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Dynamics of Viscoelastic Fluids

30.1 Introduction

An evolution problem in a bounded domain for viscoelastic fluids of the kind consid-
ered in Chaps. 8, 10, and 13 is now presented. Our attention is confined to infinites-
imal viscoelasticity for isotropic, homogeneous, and incompressible fluids. There-
fore, the constitutive equation for the stress tensor T is expressed by the hereditary
law (8.10.1), which, with an integration by parts, can be rewritten as follows:

T(x, t) = −p(x, t)I +
∫ ∞
0
μ(s)Ėt(x, s)ds. (30.1.1)

The stability problem for such fluids was examined under a variety of conditions in
many articles (see [215, 216, 300, 301]). We recall, in particular, that Slemrod in
[300] showed that if μ(s) ∈ C2(R+), μ(s) → 0 as s → ∞, μ(s) > 0, μ′(s) < 0, and
μ′′(s) ≥ 0, the rest state of these fluids is stable in a suitable “fading memory” norm,
and the solution of the linearized boundary initial history value problem converges
to the rest state weakly in this norm as t → ∞. The same author proved asymptotic
stability by means of the additional assumption that

∫ ∞
0

s2μ′(s)ds < ∞.
In [113], it was shown that there exists a strict connection between the ther-

modynamic restrictions on the relaxation function μ and the existence, uniqueness,
and stability theorems relating to the boundary initial history value problem for vis-
coelastic fluids characterized by the constitutive equation (8.10.1). For this purpose,
the strict inequality in condition (8.10.12) of Theorem 8.10.3, μc(ω) > 0 ∀ω ∈ R, is
important, since the asymptotic stability of the rest state fails when the weaker con-
dition μc(ω) ≥ 0 ∀ω ∈ R is assumed, as occurs for a particular family of relaxation
functions examined also in [113].
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30.2 An Initial Boundary Value Problem for an Incompressible
Viscoelastic Fluid

Let Ω ⊂ R
3 be a smooth bounded domain occupied by a linear viscoelastic incom-

pressible fluid, for which the constitutive equation is given by (30.1.1). The linear
approximation of the equations of motion on the domain Q = Ω × R++ for the initial
boundary value problem, characterized by Dirichlet’s boundary conditions, yields
the following system:

∂

∂t
v(x, t) = ∇ ·

[
−p(x, t)I +

∫ ∞
0
μ(s)∇vt(x, s)ds

]
+ f(x, t),

∇ · v(x, t) = 0, (30.2.1)

v(x, t) = 0 ∀x ∈ ∂Ω, ∀t ∈ R++,
v(x, τ) = v0(x, τ) ∀x ∈ Ω, ∀τ ∈ R−,

where the constant mass density ρ is understood and not written, v and p are the
velocity and the pressure fields, f gives the body forces, and v0 denotes the history
of the velocity up to time t = 0. Note that we have used the relation ∇ · Ėt(x, t) =
1
2∇ · [∇v(x, t)], which follows from the constraint of incompressibility ∇ · v(x, t) = 0.

The relaxation function μ is assumed to be such that μ ∈ L1(R+) and such that it
satisfies the following thermodynamic restriction:

μc(ω) =
∫ ∞
0
μ(s) cosωsds > 0 ∀ω ∈ R. (30.2.2)

We denote by L2s(Ω) and H2
s0(Ω) the Hilbert spaces obtained by means of the

completion of solenoidal vector fields v ∈ C∞0 (Ω) in the L2(Ω) and in the H1
0(Ω)

norms, respectively. Moreover, L2π(Ω) is the Hilbert space obtained by virtue of the
completion of irrotational vector fields v ∈ C∞0 (Ω) in the L2(Ω) norm. Thus, we have
L2(Ω) = L2s(Ω) ⊕ L2π(Ω).

Theorem 30.2.1. If the relaxation function μ belongs to L1(R+) and satisfies (30.2.2),
the supply f ∈ L2(R+; L2(Ω)), the initial history v0(·, s) ∈ H1

s0(Ω) for all s ∈ R−, and
the function V0(x, t) = ∇ ·

∫ ∞
t
μ(s)∇v0(x, t − s)ds ∈ L2(R+; L2s(Ω)), then the problem

(30.2.1) has one and only one solution v ∈ L2(R++;H1
s0(Ω)).

