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Preface to Second Edition

The major motivations for writing a second edition of this book were to include
important results from a series of papers published since 2011, to present a fairly
detailed discussion of thermoelectromagnetism, in particular, free energies in dielec-
tric materials, and also to explore some features of fractional derivative models of
materials with memory.

The first of these aims has resulted in the merger of Chaps. 15 and 16 of the first
edition, with the omission, for the sake of simplicity, of certain interesting though
somewhat peripheral topics, and the presentation of new material in Chaps. 17–21
and 23 of the second edition. The second aim has given rise to Chaps. 6 and 22 of
the new edition and the omission of the discussion of nonsimple electromagnetism
from Eq. (3.7.20) to before (3.7.27) in the first edition.

A few minor corrections, noticed since the publication of the original edition,
have also been made, together with slight changes required in earlier chapters by the
merger of Chaps. 15 and 16.

The authors would like to thank Dipartimento di Matematica—Università di Pisa
(Italy), Dipartimento di Matematica—Università di Bologna (Italy), Technological
University—Dublin (Ireland), respectively, for support during the writing of the sec-
ond edition. We also thank Gennaro Amendola once again for his invaluable advice
on matters related to LATEX.

Pisa, Italy Giovambattista Amendola
Bologna, Italy Mauro Fabrizio
Dublin, Ireland John Murrough Golden
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Preface to First Edition

This book arose out of a conversation that took place in a bookshop in Berkeley,
California, almost a decade ago. The original motivation was to provide a text on
continuum thermodynamics that would allow a systematic derivation and discussion
of free-energy functionals for materials with memory, including in particular explicit
expressions for the minimum and related free energies, which were being developed
at the time.

Progress was very slow, due to other commitments. The vision of what the book
would explore broadened considerably over the years, in particular to include min-
imal states and a new single-integral free-energy functional that explicitly depends
on the minimal state. Also, it was decided to include a detailed description of an
alternative approach to the analysis of the integrodifferential equations describing
the evolution of viscoelastic materials under varying loads, using minimal states and
free-energy functionals depending on the minimal state. This is a novel approach to
a well-known topic.

Our desire was to make the work as self-contained as possible, so chapters deal-
ing with the general theory of continuum mechanics were included, with sections
devoted to classical materials, specifically elastic bodies and fluids without explicit
memory-dependence. These provided essential background to the more general and
modern developments relating to materials with memory.

It was furthermore felt that certain other topics had not been covered previously
in book form and should be included, in particular control theory and the Saint-
Venant and inverse problems, as well as some discussion of nonsimple behavior, for
materials with memory.

The book is divided into four parts. The mathematical presentation in the first
three parts is largely accessible not only to applied mathematicians but also to math-
ematically oriented engineers and scientists. However, a higher standard is required
for some of the chapters in the final part.

The authors wish to thank S. Chirita, A. Lorenzi, M.G. Naso, and V. Pata for their
aid in writing Chaps. 25 (Naso), 26 (Chirita), 28 (Pata), and 29 (Lorenzi). One of the
authors gratefully acknowledges support for research travel from the Dublin Institute
of Technology during the period of preparation of this work. All of us express our
thanks to Gennaro Amendola for his very useful advice and help on certain deeper
aspects of LATEX.

Pisa, Italy Giovambattista Amendola
Bologna, Italy Mauro Fabrizio
Dublin, Ireland John Murrough Golden
February 2011
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Introduction

In this work, we consider materials the constitutive equations of which contain a de-
pendence upon the past history of kinetic variables. In particular, we deal with the
constraints imposed upon these constitutive equations by the laws of thermodynam-
ics. Such materials are often referred to as materials with memory or with hereditary
effects.

The study of materials with memory arises from the pioneering articles of Boltz-
mann [38, 39] and Volterra [316–318], in which they sought an extension of the
concept of an elastic material. The key assumption of the theory was that the stress
at a time t depends upon the history of the deformation up to t. The hypothesis that
the remote history has less influence than the recent history is already implicit in their
work. This assumption, later termed the fading memory principle by Coleman and
Noll [73], is imposed by means of a constitutive equation for the stress, of integral
type, which in the linear case involves a suitable kernel (relaxation function) that is
a positive, monotonic, decreasing function.

In the classical approach to materials with memory, the state is identified with
the history of variables carrying information about the input processes. We show in
this book how Noll’s definition of state [277] is more convenient for application to
such materials. Indeed, Noll takes the material response as the basis for the defi-
nition of state: if an arbitrary continuation of different given histories leads to the
same response of the material, then the given histories are equivalent and the state is
represented as the class of all such equivalent histories. We refer to this class as the
minimal state.

The concept of a minimal state is developed and applied in [176] to the case of
linear viscoelasticity with scalar relaxation functions given by a sum of exponen-
tials. A subsequent paper [90] presents a treatment in three dimensions and in the
more general context of thermodynamically compatible (tensor-valued) relaxation
functions, taking into account weak regularity of histories and processes.

A generalization of minimal states to materials under nonisothermal conditions
is discussed in Sect. 7.4 of the present book. A functional It is introduced, given by
(7.4.2) with the crucial property expressed by (7.4.3). This quantity characterizes the
minimal state. Special cases of it are used in a variety of contexts in later chapters.

XIX



XX Introduction

It is closely related to the response of the material after time t, where the input vari-
able is null for a finite period after this time on the material element (i.e., a “small”
neighborhood of a fixed and arbitrary point of the body) under consideration. This
characterization of the state is an interesting alternative to the usual one based on
knowledge of the deformation history.

It seems more appropriate to refer to materials with states characterized in this
way as materials with relaxation rather than materials with fading memory.

For the usual definition of state, a fading-memory property of the response func-
tional [67] is required, as opposed to the case in which the minimal state is adopted,
where indeed the relaxation property of the response functional suffices. Obviously,
whenever the stress-response functional is such that knowledge of the minimal state
turns out to be equivalent to knowledge of the past history, the property of relaxation
of the stress response implies fading memory of the related functional. In this sense,
the class of materials with relaxation is larger than the one described by constitutive
equations with fading memory.

A significant advantage of the response-based definition of state relates to the
physical features of the state itself. Indeed, the “future stress” It(τ) can be determined
through measurements and does not require knowledge of the past history at all.

For materials with memory, there are in general many different functional forms
with the required properties for a free energy. Some of these are functions of the
minimal state, while others do not have this property (see, e.g., [90]).

In Part III, these functional forms are explored for different categories of mate-
rials with memory. We note that for a material whose constitutive relation for the
response functional has a linear memory term, all free energies associated with this
material have memory terms that are quadratic functionals.

A new class of single-integral-type free energies, for certain categories of relax-
ation functions, is introduced in Sect. 10.1.3 as a quadratic form of the time derivative
of the state variable It (see, e.g., [189, 190] for discussion and analysis of single-
integral type free energies that are quadratic forms of histories). For exponentially
decaying relaxation functions, it can be shown that the dissipation associated with
such energies is bounded below by a time-decay coefficient multiplied by the purely
memory-dependent part of the free energy. This property turns out to be crucial in
the analysis of PDEs relating to linear viscoelastic materials, which is developed in
Part IV.

An analogous property holds for a family of multiple-integral free-energy func-
tionals that are the generalization of the previous single-integral-type free energy. We
may refer to such a family as the n-family. For n = 1, one recovers the single-integral
case.

In Chaps. 11–15, explicit forms of the minimum free energy are derived both in
the general nonisothermal case and, more specifically, for viscoelastic solids, fluids,
and rigid heat conductors. Different forms of relaxation functions are also consid-
ered. The minimum free energy is always a function of the minimal state. Indeed, an
explicit formula is derived in Sect. 12.2 for this quantity as a quadratic functional of
minimal-state variables related to It.
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Chapter 16 results from the merger of two chapters of the first edition and the
omission of certain topics, as noted in the preface to the second edition. Relaxation
functions consisting of sums of decaying exponentials are considered. A family of
free energies, including the minimum, maximum, and intermediate forms, are given
explicitly. All of these are functions of state. Some plots of these free energies are
added in this edition. In the new Chaps. 17–21, certain results for free energies that
are quadratic functionals, published after the appearance of the first edition, are dis-
cussed.

Chapter 6 in Part II and Chap. 22 in Part III are new chapters dealing with ther-
moelectromagnetism and in particular free energies for dielectric materials, while
Chap. 23 is also new and seeks to provide an introduction to fractional derivative
models of materials with memory.

In Part IV, we observe that the new approach outlined above and the new free
energies, in both cases adapted to the theory of viscoelasticity, have interesting ap-
plications to the PDEs governing the motion of a suitable class of viscoelastic bod-
ies. In particular, the use of the new free energies given by quadratic forms of the
minimal state variables yields results relating to well-posedness and stability for the
IBVP. This formulation allows for initial data belonging to broader functional spaces
than those usually considered in the literature, which are based on histories.

Indeed, the response-based definition of state is useful for both the study of IBVP
on the one hand and the evolution of linear viscoelastic systems on the other hand.

Furthermore, an application of semigroup theory to this class of materials is pre-
sented. Here, besides having the system of equations in a more general form than for
the classical approach, results on asymptotic stability are again obtained for initial
data belonging to a space broader than the one usually employed when states and
histories are identified.

The book is divided into four parts, Part I dealing with the general principles of
continuum mechanics and with elastic materials and classical fluids, which of course
provide the foundation for developments in later chapters. A general treatment of
continuum thermodynamics is presented in Part II.

In Part III, materials that are described by constitutive equations with linear mem-
ory terms are discussed in some detail. The specific cases included are viscoelas-
tic solids and fluids, together with rigid heat conductors. Also, as noted earlier, the
derivation of explicit forms of free energies is considered in depth. Part IV deals with
the application of results and ideas from Part III to the equations of motion of linear
viscoelastic materials.

Notation conventions are described at the beginning of Appendix A. Relevant
mathematical topics are summarized in Appendices A–C.
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Continuum Mechanics and Classical Materials
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Introduction to Continuum Mechanics

1.1 Introduction

In this initial chapter, we introduce various fundamentals: description of deforma-
tion, definition and interpretation of the strain and stress tensors, balance laws, and
general restrictions on constitutive equations. These provide the foundation for later
developments.

A number of excellent, indeed hardly to be bettered, presentations of these ba-
sic topics exist in the literature, notably in [188, 205, 251, 313, 314]. Several for-
mulations of standard arguments in this chapter and the next are based on those in
[188, 251]. Other relevant texts are [281], the recent work [23], and the review [262].

An introduction to some notation and results relating to finite-dimensional vector
spaces required in this and later chapters is given in Sect. A.2.

1.2 Kinematics

1.2.1 Continuous Bodies: Deformations—Strain Tensors

We will consider bodies the mass of which is distributed continuously. Moreover, a
given body will occupy different regions at different times, but none of these regions
will be intrinsically associated with the body. Thus, formally, a continuous body B
is a set of material points X, Y, . . . endowed with a structure defined by a class Φ of
one-to-one mappings ϕ : B → E, where E is the three-dimensional Euclidean space,
such that

(i) ϕ(B) is a Kellogg regular region;∗

∗ By a Kellogg regular region, we mean a domain of the Euclidean space E bounded by a
union of a finite number of surfaces of class C1. A more formal definition of a subbody is
given in [32, 253, 278] (see also [2]).
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4 1 Introduction to Continuum Mechanics

(ii) if ϕ, ψ ∈ Φ, then the function λ = ϕ ◦ ψ−1 : ψ(B) → ϕ(B) ∈ C1(ψ(B)) is called
a deformation (of class C1) of B from ψ(B) to ϕ(B) ;

(iii) if ϕ ∈ Φ and λ : ϕ(B) → E is a deformation of class C1, then the mapping λ ◦ ϕ
is also in Φ.

The functions ϕ are referred to as localizations of B, and they determine the
possible configurations of the body in the space E. A localization provides at any
material point X ∈ B the corresponding geometric point x = ϕ(X) ∈ E.

The hypotheses (i)–(iii) introduce a unique structure of a differential variety on
B.†

The set Φ of all possible localizations of B allows us to locate B in E, as well
as to define the internal constraints of material systems. We consider as an example
a rigid body for which the class Φ must be defined so that for each pair ϕ1, ϕ2 ∈ Φ,
we have

d(ϕ1(X), ϕ1(Y)) = d(ϕ2(X), ϕ2(Y))

for all X, Y ∈ B, where d is the metric of the Euclidean space E.
Moreover, for any continuous body B, it is possible to determine a class S of

subbodies A, B, C, . . . of B, characterized by the following properties:

(a) B ∈ S;
(b) any element A ∈ S is such that ϕ(A) is a Kellogg regular region of E, for any

ϕ ∈ Φ.‡

On the class S of subbodies, it is possible to define a measure that allows us to give
a definition of the density and of the mass.

Definition 1.2.1. The mass is a measure M : S → R
+ absolutely continuous with

respect to the ordinary volume measure; that is, for each ϕ ∈ Φ, there is an integrable
function ρ̂ϕ : ϕ(B) → R+, the density of mass, such that the mass relative to A is

M(A) =
∫
ϕ(A)

ρ̂ϕ(x) dv,

for all A ∈ S.

A motion of B with respect to a fixed observer O is a sufficiently regular function§

χ̃ : B × I → E, (1.2.1)

† In other words, the body B does not identify itself with a particular configuration, but with
the set of all possible configurations it can assume and hence with a differential variety.

‡ The given definition for a subbody is independent of the chosen localization ϕ. In fact,
if ψ is another localization, then the transformation λ=ϕ ◦ ψ−1 : ψ(B)→ϕ(B) possesses
an inverse of class C1. Therefore, if ϕ(A) is a regular region, then ψ(A) will be a regular
region of E.

§ With respect to each context, the condition of being sufficiently regular may have various
senses. For our purposes, the function χ is assumed to be twice continuously differentiable
in the domain of existence.
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where I ⊂ R is a time interval.
In what follows, we will identify the body B with one of its particular configura-

tions, namely the reference configuration ϕ0(B) (see Fig. 1.1). Moreover, the func-
tion χ̃ is such that for each t ∈ I, the new function χ̃t : ϕ0(B) → ϕt(B), which
represents the deformation of the body B from ϕ0(B) to ϕt(B), has an inverse, that
is, there exists a function

χ̃−1
t : ϕt(B) → ϕ0(B). (1.2.2)

Fig. 1.1. The deformation of a body from ϕ0(B) to ϕt(B)

Hence χ̃t is assumed to be one-to-one. This hypothesis expresses the requirement
that the body does not penetrate itself. Thus, two distinct points of the configuration
ϕ0(B) must be distinct in all other configurations.

It is possible to write the transformations (1.2.1) and (1.2.2) in the following
forms:

x = χ̃(X, t),

X = χ̃−1(x, t).
(1.2.3)

The function defined by (1.2.3)1 represents the position occupied by the particle X at
the instant t, while relation (1.2.3)2 locates the particle X that occupies the point x at
the instant t. The variables (X, t) are the Lagrangian or material coordinates, while
(x, t) are the Eulerian or spatial coordinates. The relations in (1.2.3) demonstrate
that it is possible to express any physical quantity F in terms of material or spatial
coordinates by

F̃(X, t) = F̃(χ̃−1(x, t), t) = F̂(x, t). (1.2.4)

Definition 1.2.2. The Lagrangian description is the description of motion in terms of
the variables (X, t), while the Eulerian description is that referring to the variables
(x, t).
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As an example we consider the velocity of a particle X at the instant t, defined as

ṽ(X, t) =
∂χ̃

∂t
(X, t);

on the basis of relation (1.2.3)2, it is possible to express such a quantity in terms of
the Eulerian variables as

v̂(x, t) = ṽ(χ̃−1(x, t), t). (1.2.5)

Remark 1.2.3. The time derivative of a quantity F has different expressions, depend-
ing on the description. In fact, by direct differentiation with respect to t of (1.2.4),
we obtain

∂F̃

∂t
=

∂F̂

∂t
+ ∇xF̂ · v, (1.2.6)

where ∇x is the spatial gradient operator. The partial derivative on the left is taken
holding X fixed, while in that on the right, x is fixed.

The derivative ∂F̃
∂t is the material derivative (or the total derivative), denoted by

dF̂
dt
=

∂F̃

∂t
. (1.2.7)

If we choose as F the velocity v, then, by virtue of (1.2.6), we have that the acceler-
ation is given by

a =
∂

∂t
ṽ(X, t) =

∂v̂
∂t

(x, t) + ∇xv̂(x, t) v.

Definition 1.2.4. The material gradient of deformation is the tensor

F(X, t) = ∇Xχ̃(X, t), that is, Fi j =
∂χ̃i
∂Xj

, (1.2.8)

where ∇X is the material gradient operator. The velocity gradient is the tensor

L(X, t) = L(χ̃(X, t), t) = ∇xv̂(x, t). (1.2.9)

Remark 1.2.5. If we set Ḟ = ∂F
∂t , then

Ḟ = LF. (1.2.10)

In fact, we have
Ḟ = ∇Xṽ = ∇xv̂∇Xχ̃. (1.2.11)

Remark 1.2.6. The requirement that the body does not penetrate itself is expressed
by the assumption that

det (F) = det (∇Xχ̃) � 0.

Furthermore, a deformation with det (∇Xχ̃) < 0 cannot be reached by a continuous
process of deformation starting from the reference configuration, that is, by a con-
tinuous one-parameter family χ̃σ (0 ≤ σ ≤ 1) of deformations with χ̃0 the identity,
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χ̃1 = χ̃, and det (∇Xχ̃σ) never zero. Indeed, since det (∇Xχ̃σ) is strictly positive at
σ = 0, it must be strictly positive for all σ. Thus, we require that

detF > 0. (1.2.12)

The above discussion motivates the following definition.

Definition 1.2.7. By a deformation of B, we mean a smooth one-to-one mapping χ̃,
which maps B onto a closed region in E and satisfies (1.2.12). The vector

u(X, t) = χ̃(X, t) − X

represents the displacement of X. A deformation with F constant is called homoge-
neous.

The geometric significance of the tensor F becomes clear on observing that

χ̃(X′, t) − χ̃(X, t) = ∇Xχ̃(X, t)(X′ − X) + o
(∣∣∣X′ − X

∣∣∣),
for all X′ in a neighborhood of X, so that we can write

dx = FdX. (1.2.13)

Thus, the tensor F transforms the small quantity dX of the configuration ϕ0(B) into
the small displacement dx of the configuration ϕt(B) (see Fig. 1.2). Let

F = RU = VR (1.2.14)

be the polar decomposition of F at a given point, where R represents the rotation
tensor, U is the right stretch tensor, and V is the left stretch tensor for the deformation
χ̃. Thus, R(P) measures the local rigid rotation of points near P, while U(P) and
V(P) measure local stretching from P. The tensors U(P) and V(P) are symmetric.
Since U =

√
FTF and V =

√
FFT involve the square roots of FTF and FFT , their

computation is often difficult. For this reason we introduce the right and left Cauchy–
Green strain tensors C and B, defined by

C = U2 = FTF, B = V2 = FFT , (1.2.15)

and note that
V = RURT , B = RCRT .

In components, we have

Ci j =

3∑
m=1

∂χ̃m
∂Xi

∂χ̃m
∂Xj

, Bi j =

3∑
m=1

∂χ̃i
∂Xm

∂χ̃ j

∂Xm
.
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Since Cu · v = Fu · Fv for all u, v ∈ V and Cu · u = Fu · Fu > 0 for all u ∈ V\{0}, it
follows that C is a symmetric and positive definite tensor (Sect. A.2.1).

Fig. 1.2. The quantities dX and dx related by (1.2.13)

In view of the relation (1.2.12), it follows that F admits an inverse denoted by
F−1, the spatial gradient of deformation, given by

F−1 = ∇xX, or F−1
i j =

∂χ̃−1
i

∂x j
.

With this we can introduce the right and left Cauchy strain tensors, c and b, defined
by

c =
(
F−1

)T
F−1, b = F−1

(
F−1

)T
, (1.2.16)

or, in components,

ci j =
3∑

m=1

∂χ̃−1
m

∂xi

∂χ̃−1
m

∂x j
, bi j =

3∑
m=1

∂χ̃−1
i

∂xm

∂χ̃−1
j

∂xm
.

If dX and δX are two displacement elements related to the point X that at the
instant t are transformed into two displacements dx and δx, respectively, related to
the point x = χ̃(X, t), so that

dx = FdX, δx = FδX, (1.2.17)

then
dx · δx = dX · FTFδX = dX · CδX. (1.2.18)
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If the continuous body is rigid, then from the relation (1.2.18), we get necessarily
C = 1, the unit second-order tensor. When the body is not rigid, we can determine
the elongation of the element dX, associated with the tensor C, by

|dx|2 = dx · dx = dX · CdX, (1.2.19)

so that the relative elongation is

|dx|2 − |dX|2 = 2EdX · dX = 2edx · dx,

where

E =
1
2

(C − 1) and e =
1
2

(1 − c) (1.2.20)

are Green’s strain tensor and Almansi’s strain tensor, respectively. Obviously, for a
rigid deformation of the body, we have E = 0 and e = 0. Thus, the tensor E appears
as a measure of Lagrangian deformation, while the tensor e represents a measure of
Eulerian deformation.

In terms of the displacement vector u(X, t) = χ̃(X, t)−X or u(x, t) = x− χ̃−1(x, t),
the gradients of deformation are

F = ∇Xu + 1, F−1 = 1 − ∇xu,

and hence, from (1.2.20), the strain tensors are

E =
1
2

[
∇Xu + (∇Xu)T + (∇Xu)T∇Xu

]
,

e =
1
2

[
∇xu + (∇xu)T − (∇xu)T∇xu

]
.

(1.2.21)

The relations in (1.2.21) are known as the strain–displacement (or geometrical) re-
lations.

Remark 1.2.8. (Geometric Significance of the Strain Tensors) The components
E11, E22, and E33 of the strain tensor E characterize the relative elongations in the di-
rections of i1, i2, and i3, respectively, while the components Ei j, with i � j, represent
a measure of the variation of angles due to the process of deformation.

To see this, we first note that the relation (1.2.19) can be written in the form

|dx|2

|dX|2
= N · CN,

where N = dX
|dX| . If we set Λ(N) =

|dx|
|dX| , then we have

Λ(N) = (N · CN)
1
2 =

√
N · (1 + 2E)N.
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We further introduce the unit elongation E(N) in the direction of unit vector N, by

E(N) = Λ(N) − 1 =
|dx| − |dX|

|dX| ,

so that when N = i1, for example, then

E(i1) =
√

1 + 2E11 − 1,

and hence E11 appears as a measure for the elongation in the direction of i1.
Let us further consider the vectors dX1 = dX1i1 and dX2 = dX2i2, and let dx1 =

FdX1 and dx2 = FdX2 be the corresponding vectors in the current configuration.
Obviously, we have dX1 · dX2 = 0, that is, the angle Θ12 between these vectors is π

2 .
On the other hand, the corresponding angle θ12 between the vectors dx1 and dx2 is
given by

cos θ12 =
dx1 · dx2

|dx1| |dx2|
=

C12√
C11C22

=
2E12√

(1 + 2E11)(1 + 2E22)
,

and hence E12 appears as a measure of the variation of the angle Θ12 due to the
deformation.

We now recall that given a tensor S ∈ Lin(R3), the determinant of S − λ1 admits
the representation (the Cayley–Hamilton theorem)

det (S − λ1) = −λ3 + I1(S)λ2 − I2(S)λ + I3(S)

for every λ ∈ R, where

I1(S) = trS = S 11 + S 22 + S 33,

I2(S) =
1
2

[
(trS)2 − tr

(
S2

)]
,

I3(S) = det S.

(1.2.22)

We call I1(S), I2(S), and I3(S) the principal invariants of S and observe that they are
invariant under changes of reference frames. We also note that any other invariant
of S is a function of its principal invariants. When S is symmetric, the principal
invariants are completely characterized by the spectrum {λ1, λ2, λ3} of S. Indeed,

I1(S) = λ1 + λ2 + λ3,

I2(S) = λ1λ2 + λ2λ3 + λ3λ1,

I3(S) = λ1λ2λ3.

By substituting S by C, c, E, or e in the above relations, we can determine ex-
pressions for the principal invariants of these tensors and relationships between them.
Thus, from (1.2.20) and (1.2.22), we obtain
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I1(C) = 3 + 2I1(E), I2(C) = 3 + 4I1(E) + 4I2(E),

I3(C) = 1 + 2I1(E) + 4I2(E) + 8I3(E),

I1(c) = 3 − 2I1(e), I2(c) = 3 − 4I1(e) + 4I2(e),

I3(c) = 1 − 2I1(e) + 4I2(e) − 8I3(e).

Moreover, we observe that the relations (1.2.15), (1.2.16)1, and (1.2.22)3 give

I3(C) = (detF)2, I3(c) =
1

(detF)2
,

and hence
I3(C)I3(c) = 1.

Definition 1.2.9. The stretching D (or velocity of deformation) is

D =
1
2

(
L + LT

)
=

1
2

[
∇xv̂ + (∇xv̂)T

]
, (1.2.23)

where L is defined by (1.2.9), while the spin Ω is

Ω =
1
2

(
L − LT

)
=

1
2

[
∇xv̂ − (∇xv̂)T

]
. (1.2.24)

Thus, the stretching and the spin represent the symmetric and skew parts of the spa-
tial gradient of velocity, respectively. Moreover, we have

L = D +Ω. (1.2.25)

Note that

d
dt
|dx|2 = d

dt
(dx · dx) = 2

d
dt

(dx) · dx

= 2
d
dt

(FdX) · dx = 2
d
dt

(F)dX · dx,

and hence, in view of relation (1.2.10),

d
dt
|dx|2 = 2LFdX · dx = 2Ldx · dx = 2dx · LTdx

= 2dx ·
(
L + LT

2

)
dx = 2dx · Ddx.

(1.2.26)

Thus, the stretching D is a measure of the variation per unit time of the arc (dx)2.
Therefore, when D = 0, then there is no change in |dx|2 over time.

Theorem 1.2.10. A necessary and sufficient condition for a motion to be locally rigid
is D = 0.
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Proof. From Taylor’s formula, the velocity in a neighborhood of the point x0 is

v̂(x, t) = v̂(x0, t) + ∇xv̂(x0, t)(x − x0) + o (|x − x0|),

so that in view of the relation (1.2.25), we obtain

v̂(x, t) = v̂(x0, t) + D(x0, t)(x − x0) +Ω(x0, t)(x − x0) + o (|x − x0|).

SinceΩ is a skew-symmetric tensor, it follows that it is possible to associate with
it the vector ω = Ω32i1 + Ω13i2 + Ω21i3, known as the vorticity vector, such that

Ω(x − x0) = ω × (x − x0). (1.2.27)

Therefore, in a neighborhood of the point x0, neglecting terms of order higher than 1
in |x − x0|, we have

v̂(x, t) = v̂(x0, t) + ω × (x − x0) + D(x − x0). (1.2.28)

Thus, when D = 0, the velocity is a composition of a translation and a rotation, which
is a rigid motion.

Conversely, when the motion is rigid, (1.2.28) implies that D = 0. �

Remark 1.2.11. In general, as can be seen from (1.2.28), the motion is a superposed
rigid motion on an instantaneous extension.

From (1.2.24) and (1.2.27), we have

ω = Ω32i1 + Ω13i2 + Ω21i3 =
1
2

[(
∂v3

∂x2
− ∂v2

∂x3

)
i1

+

(
∂v1

∂x3
− ∂v3

∂x1

)
i2 +

(
∂v2

∂x1
− ∂v1

∂x2

)
i3

]
,

and hence

ω =
1
2

(∇x × v).

If ω = 0, then we say that the motion is irrotational, and the velocity field has no
vortices. In this case there exists a scalar field such that v = ∇xϕ, as stated by the
following theorem.

Theorem 1.2.12. Let D be a given simply connected volume in R3 and v : D → R3

a function of class C1(D) that satisfies

∇x × v = 0 in D.

Then there exists a function ϕ : D → R such that

v = ∇xϕ in D.
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Proof. Let S be an arbitrary surface contained in D, and letC be its relative boundary
curve. Under appropriate regularity assumptions upon S and C, we can use Stokes’s
formula ∫

S
(∇x × v) · ndσ =

∫
C
v · dx =

∫
C
v1dx1 + v2dx2 + v3dx3,

where, since ∇x × v = 0, the differential form v1dx1 + v2dx2 + v3dx3 is a total differ-
ential. Therefore, there exists a potential ϕ such that

dϕ = v1dx1 + v2dx2 + v3dx3,

which yields v = ∇xϕ. �

Let us consider the transformation between the configuration ϕ0(B) and the con-
figuration ϕt(B) given by

χ̃t : ϕ0(B) → ϕt(B).

The Jacobian of the transformation,

J(X, t) = det

(
∂χ̃t
∂X

)
= detF(X, t),

is a measure of volume change due to the deformation. If we denote by dv0 a volume
element in the configuration ϕ0(B) and by dvt the corresponding volume element in
the configuration ϕt(B), then we have

dvt = Jdv0. (1.2.29)

Theorem 1.2.13. The time derivative of the Jacobian is given by

dJ
dt
= J̇ = Jdivxv, (1.2.30)

where divx is the spatial divergence operator.

Proof. Direct differentiation with respect to t of the relation J = detF gives

J̇ =
dJ
dt
= Ḟ · A,

where the tensor A has components Ahm = J
(
F−1

)
mh

. Therefore, using relation
(1.2.10), we obtain

J̇ = LhkFkmAhm = JLhkFkm

(
F−1

)
mh
= JLhkδkh = JLhh,

which is relation (1.2.30). �

Remark 1.2.14. It is understood that these italic subscripts range over 1, 2, and 3.
Moreover, we use the convention of summation over repeated subscripts, unless
stated otherwise.
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Definition 1.2.15. A deformation x = χ̃(X, t) is isochoric (volume-preserving) if
given any subbody B of ϕ0(B), we have vol(χ̃(B)) = vol(B).

An immediate consequence of this definition is the following result.

Proposition 1.2.16. A deformation is isochoric if and only if detF = 1.

Remark 1.2.17. From relation (1.2.19), we deduce that

d
dt
|dx|2 = dX · ĊdX,

so that comparing with relation (1.2.26) and using (1.2.17), we obtain

Ċ = 2FTDF.

Moreover, (1.2.20)1 gives
Ė = FTDF.

1.2.2 Small Deformations: The Saint-Venant Compatibility Conditions

We now study the behavior of the various kinematic fields when the displacement
vector is of the form uε = εu, where ε is a parameter such that εp is negligible if
p ≥ 2, while u is a vector independent of ε. The theory corresponding to such small
displacements is known as the infinitesimal or linear theory of deformation. In such
a theory, we have

xi = Xi + uεi,

and the partial derivatives of the displacement vector with respect to the spatial co-
ordinates coincide with the partial derivatives of the same vector with respect to the
material coordinates. In fact, we have, for example,

∂uεi
∂X1
=

∂uεi
∂x j

∂x j
∂X1
=

∂uεi
∂x j

(
δ1 j +

∂uε j
∂X1

)
=

∂uεi
∂x1
+ O

(
ε2

)
, etc.

On the basis of relations of this type and from (1.2.21), we deduce that the La-
grangian and Eulerian strain tensors E and e coincide with the infinitesimal strain
tensor ε defined by

ε =
1
2

(
∇u + ∇uT

)
, (1.2.31)

where ∇u = ∇xu = ∇Xu. In component form, we have

εi j =
1
2

(
ui, j + u j,i

)
. (1.2.32)

Theorem 1.2.18. (Saint-Venant’s Compatibility Conditions) The infinitesimal
strain tensor εi j corresponding to a displacement vector field u of class C3 satis-
fies the following compatibility equations:
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εii, j j + ε j j,ii = 2εi j,i j (i � j, not summed),

εi j,rr + εrr,i j = ε jr,ir + εir, jr (i � j � r � i, not summed).
(1.2.33)

Moreover, if B0 is a simply connected region in R3 and εi j is a symmetric tensor of
class C2 defined on B0 satisfying the conditions described by (1.2.33), then there ex-
ists a displacement vector field u such that its corresponding strain tensor calculated
by means of relation (1.2.32) coincides with εi j. Such a displacement vector field is
given by

ui(x) =
∫ x

x0

(
εi j + ω

∗
i j

)
dξ j + ω

0
i j

(
x j − x0

j

)
+ u0

i , (1.2.34)

where

ω∗
i j(x) =

∫ x

x0

(
εik, j − εk j,i

)
dξk,

while ω0
i j = −ω0

ji and u0
i are arbitrary constants. Also, the integrals are independent

of the curve connecting the points x0 and x.

Proof. We first note that the relations in (1.2.33) are identically satisfied for εi j given
by (1.2.32).

In order to prove the second part of the theorem, we introduce the skew-
symmetric tensor

ωi j =
1
2

(
ui, j − u j,i

)
,

which, when coupled with (1.2.32), gives

ui, j = εi j + ωi j.

Furthermore,
dui = ui, jdx j =

(
εi j + ωi j

)
dx j (1.2.35)

is an exact differential in B0 (that is, ui, jk = ui,k j) if and only if

εi j,k + ωi j,k = εik, j + ωik, j. (1.2.36)

By a cyclic permutation of the indices i, j, and k in (1.2.36), we obtain

ε jk,i + ω jk,i = ε ji,k + ω ji,k (1.2.37)

and
εki, j + ωki, j = εk j,i + ωk j,i. (1.2.38)

If we now add (1.2.36) and (1.2.37) and from the result subtract (1.2.38), taking into
account the relations εi j = ε ji and ωi j = −ω ji, then we obtain

ωi j,k = εik, j − εk j,i.

Furthermore, dωi j = ωi j,kdxk =
(
εik, j − εk j,i

)
dxk is an exact differential in B0 (that is,

ωi j,kl = ωi j,lk) if and only if
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εik, jl − εk j,il = εil, jk − εl j,ik,

or
εi j,kl + εkl,i j − εil, jk − ε jk,il = 0. (1.2.39)

It is easy to verify that the relations in (1.2.39) are equivalent to those given by
(1.2.33), and from these conditions, it follows that dωi j = ωi j,kdxk =

(
εik, j − εk j,i

)
dxk

is an exact differential, giving

ωi j(x) =
∫ x

x0

(
εik, j − εk j,i

)
dξk + ω

0
i j, (1.2.40)

where ω0
i j = −ω0

ji are arbitrary constants. We note that the above integral is indepen-
dent of the curve connecting the points x0 and x.

At this stage we observe that the necessary and sufficient conditions for the inte-
grability of the differential form (1.2.35) are satisfied and hence

ui =
∫ x

x0

(
εi j + ωi j

)
dξ j + u

0
i , (1.2.41)

where u0
i are arbitrary constants.

Finally, we substitute ωi j(·) given by (1.2.40) into (1.2.41) to obtain the relation
(1.2.36). �

Remark 1.2.19. From the above analysis, we can deduce that εi j = 0 if and only if u
is an infinitesimal rigid displacement u∗, given by

u∗i = ai + ei jk x jbk,

where ai = u0
i − ω0

i j x
0
j and bi = ei jkω0

jk are arbitrary constants.

Remark 1.2.20. The relation (1.2.34) can be rewritten as

ui =
∫ x

x0

(
εi j + ω

∗
i j

)
dξ j + u

∗
i ,

so that the displacement vector field is determined uniquely by εi j up to an infinites-
imal rigid displacement.

1.2.3 Transformation of Areas and Volumes: Transport Theorems

We first discuss how the area and volume elements change as a result of a given
deformation. To this end, let us consider the vectors dX1 = dX1i1, dX2 = dX2i2,
and dX3 = dX3i3, which, with the deformation x = χ̃(X, t), become dx1 =

∂x1
∂X1

dX1,

dx2 =
∂x2
∂X2

dX2, and dx3 =
∂x3
∂X3

dX3, respectively. Let dA3 be the area vector associated
with the rectangle determined by the vectors dX1 and dX2, and let dσ3 be the cor-
responding area vector associated with the parallelogram determined by the vectors
dx1 and dx2, that is,
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dA3 = dX1 × dX2, dσ3 = dx1 × dx2.

Obviously, we have

dσ3 =
∂x1

∂X1
× ∂x2

∂X2
dA3 = ei jk

∂xi
∂X1

∂x j
∂X2

ikdA3. (1.2.42)

Since

J = detF = ei jk
∂xi
∂X1

∂x j
∂X2

∂xk
∂X3

,

we can rewrite the relation (1.2.42) in the form

dσ3 = J
∂X3

∂x j
i jdA3. (1.2.43)

A general area element dA will have components on all three axes. By an analogous
procedure, one obtains

dσ1 = J
∂X1

∂x j
i jdA1, dσ2 = J

∂X2

∂x j
i jdA2. (1.2.44)

If we now set
da = dσ1 + dσ2 + dσ3,

then, by (1.2.43) and (1.2.44),

da = J
∂Xk

∂x j
dAki j. (1.2.45)

Thus, putting
da = da ji j,

it follows from (1.2.45) that

da j = J
∂Xk

∂x j
dAk, (1.2.46)

a relation that expresses the change of an area element due to the given deformation.
On the other hand, the volume element dvt of the parallelepiped, determined by

the vectors dx1, dx2, and dx3, is

dvt = dx1 × dx2 · dx3 = JdX1dX2dX3 = Jdv0. (1.2.47)

It can be shown that for small deformations, in the limit of a linear theory, relation
(1.2.47) gives

dvt − dv0

dv0
= εii = tr ε = I1(ε),

so that I1(ε) represents the variation of volume per unit undeformed volume.
Let x = χ̃(X, t) be a motion of the body B. For any subbody A of B, we write

ϕt(A) = χ̃(A, t) for the region of space occupied by A at time t. Then the volume of
ϕt(A) is
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vol(ϕt(A)) =
∫
ϕt(A)

dvt,

so that using a change of variables in this volume integral, we can write

vol(ϕt(A)) =
∫
ϕ0(A)

Jdv0.

Thus, by virtue of relation (1.2.30), we have

d
dt

[vol(ϕt(A))] =
∫
ϕ0(A)

J̇dv0 =

∫
ϕt(A)

J̇ J−1dvt =
∫
ϕt(A)

divxvdvt.

This relation allows us to formulate the following results.

Theorem 1.2.21. (Transport of Volume) For any subbody A of B and time t, de-
noting by n the outward unit normal vector on the boundary ∂ϕt(A) of ϕt(A), we
have

d
dt

[vol(ϕt(A))] =
∫
ϕ0(A)

J̇dv0 =

∫
ϕt(A)

divxvdvt =
∫
∂ϕt(A)

v · ndat.

Since A is arbitrary, it follows from the third integral that divxv represents the rate
of change of volume per unit volume in the current configuration.

Theorem 1.2.22. (Characterization of Isochoric Motions) The following asser-
tions are equivalent: (a) x = χ̃(X, t) is isochoric, (b) J̇ = 0, (c) divxv = 0, and
(d)

∫
∂ϕt(A)

v · ndat = 0 for every subbody A and any time t.

We can now establish the following general result.

Theorem 1.2.23. (Reynold’s Transport Theorem) Let F be a smooth spatial field,
and assume that F is either scalar-valued or vector-valued. Then for any subbody A
and time t, we have

d
dt

∫
ϕt(A)

F̂(x, t) dvt =
∫
ϕt(A)

[
d
dt
F̂(x, t) + F̂divxv

]
dvt

=

∫
ϕt(A)

∂F̂

∂t
(x, t) dvt +

∫
∂ϕt(A)

F̂v · ndat.
(1.2.48)

Proof. For the transformation x = χ̃(X, t), since dvt = Jdv0, we have
∫
ϕt(A)

F̂(x, t) dvt =
∫
ϕ0(A)

F̃(X, t)J(X, t) dv0,

and hence

d
dt

∫
ϕt(A)

F̂(x, t) dvt =
∫
ϕ0(A)

∂

∂t
[F̃(X, t)J(X, t)]dv0

=

∫
ϕ0(A)

[
∂

∂t
F̃(X, t)J(X, t) + F̃(X, t)

∂

∂t
J(X, t)

]
dv0,
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so that using (1.2.7) and (1.2.30), we have

d
dt

∫
ϕt(A)

F̂(x, t) dvt =
∫
ϕ0(A)

[
∂

∂t
F̃(X, t) + F̃(X, t)divxv

]
J(X, t) dv0

=

∫
ϕt(A)

[
d
dt
F̂(x, t) + F̂(x, t)divxv

]
dvt,

(1.2.49)

which is (1.2.48)1. Relation (1.2.48)2 follows from (1.2.49)1 by using (1.2.6) and
applying the divergence theorem. �

Remark 1.2.24. We note that
∫
ϕt(A)

∂F̂

∂t
(x, t) dvt =

[
d
dτ

∫
ϕt(A)

F̂(x, τ) dvt

]
τ=t

.

Thus, (1.2.48)2 asserts that the rate at which the integral of F over ϕt(A) is changing
is equal to the rate computed as if ϕt(A) were fixed in its current position plus the
rate at which F is carried out of this region across its boundary.

1.3 Principles of Continuum Mechanics

1.3.1 Principle of Conservation of Mass

Given a deformation x = χ̃(X, t) of the body B, we will write ρ(x, t) = ρχ̃(·,t)(x) for
the density at the position x ∈ χ̃(B, t).

• Principle of conservation of mass: The mass of any subbody A of B is con-
served in time, so that we have

∫
ϕ0(A)

ρ(X, 0) dv0 =

∫
ϕt(A)

ρ(x, t) dvt. (1.3.1)

In what follows, we will denote by ρ0(X) the reference mass density ρ(X, 0). Relation
(1.3.1) expresses the principle of conservation of mass in integral form. We wish to
establish a local form of this principle.

Theorem 1.3.1. The local version of the principle of conservation of mass takes one
of the following forms:

ρ0 = ρJ,

ρ̇ + ρ divxv = 0,

∂ρ

∂t
+ divx(ρv) = 0.

(1.3.2)



20 1 Introduction to Continuum Mechanics

Proof. If we change the variable of integration on the right-hand side of relation
(1.3.1) from x to X, we arrive at

∫
ϕ0(A)

ρ0(X) dv0 =

∫
ϕ0(A)

ρ(χ̃(X, t), t)Jdv0,

so that ∫
ϕ0(A)

[ρ(χ̃(X, t), t)J − ρ0(X)]dv0 = 0, (1.3.3)

for every subbody A of the body B. We deduce from (1.3.3) the local form of the
principle of conservation of mass expressed by (1.3.2)1.

Furthermore, by differentiation of (1.3.2)1 with respect to the time variable, we
obtain

ρJ̇ + ρ̇J = 0,

which with the aid of (1.2.30) yields (1.3.2)2. Next, by (1.2.6), we have

ρ̇ =
∂ρ

∂t
+ v · ∇xρ,

so that (1.3.2)2, combined with this relation, implies (1.3.2)3. �

Remark 1.3.2. The local form of the conservation of mass expressed by (1.3.2)1 is
referred to as the continuity equation in Lagrangian form, while (1.3.2)2 is the con-
tinuity equation in spatial form.

