
1

Introduction to Continuum Mechanics

1.1 Introduction

In this initial chapter, we introduce various fundamentals: description of deforma-
tion, definition and interpretation of the strain and stress tensors, balance laws, and
general restrictions on constitutive equations. These provide the foundation for later
developments.

A number of excellent, indeed hardly to be bettered, presentations of these ba-
sic topics exist in the literature, notably in [188, 205, 251, 313, 314]. Several for-
mulations of standard arguments in this chapter and the next are based on those in
[188, 251]. Other relevant texts are [281], the recent work [23], and the review [262].

An introduction to some notation and results relating to finite-dimensional vector
spaces required in this and later chapters is given in Sect. A.2.

1.2 Kinematics

1.2.1 Continuous Bodies: Deformations—Strain Tensors

We will consider bodies the mass of which is distributed continuously. Moreover, a
given body will occupy different regions at different times, but none of these regions
will be intrinsically associated with the body. Thus, formally, a continuous body B
is a set of material points X, Y, . . . endowed with a structure defined by a class Φ of
one-to-one mappings ϕ : B→ E, where E is the three-dimensional Euclidean space,
such that

(i) ϕ(B) is a Kellogg regular region;∗

∗ By a Kellogg regular region, we mean a domain of the Euclidean space E bounded by a
union of a finite number of surfaces of class C1. A more formal definition of a subbody is
given in [32, 253, 278] (see also [2]).
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4 1 Introduction to Continuum Mechanics

(ii) if ϕ, ψ ∈ Φ, then the function λ = ϕ ◦ ψ−1 : ψ(B) → ϕ(B) ∈ C1(ψ(B)) is called
a deformation (of class C1) of B from ψ(B) to ϕ(B) ;

(iii) if ϕ ∈ Φ and λ : ϕ(B)→ E is a deformation of class C1, then the mapping λ ◦ ϕ
is also in Φ.

The functions ϕ are referred to as localizations of B, and they determine the
possible configurations of the body in the space E. A localization provides at any
material point X ∈ B the corresponding geometric point x = ϕ(X) ∈ E.

The hypotheses (i)–(iii) introduce a unique structure of a differential variety on
B.†

The set Φ of all possible localizations of B allows us to locate B in E, as well
as to define the internal constraints of material systems. We consider as an example
a rigid body for which the class Φ must be defined so that for each pair ϕ1, ϕ2 ∈ Φ,
we have

d(ϕ1(X), ϕ1(Y)) = d(ϕ2(X), ϕ2(Y))

for all X, Y ∈ B, where d is the metric of the Euclidean space E.
Moreover, for any continuous body B, it is possible to determine a class S of

subbodies A, B, C, . . . of B, characterized by the following properties:

(a) B ∈ S;
(b) any element A ∈ S is such that ϕ(A) is a Kellogg regular region of E, for any
ϕ ∈ Φ.‡

On the class S of subbodies, it is possible to define a measure that allows us to give
a definition of the density and of the mass.

Definition 1.2.1. The mass is a measure M : S → R
+ absolutely continuous with

respect to the ordinary volume measure; that is, for each ϕ ∈ Φ, there is an integrable
function ρ̂ϕ : ϕ(B)→ R

+, the density of mass, such that the mass relative to A is

M(A) =
∫
ϕ(A)
ρ̂ϕ(x) dv,

for all A ∈ S.
A motion of B with respect to a fixed observer O is a sufficiently regular function§

χ̃ : B × I → E, (1.2.1)

† In other words, the body B does not identify itself with a particular configuration, but with
the set of all possible configurations it can assume and hence with a differential variety.
‡ The given definition for a subbody is independent of the chosen localization ϕ. In fact,
if ψ is another localization, then the transformation λ=ϕ ◦ ψ−1 : ψ(B)→ϕ(B) possesses
an inverse of class C1. Therefore, if ϕ(A) is a regular region, then ψ(A) will be a regular
region of E.
§ With respect to each context, the condition of being sufficiently regular may have various
senses. For our purposes, the function χ is assumed to be twice continuously differentiable
in the domain of existence.
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where I ⊂ R is a time interval.
In what follows, we will identify the body B with one of its particular configura-

tions, namely the reference configuration ϕ0(B) (see Fig. 1.1). Moreover, the func-
tion χ̃ is such that for each t ∈ I, the new function χ̃t : ϕ0(B) → ϕt(B), which
represents the deformation of the body B from ϕ0(B) to ϕt(B), has an inverse, that
is, there exists a function

χ̃−1t : ϕt(B)→ ϕ0(B). (1.2.2)

Fig. 1.1. The deformation of a body from ϕ0(B) to ϕt(B)

Hence χ̃t is assumed to be one-to-one. This hypothesis expresses the requirement
that the body does not penetrate itself. Thus, two distinct points of the configuration
ϕ0(B) must be distinct in all other configurations.

It is possible to write the transformations (1.2.1) and (1.2.2) in the following
forms:

x = χ̃(X, t),

X = χ̃−1(x, t).
(1.2.3)

The function defined by (1.2.3)1 represents the position occupied by the particle X at
the instant t, while relation (1.2.3)2 locates the particle X that occupies the point x at
the instant t. The variables (X, t) are the Lagrangian or material coordinates, while
(x, t) are the Eulerian or spatial coordinates. The relations in (1.2.3) demonstrate
that it is possible to express any physical quantity F in terms of material or spatial
coordinates by

F̃(X, t) = F̃(χ̃−1(x, t), t) = F̂(x, t). (1.2.4)

Definition 1.2.2. The Lagrangian description is the description of motion in terms of
the variables (X, t), while the Eulerian description is that referring to the variables
(x, t).
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As an example we consider the velocity of a particle X at the instant t, defined as

ṽ(X, t) =
∂χ̃

∂t
(X, t);

on the basis of relation (1.2.3)2, it is possible to express such a quantity in terms of
the Eulerian variables as

v̂(x, t) = ṽ(χ̃−1(x, t), t). (1.2.5)

Remark 1.2.3. The time derivative of a quantity F has different expressions, depend-
ing on the description. In fact, by direct differentiation with respect to t of (1.2.4),
we obtain

∂F̃

∂t
=
∂F̂

∂t
+ ∇xF̂ · v, (1.2.6)

where ∇x is the spatial gradient operator. The partial derivative on the left is taken
holding X fixed, while in that on the right, x is fixed.

The derivative ∂F̃
∂t is the material derivative (or the total derivative), denoted by

dF̂
dt
=
∂F̃

∂t
. (1.2.7)

If we choose as F the velocity v, then, by virtue of (1.2.6), we have that the acceler-
ation is given by

a =
∂

∂t
ṽ(X, t) =

∂v̂
∂t

(x, t) + ∇xv̂(x, t) v.

Definition 1.2.4. The material gradient of deformation is the tensor

F(X, t) = ∇Xχ̃(X, t), that is, Fi j =
∂χ̃i
∂Xj
, (1.2.8)

where ∇X is the material gradient operator. The velocity gradient is the tensor

L(X, t) = L(χ̃(X, t), t) = ∇xv̂(x, t). (1.2.9)

Remark 1.2.5. If we set Ḟ = ∂F
∂t , then

Ḟ = LF. (1.2.10)

In fact, we have
Ḟ = ∇Xṽ = ∇xv̂∇Xχ̃. (1.2.11)

Remark 1.2.6. The requirement that the body does not penetrate itself is expressed
by the assumption that

det (F) = det (∇Xχ̃) � 0.

Furthermore, a deformation with det (∇Xχ̃) < 0 cannot be reached by a continuous
process of deformation starting from the reference configuration, that is, by a con-
tinuous one-parameter family χ̃σ (0 ≤ σ ≤ 1) of deformations with χ̃0 the identity,
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χ̃1 = χ̃, and det (∇Xχ̃σ) never zero. Indeed, since det (∇Xχ̃σ) is strictly positive at
σ = 0, it must be strictly positive for all σ. Thus, we require that

detF > 0. (1.2.12)

The above discussion motivates the following definition.

Definition 1.2.7. By a deformation of B, we mean a smooth one-to-one mapping χ̃,
which maps B onto a closed region in E and satisfies (1.2.12). The vector

u(X, t) = χ̃(X, t) − X

represents the displacement of X. A deformation with F constant is called homoge-
neous.

