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Viscoelastic Solids and Fluids

We now consider special cases of the constitutive relations (7.1.13), namely linear
viscoelastic solids and fluids with linear memory under isothermal conditions in the
present chapter and an approximate version of rigid heat conductors in Chap. 9. Some
of the formulas are similar to those derived in the general case, and detailed proofs
are omitted or a different version is given. Other formulas are specific to completely
linear materials, for example.

More use will be made, for illustrative purposes, of the abstract terminology and
notation introduced in Chaps. 3 and 4 in discussing these specific materials than in
the general case. This is particularly true for Chap. 9.

Combining constitutive relations for solids and fluids with the equations of mo-
tion (1.3.25) yields the dynamical equations describing the time evolution of the
material under specified initial and boundary conditions. Questions of the existence,
uniqueness, and stability of the solutions of these integro–partial differential equa-
tions are considered in Part IV, particularly in Chap. 24. Practical methods for ob-
taining explicit solutions, particularly in the quasistatic approximation, may be found
in older texts such as [65] and especially [167].

8.1 Linear Viscoelastic Solids

In the general form of the theory, we are dealing with finite linear viscoelasticity
[73], where the stress is given by a linear memory functional of the strain history and
a nonlinear (or linear) function of the current strain. The space Γ reduces to Sym and
Lin(Γ) to Lin(Sym). Thus, (7.1.21) reduces to

̂S(t) =̂Se(E(t)) +
∫ ∞

0
G′(u)Et

r(u)du, G′(u) =
ρ

κ
L′E(u). (8.1.1)
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For the case of completely linear viscoelasticity, we replace ̂S by the Cauchy stress
tensor T, and (8.1.1) becomes

T(t) = G∞E(t) +
∫ ∞

0
G′(u)Et

r(u)du, (8.1.2)

where the relative strain history Et
r is given by

Et
r(s) = Et(s) − E(t). (8.1.3)

The quantity G is the relaxation function of the viscoelastic material. For a vis-
coelastic solid, G(∞) = G∞ is a positive tensor, defined by (1.4.12)2. Thus, we
no longer have the condition (7.1.15)1. This property can be retained by using
G(u) = G(u) − G∞. We will not do so, however, for reasons of convention. This
means that certain partial integrations are slightly more complicated. We are there-
fore adopting what was referred to in Remark 7.1.2 as the conventional choice. Note
that the assumption (7.2.4) no longer applies. We shall assume that G(·) − G∞ ∈
L1(R+) ∩ L2(R+). Relations (7.1.13)2,3 become

̂S(t) =̂Se(E(t)) + (G0 −G∞)E(t) +
∫ ∞

0
G′(u)Et(u)du,

=̂Se(E(t)) −G∞E(t) +
∫ ∞

0
G(u)Ėt(u)du, G0 = G(0),

Ėt(u) =
∂

∂t
Et(u) = − ∂

∂u
Et(u),

where we have used (7.1.14) and assumed that Et(∞) = E(−∞) = 0. Applying
(7.2.19) to the subspace Sym of Γ gives

G0 > G∞ ≥ 0, (8.1.4)

where G∞ (or specifically its shear part may vanish for a viscoelastic fluid.
In the completely linear case, these become

T(t) = G0E(t) +
∫ ∞

0
G′(u)Et(u)du, (8.1.5)

or alternatively,

T(t) =
∫ ∞

0
G(u)Ėt(u)du. (8.1.6)

Equation (8.1.5) is identical to (1.4.11), without the explicit X dependence. The
forms (8.1.2), (8.1.5), and (8.1.6) correspond to (7.1.13).

We have already supposed in Sect. 1.4.3 that G′(·) ∈ L1(R+); now we further
assume that G′(·) ∈ L1(R+) ∩ L2(R+), in accordance with Sect. C.1. The relaxation
function is defined by

G(s) = G0 +

∫ s

0
G′(ξ)dξ. (8.1.7)

Thermodynamics implies the symmetry ofG0 andG∞, as we shall see below, but not
the symmetry ofG(s), s ∈ R++. However, we shall assume thatG(s) is a fourth-order
symmetric tensor, a special case of (7.1.18).
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Remark 8.1.1. In a particular basis, G has components Gi jkl, all subscripts in the
range 1–3. The symmetry referred to in the previous paragraph refers to the inter-
change of {i j} and {kl}, as in (2.4.8). However, we see from (8.1.5), together with the
symmetry of T and E, respectively, that

Gi jkl = Gjikl = Gi jlk, (8.1.8)

which generalizes (2.4.7) and (2.4.9).

From (1.3.32) in Definition 1.3.10, we see that the stress power per unit volume
is T · D. In the linear approximation, D, given by (1.2.23), reduces to Ė, so that the
power now becomes T · Ė. Thus, the inequality (4.1.7), expressing the dissipation
principle, yields in this context

∫ dP

0
Ė(t) · G0E(t)dt +

∫ dP

0
Ė(t) ·

∫ ∞

0
G′(s)Et(s)ds ≥ 0, (8.1.9)

which must hold for any cycle, where Ė(t) is the process with duration dP.

8.1.1 Thermodynamic Restrictions for Viscoelastic Solids

We now examine thermodynamic restrictions on the relaxation function [118, 120]
by an approach equivalent to but more elementary than that developed in Sect. 7.2.1
for the general theory. Let us consider strain-tensor time dependence of the form

E(s) = E1 cosωs + E2 sinωs, s ≤ t, (8.1.10)

where ω ∈ R
++ and E1, E2 ∈ Sym. The corresponding process P̃ ∈ Π at time t is

given by

P̃(t) = Ė(t) = −ωE1 sinωt + ωE2 cosωt, t ∈ [0, dP), (8.1.11)

where dP = 2πm/ω, m being any positive integer. Thus, we obtain a cycle, denoted
by (σ̃(t), P̃).

Theorem 8.1.2. The inequality (8.1.9) holds for any cycle (σ̃(t), P̃) only if the in-
equality

E1 · [GT
0 −G0]E2 −

∫ ∞

0
[E1 · G′(s)E1 + E2 · G′(s)E2] sinωs ds

−
∫ ∞

0
E1 · [G′(s) −G′T (s)]E2 cosωs ds ≥ 0

(8.1.12)

holds for every ω ∈ R++ and every E1, E2 ∈ Sym.
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Proof. Substitution of (8.1.10) and (8.1.11) into (8.1.9) gives
∫ dP

0
(−ωE1 sinωt + ωE2 cosωt) · G0(E1 cosωt + E2 sinωt)dt

+

∫ dP

0

{

(−ωE1 sinωt + ωE2 cosωt)
∫ ∞

0
G′(s)[E1(cosωt cosωs + sinωt sinωs)

+ E2(sinωt cosωs − cosωt sinωs)]ds} dt ≥ 0,

which, after integrating with respect to t, with dP = 2πm/ω and using (A.2.3), yields
(8.1.12). �	

Some useful results can be derived by considering in (8.1.12) the limiting cases
ω→ ∞ and ω→ 0.

Corollary 8.1.3. The inequality (8.1.12) implies the symmetry of G0, i.e.,

G0 = GT
0 . (8.1.13)

Proof. By virtue of the Riemann–Lebesgue lemma (C.2.13), the integrals in (8.1.12)
vanish when we consider the limit ω→ ∞. Hence, the arbitrariness of E1, E2 ∈ Sym
gives (8.1.13). �	
Corollary 8.1.4. The inequality (8.1.12) implies the symmetry of G∞, i.e.,

G∞ = GT
∞. (8.1.14)

Proof. By virtue of (8.1.13), relation (8.1.12), in the limiting case ω→ 0, gives

E1 · [GT
∞ −G∞]E2 ≥ 0,

and the arbitrariness of E1, E2 leads to (8.1.14). �	
By (8.1.13), we have the following result.

Corollary 8.1.5. The inequality (8.1.12) implies that
∫ ∞

0
[E1 · G′(s)E1 + E2 · G′(s)E2] sinωs ds

+

∫ ∞

0
E1 · [G′(s) −G′�(s)]E2 cosωs ds ≤ 0

(8.1.15)

for every ω ∈ R++ and every E1, E2 ∈ Sym.

Referring to (C.1.3) and (C.2.2), we put

G′+(ω) =
∫ ∞

0
G′(u)e−iωu du = G′c(ω) − iG′s(ω), (8.1.16)

whereG′c andG′s denote the Fourier cosine and sine transforms ofG′. Explicitly, the
sine transform is given by

G′s(ω) =
∫ ∞

0
G′(u) sinωu du. (8.1.17)

The following important result is a special case of (7.2.12).
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Corollary 8.1.6. The inequality (8.1.12) implies the negative definiteness of G′s ∈
Sym for every ω ∈ R++.
Proof. Putting E1 = E2 in (8.1.15), we obtain G′s(ω) ≤ 0, ω ∈ R+. Thus, we have

G′s(ω) < 0, ω ∈ R++, (8.1.18)

while G′s(0) = 0. �	
IfG(τ) is assumed to be symmetric for all τ ∈ R+, then condition (8.1.18) implies

that (8.1.12) and the dissipation principle (8.1.9) must hold for all histories of the
form (8.1.10). More generally, one can show that (8.1.18), for G symmetric, implies
that (8.1.9) holds for any cycle, using histories represented by Fourier series (see
Proposition 7.2.2). This procedure is presented in some detail for compressible fluids
in Sect. 8.9.3.

The definition ofG′s(ω) can be extended to R− by the relationG′s(−ω) = −G′s(ω),
ω ∈ R.
Corollary 8.1.7. The inequality (8.1.18) implies that (cf. (7.2.16))

G0 −G(s) > 0, s ∈ R++. (8.1.19)

Proof. From the inversion formula of the Fourier sine transform G′s(ω), expressed
by (see (C.1.6))

G′(s) =
2
π

∫ ∞

0
sinωsG′s(ω)dω,

we have, by integrating with respect to s,

G(s) −G0 =
2
π

∫ ∞

0

1 − cosωs
ω

G′s(ω)dω, (8.1.20)

which, by virtue of the inequality (8.1.18), provides the desired result. �	
For ease in writing let

G′0 := G′(0).

Corollary 8.1.8. We have
G′0 ≤ 0 (8.1.21)

and
G0 −G∞ ≥ 0. (8.1.22)

Proof. Relation (8.1.21) can be deduced in the same way as (7.2.17), while (8.1.22)
follows from (8.1.19) by taking the limit s→ ∞. �	

Besides the assumptions thatG′0 exists and is bounded, we now add that it is such
that

G′0 < 0, (8.1.23)
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which is a special case of (7.2.18). Moreover, since G∞ is positive definite, from
(8.1.22) it follows that G0 also has this property.

These results were derived at different times through various approaches. The
most pertinent references are now noted.

Coleman [68] proved the symmetry of the instantaneous elastic modulus (8.1.13)
from the second law in the form of the Clausius–Duhem inequality. The symmetry of
the equilibrium elastic modulus (8.1.14) was obtained by Day [86] via the Clausius
inequality. Apart from the inequality being strict, (8.1.18) was first derived by Graffi
[169] in the case of isotropic materials by requiring that energy be dissipated in a
period of a sinusoidal strain function E(t) = E sinωt. Accordingly, (8.1.18) may be
rightly referred to as Graffi’s inequality.

The connection between (8.1.18) and energy dissipation is emphasized in [233],
where the energy dissipated in one period [0, dP], dP = 2π/ω, is shown to be

∫ dP

0
T(Et) · Ė(t)dt = −πE · G′s(ω)E. (8.1.24)

Incidentally, that is why −G′s(ω) is often referred to as the loss modulus. The in-
equality (8.1.21) for the initial derivative of the relaxation function was proved first
by Bowen and Chen [40], by having recourse to discontinuous histories, in the one-
dimensional case via the Clausius–Duhem inequality. The same result was proved in
[265] with C∞ histories in the three-dimensional case. The inequality (8.1.22) traces
back to Coleman [67, 68].

