . . noch von den Komponenten der Feld-
stärke abhängt188):

(2) 𝜑 = 𝜑(𝑒𝑎, . . . , 𝑔𝑎𝑏 , . . . ;𝔈𝑎,𝔈𝑏 ,𝔈𝑐).

Aus den früheren Formeln Nr. 7, (4) ergeben sich unverändert die Spannungskom-
ponenten, die also von den elektrischen Feldstärken abhängig werden; andererseits
aber ist das Potential auch gegenüber Variationen der Feldstärke 𝔈 zum Minimum
zu machen, und daraus ergeben sich Gleichungen für die „elektrischen Momente“

(3) 𝔓𝑎 =
𝜕𝜑

𝜕𝔈𝑎
, 𝔓𝑏 =

𝜕𝜑

𝜕𝔈𝑏
, 𝔓𝑐 =

𝜕𝜑

𝜕𝔈𝑐
,

die eine Abhängigkeit des elektrischen Zustandes von der Deformation zeigen. In
beiden Formelsystemen bzw. in den aus ihnen folgenden Relationen vom Typus

(4)
𝜕𝑋𝑎
𝜕𝔈𝑎

=
𝜕𝔓𝑎

𝜕𝑥𝑎

sind die sog. Reziprozitätssätze189) enthalten, die in allen diesen verschiedenartige
Gebiete verknüpfenden Erscheinungen eine wesentliche Rolle spielen; hat eine Än-
derung des einen physikalischen Parameters eine Änderung der einem anderen zu-
geordneten Spannungskomponente zur Folge, so bewirkt auch eine Variation dieses
Parameters eine bestimmte Änderung der jenem ersten zugehörigen Spannungskom-
ponente. In diesen Formeln sind die Erscheinungen der Piezoelektrizität enthalten,
die mit Hilfe einfacher Ansätze für 𝜑 entsprechend den Symmetrieverhältnissen der
kristallinischen Medien genau untersucht worden sind.190)

188 Nachdem W. Voigt zuerst die Theorie auf Grund direkt angesetzter Abhängigkeit der Spannungs-
und Momentkomponenten von Deformation und Feldstärke behandelt hatte (Abhandl. Ges. d. Wiss.
Göttingen, 36, 1890), haben P. Duhem, Leçons sur l’électricité 2 (1892), p. 467, E. Riecke (Nachr.
Ges. d. Wiss. Göttingen 1893, p. 19) und W. Voigt (ebenda, math.-phys. Kl. 1894, p. 343) den
Potentialansatz verwendet; näheres siehe in V 16, Nr. 8, F. Pockels.
189 Vgl. hierzu Voigts Kompendium II, p. 106. — Man kann diese Reziprozitätssätze, die meist nur
für den Fall endlich vieler Freiheitsgrade behandelt werden (vgl. J. J. Thomson, Anwendungen der
Dynamik auf Physik und Chemie [Leipzig 1890] und H. von Helmholtz, Journ. f. Math. 100 (1887),
p. 137 = Wiss. Abh. III, p. 203 ff.) in weitem Umfang auf Kontinua übertragen.
190 Vgl. die ausführliche Darstellung in V 16, Nr. 8—10, F. Pockels.
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how such physical parameters can be treated in the former sense within the constitu-
tive laws of a material medium.

Let an electric field 𝔈 be excited in an elastic medium; the generalization of
the former ansatz is then the one, that the energy density 𝜑 depends apart from
the deformation quantities 𝑒𝑎, . . . , 𝑔𝑎𝑏 , . . . also on the components of the field
strength188):

(2) 𝜑 = 𝜑(𝑒𝑎, . . . , 𝑔𝑎𝑏 , . . . ;𝔈𝑎,𝔈𝑏 ,𝔈𝑐).

Using the former formulas No. 7, (4), the stress components appear unchanged,
which depend consequently also on the electric field strength; Apart from that, the
potential has to be minimized also with respect to the variation of the field strength
𝔈, and thereof the equations for the “electric torques” are obtained

(3) 𝔓𝑎 =
𝜕𝜑

𝜕𝔈𝑎
, 𝔓𝑏 =

𝜕𝜑

𝜕𝔈𝑏
, 𝔓𝑐 =

𝜕𝜑

𝜕𝔈𝑐
,

which show a dependence of the electric state on the deformation. In both systems
of formulas or in the consequently following relation of the kind

(4)
𝜕𝑋𝑎
𝜕𝔈𝑎

=
𝜕𝔓𝑎

𝜕𝑥𝑎

the so-called reciprocity theorems189) are included, which play a crucial role in all
these phenomena which relate various fields; if a change of one physical parameter
causes the change of another related stress component, then also a variation of this
parameter causes a certain change of the stress component related to the first. In these
formulas the phenomena of piezoelectricity are included, which have been studied
thoroughly with the help of simple forms of 𝜑 according to the symmetry conditions
of crystalline media.190)

188 After W. Voigt had treated first the theory based on the directly formulated dependence of
the stress and torque components on the deformation and field strength (Abhandl. Ges. d. Wiss.
Göttingen, 36, 1890), P. Duhem, Leçons sur l’électricité 2 (1892), p. 467, E. Riecke (Nachr. Ges.
d. Wiss. Göttingen 1893, p. 19) and W. Voigt (ibid., math.-phys. Kl. 1894, p. 343) have used the
potential-based approach; For more details see V 16, No. 8, F. Pockels.
189 Cf. hereto Voigts Kompendium II, p. 106. — One can transmit these reciprocity theorems, which
are mostly treated for the case of finitely many degrees of freedom (cf. J. J. Thomson, Anwendungen
der Dynamik auf Physik und Chemie [Leipzig 1890] and H. von Helmholtz, Journ. f. Math. 100
(1887), p. 137 = Wiss. Abh. III, p. 203 ff.) in the wider extent to continua.
190 Cf. the extensive presentation in V 16, No. 8—10, F. Pockels.
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15. Einfügung der thermodynamischen Ansätze. Es giebt zwei Wege, von den
bisher entwickelten Grundformeln der Mechanik der Kontinua zu den umfassenderen
Ansätzen der Thermodynamik aufzusteigen, die im Rahmen dieses Artikels nur in
aller Kürze zu skizzieren sind. Der eine schliesst an die Gleichungen der Kinetik,
etwa an das Hamiltonsche Prinzip in der verallgemeinerten Gestalt Nr. 7, (26) an und
geht von der Annahme aus, dass irgendeine Verbindung 𝜔 der Bewegungsfunktio-
nen und ihrer räumlichen Ableitungen selbst nicht explizit im Integranden 𝜑 auftritt,
vielmehr lediglich ihre zeitliche Ableitung. Eine solche „verborgene Koordinate“ ,
die man an Stelle einer der Bewegungsfunktionen als bewegungsbestimmend anse-
hen kann, kann man dann gerade so behandeln, wie man es in der Helmholtzschen
Theorie191) der zyklischen Systeme in der Mechanik der Systeme mit endlichvie-
len Freiheitsgraden tut: Mit Hilfe der Eliminationsmethoden der Variationsrechnung,
wie sie in der Theorie der kanonischen Transformation der Dynamik gehandhabt wer-
den192), führt man im Variationsprinzip statt 𝜔′ die Ableitung 𝜋 = 𝜕𝜑

𝜕𝜔′ ein und erhält
dann für den Grenzfall solcher Zustandsänderungen, bei denen Geschwindigkeiten
und Beschleunigungen der übrigen Koordinaten (ausser 𝜔) unendlichklein sind,
ein Variationsprinzip, das sich von dem Prinzip der virtuellen Verrückungen nur
durch das Hinzutreten eines Termes 𝜔′ · 𝛿𝜋 unterscheidet. Das Raumintegral dieses
Termes findet nun seine Deutung als die bei der virtuellen Verrückung zugeführte
Wärmemenge, während 𝜔′ und 𝜋 Temperatur und Entropie des Systems darstellen.
Die analogen Betrachtungen finden in der Thermodynamik der Systeme mit endlich
vielen Freiheitsgraden stets ausführlich Platz193); übrigens scheint aber eine explizite
Anwendung innerhalb der Mechanik der Kontinua nicht vorzuliegen.

Der zweite Weg ist wesentlich mehr formaler Natur und schliesst sich den bisher
zum Ausdruck gebrachten formalen Auffassungen aufs nächste an. Den Deforma-
tionsfunktionen wird — wir beschränken uns der Einfachheit halber auf die Statik
— ein „physikalischer“ Parameter im Sinne von Nr. 2b

𝑠 = 𝑠(𝑎, 𝑏, 𝑐)

hinzugefügt, dessen Wert an jeder Stelle den „thermischen Zustand“

191 H. v. Helmholtz, J. f. Math. 97 (1884), p. 111 = Wiss. Abhandl. III, p. 119 ff. Vgl. IV 11, Nr. 23,
Heun.
192 Vgl. die Anwendungen derselben Methoden oben in Nr. 7e, S. 654 und Nr. 8b, S. 662 sowie
Anm.111).
193 Siehe die Referate V 3, Nr. 28 ff. (Bryan) und IV 1, Nr. 48 (Voss).
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15. Introduction of the thermodynamical foundations. From the so far devel-
oped basic formulas of the mechanics of continua, there are two ways to climb up to
the more comprehensive foundations of thermodynamics, which, within the scope
of this article, are outlined only in a nutshell. One [way] builds on the equations of
kinetics, e. g. Hamilton’s principle of the generalized form No. 7, (26), and relies
on the assumption that some relation 𝜔 of the motion and the spatial derivatives
thereof does not appear explicitly in the integrand 𝜑, but rather its time derivative.
One can treat such a “hidden coordinate”, which one can see instead of the motion as
motion determining, just as one does it in Helmholtz’s theory191) of cyclic systems in
the mechanics with finitely many degrees of freedom: With the help of elimination
methods of the calculus of variations which are used in the theory of canonical trans-
formations of dynamics192), one introduces in the variational principle instead of 𝜔′

the derivative 𝜋 = 𝜕𝜑
𝜕𝜔′ and obtains consequently for the limit case of a state change,

for which the velocities and accelerations of the remaining coordinates (except 𝜔) are
indefinitely small, a variational principle which differ from the principle of virtual
displacements only by the additional term 𝜔′ · 𝛿𝜋. The volume integral of this term
has then the interpretation of the added heat quantity for a virtual displacement,
while 𝜔′ and 𝜋 represent temperature and entropy[, respectively]. Similar consid-
erations are always treated extensively within the thermodynamics of systems with
finitely many degrees of freedom193); but after all, an explicit application within the
mechanics of continua seems not to be available.

The second way is of much more formal nature and builds directly on the formal
understanding being expressed so far. To the deformation functions — we restrict us
for the sake of simplicity to statics — a “physical parameter” in the sense of No. 2b

𝑠 = 𝑠(𝑎, 𝑏, 𝑐)

is added, whose value at every point describes the “thermal state”

191 H. v. Helmholtz, J. f. Math. 97 (1884), p. 111 = Wiss. Abhandl. III, p. 119 ff. Cf. IV 11, No. 23,
Heun.
192 Cf. the applications of the very same method above in No. 7e, p. 654 and No. 8b, p. 662 as well
as remark111).
193 See the articles V 3, No. 28 ff. (Bryan) and IV 1, No. 48 (Voss).
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des Mediums beschreibt; man bezeichnet ihn als Entropie des Mediums an dieser
Stelle, berechnet auf die Masseneinheit, indem man Entropie eines Quantums𝑉0 des
Mediums das Integral:∭

(𝑉0)

𝑠(𝑎, 𝑏, 𝑐)𝜚0𝑑𝑉0 =

∭
(𝑉 )

𝑠(𝑥, 𝑦, 𝑧)𝜚𝑑𝑉

nennt. Bei einer virtuellen Verrückung des Kontinuums wird auch 𝑠 eine unendlichk-
leine virtuelle Änderung 𝛿𝑠 zu erfahren haben. Man kann dann, entsprechend dem
zweiten Hauptsatz der Thermodynamik, das Prinzip der virtuellen Verrückungen in
folgender Weise erweitern194):

Zu der virtuellen Arbeit 𝛿𝐴 der gesamten Kraftrichtungen tritt gleichberechtigt
die „Wärmezufuhr“ bei einer virtuellen Verrückung:

(1) 𝛿𝑄 =

∭
(𝑉 )

Θ 𝛿𝑠 𝜚 𝑑𝑉 ;

dabei bedeutet die „Temperatur“ Θ einen den Spannungskomponenten gleich-
berechtigten Faktor, der für jedes Medium in charakteristischer Weise in seiner
Abhängigkeit von den Deformationsfunktionen und der Entropie sowie von deren
Ableitungen gegeben ist. Thermodynamisches Gleichgewicht wird bedingt durch die
Variationsgleichung

(2) 𝛿𝑄 + 𝛿𝐴 = 0,

die genau im alten Sinne zu verstehen ist; dabei können Nebenbedingungen auch das
thermische Verhalten des Mediums, d. h. die Funktion 𝑠 betreffen.

Die volle Bedeutung der Thermodynamik kommt indessen erst zum Vorschein,
wenn man in diesem Ansatz den sog. ersten Hauptsatz zur Geltung bringt, der
einen allgemeingültigen Zusammenhang der sämtlichen Wirkungskomponenten ein-
schliesslich der Temperatur mit einer einzigen Funktion der Zustandsgrössen statu-
iert, von der Art wie er in Nr. 7 für einzelne Fälle diskutiert wurde.195) Zieht man
nämlich in 𝛿𝐴 nur die inneren Wirkungen innerhalb des Mediums in Betracht, so soll
𝛿𝑄 + 𝛿𝐴 für jede virtuelle Verrückung bis aufs Vorzeichen gleich der Variation eines
in bestimmter, für jedes Medium charakteristischer Weise nur von den jeweiligen
Deformationsfunktionen und der Entropie abhängigen Ausdruckes, der potentiellen
Energie Φ, sein. Was die Gestalt von Φ angeht, so ist der einfachste Fall der, dass Φ
ein

194 Für die Ansätze der gewöhnlichen Thermodynamik, die sich im folgenden genau wiederholen,
vgl. das Referat V 3 (Bryan).
195 Für kontinuierliche Medien hat namentlich P. Duhem diese Ansätze nach den verschiedensten
Richtungen hin angewendet; man vergleiche die zusammenfassende Darstellung in seinem Traité
d’Énergétique, T. II (Paris 1911), Chap. XIV.
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of the medium; one denotes it as entropy of the medium at this point, evaluated per
unit mass, by calling the integral∭

(𝑉0)

𝑠(𝑎, 𝑏, 𝑐)𝜚0𝑑𝑉0 =

∭
(𝑉 )

𝑠(𝑥, 𝑦, 𝑧)𝜚𝑑𝑉

entropy of a portion 𝑉0 of the medium. For a virtual displacement of the continuum,
also 𝑠 will undergo an infinitesimal virtual change 𝛿𝑠. According to the second law
of thermodynamics, one can then enhance the principle of virtual displacements in
the following way194):

Additionally to the virtual work 𝛿𝐴 of all force contributions, equitably the “heat
supply” appears for a virtual displacement:

(1) 𝛿𝑄 =

∭
(𝑉 )

Θ 𝛿𝑠 𝜚 𝑑𝑉 ;

thereby “temperature” Θ denotes a factor being similar to the stress components[. A
factor], which is given for every medium in its characteristic way in its dependence
on the deformation functions and on the entropy as well as on the derivatives thereof.
Thermodynamic equilibrium is determined by the variational equation

(2) 𝛿𝑄 + 𝛿𝐴 = 0,

which needs to be understood exactly in the old way; thereby also constraints can
affect the thermal behavior of the medium, i. e. the function 𝑠.

However, the full significance of thermodynamics appears only, when one asserts
to this ansatz the so-called first law [of thermodynamics], which states a generally
valid connection of all effects including the temperature with a single function of
the state variables of the kind as discussed in No. 7 for individual cases.195) Namely,
if one considers in 𝛿𝐴 only the internal effects within the medium, then 𝛿𝑄 + 𝛿𝐴
shall be up to the sign equal to the variation of a certain expression, the potential
energyΦ, depending for every medium in a characteristic way only on the respective
deformation functions and the entropy. Concerning the form of Φ, then the most
simple case is, that Φ

194 For the foundations of common thermodynamics, which are just repeated in the following, cf.
the article V 3 (Bryan).
195 For continuous media nominally P. Duhem has applied these fundamental approaches in various
directions; one shall confer the summarizing presentation in his Traité d’Énergétique, T. II (Paris
1911), Chap. XIV.
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Raumintegral über eine Funktion 𝜑 von 𝑥, 𝑦, 𝑧, ihren ersten Ableitungen und 𝑠 ist196):

(3) 𝛿𝑄 + 𝛿𝐴 = −𝛿
∭
(𝑉0)

𝜑(𝑥, . . . ; 𝑥𝑎, . . . ; 𝑠) 𝑑𝑎 𝑑𝑏 𝑑𝑐;

dann folgt speziell für die Temperatur

(4) Θ = − 1
𝜚0

𝜕𝜑

𝜕𝑠
,

was den im wesentlichen unverändert bleibenden Gleichungen (4) von Nr. 7a zur
Seite tritt. Aus diesen Gleichungen folgen wieder reziproke Relationen der Art

(5) −𝜚0
𝜕Θ

𝜕𝑥𝑎
=

𝜕𝑋𝑎
𝜕𝑠

zwischen je einem Paare thermischer und elastischer Parameter — in analoger Be-
deutung, wie oben in einem anderen Fall erörtert (Nr. 14, (4)) wurde.

Es ist häufig zweckmässig, an Stelle von 𝑠 die Temperatur Θ als bestimmenden
Parameter einzuführen; das ist wiederum der Form nach die in Nr. 7e (S. 654)
angewandte kanonische Transformation: Berechnet man aus (4) 𝑠 als Funktion von
Θ und bestimmt damit

𝜓 = 𝜑 + 𝜚0Θ𝑠 = 𝜓(𝑥, . . . ; 𝑥𝑎, . . . ;Θ),

so erhält man statt (3) für alle willkürlichen Variationen 𝛿𝑥, 𝛿𝑦, 𝛿𝑧 und 𝛿Θ die
Identität:

(3′) −
∭
(𝑉 )

𝑠 𝛿Θ 𝜚𝑑𝑉 + 𝛿𝐴 = −𝛿
∭
(𝑉0)

𝜓𝑑𝑎 𝑑𝑏 𝑑𝑐.

Man nennt 𝜓 das „thermodynamische Potential bei gegebenem Deformationszus-
tand“; zieht man gleichzeitig noch die Transformation von Nr. 7e heran, die die Defor-
mationsgrössen durch die Spannungskomponenten ersetzt, so erhält man die anderen
Arten thermodynamischer Potentiale in völliger Analogie zu den üblichen Betrach-
tungen der Thermodynamik der Systeme mit endlichvielen Freiheitsgraden.197)

Indem man rechter Hand in (3) das Auftreten der Deformationsgrössen in
geeigneter Weise spezialisiert, erhält man die thermodynamischen Ansätze für die
einzelnen im vorigen behandelten Gebiete; dabei bedingt die Art, wie 𝑠 in 𝜑 (oder Θ
in 𝜓) mit den einzelnen Deformationsgrössen verknüpft ist, natürlich den thermis-
chen Effekt

196 Dieser Ansatz hat für den speziellen Fall der reinen Elastizitätstheorie zuerst W. Thomson, Quart.
Journ of Math. 1 (1857) ausgebildet; vgl. V 3, Nr. 21, Bryan.
197 S. V 3, Nr. 16 (Bryan).
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is a volume integral of a function 𝜑 depending on 𝑥, 𝑦, 𝑧, the first derivatives thereof
and 𝑠196):

(3) 𝛿𝑄 + 𝛿𝐴 = −𝛿
∭
(𝑉0)

𝜑(𝑥, . . . ; 𝑥𝑎, . . . ; 𝑠) 𝑑𝑎 𝑑𝑏 𝑑𝑐;

then especially for the temperature it follows

(4) Θ = − 1
𝜚0

𝜕𝜑

𝜕𝑠
,

which stands aside to the equations (4) of No. 7a [which] remain basically unchanged.
From these equations again reciprocal relations of the kind

(5) −𝜚0
𝜕Θ

𝜕𝑥𝑎
=

𝜕𝑋𝑎
𝜕𝑠

follow between a pair of thermal and elastic parameter — with a similar meaning,
as discussed above for another case (No. 14, (4)).

Often it is useful to introduce the temperatureΘ as determining parameter instead
of 𝑠; according to the form, this corresponds again with the canonical transformation
applied in No. 7e (p. 654): If one computes 𝑠 as a function of Θ using (4) and if one
determines therewith

𝜓 = 𝜑 + 𝜚0Θ𝑠 = 𝜓(𝑥, . . . ; 𝑥𝑎, . . . ;Θ),

then one obtains instead of (3) for all arbitrary variations 𝛿𝑥, 𝛿𝑦, 𝛿𝑧 and 𝛿Θ the
identity:

(3′) −
∭
(𝑉 )

𝑠 𝛿Θ 𝜚𝑑𝑉 + 𝛿𝐴 = −𝛿
∭
(𝑉0)

𝜓 𝑑𝑎 𝑑𝑏 𝑑𝑐.

One denotes 𝜓 the “thermodynamic potential for a given state of deformation”; If one
considers at the same time also the transformation of No. 7e, which substitutes the
deformation quantities with the stress components, then one obtains the other types
of thermodynamic potential in complete analogy to the common considerations of
thermodynamics of systems with finitely many degrees of freedom.197)

By specializing on the right hand side of (3) the appearance of the deformation
quantities in a convenient way, one obtains the thermodynamic fundamentals for the
before treated individual fields; Thereby the way how 𝑠 in 𝜑 (or Θ in 𝜓) is related
with the particular deformation quantities determines certainly the thermal effect

196 For the special case of the pure theory of elasticity, this ansatz has been formulated originally
by W. Thomson, Quart. Journ of Math. 1 (1857); cf. V 3, No. 21, Bryan.
197 See V 3, No. 16 (Bryan).
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der einzelnen Arten der Deformationen bzw. die Art der Deformationen, die durch
thermische Wirkungen hervorgerufen werden. Für die Elastizitätstheorie und die
Hydrodynamik sind diese Zusammenhänge vielfach untersucht worden.198)

Man hat in (3) für die potentielle EnergieΦ auch andere der in Nr. 7 untersuchten
Ansätze verwendet, wobei zu den früheren Formeln nur die Berücksichtigung der
Abhängigkeit von 𝑠 neu hinzukommt. Neben den Integralen vom Typus Nr. 7, (7),
die P. Duhem199) in dieser Richtung vielfach verwendet hat, sei hier nur der Fall
hervorgehoben, dass Φ als Summanden ein Flächenintegral etwa über die Tren-
nungsfläche verschiedener in 𝑉 enthaltenen Medien besitzt; entsprechend wird man
dann auf dieser Fläche auch eine Flächendichte der Entropie und demgemäss ein
Flächenintegral als Beitrag zur Wärmezufuhr anzunehmen haben. Diese Ansätze
stellen die thermischen Wirkungen der Kapillarität200) dar.

Die weitere Ausbildung dieser thermodynamischen Ansätze erfolgt dann so, dass
man in der Fundamentalgleichung neue die Konstitution des betrachteten Mediums
beschreibende physikalische Parameter auftreten lässt, also etwa 𝜑 von ihnen abhän-
gen lässt. Es genüge, als Beispiel hier zu erwähnen, dass man so durch Aufnahme der
elektrischen Feldstärke wie in Nr. 14, (2) zu den Erscheinungen der Pyroelektrizität,
der Wechselwirkung von Wärme, Druck und elektrischer Erregung, in Kristallen
geführt wird.201)

Endlich sind hier noch die an J. W. Gibbs202) anknüpfenden thermochemischen
Untersuchungen zu erwähnen, die auf der Vorstellung mehrerer denselben Raum
simultan ausfüllender Medien beruhen, deren Zustandsparameter gleichzeitig in 𝜑
eingehen; man hat hier freilich sich bisher durchweg auf den Fall von endlich vielen
Freiheitsgraden beschränkt: man nimmt die einzelnen Medien (Phasen) homogen
an, so dass ihr Zustand durch eine Reihe nicht mehr vom Ort abhängiger Variabler
charakterisiert wird.203)

16. Beziehungen zur Relativitätstheorie. Es soll zum Schluss noch die Frage
aufgenommen werden, die schon wiederholt gelegent-

198 Vgl. z. B. Voigt, Kompendium I, p. 523 ff.; Voigt, Lehrbuch der Kristallphysik, Leipzig 1910,
p. 276 ff., p. 763 ff.; Duhem, Traité d’énergétique II, Paris 1911, p. 115 ff.; G. Hamel, Elementare
Mechanik, Leipzig 1912, p. 571 ff.
199 S. insbes. Ann. Éc. Norm. (3) 10 (1893), p. 183 ff. und 21 (1904), p. 99 ff. und Traité, a. a. O.195)
200 Vgl. V 9, Nr. 18 (Minkowski).
201 Siehe V 16, Nr. 11, F. Pockels.
202 Trans. Connect. Acad. III (1876—1878) = Scient. Papers I (1906), p. 55.
203 Vgl. V 3, Nr. 26, (Bryan) and IV 11, Nr. 22—24 (K. Heun).
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of the individual kinds of deformation or the kind of deformation, which is caused
by thermal effects. These relations have been studied in many ways for the theory of
elasticity and hydrodynamics.198)

In (3) one has used for the potential energy Φ also other approaches studied in
No. 7, where to the former formulas now the consideration of the dependence on 𝑠
is added anew. Besides the integrals of the kind No. 7, (7), which P. Duhem199) has
used frequently for this kind of applications, let us highlight here the case, that Φ
has as a summand a surface integral for instance over the interface between different
media contained in𝑉 ; accordingly, one needs to assume on this surface also a surface
density of the entropy and consequently a surface integral as a contribution to the heat
supply. This fundamental approaches represent the thermal effects of capillarity200).

The further development of these thermodynamic approaches follows in the way
that one let appear in the fundamental equation new physical parameters describing
the constitution of the considered medium. It is enough to mention here as an example
that by adding the electric field strength as in No. 14, (2) one is led to the occurrence
of pyroelectricity in crystals, [i. e.] the interaction between heat, pressure and electric
excitation.201)

Finally, the thermochemical studies following J. W. Gibbs202) have to be men-
tioned which are based on the perception of various media occupying the same
space simultaneously, whose state variables appear in 𝜑 at once; here, certainly one
has restricted oneself throughout to the case of finitely many degrees of freedom:
one assumes the individual media (phases) to be homogeneous, such that their state
is characterized by a series of variables not depending on the position anymore.203)

16. Relations to the theory of relativity. At the end, the question shall be
incorporated, which already has been touched repeatedly once in a while,

198 Cf. e. g. Voigt, Kompendium I, p. 523 ff.; Voigt, Lehrbuch der Kristallphysik, Leipzig 1910,
p. 276 ff., p. 763 ff.; Duhem, Traité d’énergétique II, Paris 1911, p. 115 ff.; G. Hamel, Elementare
Mechanik, Leipzig 1912, p. 571 ff.
199 See in particular Ann. Éc. Norm. (3) 10 (1893), p. 183 ff. and 21 (1904), p. 99 ff. and Traité, op.
cit.195)
200 Cf. V 9, No. 18 (Minkowski).
201 See V 16, No. 11, F. Pockels.
202 Trans. Connect. Acad. III (1876—1878) = Scient. Papers I (1906), p. 55.
203 Cf. V 3, No. 26, (Bryan) and IV 11, No. 22—24 (K. Heun).



686 IV 30. E. Hellinger. Die allgemeinen Ansätze der Mechanik der Kontinua

lich gestreift wurde, wie sich die verschiedenen Ansätze der Mechanik der Kon-
tinua bei Transformationen des verwendeten Koordinatensystems verhalten; von
hier aus wird auch die Verbindung zu den Ansätzen der modernen Relativitätstheo-
rie hergestellt werden.

Unsere Vorstellung von der Homogenität und Isotropie des gewöhnlichen Raumes
verlangt zunächst, dass die Gesetze jedes physikalischen Vorganges ungeändert
bleiben, wenn man sie auf irgend ein anderes rechtwinkliges Koordinatensystem
bezieht und gleichzeitig alle in den Vorgang eingreifenden Grössen der entsprechen-
den Transformation unterwirft; man sagt kurz, dass die gesamte Physik invariant
ist gegenüber der Gruppe der sämtlichen rechtwinkligen Koordinatentransforma-
tionen der gewöhnlichen Geometrie, der sog. „Hauptgruppe“ oder „Euklidischen
Gruppe“. Hieraus folgt speziell, dass die virtuelle Arbeit der sämtlichen inneren
Wirkungen in einem kontinuierlichen System bei der einer unendlichkleinen Abän-
derung des Koordinatensystems entsprechenden virtuellen Verrückung notwendig
verschwindet, oder dass das gesamte Potential dieser Wirkungen bei jeder solchen
Verrückung des Kontinuums ungeändert bleibt, d. h. im Sinne von E. und F. Cosserat
ein Euklidisches Potential ist (vgl. Nr. 7b, S. 650).

