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Heat Conductors

To remove the paradox of classical Fourier theory relating to the instantaneous prop-
agation of thermal disturbances, Cattaneo [59] suggested a generalized Fourier law,
which he justified by means of statistical considerations. This constitutive equation
relates the heat flux, its time derivative, and the temperature gradient. It is referred
to as the Cattaneo–Maxwell relation, since Maxwell [254] previously obtained it but
immediately eliminated the term involving the time derivative of the heat flux. It
leads to a hyperbolic heat equation.

On the basis of Coleman’s theory for materials with memory [67], a nonlinear
model for rigid heat conductors was developed by Gurtin and Pipkin [191]. In this
work, the authors derived a linearization of their theory, corresponding to infinites-
imal temperature gradients, which yields a linearized constitutive equation for the
heat flux in terms of the history of the temperature gradient. This linear relation is a
generalization of the Cattaneo–Maxwell equation.

The Gurtin–Pipkin approach is built into the general theory developed in Chaps. 5
and 7. We refer in particular to the discussion centering on (5.1.8).

More recent work on this topic includes [4, 12, 13].

9.1 Constitutive Equations for Rigid Heat Conductors

A rigid heat conductor with memory effects within the linear theory developed in
[191] and considered also in [102] is characterized by the constitutive equation

q(x, t) = −
∫ ∞
0

k(s)gt(x, s)ds, (9.1.1)

where x denotes the position vector, t ∈ R
+ is the time variable, and g = ∇θ is

the temperature gradient, expressed in terms of θ, which denotes the absolute tem-
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perature.∗ Moreover, gt(x, s) = g(x, t − s) ∀s ∈ R
++ denotes the past history of the

temperature gradient. We consider the heat flux relaxation function k : R+ → Sym,
such that k ∈ L1(R+) ∩ H1(R+) [102, 115, 147] and

lim
t→∞k(t) = 0.

Referring to the discussion around (5.1.8) and (5.1.9), we introduce the integrated
history of g [191], which is the function gt(x, ·) : R+ → R

3 defined by

gt(x, s) =
∫ t

t−s
g(x, τ)dτ. (9.1.2)

Note that
∂

∂s
gt(x, s) = gt(x, s).

The constitutive equation (9.1.1) can be expressed in terms of gt, by means of an
integration by parts, yielding

q(x, t) =
∫ ∞
0

k′(s)gt(x, s)ds. (9.1.3)

The evolution problem for a rigid heat conductor is governed by the energy equa-
tion (see (3.3.7))

ė(x, t) = −∇ · q(x, t) + r(x, t), (9.1.4)

where r denotes the external heat supply per unit volume and e is the internal energy
per unit volume. This relation is also given by (5.1.2), since the Lagrangian and
Eulerian descriptions coincide for rigid bodies. We take the constant mass density ρ
to be unity. Equation (5.1.3) can be rewritten as

θη̇ ≥ ė +
1
θ

q · g, (9.1.5)

with the aid of (9.1.4), where η is the entropy per unit volume. The internal energy
is assumed to be given by the constitutive equation

e(x, t) = α0ϑ(x, t) +
∫ ∞
0
α′(s)ϑt(x, s)ds, ϑ = θ − Θ0, (9.1.6)

where α′ ∈ L1(R+)∩H1(R+) and Θ0 is a reference temperature, uniform in the body.
The internal energy relaxation function is given by

α(t) = α0 +
∫ t

0
α′(τ)dτ ∀ t ∈ R+, α0 ∈ R++. (9.1.7)

∗ Consider (7.1.23), neglecting the first two integrals on the right and carrying out an inte-
gration by parts in the third integral. In the linear approximation, d(t), defined in general by
(5.1.1), is given by −g/Θ2

0, where Θ0 is defined after (9.1.6). Absorbing the constant ρΘ2
0

into the kernel, we see that this relation is the inverted form of (9.1.1).
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We introduce the pseudoenergy [102]

ψ(x, t) = Θ0(e − Θ0η),

which will play the role of the free energy in the present context. It follows from
(9.1.5) that

ψ̇ − ėϑ
Θ0

θ
+ q · gΘ

2
0

θ2
≤ 0. (9.1.8)

The approximate theory developed in [102] requires a linearization of the Clausius–
Duhem inequality (9.1.8) to the form

ψ̇(x, t) ≤ ė(x, t)ϑ(x, t) − q(x, t) · g(x, t). (9.1.9)

We refer to [102] for a detailed derivation of (9.1.9). This approximate form of the
Clausius–Duhem relation will be used in the present chapter. By introducing the
internal dissipation function D(t) ≥ 0, we can write (9.1.9) as an equality

ψ̇(x, t) + D(t) = ė(x, t)ϑ(x, t) − q(x, t) · g(x, t). (9.1.10)

A rigid heat conductor, characterized by the constitutive equations (9.1.1) and
(9.1.6), is a simple material, and therefore, its behavior can be described by means
of states and processes, as described in Chaps. 3 and 4. We shall introduce these
concepts in a more systematic way here than was done in Chap. 8.

In the following, the dependence on x will be understood.

9.1.1 States in Terms of ϑt(s) and gt

We observe that in the linear theory, the internal energy depends on all the history
ϑt(s) = ϑ(t− s)∀s ∈ R+, that is, both on the past history ϑt(s) = ϑ(t− s)∀s ∈ R++ and
on the present value ϑ(t), while the present value of the temperature gradient does not
have an equivalent role in the constitutive equation for the heat flux. We shall identify
the history of any function f up to and including time t, f t(s) = f (t − s)∀s ∈ R

+,
with the pair ( f (t), f t).

