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Principles of Thermodynamics

In this chapter, we discuss various fundamental concepts and results in continuum
thermodynamics. Some examples are given in terms of the materials discussed in
Part I, generalized to a nonisothermal context.

3.1 Heat Equation

Since the heat of a body is not conserved, we do not have a balance equation cor-
responding to those for mass and momentum, given by (1.3.1) and (1.3.12), respec-
tively. However, there must be a balance between the net quantity of heat entering a
body and the net heat absorbed by that body over a given time period.

We denote by QA(t) the quantity of heat per unit time entering the subbody A of
the body under consideration at time t by conduction or radiation. Also, let HA(t) be
the heat absorbed by the subbody A per unit time at the moment t.

The heat flow density c(x, t) ∈ R is assigned to each point x on the surface of
the body. If da = nda is the area vector associated with a surface element on ∂ϕt(A),
the outward unit normal of which is n, then −cda is the amount of heat crossing da,
going inward, per unit time. The quantity c(x, t) depends linearly on the orientation
n of da; indeed, we have

c(x, t) = q(x, t) · n,
where q ∈ R

3 is known as the (Eulerian) heat flux vector. This is the analogue
of Cauchy’s theorem (1.3.24) for heat flow, where q corresponds to the Cauchy
stress tensor. We can also define a heat flux vector qL(X, t) in the reference or La-
grangian configuration, corresponding to the first Piola–Kirchhoff stress tensor, given
by (1.3.49). This quantity is given by

qL = JF−1q. (3.1.1)

It is an objective scalar, as defined by (1.4.7). The heat supply per unit time due to
external sources, such as radiation, is denoted by r(x, t) ∈ R or r̃(X, t) in the reference
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configuration. Then, for both configurations,

QA(t) = −
∫
∂ϕt(A)

q(x, t) · nda +
∫
ϕt(A)
ρ(x, t)r(x, t)dvt

= −
∫
∂ϕ0(A)

qL(X, t) · Nda0 +
∫
ϕ0(A)
ρ0(X)r̃(X, t)dv0,

where N is the outward unit normal to ∂ϕ0(A). If we denote by h(x, t)(h̃(X, t) in the
Lagrangian description) the heat absorbed by the body per unit mass in unit time
(specific heat power), then

HA(t) =
∫
ϕt(A)
ρ(x, t)h(x, t)dvt =

∫
ϕ0(A)
ρ0(X)h̃(X, t)dv0.

At any time t and for any subbody A of the body, the heat equation is expressed by

HA(t) = QA(t).

The Eulerian form of this equation is given by
∫
ϕt(A)
ρ(x, t)h(x, t)dvt = −

∫
∂ϕt(A)

q(x, t) · nda +
∫
ϕt(A)
ρ(x, t)r(x, t)dvt, (3.1.2)

from which, under hypotheses of continuity for the integrand functions and the arbi-
trariness of A, we can deduce the Eulerian local form of the heat equation

ρ(x, t)h(x, t) = −divx q(x, t) + ρ(x, t)r(x, t). (3.1.3)

The Lagrangian form of (3.1.2) is
∫
ϕ0(A)
ρ0(X)h̃(X, t)dv0 = −

∫
∂ϕ0(A)

qL(X, t) · nda0 +
∫
ϕ0(A)
ρ0(X)r̃(X, t)dv0,

with corresponding local form

ρ0(X)h(X, t) = −DivXqL(X, t) + ρ0(X)r̃(X, r).

3.2 Definition of a Material as a Dynamical System

For a large class of continuum systems, it is possible to obtain a good description
of their thermomechanical properties using the concepts of state σ and thermome-
chanic process P. For such systems, it is necessary to introduce the concepts of ab-
solute temperature θ and gradient of temperature g = ∇xθ. The state is an entity that
depends on material properties, while the process for any material is a function of
time for a duration dP ∈ R+ of type P : [0, dP)→ Lin(R3) × R × R3, defined as

P(t) =
(
L(t), θ̇(t), g(t)

)
. (3.2.1)
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Alternatively, there are advantages to using the Lagrangian description. In this case,
P : [0, dP) �→ Sym × R × R3 is given by

P(t) =
(
Ė(t), θ̇(t), gL(t)

)
, gL = ∇Xθ, (3.2.2)

and is an objective scalar. In the present chapter, we use (3.2.1) for definiteness,
though a choice closely related to (3.2.2) is adopted in Chap. 5.

Definition 3.2.1. A material is simple if relative to a point X of the body B, it is
possible to define a state σ such that the constitutive equations for T, h, and q are
functions of σ, P and for which we have:

(i) the space of states Σ (that is, the set of possible states for the material body)
is a metric space;

(ii) any process P : [0, dP)→ Lin(R3)×R×R3 is a piecewise smooth function on
[0, dP) and is in the space of processes Π; if P ∈ Π , then its restriction P[t1,t2)

to the interval [t1, t2) ⊂ [0, dP) belongs to Π . The restriction P[0;t) is denoted
by Pt.
If P1, P2 ∈ Π , then P1 ∗ P2 ∈ Π , where

P1 ∗ P2(τ) =

⎧⎪⎪⎨⎪⎪⎩
P1(τ), τ ∈ [0, dp1 ),
P2(τ − dp1 ), τ ∈ [dp1 , dp1 + dp2 );

(iii) there exists a function 
̂ : Σ × Π → Σ, the evolution function, which deter-
mines the final state σ f when the initial state σi and the process P are known.
Such a function has the semigroup property, that is, if (σ1, σ2) ∈ Σ and P1 ∈ Π
is such that 
̂(σ1, P1) = σ2, then for any P ∈ Π ,


̂(σ1, P1 ∗ P) = 
̂(
̂(σ1, P1), P) = 
̂(σ2, P); (3.2.3)

(iv) for any fixed P ∈ Π , the function 
̂(·, P) : Σ → Σ is continuous.

Remark 3.2.2. Referring in particular to (1.2.10), it is easy to prove that for ther-
moelastic materials, the function 
̂ can be constructed as a general integral of the
differential system

dF
dt
= LF,

dθ
dt
= θ̇, (3.2.4)

and moreover, it is also easy to prove that (3.2.4) implies that 
̂(·, P) : Σ → Σ is
continuous. In a similar manner, the function 
̂ can be determined for viscous fluids.

