
11

The Minimum Free Energy

Breuer and Onat [42] considered the following question: what is the maximum
amount of work recoverable from a body that has undergone a specified strain his-
tory? They found that the answer for linear viscoelastic memory materials is provided
by the solution of an integral equation of Wiener–Hopf type, which is in fact a spe-
cial case of the result given in Sect. 5.2. They gave a detailed solution by elementary
means for a material with relaxation function in the form of a finite sum of decay-
ing exponentials. The nonuniqueness problem was also explicitly exposed by these
authors [43].

Day [84] presented an alternative formulation of the thermodynamics of materi-
als with memory. In [85], he revisited the problem considered in [42] within a more
rigorous framework, introducing the concept of a (time) reversible extension and dis-
cussing the maximum recoverable work in terms of this concept. An expression for
the minimum free energy of a standard linear solid (linear viscoelastic solid with a
relaxation function that has only one decaying exponential) was given in [87].

A general expression for the minimum free energy of a linear viscoelastic solid
under isothermal conditions was given in [158]. This was for a scalar constitutive
relation. A generalization to the full tensor case was presented in [92]. These results
were used in the context of the viscoelastic Saint-Venant problem in [93]. Detailed
explicit expressions for the minimum free energy and related quantities were given
in [92, 158] for discrete-spectrum materials, namely those for which the relaxation
function is a sum of exponentials. The minimum free energies of compressible and
incompressible viscoelastic fluids were determined in [5, 8, 100], while materials
with finite memory were considered in [111]. The maximum recoverable work or
equivalently the minimum free energy for rigid heat conductors was considered in
[6, 21, 22].

We now derive a general expression for the minimum free energy and the asso-
ciated rate of dissipation for a material described by the linear memory model. The
results discussed above are special cases of this, with the exception of the approxi-
mate treatment of rigid heat conductors based on (9.1.9), which corresponds to the
results of Sect. 8.6.1, as noted in Sect. 9.3.3.

© Springer Nature Switzerland AG 2021
G. Amendola et al., Thermodynamics of Materials with Memory,
https://doi.org/10.1007/978-3-030-80534-0 11

255

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80534-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-80534-0_11
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11.1 Factorization of Positive Definite Tensors

It will be required to factorize the quantityH, given by (7.2.22), in order to determine
an expression for the minimum and other free energies. This was first discussed in
[158] for the scalar case, where an appropriate factorization of the one-dimensional
counterpart of H(ω) was introduced. Such a particular factorization does not apply
to fourth-order tensors, so that the extension of the result of [158] to the general case,
which was given in [92], is not trivial.

In this section, we show that H can always be factorized. Use will be made of a
result by Gohberg and Kreı̆n [156] for tensor-valued functions. Given a nonsingular
continuous tensor-valued function K(ω) ∈ Lin(Γ(Ω)), ω ∈ R (K not connected with
the quantity in (7.1.1)), we say that K has a left [right] factorization if it can be
represented in the form

K(ω) = K(+)(ω)K(−)(ω), [K(ω) = K(−)(ω)K(+)(ω)], (11.1.1)

where the tensor functions K(±) admit analytic continuations, analytic in the interior
and continuous up to the boundary of the corresponding complex half-planes Ω±,
and are such that

detK(±)(ζ) � 0, ζ ∈ Ω±.
We say that K belongs to Fm×m,F

+
m×m, and F−m×m, respectively, if there exists a con-

stant tensor C0 and a tensor function F(t) such that

K(ω) = C0 +

∫ ∞
−∞

F(t)e−iωt dt,

K(ω) = C0 +

∫ ∞
0

F(t)e−iωt dt, K(ω) = C0 +

∫ 0

−∞
F(t)e−iωt dt.

(11.1.2)

Note that if K ∈ F±m×m, it has the analytic properties ascribed to K(±) above. The
main result we use is Theorem 8.2 of [156], which can be stated in our context as
follows:

Theorem 11.1.1. (Gohberg–Kreı̆n) In order that the nonsingular Hermitian tensor
function K ∈ Fm×m possesses a representation of the form

K(ω) = K(+)(ω)K
∗
(+)(ω), (11.1.3)

in which the tensor function K(+) is in F+m×m and satisfies detK(+)(ζ) � 0 for ζ ∈ Ω+,
it is necessary and sufficient that K(ω) be positive definite for every ω ∈ R.

Observe that comparison of (11.1.3) with (11.1.1)1 yields

K(−)(ω) = K∗(+)(ω).

It follows from the assumption (7.2.20) that

lim
ω→0

H(ω)
ω2

= H0, (11.1.4)
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where H0 is symmetric and positive definite. Consider now the tensor

K(ω) :=
ω2
0 + ω

2

ω2
H(ω), (11.1.5)

where ω0 � 0 is some given frequency. The tensorK(ω) is symmetric, real (therefore
Hermitian), and positive definite ∀ω ∈ R; moreover, it is such that

lim
ω→0

K(ω) = ω2
0H0, lim

ω→∞K(ω) = H∞.

In order to apply Theorem 11.1.1, we have to show that K ∈ Fm×m, i.e., that the
representation (11.1.2) applies.

Proposition 11.1.2. If L and L′′ are tensor functions, integrable on [0,∞), and L′0
is finite, the tensor-valued function K, related to L through (7.2.22) and (11.1.5),
belongs to Fm×m.

Proof. Observe that from (7.2.22),

K(ω) = −
⎡⎢⎢⎢⎢⎣ωL′s(ω) + ω

2
0

ω
L′s(ω)

⎤⎥⎥⎥⎥⎦ . (11.1.6)

Integration by parts of the integral in (7.2.1) and of a corresponding integral for
L′′+(ω) in terms of L′′(s) yields

− 1
ω
L′s(ω) = Lc(ω), ωL′s(ω) = L′(0) + L′′c (ω),

so that (11.1.6) becomes

K(ω) =
[
−L′(0) − L′′c (ω) + ω2

0Lc(ω)
]
. (11.1.7)

Consider now the tensors

C0 = −L′(0), F(t) =
1
2

[
−L′′(t) + ω2

0L(t)
]
, t ∈ R, (11.1.8)

where L and L′′ are extended on the real line as even functions, so that from (C.1.5),
LF = 2Lc andL′′F = 2L′′c . Then, in view of (11.1.8), (11.1.7) is equivalent to (11.1.2)1
and the assertion is proved. �	

Since K(ω) is Hermitian and positive definite for every ω ∈ R, it satisfies Theo-
rem 11.1.1. In particular, it has a representation of the form (left factorization)

K(ω) = K(+)(ω)K
∗
(+)(ω), (11.1.9)

withK(+)(ω) ∈ F+m×m and

detK(+)(ζ) � 0 for ζ ∈ Ω+.



258 11 The Minimum Free Energy

Moreover, such a factorization is unique up to a multiplication on the right of K(+)

by a constant unitary tensor.
Similarly, K has a right factorization of the type

K(ω) = K(−)(ω)K∗(−)(ω) (11.1.10)

with corresponding properties. In fact, since K(ω) is an even function of ω, we can
replace ω by −ω on the right of (11.1.9). Now, K(+)(−ω) ∈ F−m×m with nonzero
determinant in Ω(−), so that K(−)(ω) = K(+)(−ω).

By virtue of (11.1.5) and (11.1.10), H(ω) can be factorized as follows:

H(ω) = H+(ω)H−(ω), (11.1.11)

where

H+(ω) =
ω

ω − iω0
K(−)(ω), H−(ω) =

ω

ω + iω0
K∗(−)(ω). (11.1.12)

Alternatively, the left factorization (11.1.9) may be used, though the right factoriza-
tion is more convenient in the present context. Representation (11.1.12) gives that

H±(ω) = H∗∓(ω). (11.1.13)

We have introduced in the present work an assumption that is stronger than those
required in Theorem 11.1.1, namely that H is analytic in an open set including the
real axis R. Since H+ has the singularities of H in Ω(+), then H± will share this
property.

In general,H+ andH− do not commute, and various general results can be proved
without assuming that they do. However, in order to derive explicit forms for vari-
ous free energies, we must make an assumption that implies commutativity or, put
another way, that H± are normal tensors. This arises out of an assumption made in
Sect. 11.6.

The notation forH+(ω) andH−(ω) follows the convention used in [158], i.e., the
sign indicates the half-plane in which the singularities of the tensor lie. These factors
also have the property that any zeros in their determinant occur also in the indicated
half-plane. This latter property will not apply when factorizations leading to free
energies other than the minimum are discussed. We adopt, however, the convention
that f± has all its singularities in Ω±, respectively. This is in particular the convention
adopted in Appendix C for Fourier-transformed quantities.

Recalling (11.1.4), we see that H± each vanish linearly at the origin.
Note that we require (7.1.18) to ensure that H, and therefore K, is symmetric

(i.e., Hermitian for real tensors).
The quantity H∞, defined by (7.2.24), is given by

H∞ = H+(∞)H−(∞) = H+∞H−∞. (11.1.14)

IfH±∞ can be chosen to be Hermitian, which is possible at least in the commutative
case considered in Sect. 11.6, then they are both equal to the square root of the
nonnegative tensor H∞.
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11.1.1 The Scalar Case

We can derive explicit forms for the factors if H is a scalar function. It is real and
nonnegative on R, vanishing quadratically at the origin. It is an even function of ω
and therefore a function of ω2, in view of its analyticity about the origin. Its singu-
larities are as ascribed toH (and L′s before (7.2.22)).