In analoger Weise kann man nun in der Kinetik fragen, ob es auch Transfor-
mationen der Zeitvariablen 𝑡 oder gar simultane Transformationen der Zeit- und
Raumvariablen gibt, die die physikalischen Gesetze ungeändert lassen. Legt man die
kinetischen Grundansätze in ihrer ursprünglichen Gestalt (Nr. 5, (1), (5), (4), (6))
zugrunde, so ergiebt sich, dass eine Verschiebung des Nullpunktes der Zeitrechnung

(1) 𝑡 = 𝑡 + 𝛽

sowie eine gleichförmige Bewegung des rechtwinkligen Koordinatensystemes par-
allel mit sich

(2) 𝑥 = 𝑥 + 𝛼1𝑡, 𝑦 = 𝑦 + 𝛼2𝑡, 𝑧 = 𝑧 + 𝛼3𝑡

die kinetischen Glieder im wesentlichen nicht ändert; nur die zeitlichen Ableitungen
1. Ordnung, beispielsweise die kinetische Energie 𝑇 , werden bei der Substitution
(2) zunächst modifiziert, aber man sieht leicht, dass die Zusatzglieder bei der Vari-
ation fortfallen und daher die Bewegungsgesetze ungeändert bleiben. Also sind die
Theoreme der Mechanik der Kontinua in gewissem Umfange invariant gegenüber
einer zehnparametrigen Gruppe linearer Transformationen der Raum- und Zeitko-
ordinaten204), die sich aus den rechtwinkligen Koordinatentransforma-

204 Vgl. hierzu die Darlegungen in IV 1, Nr. 13—17, Voss.



3 Hellinger’s encyclopedia article 273

how the various fundamental approaches of the mechanics of continua behave under
the transformation of the used coordinate system; from here, also the relation to the
foundations of the modern theory of relativity are established.

Our perception of the homogeneity and isotropy of the ordinary space demands
at first that the laws of every physical process remain unchanged if one relates them
to another orthogonal coordinate system and [if], at the same time, [one] subjects
all quantities involved in the process to the corresponding transformation; it is said
briefly, that the entire physics is invariant with respect to the group of all orthogonal
coordinate transformations of the ordinary geometry, the so-called “basic group”
or “Euclidean group”. Herefrom it follows in particular, that the virtual work of
all internal effects within a continuous system necessarily vanishes for a virtual
displacement corresponding to an infinitesimal change of the coordinate system, or
that the total potential of these effects remain unchanged for any such displacement
of the continuum, i. e. [that the potential] is a euclidean potential in the sense of E.
and F. Cosserat (cf. No. 7b, p. 650).

In a similar way, one can ask in kinetics if there are also transformations of the time
variable 𝑡 or even simultaneous transformations of time and space variables which
leave the physical laws unchanged. If one bases on the fundamental laws of kinetics
in the original form (No. 5, (1), (5), (4), (6)), then it follows, that a displacement of
the origin in the computation of time

(1) 𝑡 = 𝑡 + 𝛽

as well as a uniform motion of the orthogonal coordinate system parallel to itself

(2) 𝑥 = 𝑥 + 𝛼1𝑡, 𝑦 = 𝑦 + 𝛼2𝑡, 𝑧 = 𝑧 + 𝛼3𝑡

do not change the kinetic terms essentially; only the time derivatives of 1. order, for
instance the kinetic energy𝑇 , are modified at first by the substitution (2), but one sees
easily that the additional terms vanish for the variation and thus the laws of motion
remain unchanged. Hence, the theorems of the mechanics of continua are in a certain
range invariant with respect to a ten-parameter group of linear transformations in
space and time coordinates204), which are composed of an orthogonal coordinate
transforma-

204 Cf. hereto the explanation in IV 1, No. 13—17, Voss.
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tionen, aus den Parallelverschiebungen des Axensystems mit konstanter Geschwind-
igkeit sowie den Änderungen des Nullpunktes der Zeitrechnung zusammensetzt; die
allgemeine Substitution dieser sog. Galileischen oder Newtonschen Gruppe lautet:

(3)

𝑥 = 𝛼11𝑥 + 𝛼12𝑦 + 𝛼13𝑧 + 𝛼1𝑡 + 𝛽1
𝑦 = 𝛼21𝑥 + 𝛼22𝑦 + 𝛼23𝑧 + 𝛼2𝑡 + 𝛽2
𝑧 = 𝛼31𝑥 + 𝛼32𝑦 + 𝛼33𝑧 + 𝛼3𝑡 + 𝛽3
𝑡 = 𝑡 + 𝛽

wo die 9 Grössen 𝛼𝑖𝑘 ein orthogonales Koeffizientensystem bilden. Die Substitutio-
nen (3) haben die charakteristische Eigenschaft, dass sie das Differential 𝑑𝑡 ungeän-
dert lassen, wenn aber 𝑑𝑡 = 0 ist, auch das Quadrat der Linienelemente 𝑑𝑥2+𝑑𝑦2+𝑑𝑧2.
Eine besondere Bedeutung in der Mechanik hat auch die durch Hinzunahme aller
Ähnlichkeitstransformationen des Raumes einerseits und der Zeitaxe andererseits
erweiterte zwölfgliedrige Gruppe; ihre Anwendung lässt die physikalischen Grössen
nicht mehr absolut invariant, sondern setzt ihre Dimensionen in bezug auf Längen-
und Zeiteinheit in Evidenz.205)

In der modernen Entwicklung der Optik und Elektrodynamik hat die Tatsache
besondere Wichtigkeit gewonnen, dass durchaus nicht alle Gesetze der Physik diese
Invarianz gegenüber der Galileischen Gruppe aufweisen. Das kann einmal so zu-
stande kommen, dass gemäss den allgemeinen Ansätzen von Nr. 5d und 7f ganz
andersartige kinetische Glieder, als die der klassischen Mechanik den Vorgang bes-
timmen, andererseits aber auch dadurch, dass bei sonst unverändertem Ansatz durch
den physikalischen Sachverhalt für gewisse Grössen eine andere Deutung und damit
auch eine andere Behandlung bei der Transformation nahegelegt wird. So müssen
z. B. die optischen Grundgleichungen (3a) von Nr. 18, da sie genau aus dem normalen
Ansatz des d’Alembertschen Prinzips entstehen, gegenüber der Galileitransformation
(2) invariant seien, wenn man nur den 𝑥-𝑦-𝑧-Raum transformiert und 𝑎, 𝑏, 𝑐 als die
jedes substantielle Teilchen charakterisierenden Parameter ungeändert lässt. Dem
entgegen giebt die Optik Anlass, den Lichtvektor 𝑢, 𝑣, 𝑤 als Funktion der Stelle 𝑎, 𝑏, 𝑐
zu betrachten und demgemäss diese Variablen 𝑎, 𝑏, 𝑐 der Galileitransformation (2)
zu unterwerfen; alsdann ist nach der Transformation die zeitliche Differentiation bei
konstantem 𝑎 = 𝑎+𝛼1𝑡, . . . zu vollziehen, und in diesem Sinne sind die Gleichungen
der Optik nicht mehr invariant.

205 Vgl. hierüber IV 1, Nr. 10, Voss.
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tion, a parallel displacement of the system of axes with constant velocity, as well as
the changes of the origin in the computation of time; the general substitution of this
so-called Galilean or Newtonian group formulates as:

(3)

𝑥 = 𝛼11𝑥 + 𝛼12𝑦 + 𝛼13𝑧 + 𝛼1𝑡 + 𝛽1
𝑦 = 𝛼21𝑥 + 𝛼22𝑦 + 𝛼23𝑧 + 𝛼2𝑡 + 𝛽2
𝑧 = 𝛼31𝑥 + 𝛼32𝑦 + 𝛼33𝑧 + 𝛼3𝑡 + 𝛽3
𝑡 = 𝑡 + 𝛽

where the 9 quantities 𝛼𝑖𝑘 form an orthogonal system of coefficients. The substi-
tutions (3) have the characteristic property to leave the differential 𝑑𝑡 unchanged,
but when 𝑑𝑡 = 0, then also the square of the line element 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 [remains
unchanged]. In mechanics also the extended twelve-parameter group [obtained by]
adding all similarity transformations of the space on the one hand and of the time
axis on the other hand is of particular importance; its application does not leave the
physical quantities to be invariant, but relates their dimensions with respect to the
unit length and time.205)

In the modern development of optics and electrodynamics the fact that definitely
not all laws of physics show this invariance with respect to the Galilean group has
gained particular importance. This can be achieved on the one hand that according
to the general foundations of No. 5d and 7f completely different kinetic terms as
in classical mechanics determine the process, or on the other hand also thereby
that for an unchanged ansatz a physical circumstance suggests for certain quantities a
different interpretation and consequently a different treatment under transformations.
Thus, for instance the fundamental equations of optics (3a) of No. 18, as they emerge
exactly from the usual ansatz of d’Alembert’s principle, must be invariant with
respect to Galilean transformations, if one transforms only the 𝑥-𝑦-𝑧-space and [if
one lets] unchanged 𝑎, 𝑏, 𝑐 as parameters characterizing every substantial particle.
Contrary to this, optics gives rise to consider the light vector 𝑢, 𝑣, 𝑤 as a function
of the point 𝑎, 𝑏, 𝑐 and to subject these variables 𝑎, 𝑏, 𝑐 accordingly to the Galilean
transformation (2); therupon after the transformation, the time derivative for constant
𝑎 = 𝑎 + 𝛼1𝑡, . . . has to be carried out, and in this sense the equations of optics are
not anymore invariant.

205 Cf. about this IV 1, No. 10, Voss.
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Bestimmt man nun aber diejenigen ganzen linearen Transformationen der Vari-
ablen 𝑎, 𝑏, 𝑐, 𝑡, bei denen die Grundgleichungen der Optik in diesem Sinne invari-
ant bleiben206), so ergeben sich die nach H. Poincarés207) Vorschlag als Lorentz-
Transformationen bezeichneten Transformationen, deren fundamentale Bedeutung
für die Elektrodynamik und die Physik die Untersuchungen von H. A. Lorentz208),
A. Einstein209), H. Poincaré207), H. Minkowski210) erwiesen haben. Es sind diejenigen
„Affinitäten“ des vierdimensionalen 𝑥-𝑦-𝑧-𝑡-Raumes, der Minkowskischen „Welt“:

(4)

𝑥 = 𝛼11𝑥 + 𝛼12𝑦 + 𝛼13𝑧 + 𝛼14𝑡 + 𝛼15

𝑦 = 𝛼21𝑥 + 𝛼22𝑦 + 𝛼23𝑧 + 𝛼24𝑡 + 𝛼25

𝑧 = 𝛼31𝑥 + 𝛼32𝑦 + 𝛼33𝑧 + 𝛼34𝑡 + 𝛼35

𝑡 = 𝛼41𝑥 + 𝛼42𝑦 + 𝛼43𝑧 + 𝛼44𝑡 + 𝛼45,

welche die Differentialform 𝑑𝑥2+𝑑𝑦2+𝑑𝑧2−𝑐2𝑑𝑡2 (in der 𝑐 die Lichtgeschwindigkeit
bedeutet) in sich selbst transformieren:

(5) 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 − 𝑐2𝑑𝑡
2
= 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 − 𝑐2𝑑𝑡2

und für die obendrein gilt:

(6)
𝑑𝑡

𝑑𝑡
= 𝛼44 > 0;

sie bilden wiederum eine zehngliedrige Gruppe, die Lorentzgruppe. Bemerkt man,
dass wegen (5) die Transformation (4) eine orthogonale Substitution im Raume
der Koordinaten 𝑥, 𝑦, 𝑧, 𝑐𝑡

√
−1 darstellt, so kann man die Relationen für die Koef-

fizienten von (4) und die Invarianten der Gruppe leicht angeben.211) Übrigens kann
eine etwas umfassendere „erweiterte Lorentzgruppe“ geometrisch dadurch charak-
terisieren, dass sie die quadratische Fläche 𝑥2 + 𝑦2 + 𝑧2 − 𝑐2𝑡2 = 0 in

206 W. Voigt, Nachr. Ges. d. W. Göttingen 1887, p. 41.
207 H. Poincaré, Rendic. Circ. mat. Palermo 21 (1906), p. 129.
208 Versuch einer Theorie der elektrischen und optischen Erscheinungen in bewegten Körpern,
§ 89—92 (Leiden 1895). Amsterdam Acad. Sc. Proc. 6 (1904), p. 809. Abgedr. im Heft 2 der
„Fortsch. d. math. Wissenschaften“ (Leipzig 1913; hrsg. v. O. Blumenthal).
209 A. Einstein, Ann. d. Phys. (4) 17 (1905), p. 891. Abgedruckt am selben Orte.
210 H. Minkowski, a) Die Grundgleichungen für die elektrodynamischen Vorgänge in bewegten
Körpern, Nachr. Ges. d. W. Göttingen, math.-phys. Kl., 1908, p. 53 = Math. Ann. 68 (1910), p. 472;
auch abgedr. in Fortschr. d. math. Wiss. (Leipzig 1910), Heft 1. b) Raum und Zeit, Jahresber. d. D.
M. V. 18 (1909), p. 75 = Phys. Z. 10 (1909), p. 104; auch separat Leipzig 1909 und in dem in 208)
genannten Heft.
211 H. Minkowski,210) a) § 5; vgl. auch A. Sommerfeld, Ann. d. Phys. (4) 32 (1910), p. 749; 33 (1910),
p. 649.
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If one determines however those linear transformations of the variables 𝑎, 𝑏, 𝑐, 𝑡
for which the fundamental laws of optics remain invariant in this sense206),
then transformations emerge being denoted as Lorentz-transformations according
to H. Poincaré’s207) suggestion, whose fundamental relevance for electrodynam-
ics and physics has been approved by the studies of H. A. Lorentz208), A. Ein-
stein209), H. Poincaré207), H. Minkowski210). There are these “affinities” of the four-
dimensional 𝑥-𝑦-𝑧-𝑡-space, the Minkowskian “world”:

(4)

𝑥 = 𝛼11𝑥 + 𝛼12𝑦 + 𝛼13𝑧 + 𝛼14𝑡 + 𝛼15

𝑦 = 𝛼21𝑥 + 𝛼22𝑦 + 𝛼23𝑧 + 𝛼24𝑡 + 𝛼25

𝑧 = 𝛼31𝑥 + 𝛼32𝑦 + 𝛼33𝑧 + 𝛼34𝑡 + 𝛼35

𝑡 = 𝛼41𝑥 + 𝛼42𝑦 + 𝛼43𝑧 + 𝛼44𝑡 + 𝛼45,

which transform the differential form 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 − 𝑐2𝑑𝑡2 (in which 𝑐 denotes
the speed of light) into itself:

(5) 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 − 𝑐2𝑑𝑡
2
= 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 − 𝑐2𝑑𝑡2

and for which moreover it holds:

(6)
𝑑𝑡

𝑑𝑡
= 𝛼44 > 0;

they form again a ten-parameter group, the Lorentz group. If one notes, that due to
(5) the transformation (4) represents an orthogonal substitution in the space of coor-
dinates 𝑥, 𝑦, 𝑧, 𝑐𝑡

√
−1, then one can easily give the relation for the coefficients of (4)

and the invariants of this group.211) After all one can characterized a somehow more
encompassing “extended Lorentz group” geometrically thereby, that it transforms
into itself the quadratic area 𝑥2 + 𝑦2 + 𝑧2 − 𝑐2𝑡2 = 0 of

206 W. Voigt, Nachr. Ges. d. W. Göttingen 1887, p. 41.
207 H. Poincaré, Rendic. Circ. mat. Palermo 21 (1906), p. 129.
208 Versuch einer Theorie der elektrischen und optischen Erscheinungen in bewegten Körpern,
§ 89—92 (Leiden 1895). Amsterdam Acad. Sc. Proc. 6 (1904), p. 809. Published in Heft 2 of
“Fortsch. d. math. Wissenschaften” (Leipzig 1913; hrsg. v. O. Blumenthal).
209 A. Einstein, Ann. d. Phys. (4) 17 (1905), p. 891. Published at the same place.
210 H. Minkowski, a) Die Grundgleichungen für die elektrodynamischen Vorgänge in bewegten
Körpern, Nachr. Ges. d. W. Göttingen, math.-phys. Kl., 1908, p. 53 = Math. Ann. 68 (1910), p. 472;
also published in Fortschr. d. math. Wiss. (Leipzig 1910), Heft 1. b) Raum und Zeit, Jahresber. d.
D. M. V. 18 (1909), p. 75 = Phys. Z. 10 (1909), p. 104; also separately Leipzig 1909 and in the
number referred to in 208).
211 H. Minkowski,210) a) § 5; cf. also A. Sommerfeld, Ann. d. Phys. (4) 32 (1910), p. 749; 33 (1910),
p. 649.
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dem dreidimensionalen unendlichfernen Gebilde des vierdimensionalen 𝑥-𝑦-𝑧-𝑡-
Raumes in sich transformiert, und man kann daher ihre Theorie aus bekannten
Untersuchungen der projektiven bzw. affinen Geometrie entnehmen.212) Diese er-
weiterte Gruppe enthält elf Parameter statt zehn, und ihre Transformationen erfüllen
die Identität (5) nur bis auf einen konstanten Faktor; bestimmt man diesen etwa durch
die Determinantenbedingung

|𝛼𝑖𝑘 | = 1 (𝑖, 𝑘 = 1, 2, 3, 4),

so zerfällt sie noch in zwei getrennte Kontinua, von denen das eine mit der durch
(6) charakterisierten Lorentzgruppe identisch ist. Der elfte Parameter der erweit-
erten Gruppe entspricht einer Änderung der Masseinheit im 𝑥-𝑦-𝑧-𝑡-Raum; in ihm
ist tatsächlich nur eine Masseinheit verfügbar, da Raum- und Zeitkoordinaten durch
die Forderung der Invarianz der Form (5), d. h. durch die Festlegung der Licht-
geschwindigkeit verknüpft sind, während bei der Galileigruppe durch Erweiterung
um zwei Parameter über Zeit- und Raumeinheit getrennt verfügt werden konnte.213)

Lässt man nun 𝑐 gegen ∞ konvergieren, so geht die erweiterte Lorentzgruppe
über in die Gesamtheit der linearen Transformationen, welche die durch die beiden
Gleichungen 𝑥2 + 𝑦2 + 𝑧2 = 0, 𝑡 = 0 im Unendlichfernen des 𝑥-𝑦-𝑧-𝑡-Raumes
bestimmte quadratische Kurve (d. i. der imaginäre Kugelkreis der Räume 𝑡 = konst.)
in sich überführen; das ist aber gerade die erweiterte Galileigruppe214), und es ist
sonach die Galileigruppe der Grenzfall der Lorentzgruppe bei unendlich wachsender
Konstante 𝑐. Dies hat Minkowski veranlasst, dem sog. Relativitätsprinzip, das als
Forderung der Invarianz gegenüber der Lorentzgruppe zunächst für die Gesetze
der Elektrodynamik ausgesprochen wurde, als „Postulat der absoluten Welt“ einen
weiteren Gültigkeitsbereich zu geben215): Was zunächst als Invarianz gegenüber
der Galileigruppe erscheint, ist in Wahrheit nur eine empirische Approximation an
die exakte Invarianz gegenüber der Lorentzgruppe mit einem im Vergleich zu den
gewöhnlich auftretenden Geschwindigkeiten sehr grossen 𝑐.

Die Ansätze für die Dynamik eines Kontinuums, das diesem Relativitätspostulat
unterliegt, sind in den früher aufgestellten allgemeinen

212 F. Klein, Die geometr. Grundlagen der Lorentzgruppe, Jahresber. d. D.M.V. 19 (1910), p. 281.
213 Vgl. F. Klein, a. a. O., p. 295 f.
214 F. Klein, a. a. O., p. 291 f.
215 H. Minkowski, 210) a) Anhang; b) Cap. I, II.
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the indefinitely far-away three-dimensional shape of the four-dimensional 𝑥-𝑦-𝑧-𝑡-
space, and therefore one can take the theory thereof from known studies of projective
or affine geometry.212) This extended group contains eleven instead of ten parameters,
and their transformations fulfill the identity (5) only up to a constant factor; If one
determines this [factor] for instance by the determinant condition

|𝛼𝑖𝑘 | = 1 (𝑖, 𝑘 = 1, 2, 3, 4),

then [the group] decomposes into two separate continua [i. e. connected components],
from which one is identical with the Lorentz group characterized by (6). The eleventh
parameter of the extended group corresponds to a change of the measuring unit in
the 𝑥-𝑦-𝑧-𝑡-space; in [this space] there is only one measuring unit available, since
space and time coordinates are related by the requirement of the invariance of the
form (5), i. e. by fixing the speed of light, while for an extension of the Galilean
group by two parameters, we could separately decide about time and spatial unit.213)

If one lets 𝑐 converge towards ∞, then the extended Lorentz group changes into
the totality of linear transformations, which transform into itself the quadratic curve
in the infinity of the 𝑥-𝑦-𝑧-𝑡-space determined by the two equations 𝑥2 + 𝑦2 + 𝑧2 = 0,
𝑡 = 0 (this is the imaginary spherical circle of the spaces 𝑡 = const.); this is just
the extended Galilean group214), and consequently the Galilean group is the limit
case of the Lorentz group for indefinitely growing constant 𝑐. This has motivated
Minkowski to give to the so-called relativity principle, which has been stated at first
as a requirement of the invariance with respect to the Lorentz group for the laws of
electrodynamics, a further range of validity as “postulate of the absolute world”215):
What seems at first as invariance with respect to the Galilean group, is in fact only
an empirical approximation of the exact invariance with respect to the Lorentz group
with a very large 𝑐 compared to the usually appearing velocities.

The foundations of the dynamics of a continuum which respects this relativity
postulate are included in the previously formulated general

212 F. Klein, Die geometr. Grundlagen der Lorentzgruppe, Jahresber. d. D.M.V. 19 (1910), p. 281.
213 Cf. F. Klein, op. cit., p. 295 f.
214 F. Klein, op. cit., p. 291 f.
215 H. Minkowski, 210) a) Anhang; b) Cap. I, II.
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Formen enthalten; es sind nur alle eingehenden Zustandsfunktionen als Invarianten
bzw. Kovarianten der Lorentzgruppe zu wählen. Ist die Bewegung des Kontinuums
wieder wie in Nr. 2, (5) gegeben, so gestalten sich die Formeln homogener, wenn
man für jedes Teilchen 𝑎, 𝑏, 𝑐 als Funktion von 𝑡 eine „Ortszeit“

𝜏 = 𝜏(𝑎, 𝑏, 𝑐, 𝑡)

einführt; setzt man noch der Symmetrie halber

𝑥 = 𝑥1, 𝑦 = 𝑥2, 𝑧 = 𝑥3, 𝑡 = 𝑥4,

𝑎 = 𝜉1, 𝑏 = 𝜉2, 𝑐 = 𝜉3, 𝜏 = 𝜉4,

so schreiben sich die Bewegungsgleichungen

(7) 𝑥𝑖 = 𝑥𝑖 (𝜉1, 𝜉2, 𝜉3, 𝜉4) (𝑖 = 1, 2, 3, 4);

sie stellen bei variablem 𝜉4 ein den vierdimensionalen Raum einfach überdeckendes
System von Kurven (Weltlinien) dar, deren Gesamtverlauf ein vollständiges Bild der
Bewegung giebt.216)

Eine wesentliche Ergänzung des Relativitätspostulates bildet die Forderung, dass
alle überhaupt möglichen Geschwindigkeiten unterhalb der Lichtgeschwindigkeit 𝑐
liegen, d. h. wenn wir allgemein:

(7a)
𝜕𝑥𝑖
𝜕𝜉𝑘

= 𝑥𝑖𝑘 (𝑖, 𝑘 = 1, 2, 3, 4)

setzen, dass
𝑥2

14 + 𝑥2
24 + 𝑥2

34 < 𝑐2𝑥2
44

oder — geometrisch gesprochen — dass jede Tangente einer Weltlinie innerhalb des
Kegels der Richtungen 𝑑𝑥2+𝑑𝑦2+𝑑𝑧2 = 𝑐2𝑑𝑡2 liegt. Äquivalent damit ist die Tatsache,
dass man jedes Teilchen zu jeder Zeit durch eine passende Lorentztransformation
(4) „auf Ruhe transformieren“ kann, d. h. dass man zu einem solchen neuen Koor-
dinatensystem 𝑥𝑖 übergehen kann, in dem bei analoger Bezeichnung wie in (7a) für
den betrachteten Wertekomplex 𝜉1, . . . 𝜉4

𝑥14 = 𝑥24 = 𝑥34 = 0

wird. Alle möglichen „Ruhtransformationen“ unterscheiden sich voneinander, abge-
sehen von den willkürlich bleibenden Größen 𝛼15, . . . 𝛼45, nur durch eine gewöhn-
liche orthogonale Transformation der drei Koordinaten 𝑥1, 𝑥2, 𝑥3; in den verschiede-
nen „Ruhkoordinatensystemen“ werden also die Deformationsgrössen erster Ord-
nung 𝑥𝑖𝑘 wohl von-

216 H. Minkowski, 210) b).
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forms; we only have to choose all relevant state functions as invariants or covariants
of the Lorentz group. If the motion of the continuum is given again as in No. 2,
(5), then the formulas arrange more homogeneously when one introduces for every
particle 𝑎, 𝑏, 𝑐 a “local time”

𝜏 = 𝜏(𝑎, 𝑏, 𝑐, 𝑡)
as function of time 𝑡; by setting for the sake of symmetry

𝑥 = 𝑥1, 𝑦 = 𝑥2, 𝑧 = 𝑥3, 𝑡 = 𝑥4,

𝑎 = 𝜉1, 𝑏 = 𝜉2, 𝑐 = 𝜉3, 𝜏 = 𝜉4,

then the equations of motion write as

(7) 𝑥𝑖 = 𝑥𝑖 (𝜉1, 𝜉2, 𝜉3, 𝜉4) (𝑖 = 1, 2, 3, 4);

they represent for varying 𝜉4 a system of curves (world lines) simply covering the
four-dimensional space [. Curves] whose whole courses give a complete picture of
the motion.216)

An essential supplement of the relativity postulate forms the requirement, that all
generally possible velocities are below the speed of light, i. e. when we generally set

(7a)
𝜕𝑥𝑖
𝜕𝜉𝑘

= 𝑥𝑖𝑘 (𝑖, 𝑘 = 1, 2, 3, 4),

that
𝑥2

14 + 𝑥2
24 + 𝑥2

34 < 𝑐2𝑥2
44

or — geometrically spoken — that every tangent to a world line lies within the cone
of the directions 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 = 𝑐2𝑑𝑡2. Equivalently to this is the fact that one can
“transform to rest” every particle for every time by a suitable Lorentz transformation
(4), i. e. that one can change over to a new coordinate system 𝑥𝑖 , in which for similar
labeling as in (7a) for the considered tuple 𝜉1, . . . 𝜉4

𝑥14 = 𝑥24 = 𝑥34 = 0.

All possible “transformations of rest” differ, apart from the arbitrarily remaining
quantities 𝛼15, . . . 𝛼45, only by an ordinary orthogonal transformation of the three
coordinates 𝑥1, 𝑥2, 𝑥3; in the different “coordinate systems of rest” consequently all
deformation quantities of first order 𝑥𝑖𝑘 possibly will be

216 H. Minkowski, 210) b).
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einander verschieden sein können, hingegen werden die den orthogonalen Koordi-
natentransformationen gegenüber invarianten eigentlichen „Formänderungskompo-
nenten“ (Nr. 9, (1))

(8)
𝑒𝑖 =

1
2 (𝑥2

1𝑖 + 𝑥2
2𝑖 + 𝑥2

3𝑖 − 1),
𝑔𝑖𝑘 = 𝑥1𝑖𝑥1𝑘 + 𝑥2𝑖𝑥2𝑘 + 𝑥3𝑖𝑥3𝑘

(𝑖, 𝑘 = 1, 2, 3)

unabhängig von der speziell gewählten Ruhtransformation sein. Denkt man die 𝑥𝑖𝑘
durch ihre Ausdrücke in den ursprünglichen Bewegungsfunktionen ersetzt, so sind
diese Ruhdeformationen die einzigen Invarianten erster Ordnung, die das System
der Weltlinien (7) gegenüber der Lorentzgruppe aufweist; sie sind zugleich auch von
der willkürlichen Wahl des Parameters 𝜉4 = 𝜏 unabhängig.217)

Eine virtuelle Variation der Bewegung des Kontinuums stellt sich nun durch vier
Funktionen 𝛿𝑥𝑖 (𝑖 = 1, . . . 4) dar; da die Variable 𝜉4 = 𝜏 willkürlich ist, bedeutet
das für die Bewegung des Kontinuums selbst, d. h. für das System der Weltlinien
nur wieder drei willkürliche Funktionen. Die virtuelle Arbeit irgendwelcher am
Kontinuum angreifender Volumkräfte im Intervall 𝜏1 � 𝜏 � 𝜏2 erhält dann den
Ausdruck

(9) 𝛿𝐴 =

𝜏2∫
𝜏1

𝑑𝜏

∭
(𝑉0)

4∑
𝑖=1

𝑋𝑖𝛿𝑥𝑖 𝜚0𝑑𝜉1𝑑𝜉2𝑑𝜉3.