Apparently, the inequality (8.1.19) first appeared in [120], but it is in a sense
related to a previous result by Day [86] (cf. also [321]), who showed that as a conse-
quence of dissipativity, the relaxation function satisfies the condition

G0 −G∞ ≥ ±[G(s) −G∞]. (8.1.25)

To show the connection, observe that the limit s → ∞ in the expression (8.1.20) for
G(s) −G0 gives (cf. (7.2.19))

G∞ −G0 =
2
π

∫ ∞

0

1
ω
G′s(ω)dω. (8.1.26)

Consequently,

G(s) −G∞ = −2
π

∫ ∞

0

cosωs
ω

G′s(ω)dω,

and the obvious inequalities
∫ ∞

0

1
ω
|E · G′s(ω)E|dω ≥

∫ ∞

0

| cosωs|
ω

|E · G′s(ω)E|dω ≥
∣

∣

∣

∣

∣

∫ ∞

0

cosωs
ω

E · G′s(ω)Edω
∣

∣

∣

∣

∣

for any E ∈ Sym yield (8.1.25).
A relation analogous to (8.1.25) can of course be given for the general theory

(Sect. 7.2.2).
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Remark 8.1.9. While (8.1.13) and (8.1.14) are enforced by thermodynamics, it is not
necessarily the case that G(τ) is symmetric for intermediate values of τ. We will,
however, assume that (cf. (7.1.18))

G(τ) = G�(τ), τ ∈ (0,∞). (8.1.27)

Since G′ ∈ L2(R+), Parseval’s formula (C.3.1) allows us to write the constitutive
equation (8.1.5) as [104]

T(t) = G0E(t) +
2
π

∫ ∞

0
G′s(ω)E

t
s(ω)dω (8.1.28)

for anyEt ∈ L2(R+). This formula is obtained by extending the integral in (8.1.5) toR
and taking the odd extension of Et, using (C.1.6)1. We can replace G′+(ω) by iG′s(ω)
because of the oddness of Et

s(ω). Since the integrand is now even, the integration
interval can be transformed to R

+.
A more general viewpoint on this kind of manipulation was adopted earlier to

yield (7.2.33) and in particular (7.2.34), which corresponds to (8.1.28).
Now it is important to generalize (8.1.28) so that it holds for all Et ∈ E, where E

is the set of histories Et such that
∣

∣

∣

∣

∣

∫ ∞

0
G′(s)Et(s)ds

∣

∣

∣

∣

∣

< ∞

for a given G′ ∈ L2(R+) ∩ L1(R+). If we denote by G the vector space defined by

G =
{

F : R+ → Lin(Sym,Sym);F = αG′ + f, ∀f ∈ C∞0 (R+)
}

,

then E = G′, where G′ is the dual of G or the space of all linear continuous functionals
on G. Thus, the elements of E have a Fourier transform in a distributional sense.
Relation (8.1.28) can be carried over into the set E.

8.2 Decomposition of Stress

Consider the constitutive equation of linear viscoelasticity, given by (8.1.2) or
(8.1.5). The integrals with Et and Et

r suggest the introduction of certain functions
that will prove useful. These are defined by

Ĭt(τ,Et) := G(τ)E(t) +
∫ ∞

0
G′(s + τ)Et(s)ds

= G∞E(t) + It(τ,Et
r),

(8.2.1)

where (cf. (7.4.2)2)∗

∗ The quantity It was originally defined in the literature as the negative of the functional used
here. This change in sign, which is consistent with Sect. 7.4, is introduced here and later so
that its relationship with the stress functional is a little more precise.
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It(τ,Et
r) =
∫ ∞

0
G′(s + τ)Et

r(s)ds. (8.2.2)

It is easy to see that Ĭt coincides with the stress resulting from the partly static
history (1.4.10), namely T̂(Et(τ) ), where τ is the duration of the static part.

One can derive from Ĭt both E(t) and It by virtue of the following relations:

lim
τ→∞ Ĭ

t(τ,Et) = G∞E(t)

and
It(τ,Et

r) = Ĭt(τ,Et) − lim
τ→∞ I

t(τ,Et).

Also, we have

It(τ,Et) :=
∫ ∞

0
G′(s + τ)Et(s)ds

= −G(τ)E(t) + Ĭt(τ,Et) = −Ğ(τ)E(t) + It(τ,Et
r),

(8.2.3)

where
Ğ(τ) := G(τ) −G∞. (8.2.4)

The time derivative of It(·,Et
r) with respect to t will be of interest. This is given

by

İt(τ,Et
r) =

d
dt
It(τ,Et

r) = Ğ(τ)Ė(t) + It(1)(τ,E
t
r), (8.2.5)

where

It(1)(τ,E
t
r) =

d
dτ

It(τ,Et
r) =
∫ ∞

0
G′′(s + τ)Et

r(s)ds. (8.2.6)

In the following we shall also use a simpler notation by writing Ĭt(τ), It(τ), and
Ĩt(τ) instead of Ĭt(τ,Et), It(τ,Et

r), and It(τ,Et), respectively.
Let t = 0 be the initial instant when a process Pτ is applied to the material. The

stress will be a function of the initial state σ and of this process. It can be written as
follows:

T̂(σ, Pτ) = G0E(τ) +
∫ τ

0
G′(u)Eτ(u)du +

∫ ∞

τ

G′(u)Eτ(u)du.

An integration by parts and a change of variable give

T̂(σ, Pτ) =
∫ τ

0
G(τ − u)Ė(u)du +G(τ)E(0) +

∫ ∞

0
G′(ξ + τ)E(−ξ)dξ. (8.2.7)

We can identify the state σ with (E(0),E0), where the history is E0(ξ) = E(−ξ),
ξ ∈ R++, and the process Pτ with ĖP

τ , defined as Ė(u), u ∈ [0.τ). Moreover, in (8.2.7)
we can distinguish two effects by putting

T̂(0, ĖP
τ ) =

∫ τ

0
G(τ − u)ĖP

τ (u)du
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and noting that Ĭt, given by (8.2.1), has the form at t = 0

Ĭ0(τ,E0) = G(τ)E(0) +
∫ ∞

0
G′(ξ + τ)E0(ξ)dξ.

Thus, we can write the stress (8.1.5) in the form

T(τ) = T̂(0, ĖP
τ ) + Ĭ

0(τ,E0). (8.2.8)

Here, we observe that T̂(0, ĖP
τ ) denotes the stress determined by the initial zero state

0 ((E(0) = 0,E0(ξ) = 0, ξ ∈ R
+) and the process ĖP

τ , whereas Ĭ0(τ,E0) is the
stress determined by the initial state (E(0),E0) and the zero process 0†τ, with duration
τ ∈ R

+; this zero process renders the first term on the right of (8.2.7) zero. Equa-
tion (8.2.8) means that T(τ) can be viewed as the superposition of the two effects
T̂(0, ĖP

τ ), which involves only the process Ė
P
τ , and I

0(τ,E0), which involves only the
state (E(0),E0).

8.3 Equivalence and Minimal States

We now suppose that the process is applied at time t, thus acting in the time interval
[t, t + τ), where τ denotes its duration. For a linear viscoelastic solid, in the initial
state Et at time t, we have

T(t + τ) = G0E(t + τ) +
∫ τ

0
G′(u)Et+τ(u)du +

∫ ∞

τ

G′(u)Et+τ(u)du

= G(τ)E(t) +
∫ τ

0
G(u)Ėt+τ(u)du +

∫ ∞

0
G′(τ + ξ)Et(ξ)dξ.

(8.3.1)

Definition 4.1.2 of equivalence yields some restrictions on the constitutive equa-
tions. The first result [31, 90] is the following theorem (cf. (7.4.3)).

Theorem 8.3.1. Two histories Et
1, E

t
2 of E are equivalent, relative to (8.1.5), if and

only if

Et
1(0) = Et

2(0),
∫ ∞

0
G′(ξ + τ)Et

1(ξ)dξ =
∫ ∞

0
G′(ξ + τ)Et

2(ξ)dξ ∀τ ≥ 0.

(8.3.2)

Proof. We have the state σ(t) = Et. The requirement T̂(Et
1, Ė

P
τ ) = T̂(Et

2, Ė
P
τ )∀τ ≥ 0,

taking into account (8.3.1), yields

G(τ)E1(t) +
∫ ∞

0
G′(ξ + t)Et

1(ξ)dξ

= G(τ)E2(t) +
∫ ∞

0
G′(ξ + t)Et

2(ξ)dξ ∀τ ≥ 0.
(8.3.3)

Taking τ→ ∞ gives (8.3.2)1. Then (8.3.2)2 follows immediately. �	
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Some important consequences of this theorem, considered in [123], will now be
described.

Corollary 8.3.2. For a viscoelastic material characterized by (8.1.5), the equiva-
lence conditions for two histories Et

1, E
t
2 can be expressed by

T̂(Et
1, 0
†
τ) = T̂(Et

2, 0
†
τ) ∀τ ∈ R+, (8.3.4)

where 0†τ is the zero process of duration τ ∈ R+.
Proof. For any τ ∈ R+ the relation (8.3.4) applied to (8.3.1) gives (8.3.3). �	

By virtue of Theorem 8.3.1, we see that equivalent histories are characterized by
the pair (Et(0), Ĩt), where Ĩt(τ) is given by (8.2.3) (note the comment after (8.2.6)).
Consequently, the state of a linear viscoelastic solid may be identified with the pair
(Et(0), Ĩt) instead of the whole history Et. This observation was first made in [176],
where the particular case with the kernel G′ given by a sum of exponentials was
studied.

Remark 8.3.3. The class σR of equivalent histories, by virtue of (8.2.3), can also be
represented by the single function given by (8.2.1)

Ĭt(τ) = T̂(Et, 0†τ) = Ĩt(τ) +G(τ)E(t) ∀τ ∈ R+, (8.3.5)

where Et is any history among those in σR, since by definition, the function Ĭt(τ) is
the same for all Et ∈ σR. Moreover, the knowledge of Ĭt on R

+ provides

E(t) = G−1∞ lim
τ→∞ Ĭ

t(τ)

and hence also Ĩt by (8.3.5).

A minimal state is identified with an equivalence class represented by

σR(t) = (E(t), Ĩt(·)) (8.3.6)

or
σR(t) = Ĭt(·).

The description of a state as minimal refers to the fact that it can be characterized
by a minimum set of data. Examples are discussed in the next section.

8.4 State and History for Exponential-Type Relaxation Functions

It is of interest to consider materials for which the relaxation function is a linear
combination of decaying exponentials, i.e.,
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G(ξ) = G∞ + Λ
n
∑

k=1

gk exp(−αkξ),

G′(ξ) = −Λ
n
∑

k=1

αkgk exp(−αkξ),
(8.4.1)

where Λ ∈ Lin(Sym) is positive definite and the coefficients gk, αk are positive, k =
1, 2, . . . , n. We will sometimes refer to these as discrete-spectrum materials.

We will now show that the presence of exponentials allows us to express the state
σ in terms of a finite number of quantities instead of the history Et, which is infinite-
dimensional. The description of a state in terms of such quantities can be described
as minimal, since it does not contain superfluous variables.

From (8.4.1)1, we have

G0 = G∞ + Λ
n
∑

k=1

gk.

Moreover, putting

Tk(t) = Λgk

[

E(t) − αk
∫ ∞

0
exp(−αkξ)E(t − ξ)dξ

]

,

the stress tensor, given by (8.1.5), becomes

T(t) = G∞E(t) +
n
∑

k=1

Tk(t).

We can consider the (n+ 1)-tuple (E,T1,T2, . . . ,Tn), as the state at time t. Alter-
natively, let

Ek(t) =
∫ ∞

0
exp(−αkξ)E(t − ξ)dξ, (8.4.2)

giving

T(t) = G∞E(t) + Λ
n
∑

k=1

gk[E(t) − αkEk(t)].

Thus, we can also consider the state as the (n + 1)-tuple (E,E1,E2, . . . ,En).
These two modes of description of state are related to but not the same as that dis-

cussed in Sect. 8.3. Let us now consider how σR might be described for a viscoelastic
material with a relaxation function of the form (8.4.1)1.

