
17

Constructing Free Energies for Materials with
Memory

We now discuss methods for deriving new functionals which have the properties of
a free energy. Perhaps the central difficulty in constructing such quantities arises in
making choices that ensure both a nonnegative quadratic form for the free energy
and the rate of dissipation. Typically, if one chooses a suitable functional for the free
energy, the associated rate of dissipation does not have the non-negativity property.
A technique is presented in this chapter (see also [162]) which in effect reverses this
procedure. We choose a nonnegative functional for the rate of dissipation and derive
formulae which give the associated free energy functional in terms of the dissipation
rate kernel. It emerges that the resulting free energy has the required non-negativity
property.

The main topics dealt with in this chapter are based on [162] and are a develop-
ment of the discussion in Sect. 7.1.3. Also, Sects. 17.1 and 17.6 are based on results
in [18].

Also discussed in this chapter is the issue of approximating a general discrete-
spectrum relaxation function by a relaxation function with one decaying exponential,
corresponding to the Day free energy.

Finally, we consider single-integral free energies in terms of the functional It,
which is the functional of the minimal state defined by (16.5.1).

17.1 Two Equivalent Interpretations of the Set of Free Energies

Before deriving the main results of this chapter, we discuss two possible interpreta-
tions of the set of free energy functionals associated with a given constitutive equa-
tion relating stress and strain.

Let us identify a particular material with memory, which will be referred to as
material I. It is assumed to exhibit linear behavior. The stress-strain or constitutive
relation of this material is known, in other words, its relaxation function is given.
There are generally many free energies and corresponding dissipation functionals
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associated with material I. All of these generate the same stress and therefore have
the same relaxation function. As in earlier chapters, we denote this convex set by F,
which is of course dependent on the choice of strain history. The physical free energy
for material I, yielding the observed rate of dissipation, is a member of F, as well as
all free energies generating the given stress.

It is shown in [162, 164] (see also Sect. 17.2) that any material with memory
can be uniquely characterized by specifying the kernel of its physical rate of dis-
sipation functional. This quantity determines the associated free energy kernel and
the relaxation function, which in turn yields the stress-strain or constitutive relation,
for a given strain history. The work function can be deduced from these quantities.
Also, the dissipation kernel determines the amount of dissipation under deformation.
We will consider the set of all such kernels associated with materials with a speci-
fied constitutive relation; this set will be denoted by K. For a given choice of strain
history, K generates a set of free energies F, corresponding to our chosen consti-
tutive relation. It will emerge that the boundaries of K and F are at least roughly
determined by the relaxation function of the constitutive relation.

The following alternative viewpoint is now described. We interpret the set of
kernels K as specifying all the distinct linear materials with the same constitutive
relation but different dissipation rates as a result of deformation. These can be labeled
by individual members of K. One of them yields the physical free energy in F for
material I. Other members of F would traditionally be regarded as approximations
to or bounds on (notably the minimum and maximum free energy) this physical free
energy. Instead, we now regard these, or more specifically the corresponding kernels
in K, as describing different actual materials with the same constitutive relation, but
different dissipation properties. For the material labeled by a particular kernel, the
relevant member of F for a given strain history is the physical free energy for that
material. Particular examples may not currently exist as real materials but it seems
reasonable to assume that they could be manufactured, to a close approximation, now
or in the future.

Both of the above viewpoints are valid and can be adopted as context demands.
We will refer to the more traditional viewpoint, whereK is the set of kernels produc-
ing the physical free energy of material I as well as approximations to and bounds
on this quantity, as Interpretation 1 or I1. The viewpoint that each K(s, u) ∈ K fully
describes a separate material, each equally of interest and with the same constitutive
equation, will be referred to as I2.

Under I2, the set K is defined not by the choice of material I but by the consti-
tutive equation of the materials. If we replace material I by another material with the
same stress-strain relation, the set K remains unchanged. We do not focus on one
specific example but rather treat all materials labeled by members of K on an equal
footing.

The Day free energy, a discrete-spectrum material with one decay time, is the
only free energy that is a functional of the minimal state. It is therefore the unique
physical free energy for that material. This quantity and the associated dissipation
are explored for a choice of relaxation function approximately equal to that for the
more general set of materials under consideration.
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17.2 Unique Characterization of Materials with Memory

Materials with linear memory constitutive relations, i.e., a linear functional of the
strain history, are characterized by a relaxation function, if we leave aside the matter
of stored and dissipated energy. Following the discussion in Sects. 7.1.3 and 17.1,
it is proposed that a material is characterized by the kernel of the rate of dissipation
functional. This will be shown to yield a unique free energy and relaxation function.
It also answers the question posed in Sect. 7.1.3 about two alternatives, by choosing
the second option, though the first option remains of interest since all free energies
obtained to date are examples of this.

There are generally many rates of dissipation and free energy kernels which
yield a given relaxation function. Such non-uniqueness means that there is no sim-
ple method of identifying which is the physical free energy and rate of dissipation
of a particular material. Ideally, the behavior of this kernel should be determined
by measurements carried out on the material of interest, in which case it would be
the physical kernel. This would lead to a unique, valid, free energy and provides a
formula for the relaxation function. Thus, it is a complete characterization of the ma-
terial. Of course, we are not referring to a real material, but rather a mathematical
model, approximately describing some aspects of the behavior of a real material.

The kernel of the rate of dissipation functional is, however, difficult to measure,
particularly in a non-isothermal context. For an isothermal problem, a quadratic func-
tional using this kernel is the amount of heat produced per unit time by work on the
material. The issue of measurement is briefly discussed in Sect. 7.1.3.

The standard approach to determining free energy functionals is to specify the
relaxation function and seek free energy functionals either explicitly dependent on
this quantity, or through a factorization process on a function derivable from it (see
option 1 in Sect. 7.1.3). The first method is applicable only if this relaxation function
is a monotonically decaying quantity, while the second approach yields the mini-
mum and related free energies, which lie on the boundaries of F. However, since we
generally cannot determine the physically correct choice, this approach provides a
complete description of constitutive behavior in the sense of stress-strain relations,
but gives at best a partial characterization of energy storage and dissipation.

Our assertion is that a material with memory should be characterized by the ker-
nel of the rate of dissipation, K(·, ·), defined in (17.3.12). Using a simple formula, the
kernel of a unique free energy, ˜G(·, ·), with the correct non-negativity property, can
then be deduced, from which in turn the relaxation function can be obtained.

It is assumed that, as a separate exercise, the equilibrium free energy has been
fully determined. For completely linear materials, as given by (16.1.32) and (16.1.6),
this amounts to measuringG∞, which is part of the task of determining the relaxation
function.

Thus, all properties of the material are uniquely defined.
These developments are discussed in Sects. 17.4 and 17.5; see also [164].
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17.3 Quadratic Models for Free Energies

Materials with linear constitutive relations will have free energies that are quadratic
functionals. Let us first consider the simplest models for such materials.

17.3.1 A Single-Integral Model

Consider the form

ψ(t) = φ(t) +
1
2

∫ ∞

0
C(s)[Et

r(s)]
2ds. (17.3.1)

The integral term in (17.3.1) must be nonnegative for all histories by virtue of condi-
tion P2 or (16.1.26) of the Graffi conditions, which requires that C(s) be a nonnega-
tive quantity for all s ∈ R+. If (16.1.25) is to yield the constitutive relations (16.1.3)1
for any arbitrary choice of history of strain, we must put C(s) = −G′(s) where G′(s)
is assumed to be nonnegative, giving

ψ(t) = φ(t) − 1
2

∫ ∞

0
G′(s)[Et

r(s)]
2ds

= S (t) − 1
2

∫ ∞

0
G′(s)[Et(s)]2ds,

S (t) = φ(t) + (T (t) − T0(t))E(t) +
1
2
(G0 −G∞)E2(t).

(17.3.2)

The quantity S (t) is the quantity defined by (7.1.19)2, modified in the manner speci-
fied before (7.1.35), for scalar theories. The rate of dissipation associated with ψ can
be determined from (16.1.28) to have the form

D(t) =
1
2

∫ ∞

0
G′′(s)[Et

r(s)]
2ds ≥ 0, (17.3.3)

provided it is assumed that G′′(s) ≥ 0, ∀s ∈ R+. We conclude that there is only one
example of a single-integral quadratic free energy in terms of strain history and this
quantity is a free energy only if the conditions

G′(s) ≤ 0, G′′(s) ≥ 0, ∀s ∈ R+ (17.3.4)

hold. This is of course the Graffi–Volterra free energy functional discussed in
Sect. 10.1.1.

Remark 17.3.1. The first condition in (17.3.4) yields the non-negativity of the inte-
gral term in the free energy and ensures that Graffi condition P2 is satisfied, while
the second condition relates to P3, ensuring that the rate of dissipation is nonnegative
or the second law holds. The second condition implies the first condition, as can be
seen from the relation

G′(s) = −
∫ ∞

s
G′′(u)du.
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However, the first condition does not in general imply the second. Thus, for func-
tional forms which are free energies only for materials obeying (17.3.4), the re-
quirement that the rate of dissipation be nonnegative is sufficient to ensure the non-
negativity of the free energy, but not vice-versa. This is not surprising since P2 actu-
ally follows from P3 [67].

17.3.2 A Double Integral Model

For a scalar theory with a linear memory constitutive relation for the stress, the most
general form of a free energy is

ψ(t) = φ(t) +
1
2

∫ ∞

0

∫ ∞

0
Et
r(s)G(s, u)E

t
r(u)dsdu

= S (t) +
1
2

∫ ∞

0

∫ ∞

0
Et(s)G(s, u)Et(u)dsdu

= φ(t) − φl(t) + 1
2

∫ ∞

0

∫ ∞

0
Ėt(s)G(s, u)Ėt(u)dsdu

= φ(t) +
1
2

∫ ∞

0

∫ ∞

0
Ėt(s)˜G(s, u)Ėt(u)dsdu,

G(s, u) =
∂2

∂s∂u
G(s, u) = G12(s, u), ˜G(s, u) = G(s, u) −G∞,

(17.3.5)

where S (t) is defined by (17.3.2)3, φl(t) by (16.1.32) and T0(t) by (16.1.3)5. This is
the scalar version of the full tensor developments of Sect. 7.1. There is no loss of
generality in taking

˜G(s, u) = ˜G(u, s), G(s, u) = G(u, s). (17.3.6)

The following properties of G will be assumed to hold for s, u ∈ R+:
G∞ = G(∞, u) = G(s,∞),

G1(s,∞) = G2(∞, u) = 0,

G1(∞, s) = G2(u,∞) = 0 ∀ s, u ∈ R+.
(17.3.7)

Furthermore, we have
G0 = G(0, 0). (17.3.8)

The relaxation function G(u) is given by

G(u) = G(0, u) = G(u, 0) ∀ u ∈ R+, (17.3.9)

yielding
G′(u) = G2(0, u) = G1(u, 0). (17.3.10)

Relation (17.3.9) is the basic constraint ensuring that (16.1.25) holds. Conversely, if
(16.1.25) is valid for all histories, then (17.3.9) must be true.

Relation (17.3.7)1,2 for s = u = 0 and (17.3.8) agree with (16.1.4), by virtue of
(17.3.9). The Graffi condition P2, given by (16.1.26), requires that the kernels G and
˜G must be such that the integral terms in (17.3.5)1,4 are nonnegative.
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Remark 17.3.2. Wewill consider all free energies associated with a given constitutive
equation. Thus, the quantity G(u) is the same for all choices of free energy, i.e., for
all choices of G(s, u).

