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Thermodynamics of Materials with Memory

We now apply thermodynamic principles to field theories with memory. For general
nonlinear, nonisothermal theories, we assume that a free energy is given, this being
the fundamental constitutive assumption. Applying a generalization of the approach
of Coleman [67], Coleman and Mizel [71], and Gurtin and Pipkin [191], we derive
the constitutive equations for the theory in Sect. 5.1. Also, fundamental properties of
free energies are derived. Furthermore, some observations are made on the case of
periodic histories and in relation to constraints on the nonuniqueness of free energies.
In Sect. 5.2, an expression for the maximum recoverable work is given for general
materials, together with an integral equation for the process yielding this maximum.
Finally, in Sect. 5.3, we discuss how free energies can be constructed from combina-
tions of simpler free energies.

In Part III, the entire emphasis is on determining suitable explicit forms of free
energies for materials with memory. All these involve quadratic functionals of histo-
ries.

5.1 Derivation of the Constitutive Equations

Let us begin by stating the first and second laws of thermodynamics. The theory is
developed in terms of the material description.

The internal energy per unit mass and the entropy per unit mass at (X, t), both
scalar quantities, are denoted, respectively, by e(X, t) and η(X, t). The local absolute
temperature is θ(X, t) ∈ R+. The Piola–Kirchhoff heat flux vector, defined by (3.1.1),
is denoted by q(X, t) ∈ R3; the subscript L is dropped. We introduce a variable κ(X, t),
which is the coldness, given by 1/θ > 0. All these quantities can also be expressed in
terms of the current position x and time t. The quantity gL ∈ R3 is defined by (3.2.2).
The subscript L will now be dropped. We also introduce d ∈ R3 as the gradient of κ,
so that

g = ∇Xθ, d = ∇Xκ = − 1
θ2
g, (5.1.1)
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where the gradient ∇X, here and below, is with respect to X. The energy balance
equation or the first law of thermodynamics has the form (see (3.3.8))

p − ρė − DivXq + ρr = 0, p =̂S · Ė. (5.1.2)

The quantity ρ(X) (denoted by ρ0 in Chap. 3) is the mass density in the material
configuration, and r is the external radiation absorbed per unit time, per unit mass at
(X, t). We write the second law of thermodynamics as

D = η̇ +
1
ρ
DivXjη − κr ≥ 0, (5.1.3)

where jη is the entropy flux, which in the present work will be taken to have the
equilibrium form (see (3.4.15))

jη = κq. (5.1.4)

The quantity D(X, t) is the total rate of entropy production per unit mass.
The superimposed dot notation in (5.1.2), (5.1.3), and below indicates the mate-

rial time derivative, i.e., holding X constant.
The quantitieŝS, E, q, and g are unaffected by a time-dependent coordinate trans-

formation in x. Thus, their components are objective scalars.
The Helmholtz free energy per unit mass, introduced in Sect. 3.4.2, is defined by

ψH = e − θη.
In terms of this quantity, we can write (5.1.2) as

p
ρ
− ψ̇H − ηθ̇ − 1

ρθ
q · g = θD. (5.1.5)

The fact that D is nonnegative means that (5.1.5) implies the Clausius–Duhem in-
equality (3.4.16). Relation (5.1.5) is unsatisfactory for materials with memory be-
cause, as discussed in Chap. 4 for free energies, neither ψH nor η is in general
uniquely defined. On the other hand, e is always uniquely defined. It is therefore
advantageous to modify the above standard formulation. We introduce the following
free energy:

ψ = κe − η = κψH . (5.1.6)

Instead of (5.1.5), we now have

κ
p
ρ
− ψ̇ + eκ̇ + 1

ρ
d · q = D ≥ 0. (5.1.7)

Observe that in this formulation, the natural temperature variable is κ rather than θ.
In [159], an integral of g was adopted as an independent variable, in a modifica-

tion of the approach of [191, 260]. It was pointed out in [159] that an alternative and
arguably better procedure would be to adopt the quantitym ∈ R3, defined by

m(t) =
∫ t

0
q(u)du, ṁ(t) = q(t), (5.1.8)
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as an independent variable. This choice has the advantage that m has an immediate
physical interpretation in that m · a is the cumulative heat flow over the time in-
terval [0, t], through a unit area perpendicular to the unit vector a in the reference
configuration. For the general development of the theory, we shall adopt m as an
independent variable rather than the time integral of g, though it is an easy matter to
exchange their roles where required.

