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Fractional Derivative Models of Materials with
Memory

23.1 Introduction

Materials with constitutive equations expressed in terms of fractional derivatives [47]
are of increasing interest in recent years (see [214, 287]). It is well known that such
materials can be considered in the class of materials with memory and may describe
elastic, fluid, viscoelastic, and electromagnetic materials, but also other kinds of phe-
nomena, such as heat flux models.

The fractional derivative central to the present study is that of Caputo [48, 51].
We consider thermomechanical models with memory within this fractional deriva-
tive framework, and compare them with the classical Volterra theory, which is that
described and used throughout most of the present work. It emerges that the two
viewpoints are formally similar [250]. Indeed, fractional models are those for which
the viscoelastic memory kernel (or relaxation function) G(s) is given by

G(s) =
k0
sα
, α ∈ (0, 1) , k0 > 0. (23.1.1)

However, in contrast to the Volterra theory for fluids with memory, this kernel is not
L1(0,∞), which implies significant dissimilarity in the behavior of solutions of the
dynamical equations, compared with the traditional theory. The differences are more
evident for solid materials. Therefore, the fractional and Volterra models provide
viewpoints which are not reconcilable. Various of these differences between the two
models are noted in [128].

An analysis of the thermodynamic restrictions provides compatibility conditions
on the kernels. These conditions, combined with analogies with the Volterra theory,
yield certain free energies, which enable the definition of a topology on the history
space. A similar analysis can be carried out for the phenomenon of heat propagation
with memory.

The derivation of the minimum free energy in this context is presented in partic-
ular detail because it requires careful treatment of the factorization problem.
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For solid viscoelastic materials, some experimental observations are particularly
in agreement with models using fractional derivatives, because of the power law
behavior of the relaxation function given by (23.1.1) (see [50, 167, 202, 280, 293,
296, 303]). The creep function for such models also has a power law form. Such
experimental backing has motivated many studies of materials with fading memory
given by a fractional derivative, including [26, 48, 140, 200, 214, 249, 261] and in
the frequency domain [202, 303] .

Many experimental observations on a variety of materials subject to a constant
load show plastic behavior, which can be described by the fractional derivative ap-
proach. However, this is not predicted by Volterra models, which under constant load
describe elastic materials. Moreover, when the load is removed, fractional models
predict recovery of a portion of the deformation, unlike for the case of classical vis-
cous fluids. Thus, the fractional derivative approach allows us to describe materials
displaying both elastic and viscous/plastic behavior.

The fractional theory can also be applied to heat diffusion. It seems natural to
generalize the Fourier law and the Cattaneo–Maxwell equation, using a fractional
derivative instead of the time derivative. This approach allows us to describe a wider
range of phenomena and gives a good description of oscillating behavior [1, 223,
285, 299].

In recent decades, the fractional calculus has been widely used, as indicated by
the many mathematical volumes dealing with this topic (e.g., Baleanu et al. [28],
Caponetto [53], Caputo [46], Diethelm [95], Hilfer [198], Jiao et al. [214], Kilbas et
al. [219], Kyriakova [222], Mainardi [248], McBride [259], Miller and Ross [264],
Petras [286], Samko et al. [295], Podlubny [287], Sabatier et al. [294], Torres and
Malinowska [309], Ying and Chen [327]), by the many meetings dedicated to it and
the plethora of articles appearing in mathematical (e.g., Kilbas and Marzan [218],
Heinsalu et al. [196], Luchko and Gorenflo [246]) and non-mathematical journals.

The use of derivative of fractional order has also spread into many other fields of
science besides mathematics and physics (e.g., Laskin [229], Naber [275], Baleanu et
al. [29], Zavada [328], Baleanu et al. [30], Caputo and Fabrizio [55]) such as biology
(e.g., Cesarone et al. [62], Caputo and Cametti [52]), economics (e.g., Caputo [54]),
demography (e.g., Jumarie [217]), geophysics (e.g., Iaffaldano [207]) and medicine
(e.g., El Sahed [99], Magin [247]). However, its somewhat cumbersome mathemat-
ical definition and the consequent complications in the solution of fractional order
differential equations have led to some difficulties.

23.2 Fractional Derivatives

In this section, the original Caputo fractional derivative is introduced, together with
certain new fractional derivative formulae without singularities in the kernel.

23.2.1 The Caputo Fractional Derivative

We begin with an argument which provides motivation for the formula, introduced
below [47].
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Let f (z) be analytic on an open subset O of the complex plane, where O includes
the real axis. Then, an immediate consequence of Cauchy’s Integral Formula, (B.1.2)
is

f (n)(z) =
n!
2πi

∮
C

f (z′)
(z′ − z)n+1 dz

′

=
(n − 1)!
2πi

∮
C

f ′(z′)
(z′ − z)n dz

′,

where f (n)(z) is the nth derivative of f (z), while f ′(z) = f (1)(z). The contour C ⊂ O
includes the point z. Let us replace n by α ∈ R

+. We take z to be on the real axis,
denoted by t, and the contour to be tightly around the branch cut joining the branch
point t to infinity. This step forces the exclusion of integrals with α ∈ (1,∞). The cut
is assumed to lie along the semi-infinite interval (−∞, t). The integration variable is
changed to τ. We have therefore

f (α)(t) =
Γ(α)
2πi

∮
C

f ′(τ)
|τ − t|αeiθ dτ, (23.2.1)

where θ is the argument of the denominator, which varies as we move around the
contour, anti-clockwise. Below the cut, we have θ = −πα, while above the cut, it is
θ = πα. The quantity Γ(·) is the Gamma function, given for any β > 0, by

Γ(β) =
∫ ∞

0
rβ−1e−r dr. (23.2.2)

Thus,

f (α)(t) =
Γ(α) sin(πα)

π

∫ t

−∞
f ′(τ)
|τ − t|α dτ.

Using the standard formula

Γ(1 − z)Γ(z) = π

sin(πz)
, (23.2.3)

relation (23.2.1) becomes

f (α)(t) =
1

Γ(1 − α)
∫ t

−∞
f ′(τ)
|τ − t|α dτ. (23.2.4)

The analyticity property assumed for f can be weakened but must ensure that the
derivative and integral in (23.2.4) exist.

The general form of the Caputo α fractional derivative, defined for any α ∈ (0, 1),
is given by

C
a D
α
t f (t) =

1
Γ(1 − α)

∫ t

a

f ′(τ)
(t − τ)α dτ, (23.2.5)

where a ∈ (−∞, t), f ∈ H1(a, b), where b > t. We can take a = −∞, since if necessary
it is always possible to extend f to the interval (−∞, a) by the zero function. Thus,
we have
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C
−∞D

α
t f (t) =

1
Γ(1 − α)

∫ t

−∞
f ′(τ)

(t − τ)α dτ = F(t), (23.2.6)

which agrees with the form (23.2.4). We assume that f (t) → 0, as t tends to −∞.
Now, (23.2.6) can be written as

F(t) =
α

Γ(1 − α)
∫ t

−∞
f (t) − f (τ)
(t − τ)1+α dτ, (23.2.7)

or, by a change of variable,

F(t) = − α

Γ(1 − α)
∫ ∞

0

f (t − s) − f (t)
s1+α

ds, (23.2.8)

which are equivalent representations of the Caputo derivative. Thus, the definition
(23.2.5) may be rewritten as

C
−∞D

α
t f (t) =

α

Γ(1 − α)
∫ t

−∞
f (t) − f (τ)
(t − τ)1+α dτ

= − α

Γ(1 − α)
∫ ∞

0

f (t − s) − f (t)
s1+α

ds.

(23.2.9)

Remark 23.2.1. As α tends to zero, we see from (23.2.6) that

C
−∞D

α
t f (t)→ f (t). (23.2.10)

If α tends to 1, the integral in (23.2.5) diverges. However, there is a limit which gives
a finite value (as must be true, given the derivation of (23.2.4)). Before the limit
α → 1 is taken, let us reverse the shrinking of the contour described above, so that
the integral exists for all nonnegative powers of the denominator. In particular, as
α→ 1, we have

C
−∞D

α
t f (t) = f ′(t). (23.2.11)

23.2.2 Fractional Derivatives Without Singular Kernels

We present a new definition of fractional derivative with a smooth kernel which takes
on two different representations for the temporal and spatial variables, respectively.
For the first, operating on time variables, it is natural to use the Laplace transform.
For the other representation, related to the spatial variables by a nonlocal fractional
derivative, it is more convenient to use the Fourier transform. The interest in this new
approach with a regular kernel in terms of spatial variables arose from the perception
that there is a class of nonlocal models, which have the ability to describe mate-
rial heterogeneities and fluctuations on different scales, which cannot be described
adequately by classical local theories or by fractional models with singular kernels.

The original definition of fractional derivative appears to be particularly conve-
nient for mechanical and electromagnetic phenomena involving plasticity, fatigue,
damage, and electromagnetic hysteresis. When these effects are not present it seems
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more appropriate to use the new temporal fractional derivative to describe, for exam-
ple, the behavior of classical viscoelastic materials, thermal media, and electromag-
netic systems.

The new nonlocal fractional derivative for spatial variables can describe mate-
rial heterogeneities and structures with different scales, which cannot be described
adequately by classical local theories.

23.2.2.1 A New Fractional Time Derivative
We refer to the usual Caputo fractional time derivative as UFDt. For order α, it is
given by (23.2.5), or in somewhat simplified notation, by

D(α)
t f (t) =

1
Γ(1 − α)

∫ t

a

f ′(τ)
(t − τ)α dτ (23.2.12)

with α ∈ [0, 1] and a ∈ (−∞, t) , f ∈ H1(a, b), b > a. By replacing the kernel
(t − τ)−α with the function exp(− α

1−α (t − τ)) and 1
Γ(1−α) with M(α)

1−α , we obtain the
following definition of a new fractional time derivative, denoted by NFDt, and given
by the formula

D
(α)
t f (t) =

M(α)
1 − α

∫ t

a
f ′(τ) exp

[
−α(t − τ)

1 − α
]
dτ = N(t), (23.2.13)

where M(α) is a normalization coefficient with the property that M(0) = M(1) = 1.
According to the definition (23.2.13), the NFDt is zero when f (t) is constant, as is
the UFDt. However, in contrast to the UFDt, the kernel in (23.2.13) does not have a
singularity for t = τ.

The NFDt can also be applied to functions that do not belong to H1(a, b). Indeed,
the definition (23.2.13) can be formulated also for f ∈ L1(−∞, b) and for any α ∈
(0, 1), which can be seen by expressing (23.2.13) in the form

D
(α)
t f (t) =

αM(α)
(1 − α)2

∫ t

−∞
( f (t) − f (τ)) exp

[
−α(t − τ)

1 − α
]
dτ.