The geometric significance of the tensor F becomes clear on observing that

χ̃(X′, t) − χ̃(X, t) = ∇Xχ̃(X, t)(X′ − X) + o
(∣∣∣X′ − X

∣∣∣),
for all X′ in a neighborhood of X, so that we can write

dx = FdX. (1.2.13)

Thus, the tensor F transforms the small quantity dX of the configuration ϕ0(B) into
the small displacement dx of the configuration ϕt(B) (see Fig. 1.2). Let

F = RU = VR (1.2.14)

be the polar decomposition of F at a given point, where R represents the rotation
tensor, U is the right stretch tensor, and V is the left stretch tensor for the deformation
χ̃. Thus, R(P) measures the local rigid rotation of points near P, while U(P) and
V(P) measure local stretching from P. The tensors U(P) and V(P) are symmetric.
Since U =

√
FTF and V =

√
FFT involve the square roots of FTF and FFT , their

computation is often difficult. For this reason we introduce the right and left Cauchy–
Green strain tensors C and B, defined by

C = U2 = FTF, B = V2 = FFT , (1.2.15)

and note that
V = RURT , B = RCRT .

In components, we have

Ci j =

3∑
m=1

∂χ̃m
∂Xi

∂χ̃m
∂Xj
, Bi j =

3∑
m=1

∂χ̃i
∂Xm

∂χ̃ j

∂Xm
.
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Since Cu · v = Fu · Fv for all u, v ∈ V and Cu · u = Fu · Fu > 0 for all u ∈ V\{0}, it
follows that C is a symmetric and positive definite tensor (Sect. A.2.1).

Fig. 1.2. The quantities dX and dx related by (1.2.13)

In view of the relation (1.2.12), it follows that F admits an inverse denoted by
F−1, the spatial gradient of deformation, given by

F−1 = ∇xX, or F−1i j =
∂χ̃−1i
∂x j
.

With this we can introduce the right and left Cauchy strain tensors, c and b, defined
by

c =
(
F−1
)T

F−1, b = F−1
(
F−1
)T
, (1.2.16)

or, in components,

ci j =
3∑

m=1

∂χ̃−1m
∂xi

∂χ̃−1m
∂x j
, bi j =

3∑
m=1

∂χ̃−1i
∂xm

∂χ̃−1j
∂xm
.

If dX and δX are two displacement elements related to the point X that at the
instant t are transformed into two displacements dx and δx, respectively, related to
the point x = χ̃(X, t), so that

dx = FdX, δx = FδX, (1.2.17)

then
dx · δx = dX · FTFδX = dX · CδX. (1.2.18)
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If the continuous body is rigid, then from the relation (1.2.18), we get necessarily
C = 1, the unit second-order tensor. When the body is not rigid, we can determine
the elongation of the element dX, associated with the tensor C, by

|dx|2 = dx · dx = dX · CdX, (1.2.19)

so that the relative elongation is

|dx|2 − |dX|2 = 2EdX · dX = 2edx · dx,

where

E =
1
2
(C − 1) and e =

1
2
(1 − c) (1.2.20)

are Green’s strain tensor and Almansi’s strain tensor, respectively. Obviously, for a
rigid deformation of the body, we have E = 0 and e = 0. Thus, the tensor E appears
as a measure of Lagrangian deformation, while the tensor e represents a measure of
Eulerian deformation.

In terms of the displacement vector u(X, t) = χ̃(X, t)−X or u(x, t) = x− χ̃−1(x, t),
the gradients of deformation are

F = ∇Xu + 1, F−1 = 1 − ∇xu,

and hence, from (1.2.20), the strain tensors are

E =
1
2

[
∇Xu + (∇Xu)T + (∇Xu)T∇Xu

]
,

e =
1
2

[
∇xu + (∇xu)T − (∇xu)T∇xu

]
.

(1.2.21)

The relations in (1.2.21) are known as the strain–displacement (or geometrical) re-
lations.

Remark 1.2.8. (Geometric Significance of the Strain Tensors) The components
E11, E22, and E33 of the strain tensor E characterize the relative elongations in the di-
rections of i1, i2, and i3, respectively, while the components Ei j, with i � j, represent
a measure of the variation of angles due to the process of deformation.

To see this, we first note that the relation (1.2.19) can be written in the form

|dx|2
|dX|2 = N · CN,

where N = dX
|dX| . If we set Λ(N) =

|dx|
|dX| , then we have

Λ(N) = (N · CN)
1
2 =
√

N · (1 + 2E)N.
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We further introduce the unit elongation E(N) in the direction of unit vector N, by

E(N) = Λ(N) − 1 = |dx| − |dX|
|dX| ,

so that when N = i1, for example, then

E(i1) =
√
1 + 2E11 − 1,

and hence E11 appears as a measure for the elongation in the direction of i1.
Let us further consider the vectors dX1 = dX1i1 and dX2 = dX2i2, and let dx1 =

FdX1 and dx2 = FdX2 be the corresponding vectors in the current configuration.
Obviously, we have dX1 · dX2 = 0, that is, the angle Θ12 between these vectors is π2 .
On the other hand, the corresponding angle θ12 between the vectors dx1 and dx2 is
given by

cos θ12 =
dx1 · dx2
|dx1| |dx2| =

C12√
C11C22

=
2E12√

(1 + 2E11)(1 + 2E22)
,

and hence E12 appears as a measure of the variation of the angle Θ12 due to the
deformation.

We now recall that given a tensor S ∈ Lin(R3), the determinant of S − λ1 admits
the representation (the Cayley–Hamilton theorem)

det (S − λ1) = −λ3 + I1(S)λ2 − I2(S)λ + I3(S)

for every λ ∈ R, where
I1(S) = trS = S 11 + S 22 + S 33,

I2(S) =
1
2

[
(trS)2 − tr

(
S2
)]
,

I3(S) = det S.

(1.2.22)

We call I1(S), I2(S), and I3(S) the principal invariants of S and observe that they are
invariant under changes of reference frames. We also note that any other invariant
of S is a function of its principal invariants. When S is symmetric, the principal
invariants are completely characterized by the spectrum {λ1, λ2, λ3} of S. Indeed,

I1(S) = λ1 + λ2 + λ3,

I2(S) = λ1λ2 + λ2λ3 + λ3λ1,

I3(S) = λ1λ2λ3.

By substituting S by C, c, E, or e in the above relations, we can determine ex-
pressions for the principal invariants of these tensors and relationships between them.
Thus, from (1.2.20) and (1.2.22), we obtain
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I1(C) = 3 + 2I1(E), I2(C) = 3 + 4I1(E) + 4I2(E),

I3(C) = 1 + 2I1(E) + 4I2(E) + 8I3(E),

I1(c) = 3 − 2I1(e), I2(c) = 3 − 4I1(e) + 4I2(e),
I3(c) = 1 − 2I1(e) + 4I2(e) − 8I3(e).

Moreover, we observe that the relations (1.2.15), (1.2.16)1, and (1.2.22)3 give

I3(C) = (detF)2, I3(c) =
1

(detF)2
,

and hence
I3(C)I3(c) = 1.

Definition 1.2.9. The stretching D (or velocity of deformation) is

D =
1
2

(
L + LT

)
=

1
2

[
∇xv̂ + (∇xv̂)T

]
, (1.2.23)

where L is defined by (1.2.9), while the spin Ω is

Ω =
1
2

(
L − LT

)
=

1
2

[
∇xv̂ − (∇xv̂)T

]
. (1.2.24)

Thus, the stretching and the spin represent the symmetric and skew parts of the spa-
tial gradient of velocity, respectively. Moreover, we have

L = D +Ω. (1.2.25)

Note that

d
dt
|dx|2 = d

dt
(dx · dx) = 2

d
dt
(dx) · dx

= 2
d
dt
(FdX) · dx = 2

d
dt
(F)dX · dx,

and hence, in view of relation (1.2.10),

d
dt
|dx|2 = 2LFdX · dx = 2Ldx · dx = 2dx · LTdx

= 2dx ·
(

L + LT

2

)
dx = 2dx · Ddx.

(1.2.26)

Thus, the stretching D is a measure of the variation per unit time of the arc (dx)2.
Therefore, when D = 0, then there is no change in |dx|2 over time.

Theorem 1.2.10. A necessary and sufficient condition for a motion to be locally rigid
is D = 0.
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Proof. From Taylor’s formula, the velocity in a neighborhood of the point x0 is

v̂(x, t) = v̂(x0, t) + ∇xv̂(x0, t)(x − x0) + o (|x − x0|),
so that in view of the relation (1.2.25), we obtain

v̂(x, t) = v̂(x0, t) + D(x0, t)(x − x0) +Ω(x0, t)(x − x0) + o (|x − x0|).
SinceΩ is a skew-symmetric tensor, it follows that it is possible to associate with

it the vector ω = Ω32i1 + Ω13i2 + Ω21i3, known as the vorticity vector, such that

Ω(x − x0) = ω × (x − x0). (1.2.27)

Therefore, in a neighborhood of the point x0, neglecting terms of order higher than 1
in |x − x0|, we have

v̂(x, t) = v̂(x0, t) + ω × (x − x0) + D(x − x0). (1.2.28)

Thus, when D = 0, the velocity is a composition of a translation and a rotation, which
is a rigid motion.