We shall be assuming that the free energy is a functional of the history of this
quantity, namely mt(s) = m(t − s), s > 0, or specifically a functional of

m(t) −mt(s) =
∫ t

t−s
q(u)du, (5.1.9)

with no separate dependence on m(t); such dependence cannot occur, because m(t)
depends on the choice of the time origin. This is essentially the basis of the approach
in [191], though in that reference, g is used in (5.1.8) rather than q.

Modifying and extending the compact notation of Coleman [67], we introduce
Λ : R �→ Γ+, Σ : R �→ Γ+, where

Λ(t) = (E(t), κ(t),m(t)),

Σ(t) =
1
ρ

(

κ̂S(t), ρe(t),d(t)
)

, (5.1.10)

Γ+ = Sym × R+ × R3.

We assume that Λ is continuously differentiable. In terms of this notation, (5.1.7)1
can be written as

ψ̇ + D = Σ · Λ̇ (5.1.11)

with Λ̇ ∈ Γ, where∗
Γ = Sym × R × R3. (5.1.12)

The dot product here denotes a scalar product in the space Γ (Appendix A). This
relation is an expression of the first law and indicates that of the work done on the
material element per unit time, some is stored (ψ̇) and the rest is dissipated (D). The
second law is imposed through the Clausius–Duhem inequality (5.1.7)2 or

D = Σ · Λ̇ − ψ̇ ≥ 0, (5.1.13)

where D is defined by (5.1.3) with (5.1.4).

Remark 5.1.1. Following (4.1.3), we choose Λ̇(t) to be the thermodynamic process
in later chapters. If the time integral of g, rather than q, is used in (5.1.8) and θ(t)
replaces κ(t), then this corresponds to (3.2.2).

∗ The general developments described in later chapters go through for Γ understood to be
any finite-dimensional vector space, rather than just that defined by (5.1.12) and therefore
may apply to a variety of other physical applications, for example, those involving electro-
magnetic fields.
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Let Λt : R++ �→ Γ+ be defined by

Λt(s) = Λ(t − s), s ∈ R++. (5.1.14)

We assume that these belong to a real Hilbert space H of functions with values in
Γ+, possessing a suitable inner product and fading memory norm, the latter denoted
by ‖ · ‖ [67, 73]. A constitutive assumption is now made by requiring that the free
energy ψ depends in a specified way on the history and current value of Λ. We put

ψ(t) = ˜ψ
(

Λt,Λ(t)
)

, (5.1.15)

denoting that ˜ψ is a functional of the history Λt and depends also on the current
value Λ(t). Note that since all components of Λt,Λ are objective scalars, we have
automatically that ψ is an objective scalar.

To eliminate the arbitrariness of an additive constant, which is a feature of all
physical energies, we impose the condition

˜ψ
(

0†, 0
)

= 0, (5.1.16)

where 0 is the zero and 0† is the zero history, both in Γ+.
We now summarize the core argument of rational thermodynamics [67]. The free

energy given by (5.1.15) is constrained to obey the second law (5.1.13) for arbitrary
choices of Λt ∈ H. This yields constitutive equations and an expression for the rate
of dissipation. The balance laws (1.3.2) and (1.3.50) with (1.3.52) (or, in the Eulerian
description, (1.3.25)) and (5.1.2) must hold, and these involve elements of Λt. This
can always be arranged by suitable choices of body forces b in (1.3.50) and the
external radiation r in (5.1.2).