If we put

σ =
1 − α
α
∈ [0,∞] , α = 1

1 + σ
∈ (0, 1) ,

definition (23.2.13) of NFDt assumes the form

D̃
(σ)
t f (t) =

(1 + σ)M∗(σ)
σ

∫ t

a
f ′(τ) exp

[
− (t − τ)
σ

]
dτ, (23.2.14)

where σ ∈ (0,∞) and M∗(σ) is the corresponding normalization term to M(α), and
is such that M∗(0) = M∗(∞) = 1.

In the context of mechanical models discussed later, for a → −∞, the relation
(23.2.14) corresponds to a relaxation function given by

G(s) =
(1 + σ)M∗(σ)

σ
exp

[
− s
σ

]
,



524 23 Fractional Derivative Models of Materials with Memory

instead of that given by (23.1.1) for the Caputo fractional derivative. This describes
the well-known Maxwell material (for example [167]), which is a very simple model
of a viscoelastic fluid.

For α→ 1, we have σ→ 0. Also,

lim
σ→0

1 + σ
σ

exp

[
− (t − τ)
σ

]
= δ(t − τ).

Therefore (see [150] and [197]),

lim
α→1

D
(α)
t f (t) = lim

α→1

M(α)
1 − α

∫ t

a
f ′(τ) exp

[
−α(t − τ)

1 − α
]
dτ

(23.2.15)

= lim
σ→0

(1 + σ)M∗(σ)
σ

∫ t

a
f ′(τ) exp

[
− (t − τ)
σ

]
dτ = f ′(t).

Also, for α→ 0 we have σ→ +∞. Hence,

lim
α→0

D
(α)
t f (t) = lim

α→0

M(α)
1 − α

∫ t

a
f ′(τ) exp

[
−α(t − τ)

1 − α
]
dτ

(23.2.16)

= lim
σ→+∞

(1 + σ)M∗(σ)
σ

∫ t

a
f ′(τ) exp

[
− (t − τ)
σ

]
dτ = f (t) − f (a).

If f (a) = 0, then
lim
α→0

D
(α)
t f (t) = f (t). (23.2.17)

Thus, (23.2.15) and (23.2.17) indicate that for α = 0 and 1, the NFDt behaves as
expected in the integer limit.

Simulations comparing the UFDt and NFDt for particular choices of f (·) were
described in [56]. These suggested that for α = 0.66 the classical NFDt is very
similar to the UFDt. However, for models with α close to 0, we see different behavior.
For α = 0.1 differences between NFDt and UFDt become apparent. In particular
the classical UFDt is more affected by past history than NFDt, which exhibits rapid
stabilization.

For integer nwhere n ≥ 1, and α ∈ [0, 1] the fractional time derivativeD(α+n)
t f (t)

of order (n + α) is defined by

D
(α+n)
t f (t) := D

(α)
t (D(n)

t f (t)). (23.2.18)

Theorem 23.2.1. If the function f (t) is such that

f (s)(a) = 0, s = 1, 2, . . . , n,

then we have
D

(n)
t (D(α)

t f (t)) = D
(α)
t (D(n)

t f (t)).
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Proof. Consider the case n = 1. From definition (23.2.18) of D(α+1)
t f (t), we obtain

D
(α)
t

(
D

(1)
t f (t)

)
=

M(α)
1 − α

∫ t

a
f ′′(τ) exp

[
−α(t − τ)

1 − α
]
dτ.

By means of an integration by parts, using the property f ′(a) = 0, we obtain

D
(α)
t

(
D

(1)
t f (t)

)
=

M(α)
(1 − α)

∫ t

a

(
d
dτ

f ′(τ)
)
exp−

[
α(t − τ)
1 − α

]
dτ

=
M(α)
(1 − α)

[∫ t

a

d
dτ

{
f ′(τ) exp

[
−α(t − τ)

1 − α
]}

dτ

− α

1 − α
∫ t

a
f ′(τ) exp

[
−α(t − τ)

1 − α
]
dτ

]

=
M(α)
(1 − α)

[
f ′(t) − α

1 − α
∫ t

a
f ′(τ) exp

[
−α(t − τ)

1 − α
]
dτ

]
.

Also,

D
(1)
t (D(α)

t f (t)) =
d
dt

{
M(α)
1 − α

∫ t

a
f ′(τ) exp

[
−α(t − τ)

1 − α
]
dτ

}

=
M(α)
1 − α

[
f ′(t) − α

1 − α
∫ t

a
f ′(τ) exp

[
−α(t − τ)

1 − α
]
dτ

]
.

It is easy to generalize the proof for any n > 1. 	

The property asserted in Theorem 23.2.1 is implied by the notation on the left of
(23.2.18). Also, note that (23.2.18), together with (23.2.15) and (23.2.16) yield that

lim
α→0

D
(α+n)
t f (t) = f (n)(t), lim

α→1
D

(α+n)
t f (t) = f (n+1)(t),

which, again, is expected behavior for a non-integer derivative.
In the following, we suppose the functionM(α) = 1.We can rewrite the definition

(23.2.14) in the form

D̃
(ν)
t f (t) = V(ν)

∫ t

a
f ′(τ) exp[−ν(t − τ)]dτ (23.2.19)

obtained from (23.2.13) or (23.2.14) with ν = 1/σ > 0,where V(ν) = (ν+1)M∗(1/ν).
Then, we have the following theorem.

Theorem 23.2.2. If the function f ∈ W1,1(a, b), then the integral in (23.2.19) exists
for t ∈ [a, b] and D̃

(ν)
t f (t) ∈ L1 [a, b] .

Proof. Let us write
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D̃
(ν)
t f (t) = V(ν)

∫ t

a
f ′(τ) exp[−ν(t − τ)]dτ =

(23.2.20)

= V(ν)
∫ ∞

−∞
pν(t − s)q(s)ds,

where pν(y) = exp(−vy), when 0 < y < b − a, with pν(y) = 0 when y < 0 or
y > b − a. Also, q(y) = f ′(y) when a ≤ y ≤ b. Finally, q(y) = 0 when y < a or y > b.
Hence, under the hypotheses of the theorem, the functions pν, q ∈ L1(a, b). Then, by
the classical results on Lebesgue integrals (see [326]), the integral (23.2.19) exists
almost everywhere in t ∈ [a, b] and D̃

(ν)
t f (t) ∈ L1 [a, b].

The definition (23.2.19) can be generalized by choosing pν in (23.2.20) to be any
function with the properties assigned to the exponential kernel in Theorem 23.2.2,
where pν(0) is a finite number, chosen for convenience to be unity. This latter prop-
erty ensures that it constitutes a non-singular kernel. It can be shown without diffi-
culty that Theorem 23.2.1 also applies to the generalized definition.

23.2.2.2 Some Results for Given Histories

It is of interest to see the fractional derivatives of elementary functions according to
the new definition (23.2.13). We begin with sinωt and cosωt. It is convenient to first
consider f (t) = exp(iωt), which combined both of these. In fact, we have

D
(α)
t exp(iωt) = D

(α)
t (cosωt) + iD(α)

t (sinωt),

and

D
(α)
t exp(iωt) = iωE(α)

∫ t

0
exp(−ν(t − s) + iωs)ds

=
iωE(α)
iω + ν

[exp(iωt) − exp(−νt)]

= iωE(α)
(cosωt + i sinωt − exp(−νt))(ν − iω)

ν2 + ω2
,

ν =
α

1 − α,

where E(α) = M(α)
1 − α . We have, from these relations that

D
(α)
t (sinωt) =

E(α)ω

ν2 + ω2
[ν cosωt + ω sinωt − ν exp(−νt)]

=
E(α)ω

ν2 + ω2
[
√
ν2 + ω2 sin(ωt + λ) − ν exp(−νt)]

= E(α) cos λ[sin(ωt + λ) − sin λ exp(−νt)],
where λ is such that
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tan λ =
ν

ω
, sin λ =

ν√
ν2 + ω2

, cos λ =
ω√
ν2 + ω2

.

Thus, the new derivative of sinωt yields a change of phase by amount λ, while the
amplitude becomes

E(α) cos λ =
ωE(α)√
ν2 + ω2

.

Also,
D

(α)
t (cosωt) = E(α) cos λ[cos(ωt + λ) − cos λ exp(−νt)],

which also exhibits a phase change and the same amplitude variation noted for the
case of sinωt.

The new derivative, for an exponential history, has the form

D
(α)
t (expωt) =

E(α)ω
ν + ω

{
exp(ωt) − exp(−νt)}

=
E(α)ω
ν + ω

exp(ωt)
{
1 − exp[−(ω + νt)]} .

Finally, for a linear history, defined by

f (t) =

⎧⎪⎪⎨⎪⎪⎩
t, t ≥ 0,

0, t < 0,

we obtain

D
(α)
t t =

M(α)
1 − α

∫ t

0
exp(−ν(t − s))ds

=
M(α)
α

[1 − exp(−νt)], 0 < α ≤ 1.

23.2.2.3 The Laplace Transform of the NFDt

The Laplace transform of the NFDt, defined by Eq. (23.2.13), will be of interest. We
have

NL(p) =
∫ ∞

0
exp(−pt)Dαt f (t)dt =

∫ ∞

0
exp(−pt)N(t)dt,

N(n)
L (p) =

∫ ∞

0
exp(−pt)Dα+nt f (t)(t)dt =

∫ ∞

0
exp(−pt)N(n)(t)dt.

One can show that
∫ ∞

0
exp(−pt) f ′(t)dt = [ f ′L](p) = p fL(p) − f (0),

∫ ∞

0
exp(−pt) exp

[
− αt
1 − α

]
dt =

1 − α
p + α(1 − p)

.

Because of the convolution form of N(t) in (23.2.13), we have
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NL(p) = M(α)
p fL(p) − f (0)
p + α(1 − p)

. (23.2.21)

Similarly,

N(1)
L (p) = M(α)

p2 fL(p) − p f (0) − f ′(0)
p + α(1 − p)

,

and, more generally,

N(n)
L (p) = M(α)

pn+1 fL(p) − pn f (0) − pn−1 f ′(0) . . . − f (n)(0)
p + α(1 − p)

.

23.2.2.4 Fractional Gradient Operator

We introduce a new concept of fractional gradient, which can describe nonlocal de-
pendence in constitutive equations [324, 325].

Let us consider a set Ω ∈ R
3 and a scalar function u(·) : Ω → R. We define the

fractional gradient of order α ∈ [0, 1] as follows

∇(α)u(x) = α

(1 − α)√πα
∫
Ω

∇u(y) exp
[
−α

2(x − y)2
(1 − α)2

]
dy (23.2.22)

with x, y ∈ Ω. The nonlocal property of this fractional derivative relates to the inte-
gration of y over Ω. A rotationally invariant three-dimensional Normal (Gaussian)
distribution has been chosen to describe this nonlocality.