Let σR(t) be given by (8.3.6). Using (8.2.3)1 and (8.4.1)2, we obtain

Ĩt(τ) = −Λ
n
∑

i=1

αigi exp(−αiτ)Ei(t),
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where the quantities Ei are defined by (8.4.2). The derivatives of the function Ĩt(τ)
with respect to τ, at τ = 0, are given by

Ĩtp(0) = Λ
n
∑

i=1

gi(−αi)p+1Ei(t), p = 0, 1, . . . , n − 1.

Thus, we obtain a linear system, which can be solved for E1(t), . . . ,En(t) in terms of
the quantities Ĩt(0), Ĩt1(0), . . . , Ĩ

t
(n−1)(0). Accordingly, putting

σR = (E(t), Ĩt(0), Ĩt1(0), . . . , Ĩ
t
(n−1)(0)),

the state is (n + 1)-dimensional.

8.5 Inversion of Constitutive Relations

The inversion of the constitutive equations of linear viscoelasticity has been studied
in [41] as a Wiener–Hopf problem. We now describe a more direct approach [123].
Let us consider the constitutive equation (8.1.5), namely

T(t) = G0E(t) +
∫ ∞

0
G′(s)E(t − s)ds, (8.5.1)

where the domain of G′ is carried over to R by putting G′(s) = 0∀s < 0. Hence, we
also have

T(t) = G0E(t) +
∫ ∞

−∞
G′(s)E(t − s)ds.

Putting, for formal convenience,

H(t) = G0E(t), K(s) = G′(s)G−10 ,

and assuming that H ∈ L1(R), we have

T(t) = H(t) +
∫ ∞

−∞
K(s)H(t − s)ds ∀t ∈ R.

Taking the Fourier transform and applying the convolution theorem (C.3.3) gives

TF(ω) = [1 +K+(ω)]HF(ω), (8.5.2)

where, referring to (8.1.16),

K+(ω) = G′+(ω)G
−1
0 = [G′c(ω) − iG′s(ω)]G−10 . (8.5.3)

It follows that
K+(0) = [G∞ −G0]G

−1
0 = G∞G−10 − 1, (8.5.4)

since G′+(0) = G∞ − G0; this follows immediately from the definition of G′+(ω),
given by (8.1.16)1.
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Remark 8.5.1. We see from Proposition C.2.1 that K+(ω) or [1 +K+(ω)] has all its
singularities in the upper half-plane and thus is analytic in the lower half-plane. This
is equivalent to the requirement that (8.5.1) be a causal relationship.

The quantity 1+K+(ω) is invertible for any ω ∈ R. We see this by observing that for
real ω,

Im[1 +K+(ω)] = −G′s(ω)G−10 � 0 ∀ω � 0,

Re[1 +K+(0)] = G∞G−10 � 0.

Accordingly, using (8.5.2), we can express HF(ω) in the form

HF(ω) = TF(ω) − [1 +K+(ω)]−1K+(ω)TF(ω).

Taking inverse Fourier transforms yields

H(t) = T(t) +G0

∫ ∞

−∞
J′(ξ)T(t − ξ)dξ,

where

G0J
′(ξ) = − 1

2π

∫ ∞

−∞
[1 +K+(ω)]

−1K+(ω) exp(iωξ)dξ. (8.5.5)

Applying G−10 , we have

E(t) = G−10 T(t) +
∫ ∞

−∞
J′(ξ)T(t − ξ)dξ.

Now, this relationship must be causal; in other words, we must be able to write it in
the form

E(t) = J0T(t) +
∫ ∞

0
J′(ξ)T(t − ξ)dξ, J0 = G−10 > 0, (8.5.6)

so that
J′(ξ) = 0, ξ < 0.

Remark 8.5.2. It follows from Proposition C.2.1 and (8.5.5) that the zeros of 1 +
K+(ω) must also be in the upper half-plane [167]. These observations apply where
1 + K+(ω) has zeros and isolated singularities. If branch-cut singularities (see
Sect. B.1.5), in particular continuous-spectrum singularities, are present, these must
be in the upper half-plane for both 1+K+(ω) and its inverse. This is discussed further
in Sect. 16.5, in particular in Remark 16.5.1.

As in (8.1.7) for the relaxation function, we define the creep function as

J(s) = J0 +

∫ s

0
J′ (ξ)dξ, J0 = J(0). (8.5.7)
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The inverse Fourier transform of (8.5.5) gives that

G−10 [1 +K+(ω)]−1K+(ω) = −
∫ ∞

0
J′ (ξ)e−iωξ dξ. (8.5.8)

Let us assume that J(∞) is finite. This implies that the material is a solid [167].
Combining (8.5.4) and (8.5.8) at ω = 0, one deduces with the aid of (8.5.6)2 that

J(∞) = J∞ = G−1∞ > 0. (8.5.9)

Recalling (8.1.22), we see that

J0 = G−10 ≤ G−1∞ = J∞, (8.5.10)

so that the creep function J(s) is, at least in an overall sense, increasing, while the
relaxation function G(s) is, at least in an overall sense, decreasing.

Indeed, we can come at this result in another way. Let us write (8.5.8) in the form

G0J
′
+(ω) = −[1 +K+(ω)]−1K+(ω) = [1 +K+(ω)]−1 − 1. (8.5.11)

Since, by virtue of (8.1.27), all quantities are symmetric in Lin(Sym), we have that
K+(ω) = K∗(ω), for example. It will be assumed that K+(ω) and K+(ω) (or K∗+(ω))
commute, so thatK+(ω) is a normal transformation (see after (A.2.11)) and that they
commute with G0. These properties will in fact hold under the assumption made in
Sect. 7.1.5. Then, from (8.5.11) and (8.5.3),

[1 +K+(ω)][1 +K+(ω)]G0

[

J
′
+(ω) − J′+(ω)

]

= K+(ω) −K+(ω) = −2iG′s(ω)G−10 .
(8.5.12)

Since [1+K+(ω)][1+K+(ω)]G0 is a nonnegative invertible tensor, we deduce from
(8.1.18) that

J′s(ω) =
1
2i

[

J
′
+(ω) − J′+(ω)

]

> 0. (8.5.13)

The analogue of Corollary 8.1.7 yields that

J(s) − J0 > 0, s ∈ R+,
and in particular, (8.5.10) follows.

The general linear relation (7.1.33) can be inverted in a manner similar to that
outlined above.

Let E or T, on [0, t), be regarded as the process; then we can write

TP(t) = G0EP(t) +
∫ t

0
G′(s)EP(t − s)ds + Î(t) (8.5.14)

and

EP(t) = J0TP(t) +
∫ t

0
J′(ξ)TP(t − ξ)dξ + Ŷ(t), (8.5.15)
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where EP and TP denote the restrictions of E and T to [0, t). Hence, we put EP =

0, TP = 0 on (−∞, 0). Moreover, recalling (8.3.1), we see that the two equations
(8.5.14) and (8.5.15) hold if

Î(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫ ∞
0

G′(t + ξ)E0(ξ)dξ, ∀t > 0,

0, ∀t ≤ 0,
(8.5.16)

and

Ŷ(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫ ∞
0

J′(t + ξ)T0(ξ)dξ, ∀t > 0,

0, ∀t ≤ 0.

Let us now consider (8.5.14). The domain of G′ is carried over to R by putting
G′(s) = 0∀s < 0. Again, we put H(t) = G0EP(t),K(s) = G′(s)G−10 and assume that

H ∈ L1(R), Î ∈ L1(R).
Hence,

TP(t) = H(t) +
∫ ∞

−∞
K(s)H(t − s)ds + Î(t) ∀ t ∈ R.

After applying a Fourier transform, we can solve for HF , obtaining

HF(ω) = TP
F(ω) − ÎF(ω) − [1 +K+(ω)]−1K+(ω)[TP

F(ω) − ÎF(ω)].
Using the inverse Fourier transform, we have

EP(t) = G−10 [TP(t) − Î(t)] +
∫ ∞

−∞
J′(ξ)TP(t − ξ)dξ −

∫ ∞

−∞
J′(ξ)Î(t − ξ)dξ ∀ t ∈ R,

and hence

EP(t) = G−10 TP(t) +
∫ t

0
J′(ξ)TP(t − ξ)dξ −G−10 Î(t)

−
∫ ∞

0
J′(ξ)Î(t − ξ)dξ ∀ t ∈ R.

(8.5.17)

Equations (8.5.15) and (8.5.17) are required to provide the same values of EP on R.
Thus, we find that

Ŷ(t) = −J0Î(t) −
∫ ∞

0
J′(ξ)Î(t − ξ)dξ ∀t ∈ R.

8.6 Linear Viscoelastic Free Energies as Quadratic Functionals

We now give a representation of a free energy in the linear viscoelastic case and
examine some of its properties [91, 105, 158].

Relation (7.1.9) reduces to

ψ(t) = ˜φ(E(t)) +
1
2

∫ ∞

0

∫ ∞

0
Et
r(s) · G12(s, u)Et

r(u)dsdu, (8.6.1)
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where

G12(s, u) =
∂2

∂s∂u
G(s, u). (8.6.2)

By Definition 4.1.6, we must have ψ ≥ 0 for all states (E(t),Et), in particular for
(0,Et), where the history is arbitrary. Thus, G12 must be a nonnegative operator in
the sense that the integral in (8.6.17) must be nonnegative for all histories. Therefore,
we have

ψ(t) ≥ φ(t), (8.6.3)

which is a special case of (5.1.25), a property that follows very generally from the
second law.

Since the integral in (8.6.1) must exist for finite relative histories, we assume that
(cf. (7.1.3)) as s→ ∞, the kernel G12(s, u) goes to zero as

G12(s, u) ∼ s−1−b, b > 0, u ∈ R+, (8.6.4)

or more strongly; similarly for the limit of large u at fixed s.
Let us define (cf. (7.1.5))

G(s, u) = G∞ +
∫ ∞

s

∫ ∞

u
G12(s

′, u′)ds′ du′, G∞ = G(∞,∞). (8.6.5)

Note that we are adopting the conventional choice as specified in Remark 7.1.2.
Relations (7.1.7) are replaced by

lim
s→∞G(s, u) = G∞, lim

s→∞
∂

∂u
G(s, u) = 0, u ∈ R+, (8.6.6)

with similar limits at large u holding for fixed s.

Remark 8.6.1. In fact, (7.1.7)1 could be retained by using

G(s, u) = G(s, u) −G∞
instead of G.

We impose the conditions

G(s) = G(0, s) = G(s, 0), G(0) = G0 = G(0, 0), (8.6.7)

where G(s) is the relaxation function. This ensures the correct constitutive relations,
as does (7.1.14)3 in the general case. Relations

G1(s, 0) = G2(0, s) = G′(s), (8.6.8)

where G′(s) is the derivative of the relaxation function G(s), are an immediate con-
sequence. Note that (8.6.5) gives

G(s,∞) = G(∞, s) = G∞ ∀s ∈ R+, (8.6.9)
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from which, with (8.6.7), we deduce that

G(∞) = G∞. (8.6.10)

It follows from (8.6.5) and (8.6.4) that G1(s, u) and G2(s, u) vanish at large s, u,
respectively, a property corresponding to (7.1.8).

Equation (7.1.6)3 reduces to

G�(s, u) = G(u, s). (8.6.11)

Replacing ˜φ(E(t)) by φ(t) and carrying out two partial integrations, we can write
(8.6.1) in the form

ψ(t) = φ(t) − 1
2
E(t) · G∞E(t) + 1

2

∫ ∞

0

∫ ∞

0
Ėt(s) · G(s, u)Ėt(u)dsdu. (8.6.12)

From (7.1.14)3, we have

G(s, 0) = G(0, s) = G(s). (8.6.13)

In the completely linear case,

φ(t) =
1
2
E(t) · G∞E(t). (8.6.14)

It is nonnegative by (1.4.13). Thus, (8.6.12) becomes

ψ(t) =
1
2

∫ ∞

0

∫ ∞

0
Ėt(s) · G(s, u)Ėt(u)dsdu.