Dabei bedeuten 𝑋1, 𝑋2, 𝑋3 analog zu Nr. 3a, S. 613, wenn man ihnen noch den
Faktor 𝑑𝜏

𝑑𝑡 =
1
𝑥44

hinzufügt, die auf die Masseneinheit des undeformierten Mediums
im 𝜉1-𝜉2-𝜉3-Raume berechneten Kraftkomponenten; bemerkt man ferner, dass eine
Variation, für die an jeder Stelle

(10) 𝛿𝑥1 : 𝛿𝑥2 : 𝛿𝑥3 : 𝛿𝑥4 = 𝑥14 : 𝑥24 : 𝑥34 : 𝑥44

ist, nur eine Verschiebung der Weltlinien in sich, also eine Änderung des Parameters
𝜏 bedeutet, und dass für sie also 𝛿𝐴 identisch verschwinden muss, so folgt, dass

(9a) −𝑋4 =
1
𝑥44

3∑
𝑖=1

𝑥𝑖4𝑋𝑖 = 𝑋1
𝑑𝑥1
𝑑𝑡

+ 𝑋2
𝑑𝑥2
𝑑𝑡

+ 𝑋3
𝑑𝑥3
𝑑𝑡

— wiederum bis auf den Faktor 1
𝑥44

— die in der Zeiteinheit an der Masseneinheit
des undeformierten Mediums geleistete Arbeit bedeutet.218)

217 M. Born, Ann. d. Phys. (4) 30 (1909), p. 1; speziell § 2. — G. Herglotz, Ann. d. Phys. (4) 36
(1911), p. 493; speziell § 1, 2.
218 H. Minkowski,210) a) Anhang; G. Herglotz, a. a. O., p. 506.
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different from each other, whereas the effective “shape change components” (No. 9,
(1))

(8)
𝑒𝑖 =

1
2 (𝑥2

1𝑖 + 𝑥2
2𝑖 + 𝑥2

3𝑖 − 1),
𝑔𝑖𝑘 = 𝑥1𝑖𝑥1𝑘 + 𝑥2𝑖𝑥2𝑘 + 𝑥3𝑖𝑥3𝑘

(𝑖, 𝑘 = 1, 2, 3)

being invariant with respect to the orthogonal coordinate transformations will be
independent of the specially chosen transformations of rest. If one thinks of 𝑥𝑖𝑘 being
substituted by their expressions of the original motion, then these deformations of
rest are the only invariants of first order, which the system of world lines (7) shows
with respect to the Lorentz group; they are likewise also independent of the arbitrary
choice of the parameter 𝜉4 = 𝜏.217)

A virtual variation of the motion of the continuum is represented now by the four
functions 𝛿𝑥𝑖 (𝑖 = 1, . . . 4); since the variable 𝜉4 = 𝜏 is arbitrary, this implies that
the motion of the continuum itself, i. e. the the system of world lines, [is described]
only [by] three arbitrary functions. The virtual work of any volume forces applied in
the interval 𝜏1 � 𝜏 � 𝜏2 is then assumed to be given by the expression

(9) 𝛿𝐴 =

𝜏2∫
𝜏1

𝑑𝜏

∭
(𝑉0)

4∑
𝑖=1

𝑋𝑖𝛿𝑥𝑖 𝜚0𝑑𝜉1𝑑𝜉2𝑑𝜉3.

Thereby by introducing the factor 𝑑𝜏
𝑑𝑡 =

1
𝑥44

to 𝑋1, 𝑋2, 𝑋3, they denote similarly
to No. 3a, p. 613, the force components computed with respect to unit mass of
the undeformed medium in the 𝜉1-𝜉2-𝜉3-space; If one notices furthermore, that a
variation for which at every point

(10) 𝛿𝑥1 : 𝛿𝑥2 : 𝛿𝑥3 : 𝛿𝑥4 = 𝑥14 : 𝑥24 : 𝑥34 : 𝑥44

implies only a displacement of the world line in itself, thus [implies] a change of the
parameter 𝜏, and that for [this variation] 𝛿𝐴 consequently has to vanish identically,
then it follows that

(9a) −𝑋4 =
1
𝑥44

3∑
𝑖=1

𝑥𝑖4𝑋𝑖 = 𝑋1
𝑑𝑥1
𝑑𝑡

+ 𝑋2
𝑑𝑥2
𝑑𝑡

+ 𝑋3
𝑑𝑥3
𝑑𝑡

— again up to the factor 1
𝑥44

— which denotes the work done at the mass unit of the
undeformed medium in the unit of time.218)

217 M. Born, Ann. d. Phys. (4) 30 (1909), p. 1; especially § 2. — G. Herglotz, Ann. d. Phys. (4) 36
(1911), p. 493; especially § 1, 2.
218 H. Minkowski,210) a) Anhang; G. Herglotz, op. cit., p. 506.
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Analog wird (vgl. Nr. 5, (10)) als Arbeit irgendwelcher am Kontinuum an-
greifenden Spannungen bei einer virtuellen Verrückung das Integral

(11) 𝛿𝐴1 = −
𝜏2∫

𝜏1

𝑑𝜏

∭
(𝑉0)

4∑
𝑖,𝑘=1

𝑋𝑖𝑘
𝜕𝛿𝑥𝑖
𝛿𝜉𝑘

𝑑𝜉1𝑑𝜉2𝑑𝜉3,

die „Spannungswirkung“ von H. Minkowski 219), angesetzt; da für die virtuelle Ver-
rückung (10) auch 𝛿𝐴1 identisch verschwinden muss, ergeben sich die Identitäten

(11 a)
4∑
𝑖=1

𝑥𝑖4

4∑
𝑘=1

𝜕𝑋𝑖𝑘
𝜕𝜉𝑘

= 0

im Inneren des Bereiches 𝑉0 und

(11 b)
4∑
𝑖=1

𝑥𝑖4

3∑
𝑘=1

𝜕𝜔

𝜕𝜉𝑘
𝑋𝑖𝑘 = 0

am Rande, wofern dessen Gleichung

𝜔(𝜉1, 𝜉2, 𝜉3) = 0

ist.220) Die schon mehrfach angewandten Umformungen gestatten aus dem verallge-
meinerten Hamiltonschen Prinzip, das das Verschwinden von

(12) 𝛿𝐴 + 𝛿𝐴1 = 0

für alle willkürlichen nur für 𝜏 = 𝜏1 und 𝜏 = 𝜏2 identisch verschwindenden virtuellen
Verrückungen 𝛿𝑥𝑖 fordert, die Bewegungsgleichungen zu entnehmen:

(12 a) 𝜚0𝑋𝑖 +
4∑
𝑘=1

𝜕𝑋𝑖𝑘
𝜕𝜉𝑘

= 0 innerhalb 𝑉0,

(𝑖, 1, . . . 4)

(12 b)
3∑
𝑘=1

𝜕𝜔

𝜕𝜉𝑘
𝑋𝑖𝑘 = 0 auf dem Rande von 𝑉0.

Vermöge der Identitäten (11a), (11b) ist je eine dieser vier Gleichungen von den
drei anderen abhängig. Analog wie früher (Nr. 3c, S. 617 f.) kann man in (11) statt
der 𝜉𝑖 die 𝑥𝑖 als unabhängige Variable einführen, und man erhält dann eine den
Gleichungen (5) von Nr. 3 entsprechende Form der Bewegungsgleichungen, wie sie
von Minkowski angegeben wurde.221)

219 H. Minkowski, 210) a) Anhang, Formel (17)
220 G. Herglotz, a. a. O., p. 506 f.
221 H. Minkowski, 210) a) Anhang, Formel (20). Die Gleichungen erscheinen
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Analogously (cf. No. 5, (10)), the integral

(11) 𝛿𝐴1 = −
𝜏2∫

𝜏1

𝑑𝜏

∭
(𝑉0)

4∑
𝑖,𝑘=1

𝑋𝑖𝑘
𝜕𝛿𝑥𝑖
𝜕𝜉𝑘

𝑑𝜉1𝑑𝜉2𝑑𝜉3,
†

is assumed as work [expression] for any stresses applied at the continuum for a
virtual displacement [i. e.] the “stress action” of H. Minkowski 219; since for the virtual
displacement (10) also 𝛿𝐴1 has to vanish identically, the [following] identities are
obtained

(11 a)
4∑
𝑖=1

𝑥𝑖4

4∑
𝑘=1

𝜕𝑋𝑖𝑘
𝜕𝜉𝑘

= 0

in the interior of 𝑉0 and

(11 b)
4∑
𝑖=1

𝑥𝑖4

3∑
𝑘=1

𝜕𝜔

𝜕𝜉𝑘
𝑋𝑖𝑘 = 0

at the boundary, provided that the equation thereof is220)

𝜔(𝜉1, 𝜉2, 𝜉3) = 0.

The transformations applied already several times allow to extract the equations of
motion from the generalized Hamilton’s principle, which demands the vanishing of

(12) 𝛿𝐴 + 𝛿𝐴1 = 0

for all arbitrary virtual displacements [which] vanish identically only for 𝜏 = 𝜏1 and
𝜏 = 𝜏2:

(12 a) 𝜚0𝑋𝑖 +
4∑
𝑘=1

𝜕𝑋𝑖𝑘
𝜕𝜉𝑘

= 0 in 𝑉0,

(𝑖, 1, . . . 4)

(12 b)
3∑
𝑘=1

𝜕𝜔

𝜕𝜉𝑘
𝑋𝑖𝑘 = 0 on the boundary of 𝑉0.

Due to the identities (11a), (11b) each one of these four equations is dependent on
the other three. Analogously to before (No. 3c, p. 617 f.) in (11) one can introduce
instead of the 𝜉𝑖 the 𝑥𝑖 as independent variables, and one obtains then a form of the
equations of motion corresponding to the equations (5) of No. 3, as they have been
given by Minkowski.221)

† The 𝛿 in the denominator of the original is exchanged by a 𝜕 – (TN)
219 H. Minkowski, 210) a) Anhang, formula (17)
220 G. Herglotz, op. cit., p. 506 f.
221 H. Minkowski, 210) a) appendix, formula (20). The equations appear
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Über die Art der Abhängigkeit der Spannungskomponenten von den Bewegungs-
funktionen (7) kann zunächst ganz frei verfügt werden, wenn nur die Relationen
(11a), (11b) erfüllt sind; es sei hier nur auf den Potentialansatz Nr. 7, (26) einge-
gangen, der auf die von G. Herglotz 222) angegebene Übertragung der Formeln der
gewöhnlichen Elastizitätslehre (Nr. 9, (2), (3)) in die Relativitätstheorie der Lorentz-
gruppe führt. Es sei also

(13) −𝛿𝐴1 = +𝛿Φ = 𝛿

𝜏2∫
𝜏1

𝑑𝑡

∭
(𝑉0)

𝜑(𝑥𝑖𝑘 )𝑑𝜉1𝑑𝜉2𝑑𝜉3,

wo 𝜑 nur von den ersten Ableitungen der Bewegungsfunktionen abhängen möge;
dann bleibt Φ bei allen Lorentztransformationen nur dann ungeändert, wenn 𝜑 bis
auf den Faktor 𝑥44 lediglich von den sechs Ruhdeformationen (8) abhängt:

(13 a) 𝜑 = 𝜑(𝑒1, 𝑒2, 𝑒3, 𝑔12, 𝑔23, 𝑔31) · 𝑥44.

Durch Vergleich von (13) und (11) folgt nun

(13 b) 𝑋𝑖𝑘 =
𝜕𝜑

𝜕𝑥𝑖𝑘
,

und die Substitution dieser Werte in (12a), (12b) liefert die von Herglotz angegebenen
Grundgleichungen.223)

Minkowski hat die Analogie mit dem klassischen Hamiltonschen Prinzip noch
weiter getrieben, indem er von den Arbeitsausdrücken, in die hier von vornherein die
kinetischen Glieder mit eingehen, allgemein einen rein kinetischen Teil abtrennt.224)
Betrachtet man die Umgebung einer bestimmten Stelle 𝑥𝑖 in einem dieser Stelle
zugehörigen Ruhkoordinatensystem 𝑥𝑖 und misst Volumen und Masse des Mediums
in dem 𝑥1-𝑥2-𝑥3-Raume, so heißt die für den Punkt 𝑥𝑖 sich ergebende Massendichte
𝜚 die Ruhdichte dieser Stelle. Minkowski lässt alsdann die Variation des als Massen-
wirkung bezeichneten, über den betrachteten vierdimensionalen Raum erstreckten
Integrales

(14) 𝑃 =

⨌
�̄� 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑑𝑡

in ein wenig modifizierter Form, da bei ihm der Parameter 𝜏 stets die nur durch (15) definierte
„Eigenzeit“ ist und also bei der Variation stets eine Nebenbedingung und ein Lagrangescher Faktor
auftritt.
222 G. Herglotz, a. a. O. p. 503 ff. — Vgl. auch für den speziellen Fall der Hydrodynamik — analog
Nr. 10 — die Ansätze von E. Lamla Ann. d. Phys. (4) 37 (1912), p. 772.
223 a. a. O., p. 505 f.
224 H. Minkowski,210) a) Anhang, Formel (7) bis (14).
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At first, the class with dependence of the stress components on the motion (7)
can be chosen completely freely, as long as the relations (11a), (11b) are fulfilled;
here only the potential-based approach No. 7, (26) is considered, which leads to the
transmission of the formulas from the ordinary theory of elasticity (No. 9, (2), (3)) to
the theory of relativity of the Lorentz group given by G. Herglotz 222). Let therefore

(13) −𝛿𝐴1 = +𝛿Φ = 𝛿

𝜏2∫
𝜏1

𝑑𝑡

∭
(𝑉0)

𝜑(𝑥𝑖𝑘 )𝑑𝜉1𝑑𝜉2𝑑𝜉3,

where 𝜑 may depend only on the first derivatives of the motion; then Φ remains
unchanged for all Lorentz transformations only if 𝜑, up to the factor 𝑥44, depends
merely on the six rest deformations (8):

(13 a) 𝜑 = 𝜑(𝑒1, 𝑒2, 𝑒3, 𝑔12, 𝑔23, 𝑔31) · 𝑥44.

Comparing (13) and (11) it follows now that

(13 b) 𝑋𝑖𝑘 =
𝜕𝜑

𝜕𝑥𝑖𝑘
,

and the substitution of these values into (12a), (12b) leads to the fundamental equa-
tions given by Herglotz.223)

Minkowski pushed the analogy with the classical Hamilton’s principle further
by separating from the work expressions, in which here from the beginning the
kinetic terms are contained, generally a purely kinetic part.224) If one considers in
the neighborhood of a certain point 𝑥𝑖 in a corresponding rest coordinate system 𝑥𝑖
and [if one] measures volume and mass of the medium in this 𝑥1-𝑥2-𝑥3-space, then
the mass density 𝜚 which is given for the point 𝑥𝑖 is called rest density at this point.
Minkowski lets then add the variation of the so-called mass action, [i. e.] the integral
extended over the considered four-dimensional space

(14) 𝑃 =

⨌
�̄� 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑑𝑡

in slightly modified form, since for him the parameter 𝜏 is always the “proper time” defined by (15)
and thus for a variation it does appear always a constraint and a Lagrange multiplier.
222 G. Herglotz, op. cit. p. 503 ff. — Cf. also for the special case of hydrodynamics — analogous to
No. 10 — the foundations of E. Lamla Ann. d. Phys. (4) 37 (1912), p. 772.
223 op. cit., p. 505 f.
224 H. Minkowski,210) a) appendix, formula (7) to (14).
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additiv zu (12) hinzutreten, wobei während der Variation die Masse konstant zu
halten ist. Verwendet man nun eine spezielle Ortszeit 𝜏, nämlich eine solche, die der
Relation

(15) 𝑐2
( 𝜕𝑥4
𝜕𝜏

)2
−
( 𝜕𝑥1
𝜕𝜏

)2
−
( 𝜕𝑥2
𝜕𝜏

)2
−
( 𝜕𝑥3
𝜕𝜏

)2
= 𝑐2

genügt, so wird 𝛿𝑃 bis auf Randglieder gleich
⨌

𝜚
( 𝜕2𝑥1

𝜕𝜏2 𝛿𝑥1 + 𝜕2𝑥2

𝜕𝜏2 𝛿𝑥2 + 𝜕2𝑥3

𝜕𝜏2 𝛿𝑥3 − 𝜕2𝑥4

𝜕𝜏2 𝛿𝑥4

)
𝑑𝑥𝑑𝑦𝑑𝑧𝑑𝑡,

und die Faktoren der 𝛿𝑥𝑖 treten — in völliger Analogie zu den Grundgleichungen der
Newtonschen Mechanik — zu den Gleichungen (12) hinzu. M. Born 225) hat gezeigt,
wie man den Massenfaktor auch als Lagrangeschen Faktor der Nebenbedingung (15)
einführen kann.

—————

(Abgeschlossen im August 1913.)

225 Ann. d. Phys. (4) 28 (1909), p. 571.
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to (12), whereas during the variation the mass has to be kept constant. If one uses
now a special proper time 𝜏, namely the one, which satisfies the relation

(15) 𝑐2
( 𝜕𝑥4
𝜕𝜏

)2
−
( 𝜕𝑥1
𝜕𝜏

)2
−
( 𝜕𝑥2
𝜕𝜏

)2
−
( 𝜕𝑥3
𝜕𝜏

)2
= 𝑐2,

then 𝛿𝑃 becomes up to boundary terms equal to
⨌

𝜚
( 𝜕2𝑥1

𝜕𝜏2 𝛿𝑥1 + 𝜕2𝑥2

𝜕𝜏2 𝛿𝑥2 + 𝜕2𝑥3

𝜕𝜏2 𝛿𝑥3 − 𝜕2𝑥4

𝜕𝜏2 𝛿𝑥4

)
𝑑𝑥𝑑𝑦𝑑𝑧𝑑𝑡,

and the factors of 𝛿𝑥𝑖 are added — in complete analogy to the fundamental equations
of the Newtonian Mechanics — to the equations (12). M. Born 225) has shown, how
one can introduce the mass factor also as Lagrange multiplier of the constraint (15).

—————

(Completed in August 1913.)

225 Ann. d. Phys. (4) 28 (1909), p. 571.
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3.3 Translator’s commentaries

The contribution of Hellinger is extraordinary and strongly contrasts with others
because of its sharp, precise and meaningful development of a physical theory
of continuous media. The side-by-side translation allows Hellinger’s concise argu-
mentations to speak for themselves. However, some statements shall not remain
uncommented, either to highlight or to relate them to more current developments in
the field. Only the topics to which the author is most familiar with are commented.
Scientists from complementary fields should be encouraged to do the same for the
remaining parts. Besides the mere rediscovery and diffusion of the work, a thorough
discussion among scholars is exactly the motivation of this translation.

The notion of a continuum

In order to formulate a general field theory in such a compact form as done by
Hellinger, one must accept the concept of a continuum. While many predecessors
of Hellinger such as Cauchy, Navier or Piola had been involved in discussions
about the atomistic structure of the matter, Hellinger abstained from making any
relation to the microscopic composition of the material. In No. 2, a three-dimensional
extended continuous medium is introduced as a subset of the three-dimensional space
representing the subset of spatial points occupied by the material points in the current
configuration. Hellinger introduced in a very modern way the nonlinear kinematics
of the three-dimensional continuous body in terms of placement functions relating
the subset of material points with the current configuration and even formulated the
restriction that the determinant of the corresponding gradient should never be zero.
All further introduced field objects are then functions which have as domain either
the set of material points (𝑎, 𝑏, 𝑐) or the set of the spatial points occupied by the
material points in the current configuration (𝑥, 𝑦, 𝑧).

Even though the atomistic structure is not of interest in this article, Hellinger
discussed the relation between discrete and continuous systems right after the postu-
lation of the principle of virtual displacements for the three-dimensional continuum
on p. 615. There, it is written how discrete systems can approximate the behavior
of continuous ones. Moreover, it is pointed out that there is still no systematic and
rigorous theory that can deal with such an idea. In fact, Hellinger anticipated the
problem of homogenization of discrete systems, which consists to prove that suitable
𝜀-families of solutions of discrete problems converge, when suitable continuation
processes are introduced, to the solution of a continuous problem. In this kind of
rigorous problems, the concept of Gamma-convergence is now playing a crucial
role. The literature on this subject is becoming immense: we quote here [125, 23]
among the most interesting papers obtaining first gradient continua as continuous
limit while, for what concerns the papers where a higher gradient continuum limit
is obtained, we cite [119] and [9, 10, 138, 27].
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A less technical approach was already formulated by Hellinger’s predecessor
Gabrio Piola, who considered a continuum as an approximation needed to deduce
results with tractable mathematics. Piola’s idea was simple. The “true”, or say, the
most accurate mathematical model for matter is given by a discrete molecular theory.
However, the problems to be solved in using this theory directly are too difficult.
Therefore, Piola suggested to homogenize the discrete micro-theory and to deduce
the most suitable macro-theory, see Capitolo VI of [120] or pp. 146–164 of [42] for
the English translation and [38] for further comments. The therein proposed heuristic
variational asymptotic procedure is thus called Piola’s micro-macro identification
procedure and can be summarized by the following three steps:

1. specify the “most likely” macro-motion once a micro-motion with a scaling
parameter 𝜀 is chosen;

2. formulate the principle of virtual displacements at micro- and macro-level;
3. identify the virtual work contributions of the micro- and macro-level when the

scaling parameter 𝜀 tends to zero;

It is then the continuous macro-theory which Piola hoped to use for formulating
and solving deformation problems of interest in applications. For some examples
of different variants of Piola’s micro-macro identification procedure, we refer to
[46, 66, 17, 16].

Variational principles

In the introduction, No. 1, one finds maybe one of the most precise discussions
on variational principles ever written. In an extraordinary concise way Hellinger
explained what he means by variational principles; and what should be understood
under variational principles. His statement is reinforced by the following lines. The
calculus of variations is a mathematical theory whose aim is to find extrema for
functionals, usually expressed by means of integrals. To find these extrema one can
calculate the first variation of the integral operators involved, by obtaining some linear
functionals of the variations of the unknown fields. To base continuum mechanics
on an extremum principle may be regarded as a too hazardous choice. Therefore,
following Lagrange, we prefer to base the postulation of mechanics by formulating
a principle having the form of the necessary criterion for being an extremum. This
point is rather abstract, but its implications have a marvelous impact, allowing for
a very general postulation of physical theories (see for instance [122, 124, 123, 33,
118, 56, 108, 19, 22, 26, 24, 130, 58]). This postulation is based on the principle of
virtual displacements also known as principle of virtual work, principle of virtual
velocities, principle of virtual power, howsoever you want to call this principle. Note
that the first form of this principle has been attributed to the Pythagorean philosopher
Archytas of Tarentum, see [165].

Hellinger clearly stated that the unifying mathematical form for all individual
physical theories is given by variational principles. He gave plenty of examples
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and formulated the principle of virtual displacements for the three-dimensional
continuum for statics and dynamics, see Eq. (4) in No. 3b and Eq. (1) in No. 5a, for
media with oriented particles, see Eq. (2) in No. 4b or No. 7b for the hyperelastic
case, for thermodynamics Eq. (2) in No. 15, and many more. Another advantage of
the variational formulation is that the principle is formulated using a single formula.
This had already been recognized by Gabrio Piola who talked about “quel principio
uno, di dove emanano tutte le equazioni che comprendono innumerabili verità”,
i.e., that fundamental principle from which are emanating all those equations which
include innumerable truths, see [42, Chapter 1, p. 110]. Remark that Hellinger
accepts in a paper dated 1913 a statement as obvious which is still nowadays denied
by some authors. This statement is the following: when formulating a variational
principle (in the wider sense given to this expression by Lagrange and Piola, but
also when accepting the more restrictive sense considered by Hamilton) one gets
“for free” the required boundary conditions. Note that those who refuse variational
principles sometimes claim that boundary conditions need to be determined on
“physical grounds”.

The principle of virtual displacements

Even though “Principle of Virtual Work” is the more contemporary name for the fun-
damental variational principle in mechanics, we will stick in this commentaries with
Hellinger’s terminology. Hellinger was extremely precise in the use of terminology,
which can be underlined by the following word choices. For the English “displace-
ment”, in German there are the two synonyms “Verschiebung” and “Verrückung”.
While “Verrückung” is a rather old-fashioned word, nowadays it is more common
to use “Verschiebung”. Nevertheless, throughout his paper, Hellinger distinguished
between actual and virtual displacements by attributing to them the words “Ver-
schiebung” and “Verrückung”, respectively. In modern literature mainly the word
“Verschiebung” is in use. And it is this virtual displacement, which Hellinger in-
troduced very rigorously in No. 2a in terms of Gâteaux derivatives, i.e., variations
of the current placement field. So, there is absolutely nothing obscure about virtual
displacements as sometimes claimed by opposers of variational principles. Virtual
displacements can be as rigorously defined as velocities or infinitesimal displace-
ments in the linearized theory. All of which can be expressed as functions with the
set of material points or the current configuration as domain.

In No. 3a, Hellinger wrote unambiguously that the notion of work is the elemental
quantity to base on a mechanical theory. With this conception of mechanics, he is
a follower of the ideas advocated by d’Alembert and Lagrange. These ideas are
explained in a nutshell as follows. First one discusses the kinematics and only then
one introduces with the notion of work the laws of dynamics governing the motion
of the considered system. In fact, Hellinger started formulating the fundamental
problem of mechanics guided by the conceptual frame set up by d’Alembert, see the
first edition of the “Traité de dynamique” [34], page viij,ix (end,beginning):
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«Mais comment arrive-t’il que le Mouvement d’un corps suive telle ou telle loi particuliére?
C’est sur quoi la Geométrie seule ne peut rien nous apprendre, & c’est aussi ce qu’on peut
regarder comme le premier Problême qui appartienne immédiatement à la Méchanique.

On voit d’abort fort clairement, qu’un Corps ne peut se donner le Mouvement lui-même.
Il ne peut donc être tiré du repos, que par l’action de quelque cause étrangére.»1

The external cause (“cause étrangére”) evoked by d’Alembert was called by Hellinger
force or stress. He used the word force exactly in the same spirit and with the same
intentions as d’Alembert. The forces and stresses “applied on” or “applied in” a
continuous body have in common, or, are characterized by the fact that they expend
a virtual work on virtual displacements. Indeed on page xxv (loc. cit.) d’Alembert
warns the reader:

«Au reste, comme cette seconde Partie est destinée principalement à ceux, qui déja instruits
du calcul différentiel & intégral, se seront rendus familiers les principes établis dans la
premiére, ou seront déja exercés à la solution des Problêmes connus & ordinaires de la
Méchanique ; je dois avertir que pour éviter les circonlocutions, je me suis souvent servi du
terme obscur de force, & de quelques autres qu’on employe communément quand on traite
du Mouvement des Corps ; mais je n’ai jamais prétendu attacher à ces termes d’autres idées
que celles qui résultent des principes que j’ai établis, soit dans cette Préface, soit dans la
premiére Partie de ce Traité.»2

On p. 611, Hellinger gave maybe one of the mathematical most sophisticated and
rigorous definition of the virtual work at that time and defined the virtual work as
a coordinate independent linear homogeneous function on the space of all possible
virtual displacements. This very modern statement in its brief clarity should not need
any comment if it were accepted without controversies. Unfortunately, many debates
were started about its content even in relatively more modern works and conference
discussions. Hence, we remark here that:

• The forces and stresses appear naturally in variational postulations as the dual
quantities with respect to virtual displacements and virtual deformations, respec-
tively. They are univocally characterized by the work functionals, so that they
do not need to be introduced as independent concepts. For more details see for
instance [47, 73, 75, 74, 76, 44, 77, 55].

• Hellinger’s mathematical knowledge becomes apparent in the elegant way in
which he treats this point. He is a contemporary of Fréchet and Gâteaux and
therefore it is most likely that he knew and mastered their ideas and methods.

1 «But how it happens that the motion of a body follows this or this other particular law? This is
where the Geometry, alone, cannot teach us anything and this is what one can regard as the first
Problem which belongs immediately to Mechanics.

One can see immediately [and] really clearly that a body cannot give to him-self a motion. It
therefore can be subtracted from a state of rest only by the action of some external cause.»
2 «On the other hand, as this second part is addressed mainly to those who being already learned
in differential and integral calculus managed to become familiar with the principles established in
the first one, I must warn [these readers] that for avoiding the circumlocutions I have often used
the obscure term “force”, and some other terms which one commonly employs when he treats the
motion of bodies; but I never wanted to attribute to these terms any other ideas [different] from
those which result from the principles which I have established, either in this Preface, or in the first
Part of this Treatise.»
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Moreover, he shows a vision on the concept of distributions which is anticipating
the revolutionary results by Laurent Schwartz and their applications to continuum
mechanics. Concerning this point the reader is referred to [47, 74].

In Eq. (1) of No. 2, Hellinger introduced a virtual work that consists of three
parts and restricted himself to a special case sufficient for the treatment of classical
continua. However, he was absolutely aware of possible generalizations by adding
more expressions depending on the virtual displacements and their derivatives at
certain locations of the continuum as well as line, surface and volume integrals of
such expressions. Thus, Hellinger had already anticipated the structure theorems that
were proven by Laurent Schwartz, [137], for distributions and that were explicitly
considered in [47] and [46, 43, 41] to develop an 𝑁th-gradient theory of continuum
mechanics.

Hellinger formulated the virtual work of the continuum in the actual configuration.
On pp. 614, considering an arbitrary subdomain of the continuum, he showed, by
integrating by parts, how the stress distribution induces surface contact forces, i.e.
the stress vectors, on the boundary of the subdomain. In fact, this leads to the
linear relation between the stress vector and the outward pointing unit normal of the
subdomain’s boundary surface also known as Cauchy’s tetrahedron theorem. The
integration by parts had already been performed by Piola (see [42, 38]) because of
exactly the same reason: to transform the volume expression of internal work into
the expression of work expended by surface forces. The delicate question concerning
the priority between Piola and Cauchy in the introduction of surface contact forces
(we mean the concept generalizing the concept of pressure to solids) needs a very
detailed scrutiny, if ever one will be able to solve it. However, the priority of the
introduction of the aforementioned integration by parts process for “deducing” the
existence of contact forces inside a deformable continuous body has to be attributed
to Piola, in both the reference and the current configuration.