An important aspect of this approach is that balance laws, which have universal
application, are clearly separated from constitutive equations that apply to particular
categories of materials.

Of course, once constitutive equations have been established from such general
arguments, these relations, combined with the balance laws and suitable boundary
and initial conditions, can be used to determine Λt for specified choices of b and r.

Assuming that ˜ψ is differentiable with respect to Λ(t) and Fréchet differentiable
with respect to Λt withinH (fading memory principle [67, 73], generalized in [71]),
we can apply the chain rule to obtain

d
dt
˜ψ
(

Λt,Λ(t)
)

= ∂Λ˜ψ
(

Λt,Λ(t)
)

· Λ̇(t) + δ˜ψ
(

Λt,Λ(t) | ∂
∂t
Λt

)

, (5.1.17)

where ∂Λ indicates the derivative of ˜ψ with respect to the current value Λ(t) and δ˜ψ
is the Fréchet differential of ˜ψ at Λt in the direction ∂Λt/∂t, where

∂

∂t
Λt(s) = − ∂

∂s
Λt(s).

The functional δ˜ψ is linear in ∂Λt/∂t. These derivatives with respect to field quanti-
ties are assumed to be continuous in their arguments. It follows from (5.1.17) com-
bined with (5.1.13), by virtue of a standard argument [67], that
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Σ(t) = ˜Σ
(

Λt,Λ(t)
)

= ∂Λ˜ψ
(

Λt,Λ(t)
)

, (5.1.18)

which are the constitutive equations of the material and are objective relationships; in
fact, all components of both sides are objective scalars. Also, with the aid of (5.1.11),

D(t) = −δ˜ψ
(

Λt,Λ(t) | ∂
∂t
Λt

)

. (5.1.19)

Recalling that the free energy functional depends on m(t) −mt(s), with no separate
dependence on m(t), we shall generally, except in Sect. 5.1.3, write (5.1.15) in the
form

ψ(t) = ˜ψd
(

Λt
r,Λ0(t)

)

, (5.1.20)

where

Λt
r(s) = Λ

t(s) − Λ(t), Λ0(t) = (E(t), κ(t), 03), Λt
r, Λ0 ∈ Γ, (5.1.21)

and the quantity 03 indicates the zero in R3. Note that (5.1.17) can be written in terms
of ˜ψd as follows:

d
dt
˜ψd
(

Λt
r,Λ0(t)

)

= ∂Λ˜ψd
(

Λt
r,Λ0(t)

)

· Λ̇ + δr˜ψd
(

Λt
r,Λ0(t) | ∂

∂t
Λt

r

)

,

where δr˜ψd is the Fréchet differential of ˜ψd at Λ
t
r in the direction ∂Λ

t
r/∂t with

∂

∂t
Λt

r(s) =
∂

∂t
Λt(s) − Λ̇(t).

The quantity ∂Λ˜ψd (Λ
t
r,Λ0(t)) · Λ̇ will have zero in the R

3 contribution. Using the
linearity of δr˜ψd with respect to ∂Λt

r/∂t, we have that (5.1.18) can be written as
follows:

Σ(t) = ∂Λ˜ψd
(

Λt
r,Λ0(t)

)

− δc˜ψd
(

Λt
r,Λ0(t)

)

, (5.1.22)

where the first term on the right is the derivative with respect to the second argument
in ˜ψd, yielding zero for the R3 component, and δc˜ψd ∈ Γ is defined by the relation

δc˜ψd
(

Λt
r,Λ0(t)

)

· Λc = δr˜ψd
(

Λt
r,Λ0(t) | Λh(s)

)

, (5.1.23)

where, for arbitrary Λc ∈ Γ+, Λh is a history such that

Λh(s) = Λc, ∀ s > 0.

For the quadratic free energy functional introduced in Chap. 7, it is not necessary
to use (5.1.22). The simpler relation (5.1.18) can in fact be applied. Writing this out
explicitly, we obtain

κ

ρ
̂S = ∂E˜ψ, e = ∂κ˜ψ,

1
ρ
d = ∂m˜ψ.