The constitutive variables for a material depend on σt and P(t), that is,

T(t) = T̂(σt, P(t)),

h(t) = ĥ(σt, P(t)), (3.2.5)

q(t) = q̂(σt, P(t)),

where σt = 
̂(σ, Pt), the quantity Pt being the restriction of P to the time interval
[0, t) ⊂ [0, dP) (see Definition 3.2.1).
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For thermoelastic materials, we have the form

T(t) = T̂(F(t), θ(t)), h(t) = A(F, θ) · L + B(F, θ)θ̇, q(t) = −K(F, θ)g, (3.2.6)

where T̂, A, B, and K are continuous functions of (F, θ). For these constitutive equa-
tions, the state is the pair σ = (F, θ), and the space of possible states Σ will be a
subspace of the vector space Lin(R3) × R.

We also consider viscous fluids for which the thermomechanical characteristics
are expressed by means of the constitutive equations (see (2.2.18))

T(t) = −p(ρ, θ)I + λ(ρ, θ)(divx v) I + 2μ(ρ, θ)D,
h(t) = a(ρ, θ)ρ̇ + b(ρ, θ)θ̇, q(t) = −K(ρ, θ)g, (3.2.7)

where p, λ, μ, a, b, and K are continuous functions of (ρ, θ). Here, the state is de-
fined by the pair σ = (ρ, θ). Recalling (1.2.9), (1.2.23), and (1.3.2)2, we see that the
quantities ρ̇, divx v = tr∇x v, and D are expressible in terms of L, so that the Cauchy
stress and the heat power will be functions of type (3.2.5)1,2.

A limiting special case of viscous fluids, namely ideal fluids, will be considered
in order to derive the absolute temperature scale. We deal only with the case that the
fields are independent of the position variable x. For such fluids, (3.2.7) reduces to

T(t) = −p(ρ, θ)I, h(t) = a(ρ, θ)ρ̇ + b(ρ, θ)θ̇, q(t) = 0. (3.2.8)

The first and the second laws of thermodynamics introduced in the next two sec-
tions are constraints on the constitutive equations (3.2.5) rather than new equations
imposed on the field variables. In other words, the constitutive equations (3.2.5) can-
not depend in an arbitrary way on the variables (σt, P(t)). It is well known that it
is impossible to devise a machine or a piece of equipment that executes a perpetual
motion of the first or the second kind. Such a machine could be realized if it were
possible to have materials with general constitutive equations of type (3.2.5). The
principles of thermodynamics allow us to establish which materials, as described by
equations of type (3.2.5), are compatible with the physical world.

3.3 First Principle of Thermodynamics

This principle leads to the law of conservation of energy under conditions whereby
mechanical energy can be transformed into heat and vice versa.

Definition 3.3.1. A closed cycle is a pair (σ, P) ∈ Σ × Π such that 
̂(σ, P) = σ.

• First principle of thermodynamics for simple materials (on cycles): In any
closed cycle (σ, P) ∈ Σ × Π , the sum of the heat absorbed by the body and the
work done by internal forces is equal to zero, that is,

∫ dp

0

[
ĥ(σt, P(t)) +

1
ρ
T̂(σt, P(t)) · D(t)

]
dt = 0. (3.3.1)

2.2.18
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Before dealing with the general case, let us consider a thermoelastic material
represented by the system of equations (3.2.6). The space of states Σ is a particular
subspace of the space Lin(R3) × R. With any closed cycle (σ, P), we can associate
the corresponding closed curve c in Σ given by

σt = 
̂(σ, Pt), t ∈ [0, dP).
The case in which c is a polygonal closed curve in Σ will be considered. Then,

the integral in (3.3.1) takes the form

∫ dp

0

(
A · L + Bθ̇ +

1
ρ
T · D

)
dt = 0,

which can be rewritten as a curvilinear integral in the space of states Σ in the form
∫
c
A
(
F−1
)T · dF + Bdθ +

1
ρ
T
(
F−1
)T · dF = 0, (3.3.2)

where (3.2.4) has been used. This is the integral on c of the following differential
form: (

A +
1
ρ
T
) (
F−1
)T · dF + Bdθ. (3.3.3)

On the basis of (3.3.2), one can assert that the differential form (3.3.3) is inte-
grable. This means that under hypotheses of continuity for A, T, and B, there exists
a function of state e : Σ → R, differentiable on Σ and such that

de =

(
A +

1
ρ
T
) (
F−1
)T · dF + Bdθ. (3.3.4)

It is possible to obtain an analogous result by repeating the above procedure for
an ideal or viscous fluid. These observations lead to the idea that it is always possible
to prove the existence of a function of such a type for any simple material.

The disadvantage of (3.3.1) is that for materials with memory, which are our main
concern in later chapters, closed cycles rarely occur. We now state, without proof, the
first law for a general material, in a form that makes no reference to cycles.

• The first principle of thermodynamics (general form): For any simple mate-
rial, there exists a function of state e : Σ → R, known as the internal energy, such
that for any pair of states σ1, σ2 ∈ Σ and for any process P with 
̂(σ1, P) = σ2,
one has

e(σ2) − e(σ1) =
∫ dP

0

[
ĥ(σt, P(t)) +

1
ρ
T̂(σt, P(t)) · L(t)

]
dt, (3.3.5)

where σt = 
̂(σ1, Pt).

Remark 3.3.2. The internal energy e is uniquely determined up to an additive con-
stant, which can be fixed by assigning the value of the energy in the reference state
of the material. We refer to e as a thermodynamic potential.
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At all points of continuity of the function

ĥ(σt, P(t)) +
1
ρ
T̂(σt, P(t)) · L(t),

it follows from (3.3.5) that

de
dt

(σt) = ĥ(σt, P(t)) +
1
ρ
T̂(σt, P(t)) · L(t). (3.3.6)

Moreover, using the heat equation (3.1.3), we obtain the energy equation

ρ
de
dt

(σt) = −divx q̂(σt, P(t)) + T̂(σt, P(t)) · L(t) + ρr. (3.3.7)

Remark 3.3.3. Note that (3.3.6) allows us to express the quantity h in terms of the
new function of state e and the mechanical rate of work. Indeed, we can now regard
e as a fundamental quantity, more convenient than ĥ because it is a function of state.