By virtue of the above forms of the principle of conservation of mass, Reynold’s
transport theorem takes a simplified form.

Theorem 1.3.3. Let F be a smooth spatial field, either scalar-valued or vector-
valued. Then, for any subbody A of B and time t, we have

d
dt

∫
ϕt(A)

F̂(x, t)ρ(x, t) dvt =
∫
ϕt(A)

d
dt

[
F̂(x, t)

]
ρ(x, t) dvt. (1.3.4)

Thus, to differentiate the integral
∫
ϕt(A)

Fρdvt

with respect to time, we simply differentiate under the integral sign, treating the mass
measure ρdvt as a constant.

Proof. We replace F by Fρ in Reynold’s transport relation (1.2.48) and then use the
form (1.3.2)2 of the principle of conservation of mass to obtain (1.3.4). �
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1.3.2 Momentum Balance Principles

Let x = χ̃(X, t) be a motion of the body B, and let A be a subbody of B. Then the
linear momentum Q(A, t) and the angular momentum K0(A, t) (about the origin) of
A at time t are given by

Q(A, t) =
∫
ϕt(A)

vρdvt (1.3.5)

and

K0(A, t) =
∫
ϕt(A)

(x − x0) × vρdvt. (1.3.6)

In view of the rule (1.3.4), we obtain, from (1.3.5) and (1.3.6),

d
dt
Q(A, t) =

∫
ϕt(A)

v̇ρdvt (1.3.7)

and
d
dt
K0(A, t) =

∫
ϕt(A)

(x − x0) × v̇ρdvt. (1.3.8)

During a given motion, the mechanical interactions between parts of a body or
between a body and its environment are described by forces. In what follows, we will
be concerned with three types of force: (i) contact forces between parts of a body, (ii)
contact forces exerted on the boundary of a body by its environment, and (iii) body
forces exerted on the interior points of a body by the environment.

The environment can exert forces on interior points of B, a classical example
being the force field due to gravity. Such forces are determined by a prescribed vector
field b on the trajectory T of the motion, so that b(x, t) gives the force, per unit mass,
exerted by the environment on x at time t. Thus, for any subbody A of B, the integral

∫
ϕt(A)

b(x, t)ρdvt

gives that part of the environmental force on A acting at a distance at time t (not due
to contact).

Let us now consider the contact forces. To this end we use Cauchy’s hypothesis
concerning the form of the contact forces: Assume the existence of a surface force
density t = t(x, t; n) defined for every (x, t) in the trajectory T of the motion and for
each unit vector n. To make this hypothesis more precise, we consider an oriented
surface S in ϕt(B) with positive unit normal n at x. Then t(x, t; n) represents the
force, per unit area, exerted across S upon the material on the negative side of S by the
material on the positive side. To determine the contact force between two subbodies
A and C at time t, one integrates t over the surface of contact St = ϕt(A) ∩ ϕt(C).
Thus, denoting by nx the outward unit normal to ∂ϕt(A) at x,

∫
St

t(x, t; nx)dat =
∫
St

t(n)dat (1.3.9)
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gives the force exerted on A by C at time t. Such a contact force depends on the
intrinsic structure of the material and is therefore unknown in general.

For points on the boundary of ϕt(B), t(x, t; n), with n the outward unit normal
to ∂ϕt(B) at x, gives the surface force, per unit area, applied to the body by the
environment. This force is referred to as the surface traction, and it is usually known.

The above discussion motivates the following definition.

Definition 1.3.4. By a system of forces for B during a motion (with trajectory T), we
mean a pair (t,b) of functions t : T × N → V, b : T → V, where N is the set of all
unit vectors and V is the vector space R3, so that (i) t(x, t; n) is a smooth function of
x on ϕt(B), for each n ∈ N and t ≥ 0 and (ii) b(x, t) is a continuous function of x on
ϕt(B), for each t ≥ 0. We refer to t as the surface force and b as the body force. The
force F(A, t) and the moment Ω0(A, t) (about the origin) on a subbody A at time t
are defined by

F(A, t) =
∫
ϕt(A)

bρdvt +
∫
∂ϕt(A)

t(n)dat (1.3.10)

and

Ω0(A, t) =
∫
ϕt(A)

(x − x0) × bρdvt +
∫
∂ϕt(A)

(x − x0) × t(n)dat. (1.3.11)

• The balance law of linear momentum: The time derivative of the linear mo-
mentum of every subbody A of B at time t is equal to the force F(A, t) acting on
that subbody at time t, so that

d
dt
Q(A, t) = F(A, t). (1.3.12)

• The balance law of angular momentum: The time derivative of the angular
momentum K0(A, t) of every subbody A of the body at time t is equal to the
moment Ω0(A, t) acting on that subbody at time t, that is,

d
dt
K0(A, t) = Ω0(A, t). (1.3.13)

Remark 1.3.5. We assume that there exists a laboratory frame of reference in which
Newton’s second law, (1.3.12), holds to a good approximation and refer to this and
all frames of reference traveling at constant velocities relative to it as inertial frames.
These are all connected by Galilean transformations, and Newton’s second law ap-
plies equally in all of them.

In view of relations (1.3.7)–(1.3.11), the laws (1.3.12) and (1.3.13) of momentum
balance can be written as follows:∫

ϕt(A)
v̇ρdvt =

∫
ϕt(A)

bρdvt +
∫
∂ϕt(A)

t(n)dat (1.3.14)

and
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∫
ϕt(A)

(x − x0) × v̇ρdvt =
∫
ϕt(A)

(x − x0) × bρdvt

+

∫
∂ϕt(A)

(x − x0) × t(n)dat.
(1.3.15)

Lemma 1.3.6. (Newton’s Law of Action and Reaction) For each x ∈ ϕt(B) and for
each unit vector n ∈ N, it follows that

t(x, t; n) = −t(x, t; −n), (1.3.16)

for fixed time t.

Proof. Let us denote by Rδ a volume centered at x, with rectangular sides. It has
dimensions δ × δ × δ2, and n is the unit normal to the δ × δ faces. Let Σ+δ be the face
with the outward unit normal n and Σ−

δ the face with the outward unit normal −n.
Furthermore, we set ∂Rδ = Σ+δ ∪ Σ−

δ ∪ Σ. Obviously, we have

vol(Rδ) = δ4, Area(Σ+δ ) = Area(Σ−
δ ) = δ2, Area(Σ) = 4δ3. (1.3.17)

We further note that Rδ is contained in the interior of ϕt(B) for all sufficiently small
δ, say δ ≤ δ0.

We now apply (1.3.14) to the subbody A that occupies the region ϕt(A) ≡ Rδ.
Since b(x, t), ρ(x, t), and v̇(x, t) are continuous in x, it follows that the function b∗(x, t)
defined by b∗ = ρ(b − v̇) is bounded on Rδ0 for t fixed, and hence

κ(t) = sup
x∈Rδ0

|b∗(x, t)| < ∞. (1.3.18)

For convenience, we fix the time t and suppress it as an argument in most of what
follows.

From (1.3.14), we deduce∣∣∣∣∣∣
∫
∂Rδ

t(n)dat

∣∣∣∣∣∣ ≤ κ(t)vol (Rδ), (1.3.19)

so that on the basis of relations (1.3.17) and (1.3.18), we obtain

1
δ2

∫
∂Rδ

t(n)dat → 0 when δ → 0. (1.3.20)

But ∫
∂Rδ

t(n)dat =
∫
Σ+δ

t(+n)dat +
∫
Σ−
δ

t(−n)dat +
∫
Σ

t(n)dat. (1.3.21)

Since t(x;n) is continuous in x for each fixed n ∈ N, we have, using (1.3.17),

1
δ2

∫
Σ

t(n)dat → 0 when δ → 0, (1.3.22)

1
δ2

∫
Σ+δ

t(+n)dat → t(x;+n),
1
δ2

∫
Σ−
δ

t(−n)dat → t(x;−n), (1.3.23)
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when δ → 0. Thus, relations (1.3.20)–(1.3.23) give

t(x;+n) + t(x;−n) = 0,

which is (1.3.16). �

Theorem 1.3.7. (Cauchy’s Theorem for the Existence of Stress) Let (t,b) be a
system of forces for B during a motion. Then, a necessary and sufficient condition
that the momentum balance laws be satisfied is that there exists a spatial tensor field
T (the Cauchy stress) such that

(i) for each unit vector n ∈ N,
t(n) = Tn; (1.3.24)

(ii) T is symmetric;
(iii) T satisfies the equation of motion

ρv̇ = divxT + ρb. (1.3.25)

Proof. Necessity. Assume that the momentum balance laws (1.3.12) and (1.3.13) are
satisfied. We first note that (1.3.16) holds. Furthermore, we choose x to belong to
the interior of ϕt(B) and let δ > 0. Consider the tetrahedron Tδ with the following
properties: the faces of Tδ are Sδ, S1δ, S2δ, and S3δ, where n and −i j are the outward
unit normal vectors to ∂Tδ on Sδ and S jδ, j = 1, 2, 3, respectively; the vertex opposite
to Sδ is x; the distance from x to Sδ is δ (Fig. 1.3). Clearly, Sδ is contained in the
interior of ϕt(B) for all sufficiently small choices of δ, say δ ≤ δ0. Thus, we can
apply (1.3.14) to the subbody A that occupies the region Tδ at time t, and since
b∗ = ρ(b − v̇) is bounded on Tδ0 , we can conclude that∣∣∣∣∣∣

∫
∂Tδ

t(n)dat

∣∣∣∣∣∣ ≤ κ1(t)vol(Tδ), for all δ ≤ δ0, (1.3.26)

where κ1(t) is finite and independent of δ.
Let A(δ) denote the area of Sδ. Then vol(Tδ) = 1

3δA(δ), and hence we can con-
clude from (1.3.26) that

1
A(δ)

∫
∂Tδ

t(n)dat → 0 as δ → 0. (1.3.27)

But ∫
∂Tδ

t(n)dat =
∫
Sδ

t(n)dat +
3∑
j=1

∫
S jδ

t(−i j)dat, (1.3.28)

and since t(x;n) is continuous in x for each fixed n = nji j ∈ N and Area
(
S jδ

)
=

A(δ)nj, we have

1
A(δ)

∫
Sδ

t(n)dat → t(x;n) as δ → 0, (1.3.29)

1
A(δ)

∫
S jδ

t(−i j)dat → t(x;−i j)n j as δ → 0 (not summed on j).
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Fig. 1.3. The stress tetrahedron

Combining (1.3.27)–(1.3.29) with Newton’s law of action and reaction (1.3.16), we
conclude that

t(x;n) = t(x; i j)n j, (1.3.30)

so t(x;n) is a linear function of the components of n, or

t(x;n) = T(x)n. (1.3.31)

We write this in components as

ti(x; n) = Ti j(x)n j,

where T, given by

(
Ti j

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
t1 (i1) t1 (i2) t1 (i3)
t2 (i1) t2 (i2) t2 (i3)
t3 (i1) t3 (i2) t3 (i3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

is the Cauchy stress tensor.
Using (1.3.31), the balance of linear momentum (1.3.14) takes the form

∫
ϕt(A)

v̇ρdvt =
∫
ϕt(A)

bρdvt +
∫
∂ϕt(A)

Tndat,

or equivalently, on applying the divergence theorem,
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∫
ϕt(A)

(v̇ρ − bρ − divxT) dvt = 0.

This last relation can hold for every subbody A of the body and time t only if the
equation of motion (1.3.25) is satisfied.

To complete the proof of necessity, we have only to establish the symmetry of
the Cauchy stress T. In fact, if we substitute (1.3.31) into (1.3.15), we obtain

∫
ϕt(A)

(x − x0) × (v̇ρ − bρ) dvt −
∫
∂ϕt(A)

(x − x0) × (Tn) dat = 0,

or, using the divergence theorem,
∫
ϕt(A)

(x − x0) × (v̇ρ − bρ − divxT) dvt −
∫
ϕt(A)

ei jkT jkiidvt = 0,

and hence, with the aid of the equation of motion (1.3.25), we deduce that
∫
ϕt(A)

ei jkT jkdvt = 0.

This relation can hold for every subbody A and time t only if

ei jkT jk = 0, that is, T23 = T32, T31 = T13, T12 = T21.

Sufficiency. Assume that there exists a symmetric spatial tensor field T consistent
with the relations (1.3.24) and (1.3.25). Then it is an easy task to prove that the
momentum balance laws (1.3.14) and (1.3.15) hold, and the proof is complete. �

Remark 1.3.8. Actually, one can see that the points (i) and (iii) are equivalent to
balance of linear momentum, while, granted (1.3.14), the symmetry of the Cauchy
stress T is equivalent to balance of angular momentum.

Definition 1.3.9. If
Tn = σn, |n| = 1,

then σ is a principal stress and n is a principal direction, so that principal stresses
and principal directions are eigenvalues and eigenvectors of T.

Since T is symmetric, it follows that there exist three mutually perpendicular
principal directions and three corresponding principal stresses.

In general, the surface force t = Tn can be decomposed into the sum

t = T0n + t0,

where T0n is the normal force and t0 is the shearing force perpendicular to n. Obvi-
ously, we have

T0 = n · Tn, t0 = t − (n · Tn)n = (1 − n ⊗ n)Tn,
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where ⊗ denotes the tensor product of two vectors.¶ Clearly, n is a principal direction
if and only if the corresponding shearing force vanishes. The normal component of
the surface force is then a principal stress.

We now outline some important states of stress.
First consider a fluid at rest. It is incapable of exerting shearing forces, so that

Tn is parallel to n for each unit vector n, and hence every such unit vector is an
eigenvector of T. Thus, we have

T = −p1,

where p is a scalar quantity referred to as the pressure of the fluid. The force per unit
area on any surface in the fluid with unit normal n is −pn.

Other states of stress are pure tension (or compression), where the tensile stress
σ in the direction ν, with |ν| = 1, is defined by

T = σ (ν ⊗ ν),

and pure shear with shear stress τ relative to the direction pair (k,n), where k and n
are orthogonal unit vectors, given by

T = τ(k ⊗ n + n ⊗ k).

1.3.3 Consequences of Momentum Balance Laws

Definition 1.3.10. For every subbody A of a continuous body, we define the kinetic
energy of A at time t by

1
2

∫
ϕt(A)

ρv2dvt;

we further define the stress power of A at time t by
∫
ϕt(A)

T · Ddvt, (1.3.32)

where D is the stretching, defined by (1.2.23).

Theorem 1.3.11. The power expended on any subbody A at time t by the surface and
body forces is equal to the rate of change of kinetic energy plus the stress power, so
that∫

ϕt(A)
ρb · vdvt +

∫
∂ϕt(A)

t(n) · vdat =
d
dt

∫
ϕt(A)

1
2
ρv2dvt +

∫
ϕt(A)

T · Ddvt. (1.3.33)

Proof. Since T is symmetric, then with the aid of (1.2.23), we can write

T · ∇xv = Ti j
∂vi
∂x j
= T ji

∂v j
∂xi
= Ti j

∂v j
∂xi
= Ti j

1
2

(
∂vi
∂x j
+
∂v j
∂xi

)
= T · D. (1.3.34)

¶ This is defined by the requirement that (a ⊗ b)c = (b · c)a, where a and b are given vectors
and c is an arbitrary vector.
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Furthermore, invoking (1.3.4), we have

d
dt

∫
ϕt(A)

1
2
ρv2dvt =

∫
ϕt(A)

ρv · v̇dvt. (1.3.35)

Now, using (1.3.24) and the divergence theorem, we obtain
∫
ϕt(A)

ρb · vdvt +
∫
∂ϕt(A)

t(n) · vdat =
∫
ϕt(A)

ρb · vdvt +
∫
∂ϕt(A)

Tn · vdat

=

∫
ϕt(A)

ρb · vdvt +
∫
∂ϕt(A)

n · TTvdat

=

∫
ϕt(A)

[(ρb + divxT) · v + T · ∇xv]dvt.

(1.3.36)

Combining (1.3.34) with (1.3.36) and using the equation of motion (1.3.25), we ob-
tain the relation (1.3.33). �

Definition 1.3.12. Given a motion of the material, we refer to the list {v, ρ,T} as a
flow. The flow is steady if ϕt(B) = ϕ0(B) for all t and

∂v
∂t
= 0,

∂ρ

∂t
= 0,

∂T
∂t
= 0. (1.3.37)

In this case ϕ0(B) is called the flow region. A flow is potential if the velocity is the
gradient of a potential, that is, if there exists a function φ with the property that

v = ∇xφ. (1.3.38)

Finally, a flow is irrotational if curlxv = 0.

Theorem 1.3.13. (Bernoulli’s Theorem) Consider a flow {v, ρ,T}, where the stress
tensor is given by a pressure −p1 and the body force is conservative with potential
energy V. We have the following:

(i) If the flow is potential, then

∇x

(
∂φ

∂t
+

1
2
v2 + V

)
+

1
ρ
∇xp = 0. (1.3.39)

(ii) If the flow is steady, then

v · ∇x

(
1
2
v2 + V

)
+

1
ρ
v · ∇xp = 0. (1.3.40)

(iii) If the flow is steady and irrotational, then

∇x

(
1
2
v2 + V

)
+

1
ρ
∇xp = 0. (1.3.41)
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Proof. Since we have T = −p1, it follows that divxT = −∇xp, and therefore the
equation of motion (1.3.25) takes the form

ρv̇ = −∇xp + ρb. (1.3.42)

Since the body force is conservative, we have b = −∇xV. Moreover, for a potential
flow, we have, with the aid of (1.2.7),

v̇ =
∂v
∂t
+

1
2
∇x(v2) = ∇x

(
∂φ

∂t
+

1
2
v2

)
, (1.3.43)

while for a steady flow,

v · v̇ = v · ∇x

(
1
2
v2

)
, (1.3.44)

and for a steady irrotational flow,

v̇ = ∇x

(
1
2
v2

)
. (1.3.45)

Relations (1.3.43)–(1.3.45), when combined with (1.3.42), yield the desired results
(1.3.39)–(1.3.41). �

1.3.4 The Piola–Kirchhoff Stresses

The Cauchy stress tensor T measures the contact force per unit area in the deformed
configuration, and it is convenient, especially for fluids whose current configura-
tion is supposed known in advance. For many other problems of interest—especially
those involving solids—it is convenient to work with a stress tensor that gives the
force measured per unit area in the reference configuration. This is because in such
problems the current configuration is not known in advance. To establish the form of
this tensor, we have to formulate the momentum balance laws relative to the refer-
ence configuration ϕ0(B).

Note that by virtue of the mass balance law (1.3.2)1, we can rewrite the momen-
tum balance laws (1.3.14) and (1.3.15) in the following forms:

∫
ϕ0(A)

v̇ρ0dv0 =

∫
ϕ0(A)

bρ0dv0 +

∫
∂ϕ0(A)

s(N)da0 (1.3.46)

and∫
ϕ0(A)

(x−x0)× v̇ρ0dv0 =

∫
ϕ0(A)

(x−x0)×bρ0dv0+

∫
∂ϕ0(A)

(x−x0)×s(N)da0, (1.3.47)

where s(N) represents the force vector acting on the surface ∂ϕt(A) but measured
per unit area of the surface ∂ϕ0(A) in the reference configuration, the outward unit
normal of which is denoted by N. We have

s(N)da0 = t(n)dat,
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so that using (1.2.46) and (1.3.30), where dai = nidat, dAj = Njda0, with n = niii,
N = Niii, we obtain that

s(N)da0 = t(i j)n jdat = t(i j)da j = t(i j)J
∂Xi

∂x j
dAi = t(i j)J

∂Xi

∂x j
Nida0.

We can write this relation in the form

s(N) = S(X)N, (1.3.48)

where S is a tensor given by

S = JT
(
F−1

)T
, (1.3.49)

known as the first Piola–Kirchhoff stress. In terms of components, this relation is

S i j = JTik
∂Xj

∂xk
⇔ Ti j =

1
J

∂x j
∂Xk

S ik.

Note that (1.3.48) is of the same form as (1.3.24). If we use (1.3.48) in the balance
laws (1.3.46) and (1.3.47), then the following result is obtained.

Proposition 1.3.14. The first Piola–Kirchhoff stress tensor satisfies the field equa-
tions

ρ0ẍ = DivXS + ρ0b (1.3.50)

and
SFT = FST . (1.3.51)

Here, the operator DivX is evaluated with respect to the material point X in the ref-
erence configuration.

Remark 1.3.15. It is important to note that by (1.3.51), S generally is not symmetric.
If we introduce the second Piola–Kirchhoff stress tensor Ŝ, defined by

Ŝ = F−1S, or, in components, Ŝ i j =
∂Xi

∂xk
S k j, (1.3.52)

then from (1.3.51), it follows that Ŝ is a symmetric tensor.

It is related to the Cauchy stress tensor by

Ŝ = JF−1T(F−1)�. (1.3.53)

We further have the following alternative version of the relation (1.3.33).

Theorem 1.3.16. (Theorem of Power Expended) For every subbody A of the body,
we have∫

ϕ0(A)
ρ0b · ẋdv0+

∫
∂ϕ0(A)

s(N) · ẋda0 =
d
dt

∫
ϕ0(A)

1
2
ρ0ẋ2dv0+

∫
ϕ0(A)

S ·Ḟdv0. (1.3.54)
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Proof. Let us take the inner product of the equation of motion (1.3.50) with ẋ and
integrate over ϕ0(A). Using the divergence theorem and relation (1.2.11), we obtain
(1.3.54). �

Note that using (A.2.4), we have

S · Ḟ = tr(SḞ�) = tr(̂SḞ�F) = tr(S�Ḟ) = tr(̂SF�Ḟ).

Thus, by virtue of (1.2.15) and (1.2.20),

S · Ḟ = 1
2

tr(̂SĊ) = tr(̂SĖ) = Ŝ · Ė.

1.4 Constitutive Equations

The mass and momentum balance principles apply to all bodies in nature and do
not distinguish between different types of materials, in that they do not depend on
the intrinsic structure of the material. Two different bodies of the same size and
shape subjected to the same deformation will generally not have the same resulting
stress distribution. For example, two thin wires of the same length and diameter,
one of steel and one of copper, will require different forces to produce the same
elongation. Therefore, the balance principles are insufficient to fully characterize
behavior, and some additional hypotheses are required for a complete description of
the behavior of a continuous body. Such supplementary hypotheses are known as
constitutive equations and serve to distinguish different types of material behavior.

Constitutive equations also serve the purpose of providing a well-posed mathe-
matical model for describing the deformation of a continuous body. In fact, suppos-
ing that the mass density of the body in the reference configuration is known and the
body force field has been assigned, we have four differential equations (one is the
continuity equation and the other three are the equations of motion) for the unknown
set of functions defining, for example, the components of the displacement vector
field, the mass density in the current configuration, and the components of the stress
tensor. Clearly, the mathematical problem is underdetermined.

The possibility of dependence of constitutive quantities on not only the current
values of field variables but also their past history is fundamental to the present work.

The importance of such memory properties in the study of the behavior of mate-
rials was first described by Cauchy in 1828 [60]. In this work, he observed that for
solid bodies that are not quite elastic, “les pressions ou tensions ne dépendent pas
seulement du changement de form que le corps éprouve en passant de l’état naturel
à un nouvel état, mais aussi des états intermédiaires et du temps pendant lequel le
changement de form s’effectue” [see [313] on page 56 (1960 edition)].

We now introduce the concept of objective tensors and the principle of material
objectivity, which imposes constraints on the possible forms of constitutive equa-
tions. The remaining chapters of Part I and all of Parts II and III deal largely with
properties of various specific constitutive equations, in most cases involving linear
memory functionals, and of energy functionals associated with them.



32 1 Introduction to Continuum Mechanics

1.4.1 Objectivity

Inertial frames are defined in Remark 1.3.5. However, we wish to consider more
general frames of reference. Let (x, t) be the spatial coordinates in an inertial frame.
Consider the frame of reference with coordinates (x′, t′) given by

x′ = Q(t)x + c(t), t′ = t + t0, (1.4.1)

where t0 is a constant. The reference description coordinates X are unchanged. The
quantity Q(t) is an orthogonal matrix, so that

Q�(t)Q(t) = 1.

Thus Q is a time-dependent rotation and c is a time-dependent translation. We take
detQ = 1.

Relation (1.4.1) is a Euclidean transformation. In a Galilean transformation (Re-
mark 1.3.5), Q is time-independent and c(t) = c0 + Vt, the quantity V being the
relative velocity of the origins of the two frames under consideration, while c0 is a
fixed vector.

Tensor quantities transform in a well-defined manner under (1.4.1) for Q time-
independent. A subset of these quantities have the same transformation properties
even if Q is time-dependent. Tensors in this subset will be referred to as objective
tensors. In particular, if φ is an objective scalar, a an objective vector, and B an
objective second-order tensor, then

φ′(X, t′) = φ(X, t), a′(X, t′) = Q(t)a(X, t),

B′(X, t′) = Q(t)B(X, t)Q�(t).
(1.4.2)

Various physical quantities are assumed to be objective tensors. These assumptions
are linked to the principle of material objectivity discussed in Sect. 1.4.2. Thermo-
dynamic quantities introduced later such as the internal and free energies, the en-
tropy, and the temperature are taken to be objective scalars, while the heat flux is
assumed to be an objective vector. The Piola–Kirchhoff heat flux, defined analo-
gously to the Piola–Kirchhoff stress tensor, is an objective scalar, by virtue of the
device introduced in (1.4.5) below. The Cauchy stress tensor is assumed to transform
as a second-order objective tensor under a change of observer, so that

T′ = Q(t)TQT (t). (1.4.3)

The particle velocity v, given by (1.2.5), is not objective, nor is the kinetic energy
density.

We note that the second-order tensor F is a transformation from the material to
the spatial description. It acts like an objective vector in that under (1.4.1),

F′(t) = Q(t)F(t). (1.4.4)

Proposition 1.4.1. The second Piola–Kirchhoff tensor Ŝ, defined by (1.3.52) or
(1.3.53), is an objective scalar; all its components have this property.
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Proof. This follows from (1.4.3), (1.4.4), and the observation that J = detF =
det (QF) is an objective scalar. �

Observe that
Ḟ′(t) = Q(t)Ḟ(t) + Σ(t)F′(t),

where Σ is the spin tensor, defined as

Σ(t) = Q̇(t)Q�(t).

Then by (1.2.10),

L′(t) = Ḟ′(t)[F′(t)]−1 = Q(t)L(t)Q�(t) + Σ(t).

We see from (1.4.4) that C, given by (1.2.15)1, and E, given by (1.2.20)1, are unaf-
fected by the transformation (1.4.1). Thus, we have

C′ = C, E′ = E,

and therefore, since, from (1.2.15)1, U = C1/2, we have

U′ = U.

Thus, all these quantities are objective scalars, as shown for Ŝ in Proposition 1.4.1.
Note that if a is an objective vector and λ is an objective scalar, then by virtue of

(1.4.4),
as = λF−1a (1.4.5)

is an objective scalar.

1.4.2 Principle of Material Objectivity

This principle [313], also termed the principle of material frame indifference, pos-
tulates that the intrinsic properties of a material, as expressed in its constitutive re-
lations, do not depend on the observer frame. More recent discussions of the topic
may be found in particular in [188, 195, 238].

For example, consider the simple case of a spring extended by an applied force
[313]. Material frame indifference, in this case, is the statement that the spring con-
stant is the same for all observers in all frames of reference given by (1.4.1).

Expressed more formally, it is the statement that the constitutive equations de-
scribing the response of a material must hold in all frames related by (1.4.1).

This principle is accepted as valid for most conditions, though breakdowns have
been predicted, notably within the framework of rational extended thermodynamics
[269]. An observation on page 258 of [195] is of interest in this context.

This principle is imposed by expressing constitutive relations in terms of objec-
tive tensors. For simple materials [195, 238, 313], these relations in general involve
functionals of the history of F and thermodynamic variables that are taken to be
objective scalars either by assumption or by construction as in (1.4.5).
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Explicit dependence on time is excluded by indifference to the origin of time as
expressed by (1.4.1)2. Note, however, that if a material is aging ([167], for example),
explicit time dependence can occur.

Explicit dependence on X will occur if the material is inhomogeneous. The prop-
erty of inhomogeneity is generally assumed in the present work, though we will often
omit explicit inclusion of the space dependence.

Thus, we write a general constitutive relation as

A(X, t) = Â(Ft(X, s), Θt(X, s); s ≥ 0),

Ft(X, s) = F(X, t − s), Θt(X, s) = Θ(X, t − s), ∀s ≥ 0,
(1.4.6)

where Θ represents a list of objective scalar variables and A is a scalar, vector, or
higher order objective tensor. In the primed frame of reference, using only (1.4.1)1,
this becomes

A′(X, t′) = Â′(F′(X, t − s), Θ′(X, t − s); s ≥ 0)

= Â′(Q (t − s)F(X, t − s), Θ′(X, t − s); s ≥ 0),

where (1.4.2)1 and (1.4.4) have been used. The principle of material objectivity can
be stated as follows: the functional Â′ is the same functional as Â for all frames of
reference, or

Â′(Q(t − s)F(X, t − s),Θ′(X, t − s); s ≥ 0)

= Â(Q (t − s)F(X, t − s), Θ′(X, t − s); s ≥ 0),

for all choices of the independent field variables. Thus, for Â = φ, a,B, transforming
as specified by (1.4.2)2, we have the conditions

φ̂(Q(t − s)Ft(X, s), Θt(X, s); s ≥ 0) = φ̂(Ft(X, s), Θt(X, s); s ≥ 0),

â(Q(t − s)Ft(X, s), Θt(X, s); s ≥ 0) = Q(t)â(Ft(X, s), Θt(X, s); s ≥ 0),

B̂(Q(t − s)Ft(X, s), Θt(X, s); s ≥ 0) = Q(t)B̂(Ft(X, s), Θt(X, s); s ≥ 0)Q�(t),
(1.4.7)

for all F ∈ Lin+ and orthogonal tensors Q, where the notation (1.4.6)2,3 has been
used.

The implications of the principle of material objectivity for the possible forms of
constitutive equations are considerable [195, 238, 313], as shown by the following
example.

Proposition 1.4.2. Let F(t − s) = R(t − s)U(t − s) be the polar decomposition of F.
If an objective scalar obeys the principle of material objectivity (1.4.7)1, then it can
be expressed in terms of the current value and history of U and Θ; that is to say, it
will not depend on R. Since by (1.2.15), we have U =

√
C, it follows that the scalar

is a function of the current value and a functional of the history of C = F�F.
Conversely, if it has this property, then (1.4.7)1 holds.
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Proof. The first assertion follows since we can always choose Q(t − s) = R�(t − s)
in (1.4.7)1. The converse is immediate. �
Remark 1.4.3. Note that by virtue of (1.2.20), we can replace C(t − s) by the Green
strain tensor E(t − s).

We must emphasize that Proposition 1.4.2 does not refer to the possible de-
pendence on F of thermodynamic quantities in Θ included to make them objective
scalars, using (1.4.5).

Consider a particular class of bodies, the behavior of which depends on the his-
tory of the deformation gradient up to time t, F(X, t− s)∀s ∈ R+. These materials are
such that the stress tensor is given by the functional

T(X, t) = T̂(F(X, t), Ft(X)), (1.4.8)

where F(X, t) is the current value and Ft(X, s) = F(X, t − s)∀s ∈ R++ denotes the
past history of F. The functional T̂ may also depend on objective scalars as denoted
by Θ above.

The requirement of material frame indifference, as stated by (1.4.7)3, yields that
the functional T̂ must obey the relation (omitting X)

T̂(Q(t)F(t), Q(t − s)F(t − s)), s ∈ R++)

= Q(t)T̂(F(t), F(t − s), s ∈ R++)Q�(t),
(1.4.9)

for all F ∈ Lin+ and orthogonal tensors Q.

Proposition 1.4.4. Property (1.4.9) is equivalent to the requirement that

T̂(F(t), F(t − s)), s ∈ R++) = F(t)T̃(C(t), C(t − s), s ∈ R++)F�(t),

where C is the right Cauchy–Green tensor, defined by (1.2.15). The dependence of T̃
on C is not restricted by the property of material frame indifference. Note that from
(1.3.52), T̃ is related to the second Piola–Kirchhoff stress tensor by

JT̃ = Ŝ.

Proof. This follows immediately from Propositions 1.4.1 and 1.4.2. �

1.4.3 Fading Memory

We shall consider materials for which the property of fading memory holds. This
property is expressible through the (Volterra) dissipation behavior of hereditary ac-
tion [318], which states “the modulus of the variation of the quantity [given by
(1.4.8)], when Ft varies in any way . . . in the interval (−∞, t1) (with t1 < t) can
be made as small as we please by taking the interval (t1, t) sufficiently large.”‖

‖ In the Coleman and Noll theory [73], the fading memory property is given by the continuity
of (1.4.8) with respect to the norm

‖Ft‖2 =

∫ ∞

0
h(s)|Ft(s)|2ds,

where the map h ∈ L1(R+) is a suitable positive decreasing function.
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A more precise definition of the property of fading memory at a material point
X ∈ B can be given by considering the set D of the histories that make up the domain
of definition of the functional (1.4.8).

For this purpose, we suppose the set D has the following properties:

1. D = Lin×Dr, where Dr is a set of past histories that contains the space L∞(R+).
2. The partly static history Ft(τ) , associated with Ft(X), is defined by

Ft(τ) (X, s) :=

⎧⎪⎪⎨⎪⎪⎩
F(X, t) ∀s ∈ [0, τ),

Ft(X, s − τ) ∀s ∈ [τ, ∞),
(1.4.10)

where τ is the duration of the static part of the history. If Ft(X) ∈ D, then Ft(τ)

belongs to D.

Definition 1.4.5. A viscoelastic material is characterized by the constitutive equa-
tion (1.4.8), where Ft ∈ D, and there exists a constitutive equation T(X, t) =
T̃(F(X, t)) of an elastic material such that

lim
τ→∞

T̂(Ft(τ) (X)) = T̃(F(X, t)).

Moreover, T̂(Ft(τ) (X)) − T̃(F(X, t)) is a function of τ, which belongs to L2(R+).

This definition includes an expression of the fading memory property. Consider
its application to the simplest case, namely a linear constitutive relation defining a
linear viscoelastic material. Such linear relations will be systematically derived and
discussed in Part III. For a linear viscoelastic body, we have

T(X, t) = G0(X)E(X, t) +
∫ ∞

0
G′(X, s)Et(X, s)ds, (1.4.11)

where E ∈ Sym is the strain tensor.∗∗ The infinitesimal approximation to this quan-
tity, as given by (1.2.31), is generally, though not necessarily, used in this context.
The quantities G0 and G′ are fourth-order tensors in Lin(Sym). The domain D con-
sists of the set of pairs (E(t), Et) such that E(t) ∈ Sym and G′Et ∈ L1(R+).

In the linear theory, D includes constant histories by property 1. It follows that the
kernel G′ belongs to L1(R+). Then if G′ ∈ L1(R+), we conclude that G′Et(τ) ∈ L1(R+),
where Et(τ) is the partly static history associated with Et. Hence,

lim
τ→∞

T̂(Et(τ) ) = G∞E(t), G∞ = G0 +

∫ ∞

0
G′(s)ds. (1.4.12)

We observe that (1.4.11) represents a viscoelastic material with the fading memory
property, according to Definition 1.4.5, because the right-hand side of (1.4.12)1 is the
stress associated with an elastic material. For the same reason, the tensor G∞ must
be a positive definite tensor in the case of a solid, though it may vanish for a liquid.
Thus, we have

G∞ ≥ 0. (1.4.13)

∗∗ This follows from the principle of material frame indifference as expressed through Propo-
sition 1.4.4.
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Materials with Constitutive Equations That Are Local
in Time

2.1 Introduction

We now consider the constitutive equations relating to fluids and solids for which
memory effects are negligible. This contrasts with subsequent chapters, which are
devoted almost entirely to materials with memory. In fact, however, one example in-
cluded in the discussion, namely viscous fluids, can be visualized as possessing very
short-term memory, expressed by the presence of time derivatives of certain field
quantities. This is consistent with the general correlation that will arise throughout
the present work between memory effects and energy dissipation.

In what follows, we will consider three types of constitutive equations: (i) con-
straints on the possible deformations the body may undergo, (ii) assumptions con-
cerning the form of the stress tensor, and (iii) constitutive equations relating the stress
to the deformation. Each of these three types of constitutive equations is appropriate
for a certain class of materials, and its validity is verified by experiment.

As an example of a constitutive equation of type (i) we give the constraint that
only rigid motions are possible, a constraint that underlies rigid-body mechanics.
Another example in this class is the assumption of incompressibility, in which only
isochoric deformations are permissible. Such an assumption is realistic for liquids
such as water under normal flow conditions. An example of a constitutive equation
of type (ii) is the widely used assumption that the stress is a pressure, an assumption
appropriate for most fluids when viscous effects are negligible. Finally, an example
of a constitutive equation of type (iii) is Hooke’s law relating the deformation of a
body to the state of stress, which is appropriate for linear elastic materials.

2.2 Fluids: Ideal Fluids

In this section, the constitutive equations for various classes of fluids are discussed.
To this end we note that the contact forces in such materials are most naturally con-
sidered in the Eulerian description of deformation (Definition 1.2.2), that is, they
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are regarded as depending on the variables (x, t). From a physical point of view, this
means that the contact forces are determined by the kinematic properties of the fluid
at the present time.

Definition 2.2.1. By a dynamical process, we mean a pair (x,T), where x is a defor-
mation in the sense of (1.2.3)1 and T a symmetric tensor field on the trajectory of x.
The quantity T(x, t) is a smooth function of x on ϕt(B).

Definition 2.2.2. A dynamical process (x,T) is isochoric if (x, t) is an isochoric or
volume-preserving deformation at each t. A material body is incompressible if each
(x,T) is isochoric, so that for every subbody A of the body, we have

vol (ϕt(A)) = vol (ϕ0(A)), for all t. (2.2.1)

The above relation states that every deformation preserves volume, and more-
over, the volume of any subbody throughout the deformation must be the same as
its volume in the reference configuration. In view of relations (1.2.29), (1.2.30), and
(1.3.2)1, the condition of incompressibility (2.2.1) takes one of the following forms:

J = detF = 1 or divxv = 0 or ρ = ρ0.

Definition 2.2.3. A dynamical process (x,T) is Eulerian if the Cauchy stress is a
pressure, given by

T = −p1,
where p is a scalar field on the trajectory of x.

Definition 2.2.4. An ideal fluid is a material body that can support only isochoric
Eulerian dynamical processes and whose density ρ0 is constant.

The tension on an arbitrary elementary surface dσ, with unit normal vector n, is
given by t(n) = −pn, so that it is parallel to the normal (see Fig. 2.1). We observe
that an ideal fluid is an incompressible material body for which the Cauchy stress
is a pressure in every flow. Furthermore, the pressure is not determined uniquely by
the deformation; there exists an infinite number of pressure fields corresponding to
the same deformation. That such a property is physically reasonable can be inferred
from the following example. Consider a ball composed of an ideal fluid under a
time-independent uniform pressure p, and assume, for the moment, that all body
forces are absent. Then the ball should remain in the same configuration for all time.
Moreover, since the ball is incompressible, an increase or a decrease in pressure
should not result in a deformation. Thus, the same deformation corresponds to all
uniform pressure fields.

Summarizing, the equations of motion for an ideal fluid with density ρ0 (see
(1.3.25) and (1.3.2)2) are

ρ0v̇ = −∇xp + ρ0b, divx v = 0. (2.2.2)

We note that for a conservative body force with the potential energy V, relation
(2.2.2)1 becomes
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Fig. 2.1. The normal unit vector to an elementary surface element

v̇ = −∇x

(
p
ρ0
+ V

)
,

so that the acceleration is the gradient of a potential.
On the basis of Bernoulli’s theorem (Theorem 1.3.13), we can formulate the fol-

lowing result.

Theorem 2.2.5. (Bernoulli’s Theorem for Ideal Fluids) Let {v, ρ0,−p1} be a flow
of an ideal fluid under a conservative body force with potential energy V. Then,

(i) if the flow is potential (v = ∇xφ), then

∇x

(
∂φ

∂t
+

1
2
v2 +

p
ρ0
+ V

)
= 0. (2.2.3)

(ii) if the flow is steady, then

d
dt

(
1
2
v2 +

p
ρ0
+ V

)
= 0. (2.2.4)

(iii) if the flow is steady and irrotational, then

1
2
v2 +

p
ρ0
+ V = constant. (2.2.5)
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Proof. Since ρ = ρ0 = constant, the relation (1.3.39) implies (2.2.3). Furthermore,
if we set

η =
1
2
v2 +

p
ρ0
+ V,

then for a steady flow, ∂η
∂t = 0, and moreover, by (1.3.40), we have v · ∇xη = 0, so

that
dη
dt
=

∂η

∂t
+ v · ∇xη = 0,

which is (2.2.4). Finally, for a steady and irrotational flow, (1.3.41) yields ∇xη = 0,
which, with ∂η

∂t = 0, implies that η is a constant in space and time, or (2.2.5). �

Remark 2.2.6. With the aid of Bernoulli’s theorem, we see that for a steady and ir-
rotational flow under a conservative body force, Eqs. (2.2.2)1 and (2.2.2)2 reduce
to

divxv = 0, curlxv = 0,
1
2
v2 +

p
ρ0
+ V = constant. (2.2.6)

In a steady motion the velocity is tangent to the boundary, so that (2.2.6) should be
supplemented by the boundary condition

v · n = 0 on ∂ϕ0(B).

Remark 2.2.7. For an unsteady flow, we have to solve the system of differential equa-
tions described by (2.2.2). Using (1.2.6), we can write this system in the form of
Euler’s equations

∂v
∂t
+ (∇xv)v = −∇x

(
p
ρ0

)
+ b,

divxv = 0,

which is a nonlinear differential system because of the presence of the term (∇xv)v.

2.2.1 Elastic Fluids

In what follows, we consider a material body in which compressibility effects are not
ignored and for which the pressure is completely specified by the deformation.

Definition 2.2.8. An elastic fluid is a material body for which the constitutive class
is defined by the smooth response function p̂ : R+ → R giving the pressure when the
mass density is known:

p = p̂(ρ). (2.2.7)

For such a fluid, the constitutive class is the set of all Eulerian dynamical processes
(x,−p1) (Definition 2.2.1) that obey the constitutive equation (2.2.7).

The basic equations for the flow {v, ρ,−p1} of an elastic fluid are the equations
of motion

ρv̇ = −∇xp + ρb, (2.2.8)
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conservation of mass
∂ρ

∂t
+ divx(ρv) = 0, (2.2.9)

and the constitutive equation (2.2.7).
We assume that p̂ has a strictly positive derivative and define the functions κ > 0

and ε on R+ by

κ2(ρ) =
dp̂(ρ)
dρ

, ε (ρ) =
∫ ρ

ρ∗

κ2(ξ)
ξ

dξ,

where ρ∗ is an arbitrarily chosen value of the mass density. The function κ(ρ) is
called the speed of sound. By the chain rule, we obtain

∇xε(ρ) =
κ2(ρ)
ρ

∇xρ =
1
ρ

dp̂(ρ)
dρ

∇xρ =
1
ρ
∇xp,

so that for a conservative body force with potential energy V, the equation of motion
(2.2.8) takes the form

v̇ = −∇x[ε(ρ) + V],

and hence the acceleration is the gradient of a potential. Thus, by Bernoulli’s theo-
rem, we get the following result.