We define the function

K(ω) = log[H(ω)T (ω)], T (ω) =
ω2 + ω2

0

H∞ω2
,

where ω0 may be chosen arbitrarily on R. Then, K is a well-defined analytic function
on R, vanishing like ω−2 for large values of ω. Consider the quantity

M(z) =
1
2πi

∫ ∞
−∞

K(ω)
ω − z

dω, z ∈ Ω\R,

which goes to zero like z−1 at large z (see (B.2.13)). For z ∈ Ω(+), M(z) = M−(z) is a
function analytic in Ω(+), while for z ∈ Ω(−), M(z) = M+(z), which is analytic in Ω(−)
(Sect. B.2.1). The Plemelj formulas (B.2.14) take the form

M−(ω) =
1
2

K(ω) +
1
2πi

P
∫ ∞
−∞

K(ω′)
ω′ − ωdω′,

M+(ω) = −12K(ω) +
1
2πi

P
∫ ∞
−∞

K(ω′)
ω′ − ωdω′,

giving that
M−(ω) − M+(ω) = K(ω), ω ∈ R,

where M+(ω) (M−(ω)) are the limiting values of M+(z) (M−(z)) as z approaches the
real axis from below (above). Then, if we put

H+(ω) =
ωh∞
ω − iω0

e−M+(ω),

H−(ω) =
ωh∞
ω + iω0

e+M−(ω), h∞ = H1/2
∞ ,

(11.1.15)

it follows that H+(z) is analytic and free of zeros in Ω(−); similarly for H−(z) in Ω(+).
Also,

H+(ω)H−(ω) = H(ω). (11.1.16)

Noting that M±(ω) = M±(−ω) = −M∓(ω), we see that

H±(ω) = H∓(−ω) = H∓(ω),

H(ω) = |H±(ω)|2, ω ∈ R.
(11.1.17)

According to the general result on the uniqueness of the factorization, noted above,
a scalar factorization should be unique up to multiplication by a phase factor eiα,
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where α is a constant. Relation (11.1.17)2 reduces this arbitrariness to multiplication
by a factor ±1.

It follows from (11.1.15) that

H±(∞) = h∞ = H1/2
∞ , (11.1.18)

so that H±(∞) are real and equal.

11.2 Derivation of the Form of the Minimum Free Energy

We shall be seeking to find the continuation Λt(u), u ∈ R
−−, that maximizes the

recoverable work (Theorem 4.2.3). For this purpose, our attention will be confined
to the family of continuations that vanish at large u, since it can be shown [92, 145]
that the maximum recoverable work obtained by searching in this set is equal to that
obtained by a wider search in the general set of bounded recoverable works.

The set of continuations for which

W(∞) =
∫ ∞
−∞
Σ(u) · Λ̇(u)du (11.2.1)

exists and Λ(∞) vanishes, we label C0. Using (7.5.5), we can write (11.2.1) as

W(∞) = 1
2

∫ ∞
−∞

∫ ∞
−∞

L12(|s − u|)Λ(u) · Λ(s)duds

=
1
2

∫ ∞
−∞

∫ ∞
−∞

L12(|s − u|)Λt(u) · Λt(s)duds,
(11.2.2)

where the latter form is obtained by changes of integration variables. The superscript
t is now an arbitrary parameter, which we interpret again as the current time. Apply-
ing the convolution theorem and Parseval’s formula to (7.5.5) for t = ∞, we obtain,
as in Sect. 7.5,

W(∞) = 1
2π

∫ ∞
−∞
Λt

F(ω) ·H(ω)Λt
F(ω)dω

=
1
2π

∫ ∞
−∞
Λt

rF(ω) ·H(ω)Λt
rF(ω)dω (11.2.3)

=
1
2π

∫ ∞
−∞

[
Λt

r+(ω) + Λ
t
r−(ω)

]
·H(ω)

[
Λt

r+(ω) + Λ
t
r−(ω)

]
dω

by virtue of (C.1.4). We have used the notation of Sect. 7.2.3. Relations (11.2.3)1 and
(11.2.3)2 are equal by virtue of (7.2.31), (C.2.19), and the fact that H(ω) vanishes
for ω = 0. For continuations in C0, the recoverable work from the state at time t (see
(5.2.3)) is given by

WR(t) = −
∫ ∞

t
Σ(u) · Λ̇(u)du = W(t) −W(∞). (11.2.4)
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To obtain the minimum free energy, we seek to maximize WR(t). Since W(t) is a
given quantity, this is equivalent to minimizing W(∞).

We now give three derivations of the form of the minimum free energy. The
first uses a variational technique developed in [92, 158]. Also, a quite different and
simplified version of this approach is presented. The third approach is based on the
solution of (5.2.8) in the linear memory case, where it reduces to a linear Wiener–
Hopf equation.

11.2.1 A Variational Approach

Let Λt
o be the optimal future continuation (so that Λ̇o is the optimal process) and

Λt
ro(s) = Λ

t
o(s) − Λ(t), s ∈ R−. (11.2.5)

Let Λt
m denote the Fourier transform of Λt

ro, so that Λ
t
m(ω) = Λ

t
ro−(ω). Put

Λt
r−(ω) = Λ

t
m(ω) + k−(ω), (11.2.6)

where k−(ω) is arbitrary apart from the fact that it must have the same analytic prop-
erties as Λt

r−(ω), i.e., k−(z) must be analytic in Ω+, and vanish like z−1 at large z.
Then, varying k−, we find that W(∞) will be minimized by Λt

m if
∫ ∞
−∞

Re
{
H(ω)

[
Λt

r+(ω) + Λ
t
m(ω)
]
· k−(ω)

}
dω = 0.

The restriction to the real part of the integral may be removed, since the imaginary
part vanishes by virtue of the symmetric range of integration and (C.1.7). Using the
factorization (11.1.11), we can rewrite this condition in the form

∫ ∞
−∞

H(ω)
[
Λt

r+(ω) + Λ
t
m(ω)
]
· k−(ω)dω

=

∫ ∞
−∞

H+(ω)
[
H−(ω)Λt

r+(ω) +H−(ω)Λ
t
m(ω)
]
· k−(ω)dω = 0.

(11.2.7)

Consider now the quantity H−(ω)Λt
r+(ω), the components of which are continuous,

indeed analytic on R, by virtue of the analyticity properties of H−(ω) and Λt
+(ω).

The Plemelj formula (B.2.15)2 gives that

Pt(ω) = H−(ω)Λt
r+(ω) = pt

−(ω) − pt
+(ω), (11.2.8)

where

pt(z) =
1
2πi

∫ ∞
−∞

Pt(ω′)
ω′ − z

dω′, pt
±(ω) := lim

α→0∓
pt(ω + iα). (11.2.9)

Moreover, pt(z) = pt
+(z) is analytic for z ∈ Ω(−), and pt(z) = pt−(z) is analytic for

z ∈ Ω(+). Both are analytic on the real axis by virtue of the argument leading up to
Remark B.2.2. We write them in the form



262 11 The Minimum Free Energy

pt
±(ω) =

1
2πi

∫ ∞
−∞

Pt(ω′)
ω′ − ω∓ dω′, (11.2.10)

where the notation ω± of (C.2.10) and (C.2.11) has been used. If we can determine
explicit formulas for pt±(ω), ω ∈ R (or ω ∈ Ω(∓)), then they can be analytically
continued into Ω(±), respectively, defined everywhere except at singularities, unless
a blocking branch cut prevents this (Sect. B.1). Examples will be given later. Using
(11.2.8) in (11.2.7), we obtain

∫ ∞
−∞

H+(ω)
[
pt
−(ω) − pt

+(ω) +H−(ω)Λ
t
m(ω)
]
· k−(ω)dω = 0. (11.2.11)

Note that the integral ∫ ∞
−∞

H+(ω)pt
+(ω) · k−(ω)dω

vanishes identically by virtue of (B.1.14), because the integrand is analytic on Ω(−),
by Remark B.1.2, and vanishes like z−2 at large z. Therefore, (11.2.11) becomes

∫ ∞
−∞

H+(ω)
[
pt
−(ω) +H−(ω)Λ

t
m(ω)
]
· k−(ω)dω = 0. (11.2.12)

This will be true for arbitrary k−(ω) only if the expression in brackets is a function
that is analytic in Ω(−). However, Λt

m(ω) must be analytic in Ω+. Remembering that
pt−(ω) and H−(ω) are also analytic in Ω+, we see that the expression in brackets
must be analytic in both the upper and the lower half-planes and on the real axis.
Thus, it is analytic over the entire complex plane. Now, pt−(ω) clearly vanishes like
ω−1 at infinity, as also must Λt

m(ω) by (C.2.16) if Λt
o is to be nonzero and finite at

s = 0. Therefore, the function in brackets is analytic everywhere, zero at infinity, and
consequently must vanish everywhere by Liouville’s theorem (Sect. B.1.3). Thus,

pt
−(ω) +H−(ω)Λ

t
m(ω) = 0 ∀ω ∈ R, (11.2.13)

whence
Λt

m(ω) = −[H−(ω)]−1 pt
−(ω). (11.2.14)