Referring to the quantity S (t) in (17.3.2) and (17.3.5)2, we see that

∂

∂E(t)
S (t) = T (t),

which is condition P1 or (16.1.25).
The rate of dissipation can be deduced from (16.1.28) and (16.1.3)10,11 to be

D(t) = −1
2

∫ ∞

0

∫ ∞

0
Ėt(s)K(s, u)Ėt(u)dsdu

= −1
2

∫ ∞

0

∫ ∞

0
Et
r(s)K(s, u)Et

r(u)dsdu,
(17.3.11)

where

K(s, u) = G1(s, u) +G2(s, u), K(s, u) = G1(s, u) + G2(s, u). (17.3.12)

The quantityG must be such that the integral in (17.3.11) is non-positive, as required
by P3 of the Graffi conditions. We have

K(s, u) =
∂2

∂s∂u
K(s, u) = K12(s, u). (17.3.13)

The quantities K and K can also be taken to be symmetric in their arguments, i.e.,

K(s, u) = K(u, s), K(s, u) = K(u, s). (17.3.14)

The non-negativity requirements on ˜G, G, −K, and −K imply in particular that

˜G(s, s) ≥ 0, G(s, s) ≥ 0,

K(s, s) ≤ 0, K(s, s) ≤ 0, s ∈ R+. (17.3.15)

In the approach developed in this chapter, the quantity K(s, u) will play a more fun-
damental role than G(s, u).

Seeking to express D(t) given by (16.1.30)2 as a general quadratic functional
form similar to those in (17.3.5) or (17.3.11), we put

D(t) =
1
2

∫ ∞

0

∫ ∞

0
Ėt(s)Q(s, u)Ėt(u)dsdu

=
1
2

∫ ∞

0

∫ ∞

0
Et
r(s)Q(s, u)E

t
r(u)dsdu.

(17.3.16)

There are two equivalent alternatives for the developments outlined below, the
first being to use ˜G(s, u), K(s, u), Ėt(s) and the second to use G(s, u), K(s, u), Et

r(s).
Both have been widely adopted in discussing the minimum and related free energies.
The first approach will be favored in the present context, though in earlier chapters,
the other formulation is widely used, so there is a need to move between the two
notations.
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Remark 17.3.3. The Principle of Causality must apply to all physical systems and
in the present context means that quantities such as T (t), ψ(t), D(t), etc. can only
depend on E(s), s ≤ t. Therefore, we can write (16.1.3)4 and (17.3.5)4, for example,
in the form

T (t) = Te(t) +
∫ ∞

−∞
˜G(s)Ėt(s)ds,

ψ(t) = φ(t) +
1
2

∫ ∞

−∞

∫ ∞

−∞
Ėt(s)˜G(s, u)Ėt(u)dsdu,

provided that

Ėt(s)˜G(s, u)Ėt(u) = 0, s, u < 0, ˜G(s)Ėt(s) = 0, s < 0. (17.3.17)

The simplest way to enforce (17.3.17) is to take either option (a) or (b), given by

(a) Ėt(s) = 0, ˜G(s, u), ˜G(s) arbitrary, f or s, u < 0;

(b) ˜G(s, u), ˜G(s) = 0, Ėt(s) arbitrary, f or s, u < 0.
(17.3.18)

The arbitrariness of ˜G(·, ·), ˜G(·), and Et(·) for negative arguments is subject to the re-
quirement that certain integrals of these quantities (for example, Fourier transforms)
converge.

17.3.3 The Work Function

This quantity, given by (16.1.30)1, can be put in the following forms (see Sect. 7.5):

W(t) = φ(t) +
1
2

∫ ∞

0

∫ ∞

0
Ėt(s)˜G(|s − u|)Ėt(u)duds

= φ(t) +
1
2

∫ ∞

0

∫ ∞

0
Et
r(s)

∂2

∂s∂u
G(|s − u|)Et

r(u)duds

= φ(t) +
1
2π

∫ ∞

−∞
H(ω)

ω2
|Ėt
+(ω)|2dω

= φ(t) +
1
2π

∫ ∞

−∞
H(ω)|Et

r+(ω)|2dω.

(17.3.19)

Both versions of the frequency domain formulation are manifestly nonnegative. One
follows from the other by invoking (16.1.17). We see that it can be cast in the forms
(17.3.5)1,4 by putting

˜G(s, u) = ˜G(|s − u|), G12(s, u) =
∂2

∂s∂u
G(|s − u|). (17.3.20)

Remark 17.3.4. The quantityW(t) can be formally regarded as a free energy, but with
zero dissipation, which is clear from (16.1.29). Because of the vanishing dissipation,
it must be the maximum free energy associated with the material or greater than
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this quantity, an observation which follows from (16.1.29) for any free energy ψ(t).
Indeed, we have in general the requirement that

ψ(t) ≤ W(t). (17.3.21)

A problem with the treatment of W(t) as a free energy is raised in Chap. 18.

From (16.1.29), (17.3.16), (17.3.19) and (17.3.20), we deduce that

Q(s, u) = ˜G(|s − u|) − ˜G(s, u),

Q(s, u) = G12(|s − u|) − G(s, u),
(17.3.22)

from which it follows that

Q1(s, u) + Q2(s, u) = −G1(s, u) −G2(s, u) = −K(s, u),
Q1(s, u) + Q2(s, u) = −G1(s, u) − G2(s, u) = −K(s, u).

(17.3.23)

Relations (17.3.22) also yield

Q(s, 0) = Q(0, u) = 0 ∀ s, u ∈ R+, (17.3.24)

and
∫ ∞

0
Q(s, v)dv =

∫ ∞

0
Q(v, u)dv = 0 ∀ s, u ∈ R+, (17.3.25)

by virtue of (17.3.7), (17.3.9) and (17.3.10). A consequence of (17.3.25) is that
(17.3.16)2 can be replaced by

D(t) =
1
2

∫ ∞

0

∫ ∞

0
Et(s)Q(s, u)Et(u)dsdu.

A requirement similar to (17.3.15) must be imposed on Q. In the light of (17.3.22)1,
we have

Q(s, s) = ˜G0 − ˜G(s, s) = G0 −G(s, s) ≥ 0, ∀ s ∈ R+.
The corresponding relation for Q presents difficulties in that the quantities involved
have a delta function singularity, which arises from the differentiations in (17.3.22)2.

17.4 Time Domain Representation of Free Energies in Terms of
the Kernel K(·, ·)
We now present the results on which the assertions of Sect. 17.2 are based.

Two equivalent versions of the argument will now be presented, one in the time
domain, the other in the frequency domain. A formalism is developed in this section
for the time domain and in Sect. 17.5 for the frequency domain, which extend the
developments of Sect. 7.1.3 and allow us to apply the new strategy.

We treat (17.3.12)1 as a first order partial differential equation for G(s, u), s, u ∈
R
+, where K(s, u), s, u ∈ R+ is presumed to be known and has the property that
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∫ ∞

0

∫ ∞

0
f (s)K(s, u) f (u)dsdu ≤ 0 (17.4.1)

for all choices of f such that the integral exists. We use the variables (7.1.29):

x = s + u, y = s − u, (17.4.2)

in terms of which (17.3.12)1 becomes

∂

∂x
Gn(x, y) =

1
2
Kn(x, y), Gn(x, y) = G(s, u), Kn(x, y) = K(s, u),

with general solution

Gn(x, y) = Gn(x0, y) +
1
2

∫ x

x0

Kn(x
′, y)dx′, (17.4.3)

where x0 is an arbitrary nonnegative real quantity. This is the scalar version of
(7.1.30). It follows from (17.3.6)1 and (17.3.14)1 that

Gn(x, y) = Gn(x,−y) = Gn(x, |y|), Kn(x, y) = Kn(x,−y) = Kn(x, |y|). (17.4.4)

Observe that (17.3.9) yields

G(u) = Gn(u, u) = Gn(u,−u) = Gn(u, |u|), u ∈ R+. (17.4.5)

Putting
x′ = s′ + u′, y = s′ − u′ = s − u,

we have

s′ =
1
2
(x′ + y), u′ =

1
2
(x′ − y).

In particular, these yield (s, u) corresponding to x′ = x. Letting x0 → ∞ gives a
solution of the form

Gn(x, y) = G∞ − 1
2

∫ ∞

x
Kn(x

′, y)dx′. (17.4.6)

We have

G(s, u) = Gn(x, y) = G∞ − 1
2

∫ ∞

s+u
Kn(x

′, s − u)dx′

= G∞ − 1
2

∫ ∞

s+u
K(

1
2
(x′ + s − u), 1

2
(x′ − s + u))dx′.

Let us change the x′ variable of integration to z ≥ 0, defined by

x′ = 2z + s + u, (17.4.7)

so that
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˜G(s, u) = −
∫ ∞

0
K(z + s, z + u)dz. (17.4.8)

A similar relation for G(s, u) can be deduced from (17.3.5)5 and (17.3.13).
We assume that K(s, u) in (17.3.12)1 is given, so that the rate of dissipation for

a particular strain history of the material, specified by (17.3.11), is uniquely known.
The following proposition will now be proved.

Proposition 17.4.1. For free energy functionals and rates of dissipation of the forms
(17.3.5) and (17.3.11), respectively, if we assume that the rate of dissipation is non-
negative (which is the second law), then it follows that the integral term in (17.3.5)4
is nonnegative.

Thus, the property noted at the end of Remark 17.3.1 is confirmed.

Proof. Multiplying (17.4.8) by Ėt(s) and Ėt(u) and integrating yields

ψ(t) = φ(t) − 1
2

∫ ∞

0

∫ ∞

0
Ėt(s)

∫ ∞

0
K(z + s, z + u)dzĖt(u)dsdu

= φ(t) − 1
2

∫ ∞

0

∫ ∞

0

∫ ∞

0
Ėt(s)K(z + s, z + u)Ėt(u)dsdudz,

(17.4.9)

on interchanging integrations. Now
∫ ∞

0

∫ ∞

0
Ėt(s)K(z + s, z + u)Ėt(u)dsdu

=

∫ ∞

z

∫ ∞

z
Ėt(v − z)K(v,w)Ėt(w − z)dvdw.

Let us put

f (v) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Ėt(v − z), v ≥ z

0, 0 ≤ v < z

for arbitrary choices of Ėt. By virtue of assumption (17.4.1), it follows that the inte-
gral term in (17.4.9) is nonnegative. 	


We identify the relaxation function, in accordance with (17.3.9), as

G(s) = G(s, 0) = G∞ −
∫ ∞

0
K(z + s, z)dz = G∞ −

∫ ∞

0
K(z, z + s)dz, (17.4.10)

which ensures that the condition P1 or (16.1.25) is satisfied. It follows from (17.4.10)
that

˜G0 = −
∫ ∞

0
K(z, z)dz, (17.4.11)

using the notation of (16.1.4).
We take s ≥ u and y = s − u. Choosing x0 = y in (17.4.3), we have
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G(s, u) = Gn(s + u, s − u) = G(s − u) + 1
2

∫ s+u

s−u
Kn(x

′, s − u)dx′

= G(s − u) +
∫ 0

−u
K(z + s, z + u)dz,

(17.4.12)

where (17.4.5) and (17.4.7) have been used. Comparing the two solutions (17.4.8)
and (17.4.12), we obtain

G(s − u) = G∞ −
∫ ∞

−u
K(z + s, z + u)dz

= G∞ −
∫ ∞

0
K(w,w + s − u)dw,

which agrees with (17.4.10). A similar result follows if we take u ≥ s and y = u − s.
We can write (17.4.12) in a manner covering both cases as follows:

G(s, u) = G(|s − u|) +
∫ 0

−min(s,u)
K(z + s, z + u)dz

= G(|s − u|) +
∫ min(s,u)

0
K(s − v, u − v)dv.

This is the solution obeying the boundary conditions (17.3.9). Substituting this rela-
tion into the quadratic forms in (17.3.5)4 and (17.3.19)1, we obtain

ψ(t) = W(t) +
1
2

∫ ∞

0
ds

∫ ∞

0
duĖt(s)

∫ min(s,u)

0
dvK(s − v, u − v)Ėt(u). (17.4.13)

The integral term in (17.4.13) is non-positive by virtue of (17.3.21). It is of course
the negative of the total dissipation (−D(t)), by virtue of (16.1.29).