Conversely, when the motion is rigid, (1.2.28) implies that D = 0. ��
Remark 1.2.11. In general, as can be seen from (1.2.28), the motion is a superposed
rigid motion on an instantaneous extension.

From (1.2.24) and (1.2.27), we have

ω = Ω32i1 + Ω13i2 + Ω21i3 =
1
2

[(
∂v3
∂x2
− ∂v2
∂x3

)
i1

+

(
∂v1
∂x3
− ∂v3
∂x1

)
i2 +
(
∂v2
∂x1
− ∂v1
∂x2

)
i3

]
,

and hence

ω =
1
2
(∇x × v).

If ω = 0, then we say that the motion is irrotational, and the velocity field has no
vortices. In this case there exists a scalar field such that v = ∇xϕ, as stated by the
following theorem.

Theorem 1.2.12. Let D be a given simply connected volume in R
3 and v : D → R

3

a function of class C1(D) that satisfies

∇x × v = 0 in D.

Then there exists a function ϕ : D→ R such that

v = ∇xϕ in D.
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Proof. Let S be an arbitrary surface contained in D, and letC be its relative boundary
curve. Under appropriate regularity assumptions upon S and C, we can use Stokes’s
formula ∫

S
(∇x × v) · ndσ =

∫
C

v · dx =
∫
C
v1dx1 + v2dx2 + v3dx3,

where, since ∇x × v = 0, the differential form v1dx1 + v2dx2 + v3dx3 is a total differ-
ential. Therefore, there exists a potential ϕ such that

dϕ = v1dx1 + v2dx2 + v3dx3,

which yields v = ∇xϕ. ��
Let us consider the transformation between the configuration ϕ0(B) and the con-

figuration ϕt(B) given by
χ̃t : ϕ0(B)→ ϕt(B).

The Jacobian of the transformation,

J(X, t) = det

(
∂χ̃t
∂X

)
= detF(X, t),

is a measure of volume change due to the deformation. If we denote by dv0 a volume
element in the configuration ϕ0(B) and by dvt the corresponding volume element in
the configuration ϕt(B), then we have

dvt = Jdv0. (1.2.29)

Theorem 1.2.13. The time derivative of the Jacobian is given by

dJ
dt
= J̇ = Jdivxv, (1.2.30)

where divx is the spatial divergence operator.

Proof. Direct differentiation with respect to t of the relation J = detF gives

J̇ =
dJ
dt
= Ḟ · A,

where the tensor A has components Ahm = J
(
F−1
)
mh
. Therefore, using relation

(1.2.10), we obtain

J̇ = LhkFkmAhm = JLhkFkm

(
F−1
)
mh
= JLhkδkh = JLhh,

which is relation (1.2.30). ��
Remark 1.2.14. It is understood that these italic subscripts range over 1, 2, and 3.
Moreover, we use the convention of summation over repeated subscripts, unless
stated otherwise.
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Definition 1.2.15. A deformation x = χ̃(X, t) is isochoric (volume-preserving) if
given any subbody B of ϕ0(B), we have vol(χ̃(B)) = vol(B).

An immediate consequence of this definition is the following result.

Proposition 1.2.16. A deformation is isochoric if and only if detF = 1.

Remark 1.2.17. From relation (1.2.19), we deduce that

d
dt
|dx|2 = dX · ĊdX,

so that comparing with relation (1.2.26) and using (1.2.17), we obtain

Ċ = 2FTDF.

Moreover, (1.2.20)1 gives
Ė = FTDF.

1.2.2 Small Deformations: The Saint-Venant Compatibility Conditions

We now study the behavior of the various kinematic fields when the displacement
vector is of the form uε = εu, where ε is a parameter such that εp is negligible if
p ≥ 2, while u is a vector independent of ε. The theory corresponding to such small
displacements is known as the infinitesimal or linear theory of deformation. In such
a theory, we have

xi = Xi + uεi,

and the partial derivatives of the displacement vector with respect to the spatial co-
ordinates coincide with the partial derivatives of the same vector with respect to the
material coordinates. In fact, we have, for example,

∂uεi
∂X1
=
∂uεi
∂x j

∂x j
∂X1
=
∂uεi
∂x j

(
δ1 j +

∂uε j
∂X1

)
=
∂uεi
∂x1
+ O
(
ε2
)
, etc.

On the basis of relations of this type and from (1.2.21), we deduce that the La-
grangian and Eulerian strain tensors E and e coincide with the infinitesimal strain
tensor ε defined by

ε =
1
2

(
∇u + ∇uT

)
, (1.2.31)

where ∇u = ∇xu = ∇Xu. In component form, we have

εi j =
1
2

(
ui, j + u j,i

)
. (1.2.32)

Theorem 1.2.18. (Saint-Venant’s Compatibility Conditions) The infinitesimal
strain tensor εi j corresponding to a displacement vector field u of class C3 satis-
fies the following compatibility equations:
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εii, j j + ε j j,ii = 2εi j,i j (i � j, not summed),

εi j,rr + εrr,i j = ε jr,ir + εir, jr (i � j � r � i, not summed).
(1.2.33)

Moreover, if B0 is a simply connected region in R
3 and εi j is a symmetric tensor of

class C2 defined on B0 satisfying the conditions described by (1.2.33), then there ex-
ists a displacement vector field u such that its corresponding strain tensor calculated
by means of relation (1.2.32) coincides with εi j. Such a displacement vector field is
given by

ui(x) =
∫ x

x0

(
εi j + ω

∗
i j

)
dξ j + ω

0
i j

(
x j − x0j

)
+ u0i , (1.2.34)

where

ω∗i j(x) =
∫ x

x0

(
εik, j − εk j,i

)
dξk,

while ω0
i j = −ω0

ji and u0i are arbitrary constants. Also, the integrals are independent
of the curve connecting the points x0 and x.

Proof. We first note that the relations in (1.2.33) are identically satisfied for εi j given
by (1.2.32).

In order to prove the second part of the theorem, we introduce the skew-
symmetric tensor

ωi j =
1
2

(
ui, j − u j,i

)
,

which, when coupled with (1.2.32), gives

ui, j = εi j + ωi j.

Furthermore,
dui = ui, jdx j =

(
εi j + ωi j

)
dx j (1.2.35)

is an exact differential in B0 (that is, ui, jk = ui,k j) if and only if

εi j,k + ωi j,k = εik, j + ωik, j. (1.2.36)

By a cyclic permutation of the indices i, j, and k in (1.2.36), we obtain

ε jk,i + ω jk,i = ε ji,k + ω ji,k (1.2.37)

and
εki, j + ωki, j = εk j,i + ωk j,i. (1.2.38)

If we now add (1.2.36) and (1.2.37) and from the result subtract (1.2.38), taking into
account the relations εi j = ε ji and ωi j = −ω ji, then we obtain

ωi j,k = εik, j − εk j,i.

Furthermore, dωi j = ωi j,kdxk =
(
εik, j − εk j,i

)
dxk is an exact differential in B0 (that is,

ωi j,kl = ωi j,lk) if and only if
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εik, jl − εk j,il = εil, jk − εl j,ik,
or

εi j,kl + εkl,i j − εil, jk − ε jk,il = 0. (1.2.39)

It is easy to verify that the relations in (1.2.39) are equivalent to those given by
(1.2.33), and from these conditions, it follows that dωi j = ωi j,kdxk =

(
εik, j − εk j,i

)
dxk

is an exact differential, giving

ωi j(x) =
∫ x

x0

(
εik, j − εk j,i

)
dξk + ω

0
i j, (1.2.40)

where ω0
i j = −ω0

ji are arbitrary constants. We note that the above integral is indepen-
dent of the curve connecting the points x0 and x.

At this stage we observe that the necessary and sufficient conditions for the inte-
grability of the differential form (1.2.35) are satisfied and hence

ui =
∫ x

x0

(
εi j + ωi j

)
dξ j + u

0
i , (1.2.41)

where u0i are arbitrary constants.
Finally, we substitute ωi j(·) given by (1.2.40) into (1.2.41) to obtain the relation

(1.2.36). ��
Remark 1.2.19. From the above analysis, we can deduce that εi j = 0 if and only if u
is an infinitesimal rigid displacement u∗, given by

u∗i = ai + ei jk x jbk,

where ai = u0i − ω0
i j x

0
j and bi = ei jkω0

jk are arbitrary constants.

Remark 1.2.20. The relation (1.2.34) can be rewritten as

ui =
∫ x

x0

(
εi j + ω

∗
i j

)
dξ j + u

∗
i ,

so that the displacement vector field is determined uniquely by εi j up to an infinites-
imal rigid displacement.