Theorem 2.2.9. (Bernoulli’s Theorem for Elastic Fluids) Let {v, ρ,−p1} be a flow
for an elastic fluid under a conservative body force with potential energy V. Then,

(i) if the flow is potential, then

∇x

[
∂φ

∂t
+

1
2
v2 + ε (ρ) + V

]
= 0.

(ii) if the flow is steady, then

d
dt

[
1
2
v2 + ε (ρ) + V

]
= 0.

(iii) if the flow is steady and irrotational, then

1
2
v2 + ε (p) + V = constant.

Remark 2.2.10. If we set

α (ρ) =
κ2(ρ)
ρ

,

then the basic equations (2.2.7)–(2.2.9) lead to

∂v
∂t
+ (∇xv)v + α (ρ)∇xρ = b,

∂ρ

∂t
+ divx(ρv) = 0.

(2.2.10)

The relations in (2.2.10) furnish a nonlinear differential system for ρ and v. Con-
cerning such a system we can establish the following result.
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Proposition 2.2.11. In a steady flow of an elastic fluid under vanishing body forces,
we have

d
dt

(ρv) = ρ
(
1 − m2

)dv
dt

, (2.2.11)

where v = |v| is assumed different from zero and

m =
v

κ(ρ)
(2.2.12)

is the Mach number.

Proof. Since we have a steady flow, it follows that ∂ρ
∂t = 0, and hence, from (1.2.6),

ρ̇ = v · ∇xρ.

Furthermore, with b = 0, Eq. (2.2.10)1 implies that

v · v̇ = −κ2(ρ)
ρ

v · ∇xρ = −κ2(ρ)
ρ

ρ̇,

and therefore, with the aid of (2.2.12), we have

v · d
dt

(ρv) = v · (ρv̇ + ρ̇v) = ρ(v · v̇)
(
1 − m2

)
.

This last relation, when combined with the observation that

v · v̇ = d
dt

(
1
2
v2

)
= vv̇

and hence

v · d
dt

(ρv) = v(ρ̇ + ρv̇) = v
d
dt

(ρv),

proves (2.2.11).
It follows that for m < 1, the mass flow ρ(x)v(x) increases, while for m > 1, the

mass flow decreases. �

Proposition 2.2.11 motivates the following definition.

Definition 2.2.12. A flow is subsonic, sonic, or supersonic at (x, t) according to
whether m(x, t) is less than, equal to, or greater than 1, respectively.

For a steady flow under a conservative body force with potential energy V, we
conclude, from Bernoulli’s theorem, that the basic equations characterizing such a
flow are

divx(ρv) = 0, crulxv = 0,
1
2
v2 + ε(ρ) + V = constant.
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2.2.2 Newtonian Fluids: The Navier–Stokes Equations

The ideal and elastic fluids previously discussed never exhibit shearing stress, and
therefore they are incapable of describing frictional force. Friction in fluids gener-
ally manifests itself through shearing forces that retard the relative motion of fluid
particles. A measure of the relative motion of fluid particles is furnished by the ve-
locity gradient.

Definition 2.2.13. A Newtonian fluid is an incompressible material with constitutive
equation

T(x, t) = −p(x, t)1 + 2μD(x, t), (2.2.13)

where D is the stretching, and the scalar constant μ is known as the viscosity of
the fluid. The term T0 = 2μD = T + p1 is referred to as the extra stress. Since
trD = divxv = 0, we have that T0 = T − 1

3 (trT)1.

Remark 2.2.14. Since D vanishes for a material at rest, by (1.2.23), it follows from
(2.2.13) that a Newtonian fluid at rest behaves like an ideal fluid.

The basic equations for a Newtonian fluid are

ρ

[
∂v
∂t
+ (∇xv)v

]
= divxT + ρb, T = −p1 + 2μD, divxv = 0. (2.2.14)

We have ρ = ρ0, because of (1.3.2)2 and (2.2.14)3. Also,

2 divxD = divx

[
∇xv + (∇xv)T

]
= Δv + ∇xdivxv = Δv,

and Eqs. (2.2.14) reduce to

∂v
∂t
+ (∇xv)v = νΔv − ∇xp0 + b, divxv = 0, (2.2.15)

where
ν =

μ

ρ0
, p0 =

p
ρ0

.

The scalar constant ν is known as the kinematic viscosity, and Eqs. (2.2.15) are the
Navier–Stokes equations. These constitute a nonlinear system of partial differential
equations for the velocity v and the pressure p.

Suppose that the flow takes place in a region R. To the Navier–Stokes equations,
we add the restriction that the fluid adheres, without slipping, to the boundary ∂R.
For a stationary boundary, this means that v = 0 on ∂R. If the boundary moves, then
at each point on the boundary the fluid velocity must coincide with the velocity of
the boundary.

Theorem 2.2.15. (Balance of Energy for a Viscous Fluid) For any flow of a New-
tonian fluid, we have
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d
dt

∫
ϕt(A)

1
2
ρ0v2dvt + 2μ

∫
ϕt(A)

|D|2dvt

=

∫
ϕt(A)

ρ0b · vdvt +
∫
∂ϕt(A)

Tn · vdat,
(2.2.16)

for every part A of the fluid.

Proof. The constitutive equation (2.2.13), together with the fact that D is traceless,
gives

T · D = −ptrD + 2μ|D|2 = 2μ|D|2,

and hence the theorem of power expended, expressed by relation (1.3.33), yields
(2.2.16). �

Remark 2.2.16. The term

2μ
∫
ϕt(A)

|D|2dvt

represents the rate at which the fluid in A dissipates energy. The energy equation
(2.2.16) asserts that the total power expended on A must equal the rate of change of
kinetic energy plus the rate of energy dissipation.

Corollary 2.2.17. For a flow of a Newtonian fluid in a finite region B under the
hypotheses of zero body force b = 0 and v = 0 on ∂ϕt(B) at all times and μ > 0, we
have

d
dt

∫
ϕt(B)

1
2
ρ0v2dvt ≤ 0,

so that the kinetic energy decreases with time.

It is useful to write the Navier–Stokes equations in dimensionless form. For con-
venience we will assume that b = 0. Consider l a typical length (such as the diameter
when a cylindrical body is considered) and v a typical velocity. Let us further identify
points x with their position vectors from a given origin O and introduce the dimen-
sionless position vector x̄ = x

l , the dimensionless time t̄ = tv
l , the dimensionless

velocity v̄(x̄, t̄) = 1
vv(x, t), and the dimensionless pressure p̄0(x̄, t̄] = 1

v2 p0(x, t). Thus,
we have

∇x̄v̄ =
l
v
∇xv,

∂v̄
∂t̄
=

l
v2

∂v
∂t

, ∇x̄ p̄0 =
l
v2
∇x̄p0.

Hence, the Navier–Stokes equations (2.2.15) become

∂v̄
∂t̄
+ (∇x̄v̄)v̄ =

1
Re

Δ̄v̄ − ∇x̄ p̄0,

divx̄v̄ = 0,
(2.2.17)

where Δ̄ is the Laplacian in dimensionless coordinates and

Re =
lv
ν
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is a dimensionless quantity known as the Reynolds number of the flow. The Navier–
Stokes equations in the dimensionless form (2.2.17) show that a solution of the
Navier–Stokes equations with a given Reynolds number can be used to generate so-
lutions that have different length and velocity scales but the same Reynolds number.
This fact allows one to model a given flow situation in the laboratory by adjusting
the length and velocity scales and the viscosity to give an experimentally tractable
problem with the same Reynolds number of the effective flow.

Remark 2.2.18. Returning to the general Navier–Stokes equations, we note that if
the flow is steady and if we neglect the nonlinear term (∇xv)v, then the relations in
(2.2.15) reduce to

νΔv = ∇xp0 − b, divxv = 0.

Solutions of this equation are called Stokes flows and are presumed to describe slow
or creeping flows of Newtonian fluids.

For the compressible flow of a fluid, the constitutive equation (2.2.13) is replaced
by

T(x, t) = −p(x, t)1 + λ(divxv)1 + 2μD(x, t), (2.2.18)

where λ and μ are the coefficients of viscosity. The basic equations (2.2.14) for such
a flow become

ρ
∂v
∂t
+ ρ(∇xv)v = μΔv + (λ + μ)∇x(divxv) − ∇xp + ρb,

∂ρ

∂t
+ divx(ρv) = 0.

Now let us study the steady flow of a Newtonian fluid in a pipeline of cylindrical
form having as cross-section a circle of radius R. Body forces are neglected. A refer-
ence frame is chosen such that the x3-axis is parallel to the generators of the cylinder.
We seek a solution of the following boundary value problem:

νΔv − ∇xp0 = (∇xv)v, divxv = 0, (2.2.19)

in the cylinder C = {x ∈ R3 : x2
1 + x2

2 < R2, x3 ∈ R} with

v = 0 on ∂C,

which is the frequently adopted no-slip assumption, noted before Theorem 2.2.15,
that no relative motion can take place between the viscous fluid and the solid cylinder.

Let us try a solution of the above boundary value problem in the form

v = v(x1, x2)i3,

for which the relation divxv = 0 is identically satisfied and the right-hand side of
(2.2.19)1 vanishes. This last equation then gives
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∂p0

∂xα
= 0 (α = 1, 2),

νΔ0v =
∂p0

∂x3
,

where Δ0v = ∂2v
∂x2

1
+ ∂2v

∂x2
2

is the Laplacian in two dimensions. Thus, from the first two

equations, we conclude that p0 = p0(x3), while the third equation implies that dp0

dx3
is

independent of x3. Therefore, we deduce that

dp0

dx3
= −m, νΔ0v = −m,

where m is an unknown constant. Hence,

p0 = p1 − mx3,

where p1 is a constant of integration. Moreover, the function v is the solution of the
following boundary value problem:

Δ0v = −m
ν

in Σ, v = 0 on ∂Σ,

where Σ denotes the cross-section x2
1 + x2

2 < R2. We try a solution of this boundary
value problem in the form

v = v(r), r =
√
x2

1 + x2
2,

so that

∂v
∂xα
=

xα
r
dv
dr
=

xα
r
v′,

∂2v
∂xα∂xβ

=

(
1
r
δαβ −

xαxβ
r3

)
v′ +

xαxβ
r2

v′′,

and hence

Δ0v =
1
r
v′ + v′′.

Thus, the function v(r) satisfies the following differential equation:

(rv′)′ = −m
ν
r, with v(R) = 0.

The general solution of this differential equation is

v(r) = − m
4ν

r2 +C1 ln r +C2,

where C1 and C2 are arbitrary constants. Because v is finite for r = 0, it follows that
C1 = 0, while the condition v(R) = 0 gives C2 =

m
4νR

2. Thus, the solution is

v =
m
4ν

(
R2 − r2

)
i3, p0 = p1 − mx3.

The above motion is known as Poiseuille flow.
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2.2.3 Uniqueness of Solutions

For the classical viscous flow problem, we assume that the following data are given:
a bounded regular region R, a kinematic viscosity ν > 0, a body force field b on
R×[0,∞), an initial velocity distribution v0 on R, and a boundary velocity distribution
v̂ on ∂R × [0,∞). The problem is to find a class C2 velocity field v and a smooth
pressure field p on R × [0,∞) that satisfy the Navier–Stokes equations

∂v
∂t
+ (∇xv)v = νΔv − ∇xp + b, divxv = 0, (2.2.20)

with the initial condition

v(x, 0) = v0(x), for every x ∈ R, (2.2.21)

and the boundary condition

v = v̂ on ∂R × [0,∞). (2.2.22)

A pair (v, p) with these properties will be called a solution of the above initial bound-
ary value problem. We now prove the following result.

Theorem 2.2.19. (Uniqueness of Solution) Let (v1, p1) and (v2, p2) be solutions of
the viscous flow problem corresponding to the same data. Then we have

v1 = v2, p1 = p2 + α, (2.2.23)

where α does not depend on x.

Proof. By setting
u = v1 − v2, α = p1 − p2,

we obtain, from relations (2.2.20)–(2.2.22),

u(x, 0) = 0, u = 0 on ∂R × [0,∞), divxu = 0. (2.2.24)

Moreover, by subtracting (2.2.20)1 with v = v2 and p = p2 from (2.2.20)1 with
v = v1 and p = p1, we obtain

∂u
∂t
+ (∇xv1)v1 − (∇xv2)v2 = νΔu − ∇xα.

Since
(∇xv1)v1 = (∇xu)v1 + (∇xv2)v1,

we have
∂u
∂t
+ (∇xu)v1 + (∇xv2)u = νΔu − ∇xα. (2.2.25)

Note the following identities:
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u · Δu = divx

[
(∇xu)Tu

]
− |∇xu|2,

u · (∇xu)v1 = v1 · (∇xu)Tu = v1 · ∇x

(
1
2
u2

)
,

u · (∇xv2)u = u · D2u,

(2.2.26)

where (see (1.2.23))

D2 =
1
2

[
∇xv2 + (∇xv2)�

]
. (2.2.27)

In view of relation (2.2.26), we conclude from (2.2.25) that

1
2
∂

∂t

(
u2

)
+ v1 · ∇x

(
1
2
u2

)
+ u · D2u = ν divx

[
(∇xu)Tu

]
− ν|∇xu|2 − u · ∇xα.

If we integrate this relation over R, then from the divergence theorem and the bound-
ary conditions (2.2.24)1,2, together with (2.2.20)2 (for v1), we conclude that

1
2
d
dt
‖u‖2 +

∫
R
u · D2udv = −ν

∫
R
|∇xu|2dv ≤ 0, (2.2.28)

where

‖u‖2(t) =
∫
R
u2(x, t)dv.

Since divxv2 = 0 also, it follows that trD2 = 0, and thus the lowest eigenvalue
of the symmetric tensor D2(x, t) defined by (2.2.27) will be nonpositive. Let −γ(x, t)
denote this eigenvalue (with γ ≥ 0), so that

u · D2u ≥ −γu2.

Let us choose τ > 0 and put

λ = 2 sup
(x,t)∈R×[0,τ]

γ(x, t).

This quantity is finite by virtue of the C2 property of v. Then,

u · D2u ≥ −λ

2
u2,

so that the relation (2.2.28) gives

d
dt
‖u‖2 − λ‖u‖2 ≤ 0 on [0, τ],

or
d
dt

(
‖u‖2e−λt

)
≤ 0 on [0, τ],

and hence
‖u‖2(τ) ≤ ‖u‖2(0)eλτ.

Since ‖u‖2(0) = 0, the above relation implies that ‖u‖2(τ) = 0, and hence

u(x, τ) = 0 for every x ∈ R.

Since τ was arbitrarily chosen, it follows that u ≡ 0, and hence relation (2.2.23)1

holds. Finally, (2.2.25) implies that ∇xα = 0, and the proof is complete. �
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2.3 Elastic Solids

The force on an elastic spring depends only on the change in length of the spring,
and it is independent of the past history of the length as well as the rate at which the
length is changing with time. We have seen previously that the deformation gradient
F measures local changes in distance. Thus, it seems natural to define an elastic
body as one for which the constitutive equation prescribes the Cauchy stress T(x, t)
at x = χ̃(X, t) when the deformation gradient F is known, that is,

T(x, t) = T̂(F(X, t),X).

We now proceed to make more precise the dependence of the Cauchy stress on
the deformation gradient.

2.3.1 Finite Elasticity

We assume that the response of the material body is independent of the observer, so
that by (1.4.7)3 (see (1.4.3) and (1.4.4)), we have

QT̂(F)QT = T̂(QF), (2.3.1)

for every tensor F with detF > 0 and every orthogonal tensor Q with detQ = 1.
The polar decomposition of F is given by (1.2.14). Let us choose Q = R� such

that (2.3.1) becomes
R�T̂(F)R = T̂(U),

or
T̂(F) = RT̂(U)R� = FU−1T̂(U)U−1F� = FT̃(C)F�,

by virtue of (1.2.15)1, on putting U = C1/2. This final form motivates the following
definition.

Definition 2.3.1. An elastic solid is a material body characterized by a constitutive
equation of the form

T(x, t) = T̂(F(X, t),X), (2.3.2)

where the response function T̂ is completely determined by a tensor function T̃(C,X)
according to the formula

T̂(F,X) = FT̃(C,X)FT ,

with C = U2 = FTF, the right Cauchy–Green strain tensor corresponding to F.

The above definition emphasizes the importance of the strain tensors U and C for
describing the deformation of an elastic solid.

Remark 2.3.2. The complete system of field equations for an elastic solid consists of
the constitutive equation

T = FT̃(C,X)FT , C = FTF, (2.3.3)
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the equation of motion
ρv̇ = divxT + ρb, (2.3.4)

and the balance of mass
ρ detF = ρ0, (2.3.5)

where ρ0 is the density in the reference configuration.

Definition 2.3.3. An elastic material is homogeneous provided both ρ0(X) and T̂(F,X)
are independent of the material point. In other cases the elastic material is inhomo-
geneous.

Definition 2.3.4. A symmetry transformation at X is an orthogonal tensor Q with
detQ = 1 such that

T̂(F,X) = T̂ (FQ,X).

An elastic material is isotropic if every rotation is a symmetry transformation; oth-
erwise, the elastic material is anisotropic.

Remark 2.3.5. Assume that the material at X is isotropic. Then the constitutive equa-
tion can be written in the form (for example, [188])

T = β0(IB)1 + β1(IB)B + β2(IB)B−1, (2.3.6)

where B = FFT is the left Cauchy–Green tensor and β0, β1, and β2 are scalar func-
tions of the principal invariants of B (see (1.2.22)), denoted by IB.

We further note that

detC = det
(
FTF

)
= (detF)2.

The second Piola–Kirchhoff stress tensor Ŝ, defined by (1.3.52), is given by

Ŝ = detFT̃(C,X) =
√

detCT̃(C,X). (2.3.7)

As shown in general by Proposition 1.4.1, this quantity is an objective scalar. In
terms of the first Piola–Kirchhoff stress tensor defined by (1.3.49), the constitutive
equation (2.3.2) becomes

S = FŜ(C,X), (2.3.8)

on using (2.3.3)1 and (2.3.7).
In view of relations (1.3.50)–(1.3.51) with (2.3.8), we can rewrite the basic equa-

tions in (2.3.3)–(2.3.5) in the form

S = FŜ(C,X), C = FTF, F = ∇Xx, ρ0ẍ = DivXS + ρ0b. (2.3.9)

Note that relation (1.3.51) follows automatically from the fact that Ŝ is a symmetric
tensor. Moreover, since the density enters into (2.3.9) only through its reference value
ρ0, which is assumed known a priori, the balance of mass (2.3.5) need not be included
in the list of field equations.
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In what follows, we assume that the material body is identified with the regular
region B occupied by the body in the reference configuration. All the fields in (2.3.9)
are defined on B × R, and the operator DivX is with respect to the material point X
in B. In contrast, some of the fields in (2.3.3)–(2.3.5) are defined on the trajectory
of x, and moreover, the operator divx is with respect to the position x in the current
configuration. For this reason the formulation (2.3.9) is more convenient than that
furnished by (2.3.3)–(2.3.5) in problems for which the trajectory is not known in
advance.

The initial–boundary value problems of finite elasticity are obtained by including
with (2.3.9) suitable initial and boundary conditions. As initial conditions one usually
specifies the initial position and velocity

x(X, 0) = x0(X), ẋ(X, 0) = v0(X),

where x0(X) and v0(X) are prescribed functions on B. As boundary conditions one
usually specifies

x(X, t) = x̂(X, t) on Σ1 × [0,∞), S(X, t)n = ŝ(X, t) on Σ2 × [0,∞),

where x̂ and ŝ are prescribed vector fields on Σ1×[0,∞) and Σ2×[0,∞), respectively,
and Σ1 and Σ2 are regular subsets of ∂B such that Σ1 ∪ Σ2 = ∂B and Σ1 ∩ Σ2 = ∅.

In the static theory, all fields are independent of time, and the underlying bound-
ary value problem consists in finding a deformation x = χ̃(X) that satisfies the field
equations

S = FŜ(C,X), C = FTF, F = ∇Xx, DivXS + ρ0b = 0 (2.3.10)

and the boundary conditions

x(X) = x̂(X) on Σ1, S(X)n = ŝ(X) on Σ2,

where again x̂ and ŝ are prescribed functions on Σ1 and Σ2, respectively.
When the traction is prescribed over the entire boundary, that is, when we have

the boundary condition
Sn = ŝ on ∂B,

then an integration on B of (2.3.10) implies that∫
B

ρ0bdV +
∫
∂B

ŝdA = 0.

This relation is a particular case of (1.3.46), and it involves only the prescribed data.
It furnishes a necessary condition for the existence of a solution. On the other hand,
(1.3.47) yields ∫

B

ρ0(x − x0) × bdV +
∫
∂B

(x − x0) × ŝdA = 0,

which, because of the presence of x, is not a restriction on the data, but rather a
compatibility condition automatically satisfied by any solution of the boundary value
problem.
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2.3.2 Hyperelastic Bodies

We now characterize a class of elastic materials for which the Piola–Kirchhoff stress
is given by the derivative of a scalar function. To this end we consider a dynamical
process (x,T) of the body B (Definition 2.2.1) corresponding to the body force b.
Then, given any subbody A of B, the work on A during a time interval [t0, t1] is given
by ∫ t1

t0

{∫
ϕt(A)

ρb · vdvt +
∫
∂ϕt(A)

Tn · vdat
}
dt

=

∫ t1

t0

{∫
ϕ0(A)

ρ0b · vdv0 +

∫
∂ϕ0(A)

SN · vda0

}
dt.

(2.3.11)

Definition 2.3.6. The dynamical process (x,T) is closed during the interval [t0, t1] if

x(X, t0) = x(X, t1), ẋ(X, t0) = ẋ(X, t1), (2.3.12)

for all X ∈ ϕ0(B).

For such a process, it follows from (1.2.8) and (2.3.12) that

F(X, t0) = F(X, t1), Ḟ(X, t0) = Ḟ(X, t1). (2.3.13)

If we integrate (1.3.54) between t0 and t1 (recalling (1.3.48)) and use (2.3.12),
then we deduce that for closed processes, (2.3.11) reduces to

∫ t1

t0

{∫
ϕ0(A)

ρ0b · vdv0 +

∫
∂ϕ0(A)

SN · vda0

}
dt =

∫ t1

t0

∫
ϕ0(A)

S · Ḟdv0dt.

Definition 2.3.7. We say that the work is nonnegative in closed processes if given
any subbody A and any time interval [t0, t1], we have

∫ t1

t0

∫
ϕ0(A)

S · Ḟdv0dt ≥ 0

for any process that is closed during [t0, t1].

We can conclude, from the above definition, the following result.

Proposition 2.3.8. The work is nonnegative in closed processes if and only if, given
any X ∈ ϕ0(B) and any time interval [t0, t1], we have

∫ t1

t0

S(X, t) · Ḟ(X, t)dt ≥ 0, (2.3.14)

for any process that is closed during [t0, t1].
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Definition 2.3.9. An elastic material is hyperelastic if there exists a scalar function
ê : Lin+×ϕ0(B) → R such that the first Piola–Kirchhoff stress tensor S is the deriva-
tive of ê with respect to F:

S(X, t) = Ŝ(F,X) = DFê(F,X) or S i j =
∂ê
∂Fi j

, (2.3.15)

where the derivative is with respect to F, holding X fixed. The scalar function ê(F,X)
is known as the strain–energy density. It is assumed to be an objective scalar.

Remark 2.3.10. Observe that material objectivity as expressed by (1.4.7)1 gives that

ê(F,X) = ê(Q(t)F,X),

for all F ∈ Lin+ and orthogonal Q. It follows from Proposition 1.4.2 that

ê(F,X) = ẽ(C,X),

where ẽ is also an objective scalar function and (2.3.15) yields (2.3.8). In fact, the
second Piola–Kirchhoff stress tensor is given by

Ŝ(C,X) =
1
2

∂

∂C
ẽ(C,X).

We now give a characterization of the class of hyperelastic materials in terms of
the work in closed processes.

Theorem 2.3.11. An elastic material is hyperelastic if and only if the work is zero in
closed processes.

Proof. Suppose first that the body is hyperelastic so that there exists the strain–
energy density ê such that (2.3.15) holds true. Then, for a closed process during
the time interval [t0, t1], we have

d
dt
ê(F,X) = DFê(F,X) · Ḟ(X, t) = Ŝ(F,X) · Ḟ(X, t),

and since F(X, t0) = F(X, t1) by virtue of (2.3.13)1, we obtain∫ t1

t0

Ŝ(F(X, t),X) · Ḟ(X, t)dt =
∫ t1

t0

d
dt
ê(F(X, t),X)dt

= ê(F(X, t1),X) − ê(F(X, t0),X) = 0.

Thus, the work is zero in closed processes.
We assume now that the work is zero in closed processes, so that∫ t1

t0

Ŝ(F) · Ḟdt = 0. (2.3.16)

Relation (2.3.16) shows that the integral of Ŝ over any piecewise smooth closed curve
in Lin+ vanishes. Since Lin+ is an open and connected subset of the vector space
Lin, a standard theorem in vector analysis tells us that Ŝ is the derivative of a smooth
scalar function ê on Lin+, which is the strain–energy density. Clearly, Ŝ determines
ê only up to an arbitrary function of X alone. �
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Theorem 2.3.12. If the work is nonnegative in closed processes, then it is zero in
such processes.

Proof. We define
F∗(t) = F(t0 + t1 − t). (2.3.17)

The quantity F∗ represents the reversal in time of F. In view of (2.3.13)1 and (2.3.17),
we have

F∗(t0) = F(t1) = F(t0) = F∗(t1),

and moreover,

Ḟ∗(t) =
d
dt
F(t0 + t1 − t) = −Ḟ(t0 + t1 − t),

giving
Ḟ∗(t0) = −Ḟ(t1) = −Ḟ(t0) = Ḟ∗(t1).

Therefore, F∗(t) is a closed process, and hence the work is nonnegative on this pro-
cess, so that

0 ≤
∫ t1

t0

Ŝ(F∗) · Ḟ∗dt = −
∫ t1

t0

Ŝ(F(t0 + t1 − t)) · Ḟ(t0 + t1 − t)dt

= −
∫ t1

t0

Ŝ(F(τ)) · Ḟ(τ) dτ.

Thus, we can conclude that for every F satisfying (2.3.13), we have
∫ t1

t0

Ŝ(F) · Ḟdt = 0. (2.3.18)

�

It can be shown that the condition (2.3.13)2 can be avoided without affecting the
validity of the result (2.3.18) [188].

Combining Theorems 2.3.11 and 2.3.12, we see that the property that the work
is nonnegative in closed processes implies that the material is hyperelastic.

Remark 2.3.13. Theorem 2.3.11 proves that the work is zero in closed processes for
hyperelastic materials. Moreover, if we set e(X, t) = ê(F(X, t),X), then we have

ė = S · Ḟ,

and so the theorem of power expended (1.3.54) leads to the following important
corollary.

Theorem 2.3.14. (Balance of Energy for Hyperelastic Materials) Each dynamical
process for a hyperelastic body satisfies the energy equation

d
dt

∫
ϕ0(A)

(
e +

1
2
ρ0v2

)
dv0 =

∫
ϕ0(A)

ρ0b · vdv0 +

∫
∂ϕ0(A)

Sn · vda0, (2.3.19)

for each subbody A.
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Remark 2.3.15. The term ∫
ϕ0(A)

edv0

represents the strain energy of the subbody A. The energy equation (2.3.19) asserts
that the rate at which the total energy of A is changing must equal the power expended
on A.

A direct consequence of the above balance of energy is the following result con-
cerning the conservation of energy.

Proposition 2.3.16. (Conservation of Energy) For a dynamical process in a hyper-
elastic finite body with body force b = 0 and subject to the condition Sn · v = 0 on
the boundary of B, the total energy is constant, that is,

∫
ϕ0(B)

(
e +

1
2
ρ0v2

)
dv0 = constant.

2.4 Linear Elasticity

Let us consider an elastic material described by the general constitutive equation

S = Ŝ(F). (2.4.1)

We now consider the linearized theory appropriate to situations in which the
displacement vector is small, in the sense described in Sect. 1.2.2. The crucial point
is the linearization of the general constitutive equation (2.4.1) near F = 1, and of
great importance in this context is the elasticity tensor.

Definition 2.4.1. The elasticity tensor C for the material point X is the derivative of
the first Piola–Kirchhoff stress with respect to F at F = 1:

C = DFŜ(1), or Ci jkl =
∂S i j

∂Fkl
(1). (2.4.2)

The derivation of the linearized form of the general constitutive equation (2.4.1)
requires the following two fundamental assumptions:

• the displacement vector u is small;
• the residual stress vanishes, i.e.,

Ŝ(1) = 0. (2.4.3)

In order to derive this linearized form, we note that

x = X + u, F = 1 +H, H = ∇Xu, (2.4.4)

and consider Ŝ(F) as a function of H. In view of the hypothesis that the displacement
vector u is small, we have the infinitesimal theory of deformation and recall that
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the measures of deformation reduce to the infinitesimal strain tensor ε defined by
(1.2.31) with ∇u = ∇Xu = ∇xu. Moreover, the powers of H = ∇Xu = ∇xu =
∇u greater than or equal to two are all negligible. In view of relations (1.3.49) and
(2.4.3), it follows that

T̂(1) = 0

and
S = Ŝ(F) = T̂(F) + o(H) = Ŝ(C) + o(H). (2.4.5)

Thus, the various stress tensors coincide at the limit of the linearized theory, and we
can use S and T interchangeably. Moreover, on the basis of relations (2.4.1)–(2.4.4),
we deduce the following form of the constitutive relation:

Ŝ(F) = Cε + o(H), (2.4.6)

as H → 0, where ε is the infinitesimal strain tensor.
The importance of the elasticity tensor now becomes apparent from the linearized

constitutive relation (2.4.6). Let us outline some of its properties. In view of relations
(1.3.49) and (2.4.2), we deduce that

C = DFT̂(1), or Ci jkl =
∂Ti j

∂Fkl
(1),

so that
Ci jkl = C jikl. (2.4.7)

If the material at X is hyperelastic, then

C = DFŜ(1) = D2
Fê(1),

and therefore we have the supplementary symmetry

Ci jkl = Ckli j. (2.4.8)

In view of the symmetry of ε in (2.4.6), we need to only consider Ci jkl with the
further property

Ci jkl = Ci jlk. (2.4.9)

Thus, C ∈ Lin(Sym).
We have the following definitions (see Sect. A.2).

Definition 2.4.2. We say that C is symmetric if

H · CG = G · CH

for all tensorsH andG. This is the case if (2.4.8) holds. Also, C is positive definite if

ε · Cε > 0

for all symmetric tensors ε � 0. We call C strongly elliptic if
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A · CA > 0

whenever A has the form A = a ⊗ c, with a � 0, c � 0.
An important consequence of the linearized constitutive equation (2.4.6) and re-

lation (2.3.6) is the following result.

Theorem 2.4.3. Assume that the elastic material at X is isotropic. Then there exist
scalars μ and λ such that

Cε = 2με + λ(tr ε) 1,

for every symmetric tensor ε. The scalars μ = μ(X) and λ = λ(X) are the Lamé
moduli at X.

Summarizing, we conclude that the basic equations of the linear theory of elas-
ticity consist of the stress–strain relation

S = Cε, (2.4.10)

the strain–displacement relation (see (1.2.31))

ε =
1
2

(
∇u + ∇uT

)
, (2.4.11)

and the equation of motion
ρ0ü = DivS + ρ0b, (2.4.12)

where ∇ and Div are with respect to X or x. Note that these equations are expressed
in terms of the displacement u(X, t) = x(X, t) − X, rather than the motion x. Given
C, ρ0, and b, the system described by relations (2.4.10)–(2.4.12) is a linear system
of partial differential equations for the fields u, ε, and S.

When the body is isotropic, the constitutive equation (2.4.10) is replaced by

S = 2με + λ (tr ε) 1. (2.4.13)

Moreover, when the body is homogeneous, then ρ0, μ, and λ are constants.
Sometimes it is convenient to have the stress–strain law (2.4.13) inverted to give

ε as a function of S. This inversion is easily accomplished upon noting that (2.4.13)
gives

tr S = (3λ + 2μ) tr ε,

and hence we have

ε =
1

2μ

[
S − λ

3λ + 2μ
(tr S)1

]
,

or

ε =
1
E

[(1 + ν)S − ν (tr S) 1], (2.4.14)

where

E =
μ(3λ + 2μ)

λ + μ
, ν =

λ

2(λ + μ)
.
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The modulus E is known as Young’s modulus, while ν is Poisson’s ratio.
Let us assume that the body is homogeneous and isotropic. Then, since

Div
(
∇u + ∇uT

)
= Δu + ∇(Divu), tr ε = Div u,

Eqs. (2.4.11)–(2.4.13) are easily combined to give the displacement equations of
motion

ρ0ü = μΔu + (λ + μ)∇(Divu) + ρ0b. (2.4.15)

In the case of static theory, we have ü = 0, and the displacement equations of
equilibrium are

μΔu + (λ + μ)∇(Divu) + ρ0b = 0,

which hold approximately for slow deformations.
We now discuss some particular solutions of the equilibrium equations, in the

absence of body force, for a homogeneous and isotropic body.

• Pure shear

Let us consider the following state of displacement:

u1 = γX2, u2 = u3 = 0.

The matrices for the corresponding ε and S are

(ε) =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 γ 0
γ 0 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (S) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 τ 0
τ 0 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , τ = μγ.

Thus, μ determines the response of the body in shear and for this reason is called the
shear modulus.

• Uniform compression or expansion

The state of displacement

u1 = εX1, u2 = εX2, u3 = εX3

corresponds to
ε = ε1, S = π1, π = 3κε,

where

κ =
2
3
μ + λ (2.4.16)

is the modulus of compression.

• Pure tension
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We consider the following state of stress:

(S) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
σ 0 0
0 0 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

which obviously satisfies the equilibrium equations. We want to find the correspond-
ing state of displacement. Because we know the state of stress, it is convenient to use
(2.4.14), which gives

(ε) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ε 0 0
0 l 0
0 0 l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ with ε =
σ

E
, l = −νε.

Furthermore, we note that this state of strain satisfies Saint-Venant’s conditions of
compatibility (1.2.33), and the corresponding state of displacement is given by

u1 = εX1, u2 = lX2, u3 = lX3.

Remark 2.4.4. Since an elastic solid should increase its length when pulled, decrease
its volume when acted on by a pure pressure, and respond to a positive shearing strain
by a positive shearing stress, one would expect that

E > 0, κ > 0, μ > 0.

Also, a pure tensile stress should produce a contraction in the direction perpendicular
to it and hence ν > 0.

2.4.1 Linear Elastostatics

The basic system of field equations for the static behavior of an elastic material
consists of the strain–displacement relation

ε =
1
2

(
∇u + ∇uT

)
, (2.4.17)

the stress–strain relations
S = Cε, (2.4.18)

and the equations of equilibrium

DivS + ρb = 0. (2.4.19)

The body is assumed to occupy a volume B ∈ R3 corresponding to the reference
volume B but also closely approximating the current deformed shape.

Definition 2.4.5. We call a list [u, ε,S] of fields that are smooth on B and satisfy
(2.4.17)–(2.4.19) an elastic state corresponding to b.
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Let Σ1 and Σ2 denote complementary regular subsets of the boundary of B, so
that Σ1 ∪ Σ2 = ∂B and Σ1 ∩ Σ2 = ∅. The mixed problem of elastostatics can be
formulated as follows:

• given: B, Σ1, Σ2, an elasticity tensor C on B, a body force field b on B, surface
displacements û on Σ1, and surface tractions ŝ on Σ2;

• find: an elastic state [u, ε,S] that corresponds to b and satisfies the boundary
conditions

u = û on Σ1, Sn = ŝ on Σ2. (2.4.20)

An elastic state with these properties will be called a solution of the mixed prob-
lem of elastostatics.

Three fundamental theorems of elastostatics are now proved.

Theorem 2.4.6. (Theorem of Work and Energy) Let [u, ε,S] be an elastic state
corresponding to the body force b. Then,

2U(ε) =
∫
B
ρb · udv +

∫
∂B

Sn · uda, (2.4.21)

where U(ε) is the strain energy of the body defined by

U(ε) =
1
2

∫
B
ε · Cεdv.

Proof. By the symmetry of S and the divergence theorem, we obtain
∫
∂B

Sn · uda =
∫
∂B

Su · nda =
∫
B

Div(Su)dv =
∫
B
(u · DivS + S · ∇u)dv,

and further, from (2.4.17) and (2.4.18),

S · ∇u = ST · ∇uT = S ·
{

1
2

(
∇u + ∇uT

)}
= S · ε = ε · Cε.

These relations, when combined with the equations of equilibrium (2.4.19), give
(2.4.21). �

Theorem 2.4.7. (Uniqueness Theorem) Assume that the elasticity tensor is positive
definite. Let [u1, ε1,S1] and [u2, ε2,S2] be solutions of the same mixed problem of
linear elastostatics. Then,

u1 = u2 + u∗, ε1 = ε2, S1 = S2,

where u∗ is an infinitesimal rigid displacement of B.

Proof. Let
u = u1 − u2, ε = ε1 − ε2, S = S1 − S2.
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Then, [u, ε,S] is an elastic state that corresponds to a null body force and satisfies
the following boundary conditions:

u = 0 on Σ1, Sn = 0 on Σ2,

which give
Sn · u = 0 on ∂B.

In view of relation (2.4.21), we conclude that∫
B
ε · Cεdv = 0.

Since C is positive definite, this last relation can hold only if ε = 0; this in turn
implies that S = 0 and u = u∗, where u∗ is an infinitesimal rigid displacement of B.
Thus, the proof is complete. �

Theorem 2.4.8. (Betti’s Reciprocal Theorem) Assume that the elasticity tensor is
symmetric. Let [u1, ε1,S1] and [u2, ε2,S2] be elastic states in B corresponding to
body force fields b1 and b2, respectively. Then,∫

B
ρb1 · u2dv +

∫
∂B

S1n · u2da =
∫
B
ρb2 · u1dv +

∫
∂B

S2n · u1da. (2.4.22)

Proof. In view of the equations of equilibrium (2.4.19) and the divergence theorem,
we have ∫

B
ρb1 · u2dv +

∫
∂B

S1n · u2da =
∫
B
S1 · ∇u2dv. (2.4.23)

Since the elasticity tensor is symmetric, we conclude from the strain–displacement
relation that

S1 · ∇u2 = S1 ·
[
1
2

(
∇u2 + ∇uT2

)]
= S1 · ε2,

so that relation (2.4.23) becomes∫
B
ρb1 · u2dv +

∫
∂B

S1n · u2da =
∫
B
S1 · ε2dv. (2.4.24)

On the other hand, the symmetry of the elasticity tensor and the stress–strain
relation give

S1 · ε2 = Cε1 · ε2 = ε1 · Cε2 = S2 · ε1. (2.4.25)

Then, (2.4.24) and (2.4.25) give relation (2.4.22), and the proof is complete.
�

When Σ1 = ∂B (that is, Σ2 = ∅), the boundary condition (2.4.20) takes the form

u = û on ∂B.

We refer to this as the displacement problem.
When Σ2 = ∂B (that is, Σ1 = ∅), the boundary condition (2.4.19) takes the form

Sn = ŝ on ∂B,

and we have the traction problem.
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Proposition 2.4.9. A necessary condition that the traction problem has a solution is
that ∫

B
ρbdv +

∫
∂B

ŝda = 0,
∫
B
ρr × bdv +

∫
∂B

r × ŝda = 0, (2.4.26)

where r is the position vector, with respect to the origin O, of the point of evaluation
of b and ŝ.

Proof. The relation (2.4.26) is a direct consequence of the equilibrium equations
(2.4.19) and the divergence theorem. �

2.4.2 Saint-Venant’s Problem

We consider a homogeneous and isotropic cylindrical bar with generators parallel to
the x3-axis. Let the end faces S1 and S2 be located at x3 = 0 and x3 = l, respectively,
with the origin at the centroid of S1 and with the x1- and x2-axes coincident with the
principal axes of inertia, so that

∫
S1

x1da =
∫
S1

x2da = 0,
∫
S1

x1x2da = 0. (2.4.27)

We assume that the bar is loaded only on the end faces, so that the lateral surface L

is traction-free. Moreover, we assume that the body forces are zero.
Saint-Venant’s problem consists in the determination of an equilibrium displace-

ment field u on B (that is, a displacement field satisfying the basic equations of
elastostatics with null body force), subjected to the requirements

Sn = 0 on L,

or equivalently, since n3 = 0 on L,

S αβnβ = 0, α = 1, 2, on L, (2.4.28)

and
Sn = ŝ(α) on Sα, α = 1, 2. (2.4.29)

Necessary conditions for the existence of a solution to this problem are
∫
S1

ŝ(1)da +
∫
S2

ŝ(2)da = 0,
∫
S1

r × ŝ(1)da +
∫
S2

r × ŝ(2)da = 0. (2.4.30)

These are an immediate consequence of (2.4.26).
Under suitable smoothness hypotheses on the given data, a solution of Saint-

Venant’s problem exists and it is uniquely determined.
In the relaxed formulation of Saint-Venant’s problem, the local conditions (2.4.29)

are replaced by the following global conditions:
∫
S1

Snda = R,
∫
S1

r × Snda =M,
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or equivalently, ∫
S1

S 3ida = −Ri,

∫
S1

ei jk x jS 3kda = −Mi, (2.4.31)

where R and M represent the resultant force and the resultant moment about O of the
tractions acting on S1. We do not specify the loading on S2, since balance of forces
and moments require that (2.4.30) be satisfied.

Definition 2.4.10. By a solution of Saint-Venant’s relaxed problem, we mean any
equilibrium displacement field that satisfies the conditions (2.4.28) and (2.4.31).

Remark 2.4.11. It is obvious that the relaxed statement of the problem fails to char-
acterize the solution uniquely. However, we recall the so-called Saint-Venant’s prin-
ciple (e.g., [203]), which states in effect that any solution obeying (2.4.31) will not
differ significantly from any other solution with the same property, except in the
vicinity of S1. Thus, if this principle is accepted, it suffices to outline an appropriate
representative solution of this class. The classification of the relaxed problem rests
on various assumptions concerning the resultants R and M. We will exemplify this
with some particular cases.