In Chap. 5, we will use the Lagrangian form of (3.3.7), given by

ρ0ė(σt) = −DivXq̂L (σt, P(t)) + Ŝ(σt, P(t)) · Ė(t) + ρ0r, (3.3.8)

where Ŝ is the second Piola–Kirchhoff stress tensor, defined by (1.3.52), and E is the
strain tensor given by (1.2.21)1.

3.4 Second Principle of Thermodynamics

The first principle of thermodynamics allows the possibility of transformation of var-
ious types of energy from one into another, provided the total energy is conserved.
The second principle of thermodynamics imposes some limits on such transforma-
tions of energy and asserts that not all types of energy have the same capability of
transforming themselves into mechanical work. These two assertions are not in con-
tradiction. In fact, for the first principle we can prove the existence of an energetic
balance, while the second principle asserts that natural transformations, for a system
in a cycle, are those that transform valuable energy into a less valuable form. In other
words, this means that in such processes there is a loss of energy.

3.4.1 The Absolute Temperature Scale

Before discussing general materials, we briefly consider perfect fluids with field vari-
ables that are independent of the position variable x, defined by the constitutive equa-
tions (3.2.8), in order to derive the absolute temperature scale and to motivate the
general definition of entropy.

With the aid of (3.2.8), the heat equation (3.1.3) can be written as

ρ
[
a(ρ, θ)ρ̇ + b(ρ, θ)θ̇

]
= ρr, (3.4.1)
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where θ in this relationship is some empirical temperature. For materials with dissi-
pation, the entropy relationship will be an inequality, as we shall see below. However,
for a perfect fluid, it will be an equality, which is assumed to be of the form

ρη̇ = −divxjη + ρs, (3.4.2)

where jη is a flux term describing entropy flow and s is an entropy source term. We
can neglect the divergence term due to the assumption of field homogeneity, so that
(3.4.2) becomes

ρ
[
c(ρ, θ)ρ̇ + d(ρ, θ)θ̇

]
= ρs,

c(ρ, θ) =
∂η(ρ, θ)
∂ρ

, d(ρ, θ) =
∂η(ρ, θ)
∂θ

.
(3.4.3)

We do not regard this equation as independent of the heat equation (3.4.1) but rather
as a nontrivial relation that can be derived from that equation, so that any solution
of the entropy equation is also a solution of the heat equation. Thus, we suppose the
existence of an integrating factor R(ρ, θ) such that

c(ρ, θ)ρ̇ + d(ρ, θ)θ̇ − s = R(ρ, θ)
[
a(ρ, θ)ρ̇ + b(ρ, θ)θ̇ − r

]

for any ρ̇, θ̇, and r. It follows that

c = Ra, d = Rb, s = Rr. (3.4.4)

We now show that the factor R does not depend on ρ and is a monotonic decreasing
function of θ. In relation (3.4.4)3, the quantities s and r are source terms and do not
depend on the material properties.

Let us now consider a further special case that of an ideal fluid. This is a fluid
with internal energy depending only on temperature and a pressure function p(ρ, θ)
that is a monotonic increasing function of θ.

Now (3.3.6), with the aid of (1.3.2)2, yields

h(ρ, θ, P(t)) = e′(θ)θ̇ − 1
ρ2

p(ρ, θ)ρ̇,

which, combined with (3.2.8)2, gives

a(ρ, θ) = − 1
ρ2

p(ρ, θ), b(ρ, θ) = b(θ) = e′(θ),

whence (3.4.4)1,2 become

c(ρ, θ) = −R(θ)
ρ2

p(ρ, θ), d(ρ, θ) = d(θ) = R(θ)b(θ). (3.4.5)

From (3.4.5)2 and (3.4.3)2,3, we conclude that

η(ρ, θ) = A(ρ) + B(θ),
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where

A′(ρ) = −R(θ)
ρ2

p(ρ, θ), B′(θ) = d(θ) = R(θ)b(θ).

Thus, R(θ)p(ρ, θ) cannot depend on θ. Let θ′ be a fixed temperature. Then,

R(θ) = R(θ′)
p(ρ, θ′)
p(ρ, θ)

.

We can always choose R(θ′) > 0. The quantities p(ρ, θ′) and p(ρ, θ) both are posi-
tive, and the latter increases monotonically with θ. Thus, R is a positive decreasing
function of the empirical temperature θ.

Recalling (3.4.4)3 and the fact that the source functions s and r do not depend
on the material under consideration, we deduce from (3.4.4)3 that R has a universal
character. Its inverse

T (θ) =
1

R(θ)

is positive and increasing and can be chosen as a suitable measure of temperature.
This function represents the absolute temperature scale.

Dropping the constancy assumption with respect to x on the fields, (3.4.4)3,
(3.1.3), and (3.4.2) give

R(θ)(ρh + divx q) = ρη̇ + divx jη,

which must hold for all choices of fields. Using the identity

R(θ)divx q = divx
[
R(θ)q

] − q · ∇R(θ),
we deduce that

divx jη = divx(Rq), ρη̇ = ρRh − q · ∇R(θ). (3.4.6)

From now on, we denote the absolute temperature 1/R by θ. The relations in (3.4.6)
provide motivation for those now introduced, though the former were derived for
very particular materials.

3.4.2 Entropy Action

We consider the function

s(σ, P) =
∫ dP

0

[
ĥ(σt, P(t))
θ(t)

+
1
ρθ2(t)

q̂(σt, P(t)) · g(t)
]
dt, (3.4.7)

which will be referred to as the entropy action. By means of this functional we can
introduce the following principle:

• The second principle of thermodynamics for simple materials (on cycles):
On any closed cycle (σ, P) ∈ Σ × Π , the entropy action is such that

∮ dP

0

[
ĥ(σt, P(t))
θ(t)

+
1
ρθ2(t)

q̂(σt, P(t)) · g(t)
]
dt ≤ 0. (3.4.8)
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Remark 3.4.1. For a homogeneous process (g = 0), relation (3.4.8) takes the classical
form ∮ dP

0

ĥ(σt, P(t))
θ(t)

dt ≤ 0.

Consider (3.4.8) for isothermal processes. If we set θ = constant and use (3.3.1),
then it follows that

− 1
θ

∮ dP

0

1
ρ
T̂(σt, P(t)) · D(t)dt ≤ 0, (3.4.9)

which is a statement that the mechanical work is nonnegative in closed processes
or the principle of dissipation of mechanical energy (see (1.3.33) or (2.3.14)in the
material description).