1.2.3 Transformation of Areas and Volumes: Transport Theorems

We first discuss how the area and volume elements change as a result of a given
deformation. To this end, let us consider the vectors dX1 = dX1i1, dX2 = dX2i2,
and dX3 = dX3i3, which, with the deformation x = χ̃(X, t), become dx1 =

∂x1
∂X1

dX1,

dx2 =
∂x2
∂X2

dX2, and dx3 =
∂x3
∂X3

dX3, respectively. Let dA3 be the area vector associated
with the rectangle determined by the vectors dX1 and dX2, and let dσ3 be the cor-
responding area vector associated with the parallelogram determined by the vectors
dx1 and dx2, that is,
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dA3 = dX1 × dX2, dσ3 = dx1 × dx2.

Obviously, we have

dσ3 =
∂x1
∂X1
× ∂x2
∂X2

dA3 = ei jk
∂xi
∂X1

∂x j
∂X2

ikdA3. (1.2.42)

Since

J = detF = ei jk
∂xi
∂X1

∂x j
∂X2

∂xk
∂X3
,

we can rewrite the relation (1.2.42) in the form

dσ3 = J
∂X3

∂x j
i jdA3. (1.2.43)

A general area element dA will have components on all three axes. By an analogous
procedure, one obtains

dσ1 = J
∂X1

∂x j
i jdA1, dσ2 = J

∂X2

∂x j
i jdA2. (1.2.44)

If we now set
da = dσ1 + dσ2 + dσ3,

then, by (1.2.43) and (1.2.44),

da = J
∂Xk

∂x j
dAki j. (1.2.45)

Thus, putting
da = da ji j,

it follows from (1.2.45) that

da j = J
∂Xk

∂x j
dAk, (1.2.46)

a relation that expresses the change of an area element due to the given deformation.
On the other hand, the volume element dvt of the parallelepiped, determined by

the vectors dx1, dx2, and dx3, is

dvt = dx1 × dx2 · dx3 = JdX1dX2dX3 = Jdv0. (1.2.47)

It can be shown that for small deformations, in the limit of a linear theory, relation
(1.2.47) gives

dvt − dv0
dv0

= εii = tr ε = I1(ε),

so that I1(ε) represents the variation of volume per unit undeformed volume.
Let x = χ̃(X, t) be a motion of the body B. For any subbody A of B, we write

ϕt(A) = χ̃(A, t) for the region of space occupied by A at time t. Then the volume of
ϕt(A) is
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vol(ϕt(A)) =
∫
ϕt(A)

dvt,

so that using a change of variables in this volume integral, we can write

vol(ϕt(A)) =
∫
ϕ0(A)

Jdv0.

Thus, by virtue of relation (1.2.30), we have

d
dt
[vol(ϕt(A))] =

∫
ϕ0(A)

J̇dv0 =
∫
ϕt(A)

J̇ J−1dvt =
∫
ϕt(A)

divxvdvt.

This relation allows us to formulate the following results.

Theorem 1.2.21. (Transport of Volume) For any subbody A of B and time t, de-
noting by n the outward unit normal vector on the boundary ∂ϕt(A) of ϕt(A), we
have

d
dt
[vol(ϕt(A))] =

∫
ϕ0(A)

J̇dv0 =
∫
ϕt(A)

divxvdvt =
∫
∂ϕt(A)

v · ndat.

Since A is arbitrary, it follows from the third integral that divxv represents the rate
of change of volume per unit volume in the current configuration.

Theorem 1.2.22. (Characterization of Isochoric Motions) The following asser-
tions are equivalent: (a) x = χ̃(X, t) is isochoric, (b) J̇ = 0, (c) divxv = 0, and
(d)
∫
∂ϕt(A)

v · ndat = 0 for every subbody A and any time t.

We can now establish the following general result.

Theorem 1.2.23. (Reynold’s Transport Theorem) Let F be a smooth spatial field,
and assume that F is either scalar-valued or vector-valued. Then for any subbody A
and time t, we have

d
dt

∫
ϕt(A)

F̂(x, t) dvt =
∫
ϕt(A)

[
d
dt
F̂(x, t) + F̂divxv

]
dvt

=

∫
ϕt(A)

∂F̂

∂t
(x, t) dvt +

∫
∂ϕt(A)

F̂v · ndat.
(1.2.48)

Proof. For the transformation x = χ̃(X, t), since dvt = Jdv0, we have∫
ϕt(A)

F̂(x, t) dvt =
∫
ϕ0(A)

F̃(X, t)J(X, t) dv0,

and hence

d
dt

∫
ϕt(A)

F̂(x, t) dvt =
∫
ϕ0(A)

∂

∂t
[F̃(X, t)J(X, t)]dv0

=

∫
ϕ0(A)

[
∂

∂t
F̃(X, t)J(X, t) + F̃(X, t)

∂

∂t
J(X, t)

]
dv0,
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so that using (1.2.7) and (1.2.30), we have

d
dt

∫
ϕt(A)

F̂(x, t) dvt =
∫
ϕ0(A)

[
∂

∂t
F̃(X, t) + F̃(X, t)divxv

]
J(X, t) dv0

=

∫
ϕt(A)

[
d
dt
F̂(x, t) + F̂(x, t)divxv

]
dvt,

(1.2.49)

which is (1.2.48)1. Relation (1.2.48)2 follows from (1.2.49)1 by using (1.2.6) and
applying the divergence theorem. ��
Remark 1.2.24. We note that

∫
ϕt(A)

∂F̂

∂t
(x, t) dvt =

[
d
dτ

∫
ϕt(A)

F̂(x, τ) dvt

]
τ=t

.

Thus, (1.2.48)2 asserts that the rate at which the integral of F over ϕt(A) is changing
is equal to the rate computed as if ϕt(A) were fixed in its current position plus the
rate at which F is carried out of this region across its boundary.

1.3 Principles of Continuum Mechanics

1.3.1 Principle of Conservation of Mass

Given a deformation x = χ̃(X, t) of the body B, we will write ρ(x, t) = ρχ̃(·,t)(x) for
the density at the position x ∈ χ̃(B, t).
• Principle of conservation of mass: The mass of any subbody A of B is con-
served in time, so that we have

∫
ϕ0(A)
ρ(X, 0) dv0 =

∫
ϕt(A)
ρ(x, t) dvt. (1.3.1)

In what follows, we will denote by ρ0(X) the reference mass density ρ(X, 0). Relation
(1.3.1) expresses the principle of conservation of mass in integral form. We wish to
establish a local form of this principle.

Theorem 1.3.1. The local version of the principle of conservation of mass takes one
of the following forms:

ρ0 = ρJ,

ρ̇ + ρ divxv = 0,

∂ρ

∂t
+ divx(ρv) = 0.

(1.3.2)
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Proof. If we change the variable of integration on the right-hand side of relation
(1.3.1) from x to X, we arrive at

∫
ϕ0(A)
ρ0(X) dv0 =

∫
ϕ0(A)
ρ(χ̃(X, t), t)Jdv0,

so that ∫
ϕ0(A)

[ρ(χ̃(X, t), t)J − ρ0(X)]dv0 = 0, (1.3.3)

for every subbody A of the body B. We deduce from (1.3.3) the local form of the
principle of conservation of mass expressed by (1.3.2)1.

Furthermore, by differentiation of (1.3.2)1 with respect to the time variable, we
obtain

ρJ̇ + ρ̇J = 0,

which with the aid of (1.2.30) yields (1.3.2)2. Next, by (1.2.6), we have

ρ̇ =
∂ρ

∂t
+ v · ∇xρ,

so that (1.3.2)2, combined with this relation, implies (1.3.2)3. ��
Remark 1.3.2. The local form of the conservation of mass expressed by (1.3.2)1 is
referred to as the continuity equation in Lagrangian form, while (1.3.2)2 is the con-
tinuity equation in spatial form.

By virtue of the above forms of the principle of conservation of mass, Reynold’s
transport theorem takes a simplified form.

Theorem 1.3.3. Let F be a smooth spatial field, either scalar-valued or vector-
valued. Then, for any subbody A of B and time t, we have

d
dt

∫
ϕt(A)

F̂(x, t)ρ(x, t) dvt =
∫
ϕt(A)

d
dt

[
F̂(x, t)

]
ρ(x, t) dvt. (1.3.4)

Thus, to differentiate the integral
∫
ϕt(A)

Fρdvt

with respect to time, we simply differentiate under the integral sign, treating themass
measure ρdvt as a constant.