• Extension problem

The total force on the end S1 is equipollent to a force directed along the negative
x3-axis, of magnitude R3 and null moment about O, that is,∫

S1

S 3αda = 0,
∫
S1

S 33da = −R3,

∫
S1

ei jk x jS 3kda = 0. (2.4.32)

The problem of extension consists in the determination of an equilibrium dis-
placement field u satisfying the boundary conditions (2.4.28) and (2.4.32). We seek
a representative solution of this problem by assuming the following state of stress:

S 11 = S 22 = S 12 = S 23 = S 31 = 0, S 33 = a1, (2.4.33)

with a1 a constant. This state of stress satisfies the equilibrium equations and the
lateral boundary condition (2.4.28). From relations (2.4.32) and (2.4.33), we obtain

a1 = −R3

A
,

where A is the area of S1. To find a solution of the extension problem, we need to
find the displacement field corresponding to the state of stress (2.4.33). We use the
stress–strain relation in the form expressed by (2.4.14) to obtain the state of strain

ε11 = ε22 = − v
E
a1, ε33 =

1
E
a1, ε12 = ε23 = ε31 = 0.

This state of strain satisfies the compatibility conditions (1.2.33), and the correspond-
ing displacement field is given (up to an arbitrary infinitesimal rigid displacement)
by

u1 =
νR3

EA
x1, u2 =

νR3

EA
x2, u3 = − R3

EA
x3.
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• Bending of a beam

The total force on the end S1 is equipollent to a moment of magnitude M2 about
the negative x2-axis, so that

∫
S1

S 3ida = 0,
∫
S1

x2S 33da =
∫
S1

(x1S 32 − x2S 31)da = 0, (2.4.34)

and ∫
S1

x1S 33da = −M2. (2.4.35)

The problem of bending involves determining an equilibrium displacement field
u satisfying the boundary conditions (2.4.28), (2.4.34), and (2.4.35). We seek a rep-
resentative solution of this problem by assuming the following state of stress:

S 11 = S 22 = S 12 = S 23 = S 31 = 0, S 33 = a2x1,

where a2 is a constant. This field satisfies the lateral boundary conditions (2.4.28)
and the conditions (2.4.34), by virtue of (2.4.27). Moreover, we have

DivS = 0.

Furthermore, the condition (2.4.35) implies that

a2 = −M2

I
,

where

I =
∫
S1

x2
1da

represents the moment of inertia of S1 about the x2-axis. To obtain a solution of the
bending problem we need to only construct the displacement field corresponding to
this state of stress. Using the stress–strain relation in the form (2.4.14), we see that

ε23 = ε31 = ε12 = 0,

ε11 = ε22 =
νM2x1

EI
, ε33 = −M2x1

EI
.

The compatibility relations (1.2.33) are satisfied. Moreover, the corresponding dis-
placement field is given by

u1 =
M2

2EI

[
x2

3 + ν
(
x2

1 − x2
2

)]
, u2 =

M2ν

EI
x1x2, u3 = −M2

EI
x1x3.

• Torsion of a cylinder

The total force on the end S1 is equipollent to
∫
S1

S 3ida = 0,
∫
S1

xαS 33da = 0,
∫
S1

(x1S 32 − x2S 31)da = −M3. (2.4.36)
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The problem of torsion involves determining an equilibrium displacement field u
satisfying the boundary conditions (2.4.28) and (2.4.36). We seek such a solution by
assuming the following state of displacement:

u1 = −τx2x3, u2 = τx1x3, u3 = τψ(x1, x2), (2.4.37)

where τ is a constant and ψ is termed the warping function. The state of stress corre-
sponding to the displacements given by (2.4.37) is

S αβ = S 33 = 0,

S 31 = τμ(ψ,1 − x2), S 23 = τμ(ψ,2 + x1).

The equilibrium equations are satisfied if and only if

ψ,11 + ψ,22 = 0 in S1, (2.4.38)

while the lateral boundary conditions are equivalent to

∂ψ

∂n
= x2n1 − x1n2 on ∂S1, (2.4.39)

where ∂ψ
∂n is the normal derivative of ψ on ∂S1. The condition (2.4.36) implies

τD = −M3, (2.4.40)

where

D = μ

∫
S1

(
x2

1 + x2
2 + x1ψ,2 − x2ψ,1

)
da

is the torsional rigidity of the cross-section S1. Thus, the torsion solution is given by
(2.4.37) with τ determined by (2.4.40) and where ψ is the solution of the Neumann
problem defined by (2.4.38) and (2.4.39).
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Continuum Thermodynamics and Constitutive
Equations of Mechanics and Electromagnetism



3

Principles of Thermodynamics

In this chapter, we discuss various fundamental concepts and results in continuum
thermodynamics. Some examples are given in terms of the materials discussed in
Part I, generalized to a nonisothermal context.

3.1 Heat Equation

Since the heat of a body is not conserved, we do not have a balance equation cor-
responding to those for mass and momentum, given by (1.3.1) and (1.3.12), respec-
tively. However, there must be a balance between the net quantity of heat entering a
body and the net heat absorbed by that body over a given time period.

We denote by QA(t) the quantity of heat per unit time entering the subbody A of
the body under consideration at time t by conduction or radiation. Also, let HA(t) be
the heat absorbed by the subbody A per unit time at the moment t.

The heat flow density c(x, t) ∈ R is assigned to each point x on the surface of
the body. If da = nda is the area vector associated with a surface element on ∂ϕt(A),
the outward unit normal of which is n, then −cda is the amount of heat crossing da,
going inward, per unit time. The quantity c(x, t) depends linearly on the orientation
n of da; indeed, we have

c(x, t) = q(x, t) · n,

where q ∈ R3 is known as the (Eulerian) heat flux vector. This is the analogue
of Cauchy’s theorem (1.3.24) for heat flow, where q corresponds to the Cauchy
stress tensor. We can also define a heat flux vector qL(X, t) in the reference or La-
grangian configuration, corresponding to the first Piola–Kirchhoff stress tensor, given
by (1.3.49). This quantity is given by

qL = JF−1q. (3.1.1)

It is an objective scalar, as defined by (1.4.7). The heat supply per unit time due to
external sources, such as radiation, is denoted by r(x, t) ∈ R or r̃(X, t) in the reference
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configuration. Then, for both configurations,

QA(t) = −
∫
∂ϕt(A)

q(x, t) · nda +
∫
ϕt(A)

ρ(x, t)r(x, t)dvt

= −
∫
∂ϕ0(A)

qL(X, t) · Nda0 +

∫
ϕ0(A)

ρ0(X)r̃(X, t)dv0,

where N is the outward unit normal to ∂ϕ0(A). If we denote by h(x, t)(h̃(X, t) in the
Lagrangian description) the heat absorbed by the body per unit mass in unit time
(specific heat power), then

HA(t) =
∫
ϕt(A)

ρ(x, t)h(x, t)dvt =
∫
ϕ0(A)

ρ0(X)h̃(X, t)dv0.

At any time t and for any subbody A of the body, the heat equation is expressed by

HA(t) = QA(t).

The Eulerian form of this equation is given by
∫
ϕt(A)

ρ(x, t)h(x, t)dvt = −
∫
∂ϕt(A)

q(x, t) · nda +
∫
ϕt(A)

ρ(x, t)r(x, t)dvt, (3.1.2)

from which, under hypotheses of continuity for the integrand functions and the arbi-
trariness of A, we can deduce the Eulerian local form of the heat equation

ρ(x, t)h(x, t) = −divx q(x, t) + ρ(x, t)r(x, t). (3.1.3)

The Lagrangian form of (3.1.2) is
∫
ϕ0(A)

ρ0(X)h̃(X, t)dv0 = −
∫
∂ϕ0(A)

qL(X, t) · nda0 +

∫
ϕ0(A)

ρ0(X)r̃(X, t)dv0,

with corresponding local form

ρ0(X)h(X, t) = −DivXqL(X, t) + ρ0(X)r̃(X, r).

3.2 Definition of a Material as a Dynamical System

For a large class of continuum systems, it is possible to obtain a good description
of their thermomechanical properties using the concepts of state σ and thermome-
chanic process P. For such systems, it is necessary to introduce the concepts of ab-
solute temperature θ and gradient of temperature g = ∇xθ. The state is an entity that
depends on material properties, while the process for any material is a function of
time for a duration dP ∈ R+ of type P : [0, dP) → Lin(R3) × R × R3, defined as

P(t) =
(
L(t), θ̇(t), g(t)

)
. (3.2.1)
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Alternatively, there are advantages to using the Lagrangian description. In this case,
P : [0, dP) �→ Sym × R × R3 is given by

P(t) =
(
Ė(t), θ̇(t), gL(t)

)
, gL = ∇Xθ, (3.2.2)

and is an objective scalar. In the present chapter, we use (3.2.1) for definiteness,
though a choice closely related to (3.2.2) is adopted in Chap. 5.

Definition 3.2.1. A material is simple if relative to a point X of the body B, it is
possible to define a state σ such that the constitutive equations for T, h, and q are
functions of σ, P and for which we have:

(i) the space of states Σ (that is, the set of possible states for the material body)
is a metric space;

(ii) any process P : [0, dP) → Lin(R3)×R×R3 is a piecewise smooth function on
[0, dP) and is in the space of processes Π; if P ∈ Π , then its restriction P[t1,t2)

to the interval [t1, t2) ⊂ [0, dP) belongs to Π . The restriction P[0;t) is denoted
by Pt.
If P1, P2 ∈ Π , then P1 ∗ P2 ∈ Π , where

P1 ∗ P2(τ) =

⎧⎪⎪⎨⎪⎪⎩
P1(τ), τ ∈ [0, dp1 ),

P2(τ − dp1 ), τ ∈ [dp1 , dp1 + dp2 );

(iii) there exists a function  ̂ : Σ × Π → Σ, the evolution function, which deter-
mines the final state σ f when the initial state σi and the process P are known.
Such a function has the semigroup property, that is, if (σ1, σ2) ∈ Σ and P1 ∈ Π
is such that  ̂(σ1, P1) = σ2, then for any P ∈ Π ,

 ̂(σ1, P1 ∗ P) =  ̂( ̂(σ1, P1), P) =  ̂(σ2, P); (3.2.3)

(iv) for any fixed P ∈ Π , the function  ̂(·, P) : Σ → Σ is continuous.

Remark 3.2.2. Referring in particular to (1.2.10), it is easy to prove that for ther-
moelastic materials, the function  ̂ can be constructed as a general integral of the
differential system

dF
dt
= LF,

dθ
dt
= θ̇, (3.2.4)

and moreover, it is also easy to prove that (3.2.4) implies that  ̂(·, P) : Σ → Σ is
continuous. In a similar manner, the function  ̂ can be determined for viscous fluids.

The constitutive variables for a material depend on σt and P(t), that is,

T(t) = T̂(σt, P(t)),

h(t) = ĥ(σt, P(t)), (3.2.5)

q(t) = q̂(σt, P(t)),

where σt =  ̂(σ, Pt), the quantity Pt being the restriction of P to the time interval
[0, t) ⊂ [0, dP) (see Definition 3.2.1).
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For thermoelastic materials, we have the form

T(t) = T̂(F(t), θ(t)), h(t) = A(F, θ) · L + B(F, θ)θ̇, q(t) = −K(F, θ)g, (3.2.6)

where T̂, A, B, and K are continuous functions of (F, θ). For these constitutive equa-
tions, the state is the pair σ = (F, θ), and the space of possible states Σ will be a
subspace of the vector space Lin(R3) × R.

We also consider viscous fluids for which the thermomechanical characteristics
are expressed by means of the constitutive equations (see (2.2.18))

T(t) = −p(ρ, θ)I + λ(ρ, θ)(divx v) I + 2μ(ρ, θ)D,

h(t) = a(ρ, θ)ρ̇ + b(ρ, θ)θ̇, q(t) = −K(ρ, θ)g,
(3.2.7)

where p, λ, μ, a, b, and K are continuous functions of (ρ, θ). Here, the state is de-
fined by the pair σ = (ρ, θ). Recalling (1.2.9), (1.2.23), and (1.3.2)2, we see that the
quantities ρ̇, divx v = tr∇x v, and D are expressible in terms of L, so that the Cauchy
stress and the heat power will be functions of type (3.2.5)1,2.

A limiting special case of viscous fluids, namely ideal fluids, will be considered
in order to derive the absolute temperature scale. We deal only with the case that the
fields are independent of the position variable x. For such fluids, (3.2.7) reduces to

T(t) = −p(ρ, θ)I, h(t) = a(ρ, θ)ρ̇ + b(ρ, θ)θ̇, q(t) = 0. (3.2.8)

The first and the second laws of thermodynamics introduced in the next two sec-
tions are constraints on the constitutive equations (3.2.5) rather than new equations
imposed on the field variables. In other words, the constitutive equations (3.2.5) can-
not depend in an arbitrary way on the variables (σt, P(t)). It is well known that it
is impossible to devise a machine or a piece of equipment that executes a perpetual
motion of the first or the second kind. Such a machine could be realized if it were
possible to have materials with general constitutive equations of type (3.2.5). The
principles of thermodynamics allow us to establish which materials, as described by
equations of type (3.2.5), are compatible with the physical world.

3.3 First Principle of Thermodynamics

This principle leads to the law of conservation of energy under conditions whereby
mechanical energy can be transformed into heat and vice versa.

Definition 3.3.1. A closed cycle is a pair (σ, P) ∈ Σ × Π such that  ̂(σ, P) = σ.

• First principle of thermodynamics for simple materials (on cycles): In any
closed cycle (σ, P) ∈ Σ × Π , the sum of the heat absorbed by the body and the
work done by internal forces is equal to zero, that is,

∫ dp

0

[
ĥ(σt, P(t)) +

1
ρ
T̂(σt, P(t)) · D(t)

]
dt = 0. (3.3.1)

2.2.18
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Before dealing with the general case, let us consider a thermoelastic material
represented by the system of equations (3.2.6). The space of states Σ is a particular
subspace of the space Lin(R3) × R. With any closed cycle (σ, P), we can associate
the corresponding closed curve c in Σ given by

σt =  ̂(σ, Pt), t ∈ [0, dP).

The case in which c is a polygonal closed curve in Σ will be considered. Then,
the integral in (3.3.1) takes the form

∫ dp

0

(
A · L + Bθ̇ +

1
ρ
T · D

)
dt = 0,

which can be rewritten as a curvilinear integral in the space of states Σ in the form
∫
c
A

(
F−1

)T
· dF + Bdθ +

1
ρ
T

(
F−1

)T
· dF = 0, (3.3.2)

where (3.2.4) has been used. This is the integral on c of the following differential
form: (

A +
1
ρ
T
) (
F−1

)T
· dF + Bdθ. (3.3.3)

On the basis of (3.3.2), one can assert that the differential form (3.3.3) is inte-
grable. This means that under hypotheses of continuity for A, T, and B, there exists
a function of state e : Σ → R, differentiable on Σ and such that

de =

(
A +

1
ρ
T
) (
F−1

)T
· dF + Bdθ. (3.3.4)

It is possible to obtain an analogous result by repeating the above procedure for
an ideal or viscous fluid. These observations lead to the idea that it is always possible
to prove the existence of a function of such a type for any simple material.

The disadvantage of (3.3.1) is that for materials with memory, which are our main
concern in later chapters, closed cycles rarely occur. We now state, without proof, the
first law for a general material, in a form that makes no reference to cycles.

• The first principle of thermodynamics (general form): For any simple mate-
rial, there exists a function of state e : Σ → R, known as the internal energy, such
that for any pair of states σ1, σ2 ∈ Σ and for any process P with  ̂(σ1, P) = σ2,
one has

e(σ2) − e(σ1) =
∫ dP

0

[
ĥ(σt, P(t)) +

1
ρ
T̂(σt, P(t)) · L(t)

]
dt, (3.3.5)

where σt =  ̂(σ1, Pt).

Remark 3.3.2. The internal energy e is uniquely determined up to an additive con-
stant, which can be fixed by assigning the value of the energy in the reference state
of the material. We refer to e as a thermodynamic potential.
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At all points of continuity of the function

ĥ(σt, P(t)) +
1
ρ
T̂(σt, P(t)) · L(t),

it follows from (3.3.5) that

de
dt

(σt) = ĥ(σt, P(t)) +
1
ρ
T̂(σt, P(t)) · L(t). (3.3.6)

Moreover, using the heat equation (3.1.3), we obtain the energy equation

ρ
de
dt

(σt) = −divx q̂(σt, P(t)) + T̂(σt, P(t)) · L(t) + ρr. (3.3.7)

Remark 3.3.3. Note that (3.3.6) allows us to express the quantity h in terms of the
new function of state e and the mechanical rate of work. Indeed, we can now regard
e as a fundamental quantity, more convenient than ĥ because it is a function of state.

In Chap. 5, we will use the Lagrangian form of (3.3.7), given by

ρ0ė(σt) = −DivXq̂L (σt, P(t)) + Ŝ(σt, P(t)) · Ė(t) + ρ0r, (3.3.8)

where Ŝ is the second Piola–Kirchhoff stress tensor, defined by (1.3.52), and E is the
strain tensor given by (1.2.21)1.

3.4 Second Principle of Thermodynamics

The first principle of thermodynamics allows the possibility of transformation of var-
ious types of energy from one into another, provided the total energy is conserved.
The second principle of thermodynamics imposes some limits on such transforma-
tions of energy and asserts that not all types of energy have the same capability of
transforming themselves into mechanical work. These two assertions are not in con-
tradiction. In fact, for the first principle we can prove the existence of an energetic
balance, while the second principle asserts that natural transformations, for a system
in a cycle, are those that transform valuable energy into a less valuable form. In other
words, this means that in such processes there is a loss of energy.

3.4.1 The Absolute Temperature Scale

Before discussing general materials, we briefly consider perfect fluids with field vari-
ables that are independent of the position variable x, defined by the constitutive equa-
tions (3.2.8), in order to derive the absolute temperature scale and to motivate the
general definition of entropy.

With the aid of (3.2.8), the heat equation (3.1.3) can be written as

ρ
[
a(ρ, θ)ρ̇ + b(ρ, θ)θ̇

]
= ρr, (3.4.1)
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where θ in this relationship is some empirical temperature. For materials with dissi-
pation, the entropy relationship will be an inequality, as we shall see below. However,
for a perfect fluid, it will be an equality, which is assumed to be of the form

ρη̇ = −divxjη + ρs, (3.4.2)

where jη is a flux term describing entropy flow and s is an entropy source term. We
can neglect the divergence term due to the assumption of field homogeneity, so that
(3.4.2) becomes

ρ
[
c(ρ, θ)ρ̇ + d(ρ, θ)θ̇

]
= ρs,

c(ρ, θ) =
∂η(ρ, θ)

∂ρ
, d(ρ, θ) =

∂η(ρ, θ)
∂θ

.
(3.4.3)

We do not regard this equation as independent of the heat equation (3.4.1) but rather
as a nontrivial relation that can be derived from that equation, so that any solution
of the entropy equation is also a solution of the heat equation. Thus, we suppose the
existence of an integrating factor R(ρ, θ) such that

c(ρ, θ)ρ̇ + d(ρ, θ)θ̇ − s = R(ρ, θ)
[
a(ρ, θ)ρ̇ + b(ρ, θ)θ̇ − r

]

for any ρ̇, θ̇, and r. It follows that

c = Ra, d = Rb, s = Rr. (3.4.4)

We now show that the factor R does not depend on ρ and is a monotonic decreasing
function of θ. In relation (3.4.4)3, the quantities s and r are source terms and do not
depend on the material properties.

Let us now consider a further special case that of an ideal fluid. This is a fluid
with internal energy depending only on temperature and a pressure function p(ρ, θ)
that is a monotonic increasing function of θ.

Now (3.3.6), with the aid of (1.3.2)2, yields

h(ρ, θ, P(t)) = e′(θ)θ̇ − 1
ρ2

p(ρ, θ)ρ̇,

which, combined with (3.2.8)2, gives

a(ρ, θ) = − 1
ρ2

p(ρ, θ), b(ρ, θ) = b(θ) = e′(θ),

whence (3.4.4)1,2 become

c(ρ, θ) = −R(θ)
ρ2

p(ρ, θ), d(ρ, θ) = d(θ) = R(θ)b(θ). (3.4.5)

From (3.4.5)2 and (3.4.3)2,3, we conclude that

η(ρ, θ) = A(ρ) + B(θ),
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where

A′(ρ) = −R(θ)
ρ2

p(ρ, θ), B′(θ) = d(θ) = R(θ)b(θ).

Thus, R(θ)p(ρ, θ) cannot depend on θ. Let θ′ be a fixed temperature. Then,

R(θ) = R(θ′)
p(ρ, θ′)
p(ρ, θ)

.

We can always choose R(θ′) > 0. The quantities p(ρ, θ′) and p(ρ, θ) both are posi-
tive, and the latter increases monotonically with θ. Thus, R is a positive decreasing
function of the empirical temperature θ.

Recalling (3.4.4)3 and the fact that the source functions s and r do not depend
on the material under consideration, we deduce from (3.4.4)3 that R has a universal
character. Its inverse

T (θ) =
1

R(θ)

is positive and increasing and can be chosen as a suitable measure of temperature.
This function represents the absolute temperature scale.

Dropping the constancy assumption with respect to x on the fields, (3.4.4)3,
(3.1.3), and (3.4.2) give

R(θ)(ρh + divx q) = ρη̇ + divx jη,

which must hold for all choices of fields. Using the identity

R(θ)divx q = divx
[
R(θ)q

] − q · ∇R(θ),

we deduce that

divx jη = divx(Rq), ρη̇ = ρRh − q · ∇R(θ). (3.4.6)

From now on, we denote the absolute temperature 1/R by θ. The relations in (3.4.6)
provide motivation for those now introduced, though the former were derived for
very particular materials.

3.4.2 Entropy Action

We consider the function

s(σ, P) =
∫ dP

0

[
ĥ(σt, P(t))

θ(t)
+

1
ρθ2(t)

q̂(σt, P(t)) · g(t)

]
dt, (3.4.7)

which will be referred to as the entropy action. By means of this functional we can
introduce the following principle:

• The second principle of thermodynamics for simple materials (on cycles):
On any closed cycle (σ, P) ∈ Σ × Π , the entropy action is such that

∮ dP

0

[
ĥ(σt, P(t))

θ(t)
+

1
ρθ2(t)

q̂(σt, P(t)) · g(t)

]
dt ≤ 0. (3.4.8)
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Remark 3.4.1. For a homogeneous process (g = 0), relation (3.4.8) takes the classical
form ∮ dP

0

ĥ(σt, P(t))
θ(t)

dt ≤ 0.

Consider (3.4.8) for isothermal processes. If we set θ = constant and use (3.3.1),
then it follows that

− 1
θ

∮ dP

0

1
ρ
T̂(σt, P(t)) · D(t)dt ≤ 0, (3.4.9)

which is a statement that the mechanical work is nonnegative in closed processes
or the principle of dissipation of mechanical energy (see (1.3.33) or (2.3.14)in the
material description).

For a general material, the second law is now stated, again without proof and
making no reference to closed processes.

• The second principle of thermodynamics (general form): There exists a func-
tion of state η : Σ → R, known as the entropy, such that

η(σ2) − η(σ1) ≥
∮ dP

0

(
h
θ
+

1
ρθ2

q · g
)
dt = s(σ1, P), (3.4.10)

for all (σ1, σ2) ∈ Σ and P ∈ Π with  ̂(σ1, P) = σ2.

Remark 3.4.2. Under appropriate hypotheses of regularity on the constitutive func-
tionals, it follows from the inequality (3.4.10) that

η̇(σt) ≥
ĥ(σt, P(t))

θ(t)
+

1
ρ(t)θ2(t)

q̂(σt, P(t)) · g(t). (3.4.11)

We note the connection between this inequality and the equality (3.4.6)2. By means
of the heat equation (3.1.3), we deduce from relation (3.4.11) the well-known
Clausius–Duhem inequality

ρη̇ ≥ −divx

(q
θ

)
+
ρ

θ
r. (3.4.12)

Again, we observe the connection between this relation and (3.4.2) combined with
(3.4.6)1.

Let us define the function of state known as the Helmholtz free energy by

ψH(σt) = e(σt) − θ(t)η(σt). (3.4.13)

Using (3.3.7), (3.4.12), and (3.4.13), one can show that

ψ̇H(σt) ≤
1
ρ(t)

T̂(σt, P(t)) · L(t) − η(σt)θ̇(t) − 1
ρ(t)θ(t)

q̂(σt, P(t)) · g(t), (3.4.14)

which is an alternative form of the Clausius–Duhem inequality. The free energy func-
tion of state is not uniquely determined in general, for a given material. Very general

2.3.14
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properties of this function are proved in the next chapter, including the result that
the free energies associated with a given state of the material with memory form a
convex set. This nonuniqueness also applies to entropy.

In Chap. 5, we will use the Lagrangian form of (3.4.12) and (3.4.14), given by

ρ0η̇ ≥ −DivX

(qL

θ

)
+
ρ0

θ
r (3.4.15)

and

ψ̇H(σt) ≤
1
ρ0

Ŝ(σt, P(t)) · Ė(t) − η(σt)θ̇(t) − 1
ρ0θ(t)

q̂L(σt, P(t)) · gL(t), (3.4.16)

where gL is given by (3.1.1).
We now consider two examples: nonlinear elastic bodies and viscous liquids,

already introduced in an isothermal context in Part I. Recalling Remark 3.3.3, it will
be observed that we use the heat power h but immediately relate it to the internal
energy. In the second example, h is not introduced; instead, e is used.

The principles of thermodynamics impose some restrictions on the constitutive
functionals. They become automatically satisfied if the constitutive equations obey
certain conditions. In what follows, we seek to determine such conditions for the
constitutive equations describing elastic materials and viscous fluids.

3.5 Applications to Elastic Bodies

For an elastic body, we have σ = (F, θ), while from (3.2.6) and (3.3.5), for any
(σ, P) ∈ Σ × Π , where  ̂(σ, P) = σ1,

e(σ1) − e(σ) =
∫ dP

0

[
B(F, θ)θ̇ + A(F, θ) · L + 1

ρ(F)
T(F, θ) · L

]
dt.

From (3.3.6) (indeed, more specifically recalling (3.3.4)), we have that e = ẽ(F, θ)
obeys the relation

dẽ
dt

(F, θ) = B(F, θ)θ̇ + A(F, θ) · L + 1
ρ(F)

T(F, θ) · L.

The function (3.4.7) can be written as

s(σ, P) =
∫ dP

0

{
1
θ

[
−1
ρ
T̂(F, θ) · L + ∂ẽ

∂F
· Ḟ + ∂ẽ

∂θ
θ̇

]
+

1
ρθ2

q̂(F, θ; g) · g
}
dt.

We now consider the integral on an arbitrary curve c in Lin(R3) × R,

I(c) =
∫
c

1
θ

[
B(F, θ)dθ + A(F, θ)

(
FT

)−1
· dF

]
. (3.5.1)

If c+ is a closed curve in Lin(R3) × R and c− is the same curve with opposite orien-
tation, then
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I(c+) = −I(c−). (3.5.2)

Let σ ∈ Σ be a finite element, and let c+ be an oriented closed polygonal curve
containing σ. Then for any t > 0, there is a parametrization τ → (F(τ), θ(τ)) of the
curve c+, defined on [0, dP), such that

(F(dP), θ(dP)) = (F(0), θ(0)) = σ.

Corresponding to this parametrization, there is a process P such that

 ̂(σ, Pt) = (F(t), θ(t)),  ̂(σ, P) = σ.

Using this parametrization of c+, we can rewrite (3.5.1) in the form

I(c+) =
∫ dp

0

1
θ(t)

[
B(F, θ)θ̇ + A(F, θ)

(
FT

)−1
· Ḟ

]
dt =

∫ dP

0

ĥ
(
F, θ, Ḟ, θ̇

)
θ

dt,

by virtue of (3.2.6)2. The second principle of thermodynamics (3.4.8) states that on
any closed process P with duration dP, we have

∫ dP

0

ĥ
θ
dt +

∫ dP

0

1
ρθ2

q̂ · gdt ≤ 0. (3.5.3)

Therefore, we obtain

I(c+) ≤ −
∫ dP

0

1
ρθ2

q̂ · gdt. (3.5.4)

If we set M(c+) = sup{− 1
ρθ2 q̂(F, θ, g) · g | (F, θ) ∈ c+}, then M(c+) is finite because c+

is a compact subset of Σ and q is assumed continuous on Σ. Moreover, q̂(F, θ, g) ·g is
always nonpositive for an elastic body. In fact, if we consider the process P defined
by

P(t) ≡ (0, 0, g) for all t ∈ [0, dP)

and suppose that the initial state is σ0 = (F, θ), where g, F, and θ are arbitrary given
quantities, independent of t, then from (3.5.3), we have

q̂(F, θ, g) · g ≤ 0 for all (F, θ, g). (3.5.5)

Therefore, from (3.5.4),
I(c+) ≤ dPM(c+),

and since this relation holds for any dP > 0, we obtain that

I(c+) ≤ 0.

Let us now consider the curve c− with opposite orientation with respect to c+. Using
a procedure similar with that leading to (3.5.5), we obtain

I(c−) ≤ 0,
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and hence, by virtue of (3.5.2), on any closed curve c,

I(c) = 0.

Therefore, using well-known theorems concerning the integrability of differential
forms, we deduce from (3.5.1) that there exists a differentiable function of state
η : Σ → R, such that

η̇(F, θ) =
1
θ(t)

[
B(F, θ)θ̇ + A(F, θ)

(
FT

)−1
· Ḟ

]
=

ĥ(F, θ, Ḟ, θ̇)
θ

. (3.5.6)

Using (3.5.6)2, we can write the expression (3.4.7) for s(σ, P) as

s(σ, P) = η(ρ̂(σ, P)) − η(σ) +
∫ dP

0

1
ρθ2

q̂(σt, P(t)) · gdt,

so that using the fact that q · g ≤ 0, we obtain

s(σ, P) ≤ η(ρ̂(σ, P)) − η(σ).

Also, from (3.5.6)2, the property q · g ≤ 0, and (3.1.3), we recover the Clausius–
Duhem inequality (3.4.12):

ρη̇ ≥ 1
θ
ρh +

1
θ2
q · g = 1

θ

(
−divx q + ρr +

1
θ
q · g

)
= −divx

(q
θ

)
+
ρ

θ
r.

3.6 Thermodynamic Restrictions for Viscous Fluids

We consider here the compressible flow of a Newtonian fluid defined by the consti-
tutive equations (3.2.7) and determine the restrictions imposed by the principles of
thermodynamics on these equations. Combining (3.3.6) and (3.4.11), we obtain

θη̇ ≥ ė − 1
ρ
T · L + 1

ρθ
q · g.

Recalling that for viscous fluids the state is given by the pair σ = (ρ, θ), it follows
that the internal energy e and entropy η are functions of the following type:

e = ê(ρ, θ), η = η̂(ρ, θ).

As noted earlier for e, these quantities are referred to as thermodynamic potentials.
The function of state introduced in (3.4.13), namely the Helmholtz free energy

ψH , is also a thermodynamic potential, which here assumes the form

ψ̂H (ρ, θ) = ê(ρ, θ) − θη̂(ρ, θ).

It must satisfy (3.4.14):
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ψ̇H ≤ −ηθ̇ + 1
ρ
T · L − 1

ρθ
q · g. (3.6.1)

On the basis of the principles of thermodynamics, the inequality (3.6.1) must be
verified by all processes P(t) =

(
L(t), θ̇(t), g(t)

)
representing possible solutions of the

equation of motion. Recalling (1.2.23), the symmetry of T, and in particular its form
given by (3.2.7)1, we can write (3.6.1) in the form

∂ψH

∂ρ
ρ̇ +

∂ψH

∂θ
θ̇ ≤ −ηθ̇ + 1

ρ

[
− p divx v + λ (divx v)2 + 2μ|D|2

]
+

1
ρθ

K|g|2. (3.6.2)

With the aid of the equation of continuity (1.3.2)2, relation (3.6.2) gives
(
∂ψH

∂ρ
− p
ρ2

)
ρ̇ +

(
∂ψH

∂θ
+ η

)
θ̇ ≤ λ

ρ3
ρ̇2 +

2μ
ρ
|D|2 + K

ρθ
|g|2. (3.6.3)

The quantities ψH , p, η, λ, μ, and K are functions of the state (ρ, θ). For a given state
(ρ, θ), we consider a process P,

P(t) = (0, θ̇, 0),

for some arbitrary θ̇. In this case, since L = 0 yields D = 0, it follows that divx v =
tr∇x v = 0, and hence ρ̇ = 0 by virtue of (1.2.9), (1.2.23), and (1.3.2)2, relation
(3.6.3) reduces to (

∂ψH

∂θ
+ η

)
θ̇ ≤ 0,

from which, in view of the fact that θ̇ is arbitrary, we deduce that

η(ρ, θ) = −∂ψH

∂θ
(ρ, θ). (3.6.4)

Now consider a process of the type

P(t) =

((
1
3
divx v

)
I, 0, 0

)
=

(
− ρ̇

3ρ
I, 0, 0

)
. (3.6.5)

Then (3.6.3) yields (
∂ψH

∂ρ
− p
ρ2

)
ρ̇ ≤ 1

ρ3

(
λ +

2
3
μ

)
ρ̇2,

where ρ̇ is arbitrary. Dividing by the quantity ṗ2 and using the fact that ρ̇ is arbitrary,
we see that this inequality holds if and only if

p = ρ2 ∂ψH

∂ρ
. (3.6.6)

With these results, the initial inequality (3.6.3) reduces to

λ

ρ3
ρ̇2 +

2μ
ρ
|D|2 + K

ρθ
|g|2 ≥ 0. (3.6.7)
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Taking into account the arbitrariness of ρ̇, D, and g, we obtain, from (3.6.7), the
following inequalities:

K
ρθ

|g|2 ≥ 0,
λ

ρ3
ρ̇2 +

2μ
ρ
|D|2 ≥ 0. (3.6.8)

The first inequality in (3.6.8) furnishes the condition

K ≥ 0. (3.6.9)

If we first set D = 1
3 (divx v) I (see (3.6.5)) in the second inequality of (3.6.8), then

(
λ +

2
3
μ

)
(divx v)2 ≥ 0,

from which we deduce that
3λ + 2μ ≥ 0. (3.6.10)

If we now choose D arbitrarily but put divx v = 0 so that ρ̇ = 0, then the second
inequality of (3.6.8) yields

μ ≥ 0. (3.6.11)

Therefore, the restrictions imposed by the principles of thermodynamics on the
constitutive equation for compressible flow of a Newtonian fluid defined by the con-
stitutive equation (3.2.7) are those contained in relations (3.6.4), (3.6.6), (3.6.9),
(3.6.10), and (3.6.11).

We have used as examples in this chapter the classical materials introduced in
Part I. However, the main focus of later chapters will be on more general materi-
als, namely those with memory. The principles of thermodynamics introduced here
and their consequences in the form of the energy equation (3.3.7) or (3.3.8) and
the Clausius–Duhem inequality (3.4.14) or (3.4.16) apply quite generally to simple
materials, and indeed we will use them in Chap. 5. In fact, general constitutive equa-
tions for materials with memory are derived using a generalization of the kind of
arguments developed in Sect. 3.6 to obtain (3.6.4) and (3.6.6).

The statements of the thermodynamic principles that we have presented in these
sections apply to simple materials. In the next section we study the generalization of
the laws of thermodynamics required for nonsimple materials.

3.7 Principles of Thermodynamics for Nonsimple Materials

Just as for a simple material, we suppose that a nonsimple material is formally char-
acterized by a state σ, which is an element of the space Σ of the possible states of
the body, and a process P, belonging to the space Π of the possible processes of the
body, with a duration dP ∈ R+, defined more generally than by (3.2.1). Furthermore,
we assume that for this system, there exists a function ρ̂ ∈ Σ ×Π → Σ with the same
properties as described in Definition 3.2.1. Finally, the behavior of the material is
always described by the triplet (T, h,q), defined in (3.2.6).
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The important difference between simple and nonsimple materials, from a ther-
modynamic point of view, emerges in the context of defining the mechanical power.

For simple materials, the internal mechanical power, denoted by Pi
m, is always

expressed by
Pi
m = T · L, (3.7.1)

and therefore the first law assumes the form (3.3.1) or (3.3.7).
In the general case, this quantity is not necessarily defined by (3.7.1). Its expres-

sion can be derived by means of the balance equation of power.
For a mechanical system, denoting by P̃i

m the internal mechanical power, this
balance equation is written as

d
dt
T (t) + P̃i

m(σ(t), P(t)) = P̃e
m, (3.7.2)

where P̃e
m denotes the external mechanical power, defined by the flux and the me-

chanical sources due to external forces, while T is the kinetic energy.

3.7.1 First Law of Thermodynamics

For nonsimple mechanical systems, the first law is stated by assuming the existence
of a function of state e(σ), the internal energy, such that

ρė(σ(t)) = P̃i
m(σ(t), P(t)) + ρh(σ(t), P(t)), (3.7.3)

where h denotes the internal thermal power per unit mass and ρ is the mass density.
The form (3.7.3) is the classical statement of the first law, given by R. Clausius in

1850, and can be applied also to electromagnetic, chemical, and biological systems,
which are characterized by the triplet (Σ,Π, ρ̂).

An alternative and more general formulation of the first law is now given.
• First principle of thermodynamics (on cycles). For any cyclic process (σi, P),

i.e., ρ̂(σi, P) = σi, the sum of the internal thermal power ρh and of other internal
powers P̃i(σ, P) satisfies

∮ [
P̃i(σ(t), P(t)) + ρh(σ(t), P(t))

]
dt = 0, (3.7.4)

where σ(t) = ρ̂(σi, Pt).
Referring to (3.3.4), we note that it is similarly possible to deduce from (3.7.4)

the existence of an internal energy e(σ(t)) such that the equality (3.7.3) holds.
An example is now formulated for which, in the representation of the first law,

we cannot use the expression (3.7.1) for the internal mechanical power.
Let us consider a thermoelastic plate, for which, following [116, 225, 226] (see

also [3]), the stress tensor (in this context a vector) assumes the form

T(x, t) = −a∇
[
∇2u(x, t)

]
+ b∇ü(x, t) + c∇θ(x, t), (3.7.5)
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where u is the vertical displacement, while a, b, and c are suitable material constants.
The equation of motion is given by

ρü(x, t) = ∇ · T(x, t) + ρ f (x, t), (3.7.6)

where f denotes the external forces. We multiply this by u̇ to obtain

d
dt

(
1
2
ρu̇2

)
= ∇ · (Tu̇) − T · ∇u̇ + ρ f u̇. (3.7.7)

To derive the contribution due to the internal and external powers in the balance
equation (3.7.7), we must use the representation (3.7.5) for the stress T. Then (3.7.7)
becomes

1
2
d
dt

[
ρu̇2 + a

(
∇2u

)2
+ b (∇u̇)2

]
+ c∇θ · ∇u̇

= ∇ ·
{[
−a∇

(
∇2u

)
+ b∇ü + c∇θ

]
u̇ + a∇2u∇u̇

}
+ ρ f u̇.

(3.7.8)

On comparing with (3.7.2), it follows that the internal mechanical power is given by

P̃i
m =

1
2
d
dt

[
a
(
∇2u

)2
+ b (∇u̇)2

]
+ c∇θ · ∇u̇, (3.7.9)

which is completely different from the definition of Pi
m given in (3.7.1). Conse-

quently, the local form (3.7.3) of the new formulation of the first law (3.7.4) is ex-
pressed by

ρė =
1
2
d
dt

[
a
(
∇2u

)2
+ b (∇u̇)2

]
+ c∇θ · ∇u̇ + ρh. (3.7.10)

Moreover, by virtue of (3.7.2) and putting

N′ =
[
a∇

(
∇2u

)
− b∇ü − c∇θ

]
u̇ − a∇2u∇u̇, (3.7.11)

we derive the expression for the external mechanical power

P̃e
m = −∇ · N′ + ρ f u̇.

It is now possible to better understand the difference between the new formula-
tion and the classical one, proposed by Truesdell and Noll [313] and Coleman [67]
(also [311]) for simple materials, in which the first law relating to mechanical sys-
tems is expressed by (see (3.3.7))

ρė = T · L − ∇ · q + ρr. (3.7.12)

This expression clearly agrees with the representation (3.7.3) when the internal
power P̃i

m has the form (3.7.1) and h, by virtue of the balance equation for heat
(see (3.1.3)), is given by

ρh = −∇ · q + ρr. (3.7.13)
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The representation (3.7.12) does not hold for nonsimple materials. In fact, al-
ready in the example of the plate, we have seen that (3.7.10), deduced from (3.7.4)
with P̃i defined by (3.7.9) and h given by (3.7.13), is not compatible with (3.7.12),
where T is expressed by (3.7.5). Therefore, (3.7.12) must be modified.

Dunn and Serrin [97], but subsequently also Fabrizio and Morro [122], have
proposed a modification of (3.7.12), by assuming

ρė = T · L − ∇ · N − ∇ · q + ρr, (3.7.14)

where the vector N is a suitable extra flux.
For the example of the plate, we firstly observe that using (3.7.8) and (3.7.11),

we can eliminate in (3.7.10) the expression for P̃i
m given by (3.7.9), thus obtaining

ρė = − d
dt
T + ρ f u̇ − ∇ · N′ + ρh; (3.7.15)

hence, taking into account (3.7.7) and (3.7.13), we also have

ρė = T · ∇u̇ − ∇ · (Tu̇ + N′) − ∇ · q + ρr, (3.7.16)

that is, (3.7.14) is satisfied with N expressed by

N ≡ (Tu̇ + N′) = −a∇2u∇u̇,

by virtue of (3.7.5) and again of (3.7.11).
An analogous problem arises when we consider a thermoelastic plate with mem-

ory characterized by the following constitutive equations:

T(x, t) = −∇
[∫ ∞

0
C′(s)∇2ut(x, s)ds −C0∇2u(x, t)

]
+ c∇θ(x, t),

e(x, t) = ẽ(θ(x, t),∇2u(x, t),∇2ut(x, s)),

q(x, t) = −k0∇θ(x, t),

(3.7.17)

where the scalar kernel C′(·) is a suitable smooth function.
From the equation of motion (3.7.6), we have already derived the balance equa-

tion of the mechanical power (3.7.7), where, using (3.7.17)1, we obtain

−T · ∇u̇ =
{
∇

[∫ ∞

0
C′(s)∇2ut(s)ds −C0∇2u

]
− c∇θ

}
· ∇u̇

= ∇ ·
{[∫ ∞

0
C′(s)∇2ut(s)ds −C0∇2u − cθ

]
∇u̇

}

−
∫ ∞

0
C′(s)∇2ut(s)ds∇2u̇ +

C0

2
d
dt

(
∇2u

)2
+ cθ∇2u̇.

Thus, (3.7.7) yields
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d
dt

(
1
2
ρu̇2

)
+

∫ ∞

0
C′(s)∇2ut(s)ds∇2u̇ − C0

2
d
dt

(
∇2u

)2
− cθ∇2u̇

= ∇ ·
({
−∇

[∫ ∞

0
C′(s)∇2ut(s)ds −C0∇2u

]
+ c∇θ

}
u̇

+

[∫ ∞

0
C′(s)∇2ut(s)ds −C0∇2u − cθ

]
∇u̇

)
+ ρ f u̇.