It is easy to prove from definition (23.2.22) that

∇(1)u(x) = ∇u(x),
using the relation

lim
α→1

α

(1 − α)√πα exp
[
−α

2(x − y)2
(1 − α)2

]
= δ(x − y).

Thus, when α = 1, ∇(α)u(x) loses the nonlocality property. Also, we clearly have

∇(0)u(x) = 0.

This fractional gradient is easily generalized to the case of a vector u(x), where
the gradient is assumed to exist on Ω. We define the fractional gradient of this vector
by

∇(α)u(x) = α

(1 − α)√πα
∫
Ω

∇u(y) exp
[
−α

2(x − y)2
(1 − α)2

]
dy.

Thus, a material with a nonlocal property may be described by fractional consti-
tutive equations. As an example we consider an elastic nonlocal material, defined by
the following constitutive equation between the stress tensor T and ∇(α)u(x)

T(x, t) = A∇(α)u(x, t) , α ∈ (0, 1] ,
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where A is a fourth order symmetric tensor. The nonlocal property is clear from the
detailed form

T(x, t) =
αA

(1 − α)√πα
∫
Ω

∇u(y) exp
[
−α

2(x − y)2
(1 − α)2

]
dy.

Likewise, we can introduce the fractional divergence, defined for a smooth u(·) :
Ω→ R

3 by

∇(α) · u(x) = α

(1 − α)√πα
∫
Ω

∇ · u(y) exp
[
−α

2(x − y)2
(1 − α)2

]
dy. (23.2.23)

Theorem 23.2.3. From definitions (23.2.22) and (23.2.23), we have for any u(x) :
Ω→ R, such that ∇u(x) · n|∂Ω = 0, (23.2.24)
the following identity ∇ · ∇(α)u(x) = ∇(α) · ∇u(x). (23.2.25)

Proof. Using (23.2.22), we obtain

∇ · ∇(α)u(x) = α

(1 − α)√πα
∫
Ω

∇u(y) · ∇x exp
[
−α

2(x − y)2
(1 − α)2

]
dy

= − α

(1 − α)√πα
∫
Ω

∇u(y) · ∇ exp
[
−α

2(x − y)2
(1 − α)2

]
dy

=
α

(1 − α)√πα
∫
Ω

∇ · ∇u(y) exp
[
−α

2(x − y)2
(1 − α)2

]
dy

− α

(1 − α)√πα
∫
∂Ω

∇u(y) · n exp
[
−α

2(x − y)2
(1 − α)2

]
dy.

Hence, for the boundary condition (23.2.24), the identity (23.2.25) is proved, because

∇(α) · ∇u(x) = α

(1 − α)√πα
∫
Ω

∇ · ∇u(y) exp
[
−α

2(x − y)2
(1 − α)2

]
dy.

23.2.2.5 Fourier Transform of the Fractional Gradient and Divergence

For a smooth function u(x) : R3 → R, the Fourier transform of the fractional gradient
is defined by

(∇(α)u)F(ξ) =
∫
R3
∇(α)u(x) exp [−iξ · x] dx.

This quantity is given by

(∇αu)F(ξ) = α

(1 − α)√πα
(∫

R3
∇u(y) exp

[
−α

2(x − y)2
(1 − α)2

]
dy

)
F

(ξ)

=
α

(1 − α)√πα (∇u)F(ξ)
(
exp

[
− α

2x2

(1 − α)2
])

F

(ξ),
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where the well-known formula for the Fourier transform of a convolution product
has been used. From

(
exp

[
− α

2x2

(1 − α)2
])

F

(ξ) =
(1 − α)√π
α

exp

[
− (1 − α)

2ξ2

4α2

]
,

we obtain

(∇αu)F(ξ) =
√
π1−α(∇u)F(ξ) exp

[
− (1 − α)

2ξ2

4α2

]
.

The Fourier transform of fractional divergence is defined by

(∇α · u)F(ξ) = α

(1 − α)√πα
(∫
Ω

∇ · u(y) exp
[
−α

2(x − y)2
(1 − α)2

]
dy

)
F

(ξ),

from which we have

(∇α · u)F(ξ) =
√
π1−α (∇ · u)F (ξ) exp

[
− (1 − α)

2ξ2

4α2

]
.

23.2.2.6 Fractional Laplacian

In the study of partial differential equations, the Laplacian is of considerable interest.
It is therefore of interest to determine the factional Laplacian. Based on the defini-
tions of fractional gradient and divergence, we suggest a representation of the frac-
tional Laplacian for a smooth function f (x): Ω → R

3, such that ∇ f (x) · n|∂Ω = 0,
of the form

(∇2)α f (x) = α

(1 − α)√πα
∫
Ω

∇ · ∇ f (y) exp
[
−α

2(x − y)2
(1 − α)2

]
dy.

By the use of Theorem 23.2.3, we have

(∇2)α f (x) = ∇ · ∇α f (x) = ∇α · ∇ f (x).
Suppose that

f (x) = 0 on ∂Ω.

Then, we can extend the function f (x) to R
3 by taking it to be zero on R

3\Ω. This
allows us to consider the Fourier transform

(
(∇2)α f

)
F
(ξ) =

α

(1 − α)√πα
(∫

R3
∇2 f (y) exp

[
−α

2(x − y)2
(1 − α)2

]
dy

)
F

(ξ)

=
α

(1 − α)√πα (∇ · ∇ f )F(ξ)
(
exp

[
− α

2x2

(1 − α)2
])

F

(ξ)

= 4π |ξ|2 fF(ξ)
√
π1−α exp

[
− (1 − α)

2ξ2

4α2

]
.

(23.2.26)
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Finally, if α = 1 we obtain from (23.2.26)

(
∇2 f

)
F
(ξ) = lim

α→1
4π |ξ|2 fF(ξ)

√
π1−α exp

[
− (1 − α)

2ξ2

α2

]

= 4π |ξ|2 fF(ξ).

23.2.2.7 Memory Operators

Fractional derivatives are memory operators which usually represent dissipation of
energy [128, 248, 287] or damage [55] in the medium, as in the case of anelastic
media or diffusion in porous media. In general, they are in agreement with the Second
Law of Thermodynamics [109, 128].

Their validity rests not only on the fact that they represent appropriately a variety
of phenomena, but also, in the case of the Caputo derivative, because they have the
“elegant and rigorous property” that when the order of differentiation is integer, they
coincide with the classic derivative of that order. However, this property is not rele-
vant to the effects they represent in physical phenomena. It may be that using other
differential operators, possibly simpler but without this property, one may obtain the
same results as for Caputo fractional derivatives.

The effects of the fractional memory formalism for the new fractional derivative
(NFDt), compared with the Caputo derivative (UFDt) on a linear trend are presented
in [56].

A distributed order fractional memory operator may be introduced, which is sim-
pler and easier to handle than the Caputo derivative [326]. It is defined by

aPb f (t) =
∫ b

a
g(α)D(α)

t f (t)dα

=

∫ b

a
g(α)

∫ t

0
exp(− α

1 − α (t − τ)) f
′(τ)dτdα,

(23.2.27)

where g(α) is a weight function and 0 < a < b < 1. We now take the Laplace trans-
form of (23.2.27). Following the method of Caputo [45, 46, 56], one may interchange
the order of integration of α and t. Thus, we obtain

(aPb f (t))L (p) =
∫ ∞

0

∫ b

a

[
g(α)D(α)

t f (t)
]
exp(−pt)dαdt

=

∫ ∞

0

∫ b

a

[
g(α)

∫ t

0
exp(− α

1 − α (t − τ)) f
′(τ)dτ

]
exp(−pt)dαdt

=

∫ b

a

{∫ ∞

0

[∫ t

0
exp(− α

1 − α (t − τ)) f
′(τ)dτ

]
exp(−pt)dt

}
g(α)dα.

By virtue of the convolution form of the integral over τ, we have, as in (23.2.21),

(aPb f )L(p) =
r(p)F(p)

p

∫ b

a

g(α)(1 − α)
r(p) + α

dα,

F(p) = p fL(p) − f (0), r(p) =
p

1 − p
,
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which represents the filtering properties of the operator and is simpler than that ob-
tained using the Caputo derivative.

As an example we may consider the simple case g(α) = 1, which gives

(aPb f )L (p) =
r(p)
p

F(p)
∫ b

a

1 − α
α + r(p)

dα (23.2.28)

=
r(p)
p

F(p)

[∫ b

a

1
α + r(p)

dα −
∫ b

a

α

α + r(p)
dα

]
.

This can be written as follow

(aPb f )L (p) =
1

1 − p
F(p)

{
1

1 − p
log

b + r(p)
a + r(p)

− (b − a)
}

= F(p)

{
1

(1 − p)2
log

b + r(p)
a + r(p)

− 1
1 − p

(b − a)
}
.

23.3 The Fractional Derivative Memory Model

Fractional derivatives and their connection with power law relaxation functions are
now discussed. Constraints imposed by thermodynamics are derived, and the Graffi–
Volterra free energy for fractional derivative models is introduced.

23.3.1 Power Laws and Fractional Derivatives

Let us assume that the viscoelastic memory kernel or relaxation function �(s) is
given by the power law form (23.1.1)

�(s) =
�

Γ(1 − α)sα , α ∈ (0, 1), (23.3.1)

where Γ(·) is the gamma function and � is a fourth order tensor. Relaxation functions
of this type are discussed briefly in [167, page 32], where references to older works
are given. We have

�(∞) = �∞ = 0, lim
s→0
�(s) = �0 = ∞. (23.3.2)

The property �∞ = 0 in the classical Volterra theory corresponds to that for vis-
coelastic fluids. In the fractional model though the kernel (23.3.1) is not L1(0,∞), we
will see (Remark 23.3.1 below) that this is true for values of α close to 1. However,
for solid viscoelastic materials, some experimental observations are in approximate
agreement with predictions based on (23.3.1) [167, 280, 293, 296], notably the prop-
erty that the loss angle [167] is independent of frequency, as indicated by (23.5.2)
below.

It follows from (23.3.1) that
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�′(s) = − α�

Γ(1 − α)s1+α . (23.3.3)

The creep function for materials characterized by (23.3.1) or (23.3.3) also has a
power law form [167].

Observe from (23.3.1) that there are no dimensional parameters in the theory,
other than the overall coefficient � and the time dimensional quantity s. This implies
that various quantities can be simply determined to within a multiplying constant, by
means of dimensional analysis.

It is in fact advisable to introduce an extra parameter ξ with the dimension of
time. This can usually be absorbed into � or η, if the parameter α is no being explic-
itly varied. For solids, we put

� = �1ξ
α, (23.3.4)

so that �1 has dimensions of stress. For fluids, we have

η = η1ξ
α,

where η1 has dimensions of stress.
The use of the Caputo fractional derivative, defined for any α ∈ (0, 1) by any

of the forms (23.2.6)–(23.2.9), is equivalent to adopting (23.3.1) as the relaxation
function of the material. This model may be applied to both fluids and solids.