Using this relation and (11.1.11) in (11.2.3)3, we find that the optimal value of W(∞)
is

Wopt(∞) = 1
2π

∫ ∞
−∞
|pt
+(ω)|2 dω. (11.2.15)

Note that from (11.1.11), (7.5.7)2, and (11.2.8),

W(t) = φ(t) +
1
2π

∫ ∞
−∞
|pt
−(ω) − pt

+(ω)|2 dω

= φ(t) +
1
2π

∫ ∞
−∞

[
|pt
−(ω)|2 + |pt

+(ω)|2
]

dω,
(11.2.16)

since the cross terms vanish by Proposition B.1.3. Thus, from (11.2.4), (11.2.15),
and (11.2.16), we have



11.2 Derivation of the Form of the Minimum Free Energy 263

ψm(t) = φ(t) +
1
2π

∫ ∞
−∞
|pt
−(ω)|2 dω. (11.2.17)

Using (11.2.14), we can write this as

ψm(t) = φ(t) +
1
2π

∫ ∞
−∞
Λt

m(ω) ·H(ω)Λt
m(ω)dω

= φ(t) +
1
2

∫ 0

−∞

∫ 0

−∞
L12(|s − u|)Λt

ro(u) · Λt
ro(s)duds

= φ(t) +
1
2

∫ 0

−∞

∫ 0

−∞
L(|s − u|)Λ̇t

o(u) · Λ̇t
o(s)duds

= φ(t) +
1
2π

∫ ∞
−∞
Λ̇

t
m(ω) ·

H(ω)
ω2
Λ̇

t
m(ω)dω,

(11.2.18)

where Λt
ro is defined by (11.2.5). This last form can be seen to be a special case of

(5.2.11).
From (5.1.13), we have

ψ̇m(t) + Dm(t) = Σ(t) · Λ̇(t), (11.2.19)

where Dm is the rate of dissipation corresponding to the minimum free energy and
must be nonnegative by the second law. Let us assume that the material is undisturbed
in the distant past. Integrating (11.2.19) up to time t gives a special case of (5.1.34):

ψm(t) +Dm(t) = W(t), (11.2.20)

where

Dm(t) =
∫ t

−∞
Dm(s)ds

is the total dissipation up to time t, corresponding to the minimum free energy.
Since ψm is less than or equal to any other free energy, it follows from (11.2.20)
that Dm(t) is the largest estimate of dissipation in the material element. We have,
from (11.2.15)–(11.2.17),

Dm(t) = W(t) − ψm(t) =
1
2π

∫ ∞
−∞
|pt
+(ω)|2 dω = Wopt(∞) ≥ 0. (11.2.21)

Also,
Dm(t) = Ḋm(t).

In order to give an explicit expression for Dm, we note certain properties of pt±. From
(11.2.10) and (7.2.30)2, it follows that

d
dt
pt
+(ω) = −iωpt

+(ω) −K(t),

d
dt
pt
−(ω) = −iωpt

−(ω) −K(t) − H−(ω)Λ̇(t)
iω

, (11.2.22)

K(t) =
1
2π

∫ ∞
−∞

H−(ω)Λt
r+(ω)dω.
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The quantity K is in fact real if (11.6.3) below holds, which is true for commuting
factors. The relation

1
2πi

∫ ∞
−∞

H−(ω′)
iω′−(ω′ − ω+)dω′ =

H−(ω)
iω

(11.2.23)

has been used. This follows by remembering that H−(ω) vanishes linearly at the
origin and by closing the contour on Ω(+), on which half-plane H− is analytic. If
(ω′ − ω−) occurs in the denominator, the integral vanishes. Furthermore,

lim
|ω|→∞

ωpt
±(ω) = iK(t),

1
2π

∫ ∞
−∞

pt
±(ω)dω = ∓

1
2
K(t).

(11.2.24)

The first relation follows from (11.2.10) and the second from (B.1.13) and the first
relation, remembering the analyticity properties of pt±. Differentiating (11.2.21) with
respect to t, we find the explicitly nonnegative form for the rate of dissipation:

Dm(t) = |K(t)|2, (11.2.25)

where K is given by (11.2.22)3.

Remark 11.2.1. The following, simpler, derivation of (11.2.14) and (11.2.15) (yield-
ing (11.2.17)) can be given. Let us write (11.2.3)3 as

W(∞) = 1
2π

∫ ∞
−∞
|pt
−(ω) − pt

+(ω) +H−(ω)Λ
t
r−(ω)|2 dω.

Putting
pt
1−(ω) = pt

−(ω) +H−(ω)Λ
t
r−(ω),

where pt
1− is analytic on Ω

(+), we have

W(∞) = 1
2π

∫ ∞
−∞
|pt

1−(ω) − pt
+(ω)|2 dω =

1
2π

∫ ∞
−∞

[|pt
1−(ω)|2 + |pt

+(ω)|2] dω,

by Proposition B.1.3. Only pt
1− depends on Λ

t
r−, so that the minimum must be given

by the condition
pt
1−(ω) = 0,

which is (11.2.14). Relation (11.2.15) follows immediately.

11.2.2 The Wiener–Hopf Method

The first-order variation of (11.2.2)2 due to Λ
t(u)→ Λt(u) + δΛt(u) has the form

δW(∞) =
∫ ∞
−∞

∫ ∞
−∞

L12(|s − u|)Λt(u) · δΛt(s)duds,
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where the symmetry of L12(|s− u|) has been used. We vary only the future continua-
tion, so that

δΛt(s) = 0, s ∈ R+.
The resulting δW(∞) is put equal to zero, yielding the optimization condition

∫ ∞
−∞
∂2

∂s∂u
L(|s − u|)Λt(u)du = 0, s ∈ R−.

Removing the derivative with respect to s gives a constant on the right-hand side,
which can be shown to be zero by observing that from (7.1.15)2,

lim
s→−∞

∫ ∞
−∞
∂

∂u
L(|s − u|)Λt(u)du = 0.

Thus, we obtain the Wiener–Hopf equation
∫ ∞
−∞
∂

∂u
L(|s − u|)Λt(u)du =

∫ ∞
−∞
∂

∂u
L(|s − u|)Λt

r(u)du

= −
∫ ∞
−∞
∂

∂s
L(|s − u|)Λt

r(u)du = −R(s), R(s) = 0 ∀s ∈ R−.
(11.2.26)

Relation (7.1.15)1 allows Λ
t(u) to be replaced by Λt

r(u). This is an integral equation
for the optimal continuation Λt

ro, defined by (11.2.5).∗ The quantity R on R
+ is for

the moment undetermined. Taking Fourier transforms of (11.2.26) and multiplying
across by ω, we obtain, with the aid of the convolution theorem (C.3.3) together with
(7.2.22) and (7.2.25),

2iH(ω)
[
Λt

r+(ω) + Λ
t
m(ω)
]
= ωR+(ω), (11.2.27)

where Λt
m(ω) is the Fourier transform of Λt

ro on R
− and is the quantity we wish to

determine. It is analytic on Ω(+) and by assumption also on R (Sect. C.2). Similarly,
R+(ω) is analytic on Ω(−) and by assumption also on R.

The factorization (11.1.11) is now used. We multiply (11.2.27) by [2iH+(ω)]−1
to obtain

H−(ω)
[
Λt

r+(ω) + Λ
t
m(ω)
]
=
ω

2i
[H+(ω)]

−1R+(ω). (11.2.28)

Substituting (11.2.8) into (11.2.28), we obtain

A(ω) = pt
−(ω) +H−(ω)Λ

t
m(ω) = pt

+(ω) +
ω

2i
[H+(ω)]

−1 R+(ω). (11.2.29)

∗ Carrying out a partial integration in (11.2.26), we have the form
∫ ∞

−∞
L(|s − u|)Λ̇t

(u)du = R(s).

This is a special case of (5.2.8), as can be seen by splitting the integral at u = s, changing
the integration variable, and recalling (7.1.17)4.
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The function A(ω) is analytic on Ω− by virtue of the first relation and analytic on
Ω+ by virtue of the second. It is therefore analytic over the entire complex plane.
By Liouville’s theorem, it must be a polynomial. However, for |ω| → ∞, A(ω) → 0
like 1/ω, on applying the argument presented after (11.2.12). Hence, it must vanish
everywhere, so that

H−(ω)Λt
m(ω) + p

t
−(ω) = 0,

which is (11.2.13). The right-hand side of (11.2.29) also vanishes, which yields a
relationship for R+.

The above solution can be extended to a more general set of histories. We write
(11.2.26) in the form

∫ 0

−∞
∂

∂s
L(|s − u|)Λt

r(u)du − Jt(s) = R(s), s ∈ R,

Jt(s) = −
∫ ∞
0

∂

∂s
L(|s − u|)Λt

r(u)du.

(11.2.30)

Observe that
Jt(s) = It(−s,Λt

r), s ∈ R−, (11.2.31)

where It(·,Λt
r) is defined by (7.4.2). Let us assume that Jt ∈ L1(R)∩ L2(R). Denoting

the Fourier transform of Jt by Jt
F ∈ L2(R), we obtain, instead of (11.2.27),

2iH(ω)Λt
m(ω) − ωJt

F(ω) = ωR+(ω).