Also, with the aid of (7.1.14)5, the form (7.1.19) becomes

ψ(t) = S (t) +
1
2

∫ ∞

0

∫ ∞

0
Et(s) · G12(s, u)Et(u)dsdu,

S (t) = φ(t) + E(t) · [̂S(t) −̂Se(t) − (G0 −G∞)E(t)]
+
1
2
E(t) · (G0 −G∞)E(t).

In the completely linear case, the form of S is given by (see (7.1.34))

S (t) = E(t) · T(t) − 1
2
E(t) · G0E(t). (8.6.15)

These results derive from the general theory for which the equilibrium stress may
be nonlinear. It is instructive, however, to work through the completely linear case in
some detail.

Relation (5.1.11) reduces to the form

ψ̇(t) + D(t) = T(t) · Ė(t), (8.6.16)
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for linear viscoelastic materials under isothermal conditions. The quantity D(t) de-
notes the internal dissipation function, which must be nonnegative because of ther-
modynamic considerations.

We consider the quadratic functional form

ψ(t) =
1
2
E(t) · G∞E(t) + 1

2

∫ ∞

0

∫ ∞

0
Et
r(s) · G12(s, u)Et

r(u)dsdu, (8.6.17)

instead of (8.6.1).
The functional (8.6.17) must satisfy (8.6.16), a constraint that will now be ex-

plored. The time derivative of (8.6.17), using (8.1.2), (8.1.3) and noting the relations

d
du

Et
r(u) =

d
du

Et(u) = − d
dt
Et(u) = −Ėt(u),

gives, with the aid of some integrations by parts,

ψ̇(t) = Ė(t) · G∞E(t) + 1
2

∫ ∞

0

∫ ∞

0

{

[Ėt(s) − Ė(t)] · G12(s, u)Et
r(u)

+ Et
r(s) · G12(s, u)[Ėt(u) − Ė(t)]

}

dsdu

= Ė(t) ·
[

G∞E(t) +
∫ ∞

0
G′(s)Et

r(s)ds

]

+
1
2

∫ ∞

0

∫ ∞

0
Ėt(s) · [G1(s, u) +G2(s, u)]Ėt(u)dsdu

= T(t) · Ė(t) + 1
2

∫ ∞

0

∫ ∞

0
Ėt(s) · K(s, u)Ėt(u)dsdu

= T(t) · Ė(t) + 1
2

∫ ∞

0

∫ ∞

0
Et
r(s) · K12(s, u)Et

r(u)dsdu,

(8.6.18)

where K12(s, u) denotes differentiation with respect to the arguments of†

K(s, u) = G1(s, u) +G2(s, u). (8.6.19)

Comparing (8.6.18) with (8.6.16), it follows that

D(t) = −1
2

∫ ∞

0

∫ ∞

0
Ėt(s) · K(s, u)Ėt(u)dsdu

= −1
2

∫ ∞

0

∫ ∞

0
Et
r(s) · K12(s, u)Et

r(u)dsdu ≥ 0,
(8.6.20)

so that thermodynamics requires that K and K12 must yield a nonnegative integral.
These expressions are special cases of (7.1.25) and (7.1.26).

Note that we can summarize the calculation in (8.6.18) by

† Note that the tensorK here is quite different from the quantity used briefly in the early part
of Sect. 7.1.
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˙̃ψ(Et,E(t)) =
∂

∂E(t)
˜ψ(Et),E(t) · Ė(t) + ∂t˜ψ(Et,E(t)), (8.6.21)

where
∂

∂E(t)
˜ψ(Et,E(t)) = T̃(Et,E(t)) = T(t) (8.6.22)

and ∂t indicates differentiation with respect to the t dependence in Et. We express
this as a functional derivative in Sect. 5.1. Relation (8.6.22) follows by comparing
(8.6.21) with (8.6.18)4 because the rightmost term in (8.6.18)4 has no dependence on
Ė(t).

Remark 8.6.2. We treat (8.6.22), (8.6.3), and the nonnegative property of D in
(8.6.16) as the defining properties of a free energy, referred to as the Graffi conditions
in Sect. 5.1.1.

Alternative forms of relations (8.6.17) can be given in terms of histories rather
than relative histories. Partial integrations give

ψ(t) =
1
2
E(t) · G∞E(t) − 1

2
Et
r(∞) · G∞Et

r(∞)

+
1
2

∫ ∞

0

∫ ∞

0
Ėt(s) · G(s, u)Ėt(u)dsdu

if E(−∞) = Et(∞) is finite. The first two terms on the right cancel if E(−∞) is zero.
Also,

ψ(t) =
1
2
E(t) · G∞E(t) + 1

2

∫ ∞

0

∫ ∞

0
Et(s1) · G12(s1, s2)Et(s2)ds1ds2

− E(t) ·
∫ ∞

0

∫ ∞

0
G12(s1, s2)Et(s2)ds1ds2

+
1
2
E(t) ·

∫ ∞

0

∫ ∞

0
G12(s1, s2)ds1ds2E(t).

From (8.6.5) and (8.6.7)2 we have
∫ ∞

0

∫ ∞

0
G12(s2, s1)ds1ds2 = G0 −G∞.

Carrying out an integration in the second integral, we obtain

ψ(t) =
1
2
E(t) · G0E(t) + E(t) ·

∫ ∞

0
G′(s1)Et(s1)ds1

+
1
2

∫ ∞

0

∫ ∞

0
Et(s1) · G12(s2, s1)Et(s2)ds1ds2,

= S (t) +
1
2

∫ ∞

0

∫ ∞

0
Et(s1) · G12(s2, s1)Et(s2)ds1ds2,

(8.6.23)
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where S (t) is given by (8.6.15). Recalling Remark 7.1.2, we see that this relation is
a special case of (7.1.34) if we identify Le in that relation with L∞. Note that

∂S (t)
∂E(t)

= T(t),

and (8.6.22) follows immediately.

8.6.1 General Forms of a Free Energy in Terms of Stress

The representation (8.6.17) of a free energy can be given in terms of stress history,
rather than strain history, using (8.5.6). Also, consider the following argument. Let
us introduce a functional χ with the properties

∂χ(t)
∂T(t)

= E(t) (8.6.24)

and
χ̇(t) − D1(t) = E(t) · Ṫ(t). (8.6.25)

Noting the developments from (8.6.16) onward, we see that χ can be represented as

χ(t) =
1
2
T(t) · J∞T(t) + 1

2

∫ ∞

0

∫ ∞

0
Tt
r(s) · J12(s, u)Tt

r(u)dsdu,

J(s, 0) = J(0, s) = J(s), J∞ = J(∞),
(8.6.26)

in terms of the creep function defined by (8.5.5) and (8.5.7) and where J(·, ·) has sim-
ilar properties to those listed forG(·, ·) in (8.6.6)–(8.6.11). Also, referring to (8.6.19)
and (8.6.20), we see that

D1(t) =
1
2

∫ ∞

0

∫ ∞

0
Tt
r(s) · N12(s, u)Tt

r(u)dsdu,

N(s, u) = J1(s, u) + J2(s, u).
(8.6.27)

We can write (8.6.26) as

χ(t) = S 1(t) +
1
2

∫ ∞

0

∫ ∞

0
Tt(s) · J12(s, u)Tt(u)dsdu,

S 1(t) = T(t) · E(t) − 1
2
T(t) · J0T(t), J0 = J(0, 0) = J(0),

(8.6.28)

by analogy with (8.6.23) and (8.6.15). Relation (8.6.25) can be rewritten as

d
dt
[E(t) · T(t) − χ(t)] + D1(t) = T(t) · Ė(t). (8.6.29)

Comparison with (8.6.16) allows us to identify the quantity ψ, defined by the Legen-
dre transformation

ψ(t) = E(t) · T(t) − χ(t),
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as a free energy and D1(t) as the associated rate of dissipation, denoted convention-
ally by D(t). We have

∂ψ(t)
∂E(t)

= T(t) + E(t) · ∂T(t)
∂E(t)

− ∂χ(t)
∂T(t)

· ∂T(t)
∂E(t)

= T(t),

by virtue of (8.6.24). From (8.6.26) and (8.6.28), it follows that

ψ(t) = E(t) · T(t) − 1
2
T(t) · J∞T(t) − 1

2

∫ ∞

0

∫ ∞

0
Tt
r(s) · J12(s, u)Tt

r(u)dsdu

=
1
2
T(t) · J0T(t) − 1

2

∫ ∞

0

∫ ∞

0
Tt(s) · J12(s, u)Tt(u)dsdu.

(8.6.30)

Proposition 8.6.3. The kernel J12 must be such that the double integral on the right
of (8.6.30) is nonpositive and that on the right of (8.6.27) is nonnegative.

Proof. The nonpositivity of the integral on the right of (8.6.30) is sufficient to ensure
the non-negativity of ψ(t). We argue that it is also necessary. The property (8.6.3)
must always hold, where φ(t) is the free energy for the special history Et(s) = E(t),
s ≤ t. It follows from (8.1.2) that T(t) = G∞E(t) for this history and indeed T(t−u) =
T(t), u ≥ 0, so that the history of stress is also constant in this limit. Thus, we have

ψ(t) ≥ 1
2
E(t) · G∞E(t) = 1

2
T(t) · G−1∞ T(t)

=
1
2
T(t) · J∞T(t) ≥ 1

2
T(t) · J0T(t),

by virtue of (8.5.9) and (8.5.10). This means that the double integral in (8.6.30) must
be nonpositive.

The second law requires that D1(t) in (8.6.29) be nonnegative, which leads to the
claimed property of the integral in (8.6.27). �	

8.6.2 The Work Function as a Free Energy

We now consider a particular case of the expression (8.6.17), obtained on supposing
that G12(s1, s2) = G12(|s1 − s2|), which clearly obeys (8.6.8). Thus, we introduce the
following functional (cf. (7.5.3)):

ψM(t) =
1
2
E(t) · G∞E(t)+ 1

2

∫ ∞

0

∫ ∞

0
Et
r(s1) · G12(|s1− s2|)Et

r(s2)ds1ds2. (8.6.31)

Note that by (8.6.11), we can take G12(u), u ∈ R
+, to be symmetric, which was

in any case assumed in Sect. 8.1 (see (8.1.27)).
Observe that for the choice of kernel in (8.6.31), the quantity K, given by

(8.6.19), vanishes, so that D is zero and (8.6.16) reduces to

ψ̇M(t) = T(t) · Ė(t). (8.6.32)
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We can therefore identify ψM with the work function

ψM(t) = ψM(t0) +
∫ t

t0

T(u) · Ė(u)du,

where t0 is some fixed time, which may be −∞ if the integral exists (see (7.5.1)1).
It is clear that ψM obeys the requirements of a free energy if the memory integral

in (8.6.31) is nonnegative. This indeed follows from the fact that (8.6.31) is a spe-
cial case of (7.5.3) and by recalling the argument leading to (7.5.8). However, it is
instructive to outline a more detailed, though equivalent, argument.

There is, however, a problem with categorizing the work function as a free en-
ergy, which arises out of Remark 18.2.

Proposition 8.6.4. Let W ∈ L2(R+) and M ∈ L1(R+); W has values in Lin(R3) and
M ∈ Lin(Lin(R3)). Also, let M� =M. The integral

J =
∫ ∞

0
W(t) ·

∫ t

0
M(t − τ)W(τ)dτdt

is positive for every nonzero W if and only if the Fourier cosine transform Mc is
positive definite for ω ∈ R++.
Proof. The faltung theorem applied to causal functions (see Sect. C.3) gives that if

V(t) =
∫ t

0
M(t − τ)W(τ)dτ,

then V+(ω) = M+(ω)W+(ω). Given two functions W and M ∈ L2(R+) that vanish
on R

−, then Parseval’s formula (29.2.2) yields
∫ ∞

0
W(t) · V(t)dt = 1

2π

∫ ∞

−∞
W+(ω) · V+(ω)dω.

It follows from (C.2.2) that
∫ ∞

−∞
W+(ω) · V+(ω)dω =

∫ ∞

−∞
[Wc(ω) · Mc(ω)Wc(ω)+Ws(ω) · Mc(ω)Ws(ω)]dω.