For a general material, the second law is now stated, again without proof and
making no reference to closed processes.

• The second principle of thermodynamics (general form): There exists a func-
tion of state η : Σ → R, known as the entropy, such that

η(σ2) − η(σ1) ≥
∮ dP

0

(
h
θ
+

1
ρθ2

q · g
)
dt = s(σ1, P), (3.4.10)

for all (σ1, σ2) ∈ Σ and P ∈ Π with 
̂(σ1, P) = σ2.

Remark 3.4.2. Under appropriate hypotheses of regularity on the constitutive func-
tionals, it follows from the inequality (3.4.10) that

η̇(σt) ≥ ĥ(σt, P(t))
θ(t)

+
1

ρ(t)θ2(t)
q̂(σt, P(t)) · g(t). (3.4.11)

We note the connection between this inequality and the equality (3.4.6)2. By means
of the heat equation (3.1.3), we deduce from relation (3.4.11) the well-known
Clausius–Duhem inequality

ρη̇ ≥ −divx
(q
θ

)
+
ρ

θ
r. (3.4.12)

Again, we observe the connection between this relation and (3.4.2) combined with
(3.4.6)1.

Let us define the function of state known as the Helmholtz free energy by

ψH(σt) = e(σt) − θ(t)η(σt). (3.4.13)

Using (3.3.7), (3.4.12), and (3.4.13), one can show that

ψ̇H(σt) ≤ 1
ρ(t)

T̂(σt, P(t)) · L(t) − η(σt)θ̇(t) − 1
ρ(t)θ(t)

q̂(σt, P(t)) · g(t), (3.4.14)

which is an alternative form of the Clausius–Duhem inequality. The free energy func-
tion of state is not uniquely determined in general, for a given material. Very general

2.3.14
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properties of this function are proved in the next chapter, including the result that
the free energies associated with a given state of the material with memory form a
convex set. This nonuniqueness also applies to entropy.

In Chap. 5, we will use the Lagrangian form of (3.4.12) and (3.4.14), given by

ρ0η̇ ≥ −DivX
(qL

θ

)
+
ρ0
θ
r (3.4.15)

and

ψ̇H(σt) ≤ 1
ρ0

Ŝ(σt, P(t)) · Ė(t) − η(σt)θ̇(t) − 1
ρ0θ(t)

q̂L(σt, P(t)) · gL(t), (3.4.16)

where gL is given by (3.1.1).
We now consider two examples: nonlinear elastic bodies and viscous liquids,

already introduced in an isothermal context in Part I. Recalling Remark 3.3.3, it will
be observed that we use the heat power h but immediately relate it to the internal
energy. In the second example, h is not introduced; instead, e is used.

The principles of thermodynamics impose some restrictions on the constitutive
functionals. They become automatically satisfied if the constitutive equations obey
certain conditions. In what follows, we seek to determine such conditions for the
constitutive equations describing elastic materials and viscous fluids.

3.5 Applications to Elastic Bodies

For an elastic body, we have σ = (F, θ), while from (3.2.6) and (3.3.5), for any
(σ, P) ∈ Σ × Π , where 
̂(σ, P) = σ1,

e(σ1) − e(σ) =
∫ dP

0

[
B(F, θ)θ̇ + A(F, θ) · L + 1

ρ(F)
T(F, θ) · L

]
dt.

From (3.3.6) (indeed, more specifically recalling (3.3.4)), we have that e = ẽ(F, θ)
obeys the relation

dẽ
dt

(F, θ) = B(F, θ)θ̇ + A(F, θ) · L + 1
ρ(F)

T(F, θ) · L.

The function (3.4.7) can be written as

s(σ, P) =
∫ dP

0

{
1
θ

[
−1
ρ
T̂(F, θ) · L + ∂ẽ

∂F
· Ḟ + ∂ẽ

∂θ
θ̇

]
+

1
ρθ2

q̂(F, θ; g) · g
}
dt.

We now consider the integral on an arbitrary curve c in Lin(R3) × R,

I(c) =
∫
c

1
θ

[
B(F, θ)dθ + A(F, θ)

(
FT
)−1 · dF

]
. (3.5.1)

If c+ is a closed curve in Lin(R3) × R and c− is the same curve with opposite orien-
tation, then
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I(c+) = −I(c−). (3.5.2)

Let σ ∈ Σ be a finite element, and let c+ be an oriented closed polygonal curve
containing σ. Then for any t > 0, there is a parametrization τ → (F(τ), θ(τ)) of the
curve c+, defined on [0, dP), such that

(F(dP), θ(dP)) = (F(0), θ(0)) = σ.

Corresponding to this parametrization, there is a process P such that


̂(σ, Pt) = (F(t), θ(t)), 
̂(σ, P) = σ.

Using this parametrization of c+, we can rewrite (3.5.1) in the form

I(c+) =
∫ dp

0

1
θ(t)

[
B(F, θ)θ̇ + A(F, θ)

(
FT
)−1 · Ḟ

]
dt =

∫ dP

0

ĥ
(
F, θ, Ḟ, θ̇

)
θ

dt,

by virtue of (3.2.6)2. The second principle of thermodynamics (3.4.8) states that on
any closed process P with duration dP, we have

∫ dP

0

ĥ
θ
dt +
∫ dP

0

1
ρθ2

q̂ · gdt ≤ 0. (3.5.3)

Therefore, we obtain

I(c+) ≤ −
∫ dP

0

1
ρθ2

q̂ · gdt. (3.5.4)

If we set M(c+) = sup{− 1
ρθ2

q̂(F, θ, g) · g | (F, θ) ∈ c+}, then M(c+) is finite because c+

is a compact subset of Σ and q is assumed continuous on Σ. Moreover, q̂(F, θ, g) ·g is
always nonpositive for an elastic body. In fact, if we consider the process P defined
by

P(t) ≡ (0, 0, g) for all t ∈ [0, dP)
and suppose that the initial state is σ0 = (F, θ), where g, F, and θ are arbitrary given
quantities, independent of t, then from (3.5.3), we have

q̂(F, θ, g) · g ≤ 0 for all (F, θ, g). (3.5.5)

Therefore, from (3.5.4),
I(c+) ≤ dPM(c+),

and since this relation holds for any dP > 0, we obtain that

I(c+) ≤ 0.