The argument proceeds as outlined above but where Pt(ω) in (11.2.8) is now defined
by

Pt(ω) = −ω
2i
[H+(ω)]

−1 Jt
F(ω) = pt

−(ω) − pt
+(ω). (11.2.32)

It is assumed that Jt
F is analytic on R. The Fourier transform on R of a function that

is continuous at t = 0 behaves like ω−2 at large frequencies, by virtue of (C.2.16)
(putting m = 0 in (C.2.18)), so that Jt

F has this property. Thus, Pt(ω) ∼ ω−1 at large
ω, as required for the convergence of the integral in (11.2.9).

This formulation is valid for histories Λt that do not have a Fourier transform but
where Jt exists and has a Fourier transform [110, 145].

The quantity Λt
m is the Fourier transform of the optimal future continuation Λt

ro
introduced in (11.2.6). Consider (11.2.30) for s < 0. We differentiate this relation,
multiplying by Λt

ro, and integrate over R− to obtain
∫ 0

−∞

∫ 0

−∞
Λt

ro(s) · L12(|s − u|)Λt
ro(u)duds =

∫ 0

−∞
Jt(s) · Λt

ro(s)ds

=

∫ 0

−∞
I(−s,Λt

r) · Λt
ro(s)ds.

Relation (11.2.18)2 gives that

ψ(t) = φ(t) +
1
2

∫ 0

−∞
I(−s,Λt

r) · Λt
ro(s)ds
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and, from (11.2.17),

1
2π

∫ ∞
−∞
|pt
−(ω)|2dω =

1
2

∫ 0

−∞
I(−s,Λt

r) · Λt
ro(s)ds. (11.2.33)

11.2.3 Histories Rather Than Relative Histories

In early work on the minimum and other free energies [92, 110, 158], histories, rather
than relative histories, were used. By essentially identical arguments to those above,
one can show the following result. Let

Qt(ω) := H−(ω)Λt
+(ω) = qt

−(ω) − qt
+(ω),

where

qt
±(ω) =

1
2πi

∫ ∞
−∞

Qt(ω′)
ω′ − ω∓ dω′.

Then,

ψ(t) = S (t) +
1
2π

∫ ∞
−∞
|qt
−(ω)|2dω, (11.2.34)

where S (t) is given by (7.1.19)2, or, in the completely linear case, (7.1.34). The free
energies in Sect. 16.4 can also be expressed as functionals of histories rather than rel-
ative histories. The situation for free energies in dielectrics is in a sense reversed, as
we see from Sect. 22.3. There are two disadvantages to this approach, one noted ear-
lier, namely that S (t) is not a nonnegative quantity. The other is that Λt

+(ω) behaves
like ω−1 at large ω, while Λt

r+(ω) behaves like ω
−2.

11.2.4 Confirmation That ψm Is a Free Energy

We now ascertain that ψm has the characteristic properties of a free energy.

Proposition 11.2.2. The functional ψm(t), given by (11.2.17), obeys the Graffi condi-
tions, given by P1–P4 in Sect. 5.1.1 or (5.1.30)–(5.1.33).

Proof. Property P2 follows from the fact that Λt
r+, and therefore Pt, defined by

(11.2.8), vanishes for a static history. Property P3 is immediately apparent, while
P4 follows from the fact that Dm, given by (11.2.25), is nonnegative. Property P1 can
be proved as follows. Using (7.2.29), we can write

pt
−(ω) =

1
2πi

∫ ∞
−∞

H−(ω1)
[
Λt
+(ω1) − Λ(t)iω−1

]

ω1 − ω+ dω1, (11.2.35)

giving

∂pt−(ω)
∂Λ(t)

= − 1
2πi

∫ ∞
−∞

H−(ω1)
iω−1 (ω1 − ω+)dω1 = −H−(ω)iω

, (11.2.36)
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where we have used (11.2.23). Also,

∂pt−(ω)
∂Λ(t)

=
H+(ω)�

iω
, (11.2.37)

by virtue of (11.1.13). Thus,

∂

∂Λ(t)
1
2π

∫ ∞
−∞

pt−(ω) · pt
−(ω)dω =

∂

∂Λ(t)
1
2π

∫ ∞
−∞

pt−(ω)
�pt
−(ω)dω

=
1
2πi

∫ ∞
−∞

H+(ω)
ω

pt
−(ω)dω −

1
2πi

∫ ∞
−∞

H+(ω)
ω

pt−(ω)dω

= Re

{
1
πi

∫ ∞
−∞

H+(ω)
ω

pt
−(ω)dω

}
.

Recall that H− vanishes linearly at the origin. Also, using (11.2.8), the frequency
integral in (7.2.34), which must be real, can be written as

− i
π

∫ ∞
−∞

H(ω)
ω
Λt

r+(ω)dω = −
i
π

∫ ∞
−∞

H+(ω)
ω

[pt
−(ω) − pt

+(ω)]dω

= − i
π

∫ ∞
−∞

H+(ω)
ω

pt
−(ω)dω,

(11.2.38)

because the term involving pt
+ vanishes by Cauchy’s theorem. Since the last quantity

is real, P1 follows. �	
It is shown in [92] that ψm is a free energy also under the definition of Coleman

and Owen [75, 76]. This was for linear isothermal systems, but the proof applies to
the present, more general, case.

11.2.5 Double Frequency Integral Form

We can write (11.2.17) in a more explicit form by carrying out the integration over
ω. The following relationships are required. Firstly, we have

H−(ω1)Λ
t
r(ω1) ·H−(ω2)Λ

t
r(ω2) = Λ

t
r(ω1) ·H∗−(ω1)H−(ω2)Λ

t
r(ω2)

= Λt
r(ω1) ·H+(ω1)H−(ω2)Λ

t
r(ω2),

where (11.1.13), (A.2.7), and (A.2.8) have been used. Also, recalling (C.2.10) and
(C.2.11), we can write for real ω1, ω2, and ω,

ω− = lim
α→0+

(ω − iα) = ω+,

ω1 − ω− = lim
α→0+

(ω1 − ω + iα) = ω+1 − ω,
ω2 − ω+ = lim

α→0+
(ω2 − ω − iα) = ω−2 − ω,
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where the limits are taken after any integrations are carried out. Finally,

1
2πi

∫ ∞
−∞

dω
(ω+1 − ω)(ω−2 − ω)

=
1

ω+1 − ω−2
,

by closing the contour on either Ω(+) or Ω(−).
Using these results, we can write the expression (11.2.17) for ψm(t), where pt−(ω)

is given by (11.2.10) or (11.2.35), in the form

ψm(t) = φ(t) +
i

4π2

∫ ∞
−∞

∫ ∞
−∞
Λt

r+(ω1) ·Mm(ω1, ω2)Λ
t
r+(ω2)

ω+1 − ω−2
dω1dω2,

Mm(ω1, ω2) = H+(ω1)H−(ω2).

(11.2.39)

The notation in the denominator of the integral in (11.2.39)1 means that if we inte-
grate first over ω1, it becomes (ω1−ω−2 ), or if over ω2 first, then it is (ω+1 −ω2). Also,
using (11.2.22)3, Dm(t), given by (11.2.25), can be expressed as

Dm(t) =
1
4π2

∫ ∞
−∞

∫ ∞
−∞
Λt

r+(ω1) ·Mm(ω1, ω2)Λ
t
r+(ω2)dω1dω2.

Let us write the double integral in (11.2.39) as

P−(t) =
1
2π

∫ ∞
−∞
|pt
−(ω)|2dω =

i
4π2

∫ ∞
−∞

∫ ∞
−∞

At(ω1, ω2)
ω+1 − ω−2

dω1dω2,

At(ω1, ω2) = Λ
t
r+(ω1) ·Mm(ω1, ω2)Λ

t
r+(ω2).

(11.2.40)

In the same way, we obtain

P+(t) =
1
2π

∫ ∞
−∞
|pt
+(ω)|2dω = −

i
4π2

∫ ∞
−∞

∫ ∞
−∞

At(ω1, ω2)
ω−1 − ω+2

dω1dω2. (11.2.41)

From (11.2.21), we see that this is the total dissipation up to time t. One can show
that

R−(t) =
i

4π2

∫ ∞
−∞

∫ ∞
−∞

Bt(ω1, ω2)
ω+1 − ω−2

dω1dω2 = 0,

Bt(ω1, ω2) = Λ
t
r+(ω1) ·Mm(ω2, ω1)Λ

t
r+(ω2),

(11.2.42)

by integrating overω2 for example and closing the contour onΩ(−), sinceH+ andΛt
r+

have no singularity in the lower half-plane. Furthermore, using the same procedure,
one obtains

R+(t) = − i
4π2

∫ ∞
−∞

∫ ∞
−∞

Bt(ω1, ω2)
ω−1 − ω+2

dω1dω2

=
1
2π

∫ ∞
−∞
Λt

r+(ω) ·H(ω)Λt
r+(ω)dω (11.2.43)

= P−(t) + P+(t),
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by virtue of (7.5.7)2 and (11.2.16). Relation (11.2.42)1 allows us to write (11.2.40)
in the explicitly convergent form