Hence, it follows that

P̃i
m =

∫ ∞

0
C′(s)∇2ut(s)ds∇2u̇ − C0

2
d
dt

(
∇2u

)2
− cθ∇2u̇.

Using (3.7.3), we can give an expression for the thermal power as follows:

ρh = ρė − P̃i
m = ρė −

∫ ∞

0
C′(s)∇2ut(s)ds∇2u̇ +

C0

2
d
dt

(
∇2u

)2
+ cθ∇2u̇.

To obtain the expression (3.7.14), we put

N′ =

{
∇

[∫ ∞

0
C′(s)∇2ut(s)ds −C0∇2u

]
− c∇θ

}
u̇

−
[∫ ∞

0
C′(s)∇2ut(s)ds −C0∇2u − cθ

]
∇u̇,

(3.7.18)

instead of (3.7.11). Relations (3.7.15) and (3.7.16) follow, where by virtue of
(3.7.17)1 and (3.7.18), the quantity N is now given by

N = Tu̇ + N′ = −
[∫ ∞

0
C′(s)∇2ut(s)ds −C0∇2u − cθ

]
∇u̇.

Other interesting examples, for which the classical representation of the power,
used in the first law, does not coincide with that following from a correct balance
between the internal and external powers, occur in electromagnetism, in the study
of phase transitions, and also in other physical systems, such as those describing
processes of phase separation, for example, by means of the Cahn–Hilliard equation
[44]. This topic is discussed below.

A further interesting application relates to the thermodynamics of superconduct-
ing materials. It has been shown in [122] that for these materials, an extra flux must
be introduced into the first law, which is proportional to the superconducting current.

The case of electromagnetism is discussed in Chap. 6.
As a final example of nonsimple materials, we consider the thermodynamics of

phase transitions in a binary mixture, characterized by the Cahn–Hilliard equation

ċ = ∇ · J, (3.7.19)

where J is the mass flux given by

J = M(c)∇μ(c). (3.7.20)
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Here c denotes the concentration of one of the two components, with a range of val-
ues in the interval [0, 1]. The quantity M(c) is the mobility, representing the density
with which the two phases are mixed, and is such that

M(0) = M(1) = 0,

while the chemical potential μ(c) is given by

μ(c) = −γ∇2c + θG′(c) + θ0F
′(c), γ > 0. (3.7.21)

Here, θ0 is the transition temperature, while G(c) and F(c) are assigned the polyno-
mial forms

G(c) = β
c2

2
, F(c) = β

(
c4

4
− c2

2

)
, β > 0,

corresponding to a second-order transition as described by the Cahn–Hilliard equa-
tion.

From (3.7.19) and (3.7.20), we have

ċ = ∇ · [M(c)∇μ(c)], (3.7.22)

whence, using (3.7.21), we obtain

ċ = ∇ ·
{
M(c)∇

[
θ0F

′(c) + θG′(c) − γ∇2c
] }
.

This equation must be related to the heat equation, derived from the energy balance
law

ė = P̃i
c + h, (3.7.23)

where P̃i
c is the internal power of the mixture. Multiplying (3.7.22) by the potential

μ(c), we have the equation for the power

ċμ(c) = ∇ · [M(c)μ(c)∇μ(c)] − M(c)[∇μ(c)]2.

Using (3.7.21) again, we obtain

θ0Ḟ(c) + θĠ(c) +
γ

2
d
dt

(∇c)2 + M(c)[∇μ(c)]2 = ∇ · [γċ∇c + M(c)μ(c)∇μ(c)].

Thus, the power P̃i
c is expressed by

P̃i
c = θ0Ḟ(c) + θĠ(c) +

γ

2
d
dt

(∇c)2 + M(c) [∇μ(c)]2.

By assuming for e the form

e = θ0F(c) +
γ

2
(∇c)2 + ẽ(θ),

Eq. (3.7.23) becomes

ẽθθt = θĠ(c) + M(c) [∇μ(c)]2 − ∇ · q + r,

with the aid of (3.7.13).
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3.7.2 Second Law of Thermodynamics

For simple materials, the second law is expressed by the Clausius–Duhem inequality,
which assumes the form (3.4.11), i.e.,

ρη̇ ≥ −∇ · q
θ
+ ρ

r
θ
, (3.7.24)

where η denotes the entropy function and r the heat supply.
In 1967, I. Müller [268] proposed a new version of this inequality by replacing

(3.7.24) with the more general expression

ρη̇ ≥ −∇ ·Φ + ρ r
θ
, (3.7.25)

where the vector Φ, the entropy flux, is characterized by a constitutive equation. If
we assume for Φ the form

Φ =
q
θ
+Φ′,

where Φ′ denotes an entropy extra flux, (3.7.25) can be written as

ρη̇ ≥ −∇ · q
θ
− ∇ ·Φ′ + ρ

r
θ
. (3.7.26)

In order to better understand the difference between simple and nonsimple mate-
rials, let us derive the balance law of entropy power. If the heat equation (3.7.13) is
divided by the absolute temperature θ, we obtain the identity

ρ
h
θ
+

1
θ2
q · ∇θ = −∇ · q

θ
+ ρ

r
θ
, (3.7.27)

which is the desired relation. For a simple material, we can claim that the internal
entropy power is defined by

Pi
η := ρ

h
θ
+

1
θ2
q · ∇θ, (3.7.28)

while the external entropy power is given by

Pe
η := −∇ · q

θ
+ ρ

r
θ
.

Thus, by (3.7.27), we see that the formulation (3.7.24), relating to simple materials,
reduces to the inequality

ρη̇ ≥ Pi
η = ρ

h
θ
+

1
θ2
q · ∇θ. (3.7.29)

In general, for nonsimple materials, the internal entropy power is not given by
(3.7.28). Using (3.7.27) again, the inequality (3.7.26) becomes

ρη̇ ≥ ρ
h
θ
+

1
θ2
q · ∇θ − ∇ ·Φ′. (3.7.30)
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From the inequalities (3.7.24) and (3.7.26) (or (3.7.29) and (3.7.30)), we see that
the second law assumes different expressions for simple and nonsimple materials.
Following [75], we propose the second law in a unique general form as follows.

• Second principle of thermodynamics (on cycles). For any cyclic process
(σi, P), i.e., ρ̂(σi, P) = σi, the internal entropy power P̃i

η satisfies the inequality∮
P̃i
η(σ(t), P(t))dt ≤ 0, (3.7.31)

where σ(t) = ρ̂(σi, Pt).
By a similar argument to that used in the context of (3.4.11), we can prove that

from (3.7.31) there exists the entropy function η(σ) such that

ρη̇(σ) ≥ P̃i
η(σ, P), (3.7.32)

so that we recover (3.7.30) on putting

P̃i
η = ρ

h
θ
+

1
θ2
q · ∇θ − ∇ ·Φ′. (3.7.33)

We prefer to state the second law by the inequality (3.7.31) or (3.7.32), since
the representation (3.7.30) of the second law is ambiguous, because of the term ∇ ·
Φ′.∗ In order to understand the natural expression for the second law by means of
internal entropy power P̃i

η used in (3.7.31) and (3.7.32), let us introduce the example
considered in the work of Cimmelli and Frischmuth [66], in which they have studied
the thermodynamics of the model proposed by Guyer and Krumhansl [193] for the
heat flux, characterized by the constitutive law

q̇ +
1
τR

q = −cV∇θ + τN
[
∇2q + 2∇(∇ · q)

]
, τR > 0, τN > 0. (3.7.34)

For this equation, when the coefficient cV has the form

cV =
c0

θ2
, c0 > 0, (3.7.35)

an entropy extra flux can be introduced.
To derive the balance equation (3.7.27), we consider the inner product of (3.7.34)

by q, taking account of (3.7.35); thus, we obtain the quantity 1
θ2 q · ∇θ, which allows

us to rewrite (3.7.27) as

ρ
h
θ
− 1

2c0

d
dt
q2 − 1

c0τR
q2 − τN

c0

[
(∇q)2 + 2(∇ · q)2

]

= −∇ · q
θ
+ ρ

r
θ
− τN

c0
∇ · [(∇q)q + 2(∇ · q)q.

(3.7.36)

∗ In the literature, examples for which it is necessary to introduce an entropy extra flux Φ′

are very few. Only materials for which there is a nonlocal constitutive equation for the heat
flux q have need of an extra flux in (3.7.26) or in (3.7.30). It has been shown (see [122,
Chapter 11.2]) that for isothermal processes, the introduction of an energy extra flux in the
first law is equivalent to the inclusion of an entropy extra flux in the second law. But this
equivalence holds only for isothermal processes.
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Hence, it follows that the expression of P̃i
η considered in (3.7.32) is given by

P̃i
η = ρ

h
θ
− 1

2c0

d
dt
q2 − 1

c0τR
q2 − τN

c0

[
(∇q)2 + 2(∇ · q)2

]
, (3.7.37)

while the external entropy power has the form

P̃e
η = −∇ · q

θ
+ ρ

r
θ
− ∇ ·Φ′

0, (3.7.38)

where we have put

Φ′
0 =

τN
c0

[(∇q)q + 2(∇ · q)q]. (3.7.39)

Finally, from (3.7.32), using (3.7.36)–(3.7.38), we have

ρη̇ ≥ P̃i
η ≡ P̃e

η = −∇ · q
θ
+ ρ

r
θ
− ∇ ·Φ′

0,

that is, (3.7.30) is satisfied with the entropy extra flux (3.7.39).
However, the natural form of the second law is the representation (3.7.32) with

the expression (3.7.37) for P̃i
η.

Remark 3.7.1. Further examples of nonsimple materials are discussed in some detail
in Chap. 21. These include second-gradient thermoviscoelastic fluids and heat flow
in a rigid conductor, with nonlocal behavior and thermal memory. The rigid conduc-
tor problem is related to the material associated with (3.7.34). A general theory of
nonsimple or nonlocal materials is also proposed. The main emphasis in that chapter
is to introduce generalizations of some of the free energy functionals discussed in
Chaps. 10 and 11 for simple materials.
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Free Energies and the Dissipation Principle

4.1 Axiomatic Formulation of Thermodynamics

We present in this chapter an axiomatic formulation of thermodynamics in order to
introduce free energies in a very general manner and to prove certain fundamental
properties of these quantities. For most of the discussion, no underlying model is as-
sumed, in contrast to the previous chapter. However, in the context of an equivalence
relation between states, we ascribe a form to the work function consistent with the
general nonisothermal theory introduced in Chap. 5.

The treatment presented here is based on [104, 110] and ultimately on Noll [277]
and Coleman and Owen [75, 76], who present a general axiomatic formulation of
thermodynamics in which the existence of the free energy and entropy is deduced
from more fundamental considerations rather than assumed a priori.

We consider a simple material, as specified by Definition 3.2.1, for which a pro-
cess is defined by a map P : [0, dP) �→ V, piecewise continuous on the time interval
[0, dP), where V is a given finite-dimensional vector space. The set of all processes is
Π , while Σ is the set of all states. Also,  ̂ is the evolution function, which transforms
the state σ1 under the process P into σ2 =  ̂(σ1, P); it obeys (3.2.3).

Remark 4.1.1. Nonsimple materials can also be included in the general formulation,
in particular by generalizing the definition of P as given by (3.2.1). Examples are
given in Chap. 21.

We introduce a quantity W : Σ × Π �→ R, which will be referred to as the work
or the work function, and Σ : Σ × Π → V, the response function.

The following important property of the work function is assumed. If P1, P2 ∈ Π ,
then

W(σ, P1 ∗ P2) = W(σ, P1) +W( ̂(σ, P1), P2). (4.1.1)

We can now introduce an equivalence relation, denoted by R, between states
in the space state Σ by means of the following definition, in terms of the response
function.
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Definition 4.1.2. Two states σ1, σ2 ∈ Σ are said to be equivalent if

Σ(σ1, P) = Σ(σ2, P) (4.1.2)

for all P ∈ Π .

If in the space state Σ of a simple material there are equivalent states, then it is
possible to consider a new state space ΣR for the given material element, namely the
quotient of Σ on R. The elements of this quotient space, denoted by σR ∈ ΣR, will
be called minimal states. However, for the given material element, it is not necessary
to use the minimal-state space ΣR; in fact, any definition of state that characterizes
the simple material can be correctly used.

We ascribe a particular form to W(σ, P) consistent with that introduced in
Chap. 5. Let Λ(t) ∈ V, and let Λ̇(t) be its time derivative. We put

P(t) = Λ̇(t), (4.1.3)

which actually corresponds to (3.2.2), for the definition of Λ, closely related to that
introduced in Chap. 5. We shall define a state σ as (Λt,Λ(t)) below in Chap. 5, for
materials with memory, where Λt is the history Λ(t − s), s ∈ R++.

Let

W(σ, P) =
∫ dP

0
Σ(σ, Pt) · Λ̇(t)dt. (4.1.4)

With this choice of work function, the following result can be proved.

Proposition 4.1.3. We have

W(σ1, P) = W(σ2, P) ∀P ∈ Π (4.1.5)

if and only if σ1 and σ2 are two equivalent states.

Proof. Relation (4.1.5) states that

∫ dP

0
Σ(σ1, Pt) · Λ̇(t)dt =

∫ dP

0
Σ(σ2, Pt) · Λ̇(t)dt, (4.1.6)

which is clearly true by (4.1.2) if the two states σ1 and σ2 are equivalent. Conversely,
if (4.1.6) holds, we have

∫ dP

0
[Σ(σ1, Pt) − Σ(σ2, Pt)] · Λ̇(t)dt = 0,

for all P ∈ Π and therefore for arbitrary Λ̇(t), so that

Σ(σ1, Pt) = Σ(σ2, Pt), t ∈ [0, dp).

In particular, putting t = dP, we have Σ(σ1, P) = Σ(σ2, P), which gives (4.1.2). �

Definition 4.1.4. A pair (σ, P) is called a cyclic process if  ̂(σ, P) = σ.
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This concept is of course related to that of closed processes, defined by (2.3.12).
Cyclic processes (σ, P) for material elements of a body with fading memory are
realized only by means of a periodic history σ and a process P, the duration of
which is equal to a finite number of periods of the history.

The second law of thermodynamics can be expressed in the following form [75].

The Dissipation Principle. For every cyclic process (σ, P), the work is such that

W(σ, P) ≥ 0. (4.1.7)

Definition 4.1.5. A set S ⊂ Σ is invariant under  ̂ if for every σ1 ∈ S and P ∈ Π , the
state σ =  ̂(σ1, P) is in S.

Definition 4.1.6. A function ψ : Sψ → R+ is a free energy if

(i) the domain Sψ is invariant under  ̂;
(ii) for any pair σ1, σ2 ∈ Sψ and P ∈ Π such that  ̂(σ1, P) = σ2, we have

ψ(σ2) − ψ(σ1) ≤ W(σ1, P). (4.1.8)

An important inequality follows from the expression (4.1.4) for the work and from
the inequality (4.1.8). Let σ2 in the latter relation be σ(t) =  ̂(σ1, Pt). We put dP = t.
Then, under the hypothesis that ψ(σ(t)) is differentiable with respect to t, we obtain
from (4.1.4)

ψ̇(σ(t)) ≤ Σ(σ, Pt) · Λ̇(t). (4.1.9)

The explicit form (4.1.4) for the work function will not be required again in this
chapter.

It is well known (see, for example, [75, 90, 105]) that there may be many free
energies for a material with fading memory. The family of all free energies that are
possible for the material element under consideration is denoted by F. If ψ1, ψ2 ∈ F,
then Sψ1 ∩ Sψ2 is invariant under  ̂. It is assumed that Sψ1 ∩ Sψ2 is nonempty under  ̂.
This will be true in particular if Sψ1 ⊆ Sψ2 or Sψ2 ⊆ Sψ1 . A fundamental property of
this set is now proved [121, 266].

Proposition 4.1.7. The set F is convex.

Proof. Let ψ1, ψ2 ∈ F, and consider

ψ = αψ1 + (1 − α)ψ2, α ∈ [0, 1]. (4.1.10)

Its domain is Sψ1 ∩ Sψ2 . It is nonnegative and obeys the inequality (4.1.8). Thus, it is
a free energy of the material element. �

It is assumed that the set F is bounded, so it will have a minimum and a maximum
element.

We now consider the problem of the existence of a minimum free energy and
study its properties.

Let
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W(σ) = {W(σ, P); P ∈ Π} (4.1.11)

be the set with elements given by the work done by starting from σ and applying any
process P ∈ Π .

The Strong Dissipation Principle. The set W(σ) is bounded below for all σ ∈ Σ.
Furthermore, there is a unique state σ†, which we refer to as the zero state, with the
property that

inf W(σ†) = 0. (4.1.12)

Definition 4.1.8. A state σ ∈ Σ is attainable from all of Σ if for any initial state σi,
there exists a process P ∈ Π such that  ̂(σi, P) = σ. A simple material system is
attainable if every state σ is attainable from every other state σ′ ∈ Σ.

Remark 4.1.9. Materials with fading memory are in general not attainable. Indeed,
we see that a state σ(t), defined by a history up to time t, is attainable from a history
σ0(t0), t0 < t, only if the history up to time t0 in σ(t) is the same as the history in
σ0(t0).

The following theorem establishes the connection between the dissipation prin-
ciple and the strong dissipation principle [104].

Theorem 4.1.10. The dissipation principle follows from the strong dissipation prin-
ciple.

Proof. Firstly, for any pair σ,σ′ ∈ Σ, we consider the quantity

M(σ,σ′) := inf{W(σ, P); P ∈ Π,  ̂(σ, P) = σ′}, (4.1.13)

which, by virtue of the strong dissipation principle, is bounded below. Thus, there
exists Mσ such that

M(σ,σ′) ≥ Mσ > −∞ ∀σ ∈ Σ.

If (σ, P) ∈ Σ×Π is a cycle, then so is the pair (σ, P∗P). Putting Pn = P∗P∗· · ·∗P,
we see that (σ, Pn) is a cycle for any integer n. Thus, taking into account (4.1.1) and
(4.1.13), we have

W(σ, Pn) = nW(σ, P) ≥ M(σ,σ) ∀n ∈ N.

Hence, it follows that W(σ, P) is nonnegative, which proves (4.1.7), since otherwise,
the condition M(σ,σ) > −∞ would not be satisfied. Furthermore, M(σ,σ) vanishes,
since it is the infimum over a set of nonnegative numbers that contains zero because
there exists the trivial process P0, which satisfies  ̂(σ, P0) = σ and gives W(σ, P0) =
0. �

The dissipation principle therefore follows from the strong dissipation principle.
We shall adopt the strong dissipation principle in the next section.

Let us introduce the set

Φ :=
{
φ : Σ → R+; φ(σ) ≤ ψ(σ) ∀ψ ∈ F, ∀σ ∈ Sψ; φ(σ†) = 0

}
(4.1.14)
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and the function φM : Σ → R+ defined as

φM(σ) = sup {φ(σ); φ ∈ Φ}. (4.1.15)

The functional φM is the largest one with the property that it is less than or equal to
every free energy for all states.

We also define W̃ as

W̃(σ) := {W(σ, P) − φM( ̂(σ, P)); P ∈ Π}. (4.1.16)

4.2 Minimum and Maximum Free Energies

Definition 4.2.1. A functional ψm is the minimum free energy if

(i) ψm is a free energy with domain Sψ = Σ,
(ii) the zero state σ† ∈ Σ is such that ψm(σ†) = 0, and
(iii) for any free energy ψ : Sψ → R+ such that σ† ∈ Sψ and ψ(σ†) = 0, we have

ψ(σ) ≥ ψm(σ) ∀σ ∈ Sψ. (4.2.1)

Proposition 4.2.2. The minimum free energy, if it exists, is unique.

Proof. Suppose we have two free energies ψm1 and ψm2 with Sψ = Σ. For any
σ ∈ Σ, from (4.2.1), we should have ψm1 (σ) ≥ ψm2 (σ) by considering ψm2 (σ) as
the minimum. Taking ψm1 (σ) as the minimum, we have ψm2 (σ) ≥ ψm1 (σ). Hence,
ψm1 (σ) = ψm2 (σ) for any σ ∈ Σ. �

The following result characterizes the minimum free energy [104].

Theorem 4.2.3. The functional

ψm(σ) := − inf W(σ), (4.2.2)

the quantity W being defined by (4.1.11), is the minimum free energy.

The proof is a corollary of the following lemmas.

Lemma 4.2.4. For every state σ ∈ Σ,

N(σ) := − inf W(σ) = sup {−W(σ, P); P ∈ Π} (4.2.3)

is finite, and moreover, the functional

ψm(σ) := N(σ) (4.2.4)

is a free energy defined on Σ.
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Proof. It follows immediately from the strong dissipation principle that {−W(σ, P);
P ∈ Π} is bounded above for all σ ∈ Σ. Hence, N(σ) is defined on Σ, and requirement
(i) of definition 4.1.6 is satisfied. For requirement (ii), let σ1 and σ2 be two states
and P′ a process such that  ̂(σ1, P′) = σ2. Then for any P ∈ Π , (4.2.3) yields

−W(σ1, P
′ ∗ P) ≤ N(σ1). (4.2.5)

We also have that for any ε > 0, there exists a process Pε such that

−W(σ2, Pε) > N(σ2) − ε. (4.2.6)

Thus, from (4.2.4)–(4.2.6), we obtain

ψm(σ2) − ψm(σ1) − ε ≤ −W(σ2, Pε) +W(σ1, P
′ ∗ P)

= −W(σ2, Pε) +W(σ1, P
′) +W(σ2, P).

The arbitrariness of P and ε gives the desired result (4.1.8) on putting P = Pε. �

Lemma 4.2.5. The free energy ψm, as defined by (4.2.4), is nonnegative,

ψm(σ) ≥ 0 ∀σ ∈ Σ, (4.2.7)

and ψm(σ) = 0 if and only if σ = σ†.

Proof. If (4.2.7) holds, the set {−W(σ, P); P ∈ Π} contains the zero value, since for
any zero process P0, we have W(σ, P0) = 0; therefore, the supremum of such a set is
nonnegative.

Let
ψm(σ†) = sup

{
−W(σ†, P); P ∈ Π

}
= inf W(σ†).

Then (4.1.12) gives that ψm(σ†) = 0. The converse follows by the uniqueness of σ†

obeying (4.1.12). �

Lemma 4.2.6. Any free energy ψ : Sψ → R+ with σ† ∈ Sψ and ψ(σ†) = 0 satisfies

ψm(σ) ≤ ψ(σ) ∀σ ∈ Sψ. (4.2.8)

Proof. Let σ ∈ Sψ. For every ε > 0, there exists a process Pε such that

ψm(σ) < −W(σ, Pε) + ε. (4.2.9)

Putting σε =  ̂(σ, Pε), we obtain, for any free energy ψ,

ψ(σε) − ψ(σ) ≤ W(σ, Pε). (4.2.10)

Use of (4.2.9) and (4.2.10) gives

ψm(σ) < −W(σ, Pε) + ε ≤ −ψ(σε) + ψ(σ) + ε < ψ(σ) + ε,

from which, ε being arbitrary, we obtain (4.2.8). �
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Recalling the definitions of φM(σ) and W̃(σ), given by (4.1.15) and (4.1.16), we
have the following result [110].

Remark 4.2.7. We shall assume that inf W̃, where W̃ is defined by (4.1.16), exists for
all σ ∈ Σ. This is not guaranteed by the strong dissipation principle since φM( ̂(σ, P))
must also be restricted.

Theorem 4.2.8. The functional

ψ̃m(σ) := − inf W̃(σ) (4.2.11)

is a free energy such that ψ̃m(σ) = ψm(σ) ∀σ ∈ Σ.

Proof. We can write (4.2.11) in the equivalent form

ψ̃m(σ) = sup {−W(σ, P) + φM( ̂(σ, P)); P ∈ Π}. (4.2.12)

Since for the zero process P0, we have W(σ, P0) = 0, φM( ̂(σ, P0)) is nonnega-
tive, so that ψ̃m(σ) ≥ 0. We also have ψm(σ†) = 0.

Given two states σ1 and σ2 and a process P′ such that  ̂(σ1, P′) = σ2, from
(4.2.12), we have

ψ̃m(σ1) ≥ −W(σ1, P
′ ∗ P) + φM( ̂(σ1, P

′ ∗ P)) (4.2.13)

for any P ∈ Π ; moreover, for any ε > 0, there exists a process Pε such that

ψ̃m(σ2) − ε < −W(σ2, Pε) + φM( ̂(σ2, Pε)). (4.2.14)

Comparison of (4.2.13) and (4.2.14) yields

ψ̃m(σ2) − ψ̃m(σ1) − ε

< −W(σ2, Pε) + φM( ̂(σ2, Pε)) +W(σ1, P
′ ∗ P) − φM( ̂(σ1, P

′ ∗ P))

= −W(σ2, Pε) + φM( ̂(σ2, Pε)) +W(σ1, P
′) +W(σ2, P) − φM( ̂(σ2, P)),

by virtue of (4.1.1). Identifying Pε and P, the latter being arbitrary, we deduce that

ψ̃m(σ2) − ψ̃m(σ1) ≤ W(σ1, P
′),

which completes the proof that ψ̃m(σ) is a free energy.
We must show that ψm(σ) = ψ̃m(σ). The quantity φM being nonnegative,

W(σ, P) ≥ W(σ, P) − φM( ̂(σ, P)) ∀P ∈ Π , and hence inf W(σ) ≥ inf W̃(σ) or

ψm(σ) ≤ ψ̃m(σ) ∀σ ∈ Σ. (4.2.15)

Let σ ∈ Sψ. There exists a process Pε, for every ε > 0, such that

ψ̃m(σ) < −W(σ, Pε) + φM( ̂(σ, Pε)) + ε, (4.2.16)

and putting σε =  ̂(σ, Pε), for any free energy ψ, we have
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ψ(σε) − ψ(σ) ≤ W(σ, Pε).

Comparison of these inequalities yields

ψ̃m(σ) < −W(σ, Pε) + φM(σε) + ε

≤ −ψ(σε) + ψ(σ) + φM(σε) + ε

≤ ψ(σ) + ε

because by definition, φM(σε) ≤ ψ(σε). From the arbitrariness of ε, it follows that

ψ̃m(σ) ≤ ψ(σ) (4.2.17)

for all ψ and, in particular, for ψ = ψm. Thus, (4.2.15) and (4.2.17) yield ψ̃m(σ) =
ψm(σ) ∀σ ∈ Σ, which completes the proof. �

Remark 4.2.9. A similar result holds for any choice of φ ∈ Φ defined by (4.1.14).
On examining the last part of the proof of Theorem 4.2.8, we can in fact weaken
considerably the constraint on the functions φ ∈ Φ that they must be less than or
equal to all free energies for all states.

Corollary 4.2.10. If ∃ ε0 > 0 such that ε < ε0,

φM( ̂(σ, Pε)) ≤ ψ( ̂(σ, Pε)) ∀ψ ∈ F, σ ∈ Fψ, (4.2.18)

where Pε is defined by (4.2.16), then Theorem 4.2.8 holds with W̃(σ) defined by
(4.1.16), though now φM is constrained only by (4.2.18) rather than by (4.1.15).

Thus, in fact, the property must hold only for the final states of processes in the
vicinity of the optimal process.

Remark 4.2.11. It is always possible to represent the minimum free energy as a func-
tion of the minimal state σR. From the definition of W(σ), given by (4.1.11), and
from the fact that W(σ, P) = W(σR, P) for all P ∈ Π , which follows from Proposi-
tion 4.1.3, it is clear that

inf W(σ) = inf W̃(σR).

Thus, if σ ∈ σR, we have
ψm(σ) = ψm(σR). (4.2.19)

Therefore, the minimum free energy is independent of the representation of state that
we use.

Let us denote by Σσ the set of all σ′ ∈ Σ attainable from σ,

Σσ = {σ′ ∈ Σ; ∃ P ∈ Π, σ′ =  ̂(σ, P)}.

Let σ0, σ ∈ Σ be any pair of states such that σ ∈ Σσ0 . We introduce the set

N(σ0, σ) = {W(σ0, P); ∀ P ∈ Π,  ̂(σ0, P) = σ}. (4.2.20)

This set is bounded below by virtue of the strong dissipation principle.
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Theorem 4.2.12. For any fixed σi, the functional ψσi

M : Σσi → R+, defined by

ψσi

M(σ) = inf N(σi;σ) + ψm(σi),

is a free energy, called a maximum free energy. For any free energy ψ : Sψ → R+
such that Sψ ⊃ Σσi and ψ(σi) = ψm(σi), we have

ψ(σ) ≤ ψσi

M(σ), ∀ σ ∈ Σσi . (4.2.21)

Proof. The functional ψσi

M is clearly well defined on the set Σσi , which is invariant
under  ̂. Let σ1, σ2 ∈ Σσi be a pair of states and P ∈ Π a process such that σ2 =

 ̂(σ1, P); then, for any ε > 0, there is a process Pε
1 such that

 ̂(σi, Pε
1) = σ1, ψσi

M(σ1) > W(σi, Pε
1) + ψm(σi) − ε (4.2.22)

and
ψσi

M(σ2) ≤ W(σi, Pε
1 ∗ P) + ψm(σi). (4.2.23)

The inequalities (4.2.22) and (4.2.23) give

ψσi

M(σ2) − ψσi

M(σ1) ≤ W(σ1, P).

Let ψ : Sψ → R+ be a free energy such that Sψ ⊃ Σσi and ψ(σi) = ψm(σi) = ψσi

M(σi).
For any ε > 0, there exists a Pε such that  ̂(σi, Pε) = σ and W(σi, Pε) + ψm(σi) <
ψσi

M(σ) + ε. Moreover, ψ being a free energy, we have ψ(σ) ≤ W(σi, Pε) + ψ(σi) =
W(σi, Pε) + ψm(σi), and hence (4.2.21) follows because of the arbitrariness of ε. �

Remark 4.2.13. Of course, for any σi ∈ Σ, we may obtain a different free energy.
Moreover, for a fixed σi ∈ Σ, the definition of maximum free energy may depend
on the definition of state. We can, however, construct a maximum free energy that is
defined on the space of minimal states. In other words, if we consider the definition
of minimal state, then (4.2.20) is replaced by

N(σ0R, σR) = {W(σ0R, P); ∀ P ∈ Π,  ̂(σ0R, P) = σR}.

Since this set is generally larger than N(σ0, σ), if σ0 ∈ σ0R and σ ∈ σR, the
maximum free energy, defined on ΣR as

ψ
σi
R

M (σR) = inf N(σi
R, σR) + ψm(σi

R),

satisfies the following inequality:

ψ
σi
R

M (σR) ≤ ψσi

M(σ), σi ∈ σi
R, σ ∈ σR.

Relation (4.2.21) will apply to any free energy ψ(σR) defined on ΣR, provided
ψ(σi

R) = ψm(σi
R).
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Thermodynamics of Materials with Memory

We now apply thermodynamic principles to field theories with memory. For general
nonlinear, nonisothermal theories, we assume that a free energy is given, this being
the fundamental constitutive assumption. Applying a generalization of the approach
of Coleman [67], Coleman and Mizel [71], and Gurtin and Pipkin [191], we derive
the constitutive equations for the theory in Sect. 5.1. Also, fundamental properties of
free energies are derived. Furthermore, some observations are made on the case of
periodic histories and in relation to constraints on the nonuniqueness of free energies.
In Sect. 5.2, an expression for the maximum recoverable work is given for general
materials, together with an integral equation for the process yielding this maximum.
Finally, in Sect. 5.3, we discuss how free energies can be constructed from combina-
tions of simpler free energies.

In Part III, the entire emphasis is on determining suitable explicit forms of free
energies for materials with memory. All these involve quadratic functionals of histo-
ries.

5.1 Derivation of the Constitutive Equations

Let us begin by stating the first and second laws of thermodynamics. The theory is
developed in terms of the material description.

The internal energy per unit mass and the entropy per unit mass at (X, t), both
scalar quantities, are denoted, respectively, by e(X, t) and η(X, t). The local absolute
temperature is θ(X, t) ∈ R+. The Piola–Kirchhoff heat flux vector, defined by (3.1.1),
is denoted by q(X, t) ∈ R3; the subscript L is dropped. We introduce a variable κ(X, t),
which is the coldness, given by 1/θ > 0. All these quantities can also be expressed in
terms of the current position x and time t. The quantity gL ∈ R3 is defined by (3.2.2).
The subscript L will now be dropped. We also introduce d ∈ R3 as the gradient of κ,
so that

g = ∇Xθ, d = ∇Xκ = − 1
θ2
g, (5.1.1)
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where the gradient ∇X, here and below, is with respect to X. The energy balance
equation or the first law of thermodynamics has the form (see (3.3.8))

p − ρė − DivXq + ρr = 0, p = Ŝ · Ė. (5.1.2)

The quantity ρ(X) (denoted by ρ0 in Chap. 3) is the mass density in the material
configuration, and r is the external radiation absorbed per unit time, per unit mass at
(X, t). We write the second law of thermodynamics as

D = η̇ +
1
ρ

DivXjη − κr ≥ 0, (5.1.3)

where jη is the entropy flux, which in the present work will be taken to have the
equilibrium form (see (3.4.15))

jη = κq. (5.1.4)

The quantity D(X, t) is the total rate of entropy production per unit mass.
The superimposed dot notation in (5.1.2), (5.1.3), and below indicates the mate-

rial time derivative, i.e., holding X constant.
The quantities Ŝ, E, q, and g are unaffected by a time-dependent coordinate trans-

formation in x. Thus, their components are objective scalars.
The Helmholtz free energy per unit mass, introduced in Sect. 3.4.2, is defined by

ψH = e − θη.

In terms of this quantity, we can write (5.1.2) as

p
ρ
− ψ̇H − ηθ̇ − 1

ρθ
q · g = θD. (5.1.5)

The fact that D is nonnegative means that (5.1.5) implies the Clausius–Duhem in-
equality (3.4.16). Relation (5.1.5) is unsatisfactory for materials with memory be-
cause, as discussed in Chap. 4 for free energies, neither ψH nor η is in general
uniquely defined. On the other hand, e is always uniquely defined. It is therefore
advantageous to modify the above standard formulation. We introduce the following
free energy:

ψ = κe − η = κψH . (5.1.6)

Instead of (5.1.5), we now have

κ
p
ρ
− ψ̇ + eκ̇ +

1
ρ
d · q = D ≥ 0. (5.1.7)

Observe that in this formulation, the natural temperature variable is κ rather than θ.
In [159], an integral of g was adopted as an independent variable, in a modifica-

tion of the approach of [191, 260]. It was pointed out in [159] that an alternative and
arguably better procedure would be to adopt the quantity m ∈ R3, defined by

m(t) =
∫ t

0
q(u)du, ṁ(t) = q(t), (5.1.8)
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as an independent variable. This choice has the advantage that m has an immediate
physical interpretation in that m · a is the cumulative heat flow over the time in-
terval [0, t], through a unit area perpendicular to the unit vector a in the reference
configuration. For the general development of the theory, we shall adopt m as an
independent variable rather than the time integral of g, though it is an easy matter to
exchange their roles where required.

We shall be assuming that the free energy is a functional of the history of this
quantity, namely mt(s) = m(t − s), s > 0, or specifically a functional of

m(t) −mt(s) =
∫ t

t−s
q(u)du, (5.1.9)

with no separate dependence on m(t); such dependence cannot occur, because m(t)
depends on the choice of the time origin. This is essentially the basis of the approach
in [191], though in that reference, g is used in (5.1.8) rather than q.

Modifying and extending the compact notation of Coleman [67], we introduce
Λ : R �→ Γ+, Σ : R �→ Γ+, where

Λ(t) = (E(t), κ(t),m(t)),

Σ(t) =
1
ρ

(
κŜ(t), ρe(t),d(t)

)
, (5.1.10)

Γ+ = Sym × R+ × R3.

We assume that Λ is continuously differentiable. In terms of this notation, (5.1.7)1

can be written as
ψ̇ + D = Σ · Λ̇ (5.1.11)

with Λ̇ ∈ Γ, where∗

Γ = Sym × R × R3. (5.1.12)

The dot product here denotes a scalar product in the space Γ (Appendix A). This
relation is an expression of the first law and indicates that of the work done on the
material element per unit time, some is stored (ψ̇) and the rest is dissipated (D). The
second law is imposed through the Clausius–Duhem inequality (5.1.7)2 or

D = Σ · Λ̇ − ψ̇ ≥ 0, (5.1.13)

where D is defined by (5.1.3) with (5.1.4).

Remark 5.1.1. Following (4.1.3), we choose Λ̇(t) to be the thermodynamic process
in later chapters. If the time integral of g, rather than q, is used in (5.1.8) and θ(t)
replaces κ(t), then this corresponds to (3.2.2).

∗ The general developments described in later chapters go through for Γ understood to be
any finite-dimensional vector space, rather than just that defined by (5.1.12) and therefore
may apply to a variety of other physical applications, for example, those involving electro-
magnetic fields.



104 5 Thermodynamics of Materials with Memory

Let Λt : R++ �→ Γ+ be defined by

Λt(s) = Λ(t − s), s ∈ R++. (5.1.14)

We assume that these belong to a real Hilbert space H of functions with values in
Γ+, possessing a suitable inner product and fading memory norm, the latter denoted
by ‖ · ‖ [67, 73]. A constitutive assumption is now made by requiring that the free
energy ψ depends in a specified way on the history and current value of Λ. We put

ψ(t) = ψ̃
(
Λt,Λ(t)

)
, (5.1.15)

denoting that ψ̃ is a functional of the history Λt and depends also on the current
value Λ(t). Note that since all components of Λt,Λ are objective scalars, we have
automatically that ψ is an objective scalar.

To eliminate the arbitrariness of an additive constant, which is a feature of all
physical energies, we impose the condition

ψ̃
(
0†, 0

)
= 0, (5.1.16)

where 0 is the zero and 0† is the zero history, both in Γ+.
We now summarize the core argument of rational thermodynamics [67]. The free

energy given by (5.1.15) is constrained to obey the second law (5.1.13) for arbitrary
choices of Λt ∈ H. This yields constitutive equations and an expression for the rate
of dissipation. The balance laws (1.3.2) and (1.3.50) with (1.3.52) (or, in the Eulerian
description, (1.3.25)) and (5.1.2) must hold, and these involve elements of Λt. This
can always be arranged by suitable choices of body forces b in (1.3.50) and the
external radiation r in (5.1.2).

An important aspect of this approach is that balance laws, which have universal
application, are clearly separated from constitutive equations that apply to particular
categories of materials.

Of course, once constitutive equations have been established from such general
arguments, these relations, combined with the balance laws and suitable boundary
and initial conditions, can be used to determine Λt for specified choices of b and r.

Assuming that ψ̃ is differentiable with respect to Λ(t) and Fréchet differentiable
with respect to Λt within H (fading memory principle [67, 73], generalized in [71]),
we can apply the chain rule to obtain

d
dt
ψ̃

(
Λt,Λ(t)

)
= ∂Λψ̃

(
Λt,Λ(t)

)
· Λ̇(t) + δψ̃

(
Λt,Λ(t) | ∂

∂t
Λt

)
, (5.1.17)

where ∂Λ indicates the derivative of ψ̃ with respect to the current value Λ(t) and δψ̃
is the Fréchet differential of ψ̃ at Λt in the direction ∂Λt/∂t, where

∂

∂t
Λt(s) = − ∂

∂s
Λt(s).

The functional δψ̃ is linear in ∂Λt/∂t. These derivatives with respect to field quanti-
ties are assumed to be continuous in their arguments. It follows from (5.1.17) com-
bined with (5.1.13), by virtue of a standard argument [67], that
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Σ(t) = ˜Σ
(
Λt,Λ(t)

)
= ∂Λψ̃

(
Λt,Λ(t)

)
, (5.1.18)

which are the constitutive equations of the material and are objective relationships; in
fact, all components of both sides are objective scalars. Also, with the aid of (5.1.11),

D(t) = −δψ̃
(
Λt,Λ(t) | ∂

∂t
Λt

)
. (5.1.19)

Recalling that the free energy functional depends on m(t) −mt(s), with no separate
dependence on m(t), we shall generally, except in Sect. 5.1.3, write (5.1.15) in the
form

ψ(t) = ψ̃d

(
Λt

r,Λ0(t)
)
, (5.1.20)

where

Λt
r(s) = Λ

t(s) − Λ(t), Λ0(t) = (E(t), κ(t), 03), Λt
r, Λ0 ∈ Γ, (5.1.21)

and the quantity 03 indicates the zero in R3. Note that (5.1.17) can be written in terms
of ψ̃d as follows:

d
dt
ψ̃d

(
Λt

r,Λ0(t)
)
= ∂Λψ̃d

(
Λt

r,Λ0(t)
)
· Λ̇ + δrψ̃d

(
Λt

r,Λ0(t) | ∂
∂t
Λt

r

)
,

where δrψ̃d is the Fréchet differential of ψ̃d at Λt
r in the direction ∂Λt

r/∂t with

∂

∂t
Λt

r(s) =
∂

∂t
Λt(s) − Λ̇(t).

The quantity ∂Λψ̃d (Λt
r,Λ0(t)) · Λ̇ will have zero in the R3 contribution. Using the

linearity of δrψ̃d with respect to ∂Λt
r/∂t, we have that (5.1.18) can be written as

follows:
Σ(t) = ∂Λψ̃d

(
Λt

r,Λ0(t)
)
− δcψ̃d

(
Λt

r,Λ0(t)
)
, (5.1.22)

where the first term on the right is the derivative with respect to the second argument
in ψ̃d, yielding zero for the R3 component, and δcψ̃d ∈ Γ is defined by the relation

δcψ̃d

(
Λt

r,Λ0(t)
)
· Λc = δrψ̃d

(
Λt

r,Λ0(t) | Λh(s)
)
, (5.1.23)

where, for arbitrary Λc ∈ Γ+, Λh is a history such that

Λh(s) = Λc, ∀ s > 0.

For the quadratic free energy functional introduced in Chap. 7, it is not necessary
to use (5.1.22). The simpler relation (5.1.18) can in fact be applied. Writing this out
explicitly, we obtain

κ

ρ
Ŝ = ∂Eψ̃, e = ∂κψ̃,

1
ρ
d = ∂mψ̃.

Relation (5.1.19) becomes
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D(t) = −δrψ̃
(
Λt

r,Λ0(t) | ∂
∂t
Λt

)
.

We define the equilibrium free energy φ to be given by (5.1.15) for the static
history Λt(s) = Λ†(s) = Λ(t), s ∈ R+. It follows from (5.1.20) that this quantity
depends only on Λ0, so that

φ(t) = φ̃ (Λ0(t)). (5.1.24)

It can be deduced from (5.1.13) that [67, 191]

φ(t) ≤ ψ(t), ∀ t ∈ R, (5.1.25)

giving that the equilibrium free energy is less than or equal to the free energy for an
arbitrary history. From (5.1.16), we have φ̃ (0) = 0.