The thermodynamic state at time t and at any fixed point x of the body, taking
into account (9.1.1) and (9.1.6), is

σ(t) = (ϑ(t), ϑt, gt), (9.1.11)

The set of possible states is denoted by Σ.
The kinetic process of duration dP ∈ R+ is the map, piecewise continuous on the

time interval [0, dP), defined by

P(τ) = (ϑ̇P(τ), gP(τ)) ∀τ ∈ [0, dP), (9.1.12)

where ϑ̇P(τ) is the derivative of the temperature with respect to τ and the temperature
gradient gP(τ) is, in particular, defined also for τ = 0, corresponding to the instant
when P is applied to the body. The set of all accessible processes for the body is
denoted by Π . There exists in Π every type of restriction of a process P, of duration
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dP, to an interval [τ1, τ2) ⊂ [0, dP), denoted by P[τ1,τ2) ∈ Π ; if [τ1, τ2) ≡ [0, t) we
shall denote P[0,t) by Pt. The evolution function ρ̂ : Σ × Π → Σ is defined by the
property that σ f = ρ̂(σi, P) ∈ Σ, where σi ∈ Σ is the initial state and σ f is the final
state obtained by applying the process P ∈ Π .

Different choices of state for a heat conductor with memory have been used in
[147, 191, 279]. Following [102], we can choose as the thermodynamic state that
given by (9.1.11), but where the integrated history gt takes the place of gt.

The set of possible states Σ is the set of states σ(t) = (ϑ(t), ϑt, gt) such that the
corresponding e and q are both finite, so that

∣∣∣∣∣
∫ ∞
0
α′(s)ϑt (s)ds

∣∣∣∣∣ < ∞,
∣∣∣∣∣
∫ ∞
0

k(s)gt (s)ds
∣∣∣∣∣ < ∞. (9.1.13)

Let σ(t) = (ϑ(t), ϑt, gt) be an initial state of Σ. The evolution function gives a
family of states induced by a process P(τ) = (ϑ̇P(τ), gP(τ)) defined for every τ ∈
[0, dP) and applied at the generic time t; in particular, the temperature gradient is the
assigned function

gP : [0, dP)→ R
3, gP(τ) = g(t + τ) ∀τ ∈ [0, dP). (9.1.14)

The process P also determines the evolution of temperature according to

ϑP : (0, dP]→ R, ϑP(τ) = ϑ(t) +
∫ τ
0
ϑ̇P(ξ)dξ ∀τ ∈ (0, dP]; (9.1.15)

thus, at each instant τ′ ≡ t + τ ≤ t + dP, the final value of the temperature, yielded by
ϑt and ϑ̇P and denoted by ϑ f (τ′) = (ϑP ∗ ϑ)(τ′), is given by

ϑ f (t + dP − s) = (ϑP ∗ ϑ)(t + dP − s) =

⎧⎪⎪⎨⎪⎪⎩
ϑP(dP − s), 0 ≤ s < dP,

ϑ(t + dP − s), s ≥ dP,
(9.1.16)

where the symbol ∗ denotes the continuation of histories with any process. Similarly,
the final value of the temperature gradient g f (τ′) = (gP ∗ g)(τ′)∀τ′ ≡ t + τ < t + dP

depends on gt and gP and is expressed by

g f (t + dP − s) = (gP ∗ g)(t + dP − s) =

⎧⎪⎪⎨⎪⎪⎩
gP(dP − s), 0 < s ≤ dP,

g(t + dP − s), s > dP,
(9.1.17)

by virtue of (9.1.14).
Given two histories of the temperature and of the temperature gradient, their

static continuations of duration a ∈ R+ are defined by

ϑta =

⎧⎪⎪⎨⎪⎪⎩
ϑt(s − a), s > a,

ϑ(t), s ∈ [0, a], gta =

⎧⎪⎪⎨⎪⎪⎩
gt(s − a), s > a,

g(t), s ∈ [0, a]. (9.1.18)

The static continuations applied to (9.1.6) and (9.1.1) yield
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e(t + a) = α(a)ϑ(t) +
∫ ∞
0
α′(a + ξ)ϑt(ξ)dξ,

q(t + a) = −K(a)g(t) −
∫ ∞
0

k(a + ξ)gt(ξ)dξ,
(9.1.19)

where we have denoted the thermal conductivity tensor by

K(t) =
∫ t

0
k(ξ)dξ. (9.1.20)

Consequently, by virtue of (9.1.13) and (9.1.19), the set of possible states Σ is char-
acterized by

Γα =

{
ϑt : (0,∞)→ R;

∣∣∣∣∣
∫ ∞
0
α′(s + τ)ϑt (s) ds

∣∣∣∣∣ < ∞ ∀τ ∈ R+
}

(9.1.21)

and

Γk =

{
gt : (0,∞)→ R

3;
∣∣∣∣∣
∫ ∞
0

k(s + τ)gt (s) ds
∣∣∣∣∣ < ∞ ∀τ ∈ R+

}
, (9.1.22)

where t is a parameter.
In particular, if we consider the constant histories (ϑ, ϑ†), where ϑt(s) = ϑ† =

ϑ∀s ∈ R
++, and gt(s) = g† = g∀s ∈ R

++, the internal energy (9.1.6) and the heat
flux (9.1.1) assume the values

e(t) = α∞ϑ, q(t) = −K∞g, (9.1.23)

where α∞ = limt→∞ α(t) and K∞ = limt→∞K(t) are the asymptotic values of α and
K given by (9.1.7) and (9.1.20). These limits are assumed to be finite.