P−(t) =
i

4π2

∫ ∞
−∞

∫ ∞
−∞

At(ω1, ω2) − Bt(ω1, ω2)
ω1 − ω2

dω1dω2, (11.2.44)

which is convenient for numerical evaluation. We can replace the (ω1 − ω2) in the
denominator by (ω+1 − ω−2 ), which gives (11.2.40), or by (ω−1 − ω+2 ), which gives the
same result by way of (11.2.43) and (11.2.41). Relation (11.2.44) implies that the
kernel

D(ω1, ω2) = i
[H+(ω1)H−(ω2) −H+(ω2)H−(ω1)]

ω1 − ω2

is nonnegative in the operator sense, i.e., it must yield a nonnegative value for the
integral, for all histories. Using very localized choices of Λt

+(ω), we deduce that
the “diagonal elements” of D(ω1, ω2) are nonnegative, as in Remark 7.1.3. Using a
prime to denote differentiation, we can write these as

D(ω) = i[H′+(ω)H−(ω) −H+(ω)H′−(ω)] ≥ 0, ω ∈ R. (11.2.45)

Proposition 11.2.3. We have∫ t

−∞
P+(u)du = − 1

4π2

∫ ∞
−∞

∫ ∞
−∞

At(ω1, ω2)
(ω−1 − ω+2 )2

dω1dω2

= − 1
4π2

∫ ∞
−∞

∫ ∞
−∞

[
At(ω1, ω2)
(ω+1 − ω−2 )2

+
Bt(ω1, ω2)
(ω−1 − ω+2 )2

]
dω1dω2 (11.2.46)

− 1
2π

∫ ∞
−∞
Λt

r+(ω) ·D(ω)Λt
r+(ω)dω,

where D(·) is defined by (11.2.45) and the integral on the left is assumed to exist for
all finite values of t.

Proof. Relation (11.2.46)1 follows immediately, by time differentiation, using (7.2.30)
and the relations∫ ∞

−∞
H−(ω2)

ω−2 (ω
−
1 − ω+2 )2

dω2 =

∫ ∞
−∞

H+(ω1)
ω+1 (ω

−
1 − ω+2 )2

dω1 = 0,

which follow from the fact that H± vanish linearly at the origin and Cauchy’s theo-
rem, closing the first integral on Ω(+) and the second on Ω(−). There can be no term
independent of t, since the integral on the left of (11.2.46) vanishes as t → −∞.
Equation (11.2.46)2 can be verified similarly, on noting a cancellation between the
derivatives of the single and double integral terms. Relations such as

1
2πi

∫ ∞
−∞

H−(ω2)
iω−2 (ω

+
1 − ω−2 )2

dω2 =
d

dω1

[
H−(ω1)

iω1

]
,

1
2πi

∫ ∞
−∞

H+(ω1)
iω+1 (ω

+
1 − ω−2 )2

dω1 = − d
dω2

[
H+(ω2)

iω2

]
,

are required. These follow from (B.1.3). The minus sign in the second relation is a
consequence of the fact that the contour must be completed on Ω(−) (Sect. B.1.1). �	
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The quantity D(·) occurs in (11.7.10) in the context of the minimum free energy
for sinusoidal histories.

11.3 Characterization of the Minimal State in the Frequency
Domain

In this section, we show that the quantity pt−, defined by (11.2.10), and occurring in
ψm(t), given by (11.2.17), is a function of the minimal state. Two histories Λt

1 and Λ
t
2

are equivalent if their difference Λt = Λt
1 −Λt

2 satisfies (7.4.3). Relation (7.4.3)2 can
be written in the form

Ft(τ) :=
∫ ∞
τ

L′(s)Λt+τ(s)ds = 0, ∀τ ≥ 0. (11.3.1)

We adopt the assumptions made before (7.4.5), so that (7.4.3)1 and (7.4.4) are re-
placed by

Λ1(t + τ) = Λ2(t + τ), τ ≥ 0. (11.3.2)

Condition (11.3.2) gives that Λt+τ(s) is equal to zero for τ ≥ s. Let us identify L′
with its odd extension on R, so that (7.2.25) applies. Then, Ft(τ) can be rewritten in
terms of Fourier transforms:

Ft(τ) =
∫ ∞
−∞

L′(s)Λt+τ(s)ds =
1
2π

∫ ∞
−∞

L′F(ω)Λ
t+τ
+ (ω)dω

= − i
π

∫ ∞
−∞

L′s(ω)Λ
t+τ
+ (ω)dω.

Moreover, note that

Λt+τ
+ (ω) =

∫ ∞
0
Λt+τ(s)e−iωsds =

∫ ∞
τ

Λt(s − τ)e−iω(s−τ)ds e−iωτ = Λt
+(ω)e

−iωτ,

which yields

Ft(τ) =
i
π

∫ ∞
−∞

H(ω)
ω
Λt
+(ω)e

−iωτ dω. (11.3.3)

This will be taken as the definition of Ft(τ) for τ ∈ R.
Remembering the factorization of H(ω) given by (11.1.11), (11.3.3) can be

rewritten as

Ft(τ) =
i
π

∫ ∞
−∞

H+(ω)
ω

H−(ω)Λt
+(ω)e

−iωτ dω, (11.3.4)

and the substitution of (11.2.8) into (11.3.4) yields

Ft(τ) =
i
π

∫ ∞
−∞

H+(ω)
ω

[
pt
−(ω) − pt

+(ω)
]

e−iωτ dω. (11.3.5)

Observe that H+(z), pt
+(z), and e−izτ (τ > 0) are analytic functions in the lower

half-plane z ∈ Ω(−), their product converging strongly to zero at infinity, so that by
Cauchy’s theorem, (11.3.5) reduces to (cf. (11.2.38))
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Ft(τ) =
i
π

∫ ∞
−∞

H+(ω)
ω

pt
−(ω)e

−iωτ dω. (11.3.6)

This form of Ft allows us to prove the following theorem characterizing a minimal
state in the frequency domain.

Theorem 11.3.1. For every material with linear memory and a symmetric (required
for factorization) relaxation function L, a given history Λt is equivalent to the zero
history 0† if and only if the pt− related to Λt by (11.2.10) with (11.2.8) is such that

pt
−(ω) = 0, ∀ω ∈ R.

Observe that the theorem in effect states that

Ft(τ) = 0 ∀τ ≥ 0 ⇐⇒ pt
−(ω) = 0 ∀ω ∈ R. (11.3.7)

Proof. The statement relating to the left-pointing arrow of (11.3.7) follows trivially
from (11.3.6). In order to prove the statement relating to the right arrow, let us invert
the Fourier transform in (11.3.6) to obtain

ft(ω) =
i
π

H+(ω)
ω

pt
−(ω) =

1
2π

∫ ∞
−∞

Ft(τ)eiwτ dτ

=
1
2π

∫ 0

−∞
Ft(τ)eiwτdτ =

1
2π

∫ ∞
0

Ft(−u)e−iwu du.

(11.3.8)

It follows from Proposition C.2.1 that ft (the Fourier transform of Ft(−u), a function
that is zero on R−−) is analytic in Ω(−). The zeros in rows or columns ofH+ (zeros of
detH+) cannot cancel singularities of pt−, since all such zeros are in Ω(+). Also, any
branch-cut singularity ofH+ is in Ω(+), and those of pt− are inΩ(−), so there can be no
neutralization of such singularities. Thus pt− must be analytic in Ω(−) and therefore
in Ω. It goes to zero at infinity and must therefore be zero everywhere by Liouville’s
theorem (Sect. B.1.3).

�	
Note that Theorem 11.3.1 is in effect saying that if a history is equivalent to the

zero history, then the minimum free energy vanishes, or (7.4.8) holds. We now show
that this implies the following result.

Proposition 11.3.2. If two states are equivalent, then (7.4.6) holds, so that the min-
imum free energy, given by (11.2.17), is a functional of the minimal state. Further-
more, (7.4.8) is true.

Proof. Let (Λt
1,Λ(t)) and (Λt

2,Λ(t)) be equivalent states. Then the difference of
their histories is equivalent to the zero history, as argued before (7.4.5). Also, let
pt−(ω,Λ

t
1) indicate this quantity defined by (11.2.10) for a history Λt

1 and similarly
for pt−(ω,Λ

t
2). Then,

pt
−(·,Λt

1) − pt
−(·,Λt

2) = pt
−(·,Λt

1 − Λt
2) = 0

by the linearity of pt− and Theorem 11.3.1. Thus, (7.4.6) and (7.4.8) follow immedi-
ately. Also, (7.4.12) must be true, since (7.4.6) and (7.4.8) hold. �	

The observations around (7.4.10) and (7.4.11) are relevant in the present context.
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11.4 The Space of States and Processes

We recall from Definition 4.2.1 of the minimum free energy that it must be defined
on the entire space of states. From (11.2.17), this is the space of relative histories and
current values (Λt

r,Λ(t)) such that pt−, defined by (11.2.10) with (11.2.8), belongs to
L2(R). As we have seen in Sect. 11.2.2, the Fourier transform Λt

r+ need not exist.
However, Pt, given by (11.2.32) in terms of Jt

F , must be finite for ω ∈ R.
Recalling (11.2.18)3,4, we define the space of processes to be [145]

HΓ(R
−) =

{
φ : R− �→ Γ; 1

2

∫ 0

−∞

∫ 0

−∞
φ(s) · L(|s − u|)φ(u)dsdu

=
1
2π

∫ ∞
−∞
φ−(ω) ·

H(ω)
ω2
φ−(ω)dω < ∞

}
.