In No. 3b., the principle of virtual displacement for the three-dimensional contin-
uum is given. And as promised by Hellinger in the introduction, the local equilibrium
equations, Eq. (5a), together with the force boundary conditions, Eq. (5b), are a di-
rect consequence of the principle of virtual displacements. Using the coordinate
independence of the work expressions, the equilibrium equations are presented also
in terms of the coordinates of the set of material points . In particular, the relation
between the Cauchy stress and the 1st Piola-Kirchhoff stress is given in Eq. (8).

In No. 3d, the balance of forces and moments for the body and all its subbodies in
integral form are obtained by applying smoothened discontinuous virtual displace-
ments. The section gives thus a connection to the so called “rigidification principle”,
which states that every part cut out of the deformable continuum exposed to the
volume forces applied within the part and the forces applied on the surface must be
in equilibrium like a rigid body, see also the discussion in [55]. Using the presented
limit argument in the construction of smoothened discontinuous virtual displace-
ments, it seems possible to give an answer to the following question: In formulating
the principle of virtual work, do we need to assume that the virtual work vanishes for
all (regular) virtual displacements of all (suitably regular) subbodies of the consid-
ered body? Or is it sufficient to assume that it vanishes for all regular displacements
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of the whole body only? Indeed, Hellinger had mastered the concept of mollifiers
in three-dimensional Euclidean space whose existence Urysohn proved in a more
general setting few years later.3

In the last part of No. 3d, Hellinger mentioned also his understanding of Piola’s
approach to continuum mechanics or rather to the mechanics of rigid bodies. It
is not clear if he was aware of the true content of Piola’s works. What Hellinger
referred to are statements which can be found in Piola’s works. However, Piola
developed the Lagrangian theory of deformable bodies and, by considering the
subset of rigid virtual displacements, he proved that balance of forces and moments
are necessary conditions for the equilibrium. Moreover, Piola proved that introducing
the constraint of rigidity makes the stress undetermined and therefore he assessed
the logical necessity of the introduction of the theory of deformable bodies. It is
not clear how the linguistic barrier prevented Hellinger to appreciate completely the
value of Piola’s works (see [42, 38]).

We close this section by a further comment to clarify that there is not a “petitio
principii”4 hidden in Hellinger’s statement of the principle of virtual displacements,
how unfortunately too often sustained by the opposers of d’Alembertian-Lagrangian
postulation of mechanics and in particular in [155] p. 595 where one can read in the
first footnote:

«The derivation given by HELLINGER [. . . ] fails through petitio principi, since the stress
components appear in the original variational principle. [. . . ] Existence of the stress tensor
can be proved from variational principles which assume the existence of an internal energy
having a special functional form.»

The footnote is a comment on the following passage:

«[...] no variational principle has ever been shown to yield Cauchy’s fundamental theorem
in its basic sense as asserting that existence of the stress vector implies the existence of the
stress tensor.»

Simply the authors of the aforementioned statements do not want to follow the rea-
sonings presented in the works by d’Alembert, Lagrange, Piola and finally Hellinger:
the fundamental, primitive concept in mechanics is (virtual) work while contact force
is a derived concept. One postulates that work is a linear and continuous functional
on a set of test functions, i.e., virtual displacements, and then, via the celebrated
theory of distributions by L. Schwartz or via a suitable series of regularity ansatz,
one gets a representation of work in terms of 𝑁th order stresses which are defined as

3 Urysohn lemma: For any two disjoint closed sets 𝐴 and 𝐵 of a normal space 𝑋 there exists a
real-valued function 𝑓 , continuous at all points, taking the value 0 at all points of 𝐴, the value
1 at all points of 𝐵 and for all 𝑥 ∈ 𝑋 satisfying the inequality 0 ≤ 𝑓 (𝑥) ≤ 1. See for instance
[13, 101].
4 We resist to use in this context the most common English expression “begging the question”, as
it is usually phrased, as unfortunately it originated in the 16th century as a wrong translation of the
Latin correct expression “petitio principii”. A correct English translation could be: “assuming the
initial point” or even better “a fallacy in which a conclusion is taken for granted in the premises”.
Remark that obviously very often the conclusion may be accepted in an indirect way such that its
presence within the premise is hidden or at least not easily apparent.
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the dual in work of 𝑁th gradient of virtual displacements. There is no logical reason
for which contact actions (in the case of first gradient continua they reduce to contact
surface forces) must be the most fundamental concept. Actually Piola, Hellinger and
many others (see [75, 94, 47, 38, 66, 48, 133] and references cited therein) prefer to
consider the stress as the dual to the gradient of the virtual displacement field and to
deduce the contact actions as concepts derived in terms of stresses.

To be more precise, d’Alembertian postulation of Mechanics is based on the
principle of virtual displacements which is formulated following the subsequent
steps:

1. to introduce an admissible set of configurations and an admissible kinematics,
specifying the set of all possible motions,

2. to introduce the required work functionals in order to model ALL interactions
of the system, including the inertial work, which was considered explicitly by
d’Alembert and is given in terms of kinematic quantities including accelerations.5

3. to postulate that the sum of internal work plus external work plus inertial work,
hence the total virtual work, is vanishing.

In this postulation scheme, the word force and stress is simply used to describe
the structure of the work functionals and should not be considered as primitive
concept. In particular, there is no need to postulate any balance of forces. Certainly,
these balances can be derived as it was done by Hellinger in No. 3d or in [66].
It seems that Cauchy’s tetrahedron theorem, which was considered as the only
possible way for founding continuum mechanics in [155] (see there p. 595), although
very interesting and meaningful, cannot be regarded as the “unavoidable” basis of
continuum mechanics (see e.g. [46]). In the works of Cauchy one cannot find such a
strong statement:6 Cauchy followers seem much more extreme than Cauchy himself.

Axiom of power of internal forces

For one point, Hellinger can be criticized. Interestingly, he left the variational pos-
tulation scheme, when arguing below Eq. (11) of No. 3d about the symmetry of the
stress components. There, he wrote that one has to postulate the law of equal areas,
i.e., the balance of moments, to obtain the symmetry of the stress components.

5 This treatment of the inertia forces is a little unsatisfactory as it already relates force quantities
with kinematic quantities, i.e., it includes the relation that the inertia forces are proportional to
the accelerations. In No. 5d of Hellinger’s work, a general principle for dynamics is introduced in
which momentum is considered as dual quantity to the time derivative of the virtual displacement
field. Thus, in such an ansatz the relation between momentum and kinematical quantities remains
unspecified.
6 While Cauchy’s lemma and the symmetry of the stress tensor are formulated in [28] as “Théorème
I” and “Théorème II”, respectively. The celebrated stress theorem of Cauchy has to be extracted
out of the text and the formulas on pp. 68-69.
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So it seems that he was not aware of the “Axiom of power of internal forces”,
which later was postulated by Germain, see [73, 74, 75]7. This axiom is in fact the
variational postulate that generalizes the law of action-reaction stated by Newton for
systems of point masses. Once more, the power of variational postulates becomes
striking here, since the same postulate can be used for systems of point masses,
systems of rigid bodies, or, as used by Germain, for continua. All these systems differ
in the admissible kinematics, the corresponding work functionals and consequently
the appearing force quantities. The axiom of power of internal forces leads then to
restrictions of the internal force effects. These are for systems of point masses that
forces between two point masses are equal in length and opposite in direction and that
the direction is given by the connection line between the two points. The interaction
between rigid bodies is given by forces and moments, where the forces are equal
in length and opposite in directions, and the moments together with the induced
moments of the interaction forces are equal in length and opposite in direction. For
continua, in which only stress models the internal force effects, the symmetry of the
Cauchy stress follows.

In No. 6, starting on p. 637, Hellinger included a lucid distinction between internal
and external force effects, which is precisely in the sense of Germain’s definition
[73, 74] (see also the very useful textbooks of J. Salençon [132, 131, 133]). And it is
in the final section of the article, on p. 686, where Hellinger redeemed himself and
surprises with the formulation of the “axiom of power of internal forces”:

«It is said briefly, that the entire physics is invariant with respect to the group of all orthog-
onal coordinate transformations of the ordinary geometry, the so-called “basic group” or
“Euclidean group”. Herefrom it follows in particular, that the virtual work of all internal
effects within a continuous system necessarily vanishes for a virtual displacement corre-
sponding to an infinitesimal change of the coordinate system, or that the total potential of
these effects remain unchanged for any such displacement of the continuum, i.e. [that the
potential] is a euclidean potential in the sense of E. and F. Cosserat (cf. No. 7b, p. 650).»

Second-gradient materials

The massive potential of variational principles becomes apparent in No. 4, where
extensions of the virtual work contributions are discussed. With an intriguing nat-
uralness, Hellinger introduced second-gradient continua by augmenting the virtual
work by a linear form on the 18 second derivatives of the virtual displacements. In
these lines one can read one of the first traces of the second-gradient continua theory
which after many decades were developed in detail by Toupin and Germain, see
[149, 74]. Even though the details are not carried out, Hellinger had already recog-
nized the appearing surface tension contributions as well as contributions dual to the
derivatives normal to the tangent. These described contact actions were intensively
studied by Germain [74] and rediscovered in [71]. Interestingly, Hellinger wrote that

7 The English translation of [74] can be found in [77].
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there is not yet an application of the force effects dual to the derivatives normal to
the tangent.

On pp. 639–640 one can read the following:
«The state of deformation at a position is described more precisely, if one uses besides
the first also higher spatial derivatives of the functions (1), i. e. the deformation in the
neighborhood is approximated by a transformation of higher order instead of a linear one;
the dependence of the stresses on the deformation will be represented more completely, if
one includes also these higher derivatives in the material laws. In fact, one has considered
so far [derivatives which are] not higher than second derivatives, this is namely required
not until then, when the state of the medium varies very quickly in space; the stresses at a
position then depends also on the spatial slope of the common deformation quantities of 1.
order.»

The senior author of the exegetic series [59, 61, 62], who cannot easily understand
German, was rather astonished by the just quoted paragraph. Indeed, because of the
paper of Gurtin [95] and all papers influenced by it, for a long time it was believed, in
a certain group of scientists and in a certain cultural milieu, that second- and a fortiori
higher-gradient materials were logically NOT possible. In the aforementioned paper,
one finds on p. 341 the following very clear statement: «One might ask the question:
is it possible to have a material which obeys (1.6) but is not a simple elastic material?
Here we prove that it is not.» What is astonishing is that the footnote 8 in the same
paper WAS APPARENTLY not read by many followers of Gurtin (and sometimes
one has the impression that Gurtin himself for a long period forgot his own footnote).
This footnote reads:

«Thus the stress cannot depend upon the gradients of F and 𝜂8. Of course this does not mean
that higher order elasticity theories which include multipolar stresses are incorrect because
of the dependence of these stresses on the higher order gradients. It simply means that one
should not include such higher gradients if multipolar stresses are not included.»

After a long neglect of his own footnote, the late works of Gurtin came back to higher
order gradient theories (see e.g. [71] and all related and subsequent papers), where
the contribution by Toupin were reevaluated. There is also a large amount of papers
available which prove the applicability of higher-gradient theories, cf. for instance
[63, 12, 8, 7, 2, 1, 113, 102, 3, 81, 80]. A very interesting field of applications
for higher gradient theories lies in the description of pantographic structures, see
[40, 17, 16, 18, 45, 49, 86, 141, 168, 25] to mention just a few.

On p. 645, Hellinger came back to second-gradient materials for the case of
hyperelasticity. In fact, he considered volume energy densities that depend also
on the second derivatives of the placement functions. As a particular subset of
such continua, he discussed continua whose potential is augmented by a potential
with a surface energy density depending only on first derivatives of the placement
functions. As mentioned by Hellinger, this surface energy density can be transformed
to a volume energy density depending on the second derivatives of the placement
functions. He focused on this particular form in order to formulate capillarity in
No. 12. With this comments, Hellinger sketched a series of results which, in a
completely analytical form, were later developed in [98].

8 With 𝐹 and 𝜂 the deformation gradient and the entropy are meant.
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Media with oriented particles

On p. 610, the kinematics of a generalized continuum is introduced augmenting
the placement functions by angle functions that describe for each material point an
orthonormal director triad. Hellinger had perceived the importance of the pioneering
works by the Cosserat brothers, [32]. It has to be remarked that for many years their
results have been nearly ignored: A conjecture is (see [107]) that this circumstance
is related to the fact that their presentation is systematically based on Hamilton’s
principle.

In No. 4b and at the end of No. 5d, the static and dynamic theory of an oriented
three-dimensional continuum is discussed. The hyperelastic case is treated in No. 7b.
Again, the ideas presented by Hellinger are bound to be developed later for instance
by Toupin and Germain (see [149, 74]) and have a huge impact in contemporary
research. Without trying to write a complete list of the papers developing more
recently the subject, we refer here to the following papers and textbooks: [144, 11,
57, 82, 157, 110, 88, 160, 148] and the references cited therein. All of the cited
papers accept the point of view of Hellinger and base their treatment on the solid
ground of suitable variational principles. The reader should remark that the extended
kinematics considered by Hellinger includes micro-rotations, but does not consider
micro-deformations. A clear variational treatment of continua with micro-stretch is
presented in [75], where the ideas of Hellinger were fully developed. How much of
the so called “modern” theory of continua with directors was already available to
Hellinger is again surprising. Except for, maybe, the notation which often became
more compact using tensorial algebra, the equations of the present subsection have
been rediscovered several times, since 1913.

Lower-dimensional continua

The theory of media with oriented particles is closely related to lower-dimensional
continua. The theory of two- and one-dimensional continua presented in No. 3e
can describe only membranes and strings. The application range of this kind of
continua is rather limited and also quite delicate due to the loss of stiffness for
certain configurations. For instance, a horizontally, straight string cannot resist to
an applied vertical force. However, some interesting applications of the continuum
models introduced here have been found (see e.g. [65, 31, 72]).

Lower-dimensional continua can be indeed used as “reduced-order” approximate
models for three-dimensional bodies having one or two dimensions preponderant
with respect to the other two or one, even if some relevant deformation energy is
stored in the changes of shape “along” neglected dimensions. In a direct theory, some
extra kinematical descriptors can be added to the two- or one-dimensional continuum
to include the effect of the neglected dimensions. In the last part of No. 4b, Hellinger
augmented in the style of the Cosserat brothers each material point with a director
triad and stated the corresponding virtual work contribution. The presented continua



300 Simon R. Eugster

have orientations that remain unaffected by the change of the base curve or surface.
To obtain a virtual work expression that couples these effects, the easiest is to be
guided by a theory of hyperelastic one- or two-dimensional continua as sketched by
Hellinger on pp. 666–668. We refer to [147, 69, 67] for a variational formulation in
the case of one-dimensional continua generalized by an orthonormal director triad.
For the numerical treatment and some interesting applications see among others
[97, 96, 68, 90, 91, 156, 79, 21, 84, 83, 140, 159, 29, 30, 92, 53, 64]. The extra
kinematics can also be due to higher-gradient effects such as in the pantographic
beam, [17, 158, 89], which is a generalization of the Euler-Bernoulli beam similar to
[150]. Higher-gradient elasticity effects can also be introduced for two-dimensional
continua [50, 146, 87, 134, 136, 143, 52, 5, 162, 161, 36].

In contrast to the direct theory, one can try to deduce the governing equations
via a reduction process. This is what Hellinger suggested in No. 8 giving a short
but elegant resumé of the most important results in asymptotic analysis as applied
to reduced order and reduced dimension mechanical models. The ontological in-
trinsic three-dimensional nature of deformable bodies is here, p. 658, synthetically
described «In reality there exists always a three-dimensional extended domain» and
the mathematical nature of the abstraction which leads to lower dimensional continua
is clearly stated by means of the introduction of the concept of “families” of models
depending on a small parameter 𝜀 and in the calculation of suitable limits when this
parameter is vanishing. Remark the very elegant observation about the interpretation
of the gradients in the orthogonal direction as Cosserat triad. Hellinger gave also
a careful list of difficulties which may arise in the asymptotic expansions and that
some research is required in to understand this approach better.

Constitutive laws

The structure of the encyclopedia article is pretty clear. After the introduction of
the kinematics and the corresponding virtual work contributions of the considered
systems, the principle of virtual displacements is postulated. With the virtual work
contributions, it becomes apparent what force effects model the interaction mech-
anisms of the continuous system. However, there is yet no need for specifying the
relation between these force effects and the placement functions of the continuum.
These relations are then discussed in Part III of the article and define eventually the
individual fields of continuous media. Hellinger had thus already recognized that the
theory of continuous media includes and generalizes the theory of elasticity, No. 9,
and hydrodynamics, No. 10.

Hellinger accepted the constitutive laws for the stress, i.e., the material laws, to
be of a very general form, but gives one important restriction, which can be read in
the last paragraph of the following quote from p. 638.

«The values of the stress components 𝑋𝑥 , . . . , 𝑍𝑧 corresponding to the particle 𝑎, 𝑏, 𝑐
located at time 𝑡 at the position
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(1) 𝑥 = 𝑥 (𝑎, 𝑏, 𝑐; 𝑡) , 𝑦 = 𝑦 (𝑎, 𝑏, 𝑐; 𝑡) , 𝑧 = 𝑧 (𝑎, 𝑏, 𝑐; 𝑡) ,

must be given by the material laws for every possible motion of the continuum; hence [the
values] are represented explicitly as expressions of any kind depending on 𝑎, 𝑏, 𝑐, 𝑡 and
the functions (1). [These expressions] also include besides the values of the functions [(1)]
and their spatial and time derivatives at the positions 𝑎, 𝑏, 𝑐, 𝑡 possibly values at other
positions 𝑎, 𝑏, 𝑐, 𝑡 and in general the complete history in the domain of variability of the
four variables (integrals and similar ones) — Hence, symbolically written in the form:

(2) 𝐹 (𝑎, 𝑏, 𝑐, 𝑡 ; 𝑥 (𝑎, 𝑏, 𝑐, 𝑡) , . . . . .) .

Changing over to another orthogonal coordinate system 𝑥, 𝑦, 𝑧, then these nine expressions
of the stress components have to be transformed like the components of a dyad (and similarly
the expressions for 𝑋,𝑌 , 𝑍 like vector components and so on); if it concerns internal force
effects, then there must exist equations between the transformed components and the new
coordinates [which are] exactly of the old form.»

This last sentence is a concise statement of the principle of objectivity (or principle of
material frame-indifference) for constitutive equations for stress. The reader is invited
to compare the present section by Hellinger to the statements found in Truesdell’s
First Course in Rational Mechanics [153]. Once the difference of notation is taken into
account, the reader will remark the substantial coincidence of the content presented
in both works – obviously the change of notations may make a content clearer but
for sure it is not changing the attribution of scientific priority. In [153] (Chap. IV
Constitutive Equations, Sect. 2 Constitutive Equations. Noll’s Axioms) on p. 200,
one reads: «The further development of continuum mechanics in this book will fall
within the axioms laid down by Noll in 1958.»9 On p. 202, one finds the “Axiom
N3. Principle of Material Frame-Indifference.”, where capital N stands for Noll. The
attentive reader will immediately remark that Truesdell claims that Noll has written
in formulas exactly what Hellinger said in words. This transcription into formulas
does not seem enough to attribute the axiom to Noll. Consider that Hellinger finished
his work in 1913 and did not attribute this axiom to himself. If one gives a glance
to the historical overview about the principle of material-frame indifference in [154]
and by considering Truesdell’s awareness of Hellinger’s article (see again the first
footnote on p. 595 of [155]), then Truesdell can be criticized in his own words found
in [151] on p. 152: «Lagranges historische Angaben beziehen sich gewöhnlich auf
die richtigen Quellen, verdrehen oder verringern jedoch ihren Inhalt.»10

On p. 640, Hellinger presented also a precise statement of material symmetry.

«For all laws of the class (3) the question, how these equations behave under a transformation
of the directions of the 𝑎-𝑏-𝑐 parameter lines through these points 𝑎, 𝑏, 𝑐, while the 𝑥-
𝑦-𝑧-coordinates remain unchanged, is of fundamental evidence. Thereby it is determined
namely, if and which different directions through a point of the medium are tantamount for
its constitution, provided that it is expressed in the considered material laws, i. e. it is decided
on isotropy or aeolotropy of the medium;»

9 Noll 1958 corresponds to reference [114] in the chapter at hand.
10 Most of [151], even in English, can be found in [152], including the hypothesis about Lagrange
on p. 247: «Lagrange’s histories usually give the right references but misrepresent or slight the
contents.»
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So, Hellinger clearly distinguished between objectivity and material symmetry. The
theoretical basis established by Hellinger contributed to the establishment of the
modern classification of constitutive equations based on their symmetry group: we
find remarkable the recent contributions by [117, 116, 6, 126, 57].

The variational formulation of continuum mechanics allowed Hellinger to in-
troduce in No. 7 hyperelastic material laws without a direct consideration of any
thermodynamical theory. Even though he is absolutely aware of the connection to
thermodynamics. On p. 643, one reads:

«[...], that the virtual work coming into question is, up to sign, for every virtual displacement
equivalent to the variation of a single scalar expression depending only on the corresponding
state of deformation, [which is] the “potential” or the “potential energy” of the acting forces
and stresses; this assumption can be traced back to general theorems of thermodynamics.»

More important is the relation to the calculus of variations and to extremum prin-
ciples which follow naturally in the variational postulation scheme and which were
discussed by Hellinger in No. 7d. In fact, he formulated the principle of station-
ary potential energy and discussed the possibility for the existence of a minimum
principle. Moreover, he described the methods to be used in order to characterize
the stability of configurations for infinite dimensional systems. He is aware of the
fact that not all norms are equivalent in infinite dimensional systems: indeed, he
warns the reader about the fact that different concepts of “neighborhood” are pos-
sible in the considered context. Hellinger proved himself once more as a first class
mathematician.

In No. 9, Hellinger introduced the foundations of finite elasticity theory, which is
based on the choice of a strain energy density that depends on the Green-Lagrange
strain measure, see Eq. (1) and (2) on p. 663. Hellinger recognized the objectivity
of this strain measure, which leads directly to symmetric stress components. More-
over, for isotropic materials, he showed the important result that the strain energy
density can only depend on the three invariants of the Green-Lagrange strain. For
a contemporary introduction to finite elasticity theory, we refer to [145]. The vari-
ational approach enlightens the essential role of deformation energy in constitutive
theory [50, 85] and gives a guidance to the developments of identification methods.
Therefore the recents works [104, 164, 70, 15, 4, 35, 121, 105, 163] seem to follow
a research program envisioned by Hellinger.

Hellinger–Reissner principle

Without telling it explicitly, with No. 7e, Hellinger has left an original contribution to
mechanical science, which has especially impacted computational mechanics [135,
127]. Note that the formulated variational principle holds in the general nonlinear
regime. Due to the presentations of the same variational principle, including also
boundary terms, in Reissner [128, 129], this principle is generally referred to as
the Hellinger–Reissner principle. On pp. 2.14–2.15 of [100], Reissner translated
the present No. 7e into English and gives an astonishing commentary in which
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he questioned the historical relevance of Hellinger’s contribution due to technical
details:

«While the absence of any consideration of boundary integrals in the above is generally
known, other difficulties appear not to have been noted previously. These include the entirely
casual reference to the matter of the invertibility of the relations 𝑠𝑖 𝑗 = 𝜕𝜙/𝜕𝑧 𝑗,𝑖 11 (which
is, of course, a much more significant restriction than the corresponding condition for
𝜎𝑖 𝑗 = 𝜕Σ/𝜕𝜀𝑖 𝑗 ), the absence of a concern with conditions on 𝜙 or 𝐻 so as to ensure
moment equilibrium, and, most importantly, the unqualified conclusion concerning the
statement of a general variational theorem for stresses alone, as an obvious consequence
of (1.38)12, with this clearly being the purpose of this section, given the wording of the
heading of the section. Altogether, these difficulties make it questionable whether it is in
fact historically meaningful to consider Hellinger’s considerations as a stepping-stone to the
variational theorem for displacements and stresses in Ref. [15]13.»

Concretely, Reissner demanded priority about this variational principle for himself.
We dare to construct a provocative hypothesis concerning mechanical science after
World War II. Scientists in mechanics from the United States, thus scientists from
the victorious power, tried to demolish the scientific heritage of Europe by slighting
the contents of the earlier contributions or by not even citing the correct references.
The rise of the English language as the new lingua franca, as discussed in the first
part of the exegetic series of Hellinger’s article, [59], played amongst others into
the hands of Truesdell and Reissner14 to rewrite the recent history of mechanics.
Thus, one could claim that also the “history of mechanical science is written by
the victors”. Certainly, this provocative statement should be investigated further and
more scientifically.

Hellinger’s article supplies, more generally, the conceptual framework for a wide
class of numerical integrations schemes to be used in generalized continuum me-
chanics. Following Hellinger’s spirit, it is clear that there is not a preferred way
for discretizing the evolutionary equations of the continua. While in first gradient
continua, finite element method with piece-wise polynomials can be considered a
universally efficient tool, in the case of generalized continua more sophisticated dis-
cretization techniques must be developed. Therefore, we can consider that the papers
[169, 115, 93] are continuing a research stream started by Hellinger.

Peridynamics

Another interesting example of the question of priority concerns the field of peri-
dynamics, which according to Silling [139] gives «a new framework for the basic

11 With 𝜙 and 𝑠𝑖 𝑗 the potential 𝜑 and the stress components 𝑋𝑎 , 𝑋𝑏 , . . . , 𝑍𝑐 of Hellinger are
meant.
12 This corresponds to Eq. (20) on p. 654.
13 This corresponds to reference [129] in current chapter.
14 Even though Reissner is of German origin, he got his scientific education in the United States
and received his United States citizenship in 1945 at the age of 32.
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equations of continuum mechanics». Peridynamics is a non-local theory, where
each material point of the body can interact with all other points of the body
[99, 166, 167, 112]. For the case of elasticity, i.e., when the interaction between
two material points is described by a potential, one can find such a formulation on
pp. 646–647 in Hellinger’s article. In previous papers, see [38], the credit as first
founder of peridynamics is given to Piola. Hellinger credits Duhem [54] and also
claims that Duhem has found results to assure when peridynamics reduces to clas-
sical elasticity. Therefore not only in the Italian mechanical literature, but also in
the German and French literature, peridynamics was known long before its modern
formulation by Silling [139].

Closing remarks

Hellinger’s article is, as one could expect from an encyclopedia article, definitively
a treasure of ideas. He not only collected and ordered the concepts available at his
time, but he contributed immensely to the variational formulation of continuum
mechanics. He can definitively be set in one line with d’Alembert, Lagrange, Piola
and the Cosserat brothers.

The author must admit that he was only able to comment a small part of Hellinger’s
work. Some underestimated sections are definitively the treatment of dynamics,
where Gauss’ principle of least constraint is discussed and where the connection
to the principle of Hamilton is made. Also the treatment of constraints, which in
the variational formulation of mechanics is a natural concept, would have deserved
more attention. Extremely interesting would be an evaluation of the Nos. 13–16 by
contemporary experts from the fields of optics, electrodynamics, thermodynamics
as well as from relativity theory.

It is hoped that the reader could recognize the sharpness and precision of
Hellinger’s contribution, which reflects also the spirit of the scientific environment at
his time. The aspiration to “concise brevity” is completely coherent with the concept
of “economy of science” by Ernst Mach.15 Mach’s positivistic views were greatly
influenced by the Vienna Circle and by Ludwig Wittgenstein, whose rigorous style
was adopted also by Mach, when dealing with the history of mechanics. On page 481
of [103], having as a synoptic side note “The basis of science, economy of thought.”
one can read:

«It is the object of science to replace, or save, experiences, by the reproduction and an-
ticipation of facts in thought. Memory is handier than experience, and often answers the
same purpose. This economical office of science, which fills its whole life, is apparent at
first glance; and with its full recognition all mysticism in science disappears. Science is
communicated by instruction, in order that one man may profit by the experience of another
and be spared the trouble of accumulating it for himself; and thus, to spare posterity, the
experiences of whole generations are stored up in libraries.»

15 See e.g. Section 4 of Chapter IV of the book “The science of mechanics; a critical and historical
account of its development”, [103].
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Maybe Mach’s most important statement starts at the bottom of page 489 of [103]:

«But, as a matter of fact, within the short span of a human life and with man’s limited powers
of memory, any stock of knowledge worthy of the name is unattainable except by the greatest
mental economy.»

It seems that this greatest mental economy has been reached in the presentation by
Hellinger and can be achieved in mechanics only when working with variational
formulations.
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Chapter 4
The loss and recovery of the works by Piola and
the Italian tradition of Mechanics

Mario Spagnuolo, Alessandro Ciallella, and Daria Scerrato

4.1 Orthodoxy in Continuum Mechanics: social phenomenology
and its naive explanations

Continuum Mechanics, or rather Generalized Continuum Mechanics, is not so recent
as it is usually believed: already in the last pages of the celebrated textbook by
Lagrange [92, 93], one can find the first variational version of this theory, including
some basic formulations of the concept of deformation and stress. We postpone
the detailed discussion of this source to further investigations and remark here that
already Piola discussed the importance of the contribution by Lagrange, also in this
context (see [34, 36, 42, 43, 57, 59, 60]).