Let us now consider the curve c− with opposite orientation with respect to c+. Using
a procedure similar with that leading to (3.5.5), we obtain

I(c−) ≤ 0,
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and hence, by virtue of (3.5.2), on any closed curve c,

I(c) = 0.

Therefore, using well-known theorems concerning the integrability of differential
forms, we deduce from (3.5.1) that there exists a differentiable function of state
η : Σ → R, such that

η̇(F, θ) =
1
θ(t)

[
B(F, θ)θ̇ + A(F, θ)

(
FT
)−1 · Ḟ

]
=

ĥ(F, θ, Ḟ, θ̇)
θ

. (3.5.6)

Using (3.5.6)2, we can write the expression (3.4.7) for s(σ, P) as

s(σ, P) = η(ρ̂(σ, P)) − η(σ) +
∫ dP

0

1
ρθ2

q̂(σt, P(t)) · gdt,

so that using the fact that q · g ≤ 0, we obtain

s(σ, P) ≤ η(ρ̂(σ, P)) − η(σ).
Also, from (3.5.6)2, the property q · g ≤ 0, and (3.1.3), we recover the Clausius–
Duhem inequality (3.4.12):

ρη̇ ≥ 1
θ
ρh +

1
θ2
q · g = 1

θ

(
−divx q + ρr + 1

θ
q · g
)
= −divx

(q
θ

)
+
ρ

θ
r.

3.6 Thermodynamic Restrictions for Viscous Fluids

We consider here the compressible flow of a Newtonian fluid defined by the consti-
tutive equations (3.2.7) and determine the restrictions imposed by the principles of
thermodynamics on these equations. Combining (3.3.6) and (3.4.11), we obtain

θη̇ ≥ ė − 1
ρ
T · L + 1

ρθ
q · g.

Recalling that for viscous fluids the state is given by the pair σ = (ρ, θ), it follows
that the internal energy e and entropy η are functions of the following type:

e = ê(ρ, θ), η = η̂(ρ, θ).

As noted earlier for e, these quantities are referred to as thermodynamic potentials.
The function of state introduced in (3.4.13), namely the Helmholtz free energy

ψH , is also a thermodynamic potential, which here assumes the form

ψ̂H (ρ, θ) = ê(ρ, θ) − θη̂(ρ, θ).
It must satisfy (3.4.14):
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ψ̇H ≤ −ηθ̇ + 1
ρ
T · L − 1

ρθ
q · g. (3.6.1)

On the basis of the principles of thermodynamics, the inequality (3.6.1) must be
verified by all processes P(t) =

(
L(t), θ̇(t), g(t)

)
representing possible solutions of the

equation of motion. Recalling (1.2.23), the symmetry of T, and in particular its form
given by (3.2.7)1, we can write (3.6.1) in the form

∂ψH
∂ρ
ρ̇ +
∂ψH
∂θ
θ̇ ≤ −ηθ̇ + 1

ρ

[
− p divx v + λ (divx v)2 + 2μ|D|2

]
+

1
ρθ

K|g|2. (3.6.2)

With the aid of the equation of continuity (1.3.2)2, relation (3.6.2) gives
(
∂ψH
∂ρ
− p
ρ2

)
ρ̇ +

(
∂ψH
∂θ
+ η

)
θ̇ ≤ λ
ρ3
ρ̇2 +

2μ
ρ
|D|2 + K

ρθ
|g|2. (3.6.3)

The quantities ψH , p, η, λ, μ, and K are functions of the state (ρ, θ). For a given state
(ρ, θ), we consider a process P,

P(t) = (0, θ̇, 0),

for some arbitrary θ̇. In this case, since L = 0 yields D = 0, it follows that divx v =
tr∇x v = 0, and hence ρ̇ = 0 by virtue of (1.2.9), (1.2.23), and (1.3.2)2, relation
(3.6.3) reduces to (

∂ψH
∂θ
+ η

)
θ̇ ≤ 0,

from which, in view of the fact that θ̇ is arbitrary, we deduce that

η(ρ, θ) = −∂ψH
∂θ

(ρ, θ). (3.6.4)

Now consider a process of the type

P(t) =

((
1
3
divx v

)
I, 0, 0

)
=

(
− ρ̇
3ρ

I, 0, 0
)
. (3.6.5)

Then (3.6.3) yields (
∂ψH
∂ρ
− p
ρ2

)
ρ̇ ≤ 1
ρ3

(
λ +

2
3
μ

)
ρ̇2,

where ρ̇ is arbitrary. Dividing by the quantity ṗ2 and using the fact that ρ̇ is arbitrary,
we see that this inequality holds if and only if

p = ρ2
∂ψH
∂ρ
. (3.6.6)

With these results, the initial inequality (3.6.3) reduces to

λ

ρ3
ρ̇2 +

2μ
ρ
|D|2 + K

ρθ
|g|2 ≥ 0. (3.6.7)
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Taking into account the arbitrariness of ρ̇, D, and g, we obtain, from (3.6.7), the
following inequalities:

K
ρθ
|g|2 ≥ 0,

λ

ρ3
ρ̇2 +

2μ
ρ
|D|2 ≥ 0. (3.6.8)

The first inequality in (3.6.8) furnishes the condition

K ≥ 0. (3.6.9)

If we first set D = 1
3 (divx v) I (see (3.6.5)) in the second inequality of (3.6.8), then

(
λ +

2
3
μ

)
(divx v)2 ≥ 0,

from which we deduce that
3λ + 2μ ≥ 0. (3.6.10)

If we now choose D arbitrarily but put divx v = 0 so that ρ̇ = 0, then the second
inequality of (3.6.8) yields

μ ≥ 0. (3.6.11)

Therefore, the restrictions imposed by the principles of thermodynamics on the
constitutive equation for compressible flow of a Newtonian fluid defined by the con-
stitutive equation (3.2.7) are those contained in relations (3.6.4), (3.6.6), (3.6.9),
(3.6.10), and (3.6.11).