9.1.2 Constitutive Equations in Terms of States and Processes

We now present a decomposition for rigid heat conductors similar to (8.2.8) for vis-
coelastic solids, (8.9.18), (8.10.5) for fluids but with more detailed discussion in the
present case. The constitutive equations (9.1.1) and (9.1.6) define two linear func-
tionals q̃ : Γk → R

3 and ẽ : R × Γα → R such that

q̃(gt) = −
∫ ∞
0

k(s)gt(s)ds, ẽ(ϑ(t), ϑt) = α0ϑ(t) +
∫ ∞
0
α′(s)ϑt(s)ds, (9.1.24)

which give the set of heat fluxes and internal energies related to any past history of
the temperature gradient gt ∈ Γk and the temperature ϑt ∈ Γα.

If Pτ is a process of duration τ applied at the initial time t, it is defined in the time
interval [t, t + τ); if (ϑ(t), ϑt, gt) is the initial state, then the final values of e and q
are given by
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e(t + τ) = α0ϑ(t + τ) +
∫ ∞
0
α′(s)ϑt+τ(s)ds,

q(t + τ) = −
∫ ∞
0

k(s)gt+τ(s)ds.
(9.1.25)

We consider each of the integrals in (9.1.25) as the sum of two integrals, the first of
which is evaluated between 0 and τ and the second between τ and∞. An integration
by parts in the first one, using (9.1.15), yields

e(t + τ) = α(τ)ϑ(t) +
∫ ∞
0
α′(τ + ξ)ϑt(ξ)dξ +

∫ τ
0
α(τ − η)ϑ̇Pτ (η)dη

= ê(ϑ(t), ϑt; 0†τ) + ê(0, 0†; ϑ̇Pτ ),
(9.1.26)

where 0† is the zero past history for the temperature, given by 0†(s) = 0∀s ∈ R++, 0†τ
denotes the zero process with duration τ, ϑ̇Pτ (η) = 0†τ(η) = 0∀η ∈ [0, τ), and where

ê(ϑ(t), ϑt; 0†τ) = α(τ)ϑ(t) +
∫ ∞
0
α′(τ + ξ)ϑt(ξ)dξ,

ê(0, 0†; ϑ̇Pτ ) =
∫ τ
0
α(τ − η)ϑ̇Pτ (η)dη.

(9.1.27)

In (9.1.26)2, we have a superposition of two effects, the first of which depends on the
process through ϑ̇Pτ , while the second is expressed in terms of the initial state through
the initial data of the temperature. Explicitly, ê(0, 0†; ϑ̇Pτ ) is due to the part of the
process, characterized by ϑ̇Pτ , starting from the initial state with a null temperature
history (ϑ(t), ϑt) = (0, 0†), while ê(ϑ(t), ϑt; 0†τ) is related to a process with ϑ̇Pτ = 0†τ,
applied to the history (ϑ(t), ϑt). Also, after the same manipulations,

q(t + τ) = −
∫ ∞
0

k(τ + ξ)gt(ξ)dξ −
∫ τ
0

k(τ − η)gPτ (η)dη

= q̂(gt; 0†τ) + q̂(0†; gPτ ),
(9.1.28)

where 0† denotes the zero past history for g, that is, 0†(s) = 0∀s ∈ R++, and 0†τ is the
zero process of duration τ, i.e., gPτ (η) = 0†τ(η) = 0∀η ∈ [0, τ), and where

q̂(gt; 0†τ) = −
∫ ∞
0

k(τ + ξ)gt(ξ)dξ,

q̂(0†; gPτ ) = −
∫ τ
0

k(τ − η)gPτ (η)dη.
(9.1.29)

Thus, also for the heat flux we have a superposition of two effects. The term q̂(0†; gPτ )
in (9.1.29)2 expresses the heat flux due to the process Pτ characterized by gPτ and
applied to the initial state corresponding to a null past history of the temperature
gradient 0†, whereas the quantity q̂(g0; 0†τ) is the heat flux obtained by the process
gPτ = 0†τ applied to the initial state characterized by the past history g0.
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9.1.3 Equivalent Histories and Minimal States

We now consider the concepts introduced in Definition 4.1.2 and discussed in
Sects. 7.4, 8.3 (see also Theorems 8.9.2 and 8.10.2) for rigid heat conductors.

Definition 9.1.1. Two states σ j(t) = (ϑi(t), ϑt
i, g

t
j), j = 1, 2, of a rigid heat conductor,

characterized by the constitutive equations (9.1.24), are equivalent if

ẽ(ϑP(τ), (ϑP ∗ ϑ1)t+τ) = ẽ(ϑP(τ), (ϑP ∗ ϑ2)t+τ),
q̃((gP ∗ g1)t+τ) = q̃((gP ∗ g2)t+τ)

(9.1.30)

for every process P ∈ Π and for every τ > 0.

Thus, the definition of equivalent states ensures the same final value both for the
internal energy and for the heat flux, whatever may be their continuations obtained
by means of any process, of arbitrary duration, applied to both of them.

Theorem 9.1.2. Two states σ j(t) = (ϑ j(t), ϑt
j, gt

j), j = 1, 2, are equivalent if and
only if

ϑ1(t) = ϑ2(t),
∫ ∞
0
α′(τ + ξ)[θt1(ξ) − θt2(ξ)]dξ = 0,

∫ ∞
0

k(τ + ξ)[gt
1(ξ) − gt

2(ξ)]dξ = 0
(9.1.31)

for every τ > 0.