17.4.1 Some Examples

1. Discrete-spectrum materials: The kernels ˜G and K have the form

˜G(s, u) =
n

∑

i, j=1

Ci je
−αi s − α ju,

K(s, u) = −
n

∑

i, j=1

(αi + α j)Ci je
−αi s − α ju,

(17.4.14)

since if these are substituted into (17.3.5)4 and (17.3.11)1, they yield (16.3.13)
and (16.3.15)2,3. It is clear that (17.4.8) applied to (17.4.14)2 yields (17.4.14)1.
Let the kernel K(·, ·) have the form

K(s, u) = −
n

∑

i, j=1

Γi je
−αi s − α ju, (17.4.15)
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where the symmetric matrix Γ with components Γi j, i, j = 1, 2, . . . , n is nonneg-
ative. The material is characterized by Γ and the vector α, with components
αi, i = 1, 2, . . . , n. These parameters are assumed to be known. Then, from
(17.3.11)1,

D(t) =
1
2

n
∑

i, j=1

Γi jei(t)e j(t) =
1
2
e · Γe,

ei(t) = Ėt
+(−iαi), i = 1, 2, . . . , n, e = (e1(t), e2(t), . . . , en(t)).

(17.4.16)

This expression for D(t) agrees with (16.3.15). The final relation is a definition of
the vector quantity e(t), which is that introduced earlier by (16.3.12). Applying
(17.4.8), we obtain

˜G(s, u) =
n

∑

i, j=1

Γi j

αi + α j
e−αi s − α ju,

so that from (17.3.5)2

ψ(t) = φ(t) +
1
2

n
∑

i, j=1

Γi j

αi + α j
ei(t)e j(t) = φ(t) +

1
2
e · Ce, (17.4.17)

where the matrix C has components of the form (see (16.3.15)3)

Ci j =
Γi j

αi + α j
, i, j = 1, 2, . . . , n.

The last form of (17.4.17) is of course (16.3.13). Then the relaxation function is
given by

˜G(0, u) = ˜G(u) =
n

∑

j=1

Gje
−α ju, Gj =

n
∑

i=1

Γi j

αi + α j
, j = 1, . . . , n.

2. The Dill free energy: Using (17.3.5)4, we put

K(s, u) = 2G′(s + u),

so that, from (17.4.8),
˜G(s, u) = ˜G(s + u).

This yields the functional

ψDill(t) = φ(t) +
1
2

∫ ∞

0

∫ ∞

0

˜G(s1 + s2)Ė
t(s2)Ė

t(s1)ds1ds2, (17.4.18)

which is a free energy with rate of dissipation (cf. (17.3.11)1) given by

DDill(t) = −
∫ ∞

0

∫ ∞

0
G′(s1 + s2)Ė

t(s2)Ė
t(s1)ds1ds2 (17.4.19)
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if and only if G(·) is completely monotonic, as defined in [89].
For discrete-spectrum materials, these are given by

ψDill(t) = φ(t) +
1
2

n
∑

i=1

Gie
2
i (t), DDill(t) =

n
∑

i=1

αiGie
2
i (t). (17.4.20)

3. Short-term memory free energy:We now construct a new free energy. Let us con-
sider K(s, u) given by the product form k(s)k(u) which guarantees non-negativity
of the rate of dissipation. Consider

k(s) = ae−λs2 , a, λ > 0, (17.4.21)

which could be taken to model sharply declining or short-termmemory behavior.
Relation (17.4.21) yields

K(s, u) = −a2 exp
[

−λ(s2 + u2)
]

= −a2 exp
[

−1
2
λ(x2 + y2)

]

,

where the variables x and y are defined by (17.4.2). We obtain, from (17.4.6),

˜G(s, u) =
1
2

∫ ∞

x
a2 exp

[

−1
2
λ((x′)2 + y2)

]

dx′

=
1
2

√

π

2λ
a2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 −Φ
⎛

⎜

⎜

⎜

⎜

⎜

⎝

√

λ

2
(s + u)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎥

⎦

exp

[

−1
2
λ(s − u)2

]

,

(17.4.22)

where Φ(·) is the probability integral [168]:

Φ(z) =
2√
π

∫ z

0
e−u2du.

From (17.4.10), (17.4.11), and (17.4.22), we have

˜G(s) =
1
2

√

π

2λ
a2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 −Φ
⎛

⎜

⎜

⎜

⎜

⎜

⎝

√

λ

2
s)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎥

⎦

exp

[

−1
2
λs2

]

,

˜G0 =
1
2

√

π

2λ
a2.

17.5 Frequency Domain Representations of Free Energies in
Terms of the Kernel K+−(·, ·)
The first discussion of the topic developed in this section was given in [158]. Also,
special cases of the formulae given below, namely those relating to the minimum and
associated free energies, were presented in [161] (see also (16.4.15)–(16.4.17)). One
of our aims here is to provide generalizations of these formulae. However, our main
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goal is to derive certain results which will prove more convenient for determining
new free energy functionals.

Let us now consider free energies with general kernels. We define

Z+−(ω1, ω2) =
∫ ∞

0

∫ ∞

0
Z(s, u)e−iω1s + iω2udsdu, (17.5.1)

where Z(s, u) represents any one of the kernels ˜G(s, u), K(s, u), or Q(s, u). Note that

Z+−(ω1, ω2) = Z+−(−ω1,−ω2) = Z+−(ω2, ω1), (17.5.2)

so that Z+−(ω,ω) is real. The quantity Z+−(ω1, ω2) is analytic in the lower half of the
ω1 complex plane and in the upper half of the ω2 plane.

Note that

Z+−(ω1, ω2) = Z+−(−ω2,−ω1),

Z+−(ω1, ω2) = Z+−(−ω1,−ω2) = Z+−(ω2, ω1), ω1, ω2 ∈ Ω,
(17.5.3)

where the property Z(s, u) = Z(u, s) has been used. These relations hold if ω1, ω2 are
points of analyticity of Z+−(ω1, ω2). It follows from (17.5.3) that Z+−(ω1, ω2) is real
if ω2 = ω1. In particular, Z+−(ω0, ω0) is real if ω0 is real. Thus, Z+−(ω1, ω2) is given
by analytic continuation from the real axis for ω1 ∈ Ω(−) and ω2 ∈ Ω(+).

Inverting Fourier transforms in (17.5.1) yields that

Z(s, u) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
Z+−(ω1, ω2)e

iω1s − iω2udω1dω. (17.5.4)

We shall not explicitly discuss the frequency domain version of the kernels G(s, u),
K(s, u), and Q(s, u) in this section. These occur in quadratic forms expressed in terms
of Et

r+(ω) rather than Ė
t
+(ω). We can, however, easily switch to this type of functional

by using (16.1.17). Relations (17.3.12)1, (17.3.23)1, (17.3.24), and (17.5.1), yield
that

i(ω1 − ω2)˜G+−(ω1, ω2) = K+−(ω1, ω2) + ˜G+(ω1) + ˜G+(ω2)

= K(1)(ω1, ω2),

i(ω1 − ω2)Q+−(ω1, ω2) = −K+−(ω1, ω2),

(17.5.5)

where ˜G+(ω) is defined by (16.1.7)1. From (17.3.9), (16.1.7)1, and (17.5.1), it follows
that

˜G+−(ω1, ω2) ∼

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

˜G+(ω1)−iω2
as ω2 → ∞,

˜G+(ω2)
iω1

as ω1 → ∞.
(17.5.6)

By an analogous argument to that yielding (17.5.6), we can deduce similar properties
for K+−(ω1, ω2).

We can write (17.3.5)4, (17.3.11)1, and (17.3.16)1 in the forms
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ψ(t) = φ(t) +
1

8π2

∫ ∞

−∞

∫ ∞

−∞
Ėt
+(ω1)˜G+−(ω1, ω2)Ė

t
+(ω2)dω1dω2,

D(t) = − 1

8π2

∫ ∞

−∞

∫ ∞

−∞
Ėt
+(ω1)K+−(ω1, ω2)Ė

t
+(ω2)dω1dω2,

D(t) =
1

8π2

∫ ∞

−∞

∫ ∞

−∞
Ėt
+(ω1)Q+−(ω1, ω2)Ė

t
+(ω2)dω1dω2,

(17.5.7)

where Ėt
+(ω) is defined by (16.1.17). Note that (17.5.7)2 can be written in the form

D(t) = − 1

8π2

∫ ∞

−∞

∫ ∞

−∞
Et
r+(ω1)ω1ω2K+−(ω1, ω2)E

t
r+(ω2)dω1dω2,

by virtue of (16.1.17). A similar observation applies to (17.5.7)1,3. Using the analyt-
icity properties of the kernels (see (16.1.24)), we can write (17.5.7) in the form

ψ(t) = φ(t) +
1

8π2

∫ ∞

−∞

∫ ∞

−∞
Ėt
F(ω1)˜G+−(ω1, ω2)Ė

t
F(ω2)dω1dω2,

D(t) = − 1

8π2

∫ ∞

−∞

∫ ∞

−∞
Ėt
F(ω1)K+−(ω1, ω2)Ė

t
F(ω2)dω1dω2,

D(t) =
1

8π2

∫ ∞

−∞

∫ ∞

−∞
Ėt
F(ω1)Q+−(ω1, ω2)Ė

t
F(ω2)dω1dω2,

(17.5.8)

where Et
F(ω) is defined by (16.1.24)2. Referring to Remark 17.3.3, we see that

(17.5.8) corresponds to case (b) of (17.3.18), as is also true for (16.1.24).
As for the time domain expressions, we conclude from P2 and P3 (see (16.1.26),

(16.1.28)) that the quadratic functionals in (17.5.7)1 and (17.5.7)3 must be nonneg-
ative, while those in (17.5.7)2 must be nonpositive. A similar statement applies to
(17.5.8). We seek therefore to write down the analogue of (17.3.15). It follows from
(17.5.8) that

˜G+−(ω,ω) ≥ 0, K+−(ω,ω) ≤ 0 ∀ ω ∈ R. (17.5.9)

Relations (17.5.9) do not follow from (17.5.7) because of the analyticity properties
of Ėt

+(ω) which, as we will see in Sect. 17.5.2, allow considerable non-uniqueness in
the kernels of (17.5.7), so that in particular the diagonal quantities (ω1 = ω2) are not
unique. Such non-uniqueness is not present in (17.5.8). The quantity Q+−(ω1, ω2) is
excluded because it contains singularities at ω1 = ω2, which arises from the fact that
(17.3.19)3,4 can be written in the form (17.5.8) but with a delta function.