Before giving a proof of this theorem, we consider the Laplace-transformed ver-
sion of the problem and then prove some relevant and useful lemmas.

30.2.1 Transformed Problem

Firstly, recall that the Laplace transform of any smooth function ϕ : R
+ → R is

defined by ϕL(z) =
∫ ∞
0

e−zsϕ(s)ds, where z ∈ C is the Laplace parameter belonging
to the complex plane, here denoted by C. This generalizes the quantity given by
(C.2.4), where z ∈ R+.
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Applying a Laplace transform to the dynamical problem (30.2.1) gives

zvL(x, z) = −∇pL(x, z) + ∇ · [μL(z)∇vL(x, z)] + F(x, z) ∀x ∈ Ω,
∇ · vL(x, z) = 0 ∀x ∈ Ω, (30.2.3)

vL(x, z) = 0 ∀x ∈ ∂Ω,
where we have put

F(x, z) = fL(x, z) + v0(x, 0) +
∫ ∞
0

e−zs∇ ·
[∫ ∞

s
μ(τ)∇v0(x, s − τ)dτ

]
ds

= fL(x, z) + v0(x, 0) + V0L (x, z).

From the hypotheses f ∈ L2(R+; L2(Ω)) and V0 ∈ L2(R+; L2s(Ω)), it follows that F is
well defined for any complex z ∈ C+ := {z ∈ C; Rez ≥ 0}.

Now we give the definition of a weak solution to our problem and consider the
variational formulation of the linear differential system (30.2.3).

Definition 30.2.2. A function vL ∈ H1
s0(Ω) is said to be a weak solution of (30.2.3) if

∫
Ω

[μL(z)∇vL(x, z) · ∇u(x) + zvL(x, ω) · u(x)]dx =
∫
Ω

F(x, z) · u(x)dx (30.2.4)

for every complex vector u ∈ H1
s0(Ω).

Here, as previously, the bar over a quantity indicates complex conjugate.
If vL is a weak solution, then following Teman ([307], Lemma 2.1), we can prove

that there exists a scalar field pL ∈ L2(Ω) such that

zvL(x, z) = −∇pL(x, z) + ∇ · [μL(z)∇vL(x, z)] + F(x, z) ∀x ∈ Ω,
∇ · vL(x, z)ds = 0 ∀x ∈ Ω,

in the sense of distributions, and moreover, vL(x, z) = 0 on ∂Ω.

Lemma 30.2.3. Under the hypotheses of Theorem 30.2.1, the problem (30.2.3) has
one and only one weak solution.

We now observe that the bilinear form

a(v,u; z) =
∫
Ω

[μL(z)∇v(x) · ∇u(x) + zv(x) · u(x)]dx (30.2.5)

is coercive in H1
s0(Ω). Thus, by general theorems on elliptic systems (see [134, 307,

310]), the existence and uniqueness of a weak solution to (30.2.4) for every F ∈
L2(Ω) follow.
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To prove Lemma 30.2.3, it must be shown that there exists an α > 0, possibly
dependent on z, such that

|a(v, v; z)| ≥ α(z)‖v‖2
H1

s0(Ω)
.

We now want to demonstrate that the coerciveness of a can be proved by means
of the thermodynamic restriction (30.2.2).

To prove this, recall a property of Fourier integrals.

Proposition 30.2.4. Let ϕ1, ϕ2 ∈ L1(R) with ϕ1ϕ2 ∈ L1(R), and let ϕF denote the
Fourier transform of ϕ. If

Φ(ω) =
∫ ∞
−∞
ϕ1F(τ)ϕ2F(ω − τ)dτ

is continuous in ω, then

∫ ∞
−∞

e−iωsϕ1(s)ϕ2(s)ds =
1
2π

∫ ∞
−∞
ϕ1F(τ)ϕ2F(ω − τ)dτ ∀ω ∈ R. (30.2.6)

This is an inverted form of the convolution theorem (C.3.2). It follows immedi-
ately from Parseval’s formula ([37] and Sect. C.3).