The remaining terms vanish due to either the oddness of the integrand or a cancel-
lation that occurs by virtue of the symmetry assumption on M. Hence, we see that
J > 0 for every nonzero function W if Mc(ω) is positive definite for every ω ∈ R+.
Conversely, if J > 0 for every nonzero choice of W, then Wc(ω) · Mc(ω)Wc(ω) +
Ws(ω) · Mc(ω)Vs(ω) > 0 for ω > 0, and hence it follows that Mc(ω) is positive
definite for every ω ∈ R++. �	

Relation (7.5.6) becomes, in the current context,

G12(|s1 − s2|) = −2δ(s1 − s2)G
′(|s1 − s2|) −G′′(|s1 − s2|). (8.6.33)
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Using this result, we have
∫ ∞

0

∫ ∞

0
W(s1) · G12(|s1 − s2|)W(s2)ds1ds2

= −2
∫ ∞

0

∫ ∞

0
W(s1) · δ(s1 − s2)G

′(|s1 − s2|)W(s2)ds1ds2

−
∫ ∞

0

∫ ∞

0
W(s1) · G′′(|s1 − s2|)W(s2)ds1ds2

= −2
∫ ∞

0
W(s) · G′0W(s)ds − 2

∫ ∞

0

∫ t

0
W(t) · G′′(t − τ)W(τ)dτdt

= −2
∫ ∞

0
W(t) ·

∫ t

0
[G′′(t − τ) +G′0δ(t − τ)]W(τ)dτdt.

(8.6.34)

Hence, by virtue of Proposition 8.6.4, it follows that G12 is a positive definite kernel
if and only if the cosine transform ofG′′(t−τ)+G′0δ(t−τ) is negative definite. Now,
from the definition of the Fourier cosine transform (C.1.3)4 we have

G′′c (ω) =
∫ ∞

0
G′′(ξ) cosωξdξ

= G′(ξ) cosωξ |∞0 + ω
∫ ∞

0
G′(ξ) sinωξ dξ,

whence
G′′c (ω) +G

′
0 = ωG

′
s(ω) < 0 ∀ω ∈ R++, (8.6.35)

by (8.1.18) and the oddness of G′s. Since
∫ ∞

0
[G′′(ξ) +G′(ξ)δ(ξ)] cosωξ dξ = G′′c (ω) +G

′
0,

the quadratic form
∫ ∞

0

∫ ∞

0
W(s1) · G12(|s1 − s2|)W(s2)ds1ds2

is positive definite and hence vanishes only at W = 0. Putting W(s) = Et
r(s), we

conclude that the memory integral in (8.6.31) is nonnegative. Thus, ψM is minimal
at constant histories.

8.7 The Relaxation Property and a Work Function Norm

Let us consider the fading memory property introduced in Sect. 1.4.3 for linear vis-
coelastic materials. The function H, defined in the general case by (7.2.22), is given
in the present context by

H(ω) = −ωG′s(ω) = ω2Gc(ω) ≥ 0 ∀ω ∈ R, (8.7.1)
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whereG′s is defined by (8.1.17). It follows in general from (7.2.23) thatH is bounded
on R

+.
From (8.6.34) and (8.6.35) it follows that (8.6.31) can be written as

˜ψM(Et
r,E(t)) = ψM(t)

=
1
2
E(t) · G∞E(t) + 1

2π

∫ ∞

−∞
Et
r+(ω) · H(ω)Et

r+(ω)dω,
(8.7.2)

which is of course a special case of (7.5.7)2. From (7.2.29), we have

Et
r+(ω) = Et

+(ω) −
E(t)
iω−
= Et

c(ω) − i
(

Et
s(ω) −

E(t)
ω

)

. (8.7.3)

The subscripts c, s indicate the cosine and sine transforms, defined by (C.1.3)3,4.
The quantity ω− may be replaced by ω, since the terms with ω− in the denominator
multiply H(ω), which vanishes quadratically at the origin. From (8.7.2) and (8.7.3),
using the evenness of H, Et

c and the oddness of Et
s, it follows that

˜ψM(Et
r,E(t)) = ψM(t) =

1
2
E(t) · G∞E(t) + 1

π

∫ ∞

0

[(

Et
s(ω) −

E(t)
ω

)

·H(ω)

(

Et
s(ω) −

E(t)
ω

)

+ Et
c(ω) · H(ω)Et

c(ω)

]

dω.

(8.7.4)

Let us introduce the space H of histories (Et
r,E(t)) on R

+ with values in Sym,
defined by

H =

{

(Et
r,E(t)) ∈ L2(R++) × Sym;

∫ ∞

0

[(

Et
s(ω) −

E(t)
ω

)

· H(ω)

(

Et
s(ω) −

E(t)
ω

)

+ Et
c(ω) · H(ω)Et

c(ω)

]

dω < ∞
}

.

The space H becomes a pre-Hilbert space with the inner product

(Et
1,E

t
2) =

1
2
E1(t) · G∞E2(t) +

1
π

∫ ∞

0

[(

Et
1s(ω) −

E1(t)
ω

)

· H(ω)

(

Et
2s(ω) −

E2(t)
ω

)

+ Et
1c(ω) · H(ω)Et

2c(ω)

]

dω,

where Et
1, E

t
2 are elements of H and the corresponding norm is denoted by ‖ · ‖H.

We observe that
‖Et‖2H = ˜ψM(Et

r,E(t)). (8.7.5)

Using (8.1.2) rather than (8.1.5) for the stress functional in linear viscoelasticity, we
can write, instead of (8.1.28),

T(t) = G∞E(t) +
2
π

∫ ∞

0
G′s(ω)

[

Et
s(ω) −

E(t)
ω

]

dω.
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Indeed, this follows directly from (8.1.28) on noting (8.1.26). This is a continuous
functional with respect to the norm ‖ · ‖H [104].

Let

T (a)Et =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 ∀s ∈ [0, a],
Et(s − a) ∀s ∈ (a,∞)

be the translated or partly static (see (1.4.10)) history associated with any history
Et ∈ H. From the definitions of the Fourier sine and cosine transforms (C.1.3)3,4, we
obtain

(T (a)Et)s(ω) = Et
c(ω) sinωa + E

t
s(ω) cosωa,

(T (a)Et)c(ω) = Et
c(ω) cosωa − Et

s(ω) sinωa.

Using these relations, we can evaluate ˜ψM(T (a)Et), given by (8.7.4), which yields the
following expression for the norm, as defined by (8.7.5):

‖T (a)Et‖2H =
∫ ∞

0
[Et

s(ω) · H(ω)Et
s(ω) + E

t
c(ω) · H(ω)Et

c(ω)]dω.

Thus, we see that the norm ‖T (a)Et‖H, defined by (8.7.5), is independent of a, and
hence as a→ ∞, it does not approach zero, so that

lim
a→∞ ‖T

(a)Et‖H � 0.

We observe that in the standard theory of fading memory, the norm ‖ · ‖ involves
an influence function k [72], and the relaxation property assumes the form

lim
a→∞ ‖T

(a)Et‖ = 0

for every history Et belonging to the corresponding function space. Hence, we might
say that with respect to the norm ‖ · ‖H, the relaxation property does not hold for
linear viscoelastic solids. However, it has the fading memory property, defined in
Sect. 1.4.3, as expressed by (1.4.12)1.

8.8 Viscoelastic Fluids

Fluids are with a symmetry group that is the full unimodular group. Memory effects
can be included also for these materials.

A viscoelastic fluidmay remember everything that ever happened to it, yet it can-
not recall any one configuration as being physically different from any other except in
regard to its mass density” [313]. Moreover, a “fluid may have definite memory of all
its past experience, [yet] it reacts to those experiences only by comparing them with
its present configuration” [312]. In other words, the stress in a fluid is unchanged by
a change of the reference configuration. Therefore, the present configuration is used
as reference.
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We confine our attention to the classical theory of linear viscoelasticity. A con-
stitutive equation of the Boltzmann type yields a hereditary law expressed by a linear
relationship between the stress and the infinitesimal strain history. A fluid character-
ized by such a constitutive equation is a simple material in the sense of the definition
given in [75, 103], and therefore and processes can be introduced as in Sect. 3.2. We
shall distinguish the cases of compressible and incompressible fluids.

8.9 Compressible Viscoelastic Fluids

Consider a viscoelastic fluid, with a constitutive equation for the stress of the form

T(ρ,Et
r) = −p(ρ)I + T̃(ρ,Et

r), (8.9.1)

where p(x, t) is the mass density, Et
r(x, s)∀s ∈ R++ is the relative strain history, given

by
Et
r(x, s) = Et(x, s) − E(x, t), (8.9.2)

while p denotes the pressure, I is the identity second-order tensor, and x is the po-
sition vector, which will be omitted henceforth. The last term T̃ is the extra stress
given by

T̃(ρ,Et
r) =
∫ ∞

0
λ1(ρ, s)E

t
r(s)ds I + 2

∫ ∞

0
μ1(ρ, s)Et

r(s)ds, (8.9.3)

where Et
r(s) = tr(Et

r) and the memory kernels λ1(ρ, ·), μ1(ρ, ·) belong to L1(R+) ∩
L2(R+) for any fixed ρ > 0.

The state of such a compressible fluid can be described by means of the mass
density ρ and the history of Et

r. Thus

σ = (ρ,Et
r).

The process P is expressed by means of a piecewise continuous function DP : [0, dP)
→ Sym, defined by DP(τ) = ĖP(τ), the time derivative of the strain tensor over the
time interval [0, dP), dP being the duration of the process. We refer in this context
to the paragraph before (8.1.9). The ensuing states σ(t + τ) = (ρ(t + τ),Et+τ

r ) ∀τ ∈
(0, dP], due to the application of any process P = DP, are solutions of two differential
equations. That determining strain evolution has the form

d
dτ

Et+τ
r (s) = DP(τ − s) − DP(τ), 0 < s < τ. (8.9.4)

Moreover, referring to the conservation of mass relation (1.3.2)2, we see that since

∇ · v = trĖ = trD = D = −ρ̇/ρ, (8.9.5)



8.9 Compressible Viscoelastic Fluids 203

the balance of mass in the evolving system is expressed by the equation

d
dτ
ρ(t + τ) = −ρ(t + τ)DP(τ), (8.9.6)

with solution
ρ(t + τ) = ρ(t)e−

∫ τ

0
DP(s)ds, (8.9.7)

which specifies the evolution of the density function.
We denote by Π the set of all processes P = DP with finite duration. For the set Σ

of states we give a definition characterized by the boundedness of the stress, putting

Σ =
{

σ = (ρ,Et
r); |T(ρ,Et+τ(c)

r )| < ∞ ∀τ ∈ R+
}

, (8.9.8)

where t is a parameter. Here we have used the partly static history (cf. (1.4.10))

Et+τ(c)
r =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Et
r(s − τ) ∀s ∈ [τ,∞),

0 ∀s ∈ (0, τ). (8.9.9)

The extra stress, given by (8.9.3), obeys the equation

lim
τ→∞ T̃(ρ,E

t+τ(c)
r ) = T̃(ρ, 0†) = 0, (8.9.10)

because of the fading memory property (Sect. 1.4.3).
The concept of equivalence of states, as defined in general by Definition 4.1.2,

can be introduced for fluids as follows.

Definition 8.9.1. Two states σ j(t) = (ρ j(t),Et
r j ) ( j = 1, 2) are equivalent if they give

the same stress,

T(ρ1(t + τ),Et+τ
r1 ) = T(ρ2(t + τ),Et+τ

r2 ) ∀τ ∈ (0, dP], (8.9.11)

for any process DP : [0, dP)→ Sym.

The equivalence class induced by such a definition comprises the minimal states
σR of the fluid.