We follow here the classical papers [249] on fractional derivatives in defining the
constitutive equation of viscoelasticity by

T(x, t) =
�(x)
Γ(1 − α)

∫ t

a

Ė(x, τ)
(t − τ)α dτ. (23.3.5)

Let us take a = −∞, since if necessary it is always possible to extend E to the interval
(−∞, a) by the null tensor. Thus, (23.3.5) can be written as

T(x, t) =
α�(x)
Γ(1 − α)

∫ t

−∞
E(x, t) − E(x, τ)

(t − τ)1+α dτ, (23.3.6)

or, by a change of variable,

T(x, t) = − α�(x)
Γ(1 − α)

∫ ∞

0

Et
r(x, s)
s1+α

ds, (23.3.7)

which are equivalent representations of the Caputo derivative. Using the notation of
Sect. 23.2.1, relations (23.3.5)–(23.3.7) may be put in the form

T(x, t) = C
−∞D

α
t [�(x)E(x, t)]. (23.3.8)

The constitutive equations (23.3.6) or (23.3.7) allow us to define the domain of
definition of these functionals by a fractional Sobolev space, now called a Gagliardo
space [142], defined for any x ∈ Ω,
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Wα,1(−∞,∞)
=

{
E(t) ∈ L1(−∞,∞) , E(t) − E(τ)

(t − τ)1+α ∈ L
1((−∞, t) × (−∞,∞))

}
,

with norm given by

‖E‖Wα,1(−∞,∞)

=

(∫ ∞

0
|E(t)| dt +

∫ ∞

−∞
α

Γ(1 − α)
∫ t

−∞
|E(x, t) − E(x, τ)|

(t − τ)1+α dτ dt

)
.

In this framework, the constitutive equation of an incompressible viscoelastic
fluid is entirely analogous to (23.3.5), (23.3.6) or (23.3.7), with the formal difference
that instead of the tensor C(x), we now have a scalar constant η, which is related to
the viscosity of the fluid. So, the constitutive functional is given by the stress

T(x, t) = −p(x, t)I + TE(x, t),

where p denotes the pressure and TE the extra-stress defined by

TE(x, t) =
2η

Γ(1 − α)
∫ t

−∞
Ė(x, τ)
(t − τ)α dτ

=
η

Γ(1 − α)
∫ t

−∞
∇v(x, τ) + (∇v(x, τ))T

(t − τ)α dτ,

(23.3.9)

where v is the fluid velocity. Alternative forms are given by

TE(x, t) =
2αη
Γ(1 − α)

∫ t

−∞
E(x, t) − E(x, τ)

(t − τ)1+α dτ = − 2αη
Γ(1 − α)

∫ ∞

0

Et
r(x, s)
s1+α

ds.

(23.3.10)

Remark 23.3.1. Note that when α is close to 0, the model well represents a viscoelas-
tic solid. When α is close to 1, we have a viscoelastic fluid. These features of the
model are implied by the (23.3.8), in view of the properties of the Caputo fractional
derivative given by (23.2.10) and (23.2.11), leading to

T(x, t) =

⎧⎪⎪⎨⎪⎪⎩
�1(x)E(x, t) solids,

ξη1(x)Ė(x, t) fluids,

where we have used (23.3.4).

Remark 23.3.2. Another important feature of a solid is the existence of only one null
strain E0 (or reference configuration) such that the space of histories is a subset of

Gt
S =

{
Et(·) : [0,∞)→ S ym(R3); Et ∈ L1(0,∞); lim

s→∞E
t(s) = E0

}
,

where, from (23.3.5) or (23.3.6), if Et(s) = E0 we have T(Et(s)) = 0.
For a fluid, the set of histories belongs to

Gt
F =

{
Et(·) : [0,∞)→ S ym(R3); Et ∈ L1(0,∞)

}
.
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The main difference between the Volterra and fractional derivative models, is
evident in the study of solid materials, if we examine stress behavior for t → ∞.
Indeed, in the context of the Volterra theory, if the system is subject to a constant
strain E0, then stress will tend to G∞E0. This can be proved by assuming a constant
strain E0(x) for t > t0, so that the following limit is obtained

lim
t→∞T(x, t) = �∞(x)E0(x)

+ lim
t→∞

∫ ∞

t−t0
�′(x, s)(E(x, t − s) − E0(x))ds

= �∞(x)E0(x), t > t0.

(23.3.11)

On the other hand, in the fractional theory we find that the stress will go to zero.
Indeed,

lim
t→∞

α�(x)
Γ(1 − α)

∫ t0

−∞
E0(x) − E(x, τ)

(t − τ)1+α dτ = 0, t > t0.

In this case, the material undergoes a kind of plastic deformation [49].

Remark 23.3.3. It is interesting to observe that Volterra sought to describe properties
related to dislocation phenomena in terms of memory effects. However, it is now
known that the model with the standard constitutive relation ((8.1.5), for example) is
not capable of describing plastic effects produced by dislocations.

23.4 Thermodynamical Constraints and Free Energies

The issue of compatibility of fractional derivative models with thermodynamics is
explored in this section. Only isothermal processes will be considered, so that the
Second Law of Thermodynamics reduces to the Dissipation Principle

ρ(x)ψ̇(x, t) ≤ T(x, t) · Ė(x, t), (23.4.1)

where ψ denotes a free energy and ρ is the mass density. This is equivalent to property
P3 given by (16.1.28). We have from (23.4.1) that on any cyclic process of period
T = 2π/ω with ω ∈ R++,

∫ T

0
T(x, t) · Ė(x, t) dt ≥ 0. (23.4.2)

In particular, for periodic strain processes of the form

E(x, t) = E1(x) cosωt + E2(x) sinωt,

it follows from (23.4.2) (see [108, 124]) that for all E1,E2 ∈ S ym(V),∫ ∞

0

(
E1 · �

s1+α
E1 + E2 · �s1+αE2

)
sinωs ds

+

∫ ∞

0
E1 · � − �

T

s1+α
E2 cosωs ds ≤ 0 , for all ω ∈ R+.

(23.4.3)
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The second term can vary arbitrarily in sign and magnitude for different choices of
E1 and E2, so that it can be concluded that the fourth order tensor � is symmetric.
Also, in the first term, the quantity E · �E must have a definite signature for the
inequality to be obeyed in a simple manner. We choose E · �E ≥ 0 so that � is at
least positive semidefinite. Thus, the condition (23.4.3) becomes

∫ ∞

0

1
s1+α

sinωs ds ≤ 0 for all ω ∈ R+. (23.4.4)

Remark 23.4.1. For a fluid defined by (23.3.10), we obtain from the second law the
same inequality (23.4.4). Alternatively, if (23.3.9) is used, the equivalent condition
emerges ∫ ∞

0

1
sα

cosωs ds ≥ 0 f or all ω ∈ R. (23.4.5)

We observe that (23.4.5) has the form (16.1.12) for the case of a fractional deriva-
tive relaxation function. It will be confirmed that this property is actually true in
Remark 23.5.1.

23.4.1 The Graffi–Volterra Free Energy

We now consider a particular free energy within fractional derivative theory. Let us
first take the case of a solid, described by Eq. (23.3.7). This functional is denoted by
ψS . Any free energy functional must satisfy the inequality (23.4.1). Thus, we must
have

ρ(x)ψ̇S (x, t) ≤ T(x, t) · Ė(x, t). (23.4.6)

For simplicity, let us take the �(x) to be a scalar quantity C(x). Using the identity

d
dt
E(x, t) = − d

ds
Et
r(x, s) −

d
dt
Et
r(x, s),

we have

T(x, t) · Ė(x, t) = − αC(x)
Γ(1 − α)

∫ ∞

0

Et
r(x, s)
s1+α

ds · Ė(x, t)

=
αC(x)
Γ(1 − α)

∫ ∞

0

Et
r(x, s)
s1+α

· d
dt
Et
r(x, s))ds

+
αC(x)
Γ(1 − α)

∫ ∞

0

Et
r(x, s)

s1+α
· d
ds

Et
r(x, s)ds.

(23.4.7)

Let us assume that ψS (x, t) is given by

ψS (x, t) =
αC(x)

2ρ(x)Γ(1 − α)
∫ ∞

0

|Et
r(x, s)|2
s1+α

ds. (23.4.8)

This is the Graffi–Volterra free energy for fractional derivative models. It is discussed
in a more general context in Sects. 17.3.1 and 10.1.1, where it is shown to be the only
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free energy that is a single-integral quadratic form. The inequality (23.4.6) is satisfied
because by (23.4.7) we obtain

ρ(x)ψ̇S (x, t) = T(x, t) · Ė(x, t) − αC(x)
2Γ(1 − α)

∫ ∞

0

d
ds |Et

r(x, s))|2
s1+α

ds

= T(x, t) · Ė(x, t) − αC(x)(1 + α)
2Γ(1 − α)

∫ ∞

0

|Et
r(x, s)|2
s2+α

ds.

Hence
ρ(x)ψ̇S (x, t) = T(x, t) · Ė(x, t) − D(x, t), (23.4.9)

where D(x, t) ≥ 0 denotes the rate of dissipation, given by

D(x, t) =
αC(x)(1 + α)
2Γ(1 − α)

∫ ∞

0

|Et
r(x, s)|2
s2+α

ds. (23.4.10)

The set of histories Ht
S available with this model is defined by

Ht
S =

{
Et : [0,∞)→ S ym(V); ψS (E(t),Et(·)) < ∞

}
.

For a viscoelastic fluid, we use the constitutive Eq. (23.3.10), which is more con-
venient than (23.3.9). This gives

TE(x, t) · Ė(x, t) = 2αη
Γ(1 − α)

∫ t

−∞
E(x, t) − E(x, τ)

(t − τ)1+α dτ · Ė(x, t)

=
2αη
Γ(1 − α)

∫ t

−∞
E(x, t) − E(x, τ)

(t − τ)1+α · d
dt
(E(x, t) − E(x, τ))dτ

=
αη

Γ(1 − α)
[
d
dt

∫ t

−∞
|E(x, t) − E(x, τ)|2

(t − τ)1+α dτ

−(1 + α)
∫ t

−∞
|E(x, t) − E(x, τ)|2

(t − τ)2+α dτ

]
.

The Graffi–Volterra for fluids is given in this case by

ψF(x, t) =
αη

ρ(x)Γ(1 − α)
∫ t

−∞
|E(x, t) − E(x, τ)|2

(t − τ)1+α dτ

or, using the variable s = t − τ, the equivalent form

ψF(x, t)) =
αη

ρ(x)Γ(1 − α)
∫ ∞

0

|(Et
r(x, s)|2
s1+α

ds.