Proof. We replace F by Fρ in Reynold’s transport relation (1.2.48) and then use the
form (1.3.2)2 of the principle of conservation of mass to obtain (1.3.4). ��
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1.3.2 Momentum Balance Principles

Let x = χ̃(X, t) be a motion of the body B, and let A be a subbody of B. Then the
linear momentum Q(A, t) and the angular momentum K0(A, t) (about the origin) of
A at time t are given by

Q(A, t) =
∫
ϕt(A)

vρdvt (1.3.5)

and

K0(A, t) =
∫
ϕt(A)

(x − x0) × vρdvt. (1.3.6)

In view of the rule (1.3.4), we obtain, from (1.3.5) and (1.3.6),

d
dt

Q(A, t) =
∫
ϕt(A)

v̇ρdvt (1.3.7)

and
d
dt

K0(A, t) =
∫
ϕt(A)

(x − x0) × v̇ρdvt. (1.3.8)

During a given motion, the mechanical interactions between parts of a body or
between a body and its environment are described by forces. In what follows, we will
be concerned with three types of force: (i) contact forces between parts of a body, (ii)
contact forces exerted on the boundary of a body by its environment, and (iii) body
forces exerted on the interior points of a body by the environment.

The environment can exert forces on interior points of B, a classical example
being the force field due to gravity. Such forces are determined by a prescribed vector
field b on the trajectory T of the motion, so that b(x, t) gives the force, per unit mass,
exerted by the environment on x at time t. Thus, for any subbody A of B, the integral

∫
ϕt(A)

b(x, t)ρdvt

gives that part of the environmental force on A acting at a distance at time t (not due
to contact).

Let us now consider the contact forces. To this end we use Cauchy’s hypothesis
concerning the form of the contact forces: Assume the existence of a surface force
density t = t(x, t; n) defined for every (x, t) in the trajectory T of the motion and for
each unit vector n. To make this hypothesis more precise, we consider an oriented
surface S in ϕt(B) with positive unit normal n at x. Then t(x, t; n) represents the
force, per unit area, exerted across S upon the material on the negative side of S by the
material on the positive side. To determine the contact force between two subbodies
A and C at time t, one integrates t over the surface of contact St = ϕt(A) ∩ ϕt(C).
Thus, denoting by nx the outward unit normal to ∂ϕt(A) at x,

∫
St

t(x, t; nx)dat =
∫
St

t(n)dat (1.3.9)
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gives the force exerted on A by C at time t. Such a contact force depends on the
intrinsic structure of the material and is therefore unknown in general.

For points on the boundary of ϕt(B), t(x, t; n), with n the outward unit normal
to ∂ϕt(B) at x, gives the surface force, per unit area, applied to the body by the
environment. This force is referred to as the surface traction, and it is usually known.

The above discussion motivates the following definition.

Definition 1.3.4. By a system of forces for B during a motion (with trajectory T), we
mean a pair (t,b) of functions t : T × N → V, b : T → V, where N is the set of all
unit vectors and V is the vector space R3, so that (i) t(x, t; n) is a smooth function of
x on ϕt(B), for each n ∈ N and t ≥ 0 and (ii) b(x, t) is a continuous function of x on
ϕt(B), for each t ≥ 0. We refer to t as the surface force and b as the body force. The
force F(A, t) and the moment Ω0(A, t) (about the origin) on a subbody A at time t
are defined by

F(A, t) =
∫
ϕt(A)

bρdvt +
∫
∂ϕt(A)

t(n)dat (1.3.10)

and

Ω0(A, t) =
∫
ϕt(A)

(x − x0) × bρdvt +
∫
∂ϕt(A)

(x − x0) × t(n)dat. (1.3.11)

• The balance law of linear momentum: The time derivative of the linear mo-
mentum of every subbody A of B at time t is equal to the force F(A, t) acting on
that subbody at time t, so that

d
dt

Q(A, t) = F(A, t). (1.3.12)

• The balance law of angular momentum: The time derivative of the angular
momentum K0(A, t) of every subbody A of the body at time t is equal to the
moment Ω0(A, t) acting on that subbody at time t, that is,

d
dt

K0(A, t) = Ω0(A, t). (1.3.13)

Remark 1.3.5. We assume that there exists a laboratory frame of reference in which
Newton’s second law, (1.3.12), holds to a good approximation and refer to this and
all frames of reference traveling at constant velocities relative to it as inertial frames.
These are all connected by Galilean transformations, and Newton’s second law ap-
plies equally in all of them.

In view of relations (1.3.7)–(1.3.11), the laws (1.3.12) and (1.3.13) of momentum
balance can be written as follows:∫

ϕt(A)
v̇ρdvt =

∫
ϕt(A)

bρdvt +
∫
∂ϕt(A)

t(n)dat (1.3.14)

and
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∫
ϕt(A)

(x − x0) × v̇ρdvt =
∫
ϕt(A)

(x − x0) × bρdvt

+

∫
∂ϕt(A)

(x − x0) × t(n)dat.
(1.3.15)

Lemma 1.3.6. (Newton’s Law of Action and Reaction) For each x ∈ ϕt(B) and for
each unit vector n ∈ N, it follows that

t(x, t; n) = −t(x, t; −n), (1.3.16)

for fixed time t.

Proof. Let us denote by Rδ a volume centered at x, with rectangular sides. It has
dimensions δ × δ × δ2, and n is the unit normal to the δ × δ faces. Let Σ+δ be the face
with the outward unit normal n and Σ−δ the face with the outward unit normal −n.
Furthermore, we set ∂Rδ = Σ+δ ∪ Σ−δ ∪ Σ. Obviously, we have

vol(Rδ) = δ
4, Area(Σ+δ ) = Area(Σ−δ ) = δ

2, Area(Σ) = 4δ3. (1.3.17)

We further note that Rδ is contained in the interior of ϕt(B) for all sufficiently small
δ, say δ ≤ δ0.

We now apply (1.3.14) to the subbody A that occupies the region ϕt(A) ≡ Rδ.
Since b(x, t), ρ(x, t), and v̇(x, t) are continuous in x, it follows that the function b∗(x, t)
defined by b∗ = ρ(b − v̇) is bounded on Rδ0 for t fixed, and hence

κ(t) = sup
x∈Rδ0
|b∗(x, t)| < ∞. (1.3.18)

For convenience, we fix the time t and suppress it as an argument in most of what
follows.

From (1.3.14), we deduce∣∣∣∣∣∣
∫
∂Rδ

t(n)dat

∣∣∣∣∣∣ ≤ κ(t)vol (Rδ), (1.3.19)

so that on the basis of relations (1.3.17) and (1.3.18), we obtain

1
δ2

∫
∂Rδ

t(n)dat → 0 when δ→ 0. (1.3.20)

But ∫
∂Rδ

t(n)dat =
∫
Σ+δ

t(+n)dat +
∫
Σ−δ

t(−n)dat +
∫
Σ

t(n)dat. (1.3.21)

Since t(x;n) is continuous in x for each fixed n ∈ N, we have, using (1.3.17),

1
δ2

∫
Σ

t(n)dat → 0 when δ→ 0, (1.3.22)

1
δ2

∫
Σ+δ

t(+n)dat → t(x;+n),
1
δ2

∫
Σ−δ

t(−n)dat → t(x;−n), (1.3.23)
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when δ→ 0. Thus, relations (1.3.20)–(1.3.23) give

t(x;+n) + t(x;−n) = 0,

which is (1.3.16). ��
Theorem 1.3.7. (Cauchy’s Theorem for the Existence of Stress) Let (t,b) be a
system of forces for B during a motion. Then, a necessary and sufficient condition
that the momentum balance laws be satisfied is that there exists a spatial tensor field
T (the Cauchy stress) such that

(i) for each unit vector n ∈ N,
t(n) = Tn; (1.3.24)

(ii) T is symmetric;
(iii) T satisfies the equation of motion

ρv̇ = divxT + ρb. (1.3.25)

Proof. Necessity. Assume that the momentum balance laws (1.3.12) and (1.3.13) are
satisfied. We first note that (1.3.16) holds. Furthermore, we choose x to belong to
the interior of ϕt(B) and let δ > 0. Consider the tetrahedron Tδ with the following
properties: the faces of Tδ are Sδ, S1δ, S2δ, and S3δ, where n and −i j are the outward
unit normal vectors to ∂Tδ on Sδ and S jδ, j = 1, 2, 3, respectively; the vertex opposite
to Sδ is x; the distance from x to Sδ is δ (Fig. 1.3). Clearly, Sδ is contained in the
interior of ϕt(B) for all sufficiently small choices of δ, say δ ≤ δ0. Thus, we can
apply (1.3.14) to the subbody A that occupies the region Tδ at time t, and since
b∗ = ρ(b − v̇) is bounded on Tδ0 , we can conclude that∣∣∣∣∣∣

∫
∂Tδ

t(n)dat

∣∣∣∣∣∣ ≤ κ1(t)vol(Tδ), for all δ ≤ δ0, (1.3.26)

where κ1(t) is finite and independent of δ.
Let A(δ) denote the area of Sδ. Then vol(Tδ) = 1

3δA(δ), and hence we can con-
clude from (1.3.26) that

1
A(δ)

∫
∂Tδ

t(n)dat → 0 as δ→ 0. (1.3.27)