It follows from (17.5.5)2 that

ψ(t) = φ(t) − i

8π2

∫ ∞

−∞

∫ ∞

−∞
Ėt
+(ω1)K(1)(ω1, ω2)Ėt

+(ω2)
ω+1 − ω−2

dω1dω2. (17.5.10)

The notation in the denominator of this last form means that if we integrate first over
ω1, it becomes (ω1−ω−2 ) or ifω2 first then it is (ω+1 −ω2). This choice of denominator,
rather than (ω−1 −ω+2 ), is initially assigned by using the example given by (16.4.15). It
will be justified below by means of a general argument. The terms in K(1) depending
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only on one variable (ω1 orω2) do not contribute to the integral. To see this, consider,
for example, the term

− i

8π2

∫ ∞

−∞

∫ ∞

−∞
Ėt
+(ω1)˜G+(ω1)Ėt

+(ω2)
ω+1 − ω−2

dω1dω2 (17.5.11)

and carry out the integral over ω2, completing the contour over Ω(−), on which
Ėt
+(ω2) is analytic. The denominator becomes ω+1 − ω2. The infinite part of the con-

tour yields a vanishing contribution, by virtue of (16.1.20), so the result is zero. We
note, however, for later use that if ω+1 were replaced by ω−1 , the result would be

− 1
4π

∫ ∞

−∞
Ėt
+(ω1)˜G+(ω1)Ė

t
+(ω1)dω1. (17.5.12)

Thus, (17.5.10) can be replaced by

ψ(t) = φ(t) − i

8π2

∫ ∞

−∞

∫ ∞

−∞
Ėt
+(ω1)K+−(ω1, ω2)Ėt

+(ω2)
ω+1 − ω−2

dω1dω2

= φ(t) − i

8π2

∫ ∞

−∞

∫ ∞

−∞
Et
r+(ω1)ω1ω2K+−(ω1, ω2)Et

r+(ω2)
ω+1 − ω−2

dω1dω2,

(17.5.13)

on using (16.1.17). Let us apply the Plemelj formulae to the integral in (17.5.13)1
over ω1 to obtain

ψ(t) = φ(t) − i

8π2
P

∫ ∞

−∞

∫ ∞

−∞
Ėt
+(ω1)K+−(ω1, ω2)Ėt

+(ω2)
ω1 − ω2

dω1dω2

− 1
8π

∫ ∞

−∞
Ėt
+(ω)K+−(ω,ω)Ė

t
+(ω)dω,

(17.5.14)

where the symbol “P” indicates a principal value integral over ω1. Also, consider the
integral (see (17.5.5)3)

D1(t) =
i

8π2

∫ ∞

−∞

∫ ∞

−∞
Ėt
+(ω1)K+−(ω1, ω2)Ėt

+(ω2)
ω−1 − ω+2

dω1dω2.

Differentiating with respect to t, we find, with the aid of (16.1.18)1, that

Ḋ1(t) = D(t), (17.5.15)

where D(t) is given by (17.5.7)2. The relation

∫ ∞

−∞
Ėt
+(ω1)K+−(ω1, ω2)
ω−1 − ω2

dω2 = 0, (17.5.16)

and a similar one involving integration over ω1, have been used. Equation (17.5.16)
follows by closing the contour onΩ(+) and recalling that a property similar to (17.5.6)
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applies to K+−(ω1, ω2). Relation (17.5.15) implies that D1(t) = D(t) + k, where k is
a constant which can be shown to be zero because D1(−∞) = 0 = D(−∞). This
follows by observing that Ėt

+, given by (16.1.17), tends to zero as t → −∞, because
of assumption (16.1.2). We conclude that

D(t) = D1(t) =
i

8π2

∫ ∞

−∞

∫ ∞

−∞
Ėt
+(ω1)K+−(ω1, ω2)Ėt

+(ω2)
ω−1 − ω+2

dω1dω2

=
i

8π2

∫ ∞

−∞

∫ ∞

−∞
Et
r+(ω1)ω1ω2K+−(ω1, ω2)Et

r+(ω2)
ω−1 − ω+2

dω1dω2.

(17.5.17)

In a similar manner to the derivation of (17.5.14), we have

D(t) =
i

8π2
P

∫ ∞

−∞

∫ ∞

−∞
Ėt
+(ω1)K+−(ω1, ω2)Ėt

+(ω2)
ω1 − ω2

dω1dω2

− 1
8π

∫ ∞

−∞
Ėt
+(ω)K+−(ω,ω)Ė

t
+(ω)dω.

Therefore,

ψ(t) +D(t) = φ(t) − 1
4π

∫ ∞

−∞
Ėt
+(ω)K+−(ω,ω)Ė

t
+(ω)dω

= φ(t) +
1
2π

∫ ∞

−∞
Ėt
+(ω)

H(ω)

ω2
Ėt
+(ω)dω,

by virtue of (16.1.29) and (17.3.19) for arbitrary histories. It follows from this result
together with (16.1.7)1 and (16.1.13) that

K+−(ω,ω) = −2H(ω)

ω2
= −2˜Gc(ω)

= −G
′
+(ω)
iω

+
G′+(ω)
iω

= −˜G+(ω) − ˜G+(ω),

(17.5.18)

where (16.1.8) has also been invoked. This relation can in fact be shown directly.
From (17.5.1), we can write

K+−(ω,ω) =
∫ ∞

0

∫ ∞

0
K(s, u)e−iω(s − u)dsdu.

Transforming to the variables x, y defined by (17.4.2), we obtain

K+−(ω,ω) = −12
∫ ∞

0
dx

∫ x

−x
dyKn(x, y)e

−iωy

= −
∫ ∞

0
dx

∫ x

0
dyKn(x, y) cosωy,

where (17.4.4) has been used. We can write this in the form
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K+−(ω,ω) = −
∫ ∞

0
dy

∫ ∞

y
dxKn(x, y) cosωy

= −2
∫ ∞

0

˜G(y) cosωydy = −2˜Gc(w),

by virtue of (17.4.6) and (17.4.5). This proves the result.

Remark 17.5.1. We see from this derivation that the constraint in the time domain
equivalent to (17.5.18) is (17.4.5) combined with (17.4.6) (which yield (17.4.10)).
Relation (17.4.5) (or (17.3.9)) is of course the property P1 or (16.1.25). The fre-
quency domain form (17.5.18) is more useful for deriving explicit forms of free
energies, as we shall see.

Remark 17.5.2. Relation (17.5.18) can be used to prove P1 or (16.1.25), from
(17.5.13)2, by differentiating the latter equation with respect to E(t).

Note that (17.5.18) implies that K(1)(ω,ω), defined by (17.5.5)2, vanishes. The
quantity K+−(ω,ω) is independent of the choice of free energy. Observe that (17.5.18)
is consistent with (17.5.9)2. Both the non-positivity of K+−(ω,ω) and the non-
negativity of H(ω) are direct consequences of the second law (see P3 after (16.1.28),
(16.1.12) and (16.1.13)).

If we were to take the other choice of denominator, namely ω−1 −ω+2 , in (17.5.13)
and ω+1 −ω−2 in (17.5.17), there would be a positive sign on 2H(ω)/ω2 in (17.5.18)1,
which contradicts the second law, as expressed by (17.5.9)2.

We now show that (17.4.9) is the time domain version of (17.5.13)1. Substituting
(17.5.4) for Z(s, u) = K(s, u) into (17.4.8)1 yields

˜G(s, u) = − 1

4π2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0
K+−(ω1, ω2)e

iω1(s + z) − iω2(u + z)dzdω1dω2

= − i

4π2

∫ ∞

−∞

∫ ∞

−∞
K+−(ω1, ω2)
ω+1 − ω−2

eiω1s − iω2udω1dω2.

(17.5.19)
The denominator results from putting

ei(ω1 − ω2)z = ei(ω1 − ω−2 )z = ei(ω
+
1 − ω2)z, (17.5.20)

which ensures that the integral over z exists. If ˜G(s, u), given by (17.5.19), is inserted
into (17.3.5)4, we obtain (17.5.13)1. The argument based on (17.5.20) is perhaps
the simplest way of showing that the denominator in (17.5.13) is the correct choice,
rather than the alternative in (17.5.17).

Using (16.1.25) to obtain the form of the stress function from (17.5.13)1, we find,
by virtue of (16.1.17), that

T (t) = Te(t) − i

4π2

∫ ∞

−∞

∫ ∞

−∞
K+−(ω1, ω2)Ėt

+(ω2)
ω+1 − ω−2

dω1dω2.
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This involves combining two terms which can be shown to be equal with the help
of (17.5.2). Carrying out the ω1 integration by closing the contour on Ω(−) and using
(17.5.18), we obtain (16.1.23)2.

Thus, if K+−(ω1, ω2) is given for all ω1 and ω2 ∈ R, the material is completely
characterized by (17.5.13) and (17.5.18).

Relations (16.4.15) and (16.4.17) are special cases of (17.5.13)2 and (17.5.7)2
(the latter expressed in terms of Et

r+), where

ω1ω2K+−(ω1, ω2) = −2H f
+(ω1)H

f
−(ω2),

while (16.4.16) is a special case of (17.5.17)2. Also, replacements corresponding
to (17.5.22) below can be implemented here. The particular case referred to in Re-
mark 17.5.3 is obtained by subtracting a term H f

+(ω2)H
f
−(ω1) from the kernels in

(16.4.15), which yields an alternative expression involving non-singular integrals:

ψ f (t) = φ(t) +
i

4π2

∫ ∞

−∞

∫ ∞

−∞
Et
r+(ω1)N(ω1, ω2)Et

r+(ω2)
ω1 − ω2

dω1dω2,

N(ω1, ω2) = H f
+(ω1)H

f
−(ω2) − H f

+(ω2)H
f
−(ω1).

This is a special case of (17.5.26) below, with Ėt
+(ω) replaced by −iωEt

r+(ω), by
virtue of (16.1.17). Using the same relation, we can interchangeably express the
above formulae in terms of Ėt

+(ω) or E
t
r+(ω).

17.5.1 Example: Discrete-Spectrum Materials

This was already discussed in the context of the time domain theory, as expressed by
(17.4.14). From (17.5.1) and (17.4.15), it follows that

K+−(ω1, ω2) = −
n

∑

i, j=1

Γi j

(αi + iω1)(α j − iω2)
,

˜G+−(ω1, ω2) =
n

∑

i, j=1

Γi j

(αi + α j)(αi + iω1)(α j − iω2)
,

˜G+(ω) =
n

∑

i=1

Gi

αi + iω
=

n
∑

i, j=1

Γi j

(αi + α j)(αi + iω1)
.

(17.5.21)

The formula for ˜G+(ω) also follows from (17.5.6). Observe that

K+−(ω,ω) = −
n

∑

i, j=1

Γi j

(αi + α j)

{

1
αi + iω

+
1

α j − iω
}

= −
n

∑

i, j=1

Γi j

(αi + α j)

{

1
αi + iω

+
1

αi − iω
}

= −2H(ω)

ω2
,

by virtue of (17.5.21)3,4. This agrees with (17.5.18).
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The positivity of the individualGj is not in itself a requirement. What is important
is that ˜Gc(ω) be nonnegative, as required by (16.1.12). Now, from (17.5.21)4,

˜Gc(ω) =
n

∑

i, j

αiΓi j

α2i + ω
2
=

n
∑

i, j

α jΓi j

α2j + ω
2

=
1
2

n
∑

i, j

(ω2 + αiα j)Γi j
(α2i + ω

2)(α2j + ω
2)
.

This is the sum of two terms, one proportional to ω2 in the numerator, and the other
proportional to αiα j. Both of these can be seen to be separately nonnegative, on
recalling that Γ is a nonnegative matrix, so we have the desired property (16.1.12).

17.5.2 Non-uniqueness of the Kernels

We now consider how the kernels in (17.5.7) are not unique. This phenomenon is
the frequency domain version of Causality constraints outlined in Remark 17.3.3.
We deal here with case (a) of (17.3.18). Using the same argument as that leading to
(16.1.22), we can express (17.5.7) in different forms. Consider the replacement

Z+−(ω1, ω2)→ Y(ω1, ω2) = Z+−(ω1, ω2) + z2+(ω1, ω2) + z1−(ω1, ω2), (17.5.22)

where Z+−(ω1, ω2) becoming Y(ω1, ω2) represents either K+−(ω1, ω2) becoming
L(ω1, ω2) or ˜G+−(ω1, ω2) becoming R(ω1, ω2), both of which will be used later.
The functions z2+(ω1, ω2) and z1−(ω1, ω2) correspondingly represent k2+(ω1, ω2) and
k1−(ω1, ω2) for K+−(ω1, ω2) and g2+(ω1, ω2) and g1−(ω1, ω2) for ˜G+−(ω1, ω2), re-
spectively.

The function z2+(ω1, ω2) has singularities on the ω2 complex plane only in Ω(+)

and z1−(ω1, ω2) has singularities on the ω1 complex plane only in Ω(−).
Such substitutions leave the relations in (17.5.7) unchanged, as may be seen by

closing the relevant integral on Ω(±) as appropriate, and invoking Cauchy’s theo-
rem. It is required, however, that the contributions from the infinite parts of the con-
tours vanish. Noting (16.1.20) in this context, we see that the quantities k2+(ω1, ω2),
k1−(ω1, ω2) and g2+(ω1, ω2), g1−(ω1, ω2) must decay to zero at large ω1 or ω2.