Proof. The equivalence conditions (9.1.30), which are required to be satisfied by
the histories, must be evaluated using (9.1.15)–(9.1.17), where the duration of the
process dP is replaced by τ. Consider each integral between zero and infinity as the
sum of two integrals, the first between zero and τ and the other between τ and infinity,
as we have done in (9.1.26) and (9.1.28). Thus, for every P we have

α(τ)[ϑ1(t) − ϑ2(t)] +
∫ ∞
τ

α′(s)[θt+τ1 (s) − θt+τ2 (s)]ds = 0,
∫ ∞
τ

k(s)[gt+τ
1 (s) − gt+τ

2 (s)]ds = 0.

The arbitrariness of τ yields

ϑ1(t) = ϑ2(t),
∫ ∞
0
α′(τ + ξ)ϑt

1(ξ)dξ =
∫ ∞
0
α′(τ + ξ)ϑt

2(ξ)dξ,∫ ∞
τ

k(τ + ξ)gt
1(ξ)dξ =

∫ ∞
0

k(τ + ξ)gt
2(ξ)dξ,

(9.1.32)

for any τ > 0. Using these same relations, the converse also follows. ��
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We observe that the history (0, ϑt) characterized by a zero instantaneous value
and a given past history of the temperature and past history of the temperature gra-
dient gt is equivalent to the zero history (0, 0†) of ϑ and the zero past history 0† of
g if ∫ ∞

τ

α′(s)ϑt+τ(s)ds =
∫ ∞
0
α′(τ + ξ)ϑt(ξ)dξ = 0,

∫ ∞
τ

k(s)gt+τ(s)ds =
∫ ∞
0

k(τ + ξ)gt(ξ)dξ = 0.
(9.1.33)

Thus, from (9.1.32), (9.1.33) it follows that two states σ j(t) = (ϑ j(t), ϑt
j, gt

j),
j = 1, 2, are equivalent in the sense of Definition 9.1.1 if the differences ϑt = ϑt

1 −ϑt
2

and gt = gt
1 − gt

2 satisfy (9.1.33) with ϑ(t) = ϑ1(t) − ϑ2(t) = 0; in other words, two
states σ j(t), j = 1, 2, are equivalent if the state σ(t) = σ1(t)−σ2(t) = (ϑ(t), ϑt, gt) is
equivalent to the zero state (0, 0†, 0†).

Furthermore [277], we see that two pairs of histories (ϑ j(t), ϑt
j), j = 1, 2, with

ϑ1(t) = ϑ2(t), and two past histories gt
j, j = 1, 2, whose differences ϑt = ϑt

1 − ϑt
2

and gt = gt
1 − gt

2 satisfy the relations (9.1.33), represent the same state σ(t). Con-
sequently, this state expresses the “minimum” set of variables that give a univocal
relation between the process P(·) = (ϑ̇P(·), gP(·)), defined in [0, τ), and the internal
energy e(t + τ) = ẽ(ϑP(τ), (ϑP ∗ ϑ)t+τ) and the heat flux q(t + τ) = q̃((gP ∗ g)t+τ)
for every τ > 0. Finally [90, 176], denoting by Γα0 and Γk0 the subsets of the past
histories of Γα and Γk satisfying (9.1.33), respectively, and by Γα/Γα0 and Γk/Γk0
their usual quotient spaces, the state σ of a rigid heat conductor is characterized as
(ϑ(t), ϑt, gt) ∈ Σ = R × (Γα/Γα0 ) × (Γk/Γk0 ).

We define

Ĩt
α(τ) :=

∫ ∞
0
α′(τ + ξ)θt(ξ)dξ, (9.1.34)

while for the heat flux we introduce

Ĩt
k(τ) :=

∫ ∞
0

k(τ + ξ)gt(ξ)dξ. (9.1.35)

From Definition 9.1.1 and by virtue of (9.1.31), it follows that equivalent states
(ϑ j(t), ϑt

j, gt
j), j = 1, 2, can be characterized by the triplet (ϑ(t), Ĩt

α, Ĩ
t
k), where

ϑ(t) = ϑ1(t) = ϑ2(t),

Ĩt
α = Ĩt

α1 = Ĩt
α2,

Ĩt
k = Ĩt

k1 = Ĩt
k2.

The subscripts 1, 2 on Ĩt
α, Ĩt

k refer to histories (ϑt
1, gt

1) and (ϑt
2, gt

2). Therefore, the
minimal state of a rigid heat conductor can be described by (ϑ(t), Ĩt

α, Ĩ
t
k).

Let the equivalence relation between states in Σ be denoted by R. The class σR

of equivalent states can be represented by σR = (ϑ(t), Ĩt
α, Ĩ

t
k) but also by σR = (It

α, I
t
k)

if, taking into account (9.1.34)–(9.1.35) with (9.1.27)1, (9.1.29)1, we introduce

It
α(τ) = Ĩt

α(τ) + α(τ)ϑ(t) = ê(ϑ(t), ϑt; 0†τ), It
k(τ) = Ĩt

k(τ) = −q̂(gt; 0†τ) ∀τ > 0.
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We observe that It
α and It

k are the same for all (θ(t), θt, gt) ∈ σR.
For heat conductors with discrete-spectrum relaxation functions, namely those

consisting of sums of decaying exponentials, one can show as in Sect. 8.4 that the
state is finite-dimensional.