Relation (5.1.19) becomes
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D(t) = −δr˜ψ
(

Λt
r,Λ0(t) | ∂

∂t
Λt

)

.

We define the equilibrium free energy φ to be given by (5.1.15) for the static
history Λt(s) = Λ†(s) = Λ(t), s ∈ R

+. It follows from (5.1.20) that this quantity
depends only on Λ0, so that

φ(t) = ˜φ (Λ0(t)). (5.1.24)

It can be deduced from (5.1.13) that [67, 191]

φ(t) ≤ ψ(t), ∀ t ∈ R, (5.1.25)

giving that the equilibrium free energy is less than or equal to the free energy for an
arbitrary history. From (5.1.16), we have ˜φ (0) = 0.

The notation φ(t) will be used in most cases instead of ˜φ (Λ0(t)). The quantity φ
is conventionally chosen to be nonnegative so that ψ has the same property.

We can write (5.1.20) as

ψ(t) = ˜φ (Λ0(t)) + ˜ψh(Λ
t
r,Λ0(t)) = φ(t) + ψh(t), (5.1.26)

where ψh(t) > 0 is the history-dependent part of the free energy. Note that by defini-
tion,

˜ψh(0,Λ0(t)) = 0. (5.1.27)

It follows from (5.1.22) that the generalized stress can also be expressed as the sum
of an equilibrium part and a history-dependent part:

Σ(t) = Σe(t) + Σrh(t), (5.1.28)

where

Σe(t) = ˜Σ(Λ0(t)) =
d

dΛ(t)
˜φ (Λ0(t)),

Σrh(t) = ˜Σrh(Λ
t
r,Λ0(t)) = ∂Λ˜ψh

(

Λt
r,Λ0(t)

)

− δc˜ψh
(

Λt
r,Λ0(t)

)

.

(5.1.29)

The quantity ˜Σrh vanishes as Λ
t
r tends to the zero history, provided that

lim
Λt→Λ†

∂Λ˜ψh(Λ
t,Λ(t)) = ∂Λ lim

Λt→Λ†
˜ψh(Λ

t,Λ(t)),

whereΛ† is defined before (5.1.24). We see this by observing that the right-hand side
is Σe(t), given by (5.1.29)1, while the left-hand side is the static history limit of ˜Σ(t)
by virtue of (5.1.18).

5.1.1 Required Properties of a Free Energy

Let us draw together for future reference the properties of a free energy, stated earlier,
which will be used to determine whether a given functional is a free energy. These
are not independent conditions, since they include both a statement of the second law
and consequences of that law.
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P1 We have
∂˜ψ(Λt,Λ(t))
∂Λ(t)

=
∂ψ(t)
∂Λ(t)

= Σ(t) = ˜Σ(Λt,Λ(t)), (5.1.30)

which is (5.1.18).†
P2 Let Λ† be a static history equal to Λ(t) at the current and all past times. Then,

˜ψ(Λ†,Λ(t)) = ˜φ (Λ0(t)), (5.1.31)

where ˜φ (Λ0(t)) is the equilibrium free energy. This is, in fact, a definition of ˜φ,
as given by (5.1.24), included here for completeness.

P3 For any history and current value (Λt,Λ(t)),

˜ψ(Λt,Λ(t)) ≥ ˜φ (Λ0(t)), (5.1.32)

which is (5.1.25).
P4 Condition (5.1.11) holds, namely

ψ̇(t) + D(t) = Σ(t) · Λ̇(t), D(t) ≥ 0, (5.1.33)

where D(t) is given by (5.1.19). The first relation is a statement of the first law,
while the non-negativity of D(t) is in effect the second law.

These are the Graffi conditions for a free energy [174, 175].