Similar substitutions can be made for Q+− in (17.5.7)3.
Interesting special cases are as follows:

Y(ω1, ω2) = Z+−(ω1, ω2) + a1Z+−(−ω1, ω2) + a2Z+−(ω1,−ω2)

+ a3Z+−(−ω1,−ω2),

where the ai, i = 1, 2, 3, are arbitrary complex constants which may be different for
each quantity represented by Z. Similar remarks apply to Q+−(ω1, ω2).

Remark 17.5.3. If we choose a1 = a2 = 0 and a3 = −1, then from (17.5.2), it follows
that Y(ω,ω) = 0.
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Thus, we can write a general form of (17.5.7)1,2, incorporating substitutions of the
kind outlined above, as follows:

ψ(t) = φ(t) +
1

8π2

∫ ∞

−∞

∫ ∞

−∞
Ėt
+(ω1)R(ω1, ω2)Ė

t
+(ω2)dω1dω2

D(t) = − 1

8π2

∫ ∞

−∞

∫ ∞

−∞
Ėt
+(ω1)L(ω1, ω2)Ė

t
+(ω2)dω1dω2,

(17.5.23)

in the notation specified after (17.5.22), so that, for example,

L(ω1, ω2) = K+−(ω1, ω2) + k2+(ω1, ω2) + k1−(ω1, ω2).

If (17.5.7) is replaced by (17.5.8), the non-uniqueness of the kernels no longer holds,
as noted after (17.5.9). Equation (17.5.23)1 can be replaced by

ψ(t) = φ(t) − i

8π2

∫ ∞

−∞

∫ ∞

−∞
Ėt
+(ω1)L(ω1, ω2)Ėt

+(ω2)
ω+1 − ω−2

dω1dω2, (17.5.24)

by virtue of the relation

− i

8π2

∫ ∞

−∞

∫ ∞

−∞
Ėt
+(ω1)[k2+(ω1, ω2) + k1−(ω1, ω2)]Ėt

+(ω2)
ω+1 − ω−2

dω1dω2 = 0,

so that (17.5.24) reduces to (17.5.13)1. The term k2+(ω1, ω2) yields zero by integrat-
ing the variable ω2 over a contour enclosing Ω(−), which is a generalization of the
argument relating to (17.5.11). Similarly for the term k1−(ω1, ω2), which is zero by
virtue of the integration over ω1.

However, for D(t), we have

D(t) =
i

8π2

∫ ∞

−∞

∫ ∞

−∞
Ėt
+(ω1)L(ω1, ω2)Ėt

+(ω2)
ω−1 − ω+2

dω1dω2

+
1
4π

∫ ∞

−∞
Ėt
+(ω) [k2+(ω,ω) + k1−(ω,ω)] Ė

t
+(ω)dω.

(17.5.25)

This follows by a generalization of the argument leading to (17.5.12). Applying the
Plemelj formulae to (17.5.24) and (17.5.25), we find that the condition (17.5.18)
re-emerges.

Note that if
L(ω1, ω2) = K+−(ω1, ω2) − K+−(−ω1,−ω2),

as specified by Remark 17.5.3, then the integrals in (17.5.24) and (17.5.25) are non-
singular because L(ω,ω) vanishes, by virtue of (17.5.2). Thus,

ψ(t) = φ(t) − i

8π2

∫ ∞

−∞

∫ ∞

−∞
Ėt
+(ω1)L(ω1, ω2)Ėt

+(ω2)
ω1 − ω2

dω1dω2. (17.5.26)

The general forms of free energies or dissipation functionals can be specialized
in two ways: specifying histories or choosing particular functional forms for the rate
of dissipation kernels K(·, ·). We now explore both of these approaches.
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17.6 General Dissipative Materials for Specified Histories

In this section, we choose general kernels and particular histories.
As noted in Sect. 17.2, a given material with memory typically has a set of many

free energy functionals associated with it, all members of which yield the same
constitutive relations. Explicit formulae are derived in this chapter for the free en-
ergy and total dissipation of such a material in the cases of step function and si-
nusoidal/exponential histories. Expressions for the fraction of stored and dissipated
energy are deduced.

17.6.1 Free Energy and Dissipation Functionals for Particular Histories

Two important dimensionless parameters are

β =
G∞
G0
, χ =

G0 −G∞
G0

= 1 − β = − 1
G0

∫ ∞

0
K(z, z)dz, β, χ ∈ [0, 1]. (17.6.1)

The relation (17.3.15) has been used. These parameters provide simple measures of
the memory contribution and therefore, the amount of energy loss due to material
deformation. The smaller the quantity β or the larger the parameter χ, the greater the
energy loss.

The fraction of energy stored and dissipated, respectively, for any given history,
can be determined according to the formulae

Fs(t) =
ψ(t)
W(t)
, Fd(t) =

D(t)
W(t)
, Fs(t) + Fd(t) = 1. (17.6.2)

The interpretation of these quantities is discussed further in [18].
Expressions for the free energy, total dissipation, and the ratios Fs(t), Fd(t) will

be given in the case of a general rate of dissipation kernel K(s, u), and three different
types of strain history. These quantities are important characteristic properties of the
material described by this kernel.

Any choice of K(s, u) ∈ K will describe the stress-strain and energy behavior of
one specific material. Matters are more difficult when we seek to reverse this process
and determine the kernel K(s, u) which describe a pre-chosen material, referred to as
material I in Sect. 17.1.

Let the quantity K+−(ω1, ω2), determined from each K(s, u) ∈ K by (17.5.1),
form a set KF .

As already noted, the functionals ψ f (t), f = 1, 2, . . . ,N lie on the boundary of
F, in particular the minimum and maximum free energies which provide lower and
upper bounds; similarly for K f

+−(ω1, ω2) with respect to KF . The factors H f
±(ω)

and therefore all these quantities are deduced from the parameters of the relaxation
function. The size of the set F (and KF or K) is, in this sense, determined by the
relaxation function.

We seek to give detailed expressions for free energies and related quantities for
general choices of the kernel K(s, u) ∈ K and histories with step function and SE
behavior.
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17.6.1.1 Step Function Histories

This is the simplest non-constant behavior of the strain history, given as follows.
Consider E(u), u ≤ t where t is the current time, assumed to be positive. Let

E(u) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, u ≤ 0,

E0, 0 < u ≤ t,
(17.6.3)

giving

Ė(u) =
dE(u)
du

= E0δ(u),

in terms of the singular delta function. Thus,

Ėt(s) = E0δ(t − s).

It follows from this relation and (17.3.11) that

D(t) = −E
2
0

2
K(t, t). (17.6.4)

Also, from (17.4.8), (17.3.5)4 and (16.1.32), we have

ψ(t) = φ(t) − E2
0

2

∫ ∞

0
K(t + z, t + z)dz

=
1
2
G∞E2

0 −
E2
0

2

∫ ∞

t
K(y, y)dy, t ≥ 0.

(17.6.5)

The integral term is nonnegative, by virtue of (17.3.15). Relation (17.4.11) yields
that

1
2
G0E

2
0 =

1
2
G∞E2

0 −
E2
0

2

∫ ∞

0
K(y, y)dy. (17.6.6)

Thus,

ψ(t) ≤ 1
2
G0E

2
0.

It follows from (17.3.19) that

W(t) =
1
2
G0E

2
0,

so that (17.3.21) is satisfied. Relation (16.1.29) gives that

D(t) = −E
2
0

2

∫ t

0
K(y, y)dy.

The finite range of the integral is easily understood, from a physical point of view.
For the infinite period specified by (17.6.3)1, there is no dissipation. At time t = 0,
dissipation begins. Referring to (17.6.2), we see that
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Fd(t) = − 1
G0

∫ t

0
K(y, y)dy, Fs(t) = 1 − Fd(t).

Differentiating with respect to time, we obtain

d
dt
Fd(t) = − 1

G0
K(t, t),

d
dt
Fs(t) = − d

dt
Fd(t),

so that Fd(t) is monotonically increasing and Fs(t) is monotonically decreasing. Note
that

Fd(∞) = G0 −G∞
G0

= χ = 1 − β, Fs(∞) = G∞
G0
= β,

in terms of the quantities introduced in (17.6.1). Thus, χ measures the energy dissi-
pation and β the energy storage for any material in K, due to a sudden step change
in strain.

The quantity Fd(t) is zero at t = 0 and increases monotonically to χ as t → ∞,
while Fs(t) = 1 at t = 0 and decreases monotonically to β at large t. Note that K(y, y)
must tend to zero as y→ ∞ to yield convergent integrals in (17.6.5) or (17.6.6).

Observe from (17.6.4) that, if D(t) can be determined, this yields a measurement
of K(t, t). To obtain measurements of K(s, u), s, u ∈ R+, one needs to consider his-
tories with two steps (Sect. 7.1.3). Of course, this is not a very practical technique
since step function histories are difficult to approximate closely.

17.6.1.2 SSE Histories

Consider the history and current value (Et, E(t)) defined by (16.11.1). Furthermore,
ω± are given by (16.11.2). For η = 0, we have purely sinusoidal behavior, while for
ω0 = 0, the history is exponentially growing. The derivative Ėt(s) has the form

Ėt(s) = iω−E0e
iω−(t − s) − iω+E0e

−iω+(t − s). (17.6.7)

Also, the quantity Et
+(ω) is given by

Et
+(ω) = E0

eiω−t

i(ω + ω−)
+ E0

e−iω+t
i(ω − ω+) , (17.6.8)

while

Ėt
+(ω) = E0ω−

eiω−t

ω + ω−
− E0ω+

e−iω+t
ω − ω+ = −iωE

t
r+(ω), (17.6.9)

by virtue of (16.1.17).
Using (16.1.3) and (17.6.7), we find that the stress is given by

T (t) =M+(ω−)E0e
iω−t +M+(−ω+)E0e

−iω+t, (17.6.10)

where M+(ω) is defined by (16.1.9). Referring to (17.6.8) and (17.6.9), we see that
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Et
+(−iα) = E0

eiω−t

α + iω−
+ E0

e−iω+t
α − iω+ ,

Ėt
+(−iα) = iE0

ω−eiω−t

α + iω−
− iE0

ω+e−iω+t
α − iω+ .

It follows from (17.6.9) that

Et
r+(−iαi) = −iE0

ω−
αi

eiω−t

αi + iω−
+ iE0

ω+
αi

e−iω+t
αi − iω+

= −ei(t)
αi
, i = 1, 2, . . . , n,

where the ei are given by (17.4.16) with the aid of (16.1.17).
The real quadratic form

V(t) = ME2
0e
2iω−t + M E0

2
e−2iω+t + N|E0|2ei(ω− − ω+)t

= 2Re[ME2
0e
2iω−t] + N|E0|2ei(ω− − ω+)t

=

[

2Re
(

ME2
0e
2iω0t

)

+ N|E0|2
]

e2ηt

(17.6.11)

will be denoted by
V(t) = {M,N} . (17.6.12)

which is a generalization of (16.11.3). The quantity N is real. All free energies, total
dissipations, rates of dissipation and work functions can be represented in the form
V(t), for histories given by (16.11.1). Note that

∫ t

−∞
V(s)ds =

{

M
2iω−

,
N

i(ω− − ω+)
}

,

V̇(t) = {2iω−M, i(ω− − ω+)N} .
(17.6.13)

Remark 17.6.1. For η = 0, the quantity V = {M,N} will be completely periodic if M
and N are finite quantities, independent of t.

We have, from (17.6.7) for s = 0 and (17.6.10),

T (t)Ė(t) = iω−M+(ω−)E2
0e
2iω−t − iω+M+(−ω+)E0

2
e−2iω+t

+ i [ω−M+(−ω+) − ω+M+(ω−)] |E0|2ei(ω− − ω+)t
= {iω−M+(ω−), i [ω−M+(−ω+) − ω+M+(ω−)]} .