9.2 Thermodynamic Constraints for Rigid Heat Conductors

We now determine the restrictions imposed on constitutive equation (9.1.1) by ther-
modynamics. Let us assume that α′(s) in (9.1.6) is zero. Then, integrating (9.1.9)
over any cycle of period T , we obtain

∮ T

0
q(t) · g(t)dt ≤ 0. (9.2.1)

The equality sign occurs if and only if the history of g in (9.1.1) is zero. Conse-
quently, any cycle characterized by the history

gt(s) = g1 cosω(t − s) + g2 sinω(t − s),

where ω ∈ R
++ and (g1, g2) ∈ R

3 × R
3\{0, 0}, must satisfy (9.2.1) as an inequality,

with q given by (9.1.1); therefore, we must have

∫ 2π/ω

0

∫ ∞
0

k(s)[g1 cosω(t − s) + g2 sinω(t − s)]ds · (g1 cosωt + g2 sinωt)dt > 0.

Integrating with respect to t, we obtain

π

ω

∫ ∞
0

[k(s)g1 · g1 + k(s)g2 · g2] cosωs ds > 0,

which, since g1 and g2 are arbitrary, yields

kc(ω) =
∫ ∞
0

k(s) cosωs ds > 0 ∀ω ∈ R++, (9.2.2)

so that

k′s(ω) = −ωkc(ω) < 0 ∀ω � 0, k(0) = −2
π

∫ ∞
−∞

1
ω

k′s(ω)dω > 0 (9.2.3)

(see (7.2.19)). Also, by (C.2.17),

lim
ω→∞ωk′s(ω) = − lim

ω→∞ω
2kc(ω) = k′(0) ≤ 0. (9.2.4)

We assume the following stronger conditions:

kc(0) =
∫ ∞
0

k(ξ)dξ ≡ K(∞) > 0, k′(0) < 0. (9.2.5)
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Relation (9.1.20) has been used here. The assumption (9.2.5)1, in particular, yields
that the heat flux (9.1.23)2 resulting from a constant past history of the temperature
gradient has the opposite sign to that of g.

Analogously, one can show that the thermodynamic restriction on the memory
function α′ for the internal energy is expressed by [144, 147] (cf. (8.5.13))

ωα′s(ω) > 0, ω � 0. (9.2.6)

Under the hypothesis that α′′ ∈ L1(R+) and using the analogue of (8.1.20), we have

α′′c (ω) = ωα
′
s(ω) − α′(0), α(t) − α0 =

2
π

∫ ∞
0

α′s(ω)
ω

[1 − cos(ωt)]dω > 0. (9.2.7)

It follows from (9.2.7)2 that

α∞ − α0 = 2
π

∫ ∞
0

α′s(ω)
ω

dω > 0. (9.2.8)

Also, referring to (9.2.4), we have

lim
ω→∞ωα

′
s(ω) = α

′(0) ≥ 0.

It will be assumed that
α′(0) > 0. (9.2.9)

9.3 Thermal Work

The linearized form (9.1.9) of the Clausius–Duhem inequality allows us to introduce
the thermal power expressed by

w(t) = ė(t)ϑ(t) − q(t) · g(t); (9.3.1)

hence, the thermal work done on a process P(τ) = (ϑ̇P(τ), gP(τ)) applied for every
τ ∈ [0, dP), starting from the initial state σ(t) at time t, is expressed by

W(σ(t), P) =
∫ dP

0
[ė(t + τ)ϑP(τ) − q(t + τ) · gP(τ)]dτ, (9.3.2)

where in particular, ϑP(τ) is given by (9.1.15).

Remark 9.3.1. We observe that in the first term on the right of (9.3.1), the time deriva-
tive is on the dependent field variable e rather than the independent variable ϑ, in
contrast to (8.6.32), for example. This results in certain differences between the de-
velopments in this chapter and those in most of Chap. 8, dealing with solids and
fluids. There are similarities, however, with Sect. 8.6.1.
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9.3.1 Integrated Histories for Isotropic Heat Conductors

We consider a homogeneous and isotropic rigid heat conductor for which (9.1.6) and
(9.1.3) become

e(t) = α0ϑ(t) +
∫ ∞
0
α′(s)ϑt(s)ds,

q(t) =
∫ ∞
0

k′(s)gt(s)ds,
(9.3.3)

where gt is the integrated history (9.1.2). The relaxation function for the heat flux is
the function k : R+ → R such that k ∈ L1(R+)∩H1(R+) satisfies the thermodynamic
restrictions (9.2.2) and the consequences and assumptions (9.2.3)–(9.2.5). Similarly,
α′ : R+ → R obeys (9.2.6)–(9.2.9).

Instead of the definition (9.1.11) for the thermodynamic state of the conductor,
we now choose the triplet

σ(t) = (ϑ(t), ϑt, gt),

where the history of the temperature up to time t is again expressed by means of the
pair (ϑ(t), ϑt). The process P : [0, dP)→ R × R3 is still defined by (9.1.12).

Relations (9.1.15)–(9.1.16), which express the continuation (ϑP ∗ ϑ)t+dP , also re-
main applicable, together with the set of possible states defined by (9.1.21). However,
the presence of the integrated history of the temperature gradient in the state means
that we must replace (9.1.17) with the continuation (gP ∗ g)t+dP defined by

g(t + dP − s) = (gP ∗ g)t+dP (s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ dP

dP−s
gP(ξ)dξ = gdP

P (s), ∀s ∈ [0, dP),

gdP
P (dP) + gt(s − dP), ∀s ≥ dP.