(11.4.1)

The dual of this space is defined as

H′Γ(R
−) =

{
f : R− �→ Γ;

∣∣∣∣∣∣
∫ 0

−∞
f(u)φ(u)du

∣∣∣∣∣∣ < ∞∀φ ∈ HΓ(R−)
}
.

The space of histories is defined as those for which

Jt ∈ H′Γ(R−), (11.4.2)

where Jt(·) is related to I(·,Λt
r) by (11.2.31).

We now prove the following result of Gentili [145].

Proposition 11.4.1. Given the relative history Λt
r : R

+ �→ Γ, then Jt ∈ H′Γ(R
−) if

and only if pt− ∈ L2(R).

Proof. For any φ ∈ HΓ(R−),∫ 0

−∞
Jt(s) · φ(s)ds =

1
2π

∫ ∞
−∞

Jt
F(ω) · φ−(ω)dω

=
1
2π

∫ ∞
−∞
ω

2i
[H+(ω)]

−1 Jt
F(ω) ·

2i
ω
H�+ (ω)φ−(ω)dω

= − i
π

∫ ∞
−∞

Pt(ω) · 1
ω
H−(ω)φ−(ω)dω,

where (11.2.32) has been used. The pt
+ term in Pt yields zero by Cauchy’s theorem

and Remark B.1.2, so we have
∫ 0

−∞
Jt(s) · φ(s)ds = − i

π

∫ ∞
−∞

pt
−(ω) ·

1
ω
H−(ω)φ−(ω)dω

≤ 1
2π

∫ ∞
−∞
|pt
−(ω)|2dω +

1
2π

∫ ∞
−∞

1
ω2
|H−(ω)φ−(ω)|2dω.

If pt− ∈ L2(R), the first term is bounded. Also, the second term is bounded by (11.4.1).
It follows that (11.4.2) holds. If Jt ∈ H′Γ(R−), then from (11.2.33), we see that pt− ∈
L2(R). �	
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11.5 Limiting Properties of the Optimal Future Continuation

We draw attention to certain properties of the optimal future continuation. From
(11.2.14) and (11.2.24)1, it follows that

Λt
m(ω) −→

ω→∞

H−11
2

K(t)

iω
, (11.5.1)

where
H 1

2
= H−(∞) (= H+(∞)).

The last relation holds for commutative factors, by virtue of (11.6.2) below. Thus, by
(C.2.16), the relative optimal continuation, given by (11.2.5), has the form at s = 0

Λt
ro(0) = −H−11

2
K(t), (11.5.2)

and the optimal continuation Λt
o(0) is given by

Λt
o(0) = Λ(t) −H−11

2
K(t). (11.5.3)

Therefore, the optimal continuation involves a sudden discontinuity at time t, the
magnitude of which is related to the rate of dissipation, as we see from (11.2.25).

Also, putting

H1(ω) =
1
ω
H−(ω), (11.5.4)

we have, with the aid of (11.2.10),

Λt
m(ω) ≈ −

[H1(0)]−1

2πiω+

∫ ∞
−∞

H1(ω
′)Λt

r+(ω
′)dω′

as ω → 0. The quantity ω in the denominator is replaced by ω+, since the singulari-
ties of Λt

m(ω) must be in Ω(−). Then, with the aid of (C.2.11), we have

Λt
ro(−∞) =

[H1(0)]−1

2π

∫ ∞
−∞

H1(ω
′)Λt

r+(ω
′)dω′ (11.5.5)

and
Λt

o(−∞) = Λt
ro(−∞) + Λ(t).

This quantity is in general nonzero.

11.6 Time-Independent Eigenspaces

We now make the assumption (7.1.36), which immediately yields

L′(t) =
m∑

k=1

L′k(t)Bk, t ∈ R.
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Taking Fourier transforms gives

L′+(ω) =
m∑

k=1

L′k+(ω)Bk, ω ∈ R.

This relation can also be written at −ω. Adding and subtracting give that L′c and L′s
can also be represented in this manner, and furthermore,

H(ω) = −ωL′s(ω) =
m∑

k=1

Hk(ω)B
k,

Hk(ω) > 0, ω ∈ R \{0}, k = 1, . . . ,m.

Using the technique of Sect. 11.1.1, the quantities Hk can be factorized into Hk+ and
Hk−, where from (11.1.17),

Hk±(ω) = Hk∓(−ω) = Hk∓(ω); Hk(ω) = |Hk±(ω)|2. (11.6.1)

We put
Hk(∞) = Hk∞, k = 1, 2, . . . ,m.

Since the {Bk} are orthonormal projectors, it follows that

H(ω) =
m∑

k=1

Hk+(ω)Hk−(ω)Bk = H+(ω)H−(ω),

where

H±(ω) =
m∑

k=1

Hk±(ω)Bk = H�± (ω).

The last relation follows from the symmetry of the Bk. Thus, H± are symmetric for
all frequencies. We see that the factors H+(ω) and H−(ω) commute, so that they are
normal transformations; see the comment relating to (A.2.11). Recalling (11.1.18)
and the comment after (11.1.14), we see that

H±(∞) = H1/2
∞ . (11.6.2)

The quantities H± also commute when evaluated at different frequencies, by
virtue of (A.2.11). It follows that products of these factors at the same or different
frequencies are symmetric. From (11.6.1), we have†

H±(ω) = H∓(−ω) = H∓(ω), (11.6.3)

† These relations allow us to show that

pt±(ω) = pt
±(−ω), ω ∈ R,

with the aid of (11.2.10) and (C.1.7).
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which also hold for complex ω, where the rightmost term involves the complex con-
jugate of the functional form, leaving ω unchanged, or

H∓(ω) = H∓(ω).

These relations are consistent with but more detailed than (11.1.11). They reduce the
nonuniqueness of the factorization to an arbitrariness of sign on each eigenspace.
Also, Mm, given by (11.2.39)2, can be expanded on this basis:

Mm(ω1, ω2) =
m∑

k=1

M(m)
k (ω1, ω2)B

k,

M(m)
k (ω1, ω2) = Hk+(ω1)Hk−(ω2).

In the basis {Bk} (defined after (7.1.36)) and {Bk}, the individual components of
each of the relevant quantities obey the relationships that hold in the scalar case. We
can expand any member of Γ in this basis; in particular,

Λ(t) =
m∑

k=1

Λk(t)Bk, Λt(s) =
m∑

k=1

Λt
k(s)B

k,

Λt
r(s) =

m∑
k=1

Λt
kr(s)B

k, Λt
r±(ω) =

m∑
k=1

Λt
kr±(ω)B

k.

Scalar quadratic forms, such as the memory-dependent part of a free energy or a
rate of dissipation, are given by the sum of contributions to this quantity from each
eigenspace. In particular,

ψm(t) − φ(t) =
m∑

k=1

ψ(k)mk(t),

where ψ(k)mk is the minimum free energy relating to the scalar problem for Hk. Such
relations follow readily from the orthonormality and time (frequency) independence
of the basis.

In the particular example discussed in Sect. 7.1.5, we can write any free energy
(not just the minimum free energy) in the form

ψ(t) − φ(t) = 5ψS (t) + ψB1(t) + ψB2(t) + 3ψq(t),

where ψS (t), ψB1(t), ψB2(t), and ψq(t) are the memory-dependent parts of the free
energies corresponding to the scalar problems with relaxation function derivatives
G′S ,G

′
1,G

′
2, and V ′m and constants GS∞,G1, and G2. The coefficient 5 reflects the

degeneracy or symmetry of the five-dimensional representation of the rotation group
corresponding to shear deformation in a mechanically isotropic material, while the
coefficient 3 results from thermal isotropy. For completely linear materials, we can
include the equilibrium terms explicitly in these formulas.
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11.7 The Minimum Free Energy for Sinusoidal Histories

Consider a history and current value (Λt,Λ(t)) defined by

Λ(t) = Ceiω−t + Ce−iω+t, Λt(s) = Λ(t − s), (11.7.1)

where C is an amplitude in Γ and C is its complex conjugate. Furthermore,

ω− = ω0 − iη, ω+ = ω−, ω0 ∈ R, η ∈ R++.
The quantity η is introduced to ensure finite results in certain quantities. The quantity
Λt
+ has the form

Λt
+(ω) = C

eiω−t

i(ω + ω−)
+ C

e−iω+t

i(ω − ω+) ,
and the Fourier transform of the relative historyΛt

r(s) = Λ
t(s)−Λ(t), namelyΛt

r+(ω),
is given by

Λt
r+(ω) = Λ

t
+(ω) −

Λ(t)
iω−
= −Cω−

ω−
eiω−t

i(ω + ω−)
+ C
ω+
ω−

e−iω+t

i(ω − ω+) . (11.7.2)

From (7.1.17) and (7.1.14)5, the generalized stress has the form

Σ(t) = Σ0(t) + Σh(t),

Σh(t) =
∫ ∞
0

L′(s)Λt(s) ds

= L′+(ω−)Ceiω−t + L′+(−ω+)Ce−iω+t,

Σ0(t) = Σe(t) + L0Λ(t).