(17.6.14)

Using (16.1.30)1, (17.6.13)1, and (17.6.14), we see that

W(t) = {MW ,NW } ,
where
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MW =
1
2
M+(ω−), NW =

ω−M+(−ω+) − ω+M+(ω−)
ω− − ω+ . (17.6.15)

The term NW diverges in the purely sinusoidal limit as η→ 0.
A general free energy (17.3.5)1 for histories of the form (16.11.1) is given by

ψ(t) =
{

Mψ,Nψ
}

. (17.6.16)

where

Mψ =
1
2

[

G∞ − ω2
−˜G+−(ω−,−ω−)

]

=
1
2

[

M+(ω−) +
iω−
2

K+−(ω−,−ω−)
]

,

(17.6.17)

by virtue of (16.1.9), (17.5.1), and (17.5.5). Also, from (16.1.9), (17.5.3)1 and sub-
sequent observations,

Nψ = G∞ +
1
2

{

|ω−|2 ˜G+−(ω−, ω+) + |ω+|2 ˜G+−(−ω+,−ω−)
}

= G∞ + |ω−|2 ˜G+−(ω−, ω+)

= G∞ +
|ω−|2

i(ω− − ω+)
[

K+−(ω−, ω+) + ˜G+(ω−) + ˜G+(ω+)
]

=
−i|ω−|2K+−(ω−, ω+) + ω−M+(−ω+) − ω+M+(ω−)

ω− − ω+ ,

(17.6.18)

again using (17.5.5). From (17.3.11), (17.5.3), and (17.6.7), we find that

D(t) = {MD,ND} , (17.6.19)

where

MD =
ω2−
2
K+−(ω−,−ω−),

ND = −|ω−|
2

2
{K+−(ω−, ω+) + K+−(−ω+,−ω−)}

= −|ω−|2K+−(ω−, ω+).

(17.6.20)

Let
D(t) = {MD,ND} .

Then, from (17.6.13)1,

MD = − iω−4 K+−(ω−,−ω−), ND = i|ω−|2K+−(ω−, ω+)
ω− − ω+ . (17.6.21)

We see from (17.6.15), (17.6.17), (17.6.18), and (17.6.21) that (16.1.29) is obeyed.
Note that ND diverges in the sinusoidal limit.

The ratios (17.6.2) are given by

Fd(t) =
VD(t)
VW (t)

, Fs(t) = 1 − Fd(t),
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where VD(t) has the form (17.6.11) with M = MD and N = ND given by (17.6.21).
Also, VW (t) is similarly defined, with MW and NW given by (17.6.15).

The factor e2ηt, giving the exponential part of the history, cancels out of the
ratios, yielding for Fd(t),

Fd(t) =
MDE2

0e
2iω0t + MDE2

0e
−2iω0t + ND|E0|2

MWE2
0e
2iω0t + MWE2

0e
−2iω0t + NW |E0|2

. (17.6.22)

Now, we have

MWE
2
0e
2iω0t + MWE2

0e
−2iω0t + NW |E0|2 > 0, (17.6.23)

which is a consequence of the fact that W(t), given by (17.3.19), is positive, as is
the cancelled factor e2ηt. Also, by averaging over any interval of duration π/ω0, the
oscillatory terms vanish and we deduce that NW > 0. The expression in (17.6.23)
may be written as

NW |E0|2
[

1 +
2|MW | cos(2ω0t + λ)

NW

]

, λ = arg[MWE
2
0],

where the term in brackets must be positive. It follows that, for all t,

NW > 2|MW | cos(2ω0t + λ). (17.6.24)

We can therefore write (17.6.22) as the numerator multiplying the factor

1

NW |E0|2
[1 + A],

where A is an infinite expansion of powers of terms involving e±2iω0t. This expan-
sion is convergent by virtue of the inequality (17.6.24). If we take the average of
Fd(t) over any time interval of duration πω0

, it reduces to

Fdc =
ND

NW
=

i|ω−|2K+−(ω−, ω+)
ω−M+(−ω+) − ω+M+(ω−) ,

Fsc = 1 − Fdc =
Nψ
NW

=
−i|ω−|2K+−(ω−, ω+) + ω−M+(−ω+) − ω+M+(ω−)

ω−M+(−ω+) − ω+M+(ω−) .

(17.6.25)

17.6.1.3 Purely Sinusoidal Histories

For this case, the quantitiesW(t) andD(t) diverge, as pointed out after (17.6.15) and
(17.6.21). We can write an approximate version of (11.7.5) as
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W(t) = {MW ,NW },
MW =

1
2

[

G0 +G
′
+(ω0)

]

NW = G0 +G
′
c(ω0) − ω0

∂

∂ω0
G′c(ω0) −G′s(ω0)ω0

(

2t +
1
η

)

.

In the limit η → 0, the quantity NW does not meet the criterion specified in Re-
mark 17.6.1, so that W(t) does not obey condition P4.

In this limit, where η→ 0, (17.6.11) and (17.6.12) become

{M,N} = ME2
0e
2iω0t + M E0

2
e−2iω0t + N|E0|2. (17.6.26)

Relation (17.6.14) converges to a finite result of the form

T (t)Ė(t) = {iω0M+(ω0), 2H(ω0)},
where (16.1.10) and (16.1.13) have been invoked. Also, (17.6.17) and (17.6.18) yield

Mψ =
1
2

{

M+(ω0) +
iω0

2
K+−(ω0,−ω0)

}

,

Nψ = R(ω0) − ω0
d

dω0
R(ω0) + U(ω0),

U(ω0) =
iω2

0

2

[

− ∂
∂ω1

K+−(ω1, ω2) +
∂

∂ω2
K+−(ω1, ω2)

]
∣

∣

∣

∣

∣

ω1=ω2=ω0

,

(17.6.27)

whereR(ω) is defined by (16.1.10). Finally, from (17.6.19) and (17.6.20), we deduce
that

D(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ω2
0

2
K+−(ω0,−ω0), 2H(ω0)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (17.6.28)

where (17.5.18) has been used. Applying (17.6.13)2 in the sinusoidal limit, one can
show that (16.1.28) is obeyed.

Comparison with Special Cases

We now compare these results with previously given particular examples of sinu-
soidal histories. The minimum free energy is discussed in detail for such histories in
Sect. 11.7. Precisely analogous formulae apply to all the ψ f (t). Thus, we have, in the
notation (17.6.26), using the complex modulus given by (16.1.9), rather than G′(ω0)
or ˜G(ω0),

ψ f (t) =

{

1
2

[

M+(ω0) +
i
ω0

[

H f
−(−ω0)

]2
]

,R(ω0) − ω0
d

dω0
R(ω0) + Qf (ω0)

}

,

(17.6.29)
where Qf (ω) is given by

Qf (ω) = i

[

d
dω

H f
+(ω)H

f
−(ω) − H f

+(ω)
d
dω

H f
−(ω)

]

≥ 0, ω ∈ R. (17.6.30)
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The rate of dissipation is given by (16.4.12) and (16.4.6). It can be shown that

Kf (t) = H f
−(−ω0)E0e

iω0t + H f
−(ω0)E0e

−iω0t,

yielding

Df (t) = {[H f
−(−ω0)]

2, 2H(ω0)} = {[H f
+(ω0)]

2, 2H(ω0)}, (17.6.31)

where (16.4.1) has been used.
We see that relations (17.6.29) and (17.6.31) are the special cases of (17.6.27)

and (17.6.28) for ω1ω2K+−(ω1, ω2) = −2H f
+(ω1)H

f
+(ω2). In particular, the quantity

Qf (ω) in (17.6.30) is equal to U(ω) in (17.6.27) for this choice of kernel.

17.6.1.4 Exponential Histories

This can be treated either by direct calculation, or as a special case of the general
formulae of Sect. 17.6.1.2, where ω0 → 0. We consider a history and current value
(Et, E(t)) given by (16.11.1) with ω0 = 0, so that

E(t) = Eee
ηt, Et(s) = E(t − s), Ee = E0 + E0.

The stress function, given by (17.6.10), has the form

T (t) =M+(−iη)E(t), M+(−iη) = G∞ + η˜G+(−iη), (17.6.32)

where the forms of M+(−iη) can be deduced from (16.1.9). This quantity is real.
From (17.6.32) or as special cases of (17.6.14) and (17.6.15), we have

T (t)Ė(t) = ηM+(−iη)E2(t) =
1
2
M+(−iη) ddt E

2(t),

W(t) =
1
2
M+(−iη)E2(t).

(17.6.33)

Also, (17.6.16), (17.6.17), and (17.6.18) reduce to

ψ(t) =
1
2
[M+(−iη) + η2K+−(−iη, iη)]E

2(t). (17.6.34)

The rate of dissipation and total dissipation are special cases of (17.6.19) and
(17.6.21), given by

D(t) = −η
2

2
K+−(−iη, iη)E2(t), D(t) = −η

4
K+−(−iη, iη)E2(t). (17.6.35)

The results for the various quadratic quantities above can be summarized in a simple
formula. Putting ω0 = 0 in (17.6.11), we have

V(t) = V0e
2ηt, V0 = ME2

0 + M E0
2
+ N|E0|2.
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It can be shown using (17.3.5), (17.3.11), and (17.3.19), relating, respectively, to
ψ(t), D(t), and W(t), that

M = M =
N
2
, (17.6.36)

for exponential histories. This relation must therefore hold true for D(t), by virtue
of (16.1.29). Equation (17.6.36) can also be shown using various explicit formulae
from (17.6.15) to (17.6.21). It gives that V0 = ME2

e or

V(t) = ME2(t). (17.6.37)

Each result in (17.6.33)–(17.6.35) has the form (17.6.37) where, for example, if
M = M(ω−, ω+) in the general sinusoidal/exponential case, this is replaced by
M = M(−iη, iη). The property (17.6.37) was first noted in [16].

The quantities Fs and Fd, defined by (17.6.2), are time-independent and given by

Fs =
M+(−iη) + η2K+−(−iη, iη)

M+(−iη) , Fd = −η2
K+−(−iη, iη)
M+(−iη) .

Note that
Fs = Fsc, Fd = Fdc,

where Fsc and Fdc are the quantities introduced in (17.6.25), with ω± replaced by
±iη, as in the comment after (17.6.37).

Various detailed expressions for step function and SE histories are presented in
[18]. Plots of some of these functions are also presented.

17.7 Product Formulae in the Time and Frequency Domains

We now choose general histories and special forms of kernels, using results obtained
in Sect. 17.5 to help determine new nonnegative rates of dissipation and from these
to deduce new free energies.

In the time and frequency domains, we have the corresponding conditions
(17.4.10) and (17.5.18), which constrain the choice of kernels for the rate of dis-
sipation. This category is in fact very general and will be explored in this section.

The simplest method of creating nonnegative quadratic functionals is to assume
that the relevant kernels have the form of sums of products.

Also, a family of free energy functionals is introduced, which is a generalization
of the category discussed in Sect. 16.4 consisting of the minimum and related free
energies.