Of course, it has a similar form to (23.4.8) for solids. We may define the set of
historiesHt

F available with this model by

Ht
F =

{
Et : [0,∞)→ S ym(V); ψF(E(t),Et(·)) < ∞

}
.
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The rate of dissipation D(x, t) is given by

D(x, t) =
αη(1 + α)
Γ(1 − α)

∫ t

−∞
|E(x, t) − E(x, τ)|2

(t − τ)2+α dτ ≥ 0,

or

D(x, t) =
αη(1 + α)
Γ(1 − α)

∫ ∞

0

|Et
r(x, s)|2
s2+α

ds ≥ 0.

23.5 Frequency-Domain Quantities for Scalar Fractional
Derivative Materials

In the next two sections, we deal, for simplicity, with the scalar theory, for which the
relaxation function and strain history are scalar quantities. Also, we generally omit
the space variable x.

23.5.1 Complex Modulus for the Fractional Derivative Model

It follows from (23.3.3) and (16.1.7)2 that the quantity G′+(ω) does not exist for
fractional derivative forms, while G̃+(ω), given by (16.1.7)1, is finite. Therefore, the
complex modulus, defined by (16.1.9)2, is finite. Recalling (23.3.1) and (23.3.2), we
see that it is given by

M(ω) = iω
∫ ∞

0
G(s)e−iωsds = iω

k
Γ(1 − α)

∫ ∞

0
s−αe−iωsds,

where the coefficient k corresponds to � (orC) and η in Sect. 23.3. From dimensional
analysis, we can determine that

M(ω) = k cωα,

where c is a dimensionless constant to be determined. Putting z = iω and rotating
it to a point on the positive real axis, the integral can be evaluated in terms of the
Gamma function. Rotating back, we find that ([167, page 33])

M(ω) = iωG+(ω) = k cωα ∀ω ≥ 0, c = exp
(
i
απ

2

)
.

The real and imaginary parts of M(ω) have the form

M1(ω) = ωGs(ω) = kωα cos
(
απ

2

)
,

M2(ω) = ωGc(ω) = kωα sin
(
απ

2

)
∀ω ≥ 0.

(23.5.1)

Remark 23.5.1. The positivity of Gc(ω) is clear from (23.5.1), for ω ∈ R+ and there-
fore for all real ω. This confirms the thermodynamic constraint (16.1.12)1.
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The loss angle γ, defined by the relationship

M2(ω)
M1(ω)

= tan γ,

is given by

γ =
απ

2
, (23.5.2)

which is independent of ω, as noted earlier.
It is apparent from (23.5.1) that the only singularity inG+(ω) is a branch cut from

the origin to infinity. Thus, minimal states for power law materials are singletons, in
accordance with Proposition 16.5.2. The branch cut must lie in Ω+. Apart from this
constraint, we can choose it to be in any direction. Each choice yields a different
function. We choose it to be along the positive imaginary axis. An expression for the
minimum free energy of this material is derived in Chap. 14. Thus, we can reach the
negative real axis, without crossing singularities, by a rotation e−iπ of ω. This gives

M(−ω) = −iωG+(−ω) = k|ω|α exp
(
−iαπ

2

)
= M(ω), ∀ω ≥ 0, (23.5.3)

which has a branch cut along the negative imaginary axis.
From (16.1.21)4, we see that the frequency-domain version of the constitutive

relation has the form

T (t) =
1
2π

∫ ∞

−∞
M(ω)Et

r+(ω)dω

=
k
2π

∫ ∞

0
e
−iαπ

2 ωαEt
r+(ω)dω +

k
2π

∫ 0

−∞
e
i
απ

2 (−ω)αEt
r+(ω)dω

= −k sin(απ)
π

∫ ∞

0
rαEt

r+(−ir)dr.

(23.5.4)

The last forms are obtained by moving the contour to closely surround the cut on
the negative imaginary axis. The first term of (23.5.4)2 becomes the integral over
[0,−i∞) on the right side of the negative imaginary axis, while in the second term
becomes the integral over (−i∞, 0] on the left side. Relation (16.1.17) has been in-
voked in writing the last equation.

Using (16.1.13), (23.5.1)2 and (23.5.3), we deduce that the function H is defined
over R by

H(ω) = a|ω|α + 1, ∀ω ∈ R, where a = k sin
(
απ

2

)
. (23.5.5)

Using (16.1.23)1, we can write T (t) in the form
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T (t) =
1
πi

∫ ∞

−∞
H(ω)
ω

Et
r+(ω)dω

=
a
πi

∫ ∞

0
ωαEt

r+(ω)dω −
a
πi

∫ 0

−∞
(−ω)αEt

r+(ω)dω

= −k sin(απ)
π

∫ ∞

0
rαEt

r+(−ir)dr = k
sin(απ)
π

∫ ∞

0
rα − 1Ėt

+(−ir)dr.

(23.5.6)

The penultimate form is obtained by transforming the integrals according to the
changes described in relation to (23.5.4), while the final form uses (16.1.17).

23.5.2 The Work Function for Fractional Derivative Materials

Relation (17.3.19) for the work function becomes

W(t) =
k

2Γ(1 − α)
∫ ∞

0

∫ ∞

0

Ėt(s)Ėt(u)

|s − u|α duds,

which involves an integrable singularity. Using (23.5.5), relations (17.3.19) become

W(t) =
1
2π

∫ ∞

−∞
H(ω)

ω2
|Ėt
+(ω)|2 dω =

1
2π

∫ ∞

−∞
H(ω)|Et

r+(ω)|2dω

=
a
2π

∫ ∞

−∞
|ω|α − 1|Ėt

+(ω)|2 dω =
a
2π

∫ ∞

−∞
|ω|α + 1|Et

r+(ω)|2dω.
(23.5.7)

The basic property Ẇ(t) = T (t)Ė(t) can be shown using (23.5.6)1, (23.5.7), (16.1.18)2
and the evenness of H(ω).

23.6 The Minimum Free Energy for Fractional Derivative Models

We now derive the form for the minimum free energy and the corresponding rate of
dissipation for fractional derivative materials. These are for general histories. Simple
explicit formulae are also given for sinusoidal and exponential histories. The deriva-
tions are for the scalar case.

23.6.1 General Form of the Minimum Free Energy

The factors H±(ω) of H(ω) have the form

H+(ω) =
√
aωηeiλ(ω),

H−(ω) =
√
aωηe−iλ(ω), η =

α + 1
2
∈ (1

2
, 1),

(23.6.1)

for ω > 0. The phase λ(ω) remains to be determined. On the complex plane, H±(ω)
are analytic continuations of these quantities, except at their singularities, which are
now described.
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The singularities of H+(ω) are chosen to be along the positive imaginary axis,
similarly to G+(ω) as described before (23.5.3). Then H−(ω) is the complex conju-
gate of this function with singularities consisting of a branch cut along the negative
imaginary axis.

If we had chosen different straight line branch cuts, the resulting factors would
differ from those we determine here by a constant phase factor. This can be seen
from (23.6.1) by considering a transformed complex plane with typical point ω1 =

ω exp(iδ), where δ is a constant. It is relevant that λ(ω) is later shown to be indepen-
dent of ω. The phase factor δ would not affect the resulting formula for the minimum
free energy.

The branch cuts described are simple consequences of the factors ωη in (23.6.1).
The product of H±(ω) will lead to branch cuts in H(ω). The factors of H(ω) obey the
following relationships, for general complex ω:

H±(ω) = H±(ω) = H∓(ω) = H±(−ω),
from which it follows that H+(ω) (H−(ω)) must be real on the negative (positive)
imaginary axis; indeed, this property applies to any point on the imaginary axis where
these factors exist. Thus,

λ(re
i
π

2 ) = λ(re
−iπ

2 ) =
πη

2
. (23.6.2)

The discontinuity in H−(ω) across the branch cut along the imaginary axis is given
by the discontinuity in

H−(ω) =
H(ω)
H+(ω)

, H+(re
−iπ

2 ) =
√
arη.

Thus, the discontinuity is determined by H(ω), divided by a real quantity of the form
H+(r exp(−iπ2 )). Therefore, the singularities in H−(ω) are determined by those in
H(ω). Similar observations apply to the singularities of H+(ω).

Proposition 23.6.1. The phase λ(ω) is independent of ω.

Proof. The phase factors e±iλ(ω) are continued analytically to the whole complex
plane. By the argument just outlined, they cannot contribute new singularities over
and above those determined by H(ω), which is independent of λ(ω). Thus, we con-
clude that the phase factors will yield no singularities and must therefore be entire
functions. However, this means either that they contribute essential singularities at
infinity, which must be excluded in the same way as singularities on the finite plane,
or they are constant. Therefore, the quantity λ is independent of ω. 	


The factorization (16.1.14) clearly allows us to replace H±(ω) by −H±(ω).
For ω ∈ R++, we have

H+(ω) =
√
aωη eiλ,

H−(ω) =
√
aωη e−iλ,

(23.6.3)
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where, from (23.6.2),

λ =
πη

2
. (23.6.4)

We put
ω = reiθ

so that θ = arg(ω). The behavior of H+(ω) as ω approaches the positive imaginary
axis from the first and second quadrants, respectively, are given by

H+(ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

√
a rη e

i
π(α + 1)

4
+ iλ
, 1st quadrant, θ = π2 ,

√
a rη e

−3iπ(α + 1)
4

+ iλ
, 2nd quadrant, θ = −3π2 .

(23.6.5)

Similarly, the behavior of H−(ω) as it approaches the negative imaginary axis from
the fourth and third quadrants, respectively, are given by

H−(ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

√
a rη e

−iπ(α + 1)
4

− iλ
, 4th quadrant, θ = −π2 ,

√
a rη e

3i
π(α + 1)

4
− iλ
, 3rd quadrant, θ = 3π

2 .

(23.6.6)

In the light of (23.6.4), the limiting values (23.6.5) and (23.6.6) reduce to

H+(ω) =

⎧⎪⎪⎨⎪⎪⎩
√
a rη e2iλ, 1st quadrant, θ = π2 ,√
a rη e−2iλ, 2nd quadrant, θ = −3π2 ,

and

H−(ω) =

⎧⎪⎪⎨⎪⎪⎩
√
a rη e−2iλ, 4th quadrant, θ = −π2 ,√
a rη e2iλ, 3rd quadrant, θ = 3π

2 .

Let us use (23.6.3) to extend H±(ω) to ω ∈ R. We take θ = −π to obtain H+(ω), and
θ = π for H−(ω). This gives, for ω < 0,

H+(ω) =
√
a rη e−iηπ + iλ = √a|ω|ηe−iλ,

H−(ω) =
√
a rη eiηπ − iλ = √a|ω|ηeiλ.

(23.6.7)

These formulae are consistent with (22.1.8). Note that on multiplying the factors in
(23.6.3) and (23.6.7) together, we obtain (23.5.5) for ω ∈ R.