But ∫
∂Tδ

t(n)dat =
∫
Sδ

t(n)dat +
3∑
j=1

∫
S jδ

t(−i j)dat, (1.3.28)

and since t(x;n) is continuous in x for each fixed n = nji j ∈ N and Area
(
S jδ

)
=

A(δ)nj, we have

1
A(δ)

∫
Sδ

t(n)dat → t(x;n) as δ→ 0, (1.3.29)

1
A(δ)

∫
S jδ

t(−i j)dat → t(x;−i j)n j as δ→ 0 (not summed on j).
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Fig. 1.3. The stress tetrahedron

Combining (1.3.27)–(1.3.29) with Newton’s law of action and reaction (1.3.16), we
conclude that

t(x;n) = t(x; i j)n j, (1.3.30)

so t(x;n) is a linear function of the components of n, or

t(x;n) = T(x)n. (1.3.31)

We write this in components as

ti(x; n) = Ti j(x)n j,

where T, given by

(
Ti j

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
t1 (i1) t1 (i2) t1 (i3)
t2 (i1) t2 (i2) t2 (i3)
t3 (i1) t3 (i2) t3 (i3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

is the Cauchy stress tensor.
Using (1.3.31), the balance of linear momentum (1.3.14) takes the form

∫
ϕt(A)

v̇ρdvt =
∫
ϕt(A)

bρdvt +
∫
∂ϕt(A)

Tndat,

or equivalently, on applying the divergence theorem,
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∫
ϕt(A)

(v̇ρ − bρ − divxT) dvt = 0.

This last relation can hold for every subbody A of the body and time t only if the
equation of motion (1.3.25) is satisfied.

To complete the proof of necessity, we have only to establish the symmetry of
the Cauchy stress T. In fact, if we substitute (1.3.31) into (1.3.15), we obtain

∫
ϕt(A)

(x − x0) × (v̇ρ − bρ) dvt −
∫
∂ϕt(A)

(x − x0) × (Tn) dat = 0,

or, using the divergence theorem,
∫
ϕt(A)

(x − x0) × (v̇ρ − bρ − divxT) dvt −
∫
ϕt(A)

ei jkT jkiidvt = 0,

and hence, with the aid of the equation of motion (1.3.25), we deduce that
∫
ϕt(A)

ei jkT jkdvt = 0.

This relation can hold for every subbody A and time t only if

ei jkT jk = 0, that is, T23 = T32, T31 = T13, T12 = T21.

Sufficiency. Assume that there exists a symmetric spatial tensor field T consistent
with the relations (1.3.24) and (1.3.25). Then it is an easy task to prove that the
momentum balance laws (1.3.14) and (1.3.15) hold, and the proof is complete. ��
Remark 1.3.8. Actually, one can see that the points (i) and (iii) are equivalent to
balance of linear momentum, while, granted (1.3.14), the symmetry of the Cauchy
stress T is equivalent to balance of angular momentum.

Definition 1.3.9. If
Tn = σn, |n| = 1,

then σ is a principal stress and n is a principal direction, so that principal stresses
and principal directions are eigenvalues and eigenvectors of T.

Since T is symmetric, it follows that there exist three mutually perpendicular
principal directions and three corresponding principal stresses.

In general, the surface force t = Tn can be decomposed into the sum

t = T0n + t0,

where T0n is the normal force and t0 is the shearing force perpendicular to n. Obvi-
ously, we have

T0 = n · Tn, t0 = t − (n · Tn)n = (1 − n ⊗ n)Tn,
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where ⊗ denotes the tensor product of two vectors.¶ Clearly, n is a principal direction
if and only if the corresponding shearing force vanishes. The normal component of
the surface force is then a principal stress.

We now outline some important states of stress.
First consider a fluid at rest. It is incapable of exerting shearing forces, so that

Tn is parallel to n for each unit vector n, and hence every such unit vector is an
eigenvector of T. Thus, we have

T = −p1,

where p is a scalar quantity referred to as the pressure of the fluid. The force per unit
area on any surface in the fluid with unit normal n is −pn.

Other states of stress are pure tension (or compression), where the tensile stress
σ in the direction ν, with |ν| = 1, is defined by

T = σ (ν ⊗ ν),
and pure shear with shear stress τ relative to the direction pair (k,n), where k and n
are orthogonal unit vectors, given by

T = τ(k ⊗ n + n ⊗ k).

1.3.3 Consequences of Momentum Balance Laws

Definition 1.3.10. For every subbody A of a continuous body, we define the kinetic
energy of A at time t by

1
2

∫
ϕt(A)
ρv2dvt;

we further define the stress power of A at time t by
∫
ϕt(A)

T · Ddvt, (1.3.32)

where D is the stretching, defined by (1.2.23).

Theorem 1.3.11. The power expended on any subbody A at time t by the surface and
body forces is equal to the rate of change of kinetic energy plus the stress power, so
that∫

ϕt(A)
ρb · vdvt +

∫
∂ϕt(A)

t(n) · vdat = d
dt

∫
ϕt(A)

1
2
ρv2dvt +

∫
ϕt(A)

T · Ddvt. (1.3.33)

Proof. Since T is symmetric, then with the aid of (1.2.23), we can write

T · ∇xv = Ti j
∂vi
∂x j
= T ji

∂v j
∂xi
= Ti j

∂v j
∂xi
= Ti j

1
2

(
∂vi
∂x j
+
∂v j
∂xi

)
= T · D. (1.3.34)

¶ This is defined by the requirement that (a ⊗ b)c = (b · c)a, where a and b are given vectors
and c is an arbitrary vector.
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Furthermore, invoking (1.3.4), we have

d
dt

∫
ϕt(A)

1
2
ρv2dvt =

∫
ϕt(A)
ρv · v̇dvt. (1.3.35)

Now, using (1.3.24) and the divergence theorem, we obtain
∫
ϕt(A)
ρb · vdvt +

∫
∂ϕt(A)

t(n) · vdat =
∫
ϕt(A)
ρb · vdvt +

∫
∂ϕt(A)

Tn · vdat

=

∫
ϕt(A)
ρb · vdvt +

∫
∂ϕt(A)

n · TTvdat

=

∫
ϕt(A)

[(ρb + divxT) · v + T · ∇xv]dvt.

(1.3.36)

Combining (1.3.34) with (1.3.36) and using the equation of motion (1.3.25), we ob-
tain the relation (1.3.33). ��
Definition 1.3.12. Given a motion of the material, we refer to the list {v, ρ,T} as a
flow. The flow is steady if ϕt(B) = ϕ0(B) for all t and

∂v
∂t
= 0,

∂ρ

∂t
= 0,

∂T
∂t
= 0. (1.3.37)

In this case ϕ0(B) is called the flow region. A flow is potential if the velocity is the
gradient of a potential, that is, if there exists a function φ with the property that

v = ∇xφ. (1.3.38)

Finally, a flow is irrotational if curlxv = 0.

Theorem 1.3.13. (Bernoulli’s Theorem) Consider a flow {v, ρ,T}, where the stress
tensor is given by a pressure −p1 and the body force is conservative with potential
energy V. We have the following:

(i) If the flow is potential, then

∇x

(
∂φ

∂t
+
1
2

v2 + V
)
+
1
ρ
∇xp = 0. (1.3.39)

(ii) If the flow is steady, then

v · ∇x

(
1
2

v2 + V
)
+
1
ρ

v · ∇xp = 0. (1.3.40)

(iii) If the flow is steady and irrotational, then

∇x

(
1
2

v2 + V
)
+
1
ρ
∇xp = 0. (1.3.41)
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Proof. Since we have T = −p1, it follows that divxT = −∇xp, and therefore the
equation of motion (1.3.25) takes the form

ρv̇ = −∇xp + ρb. (1.3.42)

Since the body force is conservative, we have b = −∇xV. Moreover, for a potential
flow, we have, with the aid of (1.2.7),

v̇ =
∂v
∂t
+
1
2
∇x(v2) = ∇x

(
∂φ

∂t
+
1
2

v2
)
, (1.3.43)

while for a steady flow,

v · v̇ = v · ∇x

(
1
2

v2
)
, (1.3.44)

and for a steady irrotational flow,

v̇ = ∇x

(
1
2

v2
)
. (1.3.45)

Relations (1.3.43)–(1.3.45), when combined with (1.3.42), yield the desired results
(1.3.39)–(1.3.41). ��

1.3.4 The Piola–Kirchhoff Stresses

The Cauchy stress tensor T measures the contact force per unit area in the deformed
configuration, and it is convenient, especially for fluids whose current configura-
tion is supposed known in advance. For many other problems of interest—especially
those involving solids—it is convenient to work with a stress tensor that gives the
force measured per unit area in the reference configuration. This is because in such
problems the current configuration is not known in advance. To establish the form of
this tensor, we have to formulate the momentum balance laws relative to the refer-
ence configuration ϕ0(B).