Exactly when, in the first half of XIX Century, the fundamental assumptions for
the Theory of Elasticity had been chosen, immediately a rather lively debate was
started. The debate was mainly focused, since the very beginning, on the Postulation
Scheme to be used as a guidance for the novel theories to be formulated.
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Two competing schools debate about the Foundation of Continuum
Mechanics

One school, mainly headed by Gabrio Piola in Italy, strongly supported the point
of view of Archytas of Tarentum (428-360 BC) as rediscovered by D’Alembert and
Lagrange. In the context of this book, Archytas’ storyline is doubly relevant (see
[139, 88]). Then, as reported by Diogenes Laertius and currently recognized by
modern scholars, Archytas can be considered the founder of Mechanics. And not
only that. Diogenes points out that Archytas was «the first to systematize Mechan-
ics using mathematical principles». In his treatise Mechanical Problems, one can
recognize the first insights for the future development of the Principle of Virtual
Work. As in Lagrange’s Analytical Mechanics, Archytas’ interest was more for the
mathematical generalization of Mechanics than for the individual problems related
to the construction of machines (which was underlined by Plutarco and Pappus [31]).
A second important aspect of Archytas’ fame vicissitude consists in the fact that, like
Piola, his scientific results have been erased and have come down to us only because
for a long time they were wrongly attributed to Aristotle. As we will see below, parts
of Piola’s results have been transmitted, obviously not attributing authorship to the
Italian scholar, because they were partially contained and reorganized (often in a
very unclear way) in Truesdell’s compendium [135].

Piola believed that every physical theory had to be formulated in terms of a Virtual
Work Principle, and when possible, in terms of a Least Action Principle. In fact,
this second principle reduces to a particular case of the first one, once calculating
the action’s first variation and imposing this variation to vanish (see [47, 19]).
Nowadays, variational principles have proven successful as a very powerful tool in
formulating theories. Especially, their computational capabilities can be experienced
in the numerical descriptions of Continuum Mechanics [21, 25, 23, 22, 24, 72], of
generalized continua [137, 138, 79, 80], in structural mechanics [66, 83, 82, 48, 62,
18, 63, 126], for the development of time-integration schemes [17].

The other school, mainly headed by Navier, Cauchy and Poisson in France,
strongly supported a point of view in which the concept of force had to be regarded
as the most fundamental one, and the balance of force and the balance of moment
of force had to be postulated at the beginning of the development of Mechanics. In
[118, p. 400], Poisson even criticized the methods of Lagrange for being not suitable
for continuum mechanics.

In Continuum Mechanics, this second approach became dominant, especially in
XX Century Mechanics and in Applied Mechanics. At the center of this version
of Continuum Mechanics stands Cauchy’s tetrahedron argument that allows for the
deduction of the concept of stress starting from the concept of force.
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Balance laws-postulation tried to impose an orthodoxy in
mechanical sciences

The wide range of applicability of the version of Continuum Mechanics as formulated
by Cauchy and his followers, and the impulse to engineering applications given by
the brilliant developments of the Theory of Elasticity, managed to “eclipse” the ideas
and the results by Gabrio Piola.

A careful reading of the works by Piola shows that he used the Principle of
Virtual Work to formulate a much more general version of Continuum Mechanics,
as he knew that its applicability range is much wider than the version developed by
Cauchy, although it needs a more complicated mathematical formulation.

Sometimes it has been argued that, as the computational tools of XX Century
were not sophisticated enough to use effectively the more general Piola’s Continuum
Mechanics, his ideas, and also those subsequently used by the Cosserat Brothers for
the formulation of their generalized version of Cauchy continua (see [27, 99, 100,
71, 4, 51, 6, 108, 2, 5, 52, 3, 50]) were bound to remain unheard and unexploited.

Although, for sure, the lack of suitable computational tools did represent a block-
age in the development of applications for generalized Continuum Mechanics, one
cannot ignore the effects and the influence of the dominant “ideology” of dominant
schools. Exactly as the ideas of Archytas of Tarentum did manage to reach us only
by being transmitted as part of the Corpus of the works of Aristotle (and the fake
attribution to Aristotle is rejected nowadays nearly unanimously, see e.g. [139]), it
has to be underlined that Piola’s vision about the foundations of Mechanics did man-
age to reach a modern audience mainly because of the references to his works due
to Hellinger (see [86, 57, 59, 60, 58, 56]) or because of the fundamentally negative
remarks by Truesdell (see [135]).

We cannot, however, exclude that the transmission of the ideas and postulation
choices developed by Piola did reach the modern scholars also by means of oral
transmission (for a detailed discussion of the role of oral transmission also in modern
Science see e.g. [32]). Probably in many European schools (Italian, French, German,
but also Russian) the variational principles championed by Piola were instilled in the
mind of the most eminent mechanicians by the inspired lectures of their “Maestri”,
albeit these Maestri did refrain from publishing textbooks.

As it has been shown in the other Chapters of the present book, the difficulties
to get closed form solution for Cosserat or Piola continua was not the only reason
for the partial erasure and removal of these models in the literature of mechanical
sciences. In fact, the social processes, to which we referred when Vitruvius’ and
Tartaglia’s ways of transmitting previously acquired knowledge was discussed, did
activate also in this case.

A Publish or Perish Culture did actively participate to the partial erasure of La-
grange’s and Piola’s results and viewpoints, insofar their epistemological ideas were
not accepted by a dominant cultural and scientific paradigm in the sense of Kuhn [91].
More generally, Lagrange’s and Piola’s “Weltanschauung” were rebutted by what
can be called the “Truesdellian school”. One can say that, as a group of influential
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mechanicians did decide to choose exclusively the less efficient Cauchy’s paradigm
for developing new models and theories, the research in mechanical sciences did
loose a lot of its potential innovative push. Their stubborn orthodoxy control of
the postulation scheme to be used for formulating new models did block creativity
in Continuum Mechanics. This orthodoxy did not allow for the systematic use of
the Principle of Virtual Work, of the Principle of Least Action, for obtaining the
governing equations of a studied system, or of the Hamilton-Rayleigh Principle, for
introducing in said system dissipation.

This statement may seem too extreme to many. However, it is firmly grounded, as
indicated, for instance, by a very strange circumstance, which can be explained only
in terms of social science phenomena and not in terms of mechanical science logics.
At least two very original mechanicians, that is Richard Toupin and Allen C. Pipkin,
were obliged to hide their truly variational inspiration in their papers [111, 134].

In fact, when reading Pipkin’s paper, it is clear that the author could find his novel
mathematical model for Tchebychev nets only by using variational principles. How-
ever, in order to publish more easily the paper in Truesdell’s journal, he changed the
order of presentation and wrote (apparently out of the blue) balance equations before
discussing the variational principle from which these equations can be deduced.

Toupin was obliged to behave similarly when he treated in [134] the most general
second-gradient continuum. While the title of his paper refers explicitly only to
the particular case of second-gradient continua whose evolution equation can be
deduced by using the balance of force and moment of forces, inside the paper the
attentive reader finds a more complete theory, based on the Principle of Virtual
Work. The reason of this misleading choice is simple: the more general equations for
second-gradient continua (when stress and couple stress are not enough to describe
contact interactions) cannot be deduced from the balance of forces and moment of
forces (see [46, 20, 41, 45]). The title of Toupin’s paper is surely misleading and
willingly reductive. Because of this title, too often the theory of second-gradient
continua is attributed, in its modern form, exclusively to Paul Germain [75]. In fact,
Germain did greatly contribute to its development and its mathematical framing
by the systematic use of Tensor Calculus and Functional Analysis [76, 74, 73, 98].
However, the astonished reader will see that the complete second-gradient theory of
continua is fully developed in Toupin’s paper, notwithstanding its apparently limiting
title.

4.2 In other scientific groups Variational Principles remained the
mainly used conceptual tool

One positive aspects of the fragmentation of knowledge (for a discussion of this
phenomenon see for instance [35]) observed in modern Science consists in the
possibility, for ideas and scientists, to get around orthodoxies by simply changing
research group.
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In fact, the negative attitude against variational principles was circumscribed to
some specific (and luckily not so influential) groups of scholars. Instead, it was
never even considered in other, more qualified, scientific milieux. In Theoretical
Physics, different scientists used alternative textbooks and developed other view-
points: physicists continued to teach to their students the basic variational principles
and maintained the persuasion that they are the most fundamental tool for founding
physical theories.

For instance, in the textbooks [94] and [70], it is plainly explained why Variational
Principles are to be considered the most powerful tool for conjecturing novel theories
and models for getting predictive insight in not-yet-described physical phenomena.
Landau and Feynman (to name some of the most famous physicists) were persuaded
that the Lagrangian postulation scheme supplies the most powerful tool of innovative
research in Mechanical Sciences and more generally in Physics. We recall here that:

i) Quantum Mechanics [125, 26, 121, 69, 68, 13, 84],
ii) General Relativity [49, 28, 132, 133]

but also

iii)Generalized Continuum Mechanics [97, 64, 87, 102, 120, 115, 40, 38, 44, 116,
39, 37, 112, 7, 78, 90, 136, 10, 1, 61, 11, 9, 55, 65, 67]

are all parts of physical sciences whose impetuous development has been pushed
by the systematic application of variational principles, regarded as the most basic
heuristic tool to be used when formulating new theories.

Not only theoretical physicists share explicitly Piola’s vision of science: one has
to mention that Hellinger (see [86] and for the just recent translation into English [57,
59, 60] or Chapter 3 of this volume, [56]), which is a famous applied mathematician,
was one among the greatest and more effective supporters of Variational Principles
and his celebrated encyclopedia article undoubtedly is an effective witness of the
results and effectiveness of the Lagrangian School of Mechanics.

It is somehow surprising that Hellinger, who probably could not read Italian,
cites in one footnote the works by Piola. Notwithstanding our efforts in finding
the list of sources connecting Piola to Hellinger, we could not, yet, establish if
Hellinger’s citation is due to a direct knowledge of Piola’s works, which had been
continuously available in all main mathematics and physics libraries in the world, or
if the information reached Hellinger indirectly: there are hints that an intermediate
connection could have been the encyclopedia article by Müller and Timpe [105],
also cited by Hellinger. Hellinger did not come to universal fame in the scientific
milieu of mathematical-physics because of two sad circumstances, [103]:

i) his career was disrupted by the Nazi prosecution. As he was Jewish, he was im-
prisoned in Dachau and, only because of a quick job offer from the Northwestern
University at Evanston, Illinois, and the required U.S.-Visa, he was released after
six weeks, as he was in condition to emigrate immediately;

ii) his position as lecturer in Mathematics at Northwestern University did not give
him the possibility to be as authoritative as if he had been a German full professor.
He got the U.S. citizenship only in 1944 and promoted to professorship in 1945.
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Notwithstanding many negative circumstances, one can say that Piola’s vision
of science did manage to influence the great majority of open minded scholars in
mechanical sciences. In a similar way as the works by Archytas did reach us via a
fake attribution of his works to Aristotle, it is clear that the very critical remarks
about Piola’s appreciation of variational principles (as reported in [135] and due
to Toupin’s stubbornness in having them discussed) allowed the survival of Piola’s
ideas also in the Continuum Mechanics community.

A careful study of sources is necessary to establish which were the cultural
processes that made Paul Germain to became the modern French champion of
Variational Principles. We observe that, in Germain’s sources, one finds explicitly the
names: Mindlin, Toupin, Casal, Green, Rivlin and, above all, the Cosserat Brothers.

A very interesting problem in sociology of Science could be formulated as follows:
Did the tradition of Variational Principles arrived to influence Paul Germain directly
from the French scientific descendance stemming from Lagrange (transmission which
was made possible notwithstanding the influence of the Balance-Laws School started
by Cauchy, Navier and Poisson) or Paul Germain was somehow influenced by the
Italian tradition as started by Piola, as a direct “pupil” of Lagrangia (the true Italian
family name of Lagrange, always used by Piola, in his citations)?

A naive explanation of the social phenomena linked to the “castling” inside the
orthodoxy of balance-laws postulation of a particular subgroup of scientists can
be resumed as follows: the concepts of Functional Analysis needed to formulate
variational formulations are not fully mastered, in general, and therefore balance-
laws postulation is preferred for the apparent simplification of its formal apparatus.
However, this simplification limits the capability of formulating models more general
than those stemming from the conceptual frame as established by Cauchy. The innate
tendency of human beings to follow the trends accepted by the “majority” caused,
consequently, the partial removal of the tradition started by Lagrange to base the
postulation of mechanical theories on variational principles.

4.3 How Piola’s works were transmitted and how they were –
locally in space and time – lost in the Mechanics literature

It is now clear that Gabrio Piola’s contribution to mechanical sciences has been
greatly underestimated in both the more theoretical mathematical-physics literature
and in the more applied and engineering oriented one. However, and undoubtedly,
an attentive reader (before the translations presented in [42, 43] such a reader had
not only to be attentive, but also he had to be able to understand the elegant Ital-
ian language used by Piola) immediately discovers that Piola’s works are original,
mathematically deep and far-reaching in their physical applications. In some aspect
they are, even nowadays, at the edge of the most advanced research in generalized
Continuum Mechanics.

A further and closer analysis shows that Piola’s contributions to mechanical sci-
ences, in fact, were not completely removed and erased in the mechanical literature.



4 The loss and recovery of the works by Piola and the Italian tradition of Mechanics 321

Moreover one can say that the greatest part of them did, albeit indirectly, provided a
relevant impetus and influenced substantially the ideas and the work of many among
the most preeminent Piola’s successors in Continuum Mechanics.

As usually happens in the History of Science, only the memory of the existence
of Piola was almost completely removed: Piola’s name and the relation between
his name and his ideas were generally ignored. Probably also Hellinger, in his
encyclopedia article [86] referred to Piola only incidentally, most probably because
of a secondary source. Hellinger did not seem to dedicate many efforts to unveil
the quality and quantity of the contributions by Gabrio Piola to the fundations of
Generalized Continuum Mechanics. In our opinion it is not possible, nowadays,
to doubt that the non-local and higher-gradient continuum mechanics had been
conceived by Piola in his works, cf. [36, 101].

However, more than 150 years after the death of Piola and the publication of his last
work, many of Piola’s results are being rediscovered and reformulated, sometimes in
a partial and even incomplete form, notwithstanding the fact that the written copies
of his contributions were available in many libraries without interruptions during all
these years.

We must try here to give an explanation, albeit naive, for this social phenomenon:
naturally we are aware of the fact that deeper studies in social Science may be
necessary to fully explain it (some hints on the nature of these studies can be found
in [33]). While we cannot hope to explain easily the reasons of the erasure of the
memory of Piola’s contribution, we do believe that this explanation must be searched,
as the erasure phenomena occurred to Piola did occur very often in the literature.

The linguistic barrier: As Archimedes used Doric Greek, Gabrio
Piola used Italian

As we have remarked in Chapter 2 about Heiberg’s Prolegomena translation and as it
is very clear in the Prolegomena text itself, an astounding fact about the transmission
of Archimedes’ ideas after the end of the Hellenistic Age is that his main ideas were
lost immediately. Differently from Piola, Archimedes’ name was never forgotten
around the centuries, but already in Vitruvius (which was the nearest thing to a
scholar in Roman Age) Archimedes’ name was mostly related to folkloristic stories
without great interest to the scientific aspects of his works.

During the Middle Ages the name of Archimedes was mainly known as that of
the man who had succeeded in providing Syracuse with unimaginable defenses and
the figure of the scientist was completely confused with that of a magician. We
probably have to owe to Leo the Mathematician for the production of the codices A,
B and C, copies that were sent from Constantinople to Europe and then to William
of Moerbeke, who translated them into Latin, (we have extensively discussed this
translation and its vicissitudes in Chapter 2) the transmission of Archimedes’ works
to the present day.
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One of the possible causes of the removal of Archimedes’ scientific results, in
addition to the cultural decay that occurred at the end of the Hellenistic age, is to be
found in the difficulties related to the use of the Doric dialect. The language barrier
certainly constituted a disincentive to reading and the consequent transmission of
Archimedes’ works.

Piola decided to use the Italian language for writing his works. This can be
regarded as the most important cause to the lack of full recognition of Piola’s
contribution to Continuum Mechanics. Piola paid for his “ideological” choice: he
wanted to show that Italian could be regarded as a fully mature language, the language
of a great Nation (he hoped for the Unification of the Italian Nation but died 10 years
before it was realized), a language in which deep mathematical theories could be
easily expressed. To this aim, and probably also for his personal inclination, he
composed his texts in an extremely elegant and erudite style. This made difficult
also to Italian scientists to understand his work. Only few specialists in Mechanics,
having a solid background in Classical Studies, were capable to fully appreciate its
true content.

Also Piola did not care to have his works translated into other more popular
languages. We can formulated a reasonable conjecture about Piola’s linguistic choice:
albeit he was fluent in French, he wanted “per la gloria dell’Italia”, i.e., for the glory
of Italy, to use Italian. This patriotic choice was not repaid with a big consideration of
his compatriots. They completely neglected, in general and with the exception of few
among his pupils, to recognize his contribution to Mechanical Science. Activated
by said ideological motivations Piola established a linguistic barrier between his
ideas and his successors. This barrier plays a very strange role in the phenomenon
of spreading of concepts, models and theories.

It is very well-known that the growth of Hellenistic science (see e.g. [124, 89,
123, 15]) was favored by the use of a unique lingua franca but also that its propulsive
force was stopped by the change in the dominant language in the Mediterranean
sea: Latin replaced Greek when Rome became the dominant political power. The
scientific knowledge did manage to flow from East to West but, because of the
change of language, the translation process of the fundamental textbooks was too
slow. It needed some centuries, and, in order to obtain the translated texts in Latin,
it was needed to incorporate the Greek nomenclature and terminology. The process
of information transmission was so long that Hellenistic did manage to pollinate
Europe only via the Italian Renaissance. While the basics of Hellenistic Science
was, notwithstanding the delays and the misunderstandings, preserved (the reader
will remind what we have written about the role of Tartaglia in the transmission of
Archimedes’ works in Europe) to humanity, one has to admit that, in general, the
process of book translations induced a nearly complete loss of the true names of
the scientists who had first formulated some of the most fundamental ideas of the
modern scientific knowledge.

Therefore one should not be surprised that:

i) the contribution of Piola to Generalized Continuum Mechanics still is permeating
modern literature [34];
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ii) Piola’s results have been repeatedly rediscovered by more and more modern
scholars and

iii)the true content of his results is generally misunderstood and underestimated, also
by the few scholars who knew about his existence.

Indeed linguistic barriers, in this case represented by the differences between the
Italian style written by Piola and modern English, become too often insurmountable.

The continuity of personal relationships between Maestro and
Pupil is necessary to maintain a body of knowledge: the genealogy
of scholars started by Piola

We can try, here, to develop some more reasonings concerning the processes of
erasure and removal in the body of knowledge available for a certain social group
during intergenerational transmission. The question is: How is it possible that well-
established scientific knowledge can be lost?

We conjecture that this loss can be associated to the simultaneous occurrence of
many social phenomena including specifically the associated:

i) loss of continuity in the succession sequence of Maestro and Pupil in the academic
institutions and

ii) loss of the financial support of academic institutions because of the loss of
confidence in political institutions on science. This loss of confidence occurs when
politicians doubt about the indissoluble connection existing between theoretical
science (including the most abstract one, that is Mathematics) and technology.

In those societies where these two losses (that obviously are also correlated)
occur at the same time, the political power decide that investing resources in the
preservation and transmission of theoretical knowledge is useless. One of the con-
sequences of this lack of resources is that the personal contact between Maestro and
Pupil is interrupted. Even when good quality textbooks remain available, the younger
generations do not manage to reach easily the highest levels possible of scientific
knowledge: nothing can replace the effectiveness of a living scientist who teaches to
his pupils the most difficult and important theories that he mastered.

In said societies a sequence of phenomena can be generally observed: at first the
theoretical knowledge is lost, generally being considered useless. The focus of the
intellectuals of these societies, that are at the beginning of their decadence, is on
technological applications. In a second moment, that occurs after a more or less long
time interval, such societies become explicitly decadent as, unavoidably, also their
technological capabilities are lost.

Differently from what happened to the works of those Hellenistic scientists,
whose fame was not preserved also during decadent times as luckily happened to
Archimedes, the works by Piola were not materially lost: In fact, they were only
forgotten, and possibly removed from the scientific “memory”.
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One of the reason for which they could be recovered is related to the existence
of “a direct genealogy” stemming from Gabrio Piola and arriving to the founders
of absolute tensor calculus. Here we want to shortly reconstruct it. We warn the
reader that we do not believe that all the scientists in this line of descendence were
aware of the fact that they were completing the scientific program of Piola. Only
his direct Pupil, Francesco Brioschi, was aware of the importance of his work, as a
continuation of that started by Piola.

Gabrio Piola never accepted a university chair, even if it is documented that some
chairs were offered to him. Piola supported scientifically and politically his Pupil
Francesco Brioschi, who was the founder of the Politecnico di Milano. Brioschi
edited the last work by Piola, which appeared posthumously in 1856.

Francesco Brioschi was the Maestro of Enrico Betti and Eugenio Beltrami. Ulisse
Dini was Pupil of Enrico Betti, while Gregorio Ricci Curbastro was Pupil of Ulisse
Dini, Eugenio Beltrami and Enrico Betti. Finally, Tullio Levi-Civita was pupil of
Gregorio Ricci Curbastro.

Everybody who has studied (Continuum) Mechanics or Applied Mathematics has
met many among the most important results originated by this handful of scientists.
However, differently from what happens in the French School, the Italian School
of Mathematical Physics, Mathematical Analysis and Differential Geometry reflects
the National spirit of political and cultural fragmentation, possibly inherited from
similar habits widely spread in Greek societies.

Albeit Napoleon, behaving as King of Italy, did try to favor the establishment of
a genuine Italian Scientific School, he clearly could not manage in this seemingly
impossible task. In fact, he could not change the Italian spirit. The Italian scientists
never managed to follow the habit, so deeply rooted in the French School, that
leads French Scientists to support their compatriots, and to recognize and to develop
their contributions. On the contrary, the Italian scientists are inclined to follow the
behavior of those scientists of Greek language who did produce Hellenistic science.
In the Hellenistic tradition one observes the intentional and systematic removal and
contempt of the contribution due to the compatriots. Italians added to this tradition
also the systematic preference for the work of foreign scientists, who are considered,
just because of their ethnic origin, better than the Italian colleagues. Italian scientists
seem always to consider the other national scientific groups more original, more
qualified and more productive: at the same time they actively operate to sabotage
any activity and to limit the growth possibilities of the compatriot scientists.

Napoleon managed to impress to Italian Science a remarkable momentum and his
choices are to be, probably, regarded as the first cause of the birth of Tensor Calculus.
However, this momentum was wasted quickly because of the very peculiar habit that
Italians have, consisting in creating obstacles to their compatriots. A sadly exemplary
action carried against a great Italian scientist by his compatriots is represented by
the removal of Levi-Civita form his university chair, because of Mussolini’s racial
laws. Big maneuvers were started by small minds: they had no problems in declaring
unanimously that the Italian Science could, easily, do without Levi-Civita. His chair
in Rome was immediately occupied by Antonio Signorini.
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Whichever may be the social phenomena involved in the growth, in an intergener-
ational effort, of the mathematical theories needed to develop Continuum Mechanics
and in their establishment as parts of Mathematics, independently of their applica-
bility in one specific field of Physics, one must recognize that:

i) since the very first beginning (see [34]) one can observe a very strict relationship
between Differential Geometry and Continuum Mechanics;

ii) the Italian School in (Continuum) Mechanics founded by Piola and culminating in
Levi-Civita did perfection the Tensor Calculus and important parts of Differential
Geometry;

iii)Riemannian geometry experienced its biggest advancement when it was possible
to prove (a theorem due to Levi-Civita) that a unique parallel transport is com-
patible with a Riemannian metric: this results has its deepest roots in the results
presented already by Piola (we refer here to the concept of Piola’s Transformation
from reference to current configuration);

iv)Ulisse Dini proved formally the famous implicit function theorem, which gives
a solid mathematical ground to the concept of constraint, that was intensively
exploited by Piola. In particular, the fundamental definition of independent con-
straints (defined as those constraints represented by set of functions whose Ja-
cobian is not singular) was fully understood thanks to the studies of Dini, many
decades after that their importance had been recognized by Piola. Moreover, the
concept of independent constraints has been fundamental in the study of em-
bedded manifolds, another concept whose growth was pushed by Continuum
Mechanics and which, also, greatly contributed to Continuum Mechanics growth
(see e.g. [46, 45, 41]).

Rediscoveries of the same body of knowledge in different places and
times

It can be observed very often, in the History of Science, that some theories needed
to be rediscovered (possibly being reformulated more or less drastically) in different
times and in different places. The typical examples are often considered when com-
paring the few sources of Hellenistic Science with the results obtained later, during
Renaissance.

Aristarchus of Samos conceived a heliocentric model for the solar system probably
in Alexandria already in the third century B.C. . He also conjectured, as Anaxagoras
had done before him, that the stars were other suns, located at larger distances away
from Earth. Plutarch refers that:

i) Aristarchus «postulated heliocentrism only as a hypothesis», and that
ii) the astronomer Seleucus of Seleucia1, who lived a century after Aristarchus,

«gave a demonstration of it» and considered heliocentrism as an undisputed fact.

1 Concerning the place where Seleucus lived, we refer to [106]: «Among several cities named
Seleukia, the best known is Seleukia on the Tigris, the capital of the Seleucid kingdom. It is



326 Mario Spagnuolo, Alessandro Ciallella, and Daria Scerrato

One can see that already in Hellenistic Science the same theory was reformulated in
different places and different times, by members of different social groups.

In the secondary source given to us by Pliny and Seneca, one finds an explanation
of the observed retrograde motion of some planets as an apparent phenomenon:
these sources claim that reality is different, in this way implying that their primary
sources were based on heliocentrism and not on geocentrism and that a relationship
between these primary sources and Seleucus is likely. The heliocentric theory was
rediscovered by Copernicus and his theoretical efforts made possible also the more
careful description of the planetary motions by Kepler (see [77, 131, 85]).

The previous and maybe the most famous example shows clearly that theories
are not set in stone once forever and that the scientific knowledge, like every human
institution, is subject to different transformations, including regression, removal and
erasures, and that a theory, in fact, is bound not to become a universally recognized
part of knowledge (the reader is invited to think to the modern revival of «Flat Earth
Societies», see e.g. [122, 16, 95, 96]).

Another interesting phenomenon occurs with a similar frequency. Some theories
are accepted, in a given time and in a given society, by some groups of scholars and
are erased, removed and completely ignored by other groups. We are not talking about
the fundamentally healthy debates and comparison of different competing theories.
We refer to the fact that some theories are (unwillingly or sometimes willingly)
ignored by some subgroups of certain scientific societies while are considered well-
established by other subgroups.

An example may be given by Functional Analysis and its most fundamental
concept of functional, usually defined using the sentence “a function whose argument
is a function”. Erik Ivar Fredholm’s and Jacques Hadamard’s works fully exploited
this concept that, however, had been introduced already by Vito Volterra. The theory
of nonlinear functionals was developed by Maruice René Fréchet and Paul Lévy.
While linear Functional Analysis was continued by Frigyes Riesz and the school
headed by Stefan Banach. Rather surprisingly, it is to be observed that Werner Karl
Heisenberg and Paul Dirac had to rediscover and redevelop this already known
theory, until John von Neumann remarked that Quantum Mechanics was based on
the well-known concept of Hilbert Spaces.

The causes of such kind of co-existence of different advancement stages of one
and the same theory can be various:

i) the standard tendency towards laziness of human beings;
ii) the objective difficulty in understanding the mathematical concepts as developed

by other scientists;
iii)lack of sufficient economical means for accessing to the works of other scientists;
iv)difficulties in reading texts written in another language;
v) need of establishing an effective control of the careers of the members of the

same power group: in order to be able to claim that this group is producing high

possible that the astronomer Seleukos lived or was born in this city, but it is also possible that his
native town was Seleukia on the Erythrean Sea.».
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quality science, its members willingly ignore the contributions to the discipline
produced by other groups;

vi)the need of hiding one own results to other scientist for reasons linked to political
or economical competition.

All these causes, and together with some others which may deserve to be discussed,
may have as an effect that otherwise erudite scientists do actually ignore results,
relevant to their own researches, already known to other scientists. In fact one can
observe that even the mathematicians listed in Piola’s descendence did rediscover
several times the results that some of their predecessors had already obtained.

An exemplary case, which we want to cite here, of misattribution and repeated
re-discovery of a result is given by a formula obtained by Piola (see for more details
[34, 42, 43]) when he solved the problem of transporting the stationarity condition
characterizing the equilibrium of continua from the reference configuration to the
current configuration. We refer here to the case of so-called “Nanson’s Formula”. In
the studies by Piola the demonstration of this formula is a necessary step in solving
a more general scientific problem, whose motivation is clear. Starting from a vari-
ational principle that characterizes the (possibly) stable equilibrium configurations,
Piola calculates from the Principle of Virtual Work formulated for continuous sys-
tems (that will be later called the weak formulation of equilibrium conditions) the
set of PDEs plus boundary conditions that give the corresponding Euler-Lagrange
conditions, so obtaining what will be later called the strong formulation of equilib-
rium conditions. The transport of the obtained PDEs requires the transformation of
the divergence operator in the reference configuration into the divergence operator
in the current configuration, while the transport of the boundary conditions require
the transformation of the normal to the boundary of the body in the reference config-
uration into its normal in the current configuration. This transformation formula for
mentioned normals is already published in Piola’s works in 1848 (see [42, 43, 34])
and it is not clear how it happened that in some Anglo-Saxon literature this formula
was attributed to Edward John Nanson who was born 1850 exactly in the same year
when Piola died.