The quantity pt−(ω) has the form

pt−(ω) =
√
a

2πi
e−iλ

∫ ∞

0

ω
η
1 E

t
r+(ω1)

ω1 − ω+ dω1

+

√
a

2πi
eiλ

∫ 0

−∞
(−ω1)ηEt

r+(ω1)
ω1 − ω+ dω1,
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on using (23.6.3) and (23.6.7). The singularities of Et
r+(ω) are in �

(+). Recalling the
position of the cut in H−(ω), we see that the integrations over the real axis can be
moved into the lower half-plane to closely surround the branch cut, yielding

pt−(ω) =
√
a

2πi

∫ ∞

0

r
η
1 E

t
r+(−ir1)

r1 − iω
(
e−2iλ − e2iλ

)
dr1

= −
√
a sin 2λ
π

∫ ∞

0

r
η
1 E

t
r+(−ir1)

r1 − iω dr1,

where Et
r+(−ir1) is a real quantity given by

Et
r+(−ir1) =

∫ ∞

0
Et
r(u)e

−r1udu. (23.6.8)

Using

ψm(t) =
1
2π

∫ ∞

−∞
|pt−(ω)|2dω

and Cauchy’s integral formula, we obtain

ψm(t) = κ
∫ ∞

0

∫ ∞

0

(r1r2)ηEt
r+(−ir1)Et

r+(−ir2)
r1 + r2

dr1dr2

= κ

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

(r1r2)ηEt
r(u)E

t
r(v)e
−r1u − r2v

r1 + r2
dr1dr2dudv,

κ =
a

π2
sin2

[
π

2
(α + 1)

]
=

k

π2
sin
απ

2
cos2

απ

2
.

(23.6.9)

Using (16.1.17), we can also write (23.6.9) in the form

ψm(t) = κ
∫ ∞

0

∫ ∞

0

(r1r2)η − 1Ėt
+(−ir1)Ėt

+(−ir2)
r1 + r2

dr1dr2

= κ

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

(r1r2)η − 1Ėt(u)Ėt(v)e−r1u − r2v
r1 + r2

dr1dr2dudv.

(23.6.10)
The quantity η is defined by (23.6.1)3.

The minimum free energy may be written in the form (see (11.9.14))

ψm(t) =
1
2

∫ ∞

0

∫ ∞

0
Ėt(s)Gm(s, u)Ė

t(u)dsdu,

where the equilibrium term vanishes, since G∞ = 0. We must have

G(u) = G(0, u) = G(u, 0) =
k

Γ(1 − α)uα , (23.6.11)

where G(u) is the relaxation function. Thus, we have
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Gm(u, v) = 2κ
∫ ∞

0

∫ ∞

0

(r1r2)η − 1e−r1u − r2v
r1 + r2

dr1dr2.

Recalling (23.3.2), we see that the properties (17.3.7) are valid in this case. Relation
(23.6.11) is confirmed since

2κ
∫ ∞

0

∫ ∞

0

(r1r2)η − 1e−r2v
r1 + r2

dr1dr2

= 2κ
∫ ∞

0

∫ ∞

0

(r1r2)η − 1e−r1v
r1 + r2

dr1dr2

=
k sinαπ
π

∫ ∞

0
rα − 11 e−r1vdr1

=
k sinαπΓ(α)

πvα
=

k

Γ(1 − α)vα ,

by virtue of the formula, for complex z ([168, page 285]),

∫ ∞

0

rμ − 1
r + z

dr =
π zμ − 1
sin πμ

, |arg z| < π, 0 < μ < 1, (23.6.12)

together with the relations (23.2.2) and (23.2.3). We now seek to determine the rate
of dissipation corresponding to the minimum free energy. Relation (16.1.18)2 yields
that

d
dt
Et
r+(−ir) = −rEt

r+(−ir) −
Ė(t)
r
,

so that, from (23.6.9), we have

ψ̇m(t) = −κ
∣∣∣∣∣
∫ ∞

0
r
η
1 E

t
r+(−ir1)dr1

∣∣∣∣∣
2

− 2κĖ(t)
∫ ∞

0

∫ ∞

0

r
η
1 E

t
r+(−ir1)rη − 12

r1 + r2
dr1dr2.

(23.6.13)

Using (23.6.12) and the expression (23.6.9)3 for κ, the last term of (23.6.13) becomes

−k sinαπ
π

∫ ∞

0
rα1 E

t
r+(−ir1)dr1Ė(t) = T (t)Ė(t),

by virtue of (23.5.6). Consequently, recalling (16.1.28), it follows that the rate of dis-
sipation is given by the negative of the first term on the right-hand side of (23.6.13),
where we have used (16.1.17). These relations can be deduced also from (16.4.12).
The quantity Dm(t) can be written in the form (17.3.11) with

Km(s, u) = −2κΓ
2(η)

(su)η
,
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Dm(t) = κ
∣∣∣∣∣
∫ ∞

0
rηEt

r+(−ir)dr
∣∣∣∣∣
2

= κ

∣∣∣∣∣
∫ ∞

0
rη − 1Ėt

+(−ir)dr
∣∣∣∣∣
2

= κ

∣∣∣∣∣
∫ ∞

0

∫ ∞

0
rη − 1e−ruĖt(u)drdu

∣∣∣∣∣
2

= κΓ2(η)

∣∣∣∣∣∣
∫ ∞

0

Ėt(u)
uη

du

∣∣∣∣∣∣
2

≥ 0.

(23.6.14)

23.6.2 The Minimum Free Energy for Simple Histories

Free energies and rates of dissipation for sinusoidal and increasing exponential his-
tories are discussed in [15, 16]. Sinusoidal histories are useful in many practical
contexts, though the total dissipation and the work function, defined by (16.1.30), are
infinite. Increasing exponential histories provide a simple example where all quan-
tities are finite. Also, the algebra involved is similar to, though simpler than, the
sinusoidal case.

23.6.2.1 Sinusoidal Histories

Formulae relating to general materials for sinusoidal histories are presented in
[15, 16] and earlier papers. Also, for exponential histories, similar general results
are introduced in [16]. Here, we consider the specific cases (23.6.10) and (23.6.14)
directly for the relevant forms of the strain history.

Consider a history and current value (Et, E(t)) defined by

E(t) = E0e
iω0t + E0e

−iω0t, Et(s) = E(t − s), (23.6.15)

where E0 is an amplitude and E0 its complex conjugate. The quantities Et
+ and Ėt

+

have the form

Et
+(ω) = E0

eiω0t

i(ω + ω0)
+ E0

e−iω0t

i(ω − ω0)
,

Ėt
+(ω) = ω0E0

eiω0t

ω + ω0
− ω0E0

e−iω0t

ω − ω0
.

(23.6.16)

From (17.6.8)2, we find that

Ėt
+(−ir) = ω0E0

eiω0t

ω0 − ir + ω0E0
e−iω0t

ω0 + ir
, (23.6.17)

where r is real. The final form of (23.5.6), together with (23.6.12) and (23.6.17) give

T (t) = kωα0

[
eiπα/2E0e

iω0t + e−iπα/2E0e
−iω0t

]
. (23.6.18)

Any real algebraic quadratic form in E(t) or real functional quadratic form in Et(s)
can be written in the form (16.11.3), denoted by V . Recalling (17.6.12) we introduce
the abbreviated notation
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V = {A, B}. (23.6.19)

Thus, we can write ψm(t), given by (23.6.10), as

ψm(t) = {A, B},
where, by dimensional arguments, it follows that

A = k ρωα0 , B = k χωα0 . (23.6.20)

The dimensionless quantities ρ and χ are to be determined. We find, using (23.6.17),
that

A = −κω2
0

∫ ∞

0

∫ ∞

0

(r1r2)η − 1
(r1 + iω0)(r2 + iω0)(r1 + r2)

dr1dr2,

B = 2κω2
0Re

∫ ∞

0

∫ ∞

0

(r1r2)η − 1
(r1 + iω0)(r2 − iω0)(r1 + r2)

dr1dr2.

The following integrals, together with (23.6.12), will be required in the calculations
below. For complex y, z, we have

∫ ∞

0

rμ − 1
(r + y)(r + z)

dr =
π

sin μπ

⎡⎢⎢⎢⎢⎢⎣y
μ − 1 − zμ − 1

z − y

⎤⎥⎥⎥⎥⎥⎦ , |arg y|, |arg z| < π,
∫ ∞

0

rμ − 1
(r + z)2

dr = −π(μ − 1)
sin μπ

zμ − 2, 0 < μ < 2, |arg z| < π.
(23.6.21)

Relation (23.6.21)1 is given in [168, page 289], while (23.6.21)2 is a special case of a
result in [168, page 285]. The latter can also be obtained by differentiating (23.6.12)
with respect to z.

With the aid of (23.6.21)1, we find that

A = − κω
2
0π

sin ηπ

∫ ∞

0

r
η − 1
2

[
(iω0)η − 1 − rη − 12

]

r22 + ω
2
0

dr2,

B = 2
κω2

0π

sin ηπ
Re

∫ ∞

0

r
η − 1
2

[
(iω0)η − 1 − rη − 12

]

(r2 − iω0)2
dr2.

These integrals can also be evaluated using (23.6.21). With the use of results deriv-
able from (23.6.21)1, we find that ρ in (23.6.20)1 has the form

ρ = −1
4
sinαπ

⎡⎢⎢⎢⎢⎢⎣1 − 1

sin πα2
− i

1 − sin απ2
cos απ2

⎤⎥⎥⎥⎥⎥⎦

=
1
2

(
1 − sin πα

2

)
e
i
πα

2 .

Also, using (23.6.21)2, one can show that the quantity χ in (23.6.20)2 is given by
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χ = k(1 − α) cos απ
2
≥ 0.

Observe that
ψ̇m(t) = {2 iω0 A, 0} =

{
2 i k ρωα + 10 , 0

}
.

The rate of dissipation given by (23.6.14)2 is now considered. Let us put
∫ ∞

0
r
η − 1
1 Ėt

+(−ir1)dr1 = K0e
iω0t + K0e

−iω0t.

Then
Dm(t) = κ

{
K2
0 , 2|K0|2

}
= kωα + 10 {D1,D2} , (23.6.22)

in the notation (23.6.19), where from (23.6.17) and (23.6.12),

K0 = iω0

∫ ∞

0

rη − 1
r + iω0

dr = (iω0)
η π

sin ηπ
.

In the rightmost form of (23.6.22), D1 and D2 are dimensionless constants, which
are now determined. The coefficient in this term emerges from dimensional analysis.
Relation (23.6.22)1 becomes

Dm(t) =
κπ2ω

2η
0

sin2 ηπ

{
eiπη, 2

}
= k sin

απ

2
ωα + 10

{
exp

(
iπ
α + 1
2

)
, 2

}
,

which gives

D1 = sin
απ

2
exp

[
i
π(α + 1)

2

]
, D2 = 2 sin

απ

2
.