5.1.2 Periodic Histories for General Materials

Integrating (5.1.33) from a past time when the material was undisturbed and assum-
ing the integrals exist, we obtain

D(t) = W(t) − ψ(t) ≥ 0, D(t) =
∫ t

−∞
D(u)du,

W(t) =
∫ t

−∞
Σ(u) · Λ̇(u)du,

(5.1.34)

where W(t) is the work function (see (4.1.4)) and D(t) is the total dissipation up to
time t.

In the present context, the state is defined as the history and current value‡
(Λt,Λ(t)), and ψ is a state variable by virtue of (5.1.15). Indeed, this is a very general
requirement, as we see from Definition 4.1.6.

Let the history be periodic with period T . We have, for all t,

Λ(t + T ) = Λ(t). (5.1.35)

† This applies only to simple materials, which are the focus of interest in all of the present
work apart from Sect. 3.7 and Chap. 21. A generalization of (5.1.30) for certain nonsimple
materials is given by (21.1.19).
‡ In certain later contexts (for specific independent variables), we will also use what amounts
to the convention (Λ(t),Λt) to maintain consistency with some of the literature.
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Differentiating with respect to t, we obtain

Λ̇(t + T ) = Λ̇(t).

Once transient effects have faded away, all state functions will return to the same
value after a time T has passed, and we have

ψ(t + T ) = ψ(t), ψ̇(t + T ) = ψ̇(t).

The quantity ˜Σ, defined by (5.1.18), is also a function of state, so that

Σ(t + T ) = Σ(t).

From (5.1.33), it follows that

D(t + T ) = D(t).

Each period is generated by a cyclic process as given by Definition 4.1.4. Integrating
(5.1.33) over [t, t + T ], we obtain

∫ t+T

t
D(u)du =

∫ t+T

t
Σ(u) · Λ̇(u)du > 0 (5.1.36)

for materials with dissipation, or

D(t + T ) −D(t) = W(t + T ) −W(t) > 0. (5.1.37)

Now,
d
dt
[W(t + T ) −W(t)] = Σ(t + T ) · Λ̇(t + T ) − Σ(t) · Λ̇(t) = 0,

so that both sides of (5.1.36)1 are independent of t. The infinite integral defining D

and W(t) in (5.1.34) therefore must diverge for periodic histories, since they consist
of an infinite sum of integrals over a period, as in (5.1.36), each being equal to all the
others.

Observe that if ˜ψ depends only on Λ(t) and is independent of the history, then,
using (5.1.30),

∫ t+T

t
Σ(u) · Λ̇(u)du =

∫ Λ(t+T )

Λ(t)

∂

∂Λ(u)
˜ψ(Λ(u)) · dΛ(u)

= ˜ψ(Λ(t + T )) − ˜ψ(Λ(t)) = 0,

so that the total dissipation must be zero, a result that is consistent with (5.1.19).

5.1.3 Constraints on the Nonuniqueness of the Free Energy

Let us consider in general terms the nature of the arbitrariness in ψ and the constraints
imposed on this arbitrariness by the properties summarized in Sect. 5.1.1, which
we will refer to as the thermodynamic constraints. It will be required also that the
equilibrium free energy ˜φ (Λ0(t)) contains no arbitrariness.
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Proposition 5.1.2. The most general form of the free energy (5.1.15) consistent with
the thermodynamic constraints is

ψ(t) = ˜φ (Λ0(t)) + ˜ψ f

(

Λt,Λ(t)
)

+ ˜ψr
(

Λt
)

,

where ˜φ (Λ0(t)) is the equilibrium free energy, and ˜ψ f is a fixed, nonnegative func-
tional, with no restriction on itsΛ(t) dependence other than that˜φ+˜ψ f yields a satis-
factory form for (5.1.30). The quantity ˜ψr, which is independent of Λ(t), is arbitrary
within thermodynamic constraints and in particular may be zero. These thermody-
namic constraints give that ˜ψ f and ˜ψ f + ˜ψr must be nonnegative-valued functionals

and that −δ˜ψ f and −
(

δ˜ψ f + δ˜ψr
)

also must be nonnegative, where, as before, δ in-

dicates the Fréchet derivative specified in (5.1.17). Furthermore, ˜ψ f and ˜ψr must
vanish for the static history Λt(s) = Λ(t), s ∈ R+.
Proof. Let