8.9.1 A Particular Class of Compressible Fluids

We consider the particular class of viscoelastic fluids characterized by the following
kernels:

λ1(ρ, s) = ρλ
′(s), μ1(ρ, s) = ρμ

′(s),

such that λ′, μ′ ∈ L1(R+) ∩ L2(R+). Also λ, μ ∈ L1(R+) ∩ L2(R+), where

λ(t) = −
∫ ∞

t
λ′(s)ds, μ(t) = −

∫ ∞

t
μ′(s)ds. (8.9.12)

Thus, in the constitutive equation (8.9.1), the extra stress T̃, given by (8.9.3),
assumes the form
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T̃(ρ,Et
r) = ρV(E

t
r) = ρ

∫ ∞

0
κ′(s)Et

r(s)ds I + 2ρ
∫ ∞

0
μ′(s)Ĕt

r(s)ds, (8.9.13)

where Ĕt
r = Et

r − 1
3E

t
rI is the trace-free part of E

t
r and

κ′(s) = λ′(s) +
2
3
μ′(s).

We introduce a compact representation for T̃, putting

T̃(ρ,Et
r) = ρV(E

t
r) = ρ

∫ ∞

0
G′(s)Et

r(s), (8.9.14)

where G′(s) is a fourth-order tensor-valued function G′ : R+ → Lin(Sym), with
representation in Lin(R6) as a diagonal matrix. The nonvanishing diagonal elements
are κ′(s) and 2μ′(s). The stress tensor, given by (8.9.1), can be written as

T(ρ,Et
r) = −p(ρ)I + ρ

∫ ∞

0
G′(s)Et

r(s)ds. (8.9.15)

For such materials, under the hypothesis that any finite density ρ yields a finite
pressure p(ρ), the space (8.9.8) of possible states can be defined as Σ = R

+ × Γ,
where

Γ =

{

Et
r;
∣

∣

∣

∣

∣

∫ ∞

0
G′(s + τ)Et

r(s)ds
∣

∣

∣

∣

∣

< ∞ ∀τ ∈ R+
}

. (8.9.16)

Moreover, the space of minimal states σR, denoted by ΣR, can be characterized
as follows [100] (cf. Theorem 8.3.1).

Theorem 8.9.2. For a viscoelastic fluid of type (8.9.15), two states σ1 = (ρ1,Et
r1 )

and σ2 = (ρ2,Et
r2 ) are equivalent in the sense of Definition 8.9.1 if and only if

ρ1(t) = ρ2(t),
∫ ∞

0
μ′(s + τ)Ĕt

r(s)ds = 0,
∫ ∞

0
κ′(s + τ)Et

r(s)ds = 0 ∀τ ∈ R+,
(8.9.17)

where Et
r = Et

r1 − Et
r2 .

Proof. If (8.9.17) are satisfied, then (8.9.11) follows immediately. Conversely, if
(8.9.11) holds for any process, then the expression (8.9.15) for time t + τ yields

T(ρ,Et+τ
r ) = −p(t + τ)I + ρ(t + τ)

∫ ∞

0
G′(s)Et+τ

r (s)ds

= −p(t + τ)I + ρ(t + τ)
∫ ∞

0
G′(u + τ)Et

r(u)du

+ ρ(t + τ)
∫ 0

−τ
G′(u + τ)Et

r(u)du.

(8.9.18)
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The quantity Et
r in the last integral is determined by the process through (8.9.4).

Then, from (8.9.11),

− [p(ρ1(t + τ)) − p(ρ2(t + τ))]I + ρ1(t + τ)
∫ ∞

0
G′(u + τ)Et

r1 (u)du

− ρ2(t + τ)
∫ ∞

0
G′(u + τ)Et

r2 (u)du

+ [ρ1(t + τ)) − ρ2(t + τ)]
∫ 0

−τ
G′(u + τ)Et

r(u)du = 0

(8.9.19)

is satisfied for any process. The scalar part of the process, which determines ρ1(t+τ)
and ρ2(t+τ), is specified by (8.9.7); moreover, for any fixed scalar part DP, the trace-
free part can be changed arbitrarily, affecting only the last integral in (8.9.19). Thus,
from (8.9.19) we obtain

ρ1(t + τ) = ρ2(t + τ) ∀τ ∈ R+, (8.9.20)

which, using (8.9.7), yields
ρ1(t) = ρ2(t).

These results give the other two conditions in (8.9.17), on using (8.9.20) in (8.9.19).�	
This theorem allows us to state that the minimal state of a linear viscoelastic fluid

is an element of
ΣR = R

+ × (Γ/Γ0),
where Γ/Γ0 denotes the usual quotient space, where Γ0 is the set of the histories
Et
r ∈ Γ satisfying (8.9.17)2,3.
A process can be considered as a function P : Σ → Σ; thus, it maps the initial

state σi ∈ Σ into the final state Pσi = σ f ∈ Σ, and the differential equations (8.9.4)–
(8.9.6) govern the evolution. Recalling (8.9.16), we can also consider P : Γ → Γ,
such that any initial relative strain history γi ∈ Γ is associated with Pγi = γ f ∈ Γ;
then only (8.9.4) governs such an evolution.

8.9.2 Representation of Free Energies for Compressible Fluids

Under the hypothesis of isothermal processes, the dissipation principle (4.1.7) and
(5.1.10) (using only the mechanical components and replacinĝS by the Cauchy stress
tensor in this linearized theory; see also (3.4.9)) yield in the present context that
starting from a state σ, the work done on any cycle is nonnegative, i.e.,

W(σ, P) =
∮ dP

0

1
ρ
T(ρ,Et

r) · D(t)dt ≥ 0, (8.9.21)

where we omit the superscript on DP. For a fluid characterized by the constitutive
equation (8.9.15), we obtain two terms in (8.9.21), the first of which vanishes on a
cycle, by virtue of (8.9.5), since
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−
∮ dP

0

p(ρ)
ρ

I · D(t)dt = −
∮ dP

0

p(ρ)
ρ

D(t)dt =
∮ dP

0

p(ρ)
ρ2
ρ̇dt = 0.

This follows on observing that the quantity

φ(ρ) =
∫ ρ

ρ0

1
ξ2

p(ξ)dξ, (8.9.22)

ρ0 being the equilibrium mass density, is a single-valued function of ρ, with the
consequence that φ(ρ0) vanishes. Thus, (8.9.21) reduces to

W(σ, P) =
∮ dP

0

1
ρ
T̃(ρ,Et

r) · D(t)dt ≥ 0. (8.9.23)

We observe that the zero state is σ† = (ρ0, 0†), where 0† is the zero relative
history.

Taking into account Definitions 4.1.6 of a free energy and 4.2.1 of a minimum
free energy, we prove an important property of the free energy of a fluid characterized
by (8.9.15) [100].

Theorem 8.9.3. For materials described by (8.9.15), every free energy may be writ-
ten as the sum of two terms

ψ(σ) = φ(ρ) + ϕ(γ),

where φ is given by (8.9.22) and ϕ : SΓ → R is defined on a set SΓ that is Γ-invariant
(namely, if γ ∈ SΓ, then Pγ ∈ SΓ for every P ∈ Π) and satisfies

ϕ(γ2) − ϕ(γ1) ≤
∫ dP

0
V(Et

r) · D(t)dt, (8.9.24)

where Pγ1 = γ2. Moreover, if ψ(σ†) = 0, then

ϕ(0†) = 0.

Proof. We recall from Definition 4.1.6 that the domain of a free energy must be
invariant under the action of any process P ∈ Π . Let σ(t) = (ρ(t), γ(t)) ∈ S be a state
and P a process with duration dP. Then, Pσ(t) ∈ S if (ρ(t+ dP), γ(t+ dP)) ∈ S, where
ρ(t + dP) is the solution (8.9.7) of (8.9.6) with τ = dP and γ(t + dP) = Pγ(t), the
solution of (8.9.4). Therefore, S is invariant if and only if S = R

+ × SΓ, where SΓ is
Γ-invariant.

Moreover, let P be a process of duration dP such that Pσ1 = σ2, where σ1 is the
state at time t = 0. The inequality defining a free energy (see (4.1.8)) yields

ψ(σ2) − ψ(σ1) ≤
∫ dP

0

1
ρ(t)

T(t) · D(t)dt = −
∫ dP

0

p(ρ(t))
ρ(t)

D(t)dt

+

∫ dP

0

[∫ ∞

0
κ′(s)Et

r(s)ds D(t) + 2
∫ ∞

0
μ′(s)Ĕt

r(s) · D̆(t)ds
]

dt,

(8.9.25)
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since
Ĕt
r(s) · D(t) = Ĕt

r(s) · D̆,
where D̆ is the trace-free part of D. Using (8.9.5), the first term of the right-hand side
of (8.9.25) becomes

−
∫ dP

0

p(ρ(t))
ρ(t)

D(t)dt =
∫ ρ2

ρ1

p(ρ)
ρ2

dρ = φ(ρ2) − φ(ρ1) (8.9.26)

with φ(ρ) given by (8.9.22). Substituting, we obtain

ψ(σ2) − ψ(σ1) ≤ φ(ρ2) − φ(ρ1)

+

∫ dP

0

[∫ ∞

0
κ′(s)Et

r(s)ds D(t) + 2
∫ ∞

0
μ′(s)Ĕt

r(s) · D̆(t)ds
]

dt.

From this relation it follows that the function ϕ = ψ − φ satisfies

ϕ(γ2) − ϕ(γ1) ≤
∫ dP

0

[∫ ∞

0
κ′(s)Et

r(s)ds D(t) + 2
∫ ∞

0
μ′(s)Ĕt

r(s) · D̆(t)ds
]

dt,

which is (8.9.24).
Finally, since

ψ(σ†) = φ(ρ0) + ϕ(0†), φ(ρ0) = 0,

then ψ(σ†) = 0 if and only if ϕ(0†) = 0. �	
Therefore, the right-hand side of (8.9.24) gives the work done by starting from

γ ∈ Γ,

W(γ, P) =
∫ dP

0

1
ρ
T̃(ρ,Et

r) · D(t)dt =
∫ dP

0
V(Et

r) · D(t)dt. (8.9.27)

We define
WΓ(γ) = {W(γ, P); P ∈ Π}.

It is easy to prove that the minimum free energy is given by

ψm(σ) = φ(ρ) + ϕm(γ),

where, recalling (4.2.2),
ϕm(γ) = − infWΓ(γ). (8.9.28)

The right-hand side is the able work.
A corresponding result can be proved for the general quadratic model discussed

in Chap. 7 (and therefore for all materials considered in Part III), where instead of
(8.9.15), we have (7.1.13)1, and the generalization of (8.9.26) follows from (7.1.14)2.

The discussion in Sect. 8.6 on free energies as quadratic functionals goes through
for fluids also but with φ(t), defined by (8.6.14), replaced by φ(ρ)), which is given by
(8.9.22).
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8.9.3 Thermodynamic Restrictions for Compressible Fluids

A procedure similar to that developed for viscoelastic solids in Theorem 8.1.2 and
corollaries will now be used to derive the restrictions imposed by the dissipation
principle on the constitutive equation (8.9.15).

For this purpose, taking into account (8.9.13) and (8.9.12), we can express the
constitutive equation in the form

T(t) = −p(ρ(t))I + ρ(t)
∫ ∞

0
κ(s)Ėt(s)ds I + 2ρ(t)

∫ ∞

0
μ(s)

d
dt
Ĕt(s)ds

= −p(ρ(t))I + ρ(t)
∫ ∞

0
κ(s)Dt(s)ds I + 2ρ(t)

∫ ∞

0
μ(s)D̆t(s)ds,

(8.9.29)

with the aid of two integrations by parts.

Theorem 8.9.4. The constitutive equation (8.9.29) complies with the dissipation
principle if and only if

κc(ω) > 0, μc(ω) > 0 ∀ω ∈ R++. (8.9.30)

Proof. The expression for the work given by (8.9.21), on substituting (8.9.29), has
two terms, the first of which, as we have already observed to derive (8.9.23), van-
ishes, by virtue of the balance of mass (8.9.5) and because the integral is evaluated
along a cycle. To discuss the other term, we consider the periodic function

D(t) = D1 cosωt + D2 sinωt ∀ω ∈ R++,
where D1, D2 ∈ Sym, and assume that the duration of the process P is 2π/ω times
some positive integer. As t runs over [0, dP) we obtain a cycle, since D(0) = D(dP)
and, by virtue of (8.9.7), where the integral on [0, dP) vanishes, ρ(0) = ρ(dP).