The notation φ(t) will be used in most cases instead of φ̃ (Λ0(t)). The quantity φ
is conventionally chosen to be nonnegative so that ψ has the same property.

We can write (5.1.20) as

ψ(t) = φ̃ (Λ0(t)) + ψ̃h(Λt
r,Λ0(t)) = φ(t) + ψh(t), (5.1.26)

where ψh(t) > 0 is the history-dependent part of the free energy. Note that by defini-
tion,

ψ̃h(0,Λ0(t)) = 0. (5.1.27)

It follows from (5.1.22) that the generalized stress can also be expressed as the sum
of an equilibrium part and a history-dependent part:

Σ(t) = Σe(t) + Σrh(t), (5.1.28)

where

Σe(t) = ˜Σ(Λ0(t)) =
d

dΛ(t)
φ̃ (Λ0(t)),

Σrh(t) = ˜Σrh(Λt
r,Λ0(t)) = ∂Λψ̃h

(
Λt

r,Λ0(t)
)
− δcψ̃h

(
Λt

r,Λ0(t)
)
.

(5.1.29)

The quantity ˜Σrh vanishes as Λt
r tends to the zero history, provided that

lim
Λt→Λ†

∂Λψ̃h(Λt,Λ(t)) = ∂Λ lim
Λt→Λ†

ψ̃h(Λt,Λ(t)),

whereΛ† is defined before (5.1.24). We see this by observing that the right-hand side
is Σe(t), given by (5.1.29)1, while the left-hand side is the static history limit of ˜Σ(t)
by virtue of (5.1.18).

5.1.1 Required Properties of a Free Energy

Let us draw together for future reference the properties of a free energy, stated earlier,
which will be used to determine whether a given functional is a free energy. These
are not independent conditions, since they include both a statement of the second law
and consequences of that law.



5.1 Derivation of the Constitutive Equations 107

P1 We have
∂ψ̃(Λt,Λ(t))

∂Λ(t)
=

∂ψ(t)
∂Λ(t)

= Σ(t) = ˜Σ(Λt,Λ(t)), (5.1.30)

which is (5.1.18).†

P2 Let Λ† be a static history equal to Λ(t) at the current and all past times. Then,

ψ̃(Λ†,Λ(t)) = φ̃ (Λ0(t)), (5.1.31)

where φ̃ (Λ0(t)) is the equilibrium free energy. This is, in fact, a definition of φ̃,
as given by (5.1.24), included here for completeness.

P3 For any history and current value (Λt,Λ(t)),

ψ̃(Λt,Λ(t)) ≥ φ̃ (Λ0(t)), (5.1.32)

which is (5.1.25).
P4 Condition (5.1.11) holds, namely

ψ̇(t) + D(t) = Σ(t) · Λ̇(t), D(t) ≥ 0, (5.1.33)

where D(t) is given by (5.1.19). The first relation is a statement of the first law,
while the non-negativity of D(t) is in effect the second law.

These are the Graffi conditions for a free energy [174, 175].

5.1.2 Periodic Histories for General Materials

Integrating (5.1.33) from a past time when the material was undisturbed and assum-
ing the integrals exist, we obtain

D(t) = W(t) − ψ(t) ≥ 0, D(t) =
∫ t

−∞
D(u)du,

W(t) =
∫ t

−∞
Σ(u) · Λ̇(u)du,

(5.1.34)

where W(t) is the work function (see (4.1.4)) and D(t) is the total dissipation up to
time t.

In the present context, the state is defined as the history and current value‡

(Λt,Λ(t)), and ψ is a state variable by virtue of (5.1.15). Indeed, this is a very general
requirement, as we see from Definition 4.1.6.

Let the history be periodic with period T . We have, for all t,

Λ(t + T ) = Λ(t). (5.1.35)

† This applies only to simple materials, which are the focus of interest in all of the present
work apart from Sect. 3.7 and Chap. 21. A generalization of (5.1.30) for certain nonsimple
materials is given by (21.1.19).

‡ In certain later contexts (for specific independent variables), we will also use what amounts
to the convention (Λ(t),Λt) to maintain consistency with some of the literature.
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Differentiating with respect to t, we obtain

Λ̇(t + T ) = Λ̇(t).

Once transient effects have faded away, all state functions will return to the same
value after a time T has passed, and we have

ψ(t + T ) = ψ(t), ψ̇(t + T ) = ψ̇(t).

The quantity ˜Σ, defined by (5.1.18), is also a function of state, so that

Σ(t + T ) = Σ(t).

From (5.1.33), it follows that

D(t + T ) = D(t).

Each period is generated by a cyclic process as given by Definition 4.1.4. Integrating
(5.1.33) over [t, t + T ], we obtain

∫ t+T

t
D(u)du =

∫ t+T

t
Σ(u) · Λ̇(u)du > 0 (5.1.36)

for materials with dissipation, or

D(t + T ) −D(t) = W(t + T ) −W(t) > 0. (5.1.37)

Now,
d
dt

[W(t + T ) −W(t)] = Σ(t + T ) · Λ̇(t + T ) − Σ(t) · Λ̇(t) = 0,

so that both sides of (5.1.36)1 are independent of t. The infinite integral defining D

and W(t) in (5.1.34) therefore must diverge for periodic histories, since they consist
of an infinite sum of integrals over a period, as in (5.1.36), each being equal to all the
others.

Observe that if ψ̃ depends only on Λ(t) and is independent of the history, then,
using (5.1.30),

∫ t+T

t
Σ(u) · Λ̇(u)du =

∫ Λ(t+T )

Λ(t)

∂

∂Λ(u)
ψ̃(Λ(u)) · dΛ(u)

= ψ̃(Λ(t + T )) − ψ̃(Λ(t)) = 0,

so that the total dissipation must be zero, a result that is consistent with (5.1.19).

5.1.3 Constraints on the Nonuniqueness of the Free Energy

Let us consider in general terms the nature of the arbitrariness in ψ and the constraints
imposed on this arbitrariness by the properties summarized in Sect. 5.1.1, which
we will refer to as the thermodynamic constraints. It will be required also that the
equilibrium free energy φ̃ (Λ0(t)) contains no arbitrariness.
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Proposition 5.1.2. The most general form of the free energy (5.1.15) consistent with
the thermodynamic constraints is

ψ(t) = φ̃ (Λ0(t)) + ψ̃ f

(
Λt,Λ(t)

)
+ ψ̃r

(
Λt

)
,

where φ̃ (Λ0(t)) is the equilibrium free energy, and ψ̃ f is a fixed, nonnegative func-
tional, with no restriction on itsΛ(t) dependence other than that φ̃+ψ̃ f yields a satis-
factory form for (5.1.30). The quantity ψ̃r, which is independent of Λ(t), is arbitrary
within thermodynamic constraints and in particular may be zero. These thermody-
namic constraints give that ψ̃ f and ψ̃ f + ψ̃r must be nonnegative-valued functionals

and that −δψ̃ f and −
(
δψ̃ f + δψ̃r

)
also must be nonnegative, where, as before, δ in-

dicates the Fréchet derivative specified in (5.1.17). Furthermore, ψ̃ f and ψ̃r must
vanish for the static history Λt(s) = Λ(t), s ∈ R+.

Proof. Let
ψ1(t) = Ψ1

(
Λt(s),Λ(t)

)
be an alternative choice of free energy, obeying the thermodynamic constraints. Then
P1 or (5.1.30) gives that

∂Λ
(
ψ̃ − ψ̃1

)
= 0,

so that
ψ̃1

(
Λt,Λ(t)

)
= ψ̃

(
Λt,Λ(t)

)
+ ψ̃r

(
Λt

)
,

where ψ̃r is arbitrary within thermodynamic constraints on ψ̃1 and of course may
be zero. We can always separate out φ̃ (Λ0(t)) (by adding and subtracting this quan-
tity), and the resulting memory terms ψ̃ f or ψ̃ f + ψ̃r must obey the thermodynamic
constraints. Finally, since φ̃ (Λ0(t)) is uniquely defined, ψ̃ f must vanish for the static
history if ψ̃r is zero, as noted in (5.1.27), and any choice of ψ̃r must have the same
property, which completes the proof. �

This result is a simpler version of a proposition given in [159]. The origin of the
simplification is the use of ψ rather than ψh. It is also a general statement of a property
noted below (see (7.1.16)) in connection with free energies that are quadratic in the
memory terms.

The internal energy is unique. A list of other unique quantities involving the
Helmholtz free energy ψh, entropy, and dissipation is given in [159].

5.2 The Maximum Recoverable Work for General Materials

In the next and subsequent chapters, we deal with the case of free energies given by
quadratic functionals, leading to constitutive equations with linear memory terms.
Before leaving the general formulation, it is of interest to note that results can be
obtained, using functional differentiation, that correspond to key formulas derived
later in the linear memory case. One example will be given, namely the formulas
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determining the maximum recoverable work. Others can be derived, with somewhat
greater difficulty, notably formulas for the work function as a double integral over
histories, the generalization of (7.5.7).§ Let us define

V(t) = Λ̇(t), V ∈ Γ,

noting that

Λ(t) = Λ(−∞) +
∫ t

∞
V(s)ds, (5.2.1)

where Λ(−∞) is a constant, which is taken to be zero. The integral is assumed to
exist. Let

Vt = {V(s); s ≤ t}, (5.2.2)

which is a similar convention to that in (5.1.14). The sum of two such sets is under-
stood to mean

Vt
1 + V

t
2 = {V1(s) + V2(s); s ≤ t}.

Relations (5.2.1) and (5.2.2) allow us to write ˜Σ(Λt,Λ(t)) in (5.1.18) compactly as

Σ(t) = ˜Σ(Vt) = Σe(t) + ˜Σrh(Vt),

in the notation of (5.1.28) and (5.1.29). The work done on the material up to time t
is given by (5.1.34)3 or

W(t) = W̃(Vt) =
∫ t

−∞
˜Σ(Vs) · V(s)ds,

where the integral is assumed to be finite. Using (5.1.29), the recoverable work from
the state at time t may be written as

WR(t) = W̃R(Vt) = −
∫ ∞

t

˜Σ(Vs) · V(s)ds = φ(t) −
∫ ∞

t

˜Σrh(Vs) · V(s)ds, (5.2.3)

where V(s), s ≥ t, is the process determining the evolution of the state after time t,
chosen so that the integrals in (5.2.3) exist. We take φ(∞) to be zero. Let us assume
that ˜Σrh is continuously Fréchet differentiable in the fading memory Hilbert space H.
Let Δ : R �→ Γ belong to H, and let Δt be defined in the same way as Vt by (5.2.2).
Then,

˜Σrh(Vs + Δs) = ˜Σrh(Vs) + δ˜Σrh(Vs|Δs) + o‖Δs‖ ∀ Δs ∈ Γ, (5.2.4)

where δ˜Σ is the Fréchet differential, continuous in Vs and linear in Δs. Also, ‖ · ‖ is
the norm in H. By the Riesz representation theorem, we can write

δ˜Σrh(Vs|Δs) =
∫ ∞

−∞
L(s, u; Vs)Δ(u)du, (5.2.5)

where L ∈ Lin(Γ) and
L(s, u; Vs) = 0, s < u, (5.2.6)

since values of Δ(u), u > s, cannot contribute.
§ J. M. Golden, unpublished notes.
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Proposition 5.2.1. The maximum recoverable work, which, by Theorem 4.2.3, is
equal to the minimum free energy, can be expressed in the form

Wrm(t) = φ(t) +
1
2

∫ ∞

t
ds

∫ ∞

t
duLS (u, s; Vm)Vm(u, t) · Vm(s, t)

with

LS (u, s; Vm) =

{
L(s, u; Vs

m), s > u,
L�(u, s; Vu

m), s < u,
(5.2.7)

where Vm(·, t) is the solution of the equation

˜Σrh(Vs) +
∫ ∞

s
L�(u, s; Vu)V(u)du = 0, s ≥ t. (5.2.8)

Proof. We seek to maximize the recoverable work given by (5.2.3). Applying a vari-
ation

Vs → Vs + Δs, Δ(u) = 0 if u < t,

we obtain the condition∫ ∞

t

˜Σrh(Vs) · Δ(s)ds +
∫ ∞

t
ds

∫ s

t
duL(s, u; Vs)Δ(u) · V(s) = 0, (5.2.9)

with the aid of (5.2.4)–(5.2.6). Noting the identities∫ ∞

t
ds

∫ s

t
du F(s, u) =

∫ ∞

t
du

∫ ∞

u
ds F(s, u) =

∫ ∞

t
ds

∫ ∞

s
du F(u, s), (5.2.10)

relation (5.2.9) becomes, using (A.2.3),∫ ∞

t

˜Σrh(Vs) · Δ(s)ds +
∫ ∞

t
ds

∫ ∞

s
duL(u, s; Vu)Δ(s) · V(u)

=

∫ ∞

t

˜Σrh(Vs) · Δ(s)ds +
∫ ∞

t
ds

∫ ∞

s
duL�(u, s; Vu)V(u) · Δ(s) = 0.

The arbitrariness of Δ gives (5.2.8), the solution of which yields the optimal future
process Vm(·, t). Using (5.2.8) in (5.2.3), we obtain, by adding the leftmost and right-
most forms of (5.2.10), an expression for the maximum recoverable work or the
minimum free energy

Wrm(t) = ψm(t)

= φ(t) +
∫ ∞

t
ds

∫ ∞

s
duL�(u, s; Vu

m)Vm(u, t) · Vm(s, t) (5.2.11)

= φ(t) +
1
2

∫ ∞

t
ds

∫ ∞

t
duLS (u, s;Vm)Vm(u, t) · Vm(s, t),

where LS is given by (5.2.7). �

Note that
L�
S (u, s; Vm) = LS (s, u; Vm).

We observe that the form (5.2.11)2 is a generalization of a result given in
Sect. 7.5, while (5.2.8) is a generalized form of the Wiener–Hopf equation (11.2.26).
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5.3 Generation of New Free Energies

If some free energies are known for a certain category of materials, for example,
those with constitutive equations that have linear memory, we ask in this section,
and answer affirmatively, whether it is possible to construct (for example, nonlin-
ear) functions of the known quantities that are free energies relating to more general
materials (for example, those with constitutive equations that have nonlinear mem-
ory). Note that the findings discussed here are quite different from those in Chap. 17,
which deals only with quadratic functionals producing linear memory constitutive
equations.

Let ψ1(t), ψ2(t), . . . , ψn(t) be a set of n free energies relating to a state (Λt,Λ(t))
in a given material, or perhaps in different materials, at time t. To allow for the latter
possibility, we assign to each ψi(t), i = 1, 2, . . . , n, different constitutive equations

Σi(t) = ˜Σi(Λ
t,Λ(t))

and work functions

Wi(t) =
∫ t

−∞
Σi(s) · Λ̇(s)ds,

where
∂ψi(t)
∂Λ(t)

= Σi(t), i = 1, 2, . . . , n, (5.3.1)

and, by virtue of (5.1.33),

ψ̇i(t) ≤ Σi(t) · Λ̇(t), i = 1, 2, . . . , n.

If all these free energies belong to the same material, the dependent field variables
Σi are all equal and the index i refers to different free energies of the same material.

Proposition 5.3.1. The quantity

ψ(t) = f (ψ1(t), ψ2(t), . . . , ψn(t)) (5.3.2)

is a free energy for the state (Λt,Λ(t)) with the dependent field given by

Σ(t) =
n∑
i=1

∂ f
∂ψi(t)

Σi(t), (5.3.3)

provided that f : (R+)n �→ R+ has the properties

∂

∂yi
f (y1, y2, . . . , yn) ≥ 0, i = 1, 2, . . . , n, (5.3.4)

and
f (0, 0, . . . , 0) = 0. (5.3.5)
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Proof. We have

ψ̇(t) =
n∑
i=1

∂ f
∂ψi(t)

ψ̇i(t) ≤
n∑
i=1

∂ f
∂ψi(t)

Σi(t) · Λ̇(t) = Σ(t) · Λ̇(t),

where Σ is defined by (5.3.3). Thus, property 4 of a free energy, given by (5.1.33),
holds. Also, by virtue of (5.3.1) and (5.3.3),

∂ψ(t)
∂Λ(t)

= Σ(t), (5.3.6)

which is property 1 as given by (5.1.30). If φi(t), i = 1, 2, . . . , n, are the equilibrium
free energies corresponding to ψi(t), according to the prescription (5.1.31), then

φ(t) = f (φ1(t), φ2(t), . . . , φn(t))

and property 3, i.e., (5.1.32), is obeyed by virtue of the assumptions (5.3.4).
If (5.1.16) is to hold for all free energies ψ and ψi(t), i = 1, 2, . . . , n, then we must

have (5.3.5). �
This result can be used, for example, as follows: assume we have a nonlinear

dependent field variable of the form (5.3.3), where f obeys (5.3.4) and the Σi are
determined by (5.3.1). Then (5.3.2) immediately gives a free energy that generates
Σ(t) through (5.3.6).

Taking f to be an analytic function of its arguments at the origin, we can write

ψ(t) =
n∑
i=1

λiψi(t) + higher powers. (5.3.7)

A constant term is excluded by (5.3.5). If we omit higher powers, taking ψ to be a
linear combination of the ψi, it follows from (5.3.4) that

λi ≥ 0, i = 1, 2, . . . , n. (5.3.8)

If the free energies ψi, i = 1, 2, . . . , n, relate to the same material, then (5.3.3) be-
comes

Σ(t) = κ(t)Σsm(t), κ(t) =
n∑
i=1

∂ f
∂ψi(t)

,

Σsm(t) = Σ1(t) = Σ2(t) = · · · = Σn(t).

Let higher powers be neglected in (5.3.7). If ψ is assumed to relate to the same
material as the ψi, i = 1, 2, . . . , n, then

Σsm(t) = Σ(t)

and
n∑
i=1

∂ f
∂ψi(t)

=

n∑
i=1

λi = 1.

This, together with (5.3.8), amounts to convexity (see Proposition 4.1.7).
The next chapter is something of a diversion from the main flow of the discussion,

to consider Thermoelectromagnetism.
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Thermoelectromagnetism of Continuous Media

We now explore Continuum Electromagnetism in the context of thermodynamic
principles.

6.1 Electromagnetism of Continuous Media

The classical theory of electromagnetism of continua, without memory effects, is
first explored. The case of nonlocal materials is also discussed briefly.

6.1.1 Balance Laws in Electromagnetic Media

The theory of electromagnetism is characterized by a few basic principles which are
now introduced. The discussion is based on the book [122].

Three of the relevant physical quantities are the electric charge q, the electric
field E and the magnetic induction B.

By assuming that charged particles are continuously distributed in a region Ω ⊂
R

3, there exists an electric charge density  such that the charge q, contained in Ω, is
given by the integral

q =
∫
Ω

 dv.

If electric charge is considered to be a primitive concept, the electric field E = E(x, t)
is defined as the force acting on a unitary charge placed at a point x ∈ R3 at time t > 0.

The magnetic induction B = B(x, t), at any x ∈ R3 and t > 0, is the mechanical
torque exerted on a unitary magnetic dipole located at the point x.

Three other important physical quantities are the electric current density j, the
electric displacement D and the magnetic field H. These are introduced by using
certain laws, discussed below, which express the basic axioms of electromagnetism
and relate all these fields E, B, D, H and j.
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Balance Law of Charge

The time variation of the charge in a domain Ω is equal to the charge entering or
leaving Ω through its boundary ∂Ω. This law is expressed mathematically by the
relation

d
dt

∫
Ω

 dv = −
∫
∂Ω

j · nda,

where we have introduced the current density vector j, which expresses the charge
which flows across ∂Ω, per unit area and unit time, and n which denotes the unit
outward normal to ∂Ω, at a given point. Thus, using the divergence theorem, we
have ∫

Ω

(
∂ 

∂t
+ ∇ · j

)
dv = 0,

whence, by virtue of the arbitrariness of Ω and by assuming that the functions are
C1, we obtain the local form

∂ 

∂t
+ ∇ · j = 0, (6.1.1)

which is known as the continuity equation.
The electric displacement vector D is introduced as follows.

Gauss’s Law

The total charge inside any region Ω ⊂ R3 is equal to the flux of the vector D,
the electric displacement, across the boundary ∂Ω of Ω, which can be expressed
mathematically as ∫

∂Ω

D · nda =
∫
Ω

 dv.

The divergence theorem, the arbitrariness of Ω and the regularity of the functions
give the local form

∇ · D =  . (6.1.2)

Conservation of Magnetic Flux

The flux of the magnetic induction B through any closed surface ∂Ω vanishes, that is
∫
∂Ω

B · nda = 0,

from which it follows that
∇ · B = 0. (6.1.3)

Faraday’s Law

For any surface S surrounded by a given closed curve ∂S , the electromagnetic fields
E and B are related by ∫

∂S
E · dl = −

∫
S

∂B
∂t

· nda.
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Hence, by using Stokes’s theorem, we obtain the local form of this law given by

∇ × E = −∂B
∂t

. (6.1.4)

Ampere–Maxwell Law

For any surface S surrounded by a given closed curve ∂S , the electromagnetic fields
H, D and j are related by

∫
∂S

H · dl =
∫
S

(
j +

∂D
∂t

)
· nda.

From this equation, by means of Stokes’s theorem, it follows that

∇ ×H = j +
∂D
∂t

. (6.1.5)

6.1.2 Constitutive Equations

In the previous section we have derived a system of differential equations, given by
(6.1.1)–(6.1.5), known as Maxwell’s equations. These equations are not all indepen-
dent; in fact the continuity equation (6.1.1) can be derived from (6.1.2) and (6.1.5);
also (6.1.3) follows from (6.1.4). Consider the following system

∂B
∂t
= −∇ × E,

∂D
∂t
= ∇ ×H − j,

∇ · D =  ,

∇ · B = 0.

(6.1.6)

Only the first and third equations are independent. Consequently, two of the five
fields E, B, H, D, and j are arbitrary and the other three fields must be assigned in
terms of the previous two.

Such connections are expressed by suitable constitutive equations, which are the
relations that characterize the behavior of the materials under consideration.

A choice of constitutive equations is given by functions

D(t) = D̂(E(t),B(t)), H(t) = Ĥ(E(t),B(t)), (6.1.7)

which describe a general dependence of D(t) and H(t) on E(t) and B(t).
The current density j is usually written as the sum of two terms

j = J + J f ,

where
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J(t) = Ĵ(E(t),B(t))

is the part of the electric current generated by the action of the electromagnetic fields
E and B in the material, while J f , known as the forced current density, does not
depend on the electromagnetic fields inside the material but derives from external
influences.

A particular form of (6.1.7) is given by the constitutive equations

D(t) = D̂(E(t)), H(t) = Ĥ(B(t)),

which describe the behavior of many types of material. For brevity, let us omit the
explicit time dependence. The simplest model is that characterized by a linear de-
pendence, given by

D = εE, H = μ−1B, (6.1.8)

where ε and μ are second-order symmetric tensors.
If the media are homogeneous, ε and μ are independent of the position x; if the

media are isotropic, then ε and μ are proportional to the identity tensor and relations
(6.1.8) become

D = εE, H =
1
μ
B, (6.1.9)

where ε and μ are scalar functions. In particular, in free space we have

D = ε0E, H =
1
μ0

B,

where ε0 and μ0 are the dielectric constant and the magnetic permeability of the
vacuum, respectively.

For the current density J in conducting materials we can consider the case where
this quantity depends only on the electric field E. A very simple constitutive equation
is expressed by Ohm’s law

J = σE, (6.1.10)

where σ is the electrical conductivity of the medium.
Two further vector fields, the electric polarization P and the magnetization M,

are introduced to describe the electromagnetic behavior of a material. These are de-
fined by

P = D − ε0E,

M =
1
μ0

B −H.

If the media are isotropic, so that D and B satisfy the constitutive equations (6.1.9),
the vectors P and M are given by

P = ε0χeE,

M = χmH,
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where we have introduced

χe =
ε

ε0
− 1, χm =

μ

μ0
− 1,

which are known as the electric and magnetic susceptibilities, respectively.

6.1.3 Boundary Conditions

When in a body there is a surface, or a line, of discontinuity for an electromagnetic
field, Maxwell’s equations allow us to evaluate the related jump conditions at the
surface, or at the line, of discontinuity.

Let Γ, or γ, be a surface, or a line, dividing Ω into two regions Ω+ and Ω−; for the
sake of simplicity, we suppose that Γ, and γ, are fixed in the electromagnetic body.
We shall use the superscripts + and − for the limit values of a vector field, evaluated
from Ω+ and Ω− at Γ, or at γ, respectively, and denote by nΓ the unit normal vector
to Γ oriented from Ω− to Ω+ and by tγ the unit tangent vector to γ.

By using the integral form of the laws, which express the basic axioms of the
electromagnetism, it is possible to derive the jumps of the electromagnetic fields at
the surface, or at the line, which are now reproduced below.

Gauss’s law yields
D+ · nΓ − D− · nΓ =  S ,

where  S denotes the surface charge density on Γ. Therefore, the normal component
of D is discontinuous across the surface with a jump given by the surface charge
density  S ; consequently, if  S = 0, the normal component of D is continuous.

From the conservation law of the magnetic flux it follows that the normal com-
ponent of B is continuous across Γ, that is

B+ · nΓ = B− · nΓ.

Moreover, Faraday’s law implies the continuity of the tangential component of E
across a line γ, i.e.,

E+ · tγ = E− · tγ,

and the Ampere–Maxwell equation gives

H+ · tγ −H− · tγ = JS · n,

where JS denotes the surface current density and n is the unit vector orthogonal to
tγ.

6.1.4 Balance of Energy and the First Law of Thermodynamics

A balance law of energy for electromagnetic media can be derived from Maxwell’s
equations. To this purpose we introduce the vector

S = E ×H, (6.1.11)
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which is the instantaneous Poynting’s vector, and consider the following identity

∇ · (E ×H) = H · ∇ × E − E · ∇ ×H.

Using Maxwell’s equations (6.1.6)1 and (6.1.6)2, we obtain

∇ · (E ×H) = −H · ∂B
∂t

− E · j − E · ∂D
∂t

.

Hence, on integrating over Ω and using the divergence theorem, we get the following
global form

∫
Ω

(
H · ∂B

∂t
+ E · ∂D

∂t

)
dv +

∫
∂Ω

E ×H · nda = −
∫
Ω

E · jdv. (6.1.12)

This formula is known as Poynting’s theorem.
If we consider the particular case of free space, characterized by the values ε0

and μ0 for the dielectric constant and the magnetic permeability, respectively, the
first integral of this last formula becomes

∫
Ω

(
H · ∂B

∂t
+ E · ∂D

∂t

)
dv =

d
dt

∫
Ω

(
μ0

2
H2 +

ε0

2
E2

)
dv =

d
dt

∫
Ω

udv,

where

u =
1
2

(ε0E2 + μ0H2).

This is the energy density of the electromagnetic field.
An analogous result is obtained if the constitutive equations of D and B are ex-

pressed by (6.1.8), where ε and μ are second-order symmetric tensors, that is by

D = εE, B = μH;

in this case we obtain

u =
1
2

(E · εE +H · μH).

Moreover, the right hand side of (6.1.12) can be identified as π, the power of the
charge which flows with current density j, that is

π =

∫
Ω

E · jdv.

Therefore, by using the definition (6.1.11) of Poynting’s vector, (6.1.12) can be put
in the following form

d
dt

∫
Ω

udv = −
∫
∂Ω

S · nda −
∫
Ω

E · jdv,

which expresses the variation of the electromagnetic energy in terms of the flux of the
Poynting vector across the boundary ∂Ω and of the dissipated power. For this reason
the Poynting vector is identified as the energy flux vector of the electromagnetic field.
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In order to consider thermal effects, we must state the laws of thermodynamics
for electromagnetic materials. It is assumed that the thermoelectromagnetic body is
rigid. Consequently, the mass density can be considered constant and assumed equal
to one. Thus, the heat equation can be written in the following form

h = −∇ · q + r, (6.1.13)

where h is the rate at which heat is absorbed per unit volume, known as the internal
heat power, while q is the heat flux and r is the heat supply.

A thermoelectromagnetic system may be considered as a dynamical system, for
which the concepts of state and process are well defined. These concepts, which are
introduced in Chap. 4, allow us to perform a thermodynamic analysis based on the
properties of cycles.

We denote by Σ the space of states, which are characterized by the triplets σ =
(E,H, θ), where θ is the absolute temperature and E and H are two vectors of V,
which is usually R3. A process is defined as follows.

Definition 6.1.1. A thermoelectromagnetic process P of duration dP is a piecewise
continuous function P : [0, dP) → V × V × R given by

P(t) = (ĖP(t), ḢP(t), θ̇P(t)), ∀t ∈ [0, dP).

We denote by Π the space of processes and by Pt the restriction of a process P to
the time interval [0, t). Given an initial state σ0 = (E0,H0, θ0) and a process P, the
transition function is the map

ρ̂ : Σ × Π → Σ, ρ̂(σ0, P) = σ,

where the state σ(t) is given by

σ(t) = (E(t),H(t), θ(t)), ∀t ∈ [0, dP).

In particular, if
ρ̂(σ0, P) = σ0,

the pair (σ0, P) is called a cycle.
For a rigid electromagnetic body the quantity

Pi
el(σ(t), P(t)) = Ḋ(σ(t), P(t)) · E(t) + Ḃ(σ(t), P(t)) ·H(t)

+J(σ(t), P(t)) · E(t)

can be identified as the internal power due to the electromagnetic field and therefore
is referred to as the internal electromagnetic power.

Thus, the first law of thermodynamics for a rigid thermoelectromagnetic system
can be formulated as follows.
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First Law of Thermodynamics There exists a state function e : Σ → R, called the
internal energy, such that

ė = h + Pi
el,

that is

ė(σ(t)) = h(σ(t), P(t)) + Ḋ(σ(t), P(t)) · E(t) + Ḃ(σ(t), P(t)) ·H(t)

+J(σ(t), P(t)) · E(t). (6.1.14)

6.1.5 Second Law of Thermodynamics and the Clausius–Duhem Inequality

The second law of thermodynamics places restrictions on the set of the admissible
processes. Its formulation requires the notion of reversibility of a process.

Second Law of Thermodynamics: There exists a thermodynamic potential η : Σ →
R, called the entropy, such that

η̇(σ(t)) ≥ h(σ(t), P(t))
θ(t)

+
1

θ2(t)
q(σ(t), P(t)) · ∇θ(t). (6.1.15)

Substituting the expression (6.1.14) for h, we obtain the Clausius–Duhem inequality

θη̇ ≥ ė − Ḋ · E − Ḃ ·H − J · E + 1
θ
q · ∇θ. (6.1.16)

The Helmholtz free energy is defined by (3.4.13) in a mechanics context. We adopt
the same definition here, putting

ψ = e − θη.

Using this quantity, the inequality (6.1.16) can be written in the following equivalent
form

ψ̇ + θ̇η ≤ Ḋ · E + Ḃ ·H + J · E − 1
θ
q · ∇θ.

6.1.6 Thermodynamics of Nonlocal Materials

The expression (6.1.14) for the first law of thermodynamics, i.e.

ė = h + Ḋ · E + Ḃ ·H + J · E, (6.1.17)

holds for a wide class of electromagnetic materials. Using the terminology intro-
duced for mechanical systems, these are called simple materials. Classical or hered-
itary dielectrics and conductors obeying Ohm’s law (6.1.10) belong to this class.

However, for other cases, there exist many physical phenomena that cannot be
described by the model of simple materials. These are termed nonsimple or nonlocal
materials , for which the form (6.1.17) of the first law is not appropriate. We note
that this general topic is also delay with in Sect. 3.7 and Chap. 21.
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One example of a nonsimple material is given by a dielectric with quadrupoles,
which are characterized by the constitutive equations

D(x, t) = ε0E(x, t) − ε1ΔE(x, t) − ε2∇ [∇ · E(x, t)] ,

B(x, t) = μH(x, t),

J(x, t) = 0,

(6.1.18)

where ε0, ε1, ε2 together with μ are positive characteristic constants.
Referring to Poynting’s theorem and using Maxwell’s equations (6.1.6)2 and

(6.1.6)1, we have

Ḋ · E + Ḃ ·H + J · E = ∇ ×H · E − ∇ × E ·H
= −∇ · (E ×H) .

Hence, using the constitutive relations (6.1.18), we obtain

1
2
d
dt

[
μH2 + ε0E2 + ε1|∇E|2 + ε2(∇ · E)2

]

= −∇ ·
[
E ×H − ε1

(
∇Ė

)
E − ε2

(
∇ · Ė

)
E
]
.

Thus, the internal and external electromagnetic powers are given, respectively, by

Pi
el =

1
2
d
dt

[
μH2 + ε0E2 + ε1|∇E|2 + ε2(∇ · E)2

]
,

Pe
el = −∇ ·

[
E ×H − ε1

(
∇Ė

)
E − ε2

(
∇ · Ė

)
E
]
.

Therefore, the first law of thermodynamics can be put in the general form

ė = h + Pi
el = h +

1
2
d
dt

[
μH2 + ε0E2 + ε1|∇E|2 + ε2(∇ · E)2

]
. (6.1.19)

An alternative approach is to modify the representation (6.1.17) by introducing
an extra flux N. Thus, the first law is written in the form

ė = Ḋ · E + Ḃ ·H + J · E − ∇ · N − ∇ · q + r. (6.1.20)

In the case of a dielectric with quadrupoles, the extra flux N is given by

N = −ε1

(
∇Ė

)
E − ε2

(
∇ · Ė

)
E.

Such an example establishes that the formulations (6.1.17) and (6.1.20) of the first
law are not general; they must be adapted to the particular material under considera-
tion.

In contrast, relation (6.1.19) applies to all materials; it is the classical representa-
tion of the first law in the original framework of equilibrium thermodynamics.
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6.1.7 Two Potentials Related to the Electromagnetic Fields

The Maxwell equation
∇ · B = 0

establishes that B is a solenoidal field. Consequently, there exists a vector field A,
the magnetic potential, such that

B = ∇ × A. (6.1.21)

By substituting (6.1.21) into Faraday’s equation,

∇ × E +
∂B
∂t
= 0,

it follows that

∇ ×
(
E +

∂A
∂t

)
= 0.

Therefore, there exists a scalar potential Φ, the electric potential, given by

E = −∇Φ − ∂A
∂t

. (6.1.22)

The magnetic and electric potentials, A and Φ, are not uniquely determined; dif-
ferent potentials can lead to the same fields B and E, satisfying (6.1.21) and (6.1.22).
In fact, for any scalar function χ, the transformations

A → A′ = A + ∇χ, Φ → Φ′ = Φ − ∂χ

∂t
(6.1.23)

do not change the values of B and E. These are known as gauge transformations.
Using (6.1.23), we obtain the following equality

∂Φ′

∂t
+ ∇ · A′ =

∂Φ

∂t
− ∂2χ

∂t2
+ ∇ · A + Δχ.

Thus, if χ is a solution of the equation

Δχ − ∂2χ

∂t2
= −∂Φ

∂t
− ∇ · A,

then the potentials Φ′ and A′ satisfy the following equation

∂Φ′

∂t
+ ∇ · A′ = 0,

which is the Lorentz condition.
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6.2 Electromagnetic Systems with Memory

There are very simple phenomena in electromagnetic materials that can be studied
by considering these as materials with memory.

In fact, in the linear case, if we consider time-harmonic variation of the inde-
pendent fields, the resultant dependent quantities exhibit dependence on frequency
through multiplying coefficients; therefore, the constitutive relations are expressed
by means of convolutions.

Some interesting aspects of frequency dependence (Kramers–Kronig relations,
integral theorems) follow from Causality, which states that the response of the mate-
rial at time t does not depend on the values assumed by causal parameters after this
instant t.

6.2.1 Memory Effects Justified by Waves in Water

For an isotropic, linear dielectric which allows some conduction (an imperfect di-
electric), the constitutive equations are given by (6.1.9) and (6.1.10), that is

D = εE, B = μH, J = σE.

Thus, we can write Maxwell’s equations (6.1.6) in the form

∇ × E = −μḢ, ∇ ×H = σE + εĖ,

∇ · E = 0, ∇ ·H = 0,

where it is assumed that ε and μ do not depend on the space variable x and that  = 0.
Moreover, assuming also that σ does not depend on x, we consider plane waves,

for which the fields E and H are expressed in terms of the exponential function
exp[i(k · x − ωt)]. For such plane wave forms, we obtain

∇ · E = iE · k, ∇ ·H = iH · k,
∇ × E = ik × E, ∇ ×H = ik ×H.

If these quantities are to satisfy Maxwell’s equations, we must have

E · k = 0, H · k = 0,

k × E = μωH, k ×H = −ω
(
ε + i

σ

ω

)
E.

(6.2.1)

Taking the cross product with k of the relations (6.2.1)3,4, we obtain

k × (k × E) = −μω2
(
ε + i

σ

ω

)
E, k × (k ×H) = −μω2

(
ε + i

σ

ω

)
H.

Since E and H are both orthogonal to k, by virtue of (6.2.1)1,2, it follows that

k2 = ω2με̂, ε̂ = ε + i
σ

ω
.
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Thus, homogeneous waves are characterized by a phase speed vph and an absorp-
tion coefficient α given by

vph =
ω

Rek
=

1

Re
√
με̂

, α = 2 Imk = 2ωIm
√
με̂,

respectively, and by an index of refraction n of the form

n =
c
vph
= Re

√
με̂

μ0ε0
.

Using these relations, we obtain the following results for a relevant case of wave
propagation.

For water, n and α change significantly with the frequency ω of the wave. When
the frequency assumes very low values, we have n � 9; such a value is due to a
partial orientation of the dipole moments of the molecules of the water. Near 1010 Hz
the curve of n decreases to a value in the infrared; with values of ω/2π in the range
3.8 × 1014 Hz to 7.9 × 1014 Hz, that is in the visible region, n � 1.34 with a small
variation. Moreover, for values greater than 6 × 1015 Hz, there is no significant data
on the index of refraction; asymptotically, we assume that n approaches unity.

6.2.2 Some Simple Models to Study Material Behavior

6.2.2.1 Dielectrics

The Lorentz [240] description of the material behavior of a dielectric is based on the
effect which bound electrons have on the polarization P and so on D.

Each of these bound electrons is considered as a harmonic oscillator tied by a
spring, with zero equilibrium length, to the massive molecular core. Moreover, to-
gether with the force −eE we suppose that a damping force proportional to the ve-
locity of the electron is applied on this. For speeds of the electron, supposed small
with respect to the speed of the light in vacuo, we may neglect the effect of magnetic
induction B on the force.

Thus, the equation of motion of the electron assumes the form

m(ẍ + gẋ + ω2
0x) = −eE,

where x and m denote the average position and the mass of the electron, while g and
ω2

0 are the damping and spring forces per unit mass. Let

E(t) = Eω exp(−iωt).

We look for solutions of the form

x(t) = xω exp(−iωt).

This yields an expression for xω, which in turn gives
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pω = −exω =
e2

m(ω2
0 − ω2 − iωg)

Eω

for the dipole moment of the electron.
If in the unit volume there are Ñ molecules, each of which has Z electrons, and

if fk electrons, such that ∑
k

fk = Z,

have damping constant gk and binding frequency ωk, we obtain

Pω =
Ñe2

m

∑
k

fk
ω2
k − ω2 − iωgk

Eω.

Hence, by introducing the inductive capacity κ, defined by the relation

P = (κ − 1)ε0E,

we obtain

κ = 1 +
Ñe2

mε0

∑
k

fk
ω2
k − ω2 − iωgk

.

Thus, the permittivity of the dielectric displacement

D = ε0E + P

assumes the following form

ε = ε0

⎛⎜⎜⎜⎜⎜⎝1 + Ñe2

mε0

∑
k

fk
ω2
k − ω2 − iωgk

⎞⎟⎟⎟⎟⎟⎠ ,

which varies with the frequency ω.
For gases the values of ε do not differ much from ε0.
If there is a continuous distribution of oscillators and their damping g can be

neglected, we obtain

ε − ε0 =
e2

m

∫ ∞

0

f (x)
x2 − ω2

dx,

where f is the density of oscillator strength, which obeys the relation

N =
∫ ∞

0
f (x)dx,

where N is the number of oscillators or electrons per unit volume.
If there is only one oscillator, we have

κ(ω) − 1 = λ
1

ω2
0 − ω2 − iωg0

, λ = f0
Ñe2

mε0
.
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For this case, using the identity

∫ ∞

0
exp(−g0u) sin

(√
ω2

0 − g2
0 u

)
exp(iωu)du =

√
ω2

0 − g2
0

ω2
0 − 2iωg0 − ω2

, (6.2.2)

and putting

h(u) =
λ√

ω2
0 − g2

0

exp(−g0u) sin
(√

ω2
0 − g2

0 u
)
,

we can write

κ(ω) − 1 =
∫ ∞

0
h(u) exp(iωu)du.

It follows from (6.2.2) that

P(t) = ε0

∫ ∞

0
h(u)E(t − u)du, (6.2.3)

for E(t) ∝ exp(−iωt). It may be observed, on considering E(t) given by sums of
exponentials of this kind that (6.2.3) has more general validity.

6.2.2.2 Magnetic Materials

Some materials have the property that, in presence of an external magnetic field,
their bound or free electrons start to travel, thereby causing a magnetic field with a
magnetic moment opposite to that of the external field.

These are called magnetic materials and are of the following types: paramag-
netic, ferromagnetic, antiferromagnetic and ferrimagnetic.

Finally, there are diamagnetic materials, which have less applications.
The atoms or molecules of some substances present permanent magnetic mo-

ments, randomly oriented in the absence of an externally applied field. These mag-
netic dipoles become aligned with any external field, which is applied to the material.
Thus a field in the direction of the applied field is induced: this phenomenon is para-
magnetism.

The ratio

χ =
M
H
, (6.2.4)

where M is the induced magnetic moment and H is the applied field, is called the
magnetic susceptibility. When an increase of the temperature occurs, the induced
field decreases since the randomness of the dipoles increases. This behavior is gov-
erned by Curie’s law, which has the following form

M
H
=

C
θ
, (6.2.5)

where θ is the absolute temperature and C is the Curie constant.



6.2 Electromagnetic Systems with Memory 129

In ferromagnetic materials, contrary to what occurs in paramagnetic materials,
the magnetic moments interact strongly with of the surrounding atoms; such an ac-
tion produces an alignment of the moments in a given localized region. Moreover, in
the absence of an external magnetic field we can have a residual magnetic moment
in the region. This alignment is justified by considering a fictitious internal field HE ,
known as Weiss’s field, which is assumed proportional to the magnetization, i.e.,

HE = λM, (6.2.6)

where the constant λ is Weiss’s field constant. Equation (6.2.5), substituting H + HE

for H and taking account of (6.2.6), becomes

M
H + λM

=
C
θ
,

whence we obtain for the susceptibility (6.2.4) the following expression

χ =
C

θ − λC
. (6.2.7)

This Eq. (6.2.7), known as the Curie–Weiss law, well represents the susceptibility
above the Curie point temperature, defined as θ = λC.