ψ1(t) = Ψ1

(

Λt(s),Λ(t)
)

be an alternative choice of free energy, obeying the thermodynamic constraints. Then
P1 or (5.1.30) gives that

∂Λ
(

˜ψ − ˜ψ1
)

= 0,

so that
˜ψ1
(

Λt,Λ(t)
)

= ˜ψ
(

Λt,Λ(t)
)

+ ˜ψr
(

Λt
)

,

where ˜ψr is arbitrary within thermodynamic constraints on ˜ψ1 and of course may
be zero. We can always separate out ˜φ (Λ0(t)) (by adding and subtracting this quan-
tity), and the resulting memory terms ˜ψ f or ˜ψ f + ˜ψr must obey the thermodynamic
constraints. Finally, since ˜φ (Λ0(t)) is uniquely defined, ˜ψ f must vanish for the static
history if ˜ψr is zero, as noted in (5.1.27), and any choice of ˜ψr must have the same
property, which completes the proof. �


This result is a simpler version of a proposition given in [159]. The origin of the
simplification is the use of ψ rather than ψh. It is also a general statement of a property
noted below (see (7.1.16)) in connection with free energies that are quadratic in the
memory terms.

The internal energy is unique. A list of other unique quantities involving the
Helmholtz free energy ψh, entropy, and dissipation is given in [159].

5.2 The Maximum Recoverable Work for General Materials

In the next and subsequent chapters, we deal with the case of free energies given by
quadratic functionals, leading to constitutive equations with linear memory terms.
Before leaving the general formulation, it is of interest to note that results can be
obtained, using functional differentiation, that correspond to key formulas derived
later in the linear memory case. One example will be given, namely the formulas
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determining the maximum recoverable work. Others can be derived, with somewhat
greater difficulty, notably formulas for the work function as a double integral over
histories, the generalization of (7.5.7).§ Let us define

V(t) = Λ̇(t), V ∈ Γ,
noting that

Λ(t) = Λ(−∞) +
∫ t

∞
V(s)ds, (5.2.1)

where Λ(−∞) is a constant, which is taken to be zero. The integral is assumed to
exist. Let

Vt = {V(s); s ≤ t}, (5.2.2)

which is a similar convention to that in (5.1.14). The sum of two such sets is under-
stood to mean

Vt
1 + V

t
2 = {V1(s) + V2(s); s ≤ t}.

Relations (5.2.1) and (5.2.2) allow us to write ˜Σ(Λt,Λ(t)) in (5.1.18) compactly as

Σ(t) = ˜Σ(Vt) = Σe(t) + ˜Σrh(Vt),

in the notation of (5.1.28) and (5.1.29). The work done on the material up to time t
is given by (5.1.34)3 or

W(t) = ˜W(Vt) =
∫ t

−∞
˜Σ(Vs) · V(s)ds,

where the integral is assumed to be finite. Using (5.1.29), the recoverable work from
the state at time t may be written as

WR(t) = ˜WR(Vt) = −
∫ ∞

t

˜Σ(Vs) · V(s)ds = φ(t) −
∫ ∞

t

˜Σrh(Vs) · V(s)ds, (5.2.3)

where V(s), s ≥ t, is the process determining the evolution of the state after time t,
chosen so that the integrals in (5.2.3) exist. We take φ(∞) to be zero. Let us assume
that ˜Σrh is continuously Fréchet differentiable in the fading memory Hilbert spaceH.
Let Δ : R �→ Γ belong to H, and let Δt be defined in the same way as Vt by (5.2.2).
Then,

˜Σrh(Vs + Δs) = ˜Σrh(Vs) + δ˜Σrh(Vs|Δs) + o‖Δs‖ ∀ Δs ∈ Γ, (5.2.4)

where δ˜Σ is the Fréchet differential, continuous in Vs and linear in Δs. Also, ‖ · ‖ is
the norm inH. By the Riesz representation theorem, we can write