Note that by virtue of the mass balance law (1.3.2)1, we can rewrite the momen-
tum balance laws (1.3.14) and (1.3.15) in the following forms:

∫
ϕ0(A)

v̇ρ0dv0 =
∫
ϕ0(A)

bρ0dv0 +
∫
∂ϕ0(A)

s(N)da0 (1.3.46)

and∫
ϕ0(A)

(x−x0)× v̇ρ0dv0 =
∫
ϕ0(A)

(x−x0)×bρ0dv0+
∫
∂ϕ0(A)

(x−x0)×s(N)da0, (1.3.47)

where s(N) represents the force vector acting on the surface ∂ϕt(A) but measured
per unit area of the surface ∂ϕ0(A) in the reference configuration, the outward unit
normal of which is denoted by N. We have

s(N)da0 = t(n)dat,
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so that using (1.2.46) and (1.3.30), where dai = nidat, dAj = Njda0, with n = niii,
N = Niii, we obtain that

s(N)da0 = t(i j)n jdat = t(i j)da j = t(i j)J
∂Xi

∂x j
dAi = t(i j)J

∂Xi

∂x j
Nida0.

We can write this relation in the form

s(N) = S(X)N, (1.3.48)

where S is a tensor given by

S = JT
(
F−1
)T
, (1.3.49)

known as the first Piola–Kirchhoff stress. In terms of components, this relation is

S i j = JTik
∂Xj

∂xk
⇔ Ti j =

1
J

∂x j
∂Xk

S ik.

Note that (1.3.48) is of the same form as (1.3.24). If we use (1.3.48) in the balance
laws (1.3.46) and (1.3.47), then the following result is obtained.

Proposition 1.3.14. The first Piola–Kirchhoff stress tensor satisfies the field equa-
tions

ρ0ẍ = DivXS + ρ0b (1.3.50)

and
SFT = FST . (1.3.51)

Here, the operator DivX is evaluated with respect to the material point X in the ref-
erence configuration.

Remark 1.3.15. It is important to note that by (1.3.51), S generally is not symmetric.
If we introduce the second Piola–Kirchhoff stress tensor Ŝ, defined by

Ŝ = F−1S, or, in components, Ŝ i j =
∂Xi

∂xk
S k j, (1.3.52)

then from (1.3.51), it follows that Ŝ is a symmetric tensor.

It is related to the Cauchy stress tensor by

Ŝ = JF−1T(F−1)�. (1.3.53)

We further have the following alternative version of the relation (1.3.33).

Theorem 1.3.16. (Theorem of Power Expended) For every subbody A of the body,
we have∫
ϕ0(A)
ρ0b · ẋdv0+

∫
∂ϕ0(A)

s(N) · ẋda0 = d
dt

∫
ϕ0(A)

1
2
ρ0ẋ2dv0+

∫
ϕ0(A)

S ·Ḟdv0. (1.3.54)
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Proof. Let us take the inner product of the equation of motion (1.3.50) with ẋ and
integrate over ϕ0(A). Using the divergence theorem and relation (1.2.11), we obtain
(1.3.54). ��

Note that using (A.2.4), we have

S · Ḟ = tr(SḞ�) = tr(̂SḞ�F) = tr(S�Ḟ) = tr(̂SF�Ḟ).

Thus, by virtue of (1.2.15) and (1.2.20),

S · Ḟ = 1
2
tr(̂SĊ) = tr(̂SĖ) = Ŝ · Ė.

1.4 Constitutive Equations

The mass and momentum balance principles apply to all bodies in nature and do
not distinguish between different types of materials, in that they do not depend on
the intrinsic structure of the material. Two different bodies of the same size and
shape subjected to the same deformation will generally not have the same resulting
stress distribution. For example, two thin wires of the same length and diameter,
one of steel and one of copper, will require different forces to produce the same
elongation. Therefore, the balance principles are insufficient to fully characterize
behavior, and some additional hypotheses are required for a complete description of
the behavior of a continuous body. Such supplementary hypotheses are known as
constitutive equations and serve to distinguish different types of material behavior.

Constitutive equations also serve the purpose of providing a well-posed mathe-
matical model for describing the deformation of a continuous body. In fact, suppos-
ing that the mass density of the body in the reference configuration is known and the
body force field has been assigned, we have four differential equations (one is the
continuity equation and the other three are the equations of motion) for the unknown
set of functions defining, for example, the components of the displacement vector
field, the mass density in the current configuration, and the components of the stress
tensor. Clearly, the mathematical problem is underdetermined.

The possibility of dependence of constitutive quantities on not only the current
values of field variables but also their past history is fundamental to the present work.

The importance of such memory properties in the study of the behavior of mate-
rials was first described by Cauchy in 1828 [60]. In this work, he observed that for
solid bodies that are not quite elastic, “les pressions ou tensions ne dépendent pas
seulement du changement de form que le corps éprouve en passant de l’état naturel
à un nouvel état, mais aussi des états intermédiaires et du temps pendant lequel le
changement de form s’effectue” [see [313] on page 56 (1960 edition)].

We now introduce the concept of objective tensors and the principle of material
objectivity, which imposes constraints on the possible forms of constitutive equa-
tions. The remaining chapters of Part I and all of Parts II and III deal largely with
properties of various specific constitutive equations, in most cases involving linear
memory functionals, and of energy functionals associated with them.
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1.4.1 Objectivity

Inertial frames are defined in Remark 1.3.5. However, we wish to consider more
general frames of reference. Let (x, t) be the spatial coordinates in an inertial frame.
Consider the frame of reference with coordinates (x′, t′) given by

x′ = Q(t)x + c(t), t′ = t + t0, (1.4.1)

where t0 is a constant. The reference description coordinates X are unchanged. The
quantity Q(t) is an orthogonal matrix, so that

Q�(t)Q(t) = 1.

Thus Q is a time-dependent rotation and c is a time-dependent translation. We take
detQ = 1.

Relation (1.4.1) is a Euclidean transformation. In a Galilean transformation (Re-
mark 1.3.5), Q is time-independent and c(t) = c0 + Vt, the quantity V being the
relative velocity of the origins of the two frames under consideration, while c0 is a
fixed vector.

Tensor quantities transform in a well-defined manner under (1.4.1) for Q time-
independent. A subset of these quantities have the same transformation properties
even if Q is time-dependent. Tensors in this subset will be referred to as objective
tensors. In particular, if φ is an objective scalar, a an objective vector, and B an
objective second-order tensor, then

φ′(X, t′) = φ(X, t), a′(X, t′) = Q(t)a(X, t),

B′(X, t′) = Q(t)B(X, t)Q�(t).
(1.4.2)

Various physical quantities are assumed to be objective tensors. These assumptions
are linked to the principle of material objectivity discussed in Sect. 1.4.2. Thermo-
dynamic quantities introduced later such as the internal and free energies, the en-
tropy, and the temperature are taken to be objective scalars, while the heat flux is
assumed to be an objective vector. The Piola–Kirchhoff heat flux, defined analo-
gously to the Piola–Kirchhoff stress tensor, is an objective scalar, by virtue of the
device introduced in (1.4.5) below. The Cauchy stress tensor is assumed to transform
as a second-order objective tensor under a change of observer, so that

T′ = Q(t)TQT (t). (1.4.3)

The particle velocity v, given by (1.2.5), is not objective, nor is the kinetic energy
density.

We note that the second-order tensor F is a transformation from the material to
the spatial description. It acts like an objective vector in that under (1.4.1),

F′(t) = Q(t)F(t). (1.4.4)

Proposition 1.4.1. The second Piola–Kirchhoff tensor Ŝ, defined by (1.3.52) or
(1.3.53), is an objective scalar; all its components have this property.
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Proof. This follows from (1.4.3), (1.4.4), and the observation that J = detF =
det (QF) is an objective scalar. ��

Observe that
Ḟ′(t) = Q(t)Ḟ(t) + Σ(t)F′(t),

where Σ is the spin tensor, defined as

Σ(t) = Q̇(t)Q�(t).

Then by (1.2.10),

L′(t) = Ḟ′(t)[F′(t)]−1 = Q(t)L(t)Q�(t) + Σ(t).

We see from (1.4.4) that C, given by (1.2.15)1, and E, given by (1.2.20)1, are unaf-
fected by the transformation (1.4.1). Thus, we have

C′ = C, E′ = E,

and therefore, since, from (1.2.15)1, U = C1/2, we have

U′ = U.

Thus, all these quantities are objective scalars, as shown for Ŝ in Proposition 1.4.1.
Note that if a is an objective vector and λ is an objective scalar, then by virtue of

(1.4.4),
as = λF−1a (1.4.5)

is an objective scalar.

1.4.2 Principle of Material Objectivity

This principle [313], also termed the principle of material frame indifference, pos-
tulates that the intrinsic properties of a material, as expressed in its constitutive re-
lations, do not depend on the observer frame. More recent discussions of the topic
may be found in particular in [188, 195, 238].