(9.3.4)

The integrated history of g corresponding to a static continuation of a specified past
history gt, defined in (9.1.18), is given by

gt+a(s) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫ a

a−s
g(t)dξ = sg(t) ∀s ∈ [0, a],∫ a

0
g(t)dξ +

∫ t

t−(s−a)
g(ξ)dξ = ag(t) +

∫ s−a

0
gt(ρ)dρ ∀s > a;

thus, we obtain the expression (9.1.19) modified as follows:

q(t + a) = −K(a)g(t) +
∫ ∞
0

k′(ξ + a)gt(ξ)dξ,

where the thermal conductivity K is given by the scalar form of (9.1.20). Conse-
quently, the function space (9.1.22) must be replaced by

Γk =

{
gt : R+ → R3;

∣∣∣∣∣
∫ ∞
0

k′(ξ + τ)gt(ξ)dξ
∣∣∣∣∣ < ∞∀τ ≥ 0

}
, (9.3.5)

where t is a parameter.
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Let Pτ be the restriction of a process applied at time t to the state σ(t) =
(ϑ(t), ϑt, gt). By using (9.1.16) and (9.3.4), where dP is replaced by τ, we have

e(t + τ) = α0ϑP(τ) +
∫ τ
0
α′(s)ϑτP(s)ds +

∫ ∞
τ

α′(s)ϑ(t + τ − s)ds,

q(t + τ) =
∫ τ
0

k′(s)gτP(s)ds +
∫ ∞
τ

k′(s)[gτP(τ) + gt(s − τ)]ds.
(9.3.6)

The constitutive equations (9.3.3) can be expressed in the general form

e(σ(t)) = ẽ(ϑ(t), ϑt), q(σ(t)) = q̂(gt).

The equivalence relation introduced in the state space Σ by means of Definition 9.1.1
can now be given as follows.

Definition 9.3.2. Two states σ j = (ϑ j, ϑ
t
j, g

t
j) ∈ Σ, j = 1, 2, of a rigid heat conductor

characterized by the constitutive equations (9.3.3) are equivalent if for every process
P ∈ Π and for every τ > 0,

ẽ(ρ(σ1, P[0,τ))) = ẽ(ρ(σ2, P[0,τ))), q̂((gP ∗ g1)
t+τ) = q̂((gP ∗ g2)

t+τ). (9.3.7)

The following result is the analogue of Theorem 9.1.2 and can be proved similarly.

Theorem 9.3.3. For a heat conductor characterized by the constitutive equations
(9.3.3), two states σ j = (ϑ j, ϑ

t
j, g

t
j), j = 1, 2, are equivalent if and only if

ϑ1(t) = ϑ2(t),
∫ ∞
0
α′(τ + ρ)

[
ϑt
1(ρ) − ϑt

2(ρ)
]

dρ = 0,
∫ ∞
0

k′(τ + ρ)
[
gt
1(ρ) − gt

2(ρ)
]

dρ = 0
(9.3.8)

for every τ > 0.

Consequently, a state σ(t) = (ϑ(t), ϑt, gt) is equivalent to the zero state σ0(t) =

(0, 0†, 0
†
), where in particular 0

†
(s) = gt(s) = 0∀s ∈ R+ is the zero integrated history

of g, if

ϑ(t) = 0,
∫ ∞
τ

α′(s)ϑt+τ(s)ds =
∫ ∞
0
α′(τ + ξ)ϑt(ξ)dξ = 0,

∫ ∞
τ

k′(s)gt(s − τ)ds =
∫ ∞
0

k′(τ + ξ)gt(ξ)dξ = 0.

Thus, two equivalent states σ j, j = 1, 2, are such that their difference σ1(t)−σ2(t) =
(ϑ1(t)−ϑ2(t), ϑt

1−ϑt
2, g

t
1−gt

2) is a state equivalent to the zero state, σ0(t) = (0, 0†, 0
†
).
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9.3.2 Finite Work Processes and w-Equivalence for States

The thermal work done during the application of a process P(τ) = (ϑ̇P(τ), gP(τ))∀τ ∈
[0, dP), starting from the initial state σ(t) = (ϑ(t), ϑt, gt) at time t, is given by (9.3.2).
To evaluate it we must consider the derivative of the internal energy through (9.3.6)1
and take account of the heat flux in the form (9.3.6)2. From (9.3.6)1, by differentiating
with respect to τ and integrating by parts, we have

ė(t + τ) = α0ϑ̇P(τ) + α
′(0)ϑP(τ) +

∫ τ
0
α′′(s)ϑP(τ − s)ds +

∫ ∞
τ

α′′(s)ϑ(t + τ − s)ds.

(9.3.9)

To derive the expression for the work due only to a process P of duration dP < ∞,
applied at time t = 0, we suppose that the initial state is σ0(0) = (0, 0†, 0

†
). Denoting

the ensuing fields by (ϑ0, ϑt
0, g

t
0), (9.1.15)–(9.1.16) with (9.3.4) yield

ϑ0(t) =
∫ t

0
ϑ̇P(s)ds,

ϑt
0(s) = (ϑP ∗ 0†)t(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ t−s

0
ϑ̇P(η)dη ∀s ∈ (0, t],

0 ∀s > t,

gt
0(s) = (gP ∗ 0

†
)t(s) =

⎧⎪⎪⎨⎪⎪⎩
gt
0(s) ∀s ∈ [0, t),

gt
0(t) ∀s ≥ t.

(9.3.10)

Let W(σ0(0), P) be the work obtained by applying P(t) = (ϑ̇P(t), gP(t))∀ t ∈
[0, dP) to the zero state σ0(0), at time t = 0. By evaluating directly from (9.3.3)1 or
from (9.3.9), we have

ė(t) = α0ϑ̇0(t) + α
′(0)ϑ0(t) +

∫ t

0
α′′(s)ϑt(s)ds

and, from (9.3.3)2 with (9.3.10)3,

−q(t) · gP(t) = −
[∫ t

0
k′(s)gt

0(s)ds +
∫ ∞

t
k′(s)gt

0(t)ds

]
· g0(t) =

∫ t

0
k(s)gt

0(s)ds · g0(t).