Lemma 30.2.5. If the relaxation function μ belongs to L1(R+) and satisfies (30.2.2),
then

∫ ∞
0

e−σs cosωsμ(s)ds > 0 ∀ω ∈ R, ∀σ ∈ R+. (30.2.7)

Proof. If σ = 0, then (30.2.7) holds, since it coincides with (30.2.2). Let σ > 0, and
consider the function [146]

ϕ1(s) = μ(|s|), ϕ2(s) =
⎧⎪⎪⎨⎪⎪⎩
0 ∀s < 0,

e−σs ∀s ≥ 0.

Thus, ϕ1, ϕ2, ϕ1ϕ2 ∈ L1(R), and we have

ϕ1F (τ) = 2
∫ ∞
0

cos τsμ(s)ds, ϕ2F (τ) =
1

σ + iτ
,

whence it follows that

Φ(ω) =
∫ ∞
−∞

2
σ + i(ω − τ)

∫ ∞
0

cos τsμ(s)dsdτ

is continuous. From (30.2.6), applied to the functions ϕ1 and ϕ2, we have
∫ ∞
0

e−(σ+iω)sμ(s)ds =
1
π

∫ ∞
−∞

1
σ + i(ω − τ)

∫ ∞
0

cos τsμ(s)dsdτ,
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which has a real part given by

∫ ∞
0

e−σs cosωsμ(s)ds =
1
π

∫ ∞
−∞

σ

σ2 + (ω − τ)2
∫ ∞
0

cos τsμ(s)dsdτ,

whence (30.2.7) follows by virtue of the conditions σ > 0 and (30.2.2). �

We can now establish the coerciveness of a(v,u, z).

Lemma 30.2.6. If the relaxation function μ belongs to L1(R+) and satisfies (30.2.2),
then the bilinear form a is coercive for every complex number z ∈ C+.
Proof. Since |a(v, v, z)| ≥ Rea(v, v, z), it is enough to show that

Rea(v, v; z) ≥ α(z)‖v‖2
H1

s0(Ω)

for every z ∈ C+.
The Laplace transform μL, putting z = σ+iω, where ω ∈ R and σ ∈ R+, becomes

μL(z) =
∫ ∞
0

e−σs cosωsμ(s)ds − i
∫ ∞
0

e−σs sinωsμ(s)ds,

which, substituted into (30.2.5), yields

Rea(v, v; z) =
∫ ∞
0

e−σs cosωsμ(s)ds
∫
Ω

|∇v(x)|2dx + σ
∫
Ω

|v(x)|2dx.

Hence, by Korn’s inequality and the arbitrariness of σ > 0, we have

Rea(v, v; z) ≥ C(Ω)
∫ ∞
−∞

e−σs cosωsμ(s)ds‖v(x)‖2
H1

s0(Ω)
,

where C(Ω) is a strictly positive constant that depends on the domain Ω and the
integral satisfies (30.2.7). Thus, the proof is complete. �

Since Lemma 30.2.3 yields the existence and uniqueness of the solution of
(30.2.4), we can study the properties of this solution vL.

Consider the Green tensor function Γ ∈ H1
s0(Ω), defined as a solution of the

problem

∫
Ω

[μL(z)∇x′Γ(x, x′; z)∇x′u(x′) + zΓ(x, x′; z)u(x′)]dx′ =
∫
Ω

δ(x − x′)u(x′)dx′
(30.2.8)

for every u ∈ H1
s0(Ω), where δ is the Dirac delta function.

The solution of (30.2.4) can be written in terms of Γ as follows:

vL(x, z) =
∫
Ω

Γ(x, x′; z)F(x′, z)dx′. (30.2.9)

We now prove existence, uniqueness, and asymptotic behavior with respect to the
parameter z of solutions Γ of Eq. (30.2.8).
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Lemma 30.2.7. Under the hypotheses of Theorem 30.2.1, there exists a unique solu-
tion Γ of (30.2.8) such that

(i) Γ(x, ·; z) ∈ H1
s0(Ω) for every z ∈ C+,

(ii) Γ(x, x′; ·) is continuous in C+, and
(iii) for z ∈ C+,

lim
z→∞ z

1−αΓ(x, x′; z) = 0, α > 0,

lim
z→∞

∫
Ω

zΓ(x, x′; z)u(x′)dx′ = u(x), (30.2.10)

in the sense of distributions.