We have used as examples in this chapter the classical materials introduced in
Part I. However, the main focus of later chapters will be on more general materi-
als, namely those with memory. The principles of thermodynamics introduced here
and their consequences in the form of the energy equation (3.3.7) or (3.3.8) and
the Clausius–Duhem inequality (3.4.14) or (3.4.16) apply quite generally to simple
materials, and indeed we will use them in Chap. 5. In fact, general constitutive equa-
tions for materials with memory are derived using a generalization of the kind of
arguments developed in Sect. 3.6 to obtain (3.6.4) and (3.6.6).

The statements of the thermodynamic principles that we have presented in these
sections apply to simple materials. In the next section we study the generalization of
the laws of thermodynamics required for nonsimple materials.

3.7 Principles of Thermodynamics for Nonsimple Materials

Just as for a simple material, we suppose that a nonsimple material is formally char-
acterized by a state σ, which is an element of the space Σ of the possible states of
the body, and a process P, belonging to the space Π of the possible processes of the
body, with a duration dP ∈ R+, defined more generally than by (3.2.1). Furthermore,
we assume that for this system, there exists a function ρ̂ ∈ Σ ×Π → Σ with the same
properties as described in Definition 3.2.1. Finally, the behavior of the material is
always described by the triplet (T, h,q), defined in (3.2.6).
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The important difference between simple and nonsimple materials, from a ther-
modynamic point of view, emerges in the context of defining the mechanical power.

For simple materials, the internal mechanical power, denoted by Pi
m, is always

expressed by
Pi
m = T · L, (3.7.1)

and therefore the first law assumes the form (3.3.1) or (3.3.7).
In the general case, this quantity is not necessarily defined by (3.7.1). Its expres-

sion can be derived by means of the balance equation of power.
For a mechanical system, denoting by P̃i

m the internal mechanical power, this
balance equation is written as

d
dt
T (t) + P̃i

m(σ(t), P(t)) = P̃e
m, (3.7.2)

where P̃e
m denotes the external mechanical power, defined by the flux and the me-

chanical sources due to external forces, while T is the kinetic energy.

3.7.1 First Law of Thermodynamics

For nonsimple mechanical systems, the first law is stated by assuming the existence
of a function of state e(σ), the internal energy, such that

ρė(σ(t)) = P̃i
m(σ(t), P(t)) + ρh(σ(t), P(t)), (3.7.3)

where h denotes the internal thermal power per unit mass and ρ is the mass density.
The form (3.7.3) is the classical statement of the first law, given by R. Clausius in

1850, and can be applied also to electromagnetic, chemical, and biological systems,
which are characterized by the triplet (Σ,Π, ρ̂).

An alternative and more general formulation of the first law is now given.
• First principle of thermodynamics (on cycles). For any cyclic process (σi, P),

i.e., ρ̂(σi, P) = σi, the sum of the internal thermal power ρh and of other internal
powers P̃i(σ, P) satisfies

∮ [
P̃i(σ(t), P(t)) + ρh(σ(t), P(t))

]
dt = 0, (3.7.4)

where σ(t) = ρ̂(σi, Pt).
Referring to (3.3.4), we note that it is similarly possible to deduce from (3.7.4)

the existence of an internal energy e(σ(t)) such that the equality (3.7.3) holds.
An example is now formulated for which, in the representation of the first law,

we cannot use the expression (3.7.1) for the internal mechanical power.
Let us consider a thermoelastic plate, for which, following [116, 225, 226] (see

also [3]), the stress tensor (in this context a vector) assumes the form

T(x, t) = −a∇
[
∇2u(x, t)

]
+ b∇ü(x, t) + c∇θ(x, t), (3.7.5)
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where u is the vertical displacement, while a, b, and c are suitable material constants.
The equation of motion is given by

ρü(x, t) = ∇ · T(x, t) + ρ f (x, t), (3.7.6)

where f denotes the external forces. We multiply this by u̇ to obtain

d
dt

(
1
2
ρu̇2
)
= ∇ · (Tu̇) − T · ∇u̇ + ρ f u̇. (3.7.7)

To derive the contribution due to the internal and external powers in the balance
equation (3.7.7), we must use the representation (3.7.5) for the stress T. Then (3.7.7)
becomes

1
2
d
dt

[
ρu̇2 + a

(
∇2u
)2
+ b (∇u̇)2

]
+ c∇θ · ∇u̇

= ∇ ·
{[
−a∇
(
∇2u
)
+ b∇ü + c∇θ

]
u̇ + a∇2u∇u̇

}
+ ρ f u̇.

(3.7.8)

On comparing with (3.7.2), it follows that the internal mechanical power is given by

P̃i
m =

1
2
d
dt

[
a
(
∇2u
)2
+ b (∇u̇)2

]
+ c∇θ · ∇u̇, (3.7.9)

which is completely different from the definition of Pi
m given in (3.7.1). Conse-

quently, the local form (3.7.3) of the new formulation of the first law (3.7.4) is ex-
pressed by

ρė =
1
2
d
dt

[
a
(
∇2u
)2
+ b (∇u̇)2

]
+ c∇θ · ∇u̇ + ρh. (3.7.10)

Moreover, by virtue of (3.7.2) and putting

N′ =
[
a∇
(
∇2u
)
− b∇ü − c∇θ

]
u̇ − a∇2u∇u̇, (3.7.11)

we derive the expression for the external mechanical power

P̃e
m = −∇ · N′ + ρ f u̇.

It is now possible to better understand the difference between the new formula-
tion and the classical one, proposed by Truesdell and Noll [313] and Coleman [67]
(also [311]) for simple materials, in which the first law relating to mechanical sys-
tems is expressed by (see (3.3.7))

ρė = T · L − ∇ · q + ρr. (3.7.12)

This expression clearly agrees with the representation (3.7.3) when the internal
power P̃i

m has the form (3.7.1) and h, by virtue of the balance equation for heat
(see (3.1.3)), is given by

ρh = −∇ · q + ρr. (3.7.13)
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The representation (3.7.12) does not hold for nonsimple materials. In fact, al-
ready in the example of the plate, we have seen that (3.7.10), deduced from (3.7.4)
with P̃i defined by (3.7.9) and h given by (3.7.13), is not compatible with (3.7.12),
where T is expressed by (3.7.5). Therefore, (3.7.12) must be modified.