4.4 Mathematical difficulties inherent to Variational Formulation

While the formulation of the Principle of Minimum Energy is very clear and simply
formulated, the mathematical procedure needed to deduce from this Principle the
consequent local PDEs and Boundary Conditions is, instead, rather intricate. While
Lagrange and Piola, for obtaining this deduction, could find a line of reasoning that is
fundamentally correct, a rigorous mathematical setting allowing the formalization of
precise mathematical results has been established only more recently, fundamentally
by Sergej Lvovich Sobolev.
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Functional Analysis in Lagrange’s and Piola’s works

To calculate the first variation of the total energy functional characterizing the
physically admissible equilibrium configurations of a continuous system requires:

i) the determination of the functional space in which the total energy functional is
defined and, after having proven the existence of minima for the specific functional
(eventually by means of a more general result generalizing to infinite dimensional
spaces the well-know existence theorem usually called Weierstrass extreme value
theorem);

ii) the computation of its Fréchet derivative. Once the mentioned first variation
is computed, one has to find some necessary conditions assuring that, when
estimated in the candidate equilibrium configuration, it vanishes for every “small”
variation of the equilibrium configuration.

In the works by Piola and Lagrange a particular attention is spent to the concept of
“commutativity” of the delta symbol with the derivation operator. The delta symbol,
in the nomenclature by Lagrange, denotes “small variations of configurations”, i.e.
variation of configurations which are close, in a sense, to the zero variation.

Albeit both Lagrange and Piola could not use the concepts of Banach (or Fréchet)
spaces, concepts which allowed Sobolev to develop his successful formalization
of the subject, it has to be remarked that their analysis was careful and somehow
“prudent”. They had a remarkable capacity to avoid the many difficult points that
one finds when generalizing the results valid in finite dimensional spaces to infinite
dimensional spaces. Roughly speaking Lagrange was aware of the fact that, when
dealing with a function whose derivative plays a role in the calculation of the energy
(or action) functionals, it is necessary to bound not only the variation of the values
of the function itself, but also the variation of the values of its derivative. This is
exactly the starting point of the analysis developed by Sobolev.

In fact, the concept of smallness is made rigorous by introducing a norm in the
considered functional space. The mathematical frame makes precise the concept of
“virtual displacement”, cleverly introduced by Lagrange and Piola. Many scholars,
not aware of the rigorous mathematical setting established by Sobolev and Fréchet,
have criticized Lagrangian Postulation of Mechanics by claiming that it is based on
the obscure concept of “virtual displacement”. This concept is rather standard in
mathematical analysis when minimization problems are considered: one can think
of the standard argument used for proving that in a value of the independent variable
that is a minimum for a function the function’s first derivative must vanish. Roughly
speaking one considers the Taylor expansion of the function truncated to the first
order and estimates the function values close to the candidate minimum value, by
adding to this value a small (or if you like: a virtual) increment. The logical process
which we have shortly described here is rather old: the analysis of the ancient book
Mechanical Problems (the text is called in Greek 𝑀𝜂𝜒𝛼𝜈𝜄𝜅𝛼 and in Latin Mechanica,
has been traditionally attributed to Aristotle but now it is recognized as a work by
Archytas of Tarentum) by Thomas Winter [139] shows that, most likely, already in
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the 4th century B.C. the Principle of Virtual Work was applied to study the problems
of equilibrium of bodies.

The concept of “small” variation of the independent variable in the neighborhood
of the candidate value for the independent variable to supply a minimum is needed to
find the stationarity condition by using the methods of modern Calculus. Originally,
in the context of the application of minima principles to Mechanics, the small
variations of configurations needed to get the stationarity conditions were called
“virtual displacements”. This nomenclature was suggestive: when one varies the
stable equilibrium configuration with a “virtual small displacement” the total energy
increases. As the concept of virtual displacement was somehow unsatisfactory to
more refined scholars in mathematical analysis, both Lagrange and Piola preferred
to call the Stationarity Condition Principle as «The Principle of Virtual Velocities».
Later the name of this principle was changed into the Principle of Virtual Work.

The mathematical tools used by Piola

The careful study of the works by Piola shows that the mathematical methods
that he uses are very often “modern”. This statement is particularly true for what
concerns mathematical analysis: Piola, being a careful reader of Lagrange’s works,
uses skillfully the concept of functional, albeit he could not use consciously the
methods of modern Functional Analysis that had not been formalized then. It is,
however, rather surprising that Piola’s works could be forgotten by the majority
of the scholars in Mechanics: we discussed the causes of this phenomenon in the
previous sections. Here we want to underline that the removal process we are referring
to cannot be simply justified by the fact that Piola wrote in Italian. The mathematical
difficulties intrinsic in his approach to the postulation of the basic principles of
Mechanics also play a major role.

In a mathematical aspect, however, Piola’s work seems rather primitive, as he
wrote all his equations component-wise, without any explicit notation allowing him
to easily handle objectivity. Even though he managed to include in his expressions
for deformation measures the correct objective quantities and he was aware of the
need of writing equations which are independent of the observer (see [34]), he had
not the time (he died 56 years old, in 1850, being arrived, in our opinion, very close to
the invention of a very compact matrix notation) to conceive a tensorial formulation
of Mechanics. In fact, Levi-Civita’s absolute calculus needed to wait many decades
before being formalized.

Notwithstanding the dramatic lack of mathematical tools, Piola’s works show a
rigorous sequence of results, albeit made difficult to follow because of his heavy
component-wise notation. To some modern mechanician (not all, as many are still
refusing Levi-Civita notation) the calculation notation used by Piola may convey
the wrong impression of primitiveness. It is really surprising to see how many
advancements of Continuum Mechanics he did manage to obtain without using
tensor calculus.
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Piola tried, during all his scientific life, to find the correct notation for presenting
his results in the best possible way. In many of his works, he proved to know the
importance, in mathematics, of the choice of the right notation and, in mechanics,
of the right conceptual tools. He was open minded: in fact, he fully accepted the
nominalistic and conceptual novelties that Lagrange introduced in Mathematical
Analysis: novelties that were fiercely opposed by many of his contemporaries.

Piola has been «forgotten» for a time period: Peridynamics in
Piola’s work

In his fundamental work [109], Gabrio Piola formulates a homogenized continuum
theory by means of a micro-macro identification process. He tries to solve the prob-
lem of finding the equations governing the phenomena of deformation by starting, at
a micro-level, from a discrete micro-model. He assumes to have many basic compo-
nents of matter, that he calls molecules, which constitute the bodies, and that these
systems of molecules are governed by Lagrange’s equations of motion. Then he
assumes that, once macro-descriptors of the kinematics of the considered bodies are
chosen, a reasonably detailed micro-motion can be determined, representing the ef-
fective motion occurring at micro-level. Subsequently, he identifies macro-motions
by formulating two times the Principle of Virtual Work, bot at macro and micro
level and by identifying micro and macro powers, by using the introduced discrete
micro-model and the continuous macro-model.

As Piola’s assumptions are general enough, we can say that his continuum theory
is a non-local theory (in the nomenclature used by Eringen [53, 54]). For sure it is
more general than the one that was introduced later by Cauchy and Navier (see [14]).

Piola’s starting point is what, in modern nomenclature, is called a system of
material particles with long range interactions. Of course his model is the classical
model developed by Lagrange for a finite set of particles: he introduces a kinetic
energy and an interaction energy between every pair of particles. Therefore, albeit
with an energy which quickly decreases with distance, at the micro-level there is the
possibility of having clusters of particles which are interacting. As a consequence,
in the macro theory developed by Piola the so-called principle of locality is valid
only when certain specifications are made clear. We believe that a clear study of this
point can be found in [127].

A similar idea has later been presented by Germain, by considering a microstruc-
tured continuum as composed by many material particles which can be modeled as
continua of small extension themselves.

It is rather surprising, also, that many Italian authors (see for instance [119]),
also those who did produce very interesting novel results in the field, seem not to be
aware of the fact that they are continuing Piola’s work. The reader who is interested
in getting evidence about this last statement can consult [34, 42, 43] where many
excerption of Piola’s work are translated that prove it.
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In [34], Piola’s formulas are translated into a more modern notation: we believe
that the greatest part of Piola’s argument are, even nowadays, at the edge of the
research in Continuum Mechanics.

We will stress here how the work of Piola have surely influenced the following
works, by attempting the use of some techniques taken from philology, in the spirit of
the present volume, by carefully analyzing the written sources. In fact, in Piola [110]
(Capo I, pag. 8) the attentive reader will verify that the reference configuration of the
studied deformable body is described, with a very careful series of statements. The
labelling symbols introduced by Piola for characterizing each material particle with
the three Cartesian coordinates is: «(a, b, c)». It is really surprising that exactly the
same notation is used in Hellinger [86], see e.g., pag. 605. The reader will remember
that similar observations did persuade Heiberg (and all experts about Archimedes)
about the hierarchy of the sources concerning Archimedes works.

We intend, in future investigations, to continue this kind of observations to fully
track how Piola did really influence the development of modern Generalized Con-
tinuum Mechanics. In fact, we are rather lucky, as all sources are available and can
be easily consulted. We do not believe that such a challenge is useless. Already in
the fundamental textbook by Lagrange [92], differently from many other authors,
the presented results are framed in a correct historical perspective. Lagrange did
try to give due credit to all his predecessors, including Greek mechanicians and his
friend D’Alembert. At the beginning of the Mécanique Analytique one finds a very
interesting historical introduction: we believe that it is the first source of modern
History of Mechanics. We regret that also this aspect of the Lagrangian lesson has
been too often forgotten by too many scholars in Continuum Mechanics.

As a fundamental example, we recall that in some modern papers one finds
announced a «very new and powerful» theory: Peri-dynamics. We believe that many
among the ideas presented there really have big merits and deserve to be developed.
In particular, they can allow great advancements in fracture and damage Mechanics.
In Peri-dynamics papers, Cauchy continua are generalized in a clever form and
we believe that they could give an interesting framework to develop the theory for
studying e.g. in crack formation and growth (for some interesting relevant literature
see also [112, 113, 114, 116, 115, 117, 104, 29, 12, 81, 30]).

It is, however, a pity that even all the many scientists whose mother language
is Italian and who work in this novel part of Continuum Mechanics seem to be
unaware of the fundamental works by Gabrio Piola exactly in this field. We believe
that Piola has to be credited to be the father of Peri-dynamics and that the loss of
memory observed also in this case may be very detrimental to the advancement of
science. The lack of the credit due to the major scientific sources is very dangerous:
one looses, because of said lack, the important information about the motivations
which contributed to the genesis of considered new ideas. To believe that everything
which is modern is better than more ancient sources is wrong also for many other
reasons: for instance one looses the needed informations concerning the influences
that a model had on the development of other models. The tendency towards a
“modernism” unfortunately is becoming more and more trendy. There are many
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papers in Continuum Mechanics written during the XX century that are less advanced
than Piola’s ones.

In fact, after many years in which Piola’s ideas were not developed, in [128] the
study by Piola has been somehow completed and the bases for more developments
established. One could believe that Silling was one of Piola’s direct pupils: to this
aim the reader is invited to compare Silling arguments with those presented by Piola
(see again [34]). A comparison between the works by Piola and those of his modern
pupils can be very fruitful: it is interesting to see that some concepts and modeling
ideas formulated more than 150 years ago by Piola may be topical even nowadays:
the reader is invited to consult, for instance, the abstract of the papers [8, 107].

Also by reading the literature that was originated from the papers by Silling one
can remark that there is a strict relationship between non-local continuum theories
and the theories of discrete systems of interacting particles. This connection was
clear to Piola: how deep was his understanding can be verified by consulting [42, 43]
and the more modern literature (see e.g. [128, 129, 130]).

4.5 Conclusions

The process of systematically removing references to the name of Gabrio Piola in
Continuum Mechanics (and part of his results) is just one of many examples of how
some social groups have, over the centuries and in different cultural fields, rewritten
more or less relevant parts of the cultural knowledge of a society. At the basis of this
phenomenon we can always find common features:

i) a sectarian vision of cultural progress;
ii) the conviction that the point of view of the own social group is clearly superior

to that of all the others;
iii)the occupation with own members of positions not always of cultural relevance

but certainly in key positions for the management of power;
iv)the inability to face a fruitful discussion with representatives of groups of different

cultural orientation.

The fundamental difference with groups or individuals that produce effective cultural
advancement for mankind, such as Piola, Archytas or Archimedes (to cite the few
examples we refer to in this book), lies in the fact that those who are actually engaged
in the advancement of scientific knowledge do not have the time to occupy positions
of power. So, the competition between the two groups of scholars (those who study
and those who occupy power) is lost, without any hope, by those who, like Piola, are
essentially dedicated to research. Those who, instead, less competent have had the
possibility to spend their time to maneuver in order to occupy key positions in power
management do effectively have the power to decide the destiny of the scholars who
are more competent. In this sense, the scientific advancement of a society is largely
distorted by the presence of unscrupulous and incompetent people in key positions.
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When this social process becomes prevalent in the subgroup of scholars, the decline
of the whole society is already in an advanced state.

The sad story of how the enormous scientific advances made by Gabrio Piola
in the mid-XIX century (and which are gradually being rediscovered only now) is
paradigmatic of these social mechanisms of elimination of original ideas but, above
all, of the name of their inventors. This is the manifestation of a form of real thought
dictatorship. At the end of Hellenism, this kind of mechanisms allowed the cancel-
lation of the enormous scientific progress achieved by Greek society in the third
century BC. While the new strong vision of the expansion of the Roman Empire be-
came dominant, the cultural quality of dominant classes became dramatically lower.
The germs of the Middle Ages were already present in that process of cancellation. A
thousand years of ignorance and obscurantism derived from the loss of the scientific
results of Hellenistic Science.

But when those who have achieved results in any field of knowledge have also
had the wisdom to leave more copies (and in different places) of these results,
then there is hope that sooner or later someone will be inspired by the novelty
and originality of these results and scientific progress can finally return. We must
thank Leo the Mathematician for having ordered the copy of Archimedes’ works
and for having caused their fortuitous consequent diffusion in Europe. Sometimes
we also have to thank those who (like Tartaglia, although not understanding much
in Archimedes’ writings and crediting himself with a translation not his own, as
demonstrated by Heiberg and as it has been widely discussed in Chap. 2) contributed,
unconsciously, to spread at least the knowledge of works that perhaps would have
been less known otherwise. In this regard, even Piola has benefited from a similar
treatment, having been, although not understood and openly criticized, referred to in
Truesdell’s compendium.
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Chapter 5
A partial report on the controversies about the
Principle of Virtual Work: from Archytas of
Tarentum to Lagrange, Piola, Mindlin and
Toupin.

Emilio Barchiesi, Alessandro Ciallella, and Daria Scerrato

The efforts paid in the philological search of the most ancient sources, in which one
can find the formulation of a certain theory, may seem devoid of utility. Especially
if such a search is complicated by the infinite formulation variants that a theory
can present, in the simplest cases because of change of notations or, in the most
difficult ones, because of the presence of equivalent postulations that are chosen as
starting points. To further increase the difficulties, the mathematical tools used in the
development of the theory, sometimes, may appear to be very different, albeit they
produce the same logical consequences.

The most famous case of different, but equivalent, mathematical tools used in a
theory is represented by the synthesis operated by Cartesian geometry. The equiva-
lence of algebraic and geometrical concepts obtained by establishing the Cartesian
correspondence between geometrical and algebraic objects did allow a major ad-
vancement in human capacities to model the physical reality. It proved that one
can develop equivalent theories either by using geometrical concepts or by using
algebraic ones. As an instance, the concept of physical quantity can be modeled
either by means of Dedekind sections (the modern name given to the geometrical
definition of real numbers, which was probably due to Eudoxus of Cnidus) or by
introducing Cauchy sequences of rational numbers (the modern definition based
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on algebraic concepts). A theory does not become original simply because it uses
Dedekind sections instead of Cauchy sequences!

An often heard criticism against historical research regards its lack of utility in
solving any kind of «practical» problem. We believe that this criticism is not well-
grounded. In general, one should consider history as a source of phenomenological
evidence, to be used in building theories capable to predict the behavior of social
groups. In particular, one could daydream about a theory explaining the reasons for
which some groups of scientists are polarized to follow some leaders in choosing a
postulation scheme instead of another one when they try to found novel theories or
to reorganize already existing ones.

Looking for supporters of this point of view in antiquity, one can think about
Cicero. He was aware of the important role that history and its study can have in the
advancement of human knowledge. One of his most famous sentences is indeed:

«Historia vera testis temporum, lux veritatis, vita memoriae, magistra vitae,
nuntia vetustatis»

(Cicero, De Oratore, II, 9, 36)

that one can translate as follows:

«History is true witness of the times, light of truth, life of memory, teacher
of life, messenger of antiquity».

We claim that history can be our teacher also in formulating novel theories. In
conclusion, albeit the study of the most ancient sources of the theory of generalized
continua has surely its own scholarly interest, we are also motivated by a really
practical aim: to find the most effective postulation process to be used when one
wants to develop physical models.

5.1 Some «forgotten» – but not «lost» – sources in mechanical
sciences.

Gabrio Piola (see [46, 39, 43, 42, 47]) considered himself a continuator of the
scientific endeavors that Lagrange believed had to be performed to firmly found
mechanical sciences. Therefore, Piola invested all his intellectual forces to show
that the Principle of Virtual Work (or the Principle of Least Action, which can be
regarded to be an important particular case of the previous one) has to be used when
creating new models. Piola was aware of the request imposed by Occam’s razor: a
postulation scheme must use the minimum possible set of postulates, and if one has
to choose between a long list of ad hoc assumptions it is much more likely to include,
in the formulated theory, some logical incongruences. If the aim is to produce models
for successfully predicting the observed experimental evidence and some unknown
phenomena, a theory based on the fewest possible assumptions has to be preferred.

Unfortunately, Piola’s point of view was not shared by the «French Geometers»,
as he calls the group led by Cauchy, Poisson and Navier. In this group the preferred
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postulation scheme was based on the balance of force, the balance of moment of
forces and on some «ad hoc» (postulated) restrictions on constitutive equations.
For this reason, in some groups of scholars and in some places and times, the
contributions by Lagrange, Piola and all their followers were simply ignored.

The process of removal of a source, during the long period when original works
were still copied manually, implied as a consequence the total loss of that source. If
a librarian decided that a book was not useful, he simply did not ask the amanuenses
to copy it, and after some time the book was lost. The process was sometimes made
more expedite by simply erasing the «useless» book words from a parchment for
reusing it to copy a more important text. This was the destiny of at least one of the
most deep contributions of Archimedes to science (we refer to the famous Heiberg
palimpsest).

Luckily, the commercial value of the paper on which Piola’s works were written
did not deserve the attention of any librarian: albeit they were ignored by too many
scholars for too much long time, they did remain available in many libraries. Another
fortunate circumstance is that Piola’s works were originally written in Italian: a not
so frequently spoken language, that can however be understood by some scholars
capable to understand the sophisticated mathematical reasoning exploited in Piola’s
works.

As we agree with Piola’s epistemological point of view and we can read Italian
language, we will try in this chapter to briefly examine how the Principle of Virtual
Work (called at the beginning Principle of Virtual Velocities) has been used to found
(continuum) mechanics and how it allowed for the formulation of the theory of
higher-gradient continua since its first formulation by Piola.

Piola’s theories of second and higher-gradient continua were ignored, or rejected
because believed to be logically inconsistent, by some scholars, followers of Poisson,
who refused to accept the Lagrangian postulation of mechanics. The existence of a
large group of scholars supported by public institutions did allow for the formation
of «resistance» subgroups of scholars who did continue, sometimes even without
knowing the existence of his works, Piola’s research project. One of the leaders
of Lagrangian mechanics was Paul Germain, member of the French Academy of
Science in Paris (for more details about the personality of Paul Germain see [124]).

His works in continuum mechanics [88, 90, 58] and his leadership inspired
a group of scholars to pursue the Lagrangian scientific program (see the works
[1, 86, 5, 12, 159, 15, 50, 49, 135, 2, 157, 87, 98, 99, 100, 69, 123, 122, 125, 80]).
In fact Paul Germain was not the only scholar who believed that Lagrange program
had to be applied in Continuum Mechanics. A very partial list can be attempted:
Lev Davidovič Landau [116] and Leonid Ivanovich Sedov [156, 154, 155] in URSS,
Heinz Parkus [133] in Austria, Ekkehart Kröner [113, 114] in Germany, Rivlin
[143, 144, 145], Green [102], Pipkin [84, 107, 108, 109, 110, 137, 138, 139],
Mindlin [126, 127, 128, 129], Steigmann [54, 162, 166, 163] in USA. Paraphrasing
Piola: all listed scholars «could manage to accept the use of the powerful abstract
concepts given to us by the genius of Lagrange». A special mention needs to be
given here to Richard Toupin (for more details see [43, 37]). He could fully master
the mathematical techniques needed to handle variational principles, since he had
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studied the famous textbook by Landau. He managed to include within the book
[170] a chapter about variational principles, albeit he had to accept Truesdell’s very
negative remarks. This move was very wise as, thanks to this chapter, many schol-
ars could learn about and appreciate them, notwithstanding the negative remarks
by Truesdell. Probably, this circumstance became clear to Truesdell and Noll: in
fact, in the subsequent textbook [169] the authors simply erase any trace of this
very important part of continuum mechanics. Another eminent personality in the
valorization of variational principles in Continuum Mechanics is Ernst Hellinger:
his fundamental entry in the Encyklopädie der mathematischen Wissenschaften mit
Einschluss ihrer Anwendungen (1913, Bd. IV-4, Hft. 5) has been essential in pre-
serving the scientific heritage of Lagrange and Piola (see [73, 75, 76, 74, 71]). Like
Piola was (see the preface of his work written in 1848 as translated in [46]), one must
be extremely surprised in discovering that the Principles of Virtual Work and Least
Action still need to be supported and that there are ongoing controversies about its
validity and role in continuum mechanics. The social phenomenon that led to their
rejection in so many scientific groups, notwithstanding that they were adopted as
the most fundamental postulate by undisputed scientific authorities like D’Alembert,
Lagrange, Hamilton, Landau, Feynman [85], and Sedov, should be investigated. A
remark seems necessary in this regard: all the scholars advocating the importance
of variational principles in continuum mechanics have a background in Theoretical
Physics. Therefore, it seems that in continuum mechanics there are rather distinct
cultural subgroups that are competing for affirming their point of view.

As the memory of the works of Piola, Hellinger, Kröner, Sedov, Mindlin, Green,
and Pipkin seems to have been somehow removed by some groups of scholars, we
believe that it is needed to reaffirm what follows: if one wants to model micro-
scopically strongly inhomogeneous systems, he has (see e.g. [24, 18, 135, 20]) to
consider, in the Principle of Virtual Work, internal work functionals (see Germain
[89] and Salençon [148]) depending linearly also on second and higher gradients of
virtual displacements. Albeit one could remark that this is a statement already found
in the work by Piola (published between 1822 and 1856), it is sure that it has been
systematically ignored or overlooked. In our opinion, the theory of higher-gradient
continua gives a further example of the «erasure, loss or removal and rediscovery» of
human (scientific) knowledge. This kind of processes have been observed for many
other scientific theories (see e.g. [147]).

Unfortunately, and this is a big loss for science, we do not have enough sources
to prove that, already after its first formulation, the Principle of Virtual Work caused
a sharp debate. This debate most likely had some bitter moments, as the complete
loss of Archytas works may indicate. It is fortunate that an unknown amanuensis did
save for posterity the Pseudo-Aristotelian on The Mechanical Problems. Attributing
it to Aristotle, who could not be in any way his author (in many of his works,
Aristotle shows that he is not versed in mathematics), this amanuensis showed to
have understood deeply both the importance of the text that he was saving and the
nature of human psychology and social behavior. It is sure, however, that the debate
about the importance of the Principle of Virtual Work, and its impact on science,
has been taking place without interruption until our days.
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5.2 An Italian secondary source: Vailati. While underestimating
Hellenistic mechanics, he recognizes in it two different ways
for studying Statics problems.

In his paper [174] on the history of the Principle of Virtual Work, Vailati starts his
introduction with the words

«The works in which we had preserved the memory of the ideas of Greeks on Mechanics
and of the degree of elaboration that, because of their contribution, the theories concerning
the equilibrium did reach, can be divided neatly in two categories, that correspond to two,
radically different, directions in the manner of considering and solving the questions of
Statics».1

Therefore, it seems that Vailati believes to be able to distinguish two competing
methodologies (or postulations) in the Hellenistic texts of mechanics. On this point
we agree completely with him: probably, already in Hellenistic Mechanics both
the Principle of Virtual Work together with the balances of force and moment of
force were systematically used in the study of problems of Mechanics. Vailati’s
introduction then continues by stating that:

«Greek writers did not manage to reach even the enunciation of the most elementary among
the principles of Dynamics: the law of Inertia».2

On this point we do not agree with Vailati. This statement does not seem well-
founded. We will not delve here in this subject, and we refer to [147] for a discussion
of the big amount of secondary sources of Hellenistic Science, where the concept of
inertia is formulated. Refraining from any polemics, we simply comment here that, in
available secondary sources of Hellenistic texts (once translated into Latin or a more
modern language), one, obviously, cannot find the exact words (force in particular)
which Vailati expected to find for describing the concept. This circumstance has been
the cause of many misunderstandings in the history of mechanics. Unfortunately, it
has to be remarked that Vailati’s opinion has been followed by the majority of
scholars. For instance, in the foreword of [56] by Louis de Broglie, one finds stated
that:

«The history of mechanics is one of the most important branches of the history of science.
From earliest times man has sought to develop tools that would enable him to add to his
power of action or to defend himself against the dangers threatening him. Thus he was
unconsciously led to consider the problems of mechanics. So we see the first scholars of
ancient times thinking about these problems and arriving more or less successfully at a
solution. The motion of the stars which, from the Chaldean shepherds to the great Greek and
Hellenistic astronomers, was one of the first preoccupations of human thought, led to the
discovery of the true laws of dynamics. As is well known, although the principles of statics

1 «Gli scritti nei quali ci è stata conservata memoria delle idee dei Greci sulla Meccanica e del
grado di elaborazione che raggiunsero per opera loro le teorie relative all’equilibrio, si possono,
[...] dividere nettamente in due categorie, corrispondenti a due indirizzi radicalmente diversi nel
modo di considerare e di risolvere le questioni di Statica».
2 «..[..] gli scrittori greci [...] non seppero assorgere neppure all’enunciazione del più elementare
dei principi della Dinamica: la legge d’inerzia.»
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had been correctly presented by the old scholars those of dynamics, obscured by the false
conceptions of the Aristotelian school, did not begin to see light until the end of the Middle
Ages and the beginning of the modern era».

We believe that the perfection obtained by Hellenistic Astronomy could not be
attained without a clear understanding of a version of the law of inertia. (see e.g.
[146, 134, 9, 10, 19, 117]). Instead Vailati, still in his introduction, adds that:

«The questions of Statics seem to have been the only ones of which the Greek writers tried
to pursue a general treatment, that is scientific in the modern sense of the word;i) as, for
what that concerns the study of the laws of motions, they seem to having been contented
of ii) gross descriptions and classifications of phenomena»3

i) The observations on the composition of movements, which one finds in the works by
Aristotles, and the more elaborated theories as elaborated by the astronomers on the same
subject (see about this subject the classical monograph by Schiaparelli: On the homocentric
spheres by Eudoxus, Callippus and Aristotle) belong rather more to Geometry than truly to
Mechanics. To the same class belong also the researches of Archimedes «On Spirals», that
are also based on kinematical assumptions.4

ii) And maybe it is only because of the fault of unskillful compilers and commentators
that aforementioned theories and researches did take, later, the aspect and the pretension of
scientific theories. And it is interesting, in this regard, to consider as close the considerations
developed by Aristotle, in his III book Περὶ οὐρανοῦ, on the distinction between heavy
and light bodies, with the following sentence with which he concludes his answer to the
33-rd of the Mechanical Problems, in which one demands: Why does anything get carried
its own course when the propulsion does not follow along and keep pushing? [as it is very
short, we report here the whole answer as translated by Winter] Perhaps it is clear that the
first has done such as to push another, and that another, but it stops when what is propelling
the carried object is no longer able to push, and when the weight of the object being carried
slopes more than the forward force of the pushing.5

Aimed at helping the reader to frame the previously reported sentence by Vailati,
we recall here that the Aristotelian text: On the Heavens (Περὶ οὐρανοῦ; De Caelo
or De Caelo et Mundo), is the Aristotelian effort to describe the universe. It was

3 «[...] le questioni di Statica [...] sembrano esser state le sole delle quali gli scrittori greci di
Meccanica abbiano intrapresa una trattazione generale e scientifica nel senso moderno della parola; i)

poiché, per ciò che riguarda lo studio delle leggi del moto, essi sembrano essersi accontentati diii)
grossolane descrizioni e classificazioni dei fenomeni».
4 «Le osservazioni sulla composizione dei movimenti, che si trovano nelle opere d’ARISTOTELE,
e le teorie più elaborate degli astronomi su questo stesso soggetto (cfr. in proposito la classica
monografia dello SCHIAPARELLI: Sulle sfere omocentriche d’Eudosso, Calippo, ed Aristotele)
appartengono piuttosto alla Geometria che non alla Meccanica propriamente detta. Alla stessa classe
appartengono pure le ricerche di ARCHIMEDE «Sulle spirali», basate anch’esse su considerazioni
cinematiche.»
5 «E forse solo per colpa dei compilatori e commentatori imperiti che queste assunsero più tardi
l’aspetto e la pretensione di teorie scientifiche. E interessante a questo riguardo riavvicinare le
considerazioni svolte da ARISTOTELE, nel III libro Περὶ οὐρανοῦ, sulla distinzione fra i
corpi pesanti e i leggeri, colla seguente frase con cui egli chiude la sua risposta alla 33a delle
Questioni meccaniche, nella quale si domanda: Perché i corpi scagliati non continuano a muoversi
indefinitamente? A Greek sentence follows whose translation by Winters is given in the text».
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written in 350 BC and includes an astronomical catalog together with Aristotelian
ideas (based on those by Eudoxus) on how the terrestrial world was constituted.