It should be emphasized that all developments in the time and frequency domains
are equivalent.
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17.7.1 The Time Domain

Let us take

K(s, u) = −
m

∑

i, j=1

Ai jki(s)k j(u), (17.7.1)

for some positive integer m, where it is assumed that all quantities
∫ ∞
0

ki(s)Ėt(s)ds,
i = 1, 2, . . . ,m exist, for the class of histories of interest. The matrix A is assumed to
be nonnegative. The rate of dissipation is given by

D(t) =
1
2

∫ ∞

0

∫ ∞

0

m
∑

i, j=1

Ėt(s)Ai jki(s)k j(u)Ė
t(u)dsdu ≥ 0. (17.7.2)

We obtain from (17.4.9) that

ψ(t) = φ(t) +
1
2

∫ ∞

0

∫ ∞

0

∫ ∞

0
Ėt(s)

m
∑

i, j=1

Ai jki(z + s)k j(z + u)dzĖ
t(u)dsdu. (17.7.3)

From (17.4.10), it follows that

˜G(s) =
∫ ∞

0

m
∑

i, j=1

Ai jki(z)k j(z + s)dz. (17.7.4)

The simplest case of (17.7.1) is where m = 1. Absorbing
√
A11 into k(s), we obtain

K(s, u) = −k(s)k(u), D(t) =
1
2

[∫ ∞

0
k(s)Ėt(s)ds

]2

, (17.7.5)

and
˜G(s, u) =

∫ ∞

0
k(z + s)k(z + u)dz,

giving

ψ(t) = φ(t) +
1
2

∫ ∞

0

∫ ∞

0

∫ ∞

0
Ėt(s)k(z + s)k(z + u)Ėt(u)dsdudz. (17.7.6)

Relation (17.7.4) becomes

˜G(s) =
∫ ∞

0
k(z)k(z + s)dz. (17.7.7)

The quantity ˜G(s) is the given relaxation function characterizing the material, while
the free energy determined by (17.7.6) is one of (usually) many functionals that gen-
erate this quantity. Relation (17.7.7) can be regarded as a nonlinear integral equation
for k(·) in terms of ˜G(s).

The quantity k(s) determines K(s, u) in accordance with (17.7.5)1 and therefore
the corresponding D(t) and ψ(t). We return to this case in Sect. 17.7.2,
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Two further special cases will be considered, that where

Ai j = 1 or Ai j = δi j, i, j = 1, 2, . . . ,m, (17.7.8)

where δi j is the standard Kronecker delta notation. For (17.7.8)1, relation (17.7.2)
becomes

D(t) =
1
2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

m
∑

i=1

∫ ∞

0
ki(s)Ė

t(s)ds

⎤

⎥

⎥

⎥

⎥

⎥

⎦

2

, (17.7.9)

which is clearly nonnegative. It follows from (17.7.3) that the corresponding free
energy has the form

ψ(t) = φ(t) +
1
2

∫ ∞

0

∫ ∞

0

∫ ∞

0
Ėt(s)

m
∑

i, j=1

ki(z + s)k j(z + u)dzĖ
t(u)dsdu. (17.7.10)

For example, consider the results of Sect. 16.9.1. Referring to (16.9.9), we see that,
for Df (t), the quantity ki(s) in (17.7.9) is given by

ki(s) =

√
2h∞R

f
i e
−αi s

αi
, i = 1, 2, . . . , n,

where m = n, so that (17.7.10) gives (16.9.7).
For (17.7.8)2, we obtain

K(s, u) = −
m

∑

i=1

ki(s)ki(u). (17.7.11)

The rate of dissipation has the form

D(t) =
1
2

m
∑

i=1

[∫ ∞

0
ki(s)Ė

t(s)ds

]2

≥ 0. (17.7.12)

It follows from (17.7.3) that

ψ(t) = φ(t) +
1
2

∫ ∞

0

∫ ∞

0

∫ ∞

0
Ėt(s)

m
∑

i=1

ki (z + s)) ki (z + u)) dzĖ
t(u)dsdu. (17.7.13)

Also, from (17.7.4),

˜G(s) =
∫ ∞

0

m
∑

i=1

ki(z)ki(z + s)dz. (17.7.14)

Putting
ki(s) =

√

2αiGie
−αi s

in (17.7.12) gives (17.4.20)2 while (17.7.13) yields (17.4.20)1, relating to the Dill
free energy.
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17.7.1.1 New Category of Free Energies: Time Domain

We now sketch a systematic approach to the construction of a new family of free
energies. This can be developed only in general terms for the time domain repre-
sentation. The frequency representation is considered in Sect. 17.7.2.1 below, and it
emerges that one can give explicit formulae for the new free energies in that formal-
ism.

Remark 17.7.1. Let us assume that ˜G(s) can be decomposed into m components
˜Gi(s), i = 1, 2, . . . ,m, so that

˜G(s) =
m

∑

i=1

˜Gi(s), (17.7.15)

where each ˜Gi(s) is the relaxation function of a well-defined material, obeying the
laws of thermodynamics, in particular (16.1.12). The term sub-material will be used
in reference to each of these. The strain function is assumed to be the same in each
sub-material.

For example, in the case of discrete-spectrum materials, ˜G(s) is given by (11.9.1).
We could take ˜Gi(ω) to be any partial sum of the terms in that expression, e.g.,

˜Gi(s) =
mi
∑

k=ni

Gke
−αk s, n ≥ mi > ni ≥ 1. (17.7.16)

The choice of terms in this relation need not reflect our original order.
We put

˜Gi(s) =
∫ ∞

0
ki(z)ki(z + s)dz, i = 1, 2, . . .m, (17.7.17)

yielding a relation of the form (17.7.14). For each i, (17.7.17) can be regarded as
a nonlinear integral equation for ki(s) in terms of the known quantity ˜Gi(s). These
equations can be solved in the same way as (17.7.7) (see Sect. 17.7.2.1 below). The
solutions yield the form of K(s, u) as given by (17.7.11), and therefore allow us to
determine D(t) and ψ(t).

17.7.2 The Frequency Domain

Referring to (17.5.1) and (17.7.1), we have

K+−(ω1, ω2) = −
m

∑

i, j=1

Ai jki+(ω1)k j−(ω2) = −
m

∑

i, j=1

Ai jki−(ω1)k j−(ω2), (17.7.18)

where

ki−(ω) =
∫ ∞

0
ki(s)e

iωsds, ki+(ω) = ki−(ω). (17.7.19)

Condition (17.5.18)1 gives that
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m
∑

i, j=1

Ai jki−(ω)k j−(ω) = 2
H(ω)

ω2
. (17.7.20)

In the case where m = 1, we have

K+−(ω1, ω2) = −k+(ω1)k−(ω2) (17.7.21)

and relation (17.7.20) becomes

k+(ω)k−(ω) = |k−(ω)|2 = 2
H(ω)

ω2
. (17.7.22)

We solve (17.7.7) at this point and show that it is equivalent to (17.7.22). Substituting
the inverse transforms of (17.7.19) into (17.7.7) and carrying out two time domain
integrations yields

˜G+(ω) = − 1

4π2

∫ ∞

−∞

∫ ∞

−∞
k−(ω1)k+(ω2)

(ω−1 − ω+2 )(ω− − ω+2 )
dω1dω2

= − 1
2πi

∫ ∞

−∞
k+(ω′)k−(ω′)
ω′ − ω− dω′.

(17.7.23)

The choiceω+2 in the first form is dictated by the need for the time domain integrals to
converge. The final form is obtained by integrating ω1 over Ω(+). Taking the complex
conjugate of (17.7.23)2 and applying the Plemelj formulae give

˜G+(ω) + ˜G+(ω) = 2˜Gc(ω) = 2
H(ω)

ω2
= k+(ω)k−(ω) = |k−(ω)|2, (17.7.24)

which agrees with (17.7.22).
Relation (17.7.22) or (17.7.24) is of course the factorization problem for H(ω).

The solution is given either by the factors (16.1.14), which yield the minimum free
energy for all materials, or those given by (16.4.1) for materials with only isolated
singularities. Thus, for some materials, the solution of (17.7.22) is non-unique. We
put

k−(ω) =
√
2
H f
−(ω)
ω
. (17.7.25)

It follows from (17.7.21) that

K+−(ω1, ω2) = −2H
f
+(ω1)H

f
−(ω2)

ω1ω2
. (17.7.26)

Equation (17.7.26) yields the rate of dissipation Df (t) given by (16.4.17) and ψ f (t)
of the form (16.4.15), both expressed in terms of Ėt

+ with the aid of (16.1.17).
We now assume that A is the unit matrix so that

K+−(ω1, ω2) = −
m

∑

i=1

ki−(ω1)ki−(ω2). (17.7.27)



17.7 Product Formulae in the Time and Frequency Domains 419

Relations (17.5.7)2 and (17.5.13) give

D(t) =
1

8π2

m
∑

i=1

|
∫ ∞

−∞
ki−(ω)Ėt

+(ω)|2dω,

ψ(t) = φ(t) +
i

8π2

∫ ∞

−∞

∫ ∞

−∞

Ėt
+(ω1)

∑m
i=1 ki−(ω1)ki−(ω2)Ėt

+(ω2)

ω+1 − ω−2
dω1dω2.

Condition (17.5.18)1 gives that

m
∑

i=1

ki−(ω)ki−(ω) =
m

∑

i=1

|ki−(ω)|2 = 2
H(ω)

ω2
. (17.7.28)

An immediate example of (17.7.27) satisfying (17.7.28) is obtained by taking m = N
and

ki−(ω) = k f−(ω) =
√

2λ f H
f
−(ω)
ω

, (17.7.29)

giving

K+−(ω1, ω2) = −2
N

∑

f=1

λ f
H f
+(ω1)H

f
−(ω2)

ω1ω2
.

Other solutions of (17.7.28) may of course exist.

17.7.2.1 New Category of Free Energies: Frequency Domain

The developments in this section are the frequency domain version of those in
Sect. 17.7.1.1. Here, we use (17.7.27) and (17.7.28) to determine a family of free
energies, corresponding to (17.7.11) and (17.7.14) in Sect. 17.7.1.1.

It follows from Remark 17.7.1 that the quantity H(ω) can be decomposed into m
components Hi(ω), i = 1, 2, . . . ,m, corresponding to (17.7.15) so that

H(ω) =
m

∑

i=1

Hi(ω), (17.7.30)

where each Hi(ω) is related to ˜Gi(s) in accordance with (16.1.13) and in particular is
nonnegative for ω ∈ R. It is the quantity H(ω) for the sub-material with relaxation
function ˜Gi(s).

For example, in the case of discrete-spectrum materials, H(ω) is given by
(11.9.2). We could take Hi(ω) to be any partial sum of the terms in that expression,
e.g.,

Hi(ω) = ω
2

mi
∑

k=ni

αkGk

α2k + ω
2
, n ≥ mi > ni ≥ 1,

corresponding to (17.7.16).
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In general, each Hi(ω) can be factorized as in (16.1.14) or, for a material with
only isolated singularities, (16.2.9). Thus, we write

Hi(ω) = H f
i+(ω)H

f
i−(ω), H f

i±(ω) = H f
i∓(−ω) = H f

i∓(ω).

For materials with only isolated singularities, the factorization indicated by the su-
perscript f will vary with the subscript i.

Starting from (17.7.17) and applying the procedure leading to (17.7.24) and
(17.7.25) for each i, we obtain (17.7.28) by virtue of (17.7.30). Relation (17.7.25)
for each i and (17.7.30) can be written as

ki−(ω) =
√
2
H f

i−(ω)
ω
,

m
∑

i=1

ki−(ω)ki−(ω) = 2
m

∑

i=1

H f
i+(ω)H

f
i−(ω)

ω2
= 2

H(ω)

ω2
,

for the range of possible choices of f corresponding to each i, where H f
i±(ω) are a

particular pair of factors of Hi(ω). Thus, we have

K+−(ω1, ω2) = −2
m

∑

i=1

H f
i+(ω1)H

f
i−(ω2)

ω1ω2
. (17.7.31)

The superscript f will now be dropped to simplify notation.
If (17.7.31)1 is inserted into (17.5.7) expressed in terms of Et

r+(ω) by means of
(16.1.17), we obtain

D(t) =
m

∑

i=1

|Ki(t)|2,

Ki(t) =
1
2π

∫ ∞

−∞
Hi−(ω)Et

r+(ω)dω.