δ˜Σrh(Vs|Δs) =
∫ ∞

−∞
L(s, u; Vs)Δ(u)du, (5.2.5)

where L ∈ Lin(Γ) and
L(s, u; Vs) = 0, s < u, (5.2.6)

since values of Δ(u), u > s, cannot contribute.
§ J. M. Golden, unpublished notes.
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Proposition 5.2.1. The maximum recoverable work, which, by Theorem 4.2.3, is
equal to the minimum free energy, can be expressed in the form

Wrm(t) = φ(t) +
1
2

∫ ∞

t
ds
∫ ∞

t
duLS (u, s; Vm)Vm(u, t) · Vm(s, t)

with

LS (u, s; Vm) =

{

L(s, u; Vs
m), s > u,

L�(u, s; Vu
m), s < u,

(5.2.7)

where Vm(·, t) is the solution of the equation
˜Σrh(Vs) +

∫ ∞

s
L�(u, s; Vu)V(u)du = 0, s ≥ t. (5.2.8)

Proof. We seek to maximize the recoverable work given by (5.2.3). Applying a vari-
ation

Vs → Vs + Δs, Δ(u) = 0 if u < t,

we obtain the condition
∫ ∞

t

˜Σrh(Vs) · Δ(s)ds +
∫ ∞

t
ds
∫ s

t
duL(s, u; Vs)Δ(u) · V(s) = 0, (5.2.9)

with the aid of (5.2.4)–(5.2.6). Noting the identities
∫ ∞

t
ds
∫ s

t
du F(s, u) =

∫ ∞

t
du
∫ ∞

u
ds F(s, u) =

∫ ∞

t
ds
∫ ∞

s
du F(u, s), (5.2.10)

relation (5.2.9) becomes, using (A.2.3),
∫ ∞

t

˜Σrh(Vs) · Δ(s)ds +
∫ ∞

t
ds
∫ ∞

s
duL(u, s; Vu)Δ(s) · V(u)

=

∫ ∞

t

˜Σrh(Vs) · Δ(s)ds +
∫ ∞

t
ds
∫ ∞

s
duL�(u, s; Vu)V(u) · Δ(s) = 0.

The arbitrariness of Δ gives (5.2.8), the solution of which yields the optimal future
process Vm(·, t). Using (5.2.8) in (5.2.3), we obtain, by adding the leftmost and right-
most forms of (5.2.10), an expression for the maximum recoverable work or the
minimum free energy

Wrm(t) = ψm(t)

= φ(t) +
∫ ∞

t
ds
∫ ∞

s
duL�(u, s; Vu

m)Vm(u, t) · Vm(s, t) (5.2.11)

= φ(t) +
1
2

∫ ∞

t
ds
∫ ∞

t
duLS (u, s;Vm)Vm(u, t) · Vm(s, t),

where LS is given by (5.2.7). �

Note that

L�S (u, s; Vm) = LS (s, u; Vm).

We observe that the form (5.2.11)2 is a generalization of a result given in
Sect. 7.5, while (5.2.8) is a generalized form of the Wiener–Hopf equation (11.2.26).
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5.3 Generation of New Free Energies

If some free energies are known for a certain category of materials, for example,
those with constitutive equations that have linear memory, we ask in this section,
and answer affirmatively, whether it is possible to construct (for example, nonlin-
ear) functions of the known quantities that are free energies relating to more general
materials (for example, those with constitutive equations that have nonlinear mem-
ory). Note that the findings discussed here are quite different from those in Chap. 17,
which deals only with quadratic functionals producing linear memory constitutive
equations.