Dunn and Serrin [97], but subsequently also Fabrizio and Morro [122], have
proposed a modification of (3.7.12), by assuming

ρė = T · L − ∇ · N − ∇ · q + ρr, (3.7.14)

where the vector N is a suitable extra flux.
For the example of the plate, we firstly observe that using (3.7.8) and (3.7.11),

we can eliminate in (3.7.10) the expression for P̃i
m given by (3.7.9), thus obtaining

ρė = − d
dt
T + ρ f u̇ − ∇ · N′ + ρh; (3.7.15)

hence, taking into account (3.7.7) and (3.7.13), we also have

ρė = T · ∇u̇ − ∇ · (Tu̇ + N′) − ∇ · q + ρr, (3.7.16)

that is, (3.7.14) is satisfied with N expressed by

N ≡ (Tu̇ + N′) = −a∇2u∇u̇,
by virtue of (3.7.5) and again of (3.7.11).

An analogous problem arises when we consider a thermoelastic plate with mem-
ory characterized by the following constitutive equations:

T(x, t) = −∇
[∫ ∞

0
C′(s)∇2ut(x, s)ds −C0∇2u(x, t)

]
+ c∇θ(x, t),

e(x, t) = ẽ(θ(x, t),∇2u(x, t),∇2ut(x, s)),
q(x, t) = −k0∇θ(x, t),

(3.7.17)

where the scalar kernel C′(·) is a suitable smooth function.
From the equation of motion (3.7.6), we have already derived the balance equa-

tion of the mechanical power (3.7.7), where, using (3.7.17)1, we obtain

−T · ∇u̇ =
{
∇
[∫ ∞

0
C′(s)∇2ut(s)ds −C0∇2u

]
− c∇θ

}
· ∇u̇

= ∇ ·
{[∫ ∞

0
C′(s)∇2ut(s)ds −C0∇2u − cθ

]
∇u̇
}

−
∫ ∞
0

C′(s)∇2ut(s)ds∇2u̇ + C0

2
d
dt

(
∇2u
)2
+ cθ∇2u̇.

Thus, (3.7.7) yields
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d
dt

(
1
2
ρu̇2
)
+

∫ ∞
0

C′(s)∇2ut(s)ds∇2u̇ − C0

2
d
dt

(
∇2u
)2 − cθ∇2u̇

= ∇ ·
({
−∇
[∫ ∞

0
C′(s)∇2ut(s)ds −C0∇2u

]
+ c∇θ

}
u̇

+

[∫ ∞
0

C′(s)∇2ut(s)ds −C0∇2u − cθ
]
∇u̇
)
+ ρ f u̇.

Hence, it follows that

P̃i
m =

∫ ∞
0

C′(s)∇2ut(s)ds∇2u̇ − C0

2
d
dt

(
∇2u
)2 − cθ∇2u̇.

Using (3.7.3), we can give an expression for the thermal power as follows:

ρh = ρė − P̃i
m = ρė −

∫ ∞
0

C′(s)∇2ut(s)ds∇2u̇ + C0

2
d
dt

(
∇2u
)2
+ cθ∇2u̇.

To obtain the expression (3.7.14), we put

N′ =
{
∇
[∫ ∞

0
C′(s)∇2ut(s)ds −C0∇2u

]
− c∇θ

}
u̇

−
[∫ ∞

0
C′(s)∇2ut(s)ds −C0∇2u − cθ

]
∇u̇,

(3.7.18)

instead of (3.7.11). Relations (3.7.15) and (3.7.16) follow, where by virtue of
(3.7.17)1 and (3.7.18), the quantity N is now given by

N = Tu̇ + N′ = −
[∫ ∞

0
C′(s)∇2ut(s)ds −C0∇2u − cθ

]
∇u̇.

Other interesting examples, for which the classical representation of the power,
used in the first law, does not coincide with that following from a correct balance
between the internal and external powers, occur in electromagnetism, in the study
of phase transitions, and also in other physical systems, such as those describing
processes of phase separation, for example, by means of the Cahn–Hilliard equation
[44]. This topic is discussed below.

A further interesting application relates to the thermodynamics of superconduct-
ing materials. It has been shown in [122] that for these materials, an extra flux must
be introduced into the first law, which is proportional to the superconducting current.

The case of electromagnetism is discussed in Chap. 6.
As a final example of nonsimple materials, we consider the thermodynamics of

phase transitions in a binary mixture, characterized by the Cahn–Hilliard equation

ċ = ∇ · J, (3.7.19)

where J is the mass flux given by

J = M(c)∇μ(c). (3.7.20)
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Here c denotes the concentration of one of the two components, with a range of val-
ues in the interval [0, 1]. The quantity M(c) is the mobility, representing the density
with which the two phases are mixed, and is such that

M(0) = M(1) = 0,

while the chemical potential μ(c) is given by

μ(c) = −γ∇2c + θG′(c) + θ0F′(c), γ > 0. (3.7.21)

Here, θ0 is the transition temperature, while G(c) and F(c) are assigned the polyno-
mial forms

G(c) = β
c2

2
, F(c) = β

(
c4

4
− c2

2

)
, β > 0,

corresponding to a second-order transition as described by the Cahn–Hilliard equa-
tion.

From (3.7.19) and (3.7.20), we have

ċ = ∇ · [M(c)∇μ(c)], (3.7.22)

whence, using (3.7.21), we obtain

ċ = ∇ ·
{
M(c)∇

[
θ0F

′(c) + θG′(c) − γ∇2c
] }
.

This equation must be related to the heat equation, derived from the energy balance
law

ė = P̃i
c + h, (3.7.23)

where P̃i
c is the internal power of the mixture. Multiplying (3.7.22) by the potential

μ(c), we have the equation for the power

ċμ(c) = ∇ · [M(c)μ(c)∇μ(c)] − M(c)[∇μ(c)]2.
Using (3.7.21) again, we obtain

θ0Ḟ(c) + θĠ(c) +
γ

2
d
dt
(∇c)2 + M(c)[∇μ(c)]2 = ∇ · [γċ∇c + M(c)μ(c)∇μ(c)].

Thus, the power P̃i
c is expressed by

P̃i
c = θ0Ḟ(c) + θĠ(c) +

γ

2
d
dt
(∇c)2 + M(c) [∇μ(c)]2.