For example, consider the simple case of a spring extended by an applied force
[313]. Material frame indifference, in this case, is the statement that the spring con-
stant is the same for all observers in all frames of reference given by (1.4.1).

Expressed more formally, it is the statement that the constitutive equations de-
scribing the response of a material must hold in all frames related by (1.4.1).

This principle is accepted as valid for most conditions, though breakdowns have
been predicted, notably within the framework of rational extended thermodynamics
[269]. An observation on page 258 of [195] is of interest in this context.

This principle is imposed by expressing constitutive relations in terms of objec-
tive tensors. For simple materials [195, 238, 313], these relations in general involve
functionals of the history of F and thermodynamic variables that are taken to be
objective scalars either by assumption or by construction as in (1.4.5).
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Explicit dependence on time is excluded by indifference to the origin of time as
expressed by (1.4.1)2. Note, however, that if a material is aging ([167], for example),
explicit time dependence can occur.

Explicit dependence on X will occur if the material is inhomogeneous. The prop-
erty of inhomogeneity is generally assumed in the present work, though we will often
omit explicit inclusion of the space dependence.

Thus, we write a general constitutive relation as

A(X, t) = Â(Ft(X, s), Θt(X, s); s ≥ 0),

Ft(X, s) = F(X, t − s), Θt(X, s) = Θ(X, t − s), ∀s ≥ 0,
(1.4.6)

where Θ represents a list of objective scalar variables and A is a scalar, vector, or
higher order objective tensor. In the primed frame of reference, using only (1.4.1)1,
this becomes

A′(X, t′) = Â′(F′(X, t − s), Θ′(X, t − s); s ≥ 0)

= Â′(Q (t − s)F(X, t − s), Θ′(X, t − s); s ≥ 0),

where (1.4.2)1 and (1.4.4) have been used. The principle of material objectivity can
be stated as follows: the functional Â′ is the same functional as Â for all frames of
reference, or

Â′(Q(t − s)F(X, t − s),Θ′(X, t − s); s ≥ 0)

= Â(Q (t − s)F(X, t − s), Θ′(X, t − s); s ≥ 0),

for all choices of the independent field variables. Thus, for Â = φ, a,B, transforming
as specified by (1.4.2)2, we have the conditions

φ̂(Q(t − s)Ft(X, s), Θt(X, s); s ≥ 0) = φ̂(Ft(X, s), Θt(X, s); s ≥ 0),

â(Q(t − s)Ft(X, s), Θt(X, s); s ≥ 0) = Q(t)â(Ft(X, s), Θt(X, s); s ≥ 0),

B̂(Q(t − s)Ft(X, s), Θt(X, s); s ≥ 0) = Q(t)B̂(Ft(X, s), Θt(X, s); s ≥ 0)Q�(t),
(1.4.7)

for all F ∈ Lin+ and orthogonal tensors Q, where the notation (1.4.6)2,3 has been
used.

The implications of the principle of material objectivity for the possible forms of
constitutive equations are considerable [195, 238, 313], as shown by the following
example.

Proposition 1.4.2. Let F(t − s) = R(t − s)U(t − s) be the polar decomposition of F.
If an objective scalar obeys the principle of material objectivity (1.4.7)1, then it can
be expressed in terms of the current value and history of U and Θ; that is to say, it
will not depend on R. Since by (1.2.15), we have U =

√
C, it follows that the scalar

is a function of the current value and a functional of the history of C = F�F.
Conversely, if it has this property, then (1.4.7)1 holds.
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Proof. The first assertion follows since we can always choose Q(t − s) = R�(t − s)
in (1.4.7)1. The converse is immediate. ��
Remark 1.4.3. Note that by virtue of (1.2.20), we can replace C(t − s) by the Green
strain tensor E(t − s).

We must emphasize that Proposition 1.4.2 does not refer to the possible de-
pendence on F of thermodynamic quantities in Θ included to make them objective
scalars, using (1.4.5).

Consider a particular class of bodies, the behavior of which depends on the his-
tory of the deformation gradient up to time t, F(X, t− s)∀s ∈ R+. These materials are
such that the stress tensor is given by the functional

T(X, t) = T̂(F(X, t), Ft(X)), (1.4.8)

where F(X, t) is the current value and Ft(X, s) = F(X, t − s)∀s ∈ R
++ denotes the

past history of F. The functional T̂ may also depend on objective scalars as denoted
by Θ above.

The requirement of material frame indifference, as stated by (1.4.7)3, yields that
the functional T̂ must obey the relation (omitting X)

T̂(Q(t)F(t), Q(t − s)F(t − s)), s ∈ R++)
= Q(t)T̂(F(t), F(t − s), s ∈ R++)Q�(t), (1.4.9)

for all F ∈ Lin+ and orthogonal tensors Q.

Proposition 1.4.4. Property (1.4.9) is equivalent to the requirement that

T̂(F(t), F(t − s)), s ∈ R++) = F(t)T̃(C(t), C(t − s), s ∈ R++)F�(t),
where C is the right Cauchy–Green tensor, defined by (1.2.15). The dependence of T̃
on C is not restricted by the property of material frame indifference. Note that from
(1.3.52), T̃ is related to the second Piola–Kirchhoff stress tensor by

JT̃ = Ŝ.

Proof. This follows immediately from Propositions 1.4.1 and 1.4.2. ��

1.4.3 Fading Memory

We shall consider materials for which the property of fading memory holds. This
property is expressible through the (Volterra) dissipation behavior of hereditary ac-
tion [318], which states “the modulus of the variation of the quantity [given by
(1.4.8)], when Ft varies in any way . . . in the interval (−∞, t1) (with t1 < t) can
be made as small as we please by taking the interval (t1, t) sufficiently large.”‖

‖ In the Coleman and Noll theory [73], the fading memory property is given by the continuity
of (1.4.8) with respect to the norm

‖Ft‖2 =
∫ ∞

0
h(s)|Ft(s)|2ds,

where the map h ∈ L1(R+) is a suitable positive decreasing function.
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A more precise definition of the property of fading memory at a material point
X ∈ B can be given by considering the setD of the histories that make up the domain
of definition of the functional (1.4.8).

For this purpose, we suppose the set D has the following properties:

1. D = Lin×Dr, whereDr is a set of past histories that contains the space L∞(R+).
2. The partly static history Ft(τ) , associated with Ft(X), is defined by

Ft(τ) (X, s) :=

⎧⎪⎪⎨⎪⎪⎩
F(X, t) ∀s ∈ [0, τ),
Ft(X, s − τ) ∀s ∈ [τ, ∞), (1.4.10)

where τ is the duration of the static part of the history. If Ft(X) ∈ D, then Ft(τ)

belongs to D.

Definition 1.4.5. A viscoelastic material is characterized by the constitutive equa-
tion (1.4.8), where Ft ∈ D, and there exists a constitutive equation T(X, t) =
T̃(F(X, t)) of an elastic material such that

lim
τ→∞ T̂(Ft(τ) (X)) = T̃(F(X, t)).

Moreover, T̂(Ft(τ) (X)) − T̃(F(X, t)) is a function of τ, which belongs to L2(R+).

This definition includes an expression of the fading memory property. Consider
its application to the simplest case, namely a linear constitutive relation defining a
linear viscoelastic material. Such linear relations will be systematically derived and
discussed in Part III. For a linear viscoelastic body, we have

T(X, t) = G0(X)E(X, t) +
∫ ∞
0

G′(X, s)Et(X, s)ds, (1.4.11)

where E ∈ Sym is the strain tensor.∗∗ The infinitesimal approximation to this quan-
tity, as given by (1.2.31), is generally, though not necessarily, used in this context.
The quantities G0 and G′ are fourth-order tensors in Lin(Sym). The domain D con-
sists of the set of pairs (E(t), Et) such that E(t) ∈ Sym and G′Et ∈ L1(R+).

In the linear theory,D includes constant histories by property 1. It follows that the
kernelG′ belongs to L1(R+). Then ifG′ ∈ L1(R+), we conclude thatG′Et(τ) ∈ L1(R+),
where Et(τ) is the partly static history associated with Et. Hence,

lim
τ→∞ T̂(Et(τ) ) = G∞E(t), G∞ = G0 +

∫ ∞
0

G′(s)ds. (1.4.12)

We observe that (1.4.11) represents a viscoelastic material with the fading memory
property, according to Definition 1.4.5, because the right-hand side of (1.4.12)1 is the
stress associated with an elastic material. For the same reason, the tensor G∞ must
be a positive definite tensor in the case of a solid, though it may vanish for a liquid.
Thus, we have

G∞ ≥ 0. (1.4.13)

∗∗ This follows from the principle of material frame indifference as expressed through Propo-
sition 1.4.4.
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