We can putD1 = D̆1+
1
3D1I, with D1 = trD1; similarly forD2. Therefore, (8.9.21)

reduces to
∮ dP

0

{∫ ∞

0
κ(s)
(

D2
1 cosω(t − s) cosωt + D2

2 sinω(t − s) sinωt

+ D1D2[cosω(t − s) sinωt + sinω(t − s) cosωt]) ds

+ 2
∫ ∞

0
μ(s)(D̆1 · D̆1 cosω(t − s) cosωt + D̆2 · D̆2 sinω(t − s) sinωt

+ D̆1 · D̆2[cosω(t − s) sinωt + sinω(t − s) cosωt]
)

ds
}

dt > 0,

and hence, by integrating with respect to t, we have

κc(ω)
(

D2
1 + D2

2

)

+ 2μc(ω)
(

D̆1 · D̆1 + D̆2 · D̆2

)

> 0 ∀ω ∈ R++

for any nonzero D1 and D2. Thus, the results (8.9.30) follow.
To show that (8.9.30) is a sufficient condition for the validity of (8.9.21), we note

that (σ(0), P) is a cycle if and only if D is periodic in [0, dP) with vanishing mean
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value in the period. However, since any periodic history can be expressed through a
Fourier series, we can write

Dt(s) =
∞
∑

h=1

{

Ăh cos hω(t − s) + B̆h sin hω(t − s)

+
1
3
[Ah cos hω(t − s) + Bh sin hω(t − s)]I

}

,

where Ah, Bh ∈ Sym and ω = 2π/dP.
The work done on a cycle is expressed by

W(γ, P) =
∮ dP

0

∫ ∞

0
κ(s)

∞
∑

h,k=1

[Ah cos hω(t − s) + Bh sin hω(t − s)]

× (Ak cos kωt + Bk sin kωt)dsdt

+ 2
∮ dP

0

∫ ∞

0
μ(s)

∞
∑

h,k=1

[

Ăh cos hω(t − s) + B̆h sin hω(t − s)
]

× (Ăk cos kωt + B̆k sin kωt)dsdt

=
π

ω

∞
∑

k=1

[

κc(kω)
(

A2
k + B2

k

)

+ 2μc(kω)
(

Ă2
k + B̆

2
k

)]

> 0,

because of (8.9.30); thus, the work on any nontrivial cycle satisfies the dissipation
principle. �	

For viscoelastic solids, the negative definiteness of the half-range sine transform
of G(s) is required by thermodynamics, as specified by (8.1.18). More generally,
we refer to (7.2.12). For viscoelastic fluids, the dissipation principle yields the posi-
tive definiteness of the half-range cosine transforms of κ(s) and μ(s). However, from
(8.9.30), taking account of the relation f ′s (ω) = −ω fc(ω) (see (7.2.13)), we also have

1
ω
κ′s(ω) < 0,

1
ω
μ′s(ω) < 0 ∀ω ∈ R++.

Hence, it follows that

Gc(ω) = − 1
ω
G′s(ω) > 0 ∀ω ∈ R++, (8.9.31)

in terms of the kernel introduced in (8.9.14). Moreover, Gc vanishes like ω−2 for
large ω, since by (C.2.17)1, we have

lim
ω→∞ω

2Gc(ω) = −G′(0),

where G′(0) is negative definite by virtue of the same argument as that leading to
(8.1.21).
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8.10 Incompressible Viscoelastic Fluids

For compressible fluids, the pressure p is a scalar function of the density ρ, on which
also the extra stress T̃ depends. However, for incompressible fluids the density ρ does
not depend on time, and therefore, it is omitted from the constitutive equations for
the stress tensor. Consequently, the pressure p is no longer a function of ρ, but now
becomes an indeterminate function of time.

Incompressible viscoelastic fluids are the simplest materials with memory con-
sidered in this work, in that they are characterized by a single scalar memory kernel.
Some of the results presented correspond to properties demonstrated earlier for solids
and compressible fluids. Indeed, we shall abbreviate or omit certain demonstrations
because closely analogous proofs have been given earlier. Others derived in this sec-
tion have corresponding analogues for solids and compressible fluids that were not
discussed earlier. They are conveniently included here because of the simplicity of
the model. More recent work on this topic includes [11].

The constitutive equation for the stress tensor of a linear viscoelastic incompress-
ible fluid, supposed for simplicity homogeneous, is given by

T(x, t) = −p(x, t)I + 2
∫ ∞

0
μ′(s)Et

r(x, s)ds, (8.10.1)

where the material function μ′ ∈ L1(R+)∩L2(R+) yields the shear relaxation function

μ(s) = −
∫ ∞

0
μ′(τ)dτ ∀s ∈ R+. (8.10.2)

A fluid so characterized is a simple material, with state determined only by the
relative strain history, i.e.,

σ(t) = Et
r(s) ∀s ∈ R++.

The set of all states of the fluid is denoted by Σ. A process is a piecewise continuous
map P : [0, dP)→ Sym defined by

P(τ) = ĖP(τ) ∀τ ∈ [0, dP). (8.10.3)

We denote by Π the set of all processes.
It is useful, as in the compressible case, to introduce the extra stress

T̃(Et
r) = T(t) + p(t)I = 2

∫ ∞

0
μ′(s)Et

r(s)ds

= 2
∫ ∞

0
μ(s)Ėt(s)ds = 2

∫ ∞

0
μ(s)D(t − s)ds,

(8.10.4)

which expresses the part of the stress due only to the relative strain history. We have
used the relation, valid in the linear approximation, that D(t) = Ė(t), which has been
invoked earlier for both solids and fluids. Note that (8.10.1) reduces to the linear
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version of the Navier–Stokes equation (2.2.15), if μ(s) is given by μ0δ(s), in terms of
the delta function. This is the short-memory limit discussed in Sect. 7.1.6.

Referring to (8.9.9) and (8.9.10), we note that similar properties hold for incom-
pressible fluids,

lim
τ→∞ T̃(E

t+τ(c)
r ) = lim

τ→∞ 2
∫ ∞

τ

μ′(s)Et+τ(c)
r (s)ds = T̃(0†) = 0.

For a partly static history (see (1.4.10) and (8.9.9)), we have

T̃(t + τ) = T(t + τ) + p(t + τ)I = 2
∫ ∞

0
μ′(τ + ξ)Et

r(ξ)dξ.

This expression suggests the following definition of the space of states:

Σ =

{

Et
r : R

++ → Sym;
∣

∣

∣

∣

∣

∫ ∞

0
μ′(τ + ξ)Et

r(ξ)dξ
∣

∣

∣

∣

∣

< ∞ ∀τ ∈ R+
}

,

where t is a parameter.
The process P ∈ Π is applied to a given σ(t) = Et

r(s)∀s ∈ R++ and τ ∈ [0, dP) as
in (8.10.3). The extra stress is given by

T̃(t + τ) = T(t + τ) + p(t + τ)I = 2
∫ τ

0
μ(s)Ėt+τ(s)ds + It(τ,Et

r), (8.10.5)

where (cf. (8.2.2); the footnote relating to that equation applies here also)

It(τ,Et
r) = 2

∫ ∞

0
μ′(ξ + τ)Et

r(ξ)dξ, τ ≥ 0. (8.10.6)

Note that

It(τ,Et
r) = 2

∫ 0

−∞
μ′(τ − u)Et

r(−u)du, τ ≥ 0. (8.10.7)

The definition of It gives the extra stress due to a partly static relative strain history.
The decomposition in (8.10.5)2 is similar to that in (8.9.18) for compressible fluids
and (8.2.8) for solids.

Definition 8.9.1 reduces here to the following statement.

Definition 8.10.1. Two states σ j(t) = Et
r j ( j = 1, 2) are said to be equivalent if for

every process P of duration dP, the subsequent states σ j(t + τ) = Et+τ
r j ( j = 1, 2)

satisfy
T̃(Et+τ

r1 ) = T̃(Et+τ
r2 ) ∀τ ∈ (0, dP]. (8.10.8)

Therefore, two equivalent states are indistinguishable, since they give the same
subsequent extra stress. Thus, we can introduce an equivalence relation R in Σ, the
quotient space ΣR of which has as elements the equivalence classesσR, each of which
is a set of equivalent states. These are the minimal states of the material.
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Theorem 8.10.2. For a viscoelastic fluid of type (8.10.1), two states σ j(t) = Et
r j ( j =

1, 2) are equivalent if and only if
∫ ∞

0
μ′(ξ + τ)

[

Et
r1 (ξ) − Et

r2 (ξ)
]

dξ = 0 ∀τ > 0. (8.10.9)

Proof. The proof, simpler than that of Theorem 8.9.2 for compressible fluids, follows
at once by considering the expression (8.10.5) for the extra stress and the arbitrariness
of P and τ. �	

The equivalent forms (8.10.8) and (8.10.9) can be expressed also in terms of
the function It given by (8.10.6). Two states, i.e., two relative strain histories, are
equivalent if and only if

It(τ,Et
r1 ) = It(τ,Et

r2 ) ∀τ > 0. (8.10.10)

Consequently, the function It represents an equivalence class or minimal state of ΣR.

8.10.1 Thermodynamic Restrictions for Incompressible Viscoelastic Fluids

Putting ρ = 1 and D(t) = Ė(t) in (8.9.21), we see that the work on a path γ performed
by going from an initial state σ to a final state ρ̂(σ, P) by means of a process P is
given by

W(σ, P) =
∫

γ

T(t) · Ė(t)dt. (8.10.11)

The path γ is not necessarily a cycle in general. The dissipation principle is expressed
by

W(σ, P) =
∮

T(t) · Ė(t)dt ≥ 0,

where the integral is evaluated on any cycle (σ, P) and the equality sign refers only
to reversible processes [297].

The analytical restrictions imposed by thermodynamics on the constitutive equa-
tion (8.10.1) have been derived in [113] and are stated by the following theorem.

Theorem 8.10.3. The constitutive equation (8.10.1) is compatible with the dissipa-
tion principle if and only if

μc(ω) > 0 ∀ω ∈ R, (8.10.12)

where μ ∈ L1(R+) and ∫ ∞
0
μ(s)ds � 0.

This follows by a simplified version of the proof of Theorem 8.9.4, where κ is
put equal to zero. The extension to R follows from the evenness of μc and the final
assumption on the integral of μ. This extension also applies to Theorem 8.9.4 under
the same assumption.
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By continuity, we have
∫ ∞

0
μ(s)ds = μc(0) > 0.

Moreover, since μ′ ∈ L1(R+) ∩ L2(R+), its Fourier transform is given by

μ′+(ω) = μ
′
c(ω) − iμ′s(ω) ∀ω ∈ R

and belongs to L2(R). Since
μ′s(ω) = −ωμc(ω), (8.10.13)

it follows from (8.10.1) that μ′s vanishes linearly at the origin. Also, (8.10.12) implies
that

ωμ′s(ω) < 0 ∀ω � 0. (8.10.14)

Moreover, from the inverse Fourier transform of μc(ω) given by

μ(s) =
2
π

∫ ∞

0
μc(ω) cos(ωs)dω,

we obtain that

μ(0) =
2
π

∫ ∞

0
μc(ω)dω = −1

π

∫ ∞

−∞

μ′s(ω)
ω

dω > 0.