By assuming for e the form

e = θ0F(c) +
γ

2
(∇c)2 + ẽ(θ),

Eq. (3.7.23) becomes

ẽθθt = θĠ(c) + M(c) [∇μ(c)]2 − ∇ · q + r,
with the aid of (3.7.13).
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3.7.2 Second Law of Thermodynamics

For simple materials, the second law is expressed by the Clausius–Duhem inequality,
which assumes the form (3.4.11), i.e.,

ρη̇ ≥ −∇ · q
θ
+ ρ

r
θ
, (3.7.24)

where η denotes the entropy function and r the heat supply.
In 1967, I. Müller [268] proposed a new version of this inequality by replacing

(3.7.24) with the more general expression

ρη̇ ≥ −∇ ·Φ + ρ r
θ
, (3.7.25)

where the vector Φ, the entropy flux, is characterized by a constitutive equation. If
we assume for Φ the form

Φ =
q
θ
+Φ′,

where Φ′ denotes an entropy extra flux, (3.7.25) can be written as

ρη̇ ≥ −∇ · q
θ
− ∇ ·Φ′ + ρ r

θ
. (3.7.26)

In order to better understand the difference between simple and nonsimple mate-
rials, let us derive the balance law of entropy power. If the heat equation (3.7.13) is
divided by the absolute temperature θ, we obtain the identity

ρ
h
θ
+

1
θ2
q · ∇θ = −∇ · q

θ
+ ρ

r
θ
, (3.7.27)

which is the desired relation. For a simple material, we can claim that the internal
entropy power is defined by

Pi
η := ρ

h
θ
+

1
θ2
q · ∇θ, (3.7.28)

while the external entropy power is given by

Pe
η := −∇ ·

q
θ
+ ρ

r
θ
.

Thus, by (3.7.27), we see that the formulation (3.7.24), relating to simple materials,
reduces to the inequality

ρη̇ ≥ Pi
η = ρ

h
θ
+

1
θ2
q · ∇θ. (3.7.29)

In general, for nonsimple materials, the internal entropy power is not given by
(3.7.28). Using (3.7.27) again, the inequality (3.7.26) becomes

ρη̇ ≥ ρh
θ
+

1
θ2
q · ∇θ − ∇ ·Φ′. (3.7.30)
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From the inequalities (3.7.24) and (3.7.26) (or (3.7.29) and (3.7.30)), we see that
the second law assumes different expressions for simple and nonsimple materials.
Following [75], we propose the second law in a unique general form as follows.
• Second principle of thermodynamics (on cycles). For any cyclic process

(σi, P), i.e., ρ̂(σi, P) = σi, the internal entropy power P̃i
η satisfies the inequality∮

P̃i
η(σ(t), P(t))dt ≤ 0, (3.7.31)

where σ(t) = ρ̂(σi, Pt).
By a similar argument to that used in the context of (3.4.11), we can prove that

from (3.7.31) there exists the entropy function η(σ) such that

ρη̇(σ) ≥ P̃i
η(σ, P), (3.7.32)

so that we recover (3.7.30) on putting

P̃i
η = ρ

h
θ
+

1
θ2
q · ∇θ − ∇ ·Φ′. (3.7.33)

We prefer to state the second law by the inequality (3.7.31) or (3.7.32), since
the representation (3.7.30) of the second law is ambiguous, because of the term ∇ ·
Φ′.∗ In order to understand the natural expression for the second law by means of
internal entropy power P̃i

η used in (3.7.31) and (3.7.32), let us introduce the example
considered in the work of Cimmelli and Frischmuth [66], in which they have studied
the thermodynamics of the model proposed by Guyer and Krumhansl [193] for the
heat flux, characterized by the constitutive law

q̇ +
1
τR

q = −cV∇θ + τN
[
∇2q + 2∇(∇ · q)

]
, τR > 0, τN > 0. (3.7.34)

For this equation, when the coefficient cV has the form

cV =
c0
θ2
, c0 > 0, (3.7.35)

an entropy extra flux can be introduced.
To derive the balance equation (3.7.27), we consider the inner product of (3.7.34)

by q, taking account of (3.7.35); thus, we obtain the quantity 1
θ2
q · ∇θ, which allows

us to rewrite (3.7.27) as

ρ
h
θ
− 1
2c0

d
dt
q2 − 1

c0τR
q2 − τN

c0

[
(∇q)2 + 2(∇ · q)2

]

= −∇ · q
θ
+ ρ

r
θ
− τN

c0
∇ · [(∇q)q + 2(∇ · q)q.

(3.7.36)

∗ In the literature, examples for which it is necessary to introduce an entropy extra flux Φ′

are very few. Only materials for which there is a nonlocal constitutive equation for the heat
flux q have need of an extra flux in (3.7.26) or in (3.7.30). It has been shown (see [122,
Chapter 11.2]) that for isothermal processes, the introduction of an energy extra flux in the
first law is equivalent to the inclusion of an entropy extra flux in the second law. But this
equivalence holds only for isothermal processes.
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Hence, it follows that the expression of P̃i
η considered in (3.7.32) is given by

P̃i
η = ρ

h
θ
− 1
2c0

d
dt
q2 − 1

c0τR
q2 − τN

c0

[
(∇q)2 + 2(∇ · q)2

]
, (3.7.37)

while the external entropy power has the form

P̃e
η = −∇ ·

q
θ
+ ρ

r
θ
− ∇ ·Φ′0, (3.7.38)

where we have put

Φ′0 =
τN
c0

[(∇q)q + 2(∇ · q)q]. (3.7.39)

Finally, from (3.7.32), using (3.7.36)–(3.7.38), we have

ρη̇ ≥ P̃i
η ≡ P̃e

η = −∇ ·
q
θ
+ ρ

r
θ
− ∇ ·Φ′0,

that is, (3.7.30) is satisfied with the entropy extra flux (3.7.39).
However, the natural form of the second law is the representation (3.7.32) with

the expression (3.7.37) for P̃i
η.

Remark 3.7.1. Further examples of nonsimple materials are discussed in some detail
in Chap. 21. These include second-gradient thermoviscoelastic fluids and heat flow
in a rigid conductor, with nonlocal behavior and thermal memory. The rigid conduc-
tor problem is related to the material associated with (3.7.34). A general theory of
nonsimple or nonlocal materials is also proposed. The main emphasis in that chapter
is to introduce generalizations of some of the free energy functionals discussed in
Chaps. 10 and 11 for simple materials.
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