Proof. The first property holds by virtue of the coerciveness of the bilinear form
a(v, v; z), since δ is in the dual space H−1(Ω). The second property follows from the
continuity of the bilinear form a(v,u; ·) with respect to the third argument (see [310],
Lemma 44.1). Finally, note that from (30.2.8), we have

∫
Ω

z1−αΓ(x, x′; z)
[
u(x′) − z−1μL(z)∇x′ · ∇x′u(x′)

]
dx′ = z−αu(x)

for every α > 0 and u ∈ C∞0 (Ω). Hence, since μL is a bounded function of z, the limit
as z→ ∞ yields (30.2.10). �

A representation for ∇xvL can be given in terms of the Green function. We denote
by ∇xΓ the third-order tensor function such that

∫
Ω

{μL(z)∇x′[∇xΓ(x, x′; z)]∇x′u(x′) + z[∇xΓ(x, x′; z)]u(x′)}dx′

=

∫
Ω

[δ(x − x′)I]xu(x′)dx′ (30.2.11)

for every u ∈ H1
s0(Ω). In terms of ∇xΓ,

∇xvL(x, z) =
∫
Ω

∇xΓ(x, x′; z)F(x′, z)dx′.

Using the proof of Lemma 30.2.7 and replacing Γ with ∇xΓ, we obtain the following
result.

Lemma 30.2.8. Under the hypotheses of Theorem 30.2.1, there exists a unique solu-
tion ∇xΓ of (30.2.11) such that

(i) ∇xΓ(x, ·; z) ∈ L2s(Ω) for every z ∈ C+ (see [310], Lemma 23.2),
(ii) ∇xΓ(x, x′; ·) is continuous on C+,
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(iii) for α > 0, z ∈ C+,

lim
z→∞ z

1−α∇xΓ(x, x′; z) = 0

in the sense of distributions.

These results allow us to prove existence, uniqueness, and stability of the solution
to (30.2.1).

A proof of Theorem 30.2.1 is now outlined.

Proof. By hypothesis, f ∈ L2(R+; L2(Ω)) and

V0(x, t) = ∇ ·
∫ ∞
t
μ(s)∇v0(x, t − s)ds

belongs to L2(R+; L2s(Ω)); therefore, we obtain

lim
z→∞F(x, z) = lim

z→∞

[
fL(x, z) + v0(x, 0) +

∫ ∞
0

e−zs∇ ·
∫ ∞
s
μ(τ)∇v0(x, s − τ)dτds

]

= v(x, 0).

Moreover, (30.2.9) and property (iii) of Γ, for α > 0, give

lim
z→∞ z

1−αvL(x, z) = lim
z→∞

∫
Ω

z1−αΓ(x, x′; z)F(x′, z)dx′

= lim
z→∞

∫
Ω

z1−αΓ(x, x′; z)v(x′, 0)dx′ = 0. (30.2.12)

Let z = iω and 0 < α < 1
2 ; from (30.2.12), it follows that vL(x, iω) is in L2 with

respect to ω; we can view it as the Fourier transform of the function

v̆(x, t) =

⎧⎪⎪⎨⎪⎪⎩
0, t < 0,

v(x, t), t ≥ 0.

Using Parseval’s formula, we have

1
2π

∫ ∞
−∞

∫
Ω

|vL(x, iω)|2dxdω =
∫ ∞
−∞

∫
Ω

|v̆(x, t)|2dxdt =
∫ ∞
0

∫
Ω

|v(x, t)|2dxdt
(30.2.13)

and

1
2π

∫ ∞
−∞

∫
Ω

|∇xvL(x, iω)|2dxω =
∫ ∞
−∞

∫
Ω

|∇xv̆(x, t)|2dxdt

=

∫ ∞
0

∫
Ω

|∇xv(x, t)|2dxdt. (30.2.14)
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From (30.2.13) and (30.2.14), it follows that
∫ ∞
0

∫
Ω

[
|∇v(x, t)|2 + |v(x, t)|2

]
dxdt < ∞.