From (C.2.17), we see that

μ′(0) = − lim
ω→∞ω

2μc(ω) ≤ 0 (8.10.15)

and that the asymptotic behavior of μ′c(ω) and μ′s(ω) is given by

μ′s(ω) ∼
μ′(0)
ω
, μ′c(ω) ∼ −

μ′′(0)
ω2
,

where it is assumed that 0 � |μ′(0)| < ∞. If μ′′ ∈ L1(R+), we obtain
ωμ′s(ω) = μ

′(0) + μ′′c (ω). (8.10.16)

8.10.2 The Mechanical Work

Firstly, we consider the work done on the material by the relative strain history up to
time t, when the final state is σ(t) = Et

r. Referring to (8.10.11), one has

W̃(Et
r) =
∫ t

−∞
T(τ) · Ė(τ)dτ = 2

∫ t

−∞

∫ ∞

0
μ′(s)Eτr (s)ds · Ė(τ)dτ, (8.10.17)

by virtue of the expression (8.10.1) for the stress tensor and the constraint of in-
compressibility, I · Ė = 0. We shall be concerned with relative strain histories that
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yield finite work, i.e., histories such that W̃(Et
r) < ∞. This work function can be ex-

pressed in various forms. We refer to Sect. 8.6.2 for analogous results applicable to
a viscoelastic solid. Similar relations can be obtained for compressible fluids. In the
present case, where the memory kernel is one scalar functional, the manipulations
are particularly simple.

Integrating by parts in (8.10.17) (see (8.10.4)) and using the definition of Et
r,

given by (8.9.2), we have

W̃(Et
r) = 2

∫ t

−∞

∫ ∞

0
μ(s)Ė(τ − s)ds · Ė(τ)dτ

=

∫ t

−∞

∫ t

−∞
μ(|ρ − u|)Ė(u) · Ė(ρ)dudρ,

where a change of variables has been implemented. Changing variables again, we
have

W̃(Et
r) =
∫ ∞

0

∫ ∞

0
μ(|η − ξ|)Ėt(ξ) · Ėt(η)dξdη, (8.10.18)

which, with two integrations by parts, yields

W̃(Et
r) =
∫ ∞

0

∫ ∞

0
μ12(|η − ξ|)Et

r(ξ) · Et
r(η)dξdη, (8.10.19)

where (cf. (8.6.33))

μ12(|η − ξ|) = ∂2

∂η∂ξ
μ(|η − ξ|) = −μ′′(|η − ξ|) − 2δ(η − ξ)μ′(|η − ξ|). (8.10.20)

The following result corresponds to that proved in Proposition 8.6.4. The manipula-
tions are particularly simple in the present case.

Lemma 8.10.4. The work done on the material by the relative strain history, Et
r(s)

∀s ∈ R++, is a nonnegative quantity.
Proof. Consider the expression (8.10.19) for W̃(Et

r). By substituting (8.10.20), we
obtain

W̃(Et
r) = −

∫ ∞

0

∫ ∞

0
μ′′(|η − ξ|)Et

r(ξ) · Et
r(η)dξdη − 2μ′(0)

∫ ∞

0
Et
r(s) · Et

r(s)ds.

Applying the convolution theorem and Parseval’s formula (Sect. C.3), together with
(C.1.5), gives

W̃(Et
r) = −

1
π

∫ ∞

−∞
[μ′′c (ω) + μ

′(0)]Et
r+(ω) · Et

r+(ω)dω

= −1
π

∫ ∞

−∞
ωμ′s(ω)E

t
r+(ω) · Et

r+(ω)dω,
(8.10.21)

because of (8.10.16). This expression is nonnegative by virtue of (8.10.14). �	
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Now we consider the work done by the process P(τ) = ĖP(τ)∀τ ∈ [0, dP), ap-
plied at time t when σ(t) = Et

r is the initial state. It is a function of the state σ and the
process P, given by (8.10.11), which, taking account of (8.10.5) and (8.10.6), yields

W(σ, P) =
∫ t+d

t
T(ξ) · Ė(ξ)dξ =

∫ d

0
T(t + τ) · ĖP(τ)dτ

=

∫ d

0

[

2
∫ τ

0
μ(τ − ξ)ĖP(ξ)dξ + It(τ,Et

r)

]

· ĖP(τ)dτ,

(8.10.22)

putting ĖP(τ) = Ė(t + τ).
The process P, defined for any τ ∈ [0, dP), dP being its finite duration, can be

extended to R+ by means of the trivial extension P(τ) = 0∀τ ∈ [dP,∞).
Firstly, we consider the case that such a process P is applied at time t = 0, when

the initial state is σ(0) = E0
r (s). Putting t = 0 and replacing τ by t, we have

˜W(E0
r , Ė) =

∫ ∞

0

[

2
∫ t

0
μ(t − τ)Ė(τ)dτ + I0(t,E0

r )

]

· Ė(t)dt

=

∫ ∞

0

[∫ ∞

0
μ(|t − τ|)Ė(τ)dτ + I0(t,E0

r )

]

· Ė(t)dt,

where ĖP is now denoted by Ė(t) (t > 0).
The work due only to the process can be evaluated by supposing that the initial

relative strain history is E0
r (s) = 0†(s) = 0∀s ∈ R++; thus, the last relation yields

˜W(0†, Ė) =
∫ ∞

0

∫ ∞

0
μ(|t − τ|)Ė(τ) · Ė(t)dτdt. (8.10.23)

We now give a definition introduced by Gentili [145] for viscoelastic solids.

Definition 8.10.5. A process P, of any duration, is said to be a finite work process if

˜W(0†, ĖP) < ∞.
This work is a positive quantity as the following lemma states [8].

Lemma 8.10.6. The work in Definition 8.10.5 satisfies the inequality

˜W(0†, ĖP) > 0.

Proof. Using the same procedure as in (8.10.21), one can show that relation (8.10.23),
the expression for the work done by P, applied at time t = 0 to the null relative strain
history 0†, can be expressed in the form

˜W(0†, ĖP) =
1
π

∫ ∞

−∞
μc(ω)ĖP+(ω) · ĖP+(ω)dω > 0. (8.10.24)

The inequality follows by virtue of (8.10.12). �	
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We can characterize the set of finite work processes by means of [145],

H̃μ(R
+) =

{

g : R+ → Sym;
∫ ∞

−∞
μc(ω)g+(ω) · g+(ω)dω < ∞

}

,

the completion of which, with the norm induced by the inner product

(g1, g2)μ =
∫ ∞

−∞
μc(ω)g1+(ω) · g2+(ω)dω,

yields the Hilbert space Hμ(R+) of processes.
Let us now consider the general case in which P is applied at any time t > 0. The

expression for the work done by the process P, again extended to R+ by means of its
trivial extension, becomes, using (8.10.22),

W(It, ĖP) = ˜W(Et
r, ĖP)

=

∫ ∞

0

[∫ ∞

0
μ(|τ − ξ|)ĖP(ξ)dξ + It(τ,Et

r)

]

· ĖP(τ)dτ,
(8.10.25)

where (σ, P) has been replaced by (It, ĖP) or (Et
r, ĖP). This becomes, in the frequency

domain (see (8.10.24)),

W(It, ĖP) =
1
π

∫ ∞

−∞
μc(ω)ĖP+(ω) · ĖP+(ω)dω +

1
2π

∫ ∞

−∞
It+(ω) · ĖP+(ω)dω,

where It+(ω) denotes the Fourier transform of It(τ,Et
r), defined by (8.10.6) on R

+.
The states σ are now expressed by means of It, which belong to the dual of Hμ(R+),
i.e.,

H′μ(R
+) =

{

It : R+ → Sym;
∫ ∞

−∞
It+(ω) · ĖP+(ω)dω < ∞ ∀ĖP ∈ Hμ(R+)

}

.

The definition of equivalence for two states, that is, for two relative strain histories,
can be expressed in terms of the work, as for viscoelastic solids [145]. A similar
result can be given for compressible fluids.

Definition 8.10.7. Two states σ j(t) = Et
r j ( j = 1, 2) are said to be w-equivalent if for

every P : [0, τ)→ Sym and for every τ > 0, they satisfy

W̃(Et
r1 , ĖP) = W̃(Et

r2 , ĖP). (8.10.26)

The two definitions of equivalence coincide by virtue of the following lemma.

Lemma 8.10.8. For every fluid characterized by the constitutive equation (8.10.1),
two states are w-equivalent if and only if they are equivalent in the sense of Defini-
tion 8.10.1.
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Proof. Let us consider the expression (8.10.22) for the work corresponding to two
states σ j(t) = Et

r j ( j = 1, 2). If these two states are equivalent, then the two expres-
sions for the work for any P coincide, i.e., they are w-equivalent. On the other hand,
if (8.10.26) is satisfied for any P of any duration, then by virtue of (8.10.25), relation
(8.10.10) holds and hence also (8.10.9) and (8.10.8). Thus, two w-equivalent states
are equivalent also in the sense of Definition 8.10.1. �	

The general representation of a free energy, already studied for viscoelastic solids
in Sect. 8.6, can be considered for fluids, as noted at the end of Sect. 8.9.2. For
incompressible fluids, this representation takes a particularly simple form by putting
G∞ = 0 in (8.6.17) and replacing G12(s, u) by a scalar kernel.

8.10.3 Maximum Free Energy for Incompressible Fluids

We seek to show that the mechanical work as given by (8.10.18) or (8.10.19) is the
maximum free energy for incompressible fluids, just as (8.6.31) has this property in
the case of viscoelastic solids. Let us put

ψM(t) =
∫ ∞

0

∫ ∞

0
μ12(|s − u|)Et

r(s) · Et
r(u)dsdu.

We rewrite this expression as (cf. (8.6.23))

ψM(t) = E(t) ·
[

μ0E(t) + 2
∫ ∞

0
μ′(u)Et(u)du

]

+

∫ ∞

0

∫ ∞

0
μ12(|s − u|)Et(s) · Et(u)dsdu,

using (8.9.2) and noting that
∫ ∞

0

∫ ∞

0
μ12(|s − u|)dsdu = μ(0, 0) = μ(0) = μ0.

Hence, recalling Remark 8.6.2, we observe that the property of a free energy ex-
pressed by ∂ψM/∂E = T̃ follows. Moreover, differentiating with respect to t, we
obtain

ψ̇M(t) = 2

[

μ0E(t) +
∫ ∞

0
μ′(u)Et(u)du

]

· Ė(t) + 2E(t) ·
∫ ∞

0
μ′(u)Ėt(u)du

+ 2
∫ ∞

0

∫ ∞

0
μ12(|s − u|)Ėt(s) · Et(u)dsdu.

The last integral, with an integration by parts, gives two terms, one of which vanishes
on account of the oddness of

∂μ

∂s
(|s − u|) = sign(s − u)μ′(|s − u|),
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while the second one cancels the third term in the expression of ψ̇M . Thus, taking
into account the constitutive equation (8.10.1), it follows that

ψ̇M(t) = T(t) · Ė(t), (8.10.27)

by virtue of the constraint of incompressibility. Therefore, (8.6.16) is satisfied with-
out dissipation, that is, with

D(t) = 0.

Integrating (8.6.16) over all past time, under the assumption that the integrals exist
(as in (5.1.34)), it is easy to see that ψM(t) ≥ ψ(t), where ψ is any other free energy. It
is of interest to present a demonstration that ψM is the maximum free energy, which
avoids infinite integrals.

For this purpose, we consider an arbitrary process P, applied at time t = 0 to the
zero state σ† = E0

r (s) = 0∀s ∈ R++, and we denote by σ(t) = Et
r = ρ̂(0

†, P[0,t)) the
final state, belonging to

DψM =
{

Et
r; ψM(E

t
r) < ∞

}

,

the set of all relative histories that yield a finite ψM(σ(t)) = ψM(Et
r). An integration

of (8.10.27) on the time interval (0, t) gives

ψM(σ(t)) =
∫ t

0
T(s) · Ė(s)ds,

since ψM(σ†) = 0. Furthermore, any other free energy ψ(σ(t)), with σ(t) = ρ̂(0†,
P[0,t)), must satisfy

ψ(σ(t)) ≤
∫ t

0
T(s) · Ė(s)ds,

because of (4.1.8) and since ψ(σ†) = 0. These last two relations yield the inequality

ψM(σ) ≥ ψ(σ),
where σ(t) = Et

r ∈ DψM is an arbitrary final state, obtained by means of any process
P. This inequality holds for any free energy functional ψ. Consequently, ψM is the
maximum free energy for incompressible viscoelastic fluids. As noted previously,
however, there is a problem with categorizing the work function as a free energy,
which arises out of Remark 18.2.
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