From (23.6.15) and (23.6.18), we see that the rate of input of mechanical energy
is given by

T (t)Ė(t) = kωα + 10 {W1,W2},
W1 = exp

[
i
π(α + 1)

2

]
, W2 = 2 sin

απ

2
.

By virtue of (16.1.28), we must have

2iρ + D1 = W1, D2 = W2,

which are easily confirmed. Relation (16.1.29) involves divergent quantities, namely
D(t) and W(t), for sinusoidal histories [15, 16].

23.6.2.2 Exponential History

Consider a history and current value (Et, E(t)) given by

E(t) = E1e
γt, Et(s) = E(t − s), s ∈ R+, (23.6.23)
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where E1 is a constant amplitude. Some of the formulae for this history may be
obtained from the sinusoidal case by simple substitutions [16]. However, we present
direct derivations here. Instead of (23.6.16), we have

Et
+(ω) =

E1eγt

(γ + iω)
=

E(t)
(γ + iω)

,

Ėt
+(ω) =

γE(t)
γ + iω

, Ėt
+(−ir) =

γE(t)
γ + r

.

The stress function becomes
T (t) = kE(t)γα, (23.6.24)

on using (23.6.12). The minimum free energy ψm(t), given by (23.6.10)1, has the
form

ψm(t) = E2
1e
2γtAγ = E2(t)Aγ, (23.6.25)

where Aγ is given by

Aγ = κγ
2
∫ ∞

0

∫ ∞

0

(r1r2)η − 1
(r1 + γ)(r2 + γ)(r1 + r2)

dr1dr2,

=
κγ2π

sin ηπ

∫ ∞

0

r
η − 1
2

[
γη − 1 − rη − 12

]

(r2 + γ)(r2 − γ) dr2,

=
1
2
k γα (1 − sin απ

2
) ≥ 0,

with the aid of (23.6.21) and the integral ([168, page 289])

∫ ∞

0

rμ − 1
(r + γ)(r − γ)dr = −

πγμ − 2
2 sin μπ

(1 + cos μπ), γ > 0, 0 < Reμ < 2.

This formula is in fact in a similar category to (23.6.21) but where the parameters are
in a different range. We conclude that

ψ̇m(t) = k E2
1 γ
α + 1 e2γt

(
1 − sin απ

2

)
.

It follows from (23.6.9)3, (23.6.12), and (23.6.14) that

Dm(t) = k E2
1 γ
α + 1 e2γt sin

απ

2
. (23.6.26)

Finally, from (23.6.23) and (23.6.24) we find that

T (t)Ė(t) = k E2
1 γ
α + 1 e2γt, (23.6.27)

and (16.1.28) is obeyed. Indeed, we can also consider (16.1.29) in the case of expo-
nential histories, since there are no convergence difficulties. We write ψm(t), given
by (23.6.25), and the integrated forms of (23.6.26) and (23.6.27), as
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ψm(t) = FmW(t), Fm = 1 − sin απ
2
, W(t) =

1
2
k E2

1 γ
α e2γt,

Dm(t) = SmW(t), Sm = sin
απ

2
.

Thus, (16.1.29) is also clearly obeyed.

23.6.2.3 The Physical Free Energy

The physical free energy, discussed in several different contexts in the present work
is defined by the property that its associated rate of dissipation is the true rate for the
material. We tentatively identify the physical free energy of a fractional derivative
material, as the minimum free energy by virtue of the following argument.

Two functionals have been identified as being associated with such materials, the
Graffi–Volterra and the minimum free energies. The Graffi–Volterra functional is a
degenerate version of the full two variable quadratic form discussed in earlier chap-
ters. As such, it cannot be included as a free energy with deeper physical meaning,
though it is a simple functional with the correct positivity properties and therefore
very useful as a mathematical tool.

Invoking the property P4 introduced in (18.2.1), we see that the work function
cannot be a valid free energy. Also, it has degenerate features somewhat similar to
the Graffi–Volterra functional. Therefore, the minimum free energy, given by the el-
ementary explicit expression (23.6.10), is the only non-degenerate free energy func-
tional associated with the material. It must therefore be identified as the physical free
energy of this material. Furthermore, the physical rate of dissipation has the form
(23.6.14).

23.7 Application to Viscoelastic Systems

We now consider the dynamical equations for viscoelastic solids and fluids within
the framework of fractional derivative models. An energy theorem is proved in both
of these cases.

23.7.1 Viscoelastic Solids

Let Ω ⊂ R
3 be a smooth bounded domain of a linear viscoelastic solid, whose con-

stitutive equation is given by the fractional model with constitutive relation given by
(23.3.7). The initial boundary value problem is defined by the differential system in
the domain Q = Ω × (0,T ) by

ρ0(x)
∂2u(x, t)
∂t2

= ∇ · T(x, t) + ρ0(x)f(x, t)

= − α

Γ(1 − α)∇ ·
[
�(x)

∫ ∞

0

Et
r(x, s)
s1+α

ds

]

+ ρ0(x)f(x, t),

(23.7.1)
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where ρ0(x) denotes the mass density, u(x, t) the displacement such that E = 1
2 (∇u +∇uT ) and f(x, t) the body forces. The initial conditions are

u(x, 0) = u0(x) ,
∂u(x, t)
∂t

∣∣∣∣∣
t=0
= v0(x)

along with the boundary conditions

u(x, t)|∂Ω = u0(x), (23.7.2)

where u0 and v0 are given functions.
Using the definition of fractional derivative given in (23.3.8), Eq. (23.7.1) can be

rewritten in the form

ρ0(x)
∂2u(x, t)
∂t2

= ∇ ·
[
C
−∞D

α
t �(x)E(x, t)

]
+ ρ0(x)f(x, t). (23.7.3)

Now, our purpose is to obtain an energy theorem for the problem (23.7.1) and
(23.7.2). To this end, we multiply (23.7.3) by the first time derivative of u(x, t). Then,
after an integration on Q = Ω × (0,T ), we obtain

∫ T

0

∫
Ω

ρ0(x)
∂2u(x, t)

∂t2
· ∂u(x, t)
∂t

dx dt

=

∫ T

0

∫
Ω

{
(∇ ·

[
C
−∞D

α
t �(x)E(x, t)

]
· ∂u(x, t)
∂t

+ ρ0(x)f(x, t) · ∂u(x, t)
∂t

}
dx dt,

(23.7.4)
where dx is the three-dimensional space volume element. Hence, using the diver-
gence theorem and the boundary condition (23.7.2), it follows from (23.7.4) that

∫ T

0

∂

∂t
1
2

∫
Ω

ρ0(x)
(
∂u(x, t)
∂t

)2
dx dt

=

∫ T

0

∫
Ω

[
−�(x)

(
C
−∞D

α
t E(x, t)

)
· ∂E(x, t)
∂t

+ ρ0(x)f(x, t) · ∂u(x, t)
∂t

]
dx dt

=

∫ T

0

∫
Ω

[
−T(x, t) · Ė(x, t) + ρ0(x)f(x, t) · ∂u(x, t)

∂t

]
dx dt.

Then, from (23.4.6) or (23.4.9), we obtain

∫ T

0

∂

∂t
1
2

∫
Ω

ρ0(x)

⎡⎢⎢⎢⎢⎢⎣
(
∂u(x, t)
∂t

)2
+ ΨS (x, t)

⎤⎥⎥⎥⎥⎥⎦ dx dt

≤
∫ T

0

∫
Ω

ρ0(x)f(x, t) · ∂u(x, t)
∂t

dx dt,

where ΨS (x, t) is the Graffi–Volterra free energy functional for solids, given by
(23.4.8). Finally, carrying out the time integration, we find that



23.7 Application to Viscoelastic Systems 551

1
2

∫
Ω

ρ0(x)

⎡⎢⎢⎢⎢⎢⎣
(
∂u(x, t)
∂t

)2
+ ΨS (x, t)

⎤⎥⎥⎥⎥⎥⎦ dx

≤ 1
2

∫
Ω

ρ0(x)
(
v0(x)2 + ΨS (x, 0)

)
dx +

∫ T

0

∫
Ω

ρ0(x)f(x, t) · ∂u(x, t)
∂t

dx dt.

It is easily checked that the same inequalities hold for any free energy for the system.
This in effect means any positive functional obeying (23.4.6) or (23.4.9). A similar
observation applies to the case of fluids, which is now discussed.

23.7.2 Viscoelastic Fluids

The initial boundary value problem for a viscoelastic incompressible fluid described
by the velocity v(x, t), the pressure p(x, t) and the constant density ρ0, is defined by
the differential system

ρ0
∂v(x, t)
∂t

= −∇p + ∇ · TE(x, t) + ρ0f(x, t)

= −∇p + 2η
Γ(1 − α)∇ ·

∫ t

−∞
E(x, t) − E(x, τ)

(t − τ)1+α dτ + ρ0f(x, t)

= −∇p + η

Γ(1 − α)∇ ·
∫ t

−∞
∇v(x, τ)
(t − τ)α dτ + ρ0f(x, t),

∇ · v(x, t) = 0,

(23.7.5)

with initial and boundary conditions

v(x, 0) = v0(x) , v(x, t)|∂Ω = 0. (23.7.6)

We again seek an energy theorem. It follows from (23.7.5)3 and (23.7.6), together
with a standard step involving integration by parts, that

∫ T

0

d
dt

∫
Ω

ρ0 v2(x, t)dxdt

=

∫ T

0

∫
Ω

[∇TE(x, t) · v(x, t) + ρ0f(x, t) · v(x, t)] dx dt

=

∫ T

0

∫
Ω

[
TE(x, t) · Ė(x, t) + ρ0f(x, t) · v(x, t)

]
dx dt.

Using the inequality (23.4.6), we obtain
∫ T

0

d
dt

∫
Ω

[
ρ0 v2(x, t) + ΨF(x, t)

]
dxdt ≤

∫ T

0

∫
Ω

ρ0f(x, t) · v(x, t)dxdt.

Hence, we have ∫
Ω

[
ρ0 v2(x, t) + ΨF(x, t))

]
dx

≤
∫
Ω

[
ρ0 v2(x, 0) + ΨF(x, 0))

]
dx +

∫ T

0

∫
Ω

ρ0f(x, t) · v(x, t)dxdt.
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23.8 Application to Rigid Heat Conductors

In this section, we use the fractional method to describe the behavior of heat conduc-
tors. The literature on this topic, including [1, 141, 299], is motivated by experimental
findings such as those reported in [223, 285].

The classical Fourier constitutive equation is given by

q(t) = −kcg(t),
where q is the heat flux , g the temperature gradient and kc > 0 is the thermal conduc-
tivity, which may be space dependent. In order to obtain a finite wave propagation
speed, Cattaneo [59] proposed the modified constitutive relation

−γq̇(t) = q(t) + kcg(t), γ > 0.