Let ψ1(t), ψ2(t), . . . , ψn(t) be a set of n free energies relating to a state (Λt,Λ(t))
in a given material, or perhaps in different materials, at time t. To allow for the latter
possibility, we assign to each ψi(t), i = 1, 2, . . . , n, different constitutive equations

Σi(t) = ˜Σi(Λ
t,Λ(t))

and work functions

Wi(t) =
∫ t

−∞
Σi(s) · Λ̇(s)ds,

where
∂ψi(t)
∂Λ(t)

= Σi(t), i = 1, 2, . . . , n, (5.3.1)

and, by virtue of (5.1.33),

ψ̇i(t) ≤ Σi(t) · Λ̇(t), i = 1, 2, . . . , n.

If all these free energies belong to the same material, the dependent field variables
Σi are all equal and the index i refers to different free energies of the same material.

Proposition 5.3.1. The quantity

ψ(t) = f (ψ1(t), ψ2(t), . . . , ψn(t)) (5.3.2)

is a free energy for the state (Λt,Λ(t)) with the dependent field given by

Σ(t) =
n
∑

i=1

∂ f
∂ψi(t)

Σi(t), (5.3.3)

provided that f : (R+)n �→ R
+ has the properties

∂

∂yi
f (y1, y2, . . . , yn) ≥ 0, i = 1, 2, . . . , n, (5.3.4)

and
f (0, 0, . . . , 0) = 0. (5.3.5)
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Proof. We have

ψ̇(t) =
n
∑

i=1

∂ f
∂ψi(t)

ψ̇i(t) ≤
n
∑

i=1

∂ f
∂ψi(t)

Σi(t) · Λ̇(t) = Σ(t) · Λ̇(t),

where Σ is defined by (5.3.3). Thus, property 4 of a free energy, given by (5.1.33),
holds. Also, by virtue of (5.3.1) and (5.3.3),

∂ψ(t)
∂Λ(t)

= Σ(t), (5.3.6)

which is property 1 as given by (5.1.30). If φi(t), i = 1, 2, . . . , n, are the equilibrium
free energies corresponding to ψi(t), according to the prescription (5.1.31), then

φ(t) = f (φ1(t), φ2(t), . . . , φn(t))

and property 3, i.e., (5.1.32), is obeyed by virtue of the assumptions (5.3.4).
If (5.1.16) is to hold for all free energies ψ and ψi(t), i = 1, 2, . . . , n, then we must

have (5.3.5). �

This result can be used, for example, as follows: assume we have a nonlinear

dependent field variable of the form (5.3.3), where f obeys (5.3.4) and the Σi are
determined by (5.3.1). Then (5.3.2) immediately gives a free energy that generates
Σ(t) through (5.3.6).

Taking f to be an analytic function of its arguments at the origin, we can write

ψ(t) =
n
∑

i=1

λiψi(t) + higher powers. (5.3.7)

A constant term is excluded by (5.3.5). If we omit higher powers, taking ψ to be a
linear combination of the ψi, it follows from (5.3.4) that

λi ≥ 0, i = 1, 2, . . . , n. (5.3.8)

If the free energies ψi, i = 1, 2, . . . , n, relate to the same material, then (5.3.3) be-
comes

Σ(t) = κ(t)Σsm(t), κ(t) =
n
∑

i=1

∂ f
∂ψi(t)

,

Σsm(t) = Σ1(t) = Σ2(t) = · · · = Σn(t).
Let higher powers be neglected in (5.3.7). If ψ is assumed to relate to the same
material as the ψi, i = 1, 2, . . . , n, then

Σsm(t) = Σ(t)

and
n
∑

i=1

∂ f
∂ψi(t)

=

n
∑

i=1

λi = 1.

This, together with (5.3.8), amounts to convexity (see Proposition 4.1.7).
The next chapter is something of a diversion from the main flow of the discussion,

to consider Thermoelectromagnetism.


	5 Thermodynamics of Materials with Memory
	5.1 Derivation of the Constitutive Equations
	5.1.1 Required Properties of a Free Energy
	5.1.2 Periodic Histories for General Materials
	5.1.3 Constraints on the Nonuniqueness of the Free Energy

	5.2 The Maximum Recoverable Work for General Materials
	5.3 Generation of New Free Energies