We see that this work is given by

W̃(0, 0†, 0
†
; ϑ̇P, gP) =

1
2
α0ϑ

2
0(dP) + α

′(0)
∫ dP

0
ϑ20(t)dt

+

∫ dP

0

∫ t

0
α′′(s)ϑt

0(s)dsϑ0(t)dt +
∫ dP

0

∫ t

0
k(s)gt

0(t)ds · g0(t)dt.

(9.3.11)

Definition 9.3.4. A process P of duration dP is a finite work process if

W(σ0(0), P) < ∞.
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Lemma 9.3.5. The work done by any finite process is positive.

Proof. In fact, by assuming that the integrands in (9.3.11) are equal to zero for any
t > dP, we can extend the integrals to R

+ and apply Parseval’s formula (C.3.1) to
obtain

W(σ0(0), P) =
1
2
α0ϑ

2
0(dP) +

α′(0)
2π

∫ ∞
−∞
|ϑ0+(ω)|2dω

+
1
2π

∫ ∞
−∞
α′′+(ω)|ϑ0+(ω)|2dω +

1
2π

∫ ∞
−∞

k+(ω)|g0+(ω)|2dω

=
1
2
α0ϑ

2
0(dP) +

1
2π

∫ ∞
−∞

[α′(0) + α′′c (ω)]|ϑ+(ω)|2dω

+
1
2π

∫ ∞
−∞

kc(ω)|g0+(ω)|2dω

=
1
2
α0ϑ

2
0(dP) +

1
2π

∫ ∞
−∞

{
ωα′s(ω)|ϑ0+(ω)|2 + kc(ω)|g0+(ω)|2

}
dω > 0,

by virtue of the oddness of the sine Fourier transform together with (9.2.7)1, (9.2.6),
and the scalar form of (9.2.3)1. ��

Hence, to characterize the set of finite work processes we consider the following
sets [145]:

H̃α(R
+,R) =

{
ϑ : R+ → R;

∫ ∞
−∞
ωα′s(ω)|ϑP+(ω)|2dω < ∞

}
,

H̃k(R
+,R3) =

{
g : R+ → R

3;
∫ ∞
−∞

kc(ω)|g+(ω)|2dω < ∞
}
.

(9.3.12)

With the completion with respect to the norm corresponding to the inner product
(ϑ1, ϑ2)α =

∫ ∞
−∞ ωα

′
s(ω)ϑ1+(ω)ϑ2+(ω)dω, we have another Hilbert space Hα(R+,R),

besides Hk(R+,R3).
Let σ(t) = (ϑ(t), ϑt, gt) be the initial state of the body at time t > 0, where

ϑt ∈ Γα and gt ∈ Γk, the spaces Γα and Γk being defined by (9.1.21) and (9.3.5), are
possible histories that yield finite work during any process, as defined by (9.3.12).
Any of these processes P = (ϑ̇P, gP) with a finite duration dP < ∞ may be extended
to R

+ by putting P(τ) = (0, 0)∀τ ≥ dP. The expression (9.3.2) for the work, taking
into account (9.3.9) for ė(t + τ) and (9.3.6)2 for q(t + τ), with some integrations,
becomes

W(σ(t), P) = W̃(ϑ(t), ϑt, gt; ϑ̇P, gP)

=
1
2
α0
[
ϑ2P(dP) − ϑ2P(0)

]
+ α′(0)

∫ ∞
0
ϑ2P(τ)dτ

+

∫ ∞
0

[
1
2

∫ ∞
0
α′′(|τ − η|)ϑP(η)dη + It

(α)(τ, ϑ
t)

]
ϑP(τ)dτ

+

∫ ∞
0

[
1
2

∫ ∞
0

k(|τ − η|)gP(η)dη + It
(k)(τ, g

t)

]
· gP(τ)dτ,

(9.3.13)
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where

It
(α)(τ, ϑ

t) =
∫ ∞
0
α′′(τ + ξ)ϑt(ξ)dξ,

It
(k)(τ, g

t) = −
∫ ∞
0

k′(τ + ξ)gt(ξ)dξ, τ ≥ 0.
(9.3.14)

A definition of equivalence of states is now given in terms of the work function,
which we must compare with Definition 9.3.2.

Definition 9.3.6. Two states σ j(t) = (ϑ j(t), ϑt
j, g

t
j), j = 1, 2, are said to be w-

equivalent if they satisfy

W(σ1(t), P) = W(σ2(t), P) (9.3.15)

for every process P : [0, τ)→ R × R3 and for every τ > 0.

Theorem 9.3.7. Two states are equivalent in the sense of Definition 9.3.2 if and only
if they are w-equivalent.

Proof. Two states σ j(t) = (ϑ j(t), ϑt
j, g

t
j), j = 1, 2, equivalent in the sense of Def-

inition 9.3.2, satisfy (9.3.7) for every process P[0,τ) and for every τ > 0. Hence, it
follows that we have the same derivative with respect to τ of (9.3.7)1, which appears
in the expression (9.3.2) for the work, as well as the same heat flux. Thus, the work
done by the same process applied to both σ j(t), j = 1, 2, coincide and (9.3.15) holds.