(17.7.32)

These relations are analogous to (16.4.12) and (16.4.6) with Hi−(ω) playing the role
of H f

−(ω). Substituting (17.7.31)1 into (17.5.13)2 gives a sum of terms identical to
(16.4.15) but with Hi± replacing H f

±. Substituting (17.7.31)1 into (17.5.17)2 yields a
sum of terms of the form (16.4.16) with Hi± rather than H f

±. Again, each term can
be put in the form (16.4.11) with the above replacements. The free energy and total
dissipation can therefore be written as

ψ(t) = φ(t) +
1
2π

m
∑

i=1

∫ ∞

−∞
|pti−(ω)|2dω, D(t) =

m
∑

i=1

∫ ∞

−∞
|pti+(ω)|2dω,

where

pti−(ω) =
1
2πi

∫ ∞

−∞
Hi−(ω′)Et

r+(ω
′)

ω′ − ω+ dω′,

pti+(ω) =
1
2πi

∫ ∞

−∞
Hi−(ω′)Et

r+(ω
′)

ω′ − ω− dω′.
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These new free energies clearly obey (16.1.26). The rate of dissipation is nonneg-
ative, by virtue of (17.7.32). Also, we can demonstrate that (16.1.25) holds by an
argument analogous to that in Proposition 11.2.2.

The ordering of these free energy functionals is discussed in some detail in [162].

17.8 Approximation of a Discrete-Spectrum Material by a Day
Functional

This and the following section of the present chapter deal with topics that are not
closely related to those in earlier sections.

For materials with relaxation function containing one decaying exponential, the
associated Day functional is the physical free energy. For general discrete-spectrum
materials, we seek a best fit of the relaxation function with one decaying exponential
to that for the general case.

For the case n = 1, the relations (16.3.13) and (16.3.15) reduce to the formulae
for the Day free energy and rate of dissipation (see (10.2.15), (16.9.10) and [87]). A
relaxation function with only one decaying exponential, has the form (see (10.2.15),
(16.9.10), and (16.9.11))

GD(t) = G∞ +Gde
−αt, Gd = G0 −G∞. (17.8.1)

This behavior has, in some contexts, been referred to as the standard linear model
[167]. The complex modulus, defined by (16.1.9)2, is given by

M+(ω) = G∞ + iω
n

∑

i=1

Gi

αi + iω
,

so that for n = 1

M+(ω) =
(α + iω)G∞ + iωGd

α + iω
. (17.8.2)

By virtue of (16.3.14) and (16.3.15)4, we must have

C11 = Gd, Γ11 = 2αGd.

The Day free energy functional is given by

ψD(t) = φ(t) +
Gd

2
e21(t), (17.8.3)

in terms of e1(t) defined by (16.3.12). The corresponding rate of dissipation is

DD(t) = αGde
2
1(t).

From (17.6.15) and (17.8.2), we can determine MW and NW for this case. In particu-
lar,
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NW = G∞ +Gd
(ω2

0 + η
2)(α + η)

η[(α + η)2 + ω2
0]
.

The kernels (17.4.14) reduce to

˜G(s, u) = Gde
−α(s + u), K(s, u) = −2αGde

−α(s + u), (17.8.4)

and (17.5.21) becomes

˜G+−(ω1, ω2) =
Gd

(α + iω1)(α − iω2)
,

K+−(ω1, ω2) = − 2αGd

(α + iω1)(α − iω2)
,

which yield explicit functions for MD and ND, given by (17.6.21). Thus, we obtain
that

MD =
iGd

2
(w0 − iη)α

(α + η + iω0)2
, ND = Gd

α(ω2
0 + η

2)

η[(α + η)2 + ω2
0]
.

Relations (16.9.9) and (16.9.7) are particular cases of the general formulae (16.3.13)
and (16.3.15), and must have the same limit for n = 1. This can be seen by noting
that

H∞ = −G′(0) = αGd,

and
R1
1 = −α,

which follows from the generalization of (11.9.7) to Rf
i , for n = 1.

The fundamental point made in this chapter is that a material with memory is
completely characterized by choosing K(s, u) rather than the relaxation function.
However, for the n = 1 case, specifying the relaxation function parameters fixes
uniquely the kernel K(s, u) and therefore determines the material completely. Thus,
the set K for n = 1 is a singleton given by (17.8.4)2, and there is only one mate-
rial with the constitutive relation generated by the relaxation function (17.8.1), with
parameters as specified.

Remark 17.8.1. If a material behavior can be adequately simulated by one decay
constant α, together with coefficients G∞ and Gd, then ψD(t), given by (17.8.3), is
the physical free energy for that material.

We now seek the Day relaxation function which is closest to the actual relaxation
function for the materials in K.

The αi, i = 1, 2, . . . , n, in (11.9.1) are given by (16.11.4), while the Gi, i =
1, 2, . . . , n, are determined by the assumption that theGi are all equal [18]. We choose
G0,G∞ and α such that the resulting n = 1 relaxation function approximates (11.9.1)
as closely as possible.

We choose G0 and G∞ to be the same for the materials with relaxation function
given by (11.9.1) and (17.8.1), respectively.
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Choosing the optimal value of α is somewhat more difficult. Consider

f (α) =
1

G2
d

∫ ∞

0
[GD(s) −G(s)]2 ds

=
1

G2
d

∫ ∞

0

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Gde
−αs −

n
∑

i=1

Gie
−αi s

⎤

⎥

⎥

⎥

⎥

⎥

⎦

2

ds,

(17.8.5)

which is a L2(R+) norm of the difference between the relaxation functions for the
Day case and that in (11.9.1) . Then, we put

fm = min
α>0

f (α), (17.8.6)

and this minimum is achieved at αd, so that

f (αd) = fm ≤ f (α) ∀α ∈ R+. (17.8.7)

The quantity αd is the inverse time decay constant that will be used in the Day free
energy and dissipation. The function f (α), given by (17.8.5), can be explicitly calcu-
lated. Let us replace α by α0. Then

f (α0) =
n

∑

i, j=0

cic j
αi + α j

, α0 ∈ (0, 1],

ci =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, i = 0,

−Gi
Gd
, i = 1, 2, . . . , n.

(17.8.8)

This can be written in the form

f (α0) =
1
2α0
+ 2

n
∑

i=1

ci
α0 + α j

+

n
∑

i, j=1

cic j
αi + α j

, (17.8.9)

so that

f ′(α0) = − 1

2α20
− 2

n
∑

i=1

ci
(α0 + α j)2

.

Thus, the α0 satisfying (17.8.7) is the solution of the equation

1 + 4
n

∑

i=1

ciα20
(α0 + α j)2

= 0. (17.8.10)

The solution gives a minimum value of f (α) if f ′′(α0) > 0. This quantity α0 is equal
to αd.

It makes little difference what value of n is adopted. We choose n = 5 as
an example. The numerical values of αr, r = 1, 2, 3, 4, 5, given by (16.11.4), are
0.0718, 0.2679, 0.5359, 0.8038 and 1.0.
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The appropriate Day relaxation function is determined by (17.8.5) - (17.8.7)
where f (α) has the form (17.8.9). Since the Gi are all equal, (17.8.8)2 becomes

ci =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, i = 0,

−1n , i = 1, 2, . . . , n,

with the aid of (16.11.6) and (17.8.1)2. We look for a solution to (17.8.10) where
α0 ∈ (0, 1]. This is equal to 0.3225 [18], with optimum choice f (αd) = fm = 0.0968.

Thus, an approximate form of the physical free energy for all the materials asso-
ciated with the relaxation function ˜G(s) of the form (11.9.1), with parameter values
as stated, is given by (17.8.3) with α1 = αd. There are in general many such materials
so the approximation is probably not very accurate in most cases.

17.9 Single-Integral Free Energies in Terms of It Derivatives

Single-integral free energy functionals that are expressible as quadratic forms of the
state functional It (see (16.5.1)) are considered in this section. The discussion is
based on [163].

This form is shown to include the functional ψF . There is also, however, a further
category of functionals of this kind for materials with non-singleton minimal states.
These latter functionals are difficult to construct, since basic inequalities relating to
thermodynamics must be explicitly imposed; they are therefore not so useful for
practical applications, in contrast to ψF .

The following notation will be useful:

Itk(τ) =
dk

dτk
It(τ), k = 1, 2, . . . . (17.9.1)

Then,

It1(τ) =
∫ ∞

0
G′(τ + u)Ėt(u)du, It2(τ) =

∫ ∞

0
G′′(τ + u)Ėt(u)du. (17.9.2)

Also,

∂

∂t
It1(s) = G′(s)Ė(t) + It2(s),

∂

∂t
It2(s) = G′′(s)Ė(t) + It3(s). (17.9.3)

Just as in (16.5.2), we have

lim
τ→∞ I

t
k(τ) = 0, k = 1, 2, 3, . . . . (17.9.4)

Consider the functional

ψ(t) = φ(t) +
1
2

∫ ∞

0
L(τ)[It1(τ)]

2dτ. (17.9.5)
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This quantity is assumed to be a free energy. We now explore the constraints on L(τ)
imposed by this requirement.

The relation (16.1.28) must hold. Using (16.1.31), (17.9.3)1, and (17.9.4), we
deduce that

ψ̇(t) = Ė(t)

[

Te(t) +
∫ ∞

0
G′(τ)L(τ)It1(τ)dτ

]

+

∫ ∞

0
It2(τ)L(τ)I

t
1(τ)dτ

= T (t)Ė(t) − 1
2
L(0)[It1(0)]

2 − 1
2

∫ ∞

0
L′(τ)[It1(τ)]

2dτ,

provided that the condition
∫ ∞

0
G′(τ)L(τ)It1(τ)dτ = T (t) − Te(t)

holds. With the help of (16.1.3), (16.5.3), and (17.9.2)1, this can be written as
∫ ∞

0
[G′(τ)L(τ) + 1]It1(τ)dτ

=

∫ ∞

0

∫ ∞

0
[G′(τ)L(τ) + 1]G′(τ + u)Ėt(u)dτdu = 0,

which must be true for arbitrary histories. Let us write the resulting condition as an
integral equation of the form

∫ ∞

0
G′(τ + u) f (τ)dτ = 0 ∀u ∈ R+, f (τ) = G′(τ)L(τ) + 1. (17.9.6)

An alternative pathway to (17.9.6) is to express (17.9.5) in the form (17.3.5) with

˜G(s, u) =
∫ ∞

0
G′(τ + s)L(τ)G′(τ + u)dτ,

and to impose the constraint (17.3.9), written in terms of ˜G(u). Condition (17.9.6)
has the same form as (16.5.4), leading to

2i
ω
H(ω) f+(ω) = J+(ω),

where J+(ω) is an unknown function, analytic in Ω(−). This corresponds to (16.5.7).
If the material has only isolated singularities, there are many nontrivial solutions

of (17.9.6) given by a form similar to (16.5.15), as shown in [163].
If the material has branch cut singularities, then f (τ) = 0, τ ∈ R

+ is the only
solution of (17.9.6), so that

L(τ) = − 1
G′(τ)

, τ ∈ R+,
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and the only possibility for a free energy given by a single-integral quadratic form
is the quantity ψF (see Sect. 10.1.3). In the scalar theory, this functional and the
associated rate of dissipation have the forms

ψF(t) = φ(t) − 1
2

∫ ∞

0

[It1(τ)]
2

G′(τ)
dτ, (17.9.7)

and

DF(t) = −12
[It1(0)]

2

G′(0)
− 1
2

∫ ∞

0

[

d
dτ

1
G′(τ)

]

[It1(τ)]
2dτ

= −1
2

[It1(0)]
2

G′(0)
+
1
2

∫ ∞

0
G′′(τ)

[

It1(τ)

G′(τ)

]2

dτ.

These quantities are nonnegative and ψF(t) is a valid free energy if conditions
(17.3.4) hold, not only for materials with branch point singularities, but for all mate-
rials. It is a relatively simple functional, convenient for applications.

The case of double integral quadratic forms is studied in depth in [163]. It is
shown that the only such form that is a free energy is that for the minimum free
energy discussed in Sect. 12.2.
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