(11.7.3)

The expression for Σh(t) reduces to that given in (7.2.6)3 as η→ 0.
The work W(t) done on the material to achieve the state (Λt,Λ(t)) is given by

(7.5.1)1, which in this context becomes

W(t) = φ(t) +
1
2
Λ(t) · L0Λ(t)

+
1
2

[
C · L′+(ω−)Ce2iω−t + C · L′+(−ω+)Ce−2iω+t

]
(11.7.4)

+ C · [ω−L′+(−ω+) − ω+L′+(ω−)]C
ei(ω−−ω+)t

(ω− − ω+) ,
where the symmetry of L+ has been used. This quantity diverges as η→ 0, as would
be expected on physical grounds. Taking the limit η → 0 in the terms that are con-
vergent, we can write this in the form

W(t) = φ(t) +
1
2
Λ(t) · L0Λ(t)

+
1
2

[
C · L′+(ω0)Ce2iω0t + C · L′+(−ω0)Ce−2iω0t

]

+ C ·
[
L′c(ω0) − ω0

d
dω0

L′c(ω0) − 2ω0tL′s(ω0)

]
C

− C · L′s(ω0)C
ω0

η
,

(11.7.5)
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on using (7.2.1). The divergence is associated with L′s, which is physically reason-
able.

We shall require the relation

H±(ω) = H±(−ω) (11.7.6)

for complex ω, which follows from (11.6.3). The minimum free energy ψm(t) is
given by (11.2.17). Using (11.7.2), we evaluate the integral in (11.2.9) by closing the
contour on Ω(+) to obtain

pt
+(ω) = −

[
eiω−t

i(ω + ω−)
H−(−ω−)C + e−iω+t

i(ω − ω+)H−(ω+)C
]

(11.7.7)

and
pt
−(ω) = H−(ω)Λt

r+(ω) + p
t
+(ω).

The expression for ψm(t) can be obtained from (11.2.21)2 combined with (11.7.4).
From (11.7.7), we obtain

1
2π

∫ ∞
−∞
|pt
+(ω)|2dω = −

ie2iω−t

2ω−
C ·H2

−(−ω−)C +
ie−2iω+t

2ω+
C ·H2

−(ω+)C

− 2iei(ω−−ω+)t

(ω− − ω+)C ·H−(ω+)H−(−ω−)C,
(11.7.8)

where (11.7.6) has been used. It will be observed that the last term diverges in the
limit η → 0. The quantity given by (11.7.8) in the limit η → 0 is in fact the total
dissipation over the history, given by (11.2.21), so this divergence is an expression
of a physically obvious fact. Its derivative is the rate of dissipation.

Taking the limit η→ 0 in the convergent terms, we obtain

1
2π

∫ ∞
−∞
|pt
+(ω)|2dω = −

ie2iω0t

2ω0
C ·H2

−(−ω0)C +
ie−2iω0t

2ω0
C ·H2

−(ω0)C

− C · [2tH(ω0) +D(ω0)]C +
1
η
C ·H(ω0)C,

where D is defined by (11.2.45).
From (11.7.4), (11.7.8), and (11.2.21)2, taking the limit η→ 0, we obtain

ψm(t) = φ(t) +
1
2
Λ(t) · L0Λ(t)

+C ·B1(ω0)Ce2iω0t + C ·B1(ω0)Ce−2iω0t + C ·B2(ω0)C,
(11.7.9)

where

B1(ω0) =
1
2

[
L′+(ω0) +

i
ω0

H2
−(−ω0)

]
,

B2(ω0) = L′c(ω0) − ω0
d

dω0
L′c(ω0) +D(ω0).

(11.7.10)
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The divergent terms and those proportional to t cancel. The most interesting contri-
bution to ψm is the rightmost term of (11.7.9), which gives the average over a time
cycle

(ψm)av = C ·B2(ω0)C.

We can express this quantity in terms of H and its factors, using (7.2.26). Note that
B2 must be a nonnegative quantity in general for all ω ∈ R. We recall from (11.2.45)
that D is nonnegative for all ω ∈ R.

The rate of dissipation is given by (11.2.25) and (11.2.22)3. Using (11.7.2) and
closing on Ω+, we find that

K(t) = H−(−ω0)Ceiω0t +H−(ω0)Ce−iω0t

on taking η→ 0. Therefore,

D(t) = C ·H2
−(−ω0)Ce2iω0t + C ·H2

−(ω0)Ce−2iω0t + 2C ·H(ω)C. (11.7.11)

One may check that (11.2.19) holds, using (11.7.1), (11.7.3) in the limit η → 0,
(11.7.9), and (11.7.11).

Similar results apply to the free energies and dissipations in Sect. 16.4.

11.8 Example: Viscoelastic Materials

We write out the main results of the present chapter for perhaps the most important
special case, namely the isothermal theory, where temperature variation over time
and space is neglected. Only the mechanical equations are relevant.‡

Recall (8.1.16), (8.1.18), and the fact that G′s is an odd function of ω. Following
(7.2.22) and (11.1.11), let us define H ∈ Lin(Sym) by

H(ω) = −ωG′s(ω) = H+(ω)H−(ω) ≥ 0, ω ∈ R, (11.8.1)

where
H(∞) = −G′(0). (11.8.2)

We have kept the same notation for simplicity. The work function, giving the amount
of mechanical work required to achieve the state (Et,E(t)), has the form (cf. (7.5.1),
(7.5.3), and (7.5.7))

‡ The results of Sect. 13.1.1 overlap to some degree with those in this section. The former
results are, however, derived specifically for completely linear viscoelastic solids (as dis-
cussed in Sects. 8.1–8.7), using a somewhat different but equivalent methodology to that
developed in the present chapter.



280 11 The Minimum Free Energy

W̃(Et,E(t)) = W(t) = φ(−∞) +
∫ t

−∞
Ŝ(u) · Ė(u)du

= φ(t) +
1
2

∫ ∞
0

∫ ∞
0

G12(|s − u|)Et
r(u) · Et

r(s)duds

= φ(t) +
1
2π

∫ ∞
−∞

Et
r+(ω) ·H(ω)Et

r+(ω)dω,

Et
r+(ω) = Et

+(ω) −
E(t)
iω−
,

(11.8.3)

where the constitutive equation (8.1.1) has been used. Again, keeping some notation
from (11.2.8),

H−(ω)Et
r+(ω) = pt

−(ω) − pt
+(ω),

where

pt
±(ω) =

1
2πi

∫ ∞
−∞

H−(ω′)Et
r+(ω

′)
ω′ − ω∓ dω′, (11.8.4)

which is the analogue of (11.2.10). We note that

Et
r+(ω) ∼ ω−2 (11.8.5)

at large ω and write the analogue of (7.2.30) as

d
dt
Et
+(ω) = −iωEt

r+(ω),
d
dt
Et

r+(ω) = −iωEt
r+(ω) −

Ė(t)
iω−
.

The Fourier transform of the relative optimal future continuation has the form

Et
m(ω) = −[H−(ω)]−1 pt

−(ω), (11.8.6)

which is a special case of (11.2.14). Its time-domain version Et
ro is given by

Et
ro(u) = Et

o(u) − E(t) =
1
2π

∫ ∞
−∞

Et
m(ω)e

iωu dω. (11.8.7)

The work function, given by (11.8.3), retains the form of (11.2.16),

W(t) = φ(t) +
1
2π

∫ ∞
−∞

[
|pt
−(ω)|2 + |pt

+(ω)|2
]

dω, (11.8.8)

but with pt± defined by (11.8.4), while the minimum free energy (11.2.17) retains the
form

ψm(t) = φ(t) +
1
2π

∫ ∞
−∞
|pt
−(ω)|2dω. (11.8.9)

The relations in (11.2.18) become
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ψm(t) = φ(t) +
1
2π

∫ ∞
−∞

Et
m(ω) ·H(ω)Et

m(ω)dω

= φ(t) +
1
2

∫ 0

−∞

∫ 0

−∞
G12(|s − u|)Et

ro(u) · Et
ro(s)duds

= φ(t) +
1
2

∫ 0

−∞

∫ 0

−∞
G(|s − u|)Ėt

o(u) · Ėt
o(s)duds

= φ(t) +
1
2π

∫ ∞
−∞

Ėt
m(ω) · H(ω)

ω2
Ėt

m(ω)dω,

(11.8.10)

where Et
ro is defined by (11.8.7). Relation (11.2.19) reduces to

ψ̇m(t) + Dm(t) = Ŝ(t) · Ė(t), (11.8.11)

where Dm is the rate of mechanical dissipation corresponding to the minimum free
energy and must be nonnegative by virtue of the second law. Let us assume that the
material is undisturbed in the distant past. Integrating (11.8.11) up to time t gives a
special case of (11.2.20):

ψm(t) +Dm(t) = W(t),

where

Dm(t) =
∫ t

−∞
Dm(s)ds

is the total mechanical dissipation up to time t, corresponding to the minimum free
energy. We have, from (11.8.8) and (11.8.9) (see (11.2.21)),

Dm(t) = W(t) − ψm(t) =
1
2π

∫ ∞
−∞
|pt
+(ω)|2 dω ≥ 0. (11.8.12)

The rate of dissipation has the form (11.2.25) or

Dm(t) = |K(t)|2, (11.8.13)

where K is given by a special case of (11.2.22)3:

K(t) =
1
2π

∫ ∞
−∞

H−(ω)Et
r+(ω)dω. (11.8.14)

Certain properties of the optimal future continuation are derived in Sect. 11.5. We
summarize them here for the isothermal case. Relation (11.5.1) becomes

Et
m(ω) −→

ω→∞

H−11
2

K(t)

iω
,

while (11.5.2) and (11.5.3) take the form

Et
ro(0) = −H−11

2
K(t), Et

o(0) = E(t) −H−11
2
K(t). (11.8.15)

At low frequencies and large times, we have, from (11.5.4) and (11.5.5),
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Et
ro(−∞) =

H1(0)−1

2π

∫ ∞
−∞

H1(ω
′)Et

r+(ω
′)dω′

and
Et

o(−∞) = Et
ro(−∞) + E(t). (11.8.16)

If we apply the assumptions of Sect. 11.6, that the eigenspaces of G are time-
independent, any problem on each of the individual eigenspaces is in effect a scalar
problem, like the one dealt with in the next section, where, however, the subscript
indicating the eigenspace is omitted.