It must be remarked that Winter (see [175]), whose interpretation and analysis
we support completely, does interpret the answer given in the pseudo-Aristotelian
work in the completely opposite way: Winter recognizes in the answer to the 33-rd
mechanical problem a description of the principle of inertia.
Let us now quote the relevant part of Vailati’s work on which we agree completely.
In fact, Vailati describes in a very involute way the differences of the two approaches
to Statics found in Hellenistic textbooks. In his work we read:

«In the first of previously mentioned directions is characterized by the tendency to proceed to
the determination of the equilibrium conditions by directly examining, for each mechanism,
the relationships that subsist among the compatible motions of its parts and tracing the
analogies that, from this point of view, one can find in the various devices to which the
human intelligence recurs to win with small efforts the great resistances. It is represented,
first of all, by the short work on Mechanical Problems (Μηχανικά Προβλήματα) and
secondly by another work, which is not less important for the history of mechanics, which has
been transmitted to us only by means of a Latin compilation, having as title, De ponderibus,
due to Jordanus Nemorarius, a mathematician working during the XIII century.»6

The reader will remark how quickly and roughly the formulation of the Principle
of Virtual Work is formulated by Vailati. One has to master it fully to recognize
that Vailati is talking really about it. One may suspect that Vailati is attributing
to his Hellenistic sources the confusion which most likely is, instead, in his own
formulation. Correctly, Vailati attributes to Hellenistic science the De ponderibus.
In fact, he continues by stating that:

«The Greek origin of the De ponderibus, albeit cannot be considered as completely ascer-
tained, is, nevertheless, admitted by authoritative scholars as really likely [...].)»7

The description of the second line along which Statics was developed by Hellenistic
Science is then described by Vailati:

«The peculiarities of the second direction are, instead, from one side, the intention to place
as exclusive foundation of Statics the consideration of the centers of gravity, and, on the
other side, the preoccupation to build this science following the model of the Euclidean
Geometry, by presenting it under the form of a series of theorems one linked to the others
that can be obtained by deduction of a certain number of fundamental propositions having
the same character of immediate evidence as the axioms of Geometry».8

6 «Il primo dei suddetti due indirizzi è caratterizzato dalla tendenza a procedere alla determinazione
delle condizioni di equilibrio esaminando direttamente, per ciascun meccanismo, le relazioni che
sussistono tra i moti compatibili delle sue parti e rintracciando le analogie che presentano, da questo
punto di vista, i vari ordigni a cui 1’industria umana ricorre per vincere con piccoli sforzi grandi
resistenze. Esso è rappresentato anzitutto dall’operetta sulle Questioni meccaniche (Μηχανικά
Προβλήματα). attribuita ad Aristotele [...] e in secondo luogo da un altro scritto, non meno
importante per la storia della Meccanica, che ci è giunto solo attraverso a una compilazione latina,
portante il titolo De ponderibus, dovuta a Giordano Nemorario, matematico del XIII secolo.»
7 «L’origine greca del De ponderibus, sebbene non possa considerarsi come completamente accer-
tata, è nondimeno ammessa da critici autorevoli come assai probabile [...].»
8 «Caratteri del secondo indirizzo sono invece da una parte il proposito di porre ad esclusivo
fondamento della Statica la considerazione dei centri di gravità, e dall’altra la preoccupazione
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Then Vailati attempts attributing to Archimedes the second direction which he is
referring to:

«This second direction that can be attributed to Archimedes, who probably was his first
initiator, is represented not only by his works On the Equilibrium of Planes and On Floating
Bodies but also by the fragments concerning the Statics that are found gathered in the eight
book of theΣυναγωγή by Pappus».9

Finally and unfortunately, Vailati concludes with a statement that seems completely
devoid of any philological and logical support:

«The finding, due to the Orientalist Carra de Vaux, of the previously cited oeuvre by Heron,
whose Arabic translation was laying forgotten among the manuscripts of the library of
Leiden (to which it had arrived by means of the erudite traveler and Dutch mathematician
Golius [1596-1667]) [...], albeit supplying to us a document, being as more precious as it is
unique, of a treatment of Statics in which the two methods of which I have spoken cooperate
one with the other and are applied simultaneously sometimes also to the solution of one
and the same question, does not, however, gives any new information for what that concerns
the historical relationships of the two aforementioned directions, which seem to have been
developed with perfect independence one from the other, albeit it is difficult to believe that
they have not had ever any reciprocal influence.»10

It is therefore clear that, even though being blurred by the standard prejudices
about Hellenistic science, also Vailati finds in the available sources the traces of the
very ancient interaction and counterposition between the Postulation based on the
Principle of Virtual Work and the Postulation based on The Balance of Forces and
Moments of Forces.

di costruire questa scienza sul modello della geometria di Euclide esponendola sotto la forma
d’una serie di teoremi concatenati ed ottenibili per deduzione da un certo numero di proposizioni
fondamentali aventi lo stesso carattere di evidenza immediata che presentano gli assiomi della
geometria.»
9 «Questo secondo indirizzo che fa capo ad Archimede, il quale secondo ogni probabilità ne fu il
primo iniziatore, è rappresentato oltreché dalle sue opere Sull’equilibrio delle figure piane e Sui
Galleggianti, anche dai frammenti riguardanti la Statica che si trovano raccolti nel libro ottavo delle
Συναγωγή di Pappo.»
10 «Il ritrovamento, dovuto all’orientalista Carra de Vaux, dell’opera di Erone dianzi citata, la cui
traduzione araba giaceva dimenticata tra i manoscritti della biblioteca di Leida (alla quale era
pervenuta per mezzo dell’erudito viaggiatore e matematico olandese Golius [1596-1667]) [..] pure
fornendoci un documento, tanto piu prezioso in quanto è unico, d’una trattazione della Statica nella
quale i due metodi di cui ho parlato cooperano l’uno accanto all’altro e sono promiscuamemte
applicati talvolta anche alla soluzione d’una stessa questione, non ha tuttavia recato alcun nuovo
dato per ciò che riguarda le relazioni storiche dei due suddetti indirizzi, i quali sembrano essersi
svolti con perfetta indipendenza l’uno dall’altro, sebbene sia difficile credere che essi non abbiano
mai avuta alcuna influenza reciproca.»
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5.3 The Principle of Virtual Work as formulated by Archytas of
Tarentum in the Mechanical Problems.

We believe, however, that the presumed date of publication attributed to The Me-
chanical Problems in the Corpus of Aristotle by Winter (who argues that the author
is Archytas of Tarentum, 428–347 BC) and the fact that this work solves all the
studied mechanical problems by using the Principle of Virtual Work indicate that
this Principle was formulated before the concepts of force and moment of forces
were introduced in any form.

The Mechanical Problems (in GreekΜηχανικά) is nearly unanimously considered
the most ancient oeuvre in mechanical sciences to be produced by Western Culture
of which we have any information. Although it was attributed to Aristotle (and
transmitted to us in the Corpus Aristotelicum) – albeit it must be acknowledged that
there are some disputes about its attribution to Archytas of Tarentum – it is nowadays
nearly universally accepted that its author wrote it at the end of the fourth century
before Christ, and that already in antiquity it had been falsely attributed to Aristotle.
On this false attribution many speculations can be made, and we leave them to the
judgment of the reader, as absolutely no evidence is available.

Its introduction begins with a short and traditional appeal to the “marvel” that
must guide any kind of research (this is a topos in scientific Hellenistic works) and it
is argued that, to understand and describe phenomena, it is necessary linking them to
their causes. After that, one finds the range of applicability and investigations of the
“mechane”, and the principles on which this theory is based. Following again another
well-established topos, used since the pre-Hellenistic times and also nowadays in
physics textbooks, the presentation of arguments is carried out via the traditional
scheme constituted by questions and detailed answers, based always on the same
fundamental principle. Here is the translation – by Winter [175] – of the first part of
the introduction of The Mechanical Problems:

«One marvels at things that happen according to nature, to the extent the cause is unknown,
and at things happening contrary to nature, done through art for the advantage of humanity.
Nature, so far as our benefit is concerned, often works just the opposite to it. For nature
always has the same bent, simple, while use gets complex. So whenever it is necessary to
do something counter to nature, it presents perplexity on account of the difficulty, and art
[techne] is required. We call that part of art solving such perplexity a mechane.».

Unfortunately, the translation from an ancient language never manages to be really
faithful. However, we believe that Winter’s translation manages to transmit the origi-
nal spirit of the text. The Mechanical Problems, as translated into English by Winter
(written in Italic), with our comments are the following:

• 1. So first the circumstances about the yoke are confusing, through what cause
are the larger yokes more accurate than the smaller?

• 2. Why does a balance beam return when you remove the weight if the string is
set from the top, and not return, but stay put when supported from below?

• 3. Why is it that small forces can move big weights with a lever?
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These first three questions immediately show the style of Greek investigations. Con-
trarily to what is read very often in some books of History of science, Greek spirit
did not delve only into theoretical questions that are not connected with experimental
evidence or applications. The principle of lever is explained and formulated having
in mind probably its most ancient application: the balance.

• 4. Why do the men at the middle of the boat move the boat most? Is it because the
oar is a lever?

• 5. Why does a steering oar, small as it is, and at the end of the boat have such
force that with one little handle and the force of one man, and that gentle, it moves
the great bulk of ships?

• 6. Why when the yardarm is higher does the boat sail faster, with the same sail
and the same wind?

• 7. Why when out of the wind they wish to run across, the wind not being at their
back, do they tighten [send, furl] the sail toward the steers-man and, having made
it a foot wide, let it out toward the prow?

After having explained the principle of the lever, other applications are proposed to
the science of sailing, that was so important for all Greek people. Again, one can ask
where the myth of Greeks not being interested in applications comes from.

• 8. Why are round things easier to move than things of other shapes?
• 9. Why, with larger circles, whether wheels, pulleys, or rollers, do we move more

easily and quickly the things which are lifted or pulled?
• 10. Why is an empty balance beam easier to move than a weighted one?
• 11. Why do burdens go easier on rollers than on wagons, despite wagons having

large diameter wheels and rollers small?

Here is a peculiarity of the mechanical problems studied in this textbook: the author
wants to underline the power of the use of the mathematical concept of circle in
solving mechanical problems.

• 12. Why are spears or pellets carried farther from the sling than from the hand?
• 13. Why, around the same capstan, are longer spikes moved more easily? And

likewise, thinner winches, by the same force?
• 14. Why is wood the same length broken over the knee more easily if you break

it while holding it having set it equidistant from the ends rather than being close
alongside the knee? And if you set it on the ground and step into it, you break it
farther from the hand rather than near?

• 15. Why are pebbles at the seashore rounded?
• 16. Why is it that the longer a board is, the weaker it gets? and, lifted, bends more,

even if the short one – say, two cubits – is thin, and the long one – say, 100 cubits
– is thick?

• 17. Why are big heavy bodies split by little wedges?
• 18. Why, if someone makes two pulleys working together on two blocks, and puts

a rope around them in a circle, one block hanging, the other getting lifted up/let
down, and hauls on the end of the rope, does he draw up great weights, even if
the lifting force is small?
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• 19. Why, if you put a large ax on wood, and a large burden on that, doesn’t it pull
apart the wood, no matter how considerable the burden is? But if you raise the
ax and hit with it, you split the wood even if you have less weight than you put on
the ax in the first place?

• 20. Why is it that phalanxes balance big heavy meats hanging from a stub?
• 21. Why do doctors pull out teeth more easily even adding weight – that of the

tooth-puller – than with the bare hand?
• 22. How do they crack nuts easily, without even hitting, in the tools which they

make for cracking them?
• 23. Why, when both terminal points of a parallelogram carry two vectors, don’t

they go an equal straight line, but instead one goes many times the other?
• 24. It is confusing why the larger circle describes a line equal to a smaller circle’s

when they have been put on the same center.
• 25. Why do they make beds the way they do, sides two-to-one – one side six feet

and little more, the other three? And why don’t they web them on the diagonal?
• 26. Why, given that the weight is the same in each case, is it more difficult to carry

long boards at the end on one’s shoulder than by the middle?
• 27. Why, given two burdens of equal weight, is the one too long harder to carry

on the shoulder – even if one carries it at the middle – than if it were shorter?
• 28. Why at water wells do they make shadoofs11 as they do?
• 29. Why, when two men carry an equal weight on a board or some such, do they

not labor the same unless the weight be at the middle, but it is more work for the
one of the carriers who is closer?

• 30. Why, standing up, do we all first make an acute angle with calf and thigh, and
with thigh and torso, and if we don’t we cannot arise?

• 31. Why is it easier to move something moving than something at rest? As for
instance, they pull wagons faster moving than starting. Because it is most difficult
to move a weight which is moving the opposite way?

• 32. Why do objects thrown stop?
• 33. Why does anything get carried its own course when the propulsion does not

follow along and keep pushing?

Questions 32 and 33 and their answers clearly show that the concept of inertia was
not ignored by Greek scientists. A harsh debate on this point has been started since
Middle Ages, which is still not settled.

• 34. Why, when thrown, do neither smaller nor larger objects go further, but always
must have some symmetry to the one throwing?

• 35. Why in eddying water does everything end up getting carried into the middle?

The reader will note that not all the questions are dealing with the use of machines
employed in engineering applications and are aimed to get a “mechanical gain”.

11 Note of the Authors: The shadoof, or sweep, is an early crane-like tool with a lever mechanism,
used in irrigation since around 3000 BCE by the Mesopotamians, 2000 BCE by the ancient
Egyptians, and later by the Minoans, Chinese (c. 1600 BCE), and others. The sweep is used to lift
water from a water source onto land or into another waterway or basin. The mechanism comprises
a long counterbalanced pole on a pivot, with a bucket attached to the end of it.
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Many questions are aimed at simply understanding how and why some natural
phenomena occur, how some object of common use can be employed and why they
are useful as they are. Other questions are aimed at explaining real world situations,
the functioning of certain instruments or the evolution of the configurations assumed
by certain bodies. There are several questions involving sailing techniques, a very
important subject for the trading tradition of Greeks.

In conclusion, we can dare to conjecture that The Mechanical Problems seems
to be a text including exercises to be solved, like some modern Solved Exercises
textbooks that are accompanying textbooks where the theory is fully exposed. If this
conjecture is well-grounded, it is a pity that the original theoretical textbook was not
transmitted to us. The Authors believe also that it would be interesting to elaborate
the answers to all the questions with modern methods.

5.4 D’Alembert: the rediscovery of the Principle of Virtual
Velocities (or Virtual Work)

While Lagrange, in his Mécanique analytique (first edited in 1788) [115] acknowl-
edges Johann Bernoulli as the one who formulated the Principle of Virtual Work
already in 1717 in a letter to Varignon, we believe that, most likely, one can track the
first modern formulation of the Postulation of Mechanics in which such a principle
is the basic postulate in the Traité de Dynamique (1768) by Jean-Baptiste Le Rond
d’Alembert. As the reader may have already agreed, it is not possible to establish
how novel D’Alembert treatise is when compared with Hellenistic sources, which
have been lost, and whose existence we can simply conjecture by reading secondary
sources. It is in fact rather unlikely, also on the basis of Vailati’s considerations,
that The Mechanical Problems did not produce a large subsequent literature. We
can rather safely state that the most relevant Hellenistic sources have been lost (see
also [56]): the few fragments and references can be found in very corrupted sources
whose interpretation has been very often debated.

Nobody can reasonably doubt, however, that the masterpiece by D’Alembert
managed to produce a renewed impetus to mechanics and mechanical sciences.
The fame of the Traité de Dynamique has been so widespread that the Principle of
Virtual Velocity (later and more often called also the Principle of Virtual Work)
therein enunciated, is often named after his author: the D’Alembert Principle. It has
to be explicitly remarked here that also mechanical systems where a part of energy
is dissipated can be described by means of models based on the Principle of Virtual
Work: this was probably the reason for which already D’Alembert and Lagrange did
prefer to use it, instead of the Principle of Least Action, as their most fundamental
postulate.

We believe that it is suitable to quote here an excerpt from the Traité de Dy-
namique (see also [42]). This is an excerpt that reflects the spirit of D’Alembert
in considering science. We recognize some stylistic affinities with the words found
in Greek scientific texts, notwithstanding how deformed and corrupted they may
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have reached us. We believe indeed that D’Alembert is providing a “Manifesto” for
mechanicians and that, at the same time, he guides mechanicians towards the correct
methodologies, techniques and perspective to be used in (Continuum) Mechanics:

«The certainty of mathematics is an advantage which these sciences owe to the simplicity
of their object. [...] the most abstract notions, those which the layman regards as the most
inaccessible, are often those which carry with them the greatest light»

Here D’Alembert warns about the need of using abstraction and abstract objects in
formulating mathematical models. He then continues stating that:

«[...] in order to treat following the best possible method [...] any Science whatsoever it is
necessary [...] to imagine, in the most abstract and simple way possible, the particular object
of this Science, [it is necessary] to suppose and admit in this subject anything else, than the
properties which this same Science treats and supposes. »

Subsequently, D’Alembert introduces a “Principle”, and this unique Principle is
the founding principle of Mechanics, as a deductive theory. This Principle is pre-
cisely presented in his treatise together with its important consequences and applica-
tions. In his Mécanique analytique, Lagrange continues and develops the oeuvre by
D’Alembert and continues to call such a principle the Principle of Virtual Velocities,
which somehow evokes its ancient Greek origin. Its name was later changed into
Principle of Virtual Work. Probably, this was not a good choice, it being possibly
suggested by some echoes of the debate involving the supporters of the Postulation
based on the Laws of Balance.

D’Alembert seems to have suffered because of the criticism formulated by the
inductivists. The detractors of falsificationist–deductive physical theories base their
arguments always on the same refrain: the deductive theory is too much abstract, “far
from experience” and “devoid of physical content”. The detractors of “falsification-
ism”12 claim that a sound physical theory is based on “solid” experimental grounds
and that these solid experimental grounds are encoded within the theory starting
from the formulation of its basic principles. Instead, D’Alembert, a follower of the
Archimedean vision of science, considers mathematics as a fundamental tool for for-
mulating logically well-posed theories to be, subsequently, verified experimentally.

D’Alembert then continues his Traité de Dynamique by stating that:

«From this standing two advantages result: the principles receive all clarity to which they
are susceptible: [and these principles] are finally reduced to the smallest number possible
[...] as the object of a Science is necessarily determined, the principles will be more fecund
if they will be less numerous [...]. »

12 Falsificationism is the scientific philosophy claiming that a theory is scientific only if it is based
on a set of hypotheses implying a cascade of falsifiable deductions. If a statement cannot be refuted
(i.e. it is not falsifiable) then, following the point of view formulated by Karl Raimund Popper –
probably the 20th century’s most influential epistemologist –, it is not a scientific claim. Popper
indeed rejects the classical inductivist description of the scientific method and replaces it with the
concept of “empirical falsification”. He claims that, while a scientific theory cannot be certainly
proven, it should be in principle falsifiable, that is proven to be false by some experiments.
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In writing these words D’Alembert refers to an epistemological (meta-)principle
dating back to Hellenistic science that is often referred to as the Occam’s razor13.
It has to be remarked here that the supporters of postulations of mechanics based
on balance laws are ready to multiply the number of principles on which mechanics
should be based.

In the words that we will read next, D’Alembert particularizes his reasoning and
refers more specifically to Mechanics, claiming its special need, among all exact
sciences, for a clear and solid foundation:

«Mechanics, above all, seems to be (the Science) which has been more neglected from this
point of view: also the great majority of its principles either obscure by them-selves, or
enunciated and demonstrated in an obscure way, have given place to several spiny problems
[...] I proposed to my-self to move back the limits of Mechanics and to make its approach
easier, [I proposed to my-self] not only to deduce the principles of Mechanics from the most
clear notions, but also to apply them to new uses, to make it clear at the same time both the
inutility of the many and various principles which have been used up to now in Mechanics
and the advantage which can be drawn by the combination of others (principles) in order to
have the progress of this Science in one word (I want to make clear which is the advantage)
of extending the principles by reducing them.»

Choosing some more technical excerpts from the treatise by D’Alembert may need a
difficult work of interpretation, as the nomenclature used by D’Alembert is changed
nowadays. He applies the Principle of Virtual Velocities to a wide range of cases and
shows how powerful it is in inventing new models and providing new explanations
for observed phenomena. It will be easier to comment the text written by Lagrange.
He indeed spent all his active life to write and rewrite his Méchanique Analytique,
and his style of presentation is so elegant and precise that one can easily read it
even nowadays. Lagrange repeatedly credits D’Alembert for having clarified the
importance of the Principle of Virtual Velocities.

We conclude by recalling that, at beginning of D’Alembert’s Traité de Dynamique,
one can find the following statement that is also a scientific program:

«I have proscribed completely the forces relative to the bodies in motion, entities obscure
and metaphysical, which are capable only to throw darkness on a Science which is clear by
itself. »

However, D’Alembert is not an extremist. As proven by the following statement that
we find in his work:

13 Occam’s razor, Ockham’s razor, Ocham’s razor (Latin: novacula Occami) or law of parsimony
(Latin: lex parsimoniae) is a principle on which the meta-theory guiding the formulation of theories
is based: “logical entities and fundamental principles should not be multiplied without necessity”.
This meta-theoretic principle is linked to the name of the English Franciscan William of Ockham
(c. 1287–1347). However, this principle can be found in many authors, and probably dates back
– at least – to Hellenistic culture. Equivalent statements are often found like, for instance, “the
simplest explanation is most likely the right one”, which is often used as common sense statement in
discussions. This meta-theoretic razor advocates that when choosing among different competing set
of hypotheses giving the same consequences, or predictions, the set including the fewest assumptions
has to be chosen. Of course, this does not mean that one has to choose a smaller set of hypotheses
when these are producing wrong predictions! Unfortunately, this last misunderstanding is still
diffused in modern times.
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«I must warn [the reader] that in order to avoid circumlocutions, I have used often the obscure
term force, and some other terms which are used commonly when treating the motion of
bodies; but I never wanted to attach to this term any other idea different from those which
are resulting from the Principles which I have established both in the Preface and in the first
part of this treatise.»

We approve this use of the term “force”: it is a purely mathematical object introduced
as a linguistic shortcut for: “linear continuous functional defined on the set of
admissible virtual velocities”. This last is the precise definition of “force” in terms
of kinematical quantities, previously defined or introduced as primitive concepts.

5.5 The formulation of Continuum Mechanics by Lagrange

The treatise Méchanique Analytique by Lagrange has been his lifelong endeavor.
Lagrange continued to write it until the last moments of his life. One reads at the
beginning:

«We will use, in general, the word ‘force’ or ‘power’ [puissance] for denoting the cause,
whatever it will be, which is impressing or tends to impress motion to the bodies to which
it is assumed to be applied.»

The nomenclature chosen by Lagrange has to be deciphered: he uses the word
“force” as a synonym of the word “power”. This choice may cause (and in fact did
cause) a lot of misunderstandings. Some scholars, who wanted to discuss the work
of Lagrange in their historical accounts of the development of mechanics, while
reading Lagrange textbook without having read its first pages, were confused by
Lagrange nomenclature and, therefore, concluded that the ideas of Lagrange were
not clear about some fundamental concepts. Some of them arrived to conclude that
Lagrange was not capable to distinguish between force and power: this can happen
when somebody reads a book of mathematics jumping the pages where definitions
and notations are introduced.

Instead, Lagrange tried (unfortunately without success!) to introduce a nomen-
clature paralleling the nomenclature used by Galileo. In fact, Lagrange (following
Galileo) chooses the word ‘moment’ for meaning what, in the modern nomencla-
ture, is called ‘power’. In subsequent initial pages of the Méchanique Analytique one
reads, in fact,

«Galileo uses the word ‘moment’ of a weight or a power applied to a machine the effort, the
action, the energy, the ‘impetus’ of this power for moving this machine [...] and he proves
that the moment is always proportional to the power times the virtual velocity, depending
on the way in which the power acts.»

This sentence clarifies the use of words chosen by Lagrange. Lagrange adds some
comments to his choice of nomenclature:

«Nowadays one uses more commonly the word ‘moment’ for the product of a power times
the distance along its direction to a point or a line, that is the lever arm by which it acts [...],
but it seems to me that the notion of moment given by Galileo and Wallis is much more
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natural and general, and I do not see why it was abandoned for replacing it by another which
expresses only the value of the moment in certain cases».

The readers who have studied generalized continuum theories, and in particular
second gradient continua, will recognize how clearly Lagrange understands the
concepts that are at the basis of mechanics: with his choice he wants to open the
door to future generalizations of his models. Then Lagrange formulates Archytas-
D’Alembert general Principle for Mechanics:

«The Principle of virtual velocities can be formulated in a very general way, as follows:
If a system whatsoever constituted by bodies or points each of which is pulled by powers
whatsoever is in equilibrium and if one impresses to this system a small motion whatsoever,
in virtue of which every point will cover an infinitesimally small distance which will express
its virtual velocity, then it will be equal to zero the sum of the powers each multiplied times
the distance covered by the points where it is applied along the line of application of this
same power, when considering as positive the small distances covered in the same direction
as the power and as negative the distances covered in the opposite direction.»

Albeit a modern formulation of this principle usually includes the use of concepts
from functional analysis, tensor algebra and mathematical analysis, one must agree
that: i) Lagrange’s formulation seems so general that it actually includes all versions
that have been formulated up to now, ii) it uses the minimum possible mathematical
concepts, i.e. only concepts from Euclidean geometry, that are sufficient to express
in a rigorous way the principle in its full generality.

5.6 The controversy between Poisson and Piola about the
deduction of the equation of the equilibrium of fluids: Piola’s
contact interactions in continua

Lagrange himself and then Gabrio Piola applied the Principle of Virtual Velocities
to deduce the equations of the motion for compressible first gradient fluids, without
viscosity. Unfortunately, as already remarked by Vailati, Archimedes had formulated
the concepts relative to the equilibrium of fluids in terms of a postulation approach
based on the necessary condition for equilibrium that can be deduced from the
principle of minimum energy: i.e. the balance of force.

We do not have the sources describing how the Principle of Virtual Work had
been studied in Hellenistic science and how (and if) the necessary condition concern-
ing resultant forces and moments of forces had been deduced. However, we know
that Hellenistic scientists were masters in the logical deduction of consequences
from “prime principles”. Therefore, we can imagine that, as variational principles
are usually more easily applicable when the formulation is framed in a Lagrangian
description, while fluids are most suitably described in an Eulerian description,
Archimedes preferred to develop his fluid mechanics by using some important con-
sequences of the Principle of Virtual Velocities. Of course this is a purely conjectural
statement and one cannot rely on it too much.
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In any case, Poisson, following the transmitted Archimedean tradition, preferred
to base the mechanics of fluids on the postulation making use of the balance of forces.
For finding the equations of the motion of a fluid, Poisson uses: i) the principle of
equal pressures in all directions and ii) a principle characterizing constitutively fluids,
which is formulated in the following vague manner: fluids have the capacity «de se
reconstituer toujours semblablement á eux-même autour de chaque point» (i.e. of
reconstituting themselves always similarly to themselves in the neighbourhood of
every point).

Gabrio Piola, in his work [136], criticizes Poisson’s point of view and underlines
how it could be difficult to transform unambiguously the second of the listed hy-
potheses enunciated by Poisson into any kind of formula or, equivalently, that many
formulas should be used as its mathematical counterpart.

Moreover, within the volume [47] it is possible to find the translation of Piola’s
“Riflessioni sulle unità di misura e altre quantità concrete” (Reflections on the Units
and on the Measures of the Various Physical Quantities14). In this manuscript, while
talking about incompressible fluids, Piola states that the deduction of governing
equations for incompressible fluids is greatly simplified by making use of the method
of Lagrange multipliers:

«[...] using Lagrange’s method, [..] for it is enough to know the constraint equations as a
results of internal constraints originating from passive forces; and it is not necessary to
imagine how these forces work. Hence the savings of much effort, and the consciousness of
greater certainty.»

Then he continue with a criticism of the perspective chosen by “French Geometers”:

«French Geometers of our time, whatever the reason, looked for another way: they wanted
to put together the general equations of body motion, doing violence to imagination, so that
it could give them a representation of the way of acting of nature in the least, starting with
the few data we have around his way of acting at a great extent.»

Piola underlines how French Geometers, by basing their considerations on the con-
cept of pressure, did violence to imagination in “putting together” the general equa-
tions of body motion. Piola continues by stating that:

«So they replaced the study of clear and certain effects, with that of obscure and uncertain
causes.»