In antiferromagnetic materials the interaction of neighboring magnetic moments
causes antiparallel orientations of the moments; thus, the moment of one atom can-
cels that of its neighbor. When the temperature increases above the Curie point, the
thermal energy becomes greater than the interaction energy; thus, the materials be-
come paramagnetic.

There exist some materials, known as ferrimagnetic, in which the parallel mo-
ments and the antiparallel ones have different strengths; thus, we have a net magne-
tization.

Ferrites are interesting examples of this kind of material; a simple model for the
magnetization in ferrites can be derived in the following manner.

A spinning electron is characterized by a magnetic dipole moment m and angular
momentum l, which are connected by

m = γl, γ = − e
m
, (6.2.8)

where γ is the gyromagnetic ratio, e the electron charge and m the mass. The time
derivative of l, which is determined by the torque due to the magnetic induction B, is
given by

l̇ = m × B.

Substitution from (6.2.8)1 gives

ṁ = γm × B. (6.2.9)

If there are N electrons per unit volume, the magnetization is given by

M = Nm,
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whence, by using (6.2.9) and the relation B = μ0H, we obtain

Ṁ = γμ0M ×H. (6.2.10)

This equation, if the magnetic field is H = H0 = constant, taking into account the
definition (6.2.8)2, assumes the form

Ṁ =
e
m
μ0H0 ×M. (6.2.11)

From (6.2.11), it follows that the magnetization M precesses about H0 at the preces-
sion frequency

ωc =
e
m
μ0|H0|.

Let ez be the unit vector along the z axis. We assume that, in addition to a constant
magnetic field H0 = H0ez, there is a magnetic field H1 changing over time. Thus,

H = H0ez +H1

and hence
M =M0 +M1.

Moreover, by assuming for simplicity that |H1| � |H0| and |M1| � |M0|, it follows
from (6.2.10) that

M0 ×H0 = 0, M0 = M0ez

and hence
Ṁ1 = − e

m
μ0ez × (M0H1 − H0M1). (6.2.12)

We observe that Eq. (6.2.12) is the linear approximation of (6.2.10) and that it is a
constitutive equation of rate-type, f (M1, Ṁ1,H1) = 0.

Inner multiplication of (6.2.10) by M gives that M2 is constant in time.
Landau and Lifshitz [227] observed that, if M2 is constant, Ṁ can be considered

as a combination of M ×H and a damping term M × (M ×H), giving

Ṁ = γeM ×H − λ

M2
M × (M ×H),

where γe = γμ0 and λ is a parameter determining the level of damping. This equation
allows for the tendency of M to align with H after a certain time.

6.2.2.3 Metals

The following simple model allows us to give a precise theory of the optical proper-
ties of metals.

In a metallic conductor there are positive ions, which are considered fixed in a
space region; moreover, all the atoms have electrons, called conduction electrons, in
the conduction band.

These electrons can be considered to be a gas.
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If no electric field is applied, the force acting on any electron is on average zero,
as is the total charge inside any volume element. Thus, the free electrons have thermal
velocities, such that the net current is zero.

If an electric field is applied, the electrons develop velocities in the opposite
direction to the field. The average of these is the drift velocity of the electron gas and
constitutes the net current.

The conduction electrons are not entirely free since they engage with the defects
in the crystalline lattice of the atoms of metal or with the distortions of the same lat-
tice. Thus, a mean collision time τ is considered in order to study these effects; after
a collision the electron velocity is taken to be random. Subsequently, the electrons,
subject to the electric field E, assume a velocity in the direction of this field; with
the next collision, after a time τ, the velocity again becomes random. The drag force,
due to these collisions, is determined by equating the change of momentum, −mẋ, to
the force times τ.

The equation of motion of electrons subject to an electric field E and a drag force
has the form

mẍ +
m
τ
ẋ = −eE, (6.2.13)

where ẋ is the average velocity of the electrons. For an electric field E with sinusoidal
behavior, we put

E(t) = Eω exp(−iωt),

and look for solutions of the form

x = xω exp(−iωt). (6.2.14)

From (6.2.14), it follows that
ẍ = −iωẋ. (6.2.15)

Then, by substituting (6.2.15) into the differential equation (6.2.13), we can derive
the following expression

ẋ = − e
m

τ

1 − iωτ
E (6.2.16)

for the drift velocity. Therefore, the macroscopic current density J, related to N elec-
trons per unit volume, assumes the form

J = −Neẋ = Jω exp(−iωt), Jω =
Ne2

m
τ

1 − iωτ
Eω,

whence we obtain the following complex conductivity

σ =
Ne2

m
τ

1 − iωτ
,

which is a function of the frequency ω.
The DC limit, that is when ω → 0, has the form

σDC =
Ne2

m
τ,
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which is the Drude conductivity.
The collision time τ, for good conductors, such as copper, and at room temper-

ature, is of the order of 10−14 s. For frequencies ω < 2 × 1015 Hz, that is from DC
to infrared, the conductivity is real and does not depend on the frequency. Finally, if
ω � 1/τ, or greater, the conductivity is imaginary and the behavior of the metal is
comparable to that of a plasma.

6.2.2.4 The Ionosphere

The ionosphere of the Earth can be studied by considering it as a plasma or a diluted
ionized gas. Thus, we take account only of the motions of free electrons while the
positive ions, which are much heavier, can be considered as a fluid, which renders
the ionosphere globally neutral.

Since we must assume a damped motion for the electrons because of their colli-
sions, the model for metals can be used.

We can write (6.2.13) in the form

mẍ + mνcẋ = −eE, νc =
1
τ
, (6.2.17)

where x denotes the average displacement of an electron, ẋ is its velocity and we
have introduced the collision frequency νc. Relation (6.2.15) follows from (6.2.14)
as does

ẋ = −iωx.

Substituting these relations into (6.2.17), we derive the expressions

x =
e
m

1
ω(ω + iνc)

E, ẋ = − e
m

i
ω + iνc

E (6.2.18)

for the displacement vector x and the velocity ẋ. This relation for the velocity is
equivalent to (6.2.16). Thus, we have

J = −Neẋ = Ne2

m
i

ω(1 + iνc/ω)
E.

It follows that the conductivity

σ =
Ne2

m
i

ω(1 + iνc/ω)

is complex and depends on the frequency. Then, taking account of (6.2.18), the po-
larization P and the permittivity ε assume the following forms

P = −Nex = −Ne2

m
1

ω(ω + iνc)
E, ε = ε0 −

Ne2

m
1

ω(ω + iνc)
.
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The permittivity ε can be written as

ε = ε0

⎡⎢⎢⎢⎢⎢⎣1 −
ω2

p

ω(ω + iνc)

⎤⎥⎥⎥⎥⎥⎦ , ωp =

√
Ne2

mε0
,

where we have introduced the plasma frequency ωp, which is a measure of the elec-
tron density N in the plasma. Finally, the index of refraction is expressed by

n = �

√
1 −

ω2
p

ω(ω + iνc)
.

Therefore, the wave is characterized by two frequencies, the collision frequency
νc and the plasma frequency ωp. Since normally νc � ωp, three frequency domains
can be considered:

– Conductor domain, if ω < νc. The permittivity is roughly pure imaginary and n
is approximately equal to α/2ω. This result coincides with the DC limit of an
ordinary conductor.

– Evanescent domain, if νc < ω < ωp. With these frequencies the ratio ε/ε0 is real
and negative; thus, the index of refraction is approximately zero and the wave
amplitude decays as exp[−(ωp/c)z]; therefore, we have evanescent waves.

– Dielectric domain, if ω > ωp. For high values of the frequency, the ratio ε/ε0 is
roughly real and positive and

n �
√

1 −
(ωp

ω

)2
.

The plasma becomes like a very transparent and dispersive dielectric with n < 1;
thus, the phase velocity is greater than c.

6.2.3 The Clausius–Duhem Inequality and Its Consequences

We now discuss the thermodynamic theory of an electromagnetic field, introduced in
the seventies [69, 70]; such a theory allows us to consider results derived in previous
work and to introduce important arguments. An earlier discussion of thermodynamic
concepts in the context of classical electromagnetic theory is given in Sects. 6.1.4
and 6.1.5.

The Dissipation Principle, applied to every set of fields satisfying the balance
equations, states that the rate of production of entropy R = R(P, t), for any subregion
P of the body and any time t, must satisfy the following inequality

R(P, t) :=
d
dt

∫
P
η dv +

∫
∂P

1
θ
q · n da −

∫
P

r
θ
dv ≥ 0.
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Let us introduce a function γ, such that

R :=
∫
P
γ dv.

In order to determine the form of this new function γ, we apply the divergence
theorem to the second integral and use (6.1.13); it follows that (cf. (6.1.15))

R(P, t) =
∫
P

1
θ

(
θη̇ − 1

θ
q · ∇θ − h

)
dv. (6.2.19)

The free enthalpy density is given by

ζ = e − θη − D · E − B ·H.

Taking the time derivative gives

ζ̇ + ηθ̇ + D · Ė + B · Ḣ = ė − θη̇ − Ḋ · E − Ḃ ·H. (6.2.20)

Now, by substituting in (6.2.19) the expression for h derived from (6.1.17), we obtain

R(P, t) =
∫
P

1
θ

(
θη̇ − 1

θ
q · ∇θ − ė + Ḋ · E + Ḃ ·H + J · E

)
dv,

whence, on using (6.2.20), it follows that

γ =
1
θ

[
E · J −

(
ζ̇ + ηθ̇ + D · Ė + B · Ḣ

)]
− 1
θ2
q · ∇θ. (6.2.21)

Moreover, the Dissipation Principle is equivalent to the Clausius–Duhem inequality

γ ≥ 0, ∀x ∈ Ω, ∀t ∈ R, (6.2.22)

for all fields which satisfy the balance equations. This may be shown by invoking the
arbitrariness of the subregion P and the continuity of γ.

We now consider the particular case of an electromagnetic material with fading
memory (see [69, 70]).

Putting Γ = (E,H, θ, g), where g = ∇θ, we assume that all the physical quantities
ζ, D, B, J, η and q depend on the histories Γt = (Et,Ht, θt, gt), each of which is an
element of a suitable fading memory space with norm ‖ ‖, such that ‖Γt‖ < ∞.

We separate the dependence on the present value Γ(t) and on the restricted history
rΓ

t, defined by rΓ
t(s) = Γ(t − s) ∀s ∈ R++. The quantities Γ(t), rΓ

t ∈ V10, a 10-
dimensional vector space.

By assuming appropriate smoothness for the constitutive functionals ζ̂, D̂, B̂, Ĵ,
η̂ and q̂, we have

ζ̇ = ∂Γζ̂(Γt) · Γ̇(t) + δζ̂(Γt | rΓ̇t),
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where we have denoted by ∂Γ the derivative of ζ̂ with respect to the current value
Γ(t) and by δζ̂ the Fréchet differential of ζ̂ at the first argument in the direction of the
second one. Note that

∂Γζ̂(Γt) = ∂Eζ̂(Γt) · Ė + ∂Hζ̂(Γt) · Ḣ + ∂θζ̂(Γt)θ̇ + ∂gζ̂(Γt) · ġ.

Thus, the expression for γ can be put in the following form

γ = −1
θ

{
[∂Eζ̂(Γt) + D̂(Γt)] · Ė + [∂Hζ̂(Γt) + B̂(Γt)] · Ḣ

+[∂θζ̂(Γt) + η̂(Γt)]θ̇ + ∂gζ̂(Γt) · ġ
}

+
1
θ

[
E · Ĵ(Γt) − 1

θ
q̂(Γt) · g

]
− 1

θ
δζ̂(Γt | rΓ̇t). (6.2.23)

Let us now examine the inequality (6.2.22). We must allow free variation of the
whole history and of its time derivative, that is of the present values Γ(t) and Γ̇(t)
and of the histories rΓ

t and rΓ̇
t, at any point. Thus, after substituting the constitutive

functionals ζ̂, D̂, B̂, Ĵ, η̂ and q̂ in the balance equations, we must study the functional
differential equations so obtained.

Corresponding to each independent choice of rΓ
t, Γ(t) and Γ̇(t) for any point, we

assume that there exists at least one admissible history Γt. In [69, 70] an analogous
assertion is described as the assumption of solvability.

For any vector Φ ∈ V10 and any history Ψ : R+ → V10, there exist Γt and Γ̇(t)
such that

Γ̇(x, t) = Φ, Γt(x, s) = Ψ (s) ∀s ∈ R++,

that is they can be chosen arbitrarily, for any point x of the body and any time t. Thus,
from the arbitrariness of Φ and hence of Γ̇ it follows that in (6.2.23) the first three
quantities in brackets must be equal to zero; also

∂gζ̂ = 0,

while the remaining part is nonnegative.
Therefore, we can summarize these results in the following manner.
The Dissipation Principle holds if

(a) ζ together with D, B and η are expressed as functionals of Et, Ht, θt and rgt,
(b) the functionals D̂, B̂ and η̂ can be derived by means of the functional ζ̂ through

the relations
D̂ = −∂Eζ̂, B̂ = −∂Hζ̂, η̂ = −∂θζ̂, (6.2.24)

(c) the following inequality

θδζ̂(Γt | rΓ̇t) ≤ θE · Ĵ(Γt) − g · q̂(Γt)

holds for all Γt ∈ C1 such that ‖Γt‖ < ∞.
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Using conditions (a) and (c), and putting

D = −δζ̂(Γt | rΓt),

we see that the expression (6.2.23) for γ is reduced to

θγ = E · Ĵ(Γt) − 1
θ
g · q̂(Γt) +D ≥ 0. (6.2.25)

Thus, the necessary conditions (a), (b), and (c) are also sufficient to ensure that
γ(x, t) ≥ 0 for any time evolution, which is smooth at position x and time t and
satisfies Maxwell’s equations.

Moreover, from the Dissipation Principle, by assuming that D̂, B̂ and η̂ are con-
tinuously differentiable with respect to the present values E(t), H(t) and θ(t) and by
calculating in (6.2.24) the derivatives of D̂ and B̂ with respect to H and E, respec-
tively, and analogously the derivatives of D̂ and η̂ with respect of θ and E and the
derivatives of B̂ and η̂ with respect of θ and H, we obtain the following relations

∂HD̂ = ∂EB̂, ∂θD̂ = ∂Eη̂, ∂θB̂ = ∂Hη̂.

Also, we deduce the symmetry of the following quantities

∂ED̂ = [∂ED̂]T , ∂HB̂ = [∂HB̂]T .

Note in particular that these symmetry relations hold without recourse to potentials,
such as ζ, if D̂ and B̂ are linear.

Let us now examine the forms assumed by the inequality (6.2.22) and the ex-
pression (6.2.25) in three particular cases. To this purpose we recall that the current
density J can depend on the temperature gradient g.

Firstly, we consider the case when the temperature is uniform in the body. In such
a situation we obtain g = 0 and the following inequality

D ≥ −E · J(Γt, 0).

If it is assumed further that the electric field E = 0, or if the material is non-
conducting and hence J = 0, this inequality reduces to

D ≥ 0.

Finally, if a material does not conduct either heat or electricity, we have q = 0
and J = 0; thus, (6.2.25) becomes

θγ = D (6.2.26)

and (6.2.21), taking into account this last relation (6.2.26), assumes the following
form

−
[
D · Ė + B · Ḣ + ηθ̇

]
= ζ̇ +D,

where, apart from the sign, the quantity D ·Ė+B ·Ḣ+ηθ̇ is the generalized power and
is expressed by the sum of two quantities: ζ̇, which is the recoverable power, since
it is the time derivative of the free enthalpy ζ, and D, which is the non recoverable
power. This last quantity is nonnegative by virtue of (c).

Consequently, we can state that D expresses the measure of dissipation; there-
fore, in non-dissipative bodies the condition D = 0 holds for every time evolution.
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6.3 Thermodynamics of Simple Electromagnetic Materials

The laws of thermodynamics have an important role in constructing mathematical
models, which describe the behavior of various types of electromagnetic materials.
In fact, they allow us to state whether a constitutive equation is admissible for a
given material and to establish the function spaces in which the related mathemat-
ical problems have their natural surroundings. Moreover, there is the possibility of
deriving some important thermodynamic potentials, such as entropy, free energy and
enthalpy, for these materials.

All fields which play a part in any given model must satisfy the balance equations,
which in the present case are Maxwell’s equations, and the assumed constitutive
equations. Moreover, among the many constitutive relations that we may choose,
only those which fulfil the second law of thermodynamics are admissible.

Therefore, the second law is an important tool, which allows us to select the
physically admissible constitutive equations, while, from a mathematical point of
view, it leads to the determination of some restrictions on the constitutive functionals,
related to the inequalities which express this law.

In order to describe the behavior of an electromagnetic material, as in the mod-
els of other materials, it is useful to introduce the concepts of states and processes
(see Chap. 4 and Sect. 6.1.4) and to consider cyclic and reversible processes. In this
section, the second law is established for cyclic electromagnetic processes. This pro-
vides a principle of dissipation of electromagnetic energy.

6.3.1 Electromagnetic Materials

We now examine only exclusively electromagnetic phenomena; for the sake of sim-
plicity, thermal effects will be neglected.

We denote by B a body which occupies the region R in a three-dimensional
Euclidean space. Any point of B is identified by the position vector x ∈ R.

The electromagnetic field is given by the set of the vectors E, H, D, B and J,
each of which is a function of x and of the time t. As previously, the dependence on
x will not usually be shown explicitly, while the dependence on t will be specified;
thus, we shall write E(t), H(t), etc.

Definition 6.3.1. An electromagnetic process P of duration dP, defined by

P(t) = (ĖP(t), ḢP(t)), ∀t ∈ [0, dP), (6.3.1)

is a piecewise continuous function on [0, dP), with values in V×V, ĖP and ḢP being
the time derivatives of the electric field E and the magnetic field H, at the fixed point
x.

The restriction of P to [t1, t2) ⊂ [0, dP) will be denoted by P[t1,t2); moreover, we
shall write Pt instead of P[0,t).



138 6 Thermoelectromagnetism of Continuous Media

Let P1 and P2 be two processes with durations dP1 and dP2 , respectively. Recall-
ing Definition 3.2.1, we define the composition P1 ∗ P2 of P2 with P1 by

(P1 ∗ P2)(t) =

{
P1(t), t ∈ [0, dP1 ),
P2(t − dP1 ), t ∈ [dP1 , dP1 + dP2 ).

Materials, characterized by processes defined by (6.3.1), in which the time evo-
lutions of E and H at the fixed point x ∈ B are involved are simple materials.

There are other materials for which, at a fixed point, the process P depends by
the time evolutions of E and H in the whole body B or in a neighborhood of the
fixed point. These materials are nonsimple and the related phenomena are considered
nonlocal; this occurs for example when the process depends by the time evolutions
of the gradients ∇E and ∇H.

We shall consider simple materials unless otherwise specified.
The behavior of an electromagnetic material depends on the process P and is

expressed by the following function

R(t) = (D(t),B(t), J(t)), ∀t ∈ [0, dP),

such that R : [0, dP) → V×V×V, in which D denotes the displacement vector, B the
magnetic induction and J the current density.

We shall specify below that R is a compound function of t through the state σ(t)
and the process P(t).

The set Π of electromagnetic processes P has the following properties:

(a) if P ∈ Π , for any [t1, t2) ⊂ [0, dP) the restriction P[t1,t2) ∈ Π ,
(b) if P1 and P2 ∈ Π , their composition P1 ∗ P2 ∈ Π also.

Definition 6.3.2. A simple electromagnetic system is characterized by the set
{Π, Σ,  ,R}, such that

(1) Π is the set of processes,
(2) Σ, known as the state space, is the set of elements σ each of which is a state of

the system,
(3)  : Σ  Π → Σ, where Σ  Π ⊂ Σ×Π , is the evolution function, which transforms

the state σ1 under a process P into σ2 =  (σ1, P) and is such that

 (σ, P1 ∗ P2) =  ( (σ, P1), P2), ∀P1, P2 ∈ Π, ∀σ ∈ Σ,

(4) R : Σ ×Π → V×V×V is the response function, which associates, to any initial
state and any process, the response of the system at the end of the process.

This property can be expressed by

D(t) = D̂(σ(t), P(t)), B(t) = B̂(σ(t), P(t)), J(t) = Ĵ(σ(t), P(t)). (6.3.2)

The function  , for any state σ and process P, gives a family of states∗ σ(t) =
 (σ, Pt), ∀t ∈ [0, dP). A family of states is called a cycle if  (σ, P) = σ. The time-
domain of any process P and of the family of states will be denoted by [0, d).

We now give the definition of equivalent states.
∗ In textbooks on thermodynamics the terms transformation (cf. [132]) or process (cf. [329])

are used.



6.3 Thermodynamics of Simple Electromagnetic Materials 139

Definition 6.3.3. Two states σ1 and σ2 are equivalent if the following relations

D̂(σ1, Pτ) = D̂(σ2, Pτ), B̂(σ1, Pτ) = B̂(σ2, Pτ), Ĵ(σ1, Pτ) = Ĵ(σ2, Pτ) (6.3.3)

are satisfied for any τ > 0 and any process P of duration τ.

Such a definition allows us to introduce the concept of a minimal state as the
equivalence class of the states which satisfy (6.3.3).

A non-conducting dielectric is an example of an electromagnetic system, for
which the relations (6.3.2) assume the form

D(t) = D̂(E(t)), B(t) = B̂(H(t)), J(t) = 0. (6.3.4)

Hence, it follows that the resulting state σ is formed by the pair (E,H); thus Σ =
V×V. Moreover, the transition function  , given a state σ0 = (E0,H0) and a process
P = (ĖP, ḢP), assumes the form

E(t) =
∫ t

0
ĖP(ξ)dξ + E0, H(t) =

∫ t

0
ḢP(ξ)dξ +H0,

while the response function, independent of the process, is given by (6.3.4). This
gives the fields D, B and J which correspond to each pair (E,H) so that R : Σ →
V × V × V.

In the particular case when D̂ and B̂ are assumed linear, we have

D = εE, B = μH,

where ε and μ are tensors, which belong to the space Lin(V) and are usually assumed
to be positive definite.

6.3.2 Materials with Fading Memory

We have already introduced the model of an electromagnetic system with fading
memory (Sect. 6.2). A norm for the state space of this model has not yet been as-
signed. The influence function, which is associated with a norm, may not depend
physically on the material properties, but its choice can greatly influence the theory
(see [135, 136]).

We note that Definition 6.3.2 of a simple material does not imply any norm (for
such a definition see [277], also).

For this reason, we shall now define two models which characterize dielectrics
and conductors with memory, respectively, without introducing any norm in the state
spaces.

6.3.2.1 Dielectrics with Memory

As already stated, any history can be expressed by means of the present value and
the past history; thus, we shall denote the history of the electric field E by the pair
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Et = (E(t),Et
r), where Et

r(u) = Et(u) ∀u > 0 and, analogously, the history of the
magnetic field H by Ht = (H(t),Ht

r)
† Given a pair of histories (Et,Ht), we can

introduce two particular histories:

– the static continuation of duration a ≥ 0 expressed by the pair of histories
(aEt, aHt) thus defined

(aEt(ξ), aHt(ξ)) =

{
(Et(ξ − a),Ht(ξ − a)), ξ > a,
(E(t),H(t)), ξ ≤ a,

– the static relaxation before a time b ≥ 0 denoted by (bEt, bHt) and defined by

(bEt(ξ), bHt(ξ)) =

{
(Et(ξ),Ht(ξ)), 0 ≤ ξ < b,
(Et(b),Ht(b)), ξ ≥ b.

In order to characterize dielectric materials, we now give the following defini-
tion.

Definition 6.3.4. The constitutive equations of a dielectric with memory have the
following form

D(t) = D̂(Et,Ht), B(t) = B̂(Et,Ht), J = 0. (6.3.5)

The domain of the functions E(t),H(t), Et
r andH

t
r, which express the pair of histories

(Et,Ht), is D = V × V × Dr, where Dr denotes the set of pairs of past histories
(Et

r,H
t
r) : R++ × R++ → V × V such that

1. Dr ⊃ L∞(R++) × L∞(R++);
2. if (Et,Ht) ∈ D, then the static continuation (aEt, aHt) ∈ D ∀a ≥ 0;
3. there exist two functions D̃ and B̃ on V × V such that

lim
a→∞

D̂(aEt, aHt) = D̃(E(t),H(t)), lim
a→∞

B̂(aEt, aHt) = B̃(E(t),H(t)); (6.3.6)

4. if Et, Ht ∈ D, then bEt, bHt ∈ D, ∀b ≥ 0, and

lim
b→∞

D̂(bEt, bHt) = D̂(Et,Ht), lim
b→∞

B̂(bEt, bHt) = B̂(Et,Ht).

We observe that a dielectric without memory have the functions D̃ and B̃, intro-
duced in (6.3.6), as constitutive functions.

Moreover, from the form (6.3.5) of the constitutive equations and the related
properties (6.3.6), it follows that the dielectrics with memory, which we are consid-
ering, are simple materials; the domain D of their constitutive equations coincides
with the state space, that is Σ = D = V × V ×Dr.

If we consider a linear model, the property of fading memory has some particular
constraints on the memory kernels.

† The notation Er, Hr in this context is different from the usage in (5.1.21)1 which is widely
used in Part III.
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In fact, for a linear choice of constitutive functionals (see [228, §§77–80], and
[208, Chapter 7]), i.e.,

D(t) = ε0E(t) +
∫ ∞

0
ε′(ξ)Et(ξ)dξ, B(t) = μ0H(t) +

∫ ∞

0
μ′(ξ)Ht(ξ)dξ, (6.3.7)

where ε0, μ0 ∈ S ym and ε′, μ′ : R+ → S ym , it follows, by assuming Et, Ht ∈
L∞(R+), and the memory kernels ε′, μ′ ∈ L1(R+). Moreover, if

Dr =

{
(Et

r,H
t
r) : R++ → V × V;

∣∣∣∣∣
∫ ∞

0
ε′(s + a)Et

r(s)ds
∣∣∣∣∣

+

∣∣∣∣∣
∫ ∞

0
μ′(s + a)Ht

r(s)ds
∣∣∣∣∣ < +∞, ∀a ≥ 0

}

and
lim
a→∞

D̂(aEt) = ε∞E(t), lim
a→∞

B̂(aHt) = μ∞H(t),

with

ε∞ = ε
0 +

∫ ∞

0
ε′(s)ds, μ∞ = μ

0 +

∫ ∞

0
μ′(s)ds,

properties 2 and 3 in (6.3.6) are satisfied.
Therefore, the functionals of a dielectric with memory, as a → ∞, must be-

come the response functions of a dielectric without memory; moreover, the equi-
librium values ε∞ and μ∞ are positive definite tensors. Property 4 shows that the
pairs

(
Et
r,H

t
r
)

of the past histories of E and H, which belong to Dr, must satisfy the
following relations

lim
b→∞

∫ ∞

b
ε′(s)dsEt

r(b) = 0, lim
b→∞

∫ ∞

b
μ′(s)dsHt

r(b) = 0.

By considering the constitutive functionals (6.3.7), we see that the equivalence
relation (6.3.3) between states can be expressed by an equivalence relation between
the histories [90].

In fact, on using (6.3.7) again, we can show that two states (Et
1,H

t
1) and (Et

2,H
t
2)

are equivalent in accordance to the definition of equivalence between states, ex-
pressed by (6.3.3), if the following equalities

E1(t) = E2(t), H1(t) = H2(t)

hold, together with∫ ∞

0
ε′(s + a)Et

r1(s) ds =
∫ ∞

0
ε′(s + a)Et

r2(s) ds, ∀a ≥ 0,

in terms of the past histories Et
r1, Et

r2 with the kernel ε′, and the analogous equality∫ ∞

0
μ′(s + a)Ht

r1(s) ds =
∫ ∞

0
μ′(s + a)Ht

r2(s) ds, ∀a ≥ 0,

in terms of Ht
r1, Ht

r2 with the kernel μ′.
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Thus, two past histories (Et
r1,H

t
r1), (Et

r2,H
t
r2) ∈ Dr are equivalent if their differ-

ences Et
r = Et

r1 − Et
r2 and Ht

r = Ht
r1 − Ht

r2 are equivalent to the zero past history
(0†r , 0

†
r ), that is if they satisfy
∫ ∞

0
ε′(s + a)Et

r(s) ds = 0,
∫ ∞

0
μ′(s + a)Ht

r(s) ds = 0, ∀a ≥ 0. (6.3.8)

This means that, by denoting the set of past histories Et
r and Ht

r, which satisfy (6.3.8),
by D0 and the quotient space by Dr/D0, the minimal state is an element of Σ(m) :=
V × V × (Dr/D0).

6.3.2.2 Conductors with Memory

Two examples of conductors, which have a complex-valued conductivity when the
related fields have a harmonic variation in time, are metals and the ionized atmo-
sphere (see [171, 186]), discussed in Sects. 6.2.2.3 and 6.2.2.4. For these materials
we can construct a model of conductors with memory, by introducing the memory
functional

J(t) = Ĵ(Et), (6.3.9)

expressing J in terms of Et, the history of the electric field E, while both the electric
displacement D and the magnetic induction B are expressed by functions of E and
H.

Thus, we give the following definition.

Definition 6.3.5. The constitutive equations, which characterize a conductor with
memory, have the form

D(t) = D̂(E(t),H(t)), B(t) = B̂(E(t),H(t)), J(t) = Ĵ(Et)

and are such that:

1. the set D, of histories Et of the electric field E, is the domain of the functional Ĵ
and satisfies the condition D ⊃ L∞(R+);

2. if Et ∈ D, then the static continuation aEt ∈ D for any a ≥ 0 and there exists Ĵ, a
function on V, such that

lim
a→∞

Ĵ(aEt) = Ĵ(E(t));

3. if Et ∈ D, then the static relaxation bEt ∈ D for any b ≥ 0 and

lim
b→∞

Ĵ(bEt) = Ĵ(Et).

We suppose that the functional (6.3.9) has the linear form

J(t) =
∫ ∞

0
σ′(ξ)Et(ξ)dξ,
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where the function σ′, which belongs to L1(R+) since D ⊃ L∞(R+), must satisfy

lim
a→∞

∫ ∞

0
σ′(ξ + a)Et(ξ)dξ = 0 ∀Et ∈ D,

by virtue of property 2; moreover, the limit in property 2 gives

lim
a→∞

Ĵ(aEt) = σ∞E(t), σ∞ =

∫ ∞

0
σ′(τ) dτ.

We observe that materials with memory can be described by means of integrated
histories, which are defined as follows

Èt(ξ) =
∫ t

t−ξ
E(u)du =

∫ ξ

0
Et(s)ds ∀ξ ∈ R+,

whence
d
dξ

Èt(ξ) = Et(ξ), Èt(0) = 0.

If σ′ ∈ L1(R+), then σ′(∞) = 0 and, on integrating by parts, we obtain
∫ ∞

0
σ′(ξ)Et(ξ)dξ = −

∫ ∞

0
σ′′(ξ)Èt(ξ)dξ,

where it is assumed that σ′′ ∈ L1(R+).
Therefore, when linear constitutive functionals are assumed, we can consider

either dependence on Et or on the related integrated history Èt; these are equivalent.
This is not true when the functionals are nonlinear.

6.3.3 Thermodynamic Laws in Terms of Cycles

We shall now consider a thermodynamic theory constructed by means of the proper-
ties of cycles. For this purpose, the second law is introduced and will be considered
as a principle of electromagnetic energy dissipation.

Let us consider a thermoelectromagnetic system, which occupies a region R with
a smooth boundary ∂R. It is assumed to be rigid, so that the mass density ρ depends
only on position, even if thermal variations occur, and can be taken to be unity. It
will be omitted.

The local form of the balance of energy has the following form

ė = −∇ · q + r + E · Ḋ +H · Ḃ + E · J, (6.3.10)

where, as in Sect. 6.1.4, e is the internal energy, q denotes the heat flux and r is the
heat source. The sum of the first two terms of this equality denotes the rate at which
heat is absorbed per unit volume, that is (6.1.13).

The thermoelectromagnetic processes P̄ now assumes the form

P̄(t) = (Ė(t), Ḣ(t), θ̇(t), g(t)), ∀t ∈ [0, dP̄),
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where the contributions of absolute temperature θ and the temperature gradient g =
∇θ are added. We shall denote by Π̄ the space of these processes, by Σ̄ the space of
the thermoelectromagnetic states and by  ̄ the map that gives the state σ̄ obtained by
applying a process P̄ ∈ Π̄ to the state σ̄0 ∈ Σ̄.

A closed path in the state space Σ̄ is called cycle; therefore, a pair (σ̄, P̄) ∈ Σ̄ × Π̄
gives a cycle if  ̄(σ̄, P̄) = σ̄.

Finally, the time-domain of the process is always denoted by [0, d).
Taking into account (6.3.10) and (6.1.13) and the fact that in a cycle we have

e(σ̄(x, d)) = e(σ̄(x, 0)),

at any x ∈ R, we make the following claim. First Law of Thermodynamics. The

equality

∫ d

0

∫
R

[
h(t) + Ḋ(t) · E(t) + Ḃ(t) ·H(t) + J(t) · E(t)

]
dvdt = 0 (6.3.11)

must hold for any cycle, the duration of which is denoted by d.
We must consider also the very important assumption that the inequality

∫ d

0

[
−∇ ·

(q
θ

)
+
r
θ

]
dt ≤ 0 (6.3.12)

must be satisfied for any cycle and at any point x of the body.
This applies where the mass density ρ is unity. If, however, the mass density ρ

varies over time, a factor 1/ρ must be included in the integrand of (6.3.12).
We note that the assumption made on the inequality (6.3.12) is equivalent to

assuming that the integral of the entropy production per unit volume, which is ex-
pressed by η̇ + ∇ · (q/θ) − r/θ, is nonnegative for any cycle.

Another version, more general than the one we have considered, must be used
if the material is nonlocal. For such materials, the statement of thermodynamic laws
may involve the whole body. We now state this following fundamental law of ther-
modynamics. Second Law of Thermodynamics. For any cycle with duration d we

have ∫ d

0

∫
R

[
h(t)
θ(t)
+

1
θ2(t)

q(t) · g(t)

]
dvdt ≤ 0. (6.3.13)

This integrand is equal to that in (6.3.12), as may be seen with the aid of (6.1.13). A
space integration over the body has been included.

If thermal effects are not considered and we study only electromagnetic phenom-
ena, the temperature θ is constant and thus g = 0; we shall continue to consider a
constant mass density ρ in the body. With these hypotheses the inequality (6.3.13)
becomes ∫ d

0

∫
R

h(t)dvdt ≤ 0. (6.3.14)
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Hence, by using the first law (6.3.11), for these electromagnetic phenomena, taking
account of (6.3.14), it follows that

∫ d

0

∫
R

[
Ḋ(t) · E(t) + Ḃ(t) ·H(t) + J(t) · E(t)

]
dvdt ≥ 0. (6.3.15)

This inequality, which must hold for every cycle of duration d, expresses the global
form of the principle of electromagnetic energy dissipation.

For simple materials we assume that the inequality (6.3.15) holds for any sub-
body A ⊂ R.

The continuity of the integrand in this last inequality and the arbitrariness of the
sub-body A ⊂ R allow us to derive the local form of this principle, expressed by the
following inequality

∫ d

0

[
Ḋ(t) · E(t) + Ḃ(t)Ḣ(t) + J(t) · Ė(t)

]
dt ≥ 0,

which must hold for any cycle of duration d.
We now leave the topic of Thermoelectromagnetism until Chap. 22 and return to

our main line of discussion.



Part III

Free Energies for Materials with Linear Memory



7

A Linear Memory Model

We now address the problem of finding explicit forms for the free energy of materi-
als with constitutive relations given by linear memory functionals. Such materials are
referred to in this work as linear memory materials. As we will see, the equilibrium
(or alternatively, the instantaneous) contribution, which is to say the portion of the
constitutive equation without memory effects, need not be linear. If the part of the
constitutive equation without memory is also linear, we use the description a com-
pletely linear material. A linear viscoelastic material is understood to be completely
linear, while a viscoelastic material with linear memory need not have this property.

A general form for the free energy with a quadratic memory term is now deter-
mined, which is the basis for all developments in Part III. In particular, we show that
the associated constitutive equations have linear memory functionals.

7.1 A Quadratic Model for Free Energies

The assumption is made that ‖Λt − Λ(t)‖ is small. Since the norm has the fading
memory property, this amounts to the assumption that Λt(s) does not vary greatly
from Λ(t) for small values of s [73].

In [159], the theory of Crochet and Naghdi [78], incorporating a temperature-
dependent timescale, was adapted to make more realistic the modeling of mechanical
components of the equations. For simplicity, this refinement is omitted in the present
treatment. A physical consequence of this is that the allowed variation in coldness
must be restricted for materials that are very temperature sensitive. There will be
associated constraints on the range of m, defined by (5.1.8).

Remark 7.1.1. The theory developed here applies to solids for finite or infinitesimal
strain and to liquids if strains and strain rates are infinitesimal.
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Let ψ̃h in (5.1.26) be twice Fréchet differentiable at the zero relative history and
let the quadratic term be expressible as an integral, so that we can make the approxi-
mation

ψ(t) = φ̃(Λ0(t)) +
1
2

∫ ∞

0

∫ ∞

0
Λt

r(s) ·K(s, u,Λ(t))Λt
r(u)dsdu,

Λt
r ∈ Γ, K ∈ Lin(Γ),

(7.1.1)

in the notation of (A.2.2). It will be assumed that with a small error, Λ(t) in K can
be replaced by a constant quantity Λc. This dependence is henceforth omitted [161].
We write (7.1.1) as

ψ(t) = φ̃(Λ0(t)) +
1
2

∫ ∞

0

∫ ∞

0
Λt

r(s) ·K(s, u)Λt
r(u)dsdu. (7.1.2)

The operator K is at least positive semidefinite in the sense that the function K(·, ·) is
such that the integral is nonnegative. This must be true in view of (5.1.25). It should
be noted that (5.1.25) also excludes linear functionals in (7.1.1). It is assumed that
the integral on (7.1.2) exists for Λt

r finite, though not necessarily zero, at infinity. It
will therefore be assumed that as s → ∞, the kernel K(s, u) goes to zero as

K(s, u) ∼ s−1−b, b > 0, u ∈ R+, (7.1.3)

or more strongly; similarly for the limit of large u at fixed s. With the aid of (A.2.3),
we see that there is no loss of generality in taking

K�(s, u) = K(u, s), (7.1.4)

where the transpose refers to Lin(Γ).
Let us define L ∈ Lin(Γ) by

L(s, u) :≡
∫ ∞

s

∫ ∞

u
K(t1, t2)dt1dt2, (7.1.5)

so that

L12(s, u) :≡ ∂2

∂s∂u
L(s, u) = K(s, u), L�(s, u) = L(u, s), (7.1.6)

and

lim
s→∞

L(s, u) = 0, lim
s→∞

∂

∂u
L(s, u) = 0, u ∈ R+, (7.1.7)

with similar limits at large u holding for fixed s. Also, from (7.1.3),

lim
u→∞

∂

∂u
L(s, u) = 0, s ∈ R+, lim

s→∞

∂

∂s
L(s, u) = 0, u ∈ R+, (7.1.8)

and
lim
u→∞

L12(s, u) = lim
s→∞

L12(s, u) = 0, u ∈ R+.
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Remark 7.1.2. We could include a constant term L∞ on the right of (7.1.5), which
would mean that the right of (7.1.7)1 is replaced by L∞. This is the conventional
approach taken in [158] and later papers, where the constant L∞ has an important
physical role. However, we can take it to be zero, and certain simplifications result
from doing so, specifically in relation to partial integrations. This means that our
L(·, ·) is in fact Lc(·, ·)−L∞, where Lc(·, ·) is the more conventional choice. We shall,
when discussing specifically mechanical applications, revert to the earlier conven-
tion.

Of course, for fluids in shear flow and for heat flow, L∞ is in fact zero.

We write (7.1.2) as

ψ(t) = φ̃(Λ0(t)) +
1
2

∫ ∞

0

∫ ∞

0
Λt

r(s) · L12(s, u)Λt
r(u)dsdu. (7.1.9)

By partial integrations, one can put this in the form

ψ(t) = φ̃(Λ0(t)) +
1
2

∫ ∞

0

∫ ∞

0
Λ̇

t
(s) · L(s, u)Λ̇

t
(u)dsdu,

Λ̇
t
(u) =

∂

∂t
Λt(u) = − ∂

∂u
Λt(u) = − ∂

∂u
Λt

r(u).

(7.1.10)

The form (7.1.10)1 is interesting in view of the definitions of m given by (5.1.8).
Relations (7.1.9) and (7.1.10) are the basis of all developments in Part III.

Remark 7.1.3. Note that L and L12 must be nonnegative operators by virtue of
(5.1.25), since the integrals in (7.1.9) and (7.1.10) must be nonnegative. This is the
continuous equivalent of nonnegativity in a matrix, as discussed in Sect. A.2.1. Nec-
essary conditions for this property can be established by considering histories that
are zero everywhere except in a set of diminishing measure around a point s, giving
that the “diagonal elements” are nonnegative or

L(s, s) ≥ 0, L12(s, s) ≥ 0.

In fact, let us assume that L is infinitely differentiable in both arguments and consider
histories that are differentiable to any required degree. We insert ∂Λt

r, instead of Λt
r,

into (7.1.9), where ∂ indicates the first derivative of Λt
r(·). By partial integration and

the use of very localized histories, we can deduce that

L1122(s, s) ≥ 0. (7.1.11)

Continuing in this way, we can deduce that

L(n)(s, s) ≥ 0, n = 0, 1, 2, . . . , (7.1.12)

where the subscript indicates differentiation with respect to both the first and second
arguments, n times. For example, L(2)(s, s) is the quantity on the left of (7.1.11).

The argument breaks down if L is not differentiable and L12 is unbounded. This
is true for the Graffi–Volterra free energy, where L is given by (10.1.3). It also applies
to the work function given by (7.5.3) in view of (7.5.6).
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7.1.1 Constitutive Relations

We can determine the generalized stress within the present model from either (5.1.18)
(see also P1 in Sect. 5.1.1) or (5.1.22). The differentiation of the occurrence of
Λ(t) in Λt

r is equivalent to the functional differentiation defined by (5.1.23). Equa-
tion (5.1.18) is simpler to apply. One obtains

Σ(t) = ˜Σe(Λ0(t)) +
∫ ∞

0
L′(u)Λt

r(u)du

= ˜Σ0(Λ(t)) +
∫ ∞

0
L′(u)Λt(u)du

= ˜Σe(Λ0(t)) +
∫ ∞

0
L(u)Λ̇

t
(u)du,

(7.1.13)

where (7.1.4) and results from Sect. A.2.2 have been used; also, we have put

˜Σe(Λ0(t)) = Σe(t) =
dφ̃(Λ0(t))
dΛ(t)

, L(u) = L(0, u),

˜Σ0(Λ(t)) = Σ0(t) = ˜Σe(Λ0(t)) + L0Λ(t), L0 = L(0).