11.9 Explicit Forms of the Minimum Free Energy for
Discrete-Spectrum Materials

We now consider the general results of earlier sections for a particular class of re-
sponse functions, namely discrete-spectrum scalar models. Here, as above and in
later sections dealing with the scalar case, we shall continue to use notation often as-
sociated with viscoelastic materials. We replace E(t) by E(t) andG(s) by G(s). How-
ever, it must be emphasized that the results apply to any time-independent eigenspace
of G (see the comment at the end of Sect. 11.8) or indeed of L, as introduced in
Sect. 11.6.

Let the relaxation function G(t) have the form

G(t) = G∞ +
n∑

i=1

Gie
−αi t, G∞ ≥ 0, (11.9.1)

where n is a positive integer, the inverse decay times αi, i = 1, 2, . . . , n, are positive,
and the coefficients Gi are also generally assumed to be positive. We arrange that
α1 < α2 < α3 . . . It follows that

G′(t) =
n∑

i=1

gie
−αi t, gi = −αiGi < 0,

and

G′+(ω) =
n∑

i=1

gi

αi + iω
, G′c(ω) =

n∑
i=1

αigi

α2i + ω
2
, G′s(ω) = ω

n∑
i=1

gi

α2i + ω
2
,

recalling (8.1.16). Thus, from (11.8.1)1,

H(ω) = −ω2
n∑

i=1

gi

α2i + ω
2
≥ 0, (11.9.2)

and (11.8.2) can easily be checked. Observe that f (z) = H(ω), z = −ω2, has simple
poles at α2i , i = 1, 2, . . . , n. It will therefore have zeros at γ2i , i = 2, 3, . . . , n, where
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α21 < γ
2
2 < α

2
2 < γ

2
3 · · · , (11.9.3)

by virtue of Remark B.1.1. It will have no more than one zero between each pole be-
cause H(∞) is a finite constant. The function f (z) also vanishes at γ1 = 0. Therefore,
H is a rational function of the form

H(ω) = H∞
n∏

i=1

⎧⎪⎨⎪⎩
γ2i + ω

2

α2i + ω
2

⎫⎪⎬⎪⎭ , (11.9.4)

and either by inspection or by applying the general formula (11.1.15), one can show
that

H+(ω) = h∞
n∏

i=1

{
ω − iγi

ω − iαi

}
,

H−(ω) = h∞
n∏

i=1

{
ω + iγi

ω + iαi

}
, h∞ = [H∞]1/2.

(11.9.5)

By considering the residue at each pole, we find that

H−(ω) = h∞

⎡⎢⎢⎢⎢⎢⎣1 + i
n∑

i=1

Ri

ω + iαi

⎤⎥⎥⎥⎥⎥⎦ , H+(ω) = H−(ω),

Ri = (γi − αi)
n∏

j=1
j�i

{
γ j − αi

α j − αi

}
.

(11.9.6)

It follows from (11.9.6) and the fact that H− vanishes at ω = 0 that

n∑
i=1

Ri

αi
= −1. (11.9.7)

Therefore, we can also write H−(ω) in the form

H−(ω) = −h∞ω
n∑

i=1

Ri

αi(ω + iαi)
. (11.9.8)

The quantity pt−(ω), defined by the scalar version of (11.8.4), may be evaluated by
closing on Ω(−), giving, with the aid of (B.1.15)3,

pt
−(ω) = ih∞

n∑
i=1

RiEt
r+(−iαi)
ω + iαi

. (11.9.9)

The quantities Et
r+(−iαi) are real. Also,

pt
+(ω) = pt

−(ω) − H−(ω)Et
r+(ω)

= ih∞
n∑

i=1

Ri
[Et

r+(−iαi) − Et
r+(ω)]

ω + iαi
− h∞Et

r+(ω),
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which has singularities at those of Et
r+(ω) in Ω

(+) but none in Ω(−). These explicit
relations for pt± allow their analytic continuation to the whole complex plane, ex-
cluding singular points, as discussed in Sect. B.1.2.

From (11.8.6), (11.9.5), and (11.9.9),

Et
m(ω) = −i

n∑
i=1

Ji(ω)RiE
t
r+(−iαi),

Ji(ω) =

∏n
j=1
j�i

(ω + iα j)

∏n
j=1(ω + iγ j)

=

n∑
l=1

Qil

ω + iγl
,

(11.9.10)

where

Qil =

∏n
j=1
j�i

(γl − α j)

∏n
j=1
j�l

(γl − γ j)
,

so that

Et
m(ω) = −i

n∑
l=1

Bt
l

ω + iγl
, Bt

l =

n∑
i=1

RiQilE
t
r+(−iαi). (11.9.11)

We conclude that the relative optimal deformation as defined in (11.8.7) has the form

Et
ro(s) = −

n∑
l=1

Bt
le
γl s = −Bt

1 −
n∑

l=2

Bt
le
γl s, s < 0,

since γ1 = 0. It follows that
Et

ro(−∞) = −Bt
1,

which is a special case of (11.5.5), as may be seen by using (11.9.8) to determine
the form of H1(ω) (defined by the scalar version of (11.5.4)) and (11.9.5)2 to write
H1(0). By considering ωJi(ω) for large ω, it can be deduced that

n∑
l=1

Qil = 1,

so that

Et
ro(0) = −

n∑
l=1

Bt
l = −

n∑
i=1

RiE
t
r+(−iαi). (11.9.12)

Relation (11.9.12) follows from (11.9.11)2 and (C.2.16). From (11.8.14) and (11.9.6),
we have

K(t) = h∞

⎡⎢⎢⎢⎢⎢⎣
n∑

i=1

RiE
t
r+(−iαi)

⎤⎥⎥⎥⎥⎥⎦ , (11.9.13)

since the constant term in H− yields zero by (B.1.15) and (11.8.5). Observe that
(11.9.12) and (11.9.13) agree with (11.8.15).
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We deduce from (11.9.9) and (11.8.9) that

ψm(t) = φ(t) + H∞
n∑

i, j=1

RiRj

αi + α j
Et

r+(−iαi)E
t
r+(−iα j)

= φ(t) +
1
2

∫ ∞
0

ds1

∫ ∞
0

ds2Et
r(s1)G12(s1, s2)E

t
r(s2),

(11.9.14)

where the reality of Et
r+(−iαi) has been used. The kernel G12 is given by

G12(s1, s2) = 2H∞
n∑

i, j=1

RiRj

αi + α j
e−αi s1−α j s2 .

The solution of this partial differential equation under conditions (8.6.6) is

G(s1, s2) = G∞ + 2H∞
n∑

i, j=1

RiRj

(αi + α j)αiα j
e−αi s1−α j s2 .

The relation (8.6.13) reducing in the scalar case to G(0, s) = G(s), where the latter
quantity is given by (11.9.1), can be confirmed with the aid of the identity

n∑
j=1

Rj

(αi + α j)α j
= − gi

2RiH∞
, (11.9.15)

which follows from (11.9.7) and the identity

n∑
j=1

Rj

αi + α j
= −1 + αigi

2RiH∞
,

which in turn can be deduced by comparing the product H+(ω)H−(ω) given by
(11.9.6) near poles of H+(ω) or H−(ω) with H(ω) given by (11.9.2).

It is shown in [158] that (11.9.14) agrees with the expression by Breuer and Onat
[42] for the maximum recoverable work. Noting (11.8.13) and (11.9.13), we see that

Dm(t) = H∞

⎡⎢⎢⎢⎢⎢⎣
n∑

i=1

RiE
t
r+(−iαi)

⎤⎥⎥⎥⎥⎥⎦
2

= H∞

⎡⎢⎢⎢⎢⎢⎣
∫ ∞
0

n∑
i=1

Rie
−αis Et

r(s)ds

⎤⎥⎥⎥⎥⎥⎦
2

. (11.9.16)

For n = 1,

ψm(t) = φ(t) +
1
2

H∞α|Et
r+(−iα)|2 = φ(t) + 1

2
H∞α

[∫ ∞
0

Et
r(s)e

−αs ds

]2
, (11.9.17)

which can be shown to agree with the result of Day [87]; see also (10.2.15). Finally,
(11.9.16) becomes

Dm(t) = H∞|αEt
r+(−iα)|2 = H∞

[
α

∫ ∞
0

e−αsEt
r(s)ds

]2
. (11.9.18)
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