The reader will recognize that this statement echoes those already quoted by
D’Alembert. Then Piola concludes with: i) a clear criticism based on the use of
Occam’s razor:

«The effort that accompanies these procedures and, what is more, the little confidence
that inspires results obtained in the midst of many weakly reasoned hypotheses, and of a
continuous neglecting of supposedly small amounts, in relation to others and others, are
arguments that must persuade us to prefer and carefully keep in mind the Italian method.»

14 This was an unpublished manuscript by Gabrio Piola and we are grateful to the courtesy of
Politecnico di Milano, Archivi Storici - Area Servizi Bibliotecari di Ateneo, where the original
manuscript is conserved into the “Fondo Gabrio Piola”, which allowed for its access.
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and ii) a well founded indication for future researches, which echoes the one that can
be found in the Method of Mechanical Theorems by Archimedes:

«Let it be applied to all the researches attempted by the French scholars: by largely prevailing
in effectiveness over all the analyzes they made, let it make open for us a path towards further
discoveries: this is a proposition which I do support for a long time with my voice and with
my pen.»

While Piola seems to share with Poisson the opinion that considers the “true physical
reality” linked to the existence of atoms (or elementary molecules), their opinion
becomes divergent for what concerns the concept of force; in fact, Poisson believed
that the law of balance of force could give evolution equations for any mechanical
system. Piola relates his deduction of evolution equations for a generalized contin-
uum to a homogenization procedure, based on a micro-model where the considered
mechanical system is regarded as constituted by interacting material particles. In a
sense, Piola accepts to consider the continuum model as a limit of a discrete system.
Piola considers this identification process as based on three steps:

1. the expressions of the Principle of Virtual Work for the micro-model and macro-
model, once the kinematics of these models are specified;

2. the identification of a specific micro-motion once given a macro-motion, the
micro-motion being considered a meaningful representative of all micro-motions
which may be correspondent to the given macro-motion;

3. the identification of macro Virtual Work in terms of the micro Virtual Work
functionals, and the correspondent identification of macro constitutive equations
in terms of the micro geometry and micro material properties.

We prefer leaving Piola ([40], p. 2) to explain the reasons why such a procedure
should be accepted:

«In my opinion it is not safe enough to found the primordial formulas [of a theory] upon
hypotheses which, even being very well-thought, do not receive support if not for a far cor-
respondence with some observed phenomena, correspondence obtained by particularizing
general statements, [...] indeed the magisterium of nature [i.e. the experimental evidence]
at the very small scale, in which we try to conceive the effect of molecular actions, will
perhaps actually be very different from what we can mentally realize by means of the images
impressed in our senses when experiencing their effects on a larger scale.»

Here Piola envisions the possibility that micro-physics could be ruled by laws that are
very different from those that are valid in macro-physics. In this prudent approach
he is really safely and wisely prudent. In fact, Quantum Mechanics is based on
laws that are very different from those valid at the macro-scale. The reader will
however remark that also Quantum Mechanics has been firmly based on Variational
Principles. After having warned about the dangers of extending macro-theories to
the micro-level, Piola continues as follows:

«Even let us assume that this difference be very small: a deviation quite insensitive in the
fundamental constituents [of matter] – which one needs to consider as multiplied by millions
and by billions before one can reach sensible dimensions – can be the ultimate source of
notable errors.»
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In these words Piola resumes all the difficulties that would have been met by Statis-
tical Mechanics later on. Subsequently, Piola advocates the efficacy of Lagrangian
methods:

«On the contrary, by using Lagrangian methods, one does not consider in the calculations
the actions of internal forces but [only] their effects, which are well-known and are not at all
influenced by the incertitude about the effects of prime causes, [so that] no doubt can arise
regarding the exactitude of the results.»

The idea of Piola seems clear to us: albeit one is neglecting (by ignorance) the details
of micro-motions by identifying the macroscopic expression of Virtual Work as an
“average” expression of microscopic Virtual Work, the results «are not influenced by
the incertitude about the effects of prime causes». Piola then concludes with some
epistemological considerations:

i) «It is true that our imagination may be less satisfied, as [with Lagrangian methods] we
do not allow to it to trace the very fundamental origins of the internal motions in bodies:
does it really matter? A very large compensation for this deprivation can be found in the
certitude of deductions.»

ii) «It has to be remarked that I do not intend for this reason to proscribe the dictation of
modern Physics about the internal constitution of bodies and the molecular interactions;»

iii) «When the equations of equilibrium and motion will be established firmly upon
indisputable principles, because one has calculated certain effects [i.e. those contained in
the Principle of Virtual Velocities] rather than hypothetical expression of forces, I believe to
be licit to try to reconstruct anew these equations by means of [suitable] assumptions about
such molecular interactions: and if we manage in this way to get results which are identical
to those we already know to be true, I believe that these hypotheses will acquire such a high
degree of likeliness which one could never hope to get with other methods.»

iv) «Then the molecular Physics will be encouraged to continue with its deductions,
under the condition that, being aware of the aberrations of some bald ancient thinkers, it
will always mind to look carefully in the experimental observation those hints [coming by
the application of Lagrangian macroscopic methods] which are explicit warnings left there
to indicate every eventual deviation.»

When dealing with the particular case of the deduction of the equations of fluids,
Piola comes back to the essence of his controversy with Poisson:

«It is now convenient that we hold to think about the difference between our conclusions
and those of Poisson.»

Piola clearly states that his analysis gives the same results as those obtained by Euler,
and argues about the different results obtained by Poisson:

«Our analysis, confirming the Eulerian theory, would embrace both the fluid in equilibrium
and those in motion, so the liquid as the aeriform fluids. On the contrary, Poisson thought to
add new terms to the general equations of fluid motion: and, here is, if I have well understood,
the thread of his argument. [Poisson] Begins to say that the equations we already had to
express the movement of fluids, were derived using the principle of D’Alembert from those
ones of the equilibrium, which presuppose the principle of equal pressure in all directions,
a principle experimentally recognized [to be] true only for fluids at rest. [Poisson] continues
and asserts that the property to press equally in all directions comes from another property
that the fluids fulfill, [that is] always to rebuild themselves similarly to themselves around
each of their points. Then [Poisson] rightly reflects that this reconstruction requires a bit
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of time to be done: and even if the interval had very short duration, when the fluid is in
motion, that reconstruction cannot be at each instant perfect. In the absence of a perfect
reconstruction, according to him, the pressure equal in all directions is missing: therefore
those equations which originate from such a principle shall be in default.»

One should be surprised of not finding often in the literature any comment about
the treatment of the dynamics of perfect fluids proposed by Poisson and the “un-
certainties” in his logical argument and final results, that are the consequence of
Poisson’s preferred postulation scheme. Piola implies that Poisson, while refusing to
use the Principle of Virtual Work, is obliged to look for “ad hoc corrections” in his
deduction process, adjusting and changing nearly at every step the logical flow of
his reasoning. The final criticism that Piola formulates about Poisson’s deductions
deserves to be reported here:

«But is it true that the principle of equal pressure in all directions is intimately linked with
the regular distribution of the molecules, so that it can not exist one without the other?
(Poisson. Traité de Mécanique. Tome II p. 506). I doubt it very much, and I think that, here
as well, one has gone forward a bit too far into the deductions: and this because the ideas
around that quantity which we call the internal pressure of the fluid have not yet completely
clarified.».

In fact, the whole oeuvre by Piola was dedicated to the clarification of the concept
of internal state of tension of a continuum body.

5.7 Navier, Cauchy, Poisson, and Saint-Venant versus Lagrange,
Piola, and George Green or postulations based on Balance
Laws versus postulations based on the Principle of Virtual
Velocity.

The discussion developed in this section starts from the analysis developed in [16],
which is a really valuable secondary source organizing in an original way the primary
sources of Theoretical Mechanics and its applications to Structural Mechanics. Ben-
venuto transfers in the field of history of science the doctrine developed by William
of Moerbeke for the “correct” translation of scientific texts. Benvenuto refers, nearly
with the words of the original authors, the principal parts of their results and scientific
points of view. The choice of the arguments to be discussed is one of Benvenuto’s
main contribution to science: and we agree nearly completely with him.

Benvenuto considers the scientific personality of George Green (1793-1841)
and his role in the development of continuum mechanics. He clearly states that
Green was a follower of Lagrangian mechanics. Therefore, it is not surprising that
George Green’s contributions to mechanical science support and confirm those
already obtained by Piola, which have been up to now. Green’s contribution to the
problem of determining the most general expression for constitutive equations in
linear isotropic elasticity can be found in his works published in between 1834 and
1839 (the interested reader is referred to [104]).
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This very particular problem is confronted by Green with a clear and firm epis-
temological point of view, that can be overlapped to that expressed by Piola (see the
excerpts quoted previously). Rephrasing Green we can say that:

«instead of trying to understand the ultimate root of reality, it is much more prudent and con-
venient to deduce all possible consequences from some fundamental and general principles
whose validity seems well-grounded».

The principle that George Green considers generally valid for all conservative sys-
tems is easily formulated. The Principle of Virtual Work involves expressions for
expended work that are the first variations of some energy functionals. By quoting
the true words by George Green (see [103]):

«The principle selected as the basis of the reasoning contained in the following paper is
this : In whatever way the elements of any material system may act upon each other, if all
the internal forces exerted be multiplied by the elements of their respective directions, the
total sum for any assigned portion of the mass will always be the exact differential of some
function. But, this function being known, we can immediately apply the general method
given in the Mécanique Analytique, and which appears to be more especially applicable to
problems that relate to the motions of systems composed of an immense number of particles
mutually acting upon each other. One of the advantages of this method, of great importance,
is, that we are necessarily led by the mere process of the calculation, and with little care
on our part, to all the equations and conditions which are requisite and sufficient for the
complete solution of any problem to which it may be applied.»

The reader will appreciate the Tacitean style (see, e.g., Tacitus’ style (as an instrument
of thought) in [92]) used by Green. It is possible that one of the reasons for which
Green’s works had a greater success than Piola’s ones, in subsequent literature, is
related not only to the fact that Piola used Italian in writing his works while Green
English, but also to the difficulties found in reading the complex writing style used
by Piola. By rephrasing Benvenuto:

«The construction by Green is admirable: from a unique principle he deduces all the prop-
erties of the constitutive equations for a linear elastic isotropic solid.

Green does not need to introduce further hypotheses on the material particles constituting
the considered body, and can avoid all of them. Instead of adding, one after the other, a
series of conjectures about the physical reality, the follower of Lagrange manages to account
for some general properties that are observed without compromising about unnecessary
conjectures about minute details of phenomena.»

As observed again by Benvenuto (who seems not to be aware of the great contri-
bution by Piola to Continuum Mechanics, albeit he cites one time his name in his
fundamental historical book) the French champions of the postulation based on bal-
ance of forces and molecular mechanics (who were headed by Navier) had to fight
a hopeless battle and “had to clash against a physics of solids mainly imaginary”.
On the other hand, the champions of Lagrangian mechanics (namely Piola, George
Green and, later on, Hamilton) could avoid useless and empty discussions about the
properties of atoms and use the firm mathematical properties that are common to all
conservative phenomena.

It is nowadays clear that French Geometers in contrast with Piola started a contro-
versy against Green and the other British followers of Lagrange. The final result of
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this scientific controversy could not have a different result than the establishment of
the prevalence of variational methods upon the complex postulation scheme started
by Navier, Cauchy, Poisson and Saint-Venant. Every effort aimed to found the basic
equations of continuum mechanics on molecular microscopic models was aban-
doned. At that point, a bifurcation occurred: Cauchy, making use of his “tetrahedron
argument”, managed to formulate a postulation at macro-level which was still based
on the balance of force, albeit he had to add the balance of moment of forces as addi-
tional postulate. The assumption by Cauchy (see [26]) excluded edge contact forces
(see for an in-depth explanation of this fact the papers [52, 45, 51]) and, therefore,
his results are limited to continua in which the deformation energy depends on the
first gradient of placement only. Instead, and most likely a few years before Cauchy,
Piola laid down some more general foundations for Continuum Mechanics.

5.8 Nationalistic Science or How Piola’s legacy has been blurred
because of writing in Italian and counter-posing Italian
science to French science.

We believe that an interesting subject to be studied using the scientific method
concerns the phenomenon of removal and/or erasure of scientific results in the
tradition of one discipline. This kind of phenomena do occur rather often, and surely
deserve a careful and deep investigation by using an advanced version of sociological
theories. Here, we limit ourselves to remark that it’s really surprising to notice that
very topical and important contributions to continuum mechanics, as those to be
credited to Gabrio Piola, could have been ignored or nearly completely neglected
(even by Italian authors) for more than 150 years. A superficial analysis attempting
to understand why Gabrio Piola’s contributions to mechanical sciences were ignored
easily leads to conjecture the following concurring reasons:

i) his works were written in Italian. This was a nationalistic choice, as Piola could
surely write fluently at least in French;

ii) the Lagrangian school, which he championed, was rather bitterly countered by
the French school, which was, in that historical period, the strongest in the world;

iii)the Italian attitude towards compatriots seems to be rather negative: in general,
Italians are rather xenophiles.

The reason why Gabrio Piola wanted to write his works in Italian can be related to his
leading cultural and scientific role in the Italian Risorgimento (Resurgence): Piola
invested many of his intellectual resources in promoting Italian science, in organizing
Pan-Italian scientific conferences, in supporting a unitary vision of Italian science and
culture. He wanted to prove that Italian language could be the «vector» of advanced
scientific theories, and that Italian scientists were capable to keep up scientists of
other nationalities. This conjecture can be proven by observing that Piola’s eulogy
in memoriam of his “Maestro” Vincenzo Brunacci is concluded by this statement:
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«In the life long efforts that produced Brunacci’s works one can recognize a strong com-
mitment “for the advancement of SCIENCES, for the glory of the AUTHOR and for the
prestige of ITALY”».

Another excerpt of the same eulogy is also meaningful in this context. In fact, Piola
writes that

«It seemed as if the Spirit of Italy, who was in great sufferance because in that time the most
brilliant star of all mathematical sciences, the illustrious Lagrangia, had left the Nation, that
Spirit wanted to have the rise of another star, which being born on the banks of the river
Arno [he refers to Brunacci], was bound to become the successor of the first one.»

It is very important to remark that Piola refers to Lagrange using the original Italian
version of his name, Lagrangia, and to Italy as a unique Nation, by evoking its
“Spirit”. In the eulogy for Brunacci, Piola focuses also some problems in which the
Italian school of mechanics managed to give important contributions:

«I will content myself to indicate here three Memoirs where he [i.e. Brunacci] examines
the doctrine of capillary attraction of Monsieur Laplace, comparing it with that of Pessuti
and where, with his usual frankness which is originated by his being persuaded of how
well-founded was his case, he proves with his firm reasoning, whatever it is said by the
French geometers, some propositions which are of great praise for the mentioned Italian
geometer.».

The Nationalism of Piola is revealed by the bold statement «whatever is said by the
French geometers», in which he pours his courageous pride of being Italian. It has
also to be remarked that Brunacci, Pessutti and Piola already engaged themselves
in the study of capillary phenomena and that, some centuries later, the Lagrangian
French school headed by Pierre Casal [25] and Paul Germain [88, 90] recovered
the Italian spirit, as represented by Lagrange’s Principle of Virtual Velocities, to
firmly found a continuum model for capillary fluids that cannot be framed into the
postulation scheme preferred by Cauchy and Navier.

We can affirm that the finality of every work written by Piola and the principal
aim of his scientific activity has been to prove that every mechanical theory can be
founded by using the Principle of Virtual Work and that, when one is faced with the
problem of postulating a novel model, this principle is the best guidance. Piola was
surely the first scientist who, using Lagrange’s postulation scheme, defined precisely,
for a generic continuum, the dual in work of the gradient of virtual displacement in
the referential description. This mathematical object conceived by Piola will then be
framed later on in the modern theory of distributions (as defined by Schwartz). In
fact, once Tensor Calculus will have been developed by Ricci and Levi-Civita, this
dual in work will be called the Piola stress tensor15.

Because of the neglect reserved to Piola’s work and the dominance of Cauchy
postulation scheme, the greatest part of Piola’s most original results (in particular
his studies about continua whose deformation energy depends on higher gradients
of the strain) are, even nowadays, not known to the great majority of scholars.

15 While, most likely, Kirchhoff studied this tensor later than Piola, Truesdell named it after him
because, most likely, he read Müller and Timpe [130, p. 23], according to whom Kirchhoff was
the first to formulate continuum mechanics based on the integral balance of forces and moment of
forces (on this point see also the introduction of [80, p. 301])
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5.9 The formulation of N-th Gradient Continuum Mechanics by
Piola: an ignored result that is still topical after more than
150 years

When inventing a theory for describing some phenomena, one must start from
specifying its kinematics.

The chosen space of configurations gives the mathematical model of the space of
states of the physical system which is studied. Once the set of admissible configura-
tions is fixed, then the concept of motion can be easily introduced: it is a function
defined in a time interval which maps any time instant into the configuration as-
sumed in that time instant. The most important epistemological question that is
debated since the times of Archytas concerns the problem of finding some equa-
tions and/or algorithm for calculating, under specified external interactions, initial
and boundary conditions, the predicted motion for the studied physical system. The
most effective meta-theory that has been proposed up to now builds the “dynamics”
(that is the part of the model which predicts the system’s motion) of any model
following what we could call Lagrange-Hamilton-Rayleigh (LHR-)scheme (see e.g.
[44, 7, 48, 53, 41, 31, 36, 17, 23, 72, 21]).

In the LHR-scheme, once fixed the space of configurations and the set of admis-
sible motions, the predicted motion is found by formulating the Principle of Virtual
Work. In the case of Generalized Continuum Mechanics, the already formulated ver-
sion of this principle by Lagrange can be made more specific, by using some concepts
of functional analysis (for a discussion of this specific point see [88, 90, 89, 91]).

The Principle of Virtual Work for Generalized Continua

Let us start by postulating the existence of three functionals, each defined on the
Cartesian product of the space of admissible motions and the space of variations
of admissible motions, respectively called work of internal interactions, work of
external interactions and work of inertial interactions. Let us assume that they are
linear and continuous with respect to the variations of admissible motions. The work
of internal interactions and the work of external interactions are both decomposed
into a conservative and non-conservative part. The conservative part is the functional
derivative of the mechanical energy of the system with respect to the variations
of motions. The non-conservative part is built in terms of the so-called Rayleigh
dissipative functional depending on the variations of admissible motions and on
the time derivatives of the variations of admissible motions. The non-conservative
part of internal and external interactions works are obtained by calculating their
functional derivative with respect to the time derivatives of the variations of the
admissible motions.

The Principle of Virtual Work states that the predicted motion can be characterized
as that motion for which the sum of internal, external and inertial interaction work
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linear functionals vanish for every admissible variation of motion. The reader is
referred for instance to ([6, 53]) for a more technical presentation of the principle
that, however, we believe has been presented clearly enough in the previous sentences
for a reader who is familiar with the basic ideas of functional analysis. The Principle
of Virtual Work reduces any continuum mechanics theory to the formulation of
some clear conjectures: the choice of the space of configurations and the choice
of conservative, non-conservative and inertia work functionals. There is no ad hoc
adaptation of the hypotheses while developing the theory, there are not lacking terms
that have to be added to the evolution equations a posteriori for avoiding logical
incongruences and, paraphrasing Lagrange, the mathematical deduction process
flows smoothly starting from the initial assumptions to the most detailed predictions.
Of course, these predictions must be in agreement with experimental evidence:
otherwise, some of the initially postulated expressions for the functionals must be
modified accordingly.

The Principle of Virtual Work is very conveniently placed at the basis of con-
tinuum mechanics, as it is also the mathematical basis of the analysis of so-called
weak solutions for mechanical problems. Weak statements of the boundary-value
problems of continuum mechanics and mechanics of structures are unavoidable
for the development of finite element techniques, Rayleigh-Ritz and Galerkin-type
approximated solutions. Making use of the virtual work principle formulation,
based on a clear understanding of the mechanical phenomenology, some prob-
lems were profitably studied within the framework of the surface elasticity of en-
ergetic boundaries or of the Steigmann-Ogden surface elasticity (see for instance
[111, 112, 27, 28, 3, 4, 65, 64, 164, 131]). There are many other fields of modern
mechanics that may exploit, or have already exploited, the modeling efficacy of the
Principle of Virtual Work. The list could be very long and we limit ourselves here to
list some works that have had some influence on our own research efforts

• in the generalization to bio-mechanical and bone growth phenomena of classical
mathematical methods used in continuum mechanics [162]

• in the study of large deformations of beams and lattices of beams [165, 167, 70,
83, 81]

• in generalized continuum mechanics [77, 158]
• generalized shell theory [66, 63, 152].

The Principle of Virtual Work, as clearly understood by Piola, has many important
consequences, one of which needs to be recalled explicitly here. As the equality to
zero of the sum of the internal work and external work functionals must be assured,
for instance in mechanical equilibrium configurations, for any admissible variation
of placement, it is clear that, given a class of continua characterized by a specific
class of internal work functionals, NOT ALL EXTERNAL INTERACTIONS can be
applied. Let us make this explicit with an example: if one assumes that the internal
work functional is the functional derivative of a deformation energy depending on
the Eulerian mass density only (this is the case of Eulerian perfect fluids) then the
external interactions which can involve the considered fluid cannot include shear
surface contact forces. This fact is well-known and accepted by all mechanicians.



366 Emilio Barchiesi, Alessandro Ciallella, and Daria Scerrato

However, the followers of postulations based on the balance of force do not seem to
consider this circumstance. Indeed, contact interactions at the external boundaries
of continua are NOT determined by “experimental evidence”, as sometimes has
been claimed, and independently from the postulated form of the internal work
functionals. The choice of admissible contact external interactions is implicit in the
postulated form of the internal work functional.

Now, following what was done by Piola, we are ready to define N-th gradient
continua. These continua have been completely characterized in [52, 45]. We recall
here the main results that can be found in the fundamental works by Gabrio Piola
and in the aforementioned works, that try to complete his scientific program. First
gradient continua are characterized by the validity of the so-called Cauchy postu-
late, plus Cauchy’s implicit assumptions about contact interactions. These implicit
assumptions can be stated as simply as follows: contact interactions are expending
work only on variations of placement (and therefore they are not expending work, for
instance, on the surface normal derivatives of variations of placement) and they are
only concentrated on contact surfaces (and therefore there are not, for instance, con-
tact forces per unit line or concentrated on points). Noll’s Theorem, which proves the
Cauchy postulate, is based on the same assumptions and therefore does not increase
really the generality of Cauchy’s treatment.

As already proven by Piola, first gradient continua verify Cauchy’s so-called
postulate, as in this class of continua contact interactions are concentrated on surfaces
and are depending on the shape of the contact surface only via its normal. The
vice-versa is proven in [50]. More generally, in N-th gradient continua, as envisaged
already by Piola (see [42, 39]) the structure of contact forces is (much) more complex
and still to be explored. In second (and higher) gradient continua, one can have
contact forces concentrated on lines, also. In third (and higher) gradient continua,
one can have forces concentrated on points of the contact surface between bodies.
However the presence of concentrated forces on points and lines are not the only
non-standard (that is: not included in Cauchy continuum mechanics) features of
contact interactions in N-th gradient continua.

In fact, as already observed by Germain and fully exploited in [50, 52], internal
and external work functionals can be regarded as a particular kind of distributions
in the sense of Schwartz. Now, some general theorems by Schwartz (see [153])
prove that, in general, distributions concentrated on embedded manifolds involve not
only the values of test functions, but also the values of all derivatives normal to the
embedded manifolds of the test functions.

Therefore, as expected, in N-th gradient continua one can have up to N-forces
concentrated on contact surfaces, up to (N-1)-forces on contact lines and up to (N-2)-
forces on contact points. To be more precise, we will recall that, following Germain,
1-forces are those vectors that expend work on variations of displacements (therefore
are the well-known forces), and N-forces are those vectors that expend work on (N-
1)-normal derivatives of the variations of displacements. The expression of contact
interactions in terms of the many stress tensors needed to describe the state of stress
in N-th gradient continua can be found in [52], where the representation theorem for
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contact forces in terms of the stress tensor and of the normal to the contact surface
is generalized.

5.10 Research perspectives as suggested by the lesson given by
History of Mechanics

As we have already discussed in a previous section, unfortunately, there is not (yet!)
a meta-theory telling us how to build new theories. However, relying on the Latin
expression Historia magistra vitae, we can exploit the experience gathered in the past
(partially described above) efforts made to advance the scientific understanding of
reality. We underline that new theories are not only demanded in physics, engineering
sciences or the other so-called hard sciences. In fact, any intellectual activity of the
human being should tend to produce predictive knowledge, as also envisaged by [8].
Indeed, the absence of a predictive knowledge tends to produce in the human being a
feeling of impotence, sometimes mixed with marvel. As Giambattista Vico already
pondered in his masterpiece (for a detailed description of the personality of Vico we
refer to [32])

«The marvel is daughter of ignorance»16

Giambattista Vico, Scienza Nuova (1725, New Science) (libro I, II, 35; p. 45)

It is suggestive, as also imagined in [38], to conjecture that a kind of minimum prin-
ciple holds also in social sciences, so that the hope to find equilibrium configurations
in social groups, and to model the evolution from an equilibrium to another one,
will be, one day, realized somehow similarly to what has been done in mechanics.
Such generalizations to social sciences have been already demanded by eminent
philosophers of science. To quote again Giambattista Vico:

«Things, outside their natural state, neither tend to remain nor last.»17

Giambattista Vico, Scienza Nuova (1725, New Science) (libro I, II, 8; p. 39)

As remarked by Edmund Wilson [57]:

«Vico had read Francis Bacon, and had decided that it ought to be possible to the study
of human history methods similar to those proposed by Bacon for the study of the natural
world.»

To address less ambitious research perspectives, we list here some of the possible
fields of research (those in which we feel to be more expert than we are in mathemat-
ical sociology) which wait for innovative ideas and models and which can exploit
the insight given by the Principle of Virtual Work.

• mathematically singular models arising in the theory of metamaterials. Using
a particular class of Sobolev’s spaces called anisotropic Sobolev spaces weak
solutions were analysed for gradient incomplete strain gradient elasticity

16 «La maraviglia è figliuola dell’ignoranza».
17 «Le cose fuori del loro stato naturale né vi si adagiano né vi durano.»
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[62, 61, 59, 67];
• formulation of numerical codes based on a formulation of the Principle of Virtual

Work based on the mechanical peculiarities of considered mechanical systems
[60, 30, 68, 29, 82, 132, 101, 106, 105, 79, 55, 78]. It is worth to remark that
some applications of Rayleigh-Ritz techniques to solution of problems within the
modeling of various electromagnetic and mechanical couplings were presented
in [35, 121, 118, 119, 120];

• rate dependent and rate independent dissipative behaviors in materials with micro-
structure [151, 150, 97, 33, 34, 142, 141, 168, 140, 159];

• discrete formulations for the description of elastic materials with micro-structure
[93, 171, 14, 172, 173, 11, 22];

• direct or homogenized continuum modeling for the description of mechanical
meta-materials [13, 12, 95, 94, 149, 96, 161, 160, 15].

This Chapter must end with some further considerations about the reasons for which
the Principle of Virtual Work has found so many opposers in the community of
continuum mechanics. We believe that the main reason can be very easily found in
the true nature of the Principle, whose formulation needs sophisticated mathemati-
cal concepts and tools, as we have seen in the previous sections. In the continuum
mechanics formulation, complex concepts from functional analysis, differential ge-
ometry of embedded manifolds and theory of distributions must be mastered in order
to be capable of capturing the true mathematical essence of the principle and to be
able to apply it to “practical” cases.

The Principle of Virtual Work has been systematically used by physicists to
guide their researches. It is suitable here to attract the attention of the reader to an
interesting quote from a famous astrophysicist (from “I am Neil deGrasse Tyson” –
Reddit AMA Session held on November 13, 2011):

«There are street artists. Street musicians. Street actors. But there are no street physicists. A
little known secret is that a physicist is one of the most employable people in the marketplace
– a physicist is a trained problem solver. How many times have you heard a person in a
workplace say, “I wasn’t trained for this!” That’s an impossible reaction from a physicist,
who would say, instead, “Cool. A problem I’ve never seen before. Let’s see how I can figure
out how to solve it!” Oh, and, have fun along the way.»

Unfortunately, there are many mechanicians who refused to adopt the right attitude
towards this problem and preferred to look for simplifications and/or shortcuts. The
main shortcut that was attempted to overcome the mathematical difficulties implied
by the use of the Principle of Virtual Work, that is the use of the law of balance
of force, did not even manage to handle the case of solid continua. In passing from
Euler’s fluids to first gradient solids it was indeed necessary to add the (extra)
balance of moment of forces. Then, for every generalization it was necessary to add,
one after the other, a series of extra balances of “something”. This “something”
was chosen to be what was necessary to get the lacking equations. An extra set
of constitutive equations had to be introduced to this balance, with some ad hoc
compatibility or physical consistency demands. Indeed, the entropy inequality was
artificially introduced in mechanics exactly to handle this situation, that was simply
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caused by the absence of an internal energy functional postulated at the beginning,
which was instead painfully recovered only a posteriori.

Only the school of theoretical physicists, guided by Feynman and Landau, did
keep away from this useless effort of avoiding variational principles and remained
faithful to the ancient lesson of Archytas. Physicists are continuing the long tradition
of looking for the most appropriate model to describe phenomena.

«When scientifically investigating the natural world, the only thing worse than a blind
believer is a seeing denier.»

Neil deGrasse Tyson, Death by black hole: And other cosmic quandaries (WW Norton
& Company, 2007).
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