This is the Cattaneo–Maxwell or, for brevity the Cattaneo equation. It can be put in
the form of an integral equation, describing a material with thermal memory

q(t) = −
∫ t

−∞
k(t − s)g(s)ds = −

∫ ∞

0
k(s)gt(s)ds,

gt(s) = g(t − s), k(s) = k0e
−λs, λ =

1
γ
, kc = γk0.

(23.8.1)

Relation (23.8.1) can be expressed in terms of the NFDt, given by (23.2.13) or
(23.2.14), where

σ = γ, k0 =
1 + σ
σ

M∗(σ), α =
1

1 + σ
.

Thus, (23.8.1)1 can be written as

q(t) = −D(α)
t g(t), (23.8.2)

where

g(t) =
∫ t

0
g(u)du, ġ(t) = g(t).

23.8.1 UFDt Fractional Cattaneo Equation

Let us replace the NFDt in (23.8.2) by the UFDt as defined by (23.2.12) or (23.2.6).
Thus, we put

k(s) =
k0

Γ(1 − α)
1
sα
,

giving

q(t) = −k0D(α)
t g(t) = − k0

Γ(1 − α)
∫ t

−∞
ġ(τ)

(t − τ)α dτ

=
αk0

Γ(1 − α)
∫ t

−∞
g(τ) − g(t)
(t − τ)1+α dτ =

αk0
Γ(1 − α)

∫ ∞

0

gtr(s)

s1+α
ds,
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where, recalling (9.1.2), we introduce gtr(s), defined as

gtr(s) = g(t − s) − g(t) = −
∫ t

t−s
g(u)du,

to emphasize an analogy between heat flow and viscoelasticity whereby −g(t), q(t)
correspond toE(t),T(t). It can be concluded from this and (23.4.8) that the functional

ψ(t) =
αk0

2Γ(1 − α)
∫ ∞

0

gtr(s) · gtr(s)
s1+α

ds

is the Graffi-Volterra free energy for fractional Cattaneo models, with corresponding
rate of dissipation deduced from (23.4.10) to be

D(t) =
α(1 + α)k1
2Γ(1 − α)

∫ ∞

0

gtr(s) · gtr(s)
s2+α

ds.

Indeed, the minimum free energy for isotropic materials of this kind can be written
down immediately from (23.6.9) and (23.6.10), replacing Ėt(u)Ėt(v) by gt(u) · gt(v).
Thus, we obtain

ψm(t) = κ
∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

(r1r2)η − 1gt(u) · gt(v)e−r1u − r2v
r1 + r2

dr1dr2dudv,

κ =
k0
π2

sin
απ

2
cos2

απ

2
.

The quantity η is defined by (23.6.1). The coefficient k1 replaces � in Sect. 23.3 or
k in Sects. 23.5 and 23.6. Similarly, the corresponding rate of dissipation is deduced
from (23.6.14)3 by replacing Ėt(u) with −gt(u), yielding

Dm(t) = κΓ
2(η)

∣∣∣∣∣∣
∫ ∞

0

gt(u)
uη

du

∣∣∣∣∣∣
2

≥ 0.

23.8.2 The NFDt Model

Analogous results can be derived for the NFDt model given by (23.8.2), which is of
course the Cattaneo equation. Free energies for this relationship are those for a simple
memory function k(s) described in (23.8.1). This has one decaying exponential and
goes to zero at large times. The Graffi-Volterra free energy corresponding to this form
is given by

ψ(t) =
1
2
λk0

∫ ∞

0
e−λsgtr(s) · gtr(s)ds,

while the corresponding rate of dissipation is

D(t) = λ2k0

∫ ∞

0
e−λsgtr(s) · gtr(s)ds.
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Also, for a relaxation function consisting of one decaying exponential, the minimum
free energy has the form

ψD(t) =
1
2
λ2k0

∣∣∣∣∣
∫ ∞

0
e−λsgtr(s)ds

∣∣∣∣∣
2

,

DD(t) = λ
3k0

∣∣∣∣∣
∫ ∞

0
e−λsgtr(s)ds

∣∣∣∣∣
2

.

These are a special case of the Day free energy and rate of dissipation where the
relaxation function goes to zero at large times.

23.9 Application to Electromagnetic Systems

We now explore some properties of two electromagnetic bodies, which are char-
acterized by constitutive equations expressed as fractional models. The form of a
particular free energy will be derived in both cases. These are examples or general-
izations of the Graffi–Volterra free energy discussed in Sect. 23.4.1. This section is
based on [19].

23.9.1 Visco-Ferromagnetic Materials

Let us consider a visco-ferromagnetic material characterized by the following con-
stitutive equation

B(x, t) =
C(x)
Γ(1 − α)

∫ t

a

Hτ(x, τ)
(t − τ)α dτ, Hτ(x, τ) =

∂

∂τ
H(x, τ), (23.9.1)

where the magnetic induction B(x, t) and the magnetic field areH(x, t) are defined for
any point x ∈ Ω, the smooth bounded domain occupied by the material; moreover,
the quantity C(x) is a second-order positive tensor, defined for any point x ∈ Ω.

This equation is expressed in terms of the α−Caputo fractional derivative (23.2.5);
see also [47]

CD
α
t H(x, t) =

1
Γ(1 − α)

∫ t

a

Hτ(x, τ)
(t − τ)α dτ.

Using this definition, Eq. (23.9.1) assumes the following form

B(x, t) = C(x) CDαt H(x, t).

Taking a = −∞ and carrying a time integration by parts, (23.9.1) assumes the more
useful form

B(x, t) = − α

Γ(1 − α)
∫ t

−∞
C(x)

H(r)(x, τ)
(t − τ)α+1 dτ,H

(r)(x, τ) = H(x, τ) −H(x, t),

where H(r) denotes the relative history of the magnetic field.
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The dissipation law states that, for any simple electromagnetic material, there
exists at least one state functional, denoted by ψ(x, t, and referred to as a free energy,
which satisfies the following fundamental requirement:

∂

∂t
ψ(x, t) ≤ B(x, t) ·Ht(x, t). (23.9.2)

By introducing the rate of dissipation D(x, t) ≥ 0, the dissipation law can be written
as

∂

∂t
ψ(x, t) +D(x, t) = B(x, t) ·Ht(x, t). (23.9.3)

Taking account of (23.9.1), we can apply an integration by parts to the scalar
product on the right-hand side of both Eqs. (23.9.2) and (23.9.3); the expression so
derived allows us to identify the following functional as a free energy:

ψ(t) =
α

2Γ(1 − α)
∫ ∞

0
C(x)

H(r)(x, t − s) ·H(r)(x, t − s)
sα+1

ds.

This is a particular example of the Graffi-Volterra free energy. The related rate of
dissipation is given by

D(x, t) =
α(α + 1)
2Γ(1 − α)

∫ ∞

0
C(x)

H(r)(x, t − s) ·H(r)(x, t − s)
sα+2

ds.

23.9.2 Nonlocal Visco-Ferromagnetic Materials

The behavior of nonlocal visco-ferromagnetic materials can be described by means
of a constitutive equation expressed in terms of the fractional operator Mβx of order
β ∈ ( 12 , 1), acting on a function f(x), introduced in [56] and expressed by

M
β
xF(x) =

βπ−
β
2

1 − β
∫
Ω

f(y)e−
β2

1−β2 (x−y)2dy,

where x, y ∈ Ω.
By replacing f(x) with C(x, y)H(x, τ), we can introduce the following new con-

stitutive equation for the ferromagnetic induction

B(x, t) =M
β
xD
α
t
[
C(x, y)H(x, t)

]

=
βπ−

β
2

(1 − β)Γ(1 − α)
∫
Ω

∫ t

a

1
(t − τ)αC(x, y)Hτ(y, τ)e

− β2

1−β2 (x−y)2dτdy, (23.9.4)

where the scalar α, assumed to be in the interval
(
0, 12

)
, is the degree of the Caputo

fractional derivative, denoted by Dαt , while the second-order tensor C(x, y) is taken
to be symmetric in x and y and positively defined.

We note that, for nonsimple materials characterized by (23.9.4), the magnetic
induction B(x, t) at any fixed point x ∈ Ω depends on the values of the magnetic field
H(y, t) ∀y ∈ Ω.
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The total internal power can be obtained by integrating over Ω the scalar product
in the right-hand side of both Eqs. (23.9.2) and (23.9.3); thus, by virtue of (23.9.4),
it is given by∫

Ω

B(x, t) ·Ht(x, t)dx =
∫
Ω

M
β
xD
α
t
[
C(x, y)H(x, t)

] ·Ht(x, t)dx

(23.9.5)

=
βπ−

β
2

(1 − β)Γ(1 − α)
∫
Ω

[∫
Ω

∫ t

a
C(x, y)

Hτ(y, τ)
(t − τ)α e

− β2

1−β2 (x−y)2dτdy
]
·Ht(x, t)dx

and the global free energy has the form:

ψ(Ω, t) ≡
∫
Ω

ψ(x, t)dx. (23.9.6)

If we assume H(·, τ) = 0 for τ ≤ a, the inequality (23.9.2), by using (23.9.5) and
(23.9.6), becomes

ψ̇(Ω, t) ≡ ∂
∂t

∫
Ω

ψ(x, t)dx ≤
∫
Ω

B(x, t) ·Ht(x, t)dx

=
βπ−

β
2

(1 − β)Γ(1 − α)
∫
Ω

∫
Ω

∫ t

−∞
C(x, y)

[
H(y, τ) −H(y, t)

]
τ

(t − τ)α e
− β2

1−β2 (x−y)2dτdy

· ∂
∂t

[H(x, t) −H(x, τ)] dx,

whence, with a time integration by parts, it follows that

∂

∂t

∫
Ω

ψ(x, t)dx ≤
∫
Ω

B(x, t) ·Ht(x, t)dx

=
αβπ−

β
2

(1 − β)Γ(1 − α)
∫
Ω

∫
Ω

∫ t

−∞
C(x, y)

H(y, t) −H(y, τ)
(t − τ)α+1

· ∂
∂t

[H(x, t) −H(x, τ)] e−
β2

1−β2 (x−y)2dτdydx.

This inequality is satisfied by the following functionals:

ψ(Ω, t) =
αβπ−

β
2

2(1 − β)Γ(1 − α)
∫
Ω

∫
Ω

∫ t

−∞
1

(t − τ)α+1
[
H(y, t) −H(y, τ)

]

·C(x, y) [H(x, t) −H(x, τ)] e−
β2

1−β2 (x−y)2dτdydx,

which gives the global free energy ψ(Ω, t), and

D(Ω, t) =
α(α + 1)βπ−

β
2

2(1 − β)Γ(1 − α)
∫
Ω

∫
Ω

∫ t

−∞
1

(t − τ)α+2
[
H(y, t) −H(y, τ)

]

·C(x, y) [H(x, t) −H(x, τ)] e−
β2

1−β2 (x−y)2dτdydx,

which is the expression for the related global rate of dissipation D(Ω, t).
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