Hence, we obtain the required result v ∈ L2(R++;H1
s0(Ω)). �

30.2.2 Counterexamples to Asymptotic Stability

We consider, for the sake of simplicity, one-dimensional evolution problems.
Suppose that an incompressible viscoelastic fluid occupies the strip 0 < x <

l, (x, y) ∈ R
2, between two fixed plates. Let the supply f and the initial history v0

have the form f = f (x, t)k, v0 = v0(x, τ)k ∀τ ∈ R
−; then, v = v(x, t)k must be a

solution of the scalar boundary initial history value problem

vt(x, t) =
∫ ∞
0
μ(s)vxx(x, t − s)ds + f (x, t) ∀x ∈ (0, l), ∀t ∈ R++,

v(0, t) = v(l, t) = 0 ∀t ∈ R++, (30.2.15)

v(x, τ) = v0(x, τ) ∀x ∈ (0, l), ∀τ ∈ R−.
Since Theorem 30.2.1 can be applied to domains that are bounded in some di-

rection (see, for example, [307], Theorem 2.1), if the relaxation function μ sat-
isfies (30.2.2), then the problem (30.2.15) has one and only one solution v ∈
L2(R++;H1

s0(0, l)), for any f ∈ L2(R+; L2(0, l)) and v0 such that
∫ ∞
t
μ(s)v0xx (x, t −

s)ds ∈ L2(R+; L2s(0, l)).
We want to show that there exist relaxation functions that comply with weaker

thermodynamic requirements but do not allow asymptotic stability of the solution of
the problem (30.2.15) under the hypotheses of Theorem 30.2.1.

For this purpose, let us assume a nonnegative relaxation function μ with proper-
ties

(P1) μ is a positive decreasing function belonging to H1(R+,R+) such that

μ(s) <
k

(1 + s)2+ε
, k, ε > 0;

(P2) μ satisfies the “weak formulation” of the second law of thermodynamics for
isothermal processes; that is,

∫ ∞
0
μ(s) cosωsds ≥ 0 ∀ω ∈ R,

and there exists at least one frequency ω∗ � 0 such that

μc(ω
∗) =
∫ ∞
0
μ(s) cosω∗sds = 0. (30.2.16)
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Theorem 30.2.9. Let μ be a relaxation function that has properties (P1) and (P2).
Then there exists a critical length l∗ for the strip such that for l = l∗, f = 0, and the
initial history v0(x, τ) = sin πl∗ (c1 cosω

∗τ + c2 sinω∗τ), the problem (30.2.15) has a
unique periodic solution (not belonging to L2(R++;H1

s0(0, l
∗)),

v(x, t) = sin
πx
l∗
(c1 cosω

∗t + c2 sinω∗t).

Before giving the proof of this theorem, we make an observation and prove an
auxiliary lemma.

Remark 30.2.10. Observe that if (P1) holds, then (see [148]) it is possible to prove
that the function

V0(x, t) =
∫ ∞
t
μ(s)v0xx (x, t − s)ds

belongs to L2(R+; L2s(0, l)) for any v0 ∈ L∞(R−;H1
s0(0, l)).

Lemma 30.2.11. Let μ be a relaxation function that has properties (P1) and (P2),
let ω∗ � 0 be a frequency satisfying (30.2.16), and let μ+ be the half-range Fourier
transform of μ (see (C.1.3)). Then there exists a critical length l∗ such that the prob-
lem

iω∗vF(x, ω∗) − μ+(ω∗)vxxF(x, ω∗) = 0 ∀x ∈ (0, l),
vF(0, ω

∗) = vF(l, ω
∗) = 0 (30.2.17)

has infinitely many complex-valued solutions for l = l∗.