On the other hand, let two states σ j(t), j = 1, 2, be w-equivalent. Then for any P
with arbitrary duration dP, taking account of (9.3.13) and (9.1.15), we obtain

α0

∫ dP

0
ϑ̇P(τ)dτ[ϑ1(t) − ϑ2(t)] + α′(0)[ϑ1(t) − ϑ2(t)]

∫ dP

0
{[ϑ1(t) + ϑ2(t)]

+ 2
∫ τ
0
ϑ̇P(ξ)dξ

}
dτ +

1
2

∫ ∞
0

∫ ∞
0
α′′(|τ − η|)[ϑ1(t) − ϑ2(t)] {[ϑ1(t) + ϑ2(t)]

+ 2

[∫ τ
0
ϑ̇P(ρ)dρ +

∫ η
0
ϑ̇P(ξ)dξ

]}
dηdτ

= −
∫ dP

0

{[
It
(α)(τ, ϑ

t
1)ϑ1(t) − It

(α)(τ, ϑ
t
2)ϑ2(t)

]

+
[
It
(α)(τ, ϑ

t
1) − It

(α)(τ, ϑ
t
2)
] ∫ τ

0
ϑ̇P(ξ)dξ

}
dτ

−
∫ ∞
0

[
It
(k)(τ, g

t
1) − It

(k)(τ, g
t
2)
]
· gP(τ)dτ,

where the integrals with k(|τ − η|) cancel, since they have the same gP. Since in this
relation ϑ̇P and dP, as well as gP, are arbitrary, it follows that

ϑ1(t) = ϑ2(t), It
(α)(τ, ϑ

t
1) = It

(α)(τ, ϑ
t
2), It

(k)(τ, g
t
1) = It

(k)(τ, g
t
2). (9.3.16)

The first of these conditions coincides with (9.3.8)1, while the third, by virtue of
(9.3.14)2, yields (9.3.8)3; the second equality, using (9.3.14)1, yields



234 9 Heat Conductors

It
(α)(τ, ϑ

t
1) − It

(α)(τ, ϑ
t
2) =
∫ ∞
0
α′′(τ + ξ)

[
ϑt
1(ξ) − ϑt

2(ξ)
]

dξ

=
d
dτ

∫ ∞
0
α′(τ + ξ)

[
ϑt
1(ξ) − ϑt

2(ξ)
]

dξ = 0.

Hence, the function

f (τ) ≡
∫ ∞
0
α′(τ + ξ)

[
ϑt
1(ξ) − ϑt

2(ξ)
]

dξ

is equal to the constant c1, which can be evaluated by means of

c1 = lim
τ→∞ f (τ) = 0.

Thus, (9.3.16) and (9.3.8) coincide. ��

9.3.3 Free Energies as Quadratic Functionals for Rigid Heat Conductors

We can express free energies obeying (9.1.10) as quadratic functionals of the inde-
pendent quantities gt and (ϑ(t), ϑt), respectively, based on the constitutive relations
(9.1.1) and (9.1.6), using a formalism analogous to that in Sect. 8.6. This yields a
free energy

ψ = ψe + ψg,

where ψe is a quadratic functional of temperature and ψg a similar functional of the
temperature gradient. Noting Remark 9.3.1, we see that an analogy with the formal-
ism sketched out in Sect. 8.6.1 is the appropriate one for ψe.

Let us write the special case of (9.3.1) in which the contribution from the tem-
perature gradient is neglected:

w(t) = ϑ(t)ė(t). (9.3.17)

The analogue of (8.6.30) in this context is

ψ(e)(t) =
1
2
α0ϑ

2(t) − 1
2

∫ ∞
0

∫ ∞
0
α12(s, u)ϑ

t(s)ϑt(u)dsdu,

α12(s, u) =
∂2

∂s∂u
α(s, u), α0 = α(0, 0),

(9.3.18)

where we must choose α(·, ·) so that the integral in (9.3.18)1 exists and is nonpositive
for all finite relative histories. Thus, the equivalent of condition (8.6.4) must apply.
Putting

α(s, u) = α∞ +
∫ ∞

s

∫ ∞
u
α12(s

′, u′)ds′ du′,

we have
α(s,∞) = α(∞, s) = α∞.
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Also, (8.6.26)2 becomes

α(s, 0) = α(0, s) = α(s), s ∈ R,
so that α∞ = α(∞).

From (8.6.27), the rate of dissipation is given by

D(t) =
1
2

∫ ∞
0

∫ ∞
0

[α121(s, u) + α122(s, u)]ϑ
t
r(s)ϑ

t
r(u)dsdu. (9.3.19)

This involves the further constraint on α that the kernel in (9.3.19) must be such that
the integral is nonnegative for all relative histories of the internal energy.

By differentiation of (9.3.18)1 and use of (9.3.3)1, we have (cf. (8.6.29))

ψ̇(e)(t) + D(t) = ϑė(t).

9.3.4 The Work Function

The work function or maximum free energy (or upper bound on free energies) is
obtained from (9.3.18) by putting α(s, u) = α(|s − u|), so that

ψ(e)M (t) =
1
2
α∞ϑ2(t) − 1

2

∫ ∞
0

∫ ∞
0
α12(|s1 − s2|)ϑt(s1)ϑ

t(s2)ds1ds2.

Applying (8.10.20), we see that this agrees with the relevant terms (9.3.11) if ϑt(s)
vanishes for s > dP, using an argument similar to that leading to (7.5.2). Clearly
D(t), given by (9.3.19), vanishes in this case and

ψ̇(e)M (t) = ė(t)ϑ(t) = w(t),

from (9.3.17).
Recall, however, that there is a problem with categorizing the work function as a

free energy, arising out of Remark 18.2.
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