Proof. Substituting (30.2.16) into (30.2.17), we see that both the real and the imagi-
nary parts of the solution v of (30.2.17) must satisfy the following:

ω∗u(x, ω∗) + μs(ω∗)uxx(x, ω∗) = 0 ∀x ∈ (0, l),
u(0, ω∗) = u(l, ω∗) = 0. (30.2.18)

Integrating by parts, we obtain

1
ω∗
μs(ω

∗) =
1

(ω∗)2

[
μ(0) +

∫ ∞
0
μ′(s) cosω∗sds

]

=
1

(ω∗)2

∫ ∞
0
μ′(s)(cosω∗s − 1)ds > 0,

because the hypothesis (P1) yields μ′(s)(cosω∗s − 1) ≥ 0 ∀s ∈ R
+. Note that if

μ′(s)(cosω∗s − 1) = 0 ∀s ∈ R+, then μ(s) = 0 ∀s ∈ R+. Putting
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l = l∗ =

√
μs(ω∗)
ω∗
π, (30.2.19)

then the function u∗(x) = c sin πxl∗ , c ∈ R, is a solution of (30.2.18), since ω∗
μs(ω∗) is an

eigenvalue of −Δ. The connection between the two problems (30.2.17) and (30.2.18)
allows us to conclude that any function vF(x, ω∗) = (a1 + ia2)sin πxl∗ , a1, a2 ∈ R, is a
solution of (30.2.17). �

We can now give the proof of Theorem 30.2.9.

Proof. Let l∗ be given by (30.2.19); then using Lemma 30.2.11, the unique solution
of the problem

vt(x, t) =
∫ ∞
0
μ(s)vxx(x, t − s)ds ∀x ∈ (0, l∗), ∀t ∈ R++,

v(0, t) = v(l∗, t) = 0 ∀t ∈ R++,
v(x, τ) = sin

πx
l∗
(c1 cosω

∗τ + c2 sinω∗τ) ∀x ∈ (0, l∗), ∀τ ∈ R−,

which agrees with the prescribed initial history value, is

v(x, t) = sin
πx
l∗
(c1 cosω

∗t + c2 sinω∗t).

In fact, it is easy to show that the two quantities

vt(x, t) = ω
∗ sin
πx
l∗
(−c1 sinω∗t + c2 cosω∗t)

and

∫ ∞
0
μ(s)vxx(x, t − s)ds =

(
π

l∗
)2
sin
πx
l∗
μs(ω

∗)(−c1 sinω∗t + c2 cosω∗t)

coincide by virtue of (30.2.19). �

Finally, we exhibit a family of nonnegative relaxation functions that comply with
requirements (P1) and (P2). Consider the function

μ(s) =

(
s2

β
− α − 3
β2

s +
α2 − 8α + 24

8β3

)
e−βs

with two parameters α and β, which are assumed to be such that α ∈
(
0, 2 +

√
2
)
,

β > 0. This satisfies (P1); furthermore, taking into account that

∫ ∞
0

e−βs cosωsds =
β

β2 + ω2
,

∫ ∞
0

e−βss cosωsds =
β2 − ω2

(β2 + ω2)2
,

and
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∫ ∞
0

e−βss2 cosωsds = 2β
β2 − 3ω2

(β2 + ω2)3
,

its Fourier cosine transform is given by

μc(ω) =
∫ ∞
0
μ(s) cosωsds =

α2

8β3(β2 + ω2)3

(
ω2 − 8 − α

α
β2
)
≥ 0.

Hence, for ω∗ = β
√

8−α
α
, we have μc(ω∗) = 0, so that (P2) also holds.

An analogous family was first introduced by Fabrizio and Morro in [119] to show
that there exist relaxation functions for linear viscoelastic solids that do not allow the
quasistatic problem to have a unique solution in the space of sinusoidal (in time)
strain histories. Moreover, the same family was used later on by Giorgi and Lazzari
[148], though with a different choice of parameters, to give counterexamples to the
asymptotic stability of the rest state for initial boundary value problems relating to
linear viscoelastic solid materials.


	30 Dynamics of Viscoelastic Fluids
	30.1 Introduction
	30.2 An Initial Boundary Value Problem for an Incompressible Viscoelastic Fluid
	30.2.1 Transformed Problem
	30.2.2 Counterexamples to Asymptotic Stability