(7.1.14)

The prime in (7.1.13)1,2 indicates differentiation with respect to the argument. Rela-
tions (7.1.7) have been used. Also, from (7.1.7)1 and (7.1.8), we have

L(∞) = 0, L′(∞) = 0. (7.1.15)

It is interesting to note, in general terms, how a lack of uniqueness may arise in
free energies given by quadratic functionals. If L is replaced by L(1) with the same
positivity property as L and

L(1)(s, u) = L(s, u) + L(2)(s, u),

L(2)(s, 0) = L(2)(0, u) = 0, s, u ∈ R+,
(7.1.16)

then using L(1) in (7.1.9) also produces a satisfactory free energy, by virtue of
(7.1.14)3, since

1
2

∫ ∞

0

∫ ∞

0
Λt

r(s) · L
(2)
12 (s, u)Λt

r(u)dsdu

can be shown to be independent of Λ(t), using the derivatives of (7.1.16)2,3. This is
in effect the statement of Proposition 5.1.2 for a free energy given by a quadratic
functional.

The notation (see (5.1.28))

Σ(t) = Σe(t) + Σrh(t) = Σ0(t) + Σh(t),

Σrh(t) =
∫ ∞

0
L′(u)Λt

r(u)du =
∫ ∞

0
L(u)Λ̇

t
(u)du,

Σh(t) =
∫ ∞

0
L′(u)Λt(u)du,

(7.1.17)
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will be used later. It will be assumed that

L(u) = L�(u), u ∈ R+. (7.1.18)

Remark 7.1.4. Note that Σrh vanishes at the zero relative history. The quantity Λt
r

does not belong to L1(R+)∩ L2(R+), so that for convergence of the integral, we must
have L′ decaying sufficiently strongly at large times, which is a statement of the
fading memory property in the linear memory context.

Remark 7.1.5. With the aid of (5.1.21)1 and (7.1.17), relation (7.1.9) can be written
as

ψ(t) = S (t) +
1
2

∫ ∞

0

∫ ∞

0
Λt(s) · L12(s, u)Λt(u)dsdu,

S (t) = φ(t) + Λ(t) · [Σ(t) − Σ0(t)] +
1
2
Λ(t) · L0Λ(t),

(7.1.19)

where L0 is defined by the last relation of (7.1.14). Observing that Σ(t) − Σ0(t) does
not depend on Λ(t), we have, with the aid of (7.1.14),

d
dΛ(t)

S (t) = Σ(t), (7.1.20)

which yields (5.1.30). A disadvantage of using this form, with histories rather than
relative histories, is that S (t) is not a nonnegative quantity.

Recalling (5.1.10)1,2, we now write out (7.1.13)1 in detail as follows:

κ(t)
ρ

Ŝ(t) =
κ(t)
ρ

Ŝe(t) +
∫ ∞

0
L′
E(u)Et

r(u)du +
∫ ∞

0
L′
κ(u)κtr(u)du

+

∫ ∞

0
L′
m(u)mt

r(u)du,

L′
E : R+ �→ Lin(Sym), L′

κ : R+ �→ Sym, L′
m : R+ �→ Lin(R3,Sym).

(7.1.21)

Also

e(t) = εe(t) +
∫ ∞

0
Ξ′E(u) · Et

r(u)du +
∫ ∞

0
Ξ′
κ(u)κtr(u)du

+

∫ ∞

0
Ξ′m(u) ·mt

r(u)du,

Ξ′E : R+ �→ Sym, Ξ′
κ : R+ �→ R, Ξ′m : R+ �→ R3,

(7.1.22)

and

1
ρ
d(t) =

∫ ∞

0
V′

E(u)Et
r(u)du +

∫ ∞

0
V′

κ(u)κtr(u)du +
∫ ∞

0
V′

m(u)mt
r(u)du,

V′
E : R+ �→ Lin(Sym,R3), V′

κ : R+ �→ R3, V′
m : R+ �→ Lin(R3).

(7.1.23)

There is no equilibrium term in the heat flow equation (7.1.23). The quantities Ŝe and
εe depend only on Λ0(t).
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Note that by virtue of (7.1.18),

L′�
E (u) = L′

E(u), L′
κ(u) = Ξ′E(u), L′

m(u) = V′�
E (u),

Ξ′m(u) = V′�
κ (u), V′

m(u) = V′�
m (u).

(7.1.24)

Relaxation functions are generally found in experimental work [133] to be mono-
tonically decaying, certainly for mechanical systems. However, this does not follow
from any general thermodynamic principle, though special results consistent with
such behavior can be obtained from reasoning based on thermodynamics ([104] and
(7.2.16), (7.2.17) below). Several choices adopted in later chapters (sums or integrals
of decaying exponentials) have this property, but we do not assume it in general. In-
deed, in Chap. 16, cases of nonmonotonic behavior are considered.

7.1.2 Dissipation Rate

The rate-of-dissipation function D, given by (5.1.19), is obtained by differentiating
the functional dependence of ψ̃ on Λt with respect to t, i.e., ignoring Λ(t), which
occurs in Λt

r. This follows by elementary considerations, avoiding explicit functional
differentiation, if we realize that differentiating Λ(t) gives the term Σ · Λ̇ in (5.1.11).
Thus, D must emerge from the remaining differentiation with respect to t of ψ(t).
Let us differentiate (7.1.9), selecting only the functional dependence. In the term
where the s-dependent left-hand side of the quadratic form is differentiated, we carry
out a partial integration with respect to the u derivative on L and vice versa, finally
obtaining, with the aid of (7.1.10)2,3,4,

D(t) = −1
2

∫ ∞

0

∫ ∞

0
Λ̇

t
(s) · [L1(s, u) + L2(s, u)]Λ̇

t
(u)dsdu. (7.1.25)

We see that the existence of dissipation in the material is intrinsically connected with
the constitutive dependence on the history of the independent variable. By partial
integration, we can also write

D(t) = −1
2

∫ ∞

0

∫ ∞

0
Λt

r(s) · [L121(s, u) + L122(s, u)]Λt
r(u)dsdu, (7.1.26)

where (7.1.10)2,3,4 have been used again.

7.1.3 Complete Material Characterization

The lack of uniqueness of the free energy of a material with memory is an intrinsic
and unavoidable feature of the theory. This is clear from the very general framework
developed in Chap. 4, in particular, the discussion relating to Proposition 4.1.7, the
content of Proposition 5.1.2, and the point made in relation to (7.1.16). This arbitrari-
ness raises the following question: what is the true physical free energy ψp(t) of the
material and what is its relationship to the various forms of ψ(t) that will be proposed
in later chapters?
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The physical free energy in the context of materials with memory is perhaps best
defined as the quantity obeying (5.1.34), where W(t) and D(t) are assumed to have
clear physical definitions. This is certainly true of W(t). In an isothermal mechanical
context, D(t) is the total heat produced per unit mass, up to time t. Also, we have
total clarity for cyclic processes, which yield (5.1.37). It will be assumed that for a
material with memory, the actual physical total dissipation Dp(t) and rate of dissipa-
tion Dp(t) are in principle experimentally measurable quantities. Thus, from (5.1.34)
and the value of Dp(t), we can determine the physical free energy ψp(t).

All the free energies proposed in later chapters are determined by the relaxation
function L(s), s ∈ R+, or special cases of this quantity. At least their memory-
dependent parts are; we assume that the instantaneous terms are always fully spec-
ified. These provide either bounds on or approximations to ψp(t). A fundamental
question is now posed. Is it the case that ψp

1. is determined completely by L(s), s ∈ R+ (leaving aside the equilibrium term
φ(t)), so that the kernel of the quadratic form L(s, u), s, u ∈ R+, is fully deter-
mined by L(s), s ∈ R+; or

2. do we have to determine L(s, u) separately?

The first possibility is an expression of the intuitive idea that a material is completely
characterized by its constitutive relationship (7.1.13), which is possibly supported
by the fact that all forms of the free energy proposed to date depend only on L(s),
s ∈ R+. This assumption is the basis of the theory developed in Sect. 16.10. The
only experimental requirement for this approach to material characterization is the
measurement of the relaxation function L(s), s ∈ R+, which is discussed below.

The second possibility requires that to completely characterize a material, we
must determine L(s), s ∈ R+, by a series of measurements, as for the first option, but
also L(s, u), s, u ∈ R+, by a separate program of measurement. In other words, the
energy characteristics of the material are not contained in the constitutive equation,
but must be determined separately.

By L(s, u) we mean of course the physical kernel Lp(s, u), and once this is deter-
mined experimentally, ψp is given uniquely.

In fact, referring to our earlier discussion of the measurability of dissipation, the
most natural way to proceed is to determine by experiment L(s), s ∈ R+, and also
the quantity K(s, u), s, u ∈ R+, given by∗

K(s, u) = L1(s, u) + L2(s, u), (7.1.27)

which is the kernel of (7.1.25). Then there is the mathematical problem of determin-
ing L(s, u) from (7.1.27) and the boundary condition (7.1.14)3 or

L(0, u) = L(u, 0) = L(u), (7.1.28)

which is discussed later.
It is interesting to consider how K(s, u), s, u ∈ R+, might be measured. We outline

a method that, while probably not practical, at least shows that it is possible. Recall

∗ Not equal to the quantity used briefly at the beginning of Sect. 7.1.
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how in principle, L(s), s ∈ R+, might be measured with the aid of (7.1.13)3. We
choose a history Λt(s) = Λ(t − s) and measure the corresponding Σ(t) for a range of
values of t. A standard example (possible only in approximation) is to takeΛ(u) to be
zero for u < 0, with a discontinuity at u = 0. After this time, it has a constant value
Λ1. Thus, Λ̇(u) is given by a singular delta functionΛ1δ(u), so that Λ̇

t
(u) = Λ1δ(t−u)

and (7.1.13) yields that
Σ(t) = ˜Σe(Λ10) + Λ1L(t),

whereΛ10 isΛ1 with zero in the R3 contribution, as indicated by (5.1.21). Assuming,
as noted earlier, that ˜Σe is known, it follows that detailed measurements over time
of Σ(t) will provide numerical estimates of L(t). Using a similar history in (7.1.25)
gives

D(t) = Λ1 ·K(t, t)Λ1,

so that the measurements of D(t) over a wide range of times yield the diagonal values
K(t, t), provided suitably widely varied choices of Λ1 are also used.

Nondiagonal terms can be obtained by considering histories with two disconti-
nuities, so that

Λ̇
t
(u) = Λ1δ(t1 − u) + Λ2δ(t2 − u),

yielding

D(t) = Λ1 ·K(t1, t1)Λ1 + Λ2 ·K(t2, t2)Λ2

+ Λ1 ·K(t1, t2)Λ2 + Λ2 ·K(t2, t1)Λ1.

The first two terms are diagonal and are already known from the experiments with
one discontinuity. The other two terms are equal because

K�(s, u)) = K(u, s),

which follows from (7.1.6)2. Thus, a suitable range of measurements of D(t) for
histories with two discontinuities yield the nondiagonal terms.

One can give an explicit solution of the first-order partial differential equation
(7.1.27) for L(s, u), s, u ∈ R+, where K(s, u), s, u ∈ R+, is presumed to be known.
Define new variables

x = s + u, y = s − u, (7.1.29)

in terms of which (7.1.27) becomes

∂

∂x
Ln(x, y) =

1
2
Kn(x, y), Ln(x, y) = L(s, u), Kn(x, y) = K(s, u),

with general solution

Ln(x, y) = Ln(x0, y) +
1
2

∫ x

x0

Kn(x′, y)dx′, (7.1.30)

where x0 is an arbitrary nonnegative real quantity. Observe that (7.1.28) becomes
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L(u) = Ln(u, u) = Ln(u,−u), u ∈ R+.

Then, choosing x0 = |y| in (7.1.30), we have

L(s, u) = Ln(s + u, s − u) = L(|s − u|) + 1
2

∫ s+u

|s−u|
Kn(x′, s − u)dx′,

which is the solution obeying the boundary conditions (7.1.28).
These mathematical developments and in effect the choice between options 1 and

2 above are explored in more detail in Chap. 17, leading to option 2 as the required
approach for uniquely determining the material properties. This is in spite of the fact
that option 1 is the only one used to date.

7.1.4 Linear Equilibrium Response

A very important limiting case occurs when φ̃ in (7.1.10) has the form

φ̃(Λ0(t)) = φ(t) =
1
2
Λ0(t) · LeΛ0(t) =

1
2
Λ(t) · LeΛ(t), (7.1.31)

where Le ∈ Lin(Γ+) is a nonnegative tensor, which can be taken to be a symmetric
matrix acting on Sym × R and zero on R3. This yields for ˜Σe and ˜Σ0 in (7.1.13)

˜Σe(Λ0(t)) = LeΛ0(t) = LeΛ(t),

˜Σ0(Λ0(t)) = LeΛ0(t) + L0Λ(t) = (Le + L0)Λ(t),
(7.1.32)

where (7.1.14) has been used. Then (7.1.13) becomes

Σ(t) = LeΛ0(t) +
∫ ∞

0
L′(u)Λt

r(u)du

= LeΛ0(t) + L0Λ(t) +
∫ ∞

0
L′(u)Λt(u)du

= LeΛ0(t) +
∫ ∞

0
L(u)Λ̇

t
(u)du.

(7.1.33)

The quantity S , given by (7.1.19)2, now takes the form

S (t) = Λ(t) · Σ(t) − 1
2
Λ(t) · (L0 + Le)Λ(t), (7.1.34)

as can be seen with the aid of (7.1.31) and (7.1.32).
In Part III, the formulas are valid mainly for general equilibrium response. How-

ever, the linear case is adopted in several contexts for definiteness.
If the conventional notation, in the sense of Remark 7.1.2, is adopted, then L0

must be replaced by L0 − L∞, and (7.1.34) is replaced by

S (t) = Λ(t) · Σ(t) − 1
2
Λ(t) · L0Λ(t). (7.1.35)
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Linear equilibrium response may be applicable for large values of Λ(t) but will cer-
tainly be applicable for small values of this field variable, including small strains for
which the relations of Sect. 1.2.2 apply. In this case, the Lagrangian and Eulerian
descriptions coincide.

Remark 7.1.6. Referring to Remark 7.1.1, we note that the discussion of fluids in
later sections will be confined to the case that the strain tensor in the extra stress (Def-
inition 2.2.13) is assumed to be infinitesimal. In this limit, the tensor D in (2.2.13)
can be replaced by Ė, and we can use the coordinates (x, t).

7.1.5 Time-Independent Eigenspaces

An important special case of materials with linear memory occurs when the eigen-
vectors of L(t) do not depend on t, so that we have

L(t) =
m∑
k=1

Lk(t)Bk, (7.1.36)

where Bk = Bk ⊗ Bk, k = 1, 2, . . . ,m, are the orthonormal projectors on the m
eigenspaces of L, while {Bk} are their normalized eigenvectors, which constitute an
orthonormal basis of Γ. This is the spectral representation of L(t) (see (A.2.10)). Un-
der our assumption, the (real) eigenvectors Bk and projectors Bk, k = 1, 2, . . . ,m, are
independent of time.

From (7.1.18), the constant eigenvectors Bk, in a particular basis, are the rows
or columns of an orthogonal transformation R. The time-independence allows us to
diagonalize the constitutive equation (7.1.17). Let us put

Λt(s) =
m∑
k=1

Λt
k(s)Bk, Σh(s) =

m∑
k=1

Σhk(s)Bk,

where the scalar quantities Λt
k, Σhk are given by

Λt
k(s) = Λ

t(s) · Bk, Σhk(s) = Σh(s) · Bk.

Then (7.1.17)5 and (7.1.36) yield

Σhk(t) =
∫ ∞

0
L′k(u)Λt(u)du, k = 1, 2, . . . ,m,

which constitute a series of scalar relationships.
In the case of linear equilibrium response, as given by (7.1.33)2, the quantity

L0 = L(0) will be diagonalized by the same transformation as L(u), u = 0, under our
assumption. We need also, however, to assume this property for Le.

The time-independent eigenvectors property implies restrictions on L(t), which
will be illustrated by a simple example below.
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Let us consider a mechanically and thermally isotropic viscoelastic solid subject
to infinitesimal strain, with thermal expansion effects and isotropic heat flow proper-
ties for which the coldness gradient is determined only by the heat flow history.

The tensor Ŝ in (7.1.21) is replaced by the Cauchy stress tensor T, and Λ by E.
The traceless parts of T and E are denoted by T̂, Ê, and their volumetric components
by T , E. Thus, (7.1.21) becomes

T̂(t) = GS∞Ê(t) +
∫ ∞

0
G′

S (u)Êt
r(u)du,

T (t) = GB∞ [E(t) + βκd(t)] +
∫ ∞

0
G′

B(u)Et
r(u)du +

∫ ∞

0
G′

K(u)κtr(u)du,
(7.1.37)

where G′
S , G′

B, and G′
κ are scalar functions and GS∞, GB∞ are positive constants.

Furthermore,
κd(t) = κ(t) − κ0, (7.1.38)

where the quantity κ0 is the equilibrium coldness and β is related to the equilibrium
coefficient of thermal expansion. We have absorbed the factor κ(t)/ρ ≈ κ0/ρ into
G′

S , G′
B. This is a natural completion of the linearization of the problem, though

it hides an interesting prediction of the theory, namely that the relaxation function
is proportional to ρθ(t), which was initially derived in [159], using a formulation
of thermodynamics based on the standard Helmholtz free energy ψH . However, it
emerges very naturally from the formulation used here, based on ψ defined by (5.1.6).

Relation (7.1.22) takes the form

ε(t) = ε1E(t) + ε2κd(t) +
∫ ∞

0
G′

κ(u)Et
r(u)du +

∫ ∞

0
Ξ′
κ(u)κtr(u)du, (7.1.39)

where Ξ′
κ is a scalar function and a consequence of (7.1.18) as expressed by (7.1.24)2

has been used. Note that (7.1.18) further requires that

ε1 = GB∞β. (7.1.40)

Finally, (7.1.23) becomes

1
ρ
d(t) =

∫ ∞

0
V ′
m(u)mt

r(u)du =
∫ ∞

0
Vm(u)qtr(u)du (7.1.41)

in terms of the scalar function Vm, by virtue of (5.1.8).
We need to diagonalize the bulk or volumetric component of the mechanical

equation (7.1.37)2 and the relation for the internal energy (7.1.39) by means of a
constant rotation matrix. This places restrictions on the form of the relaxation func-
tions involved. We require that

R
(
GB∞ ε1

ε1 ε2

)
R� =

(
G1 0
0 G2

)
,

R
(
G′

B(u) G′
κ(u)

G′
κ(u) Ξ′

κ(u)

)
R� =

(
G′

1(u) 0
0 G′

2(u)

)
,

R =
(
c s
−s c

)
, c2 + s2 = 1,
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where G1,G2,G′
1,G

′
1 are the required eigenvalues. It follows that

(
GB∞ ε1

ε1 ε2

)
= G1

(
c2 cs
cs s2

)
+G2

(
s2 −cs
−cs c2

)
,

(
G′

B(u) G′
κ(u)

G′
κ(u) Ξ′

κ(u)

)
= G′

1(u)

(
c2 cs
cs s2

)
+G′

2(u)

(
s2 −cs
−cs c2

)
.

These relations yield that

(c2 − s2)ε1 = cs(GB∞ − ε2),

(c2 − s2)G′
κ(u) = cs(G′

B(u) − Ξ′
κ(u)),

(7.1.42)

by solving for (G1, G2), (G′
1, G

′
2) in terms of (GB∞, ε2), (G′

B, Ξ
′
κ), respectively.

Thus (7.1.42) gives the constraints imposed by the requirement of time-independent
eigenspaces. Specifically, we have

G′
B(u) − Ξ′

κ(u)

G′
K(u)

=
GB∞ − ε2

ε1
=

c2 − s2

cs
, u ∈ R+, (7.1.43)

so that the ratio on the left is independent of u. The value of this ratio for any choice
of u or the ratio on the right of (7.1.43)1 gives the angle of rotation.

This is not a physical requirement but rather a condition that renders the factor-
ization problem underlying the determination of the minimum and other free energies
possible by the method described in Sect. 11.1.1 for scalar fields. However, it clearly
represents a physical restriction on the material.

Relations (7.1.37)–(7.1.41) can be written in the form

T̂(t) = GS∞Ê(t) +
∫ ∞

0
G′

S (u)Êt
r(u)du,

X1(t) = G1Y1(t) +
∫ ∞

0
G′

1(u)Zt
1(u)du,

X2(t) = G2Y2(t) +
∫ ∞

0
G′

2(u)Zt
2(u)du,

1
ρ
d(t) =

∫ ∞

0
Vm(u)qtr(u)du,

where (
X1(t)
X2(t)

)
= R

(
T (t)
ε(t)

)
,

(
Y1(t)
Y2(t)

)
= R

(
E(t)
κd(t)

)
,

(
Zt

1(t)
Zt

2(t)

)
= R

(
Et
r(u)

κtr(u)

)
,

which completes the diagonalization.
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7.1.6 Short-Term Memory

There are well-known models, notably incompressible viscous liquids and Fourier
heat flow, in which the rate of dissipation is given by a quadratic form in terms of the
time derivatives of the field quantities, and there is no corresponding term relating
to energy storage in (5.1.11). Thus, for incompressible viscous liquids, the rate of
dissipation, which is equal to the rate of work done, is proportional to |Ė|2 in the light
of Remarks 2.2.16 and 7.1.6, while for Fourier heat flow, it is proportional to |ṁ|2 =
|q|2 for small temperature variations (or |d|2 if d is chosen to be the independent
variable). We can take account of such models in a general theory by adding a term

Λ̇(t) · LdΛ̇(t)

to D, given by (7.1.25), and leave the free energy (7.1.9) or (7.1.10) unchanged.
However, rather than simply introducing such a term, we can extract it from the

theory developed above, in the following way. Let us replace L by

Lλ(s, u) = L(s, u) + λLde
−λ(s+u),

where Ld ∈ Lin(Γ) is a constant, and take the short memory limit λ → ∞ in the
rightmost term. By changing variables in the integrals from s, u to v = λs and w = λu,
we find that for large λ, the quantity ψ, given by (7.1.10), is unchanged, while D,
given by (7.1.25), is replaced by

D + Λ̇(t) · LdΛ̇(t).

Also, if L(u) in (7.1.13)3, is replaced by

Lλ(u) = L(u) + λLde
−λu,

then for large λ, this relation becomes

Σ(t) = ˜Σe(Λ0(t)) +
∫ ∞

0
L(u)Λ̇

t
(u)du + LdΛ̇(t).

7.2 Constitutive Equations in the Frequency Domain

Let us now consider the frequency-domain representation of (7.1.13). In the notation
of (C.1.3) and using (C.2.2), we write the transform of the causal function L′ in
(7.1.13) as

L′
+(ω) =

∫ ∞

0
L′(s)e−iωs ds = L′

c(ω) − iL′
s(ω). (7.2.1)

Unless indicated otherwise, the frequency may be taken to be real. The notation L′
F

will be reserved for a somewhat different use in (7.2.25) below. We have

L′
c(ω) =

1
2

[L′
+(ω) + L′

+(ω)], L′
s(ω) = − 1

2i
[L′
+(ω) − L′

+(ω)] (7.2.2)
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and

L′
+(ω) = L′

+(−ω), L′
c(−ω) = L′

c(ω), L′
s(−ω) = −L′

s(ω). (7.2.3)

As in Appendix C, we assume that

L′ ∈ L1(R+) ∩ L2(R+),

giving
L′
+ ∈ L2(R).

Indeed, recalling Remark 7.1.2, the stronger assumption

L ∈ L1(R+) ∩ L2(R+) (7.2.4)

can and will be made.

7.2.1 Sinusoidal Histories for the General Theory

Fabrizio and Morro [118, 120] (also [121]) examine the implications of thermody-
namics for the Fourier transform of the relaxation function derivative in the case of
a linear viscoelastic solid. They deduce simple necessary and sufficient conditions
for the validity of the second law applied to such materials. It follows from these
considerations that the Fourier sine transform of the relaxation function derivative
must be negative definite. This approach also provides a very simple demonstration
of the symmetry and positivity of the instantaneous and equilibrium elasticity ten-
sors. These and corresponding results for fluids and rigid heat conductors are given
in Sects. 8.1.1, 8.10.1, and 9.2. In this subsection, we derive corresponding results
for the general theory.

It is assumed that the independent quantity Λ has been varying sinusoidally for a
sufficiently long time to allow transient effects to be neglected, so that the response Σ
is also varying sinusoidally with the same period. Each period is generated by a cyclic
process (Definition 4.1.4), as described for more general materials in Sect. 5.1.2.

Consider a history and current value (Λt,Λ(t)) defined by

Λ(t) = Ceiω0t + Ce−iω0t, Λt(s) = Λ(t − s), ω0 ∈ R++, (7.2.5)

where C ∈ Γ is an amplitude and C its complex conjugate. The quantity Λt
+ has the

form

Λt
+(ω) = C

eiω0t

i(ω− + ω0)
+ C

e−iω0t

i(ω− − ω0)
,

using the notation of (C.2.10). The generalized stress, as given by (7.1.17)2, becomes

Σ(t) = ˜Σ0(Λ(t)) + Σh(t),

Σh(t) =
∫ ∞

0
L′(s)Λt(s) ds = L′

+(ω0)Ceiω0t + L′
+(−ω0)Ce−iω0t.

(7.2.6)
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Let us, for purposes of the following discussion, drop the assumption (7.1.18) that
L is symmetric. Referring to (4.1.4), we see that the work done on the material over
[t0, t] is given by

W(t0, t) =
∫ t

t0

Σ(s) · Λ̇(s)ds

= φ(t) − φ(t0) +
∫ t

t0

L(0)Λ(s) · Λ̇(s)ds +
∫ t

t0

Σh(s) · Λ̇(s)ds,

(7.2.7)

where relations (7.1.14) have been used. Now, by splitting L0 into its symmetric and
skew-symmetric parts and carrying out an integration by parts, we obtain

∫ t

t0

L0Λ(s) · Λ̇(s)ds =
1
2

[L0Λ(t) · Λ(t) − L0Λ(t0) · Λ(t0)]

+
1
2

∫ t

t0

(
L0 − L�

0

)
Λ(s) · Λ̇(s)ds.

Also
∫ t

t0

Σh(s) · Λ̇(s)ds

=
1
2

[
C · L′

+(ω0)C(e2iω0t − e2iω0t0 ) + C · L′
+(−ω0)C(e−2iω0t − e−2iω0t0 )

]

− iω0(t − t0)
[
C · L′

+(ω0)C − C · L′
+(−ω0)C

]
.

(7.2.8)

Let us take t = t0 + T , where T = 2π
ω0

. The term φ(t) − φ(t0) on the right of (7.2.7)
vanishes, as do the first two terms on the right of (7.2.8). Then, we have

∫ t

t0

L(0)Λ(s) · Λ̇(s)ds +
∫ t

t0

Σh(s) · Λ̇(s)ds

= −iω0T
2

[
C · (L0 − L�

0 )C − C · (L0 − L�
0 )C

+2C · L′
+(ω0)C − 2C · L′

+(−ω0)C
]

= −iω0T
{
C · (L0 − L�

0 )C + C · [L′
+(ω0) − L′∗

+ (ω0)]C
}
≥ 0,

(7.2.9)

where L′∗
+ (ω0) is the Hermitian conjugate of L′

+(ω0), defined by (A.2.8) to be
L′�
+ (ω0) = L′�

+ (−ω0). The final inequality is taken to be strict for 0 < ω0 < ∞; the
case of nondissipative materials is excluded. We can divide through by the positive
quantity ω0T . Taking the limit ω0 → ∞ and using (C.2.13) gives

− iC · (L0 − L�
0 )C = 2Cr · (L0 − L�

0 )Ci ≥ 0, (7.2.10)

where Cr, Ci are the real and imaginary parts of the arbitrary complex quantity C.
Note that the inequality need not be strict in this limit. Relation (7.2.10) implies that
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L0 = L�
0 , (7.2.11)

which is a special case of (7.1.18). Using (7.2.2)2 and (7.2.3)1, we deduce from
(A.2.12) that

L′
s(ω0) < 0, 0 < ω0 < ∞. (7.2.12)

Let us now reinstate (7.1.18) for all times (and therefore all frequencies for Fourier-
transformed quantities). Then (7.2.11) and (7.2.12) imply (7.2.9). Thus, we have the
following important result.

Proposition 7.2.1. The second law, as expressed by (7.2.9), implies (7.2.11) and
(7.2.12). Conversely, if (7.1.18) is assumed, (7.2.12) implies (7.2.9).

The symmetry of L′, as expressed by (7.1.18), is assumed henceforth, unless
otherwise stated.

The converse proved in Proposition 7.2.1 refers only to the particular history
(7.2.5). The following, more general, result can also be proved.

Proposition 7.2.2. Relation (7.2.12) implies that W(t0, t), taken over a cycle, is non-
negative.

Proof. Let us take the period of the cycle to be that corresponding to the frequency
ω0 > 0. Any history with such cyclic behavior can be expressed by the Fourier series

Λ(t) =
∞∑
n=1

(
Cne

inω0t + Cne
−inω0t

)
.

Relation (7.2.5) is of course a special case. The steps leading to the generalization
of (7.2.9) can be carried through without difficulty. Using the symmetry of L′, we
obtain that

W

(
t0, t0 +

2π
ω0

)
= −2π

∞∑
n=1

Cn · L′
s(nω0)Cn.

The result follows immediately. �

7.2.2 Properties of L′

We have, by (C.1.3)3 and (7.2.12),

L′
s(ω) =

∫ ∞

0
L′(s) sinωsds < 0.

Note that
L′

s(ω) = −ωLc(ω). (7.2.13)

The sine inversion formula (C.1.6)2 gives

L′(s) =
2
π

∫ ∞

0
L′

s(ω) sinωsdω. (7.2.14)
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Integration on (0, s) yields

L(s) − L0 =
2
π

∫ ∞

0

1 − cosωs
ω

L′
s(ω)dω ≤ 0, (7.2.15)

so that
L(s) ≤ L0. (7.2.16)

We divide by s and take the limit s → 0, which is assumed to exist. This yields

L′(0) ≤ 0. (7.2.17)

Indeed, if
|L′

s(ω)| ∼ |ω|−p, p > 1,

for large, real ±ω, then on making a change of variable u = ωs in (7.2.14), we obtain
that L′(0) = 0, but from (C.2.17)2, it is clear that this need not be true in general.
Indeed, we shall assume that

L′(0) < 0. (7.2.18)

Since L′
s ∈ L1(R+) ∩ L2(R+), then L′

s(ω)/ω ∈ L1(R+). Taking the limit s → ∞ in
(7.2.15) and recalling that L(∞) vanishes, we obtain, with the aid of the Riemann–
Lebesgue lemma (C.2.13),

L0 = −2
π

∫ ∞

0

L′
s(ω)

ω
dω > 0. (7.2.19)

We shall assume that

0 <

∣∣∣∣∣
∫ ∞

0
L(s)ds

∣∣∣∣∣ < ∞, (7.2.20)

where the rightmost inequality follows from (7.2.4). Near the origin in the frequency
domain,

L′
+(ω) =

∫ ∞

0
L′(s)ds − iω

∫ ∞

0
sL′(s)ds +O(ω2)

= −L0 + iω
∫ ∞

0
L(s)ds +O(ω2),

where (7.1.15)1 has been used. Observe that from the definition of the cosine trans-
form (C.1.3)4 and (7.2.13), we obtain

L′
c(0) = −L0,

L′
s(ω)

ω
−→
ω→0

−
∫ ∞

0
L(s)ds. (7.2.21)

The quantity L′
+ is analytic on Ω(−), by Proposition C.2.1. This property is ex-

tended by assumption to an open set containing Ω−. It is further assumed, for simplic-
ity, to be analytic at infinity, though this assumption must be dropped for materials
with finite memory, as discussed in Chap. 15.



166 7 A Linear Memory Model

The quantity L′
s has singularities in both Ω(+) and Ω(−) that are symmetric under

reflection in the origin, by (7.2.3)3. They are also symmetric under reflection in the
real axis, by virtue of (7.2.2)2 and Remark B.1.2, so that they are mirror images of
each other also with respect to the imaginary axis. The function L′

s goes to zero at
the origin and must also be analytic on the real axis. It vanishes linearly at the origin
by (7.2.20) and (7.2.21). By virtue of (7.2.12), (7.2.13), and the evenness of Lc,

Lc(ω) > 0, |ω| < ∞.

A quantity central to our considerations in later chapters is defined by

H(ω) = −ωL′
s(ω) = ω2Lc(ω) ≥ 0, ω ∈ R. (7.2.22)

It is a nonnegative, even tensor function of the frequency, vanishing quadratically
at the origin. It is a symmetric tensor in Lin(Rm), where m = 10. The relation (see
(C.2.16) and (C.2.17))

i lim
ω→∞

ωL′
+(ω) = lim

ω→∞
ωL′

s(ω) = L′(0) (7.2.23)

yields
L′(0) = −H(∞) ≡ −H∞. (7.2.24)

The symmetric quantity H∞ is positive definite by virtue of (7.2.18).
If L(s), s ∈ R+ is extended to the even function L(|s|) on R, then dL(|s|)/ds is an

odd function with Fourier transform given by

L′
F(ω) = −2iL′

s(ω), (7.2.25)

which follows from (C.1.6)1. We have, from (C.2.22),

L′
+(ω) = − 1

2πi

∫ ∞

−∞

L′
+(ω′)

ω′ − ω
dω′, ω ∈ Ω(−).

One can replace L′
+(ω′) by L′

+(ω′) + F(ω′), where F is analytic in Ω(+) and goes to
zero as ω−1 for large ω, since closing the contour on Ω(+) results in its contributing
zero by Cauchy’s theorem. In particular, we can put F(ω′) = λL′

+(ω′), where λ is
any complex number. Choosing λ = −1 gives

L′
+(ω) =

1
π

∫ ∞

−∞

L′
s(ω

′)

ω′ − ω
dω′, ω ∈ Ω(−),

by virtue of (7.2.2)2. Referring to (7.2.1) and the Plemelj relation (B.2.14)2, we de-
duce

L′
c(ω) =

1
π
P

∫ ∞

−∞

L′
s(ω

′)

ω′ − ω
dω′ =

2
π
P

∫ ∞

0

ω′L′
s(ω

′)

(ω′)2 − ω2
dω′, ω ∈ R, (7.2.26)

where (7.2.3)3 has been used. This expresses L′
c at nonnegative frequencies, in terms

of L′
s for nonnegative frequencies at which physical measurements are possible.

Choosing λ = 1 interchanges the roles of L′
c, L

′
s. These are examples of “disper-

sion relations” ([167] and references therein).
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7.2.3 Frequency-Domain Representation of the History

Consider the Fourier transform of Λt ∈ L1(R+) ∩ L2(R+), given by (see (C.1.3))

Λt
+(ω) =

∫ ∞

0
Λt(u)e−iωudu.

The derivative of Λt
+ with respect to t will be required. Assuming that Λt ∈

C1(R+), we find, with the aid of (5.1.14) and an integration by parts, that

d
dt
Λt
+(ω) = −iωΛt

+(ω) + Λ(t). (7.2.27)

By virtue of (C.2.16), (C.2.17),

i lim
ω→∞

ωΛt
+(ω) = lim

ω→∞
ωΛt

s(ω) = Λ(t). (7.2.28)

We deduce from (C.2.10) that the Fourier transform of Λt
r(s) = Λ

t(s) − Λ(t), s ∈ R,
is given by

Λt
r+(ω) = Λt

+(ω) − Λ(t)
iω− , (7.2.29)

which, on noting (7.2.28), can be seen to behave as ω−2 at large frequencies. Also,
with the aid of (7.2.27), we see that

d
dt
Λt
+(ω) = −iωΛt

r+(ω),
d
dt
Λt

r+(ω) = −iωΛt
r+(ω) − Λ̇(t)

iω− . (7.2.30)

A continuation of the history Λt(u), u ∈ R+, is Λt(u), u ∈ R−−. Its Fourier trans-
form is given by

Λt
−(ω) =

∫ 0

−∞
Λt(u)e−iωudu.

The Fourier transform over R is

Λt
F(ω) =

∫ ∞

−∞
Λt(u)e−iωudu = Λt

+(ω) + Λt
−(ω).

Corresponding to (7.2.29), we have

Λt
r−(ω) = Λt

−(ω) +
Λ(t)
iω+

.

Thus

Λt
rF(ω) = Λt

r+(ω) + Λt
r−(ω) = Λt

F(ω) + iΛ(t)

(
1
ω− − 1

ω+

)
. (7.2.31)

The last term on the right is proportional to the singular delta function δ(ω), by virtue
of (C.2.19).
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7.2.4 Constitutive Equations in Terms of Frequency-Domain Quantities

Applying Parseval’s formula (C.3.1) to (7.1.13)1 by extending the range of integra-
tion to R in the latter formula, one obtains

Σ(t) = Σe(t) +
1

2π

∫ ∞

−∞
L′
+(ω)Λt

r+(ω) dω. (7.2.32)

As above, if we replace L′
+(ω) by L′

+(ω) + F(ω), where F(ω) is analytic on Ω− and
is a constant or zero at infinity, the relationship still holds. This follows by a simple
application of Cauchy’s theorem over Ω−, using the behavior of Λt

r+ at large ω. In
particular, we have

Σ(t) = Σe(t) +
1

2π

∫ ∞

−∞
[L′
+(ω) + λL′

+(ω)]Λt
r+(ω) dω, (7.2.33)

where λ is any complex constant. Choosing λ = −1 yields

Σ(t) = Σe(t) +
i
π

∫ ∞

−∞
L′

s(ω)Λt
r+(ω) dω. (7.2.34)

In fact, (7.2.34) corresponds to taking the even extension of L to R. This amounts to
writing (7.1.13)1 as

Σ(t) = Σe(t) +
∫ ∞

−∞

d
ds

L(|s|)Λt
r(s) ds, (7.2.35)

where Λt
r is taken to be zero on R−. Parseval’s formula applied to (7.2.35) gives that

L′
F replaces L′

+ in (7.2.32) and (7.2.34) follows from (7.2.25). Relation (7.2.34) was
first given for viscoelastic materials in [104].

If we take λ = 1, then iL′
s(ω) in (7.2.34) is replaced by L′

c(ω). This is less conve-
nient for future use because there is no relation for L′

c corresponding to (7.2.12),
yielding (7.2.22), a quantity guaranteed to be nonnegative by thermodynamics,
which allows an important factorization to be carried out. In fact, L′

c(ω) is non-
negative in many standard models, but this is not guaranteed by thermodynamics. A
similar drawback applies to other choices of λ.

7.3 The Form of the Generalized Relaxation Function

A material can be characterized by the singularity structure of L′
+ on Ω(+), as may be

seen, at least in the case that L′
+ is analytic at infinity, by evaluating

L′(s) =
1

2π

∫ ∞

−∞
L′
+(ω)eiωs dω, s ∈ R++,

L′(s) = 0, s ∈ R−−, L′(0) = L′(0+),
(7.3.1)

using (B.1.14).
The possible types of singularities are isolated singularities, discontinuities asso-

ciated with branch cuts, and essential singularities (Sects. B.1.4, B.1.5). We take L to
be a scalar quantity L for purposes of this discussion. In the context of assumptions
made later, in Sect. 11.6, there is no loss of generality in doing this.
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7.3.1 Isolated Singularities

Let us first consider the case that L′+ has only isolated singularities. We confine the
discussion to the case that the number of such singularities is finite, not only to avoid
convergence issues but also in recognition of the fact that the determination of L′+
for a given material is always, at least partially, an exercise in phenomenology, in
effect, curve-fitting to data points. Clearly, the outcome of such a phenomenologi-
cal exercise automatically produces a finite, rather than an infinite, number of such
singularities. Predictions of molecular theories, such as those based on Brownian
motion, may also provide guidance [133, 157].

Thus, L′+ can be expressed as a sum of pole terms of varying orders, at different
positions in Ω(+). We have

∫ ∞

0
e−αse−iωsds = − i

ω − iα
, α ∈ R++, (7.3.2)

and, by differentiation with respect to α,

∫ ∞

0
sne−αse−iωsds =

(−i)n+1n!
(ω − iα)n+1

, α ∈ R++. (7.3.3)

Thus, a simple pole at iα in the frequency domain corresponds to a decaying expo-
nential e−αs, while a pole of order n + 1 corresponds to sne−αs. A sum of poles of
different orders at iα corresponds to a polynomial multiplying e−αs.

Consider the case that α is complex. The formulas (7.3.2) and (7.3.3) apply un-
changed. However, e−αs will now contain oscillating trigonometric functions. We
adopt the terminology that e−αs is a strictly decaying exponential if α is real and
positive, and a decaying exponential if Imα � 0 and Reα ∈ R++.

The positions of the singularities are subject to the condition that the components
of L′ be real, namely (C.1.7), or for complex ω,

L′+(ω) = L′+(−ω), (7.3.4)

which implies that the singularities of L′+ in Ω(+) must be symmetric with respect to
reflection in the imaginary axis.

Note that if L′+ is given by sums of isolated singularities, it can always be ex-
pressed as a ratio of polynomials, in other words, a rational function of ω.

If the singularities are simple poles on the imaginary axis, with negative imagi-
nary coefficients, then we see from (7.3.2) that the resulting time-domain relaxation
function derivatives are monotonically decreasing in magnitude as time increases. If
the singularities are off the imaginary axis, so that trigonometric factors are generated
in the time-domain representation, L′ need not exhibit monotonic behavior.

7.3.2 Branch Cuts

When only branch-cut singularities exist, we obtain from (7.3.1)
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L′(s) =
1

2π

∫
C
d(ω)eiωs dω, s ∈ R+.

The integral over C encloses each branch cut. Consider one of these, from a to b on
Ω(+). Then the contribution to L′ is, from (B.1.11),

L′(s) =
1

2π

∫ b

a
d(ω)eiωs dω, s ∈ R+, (7.3.5)

with
d(ω) = L′−+ (ω) − L′++ (ω), (7.3.6)

where L′−+ (ω) is the limiting value of L′+(ω) approaching the cut segment on the side
where the shrunken contour around the cut is going from a to b and L′++ (ω) is the
limiting value approaching from the other side.

Indeed, we see from (7.3.5) that

L′+(ω) = − 1
2πi

∫ b

a

d(ω′)dω′

ω′ − ω
, ω ∈ Ω(−). (7.3.7)

Having derived this form for ω ∈ Ω(−), we can extend it by analytic continuation to
ω anywhere in the complex plane except on the cut. The Plemelj formulas (B.2.6)
give

L′±+ (ω) = ∓1
2
d(ω) − 1

2πi
P

∫ b

a

d(ω′)dω′

ω′ − ω
, ω ∈ [a, b],

from which (7.3.6) follows immediately.
The condition (7.3.4) implies that branch cuts not on the imaginary axis must

have mirror images of each other in that axis.
It is shown in Sect. 16.5 that branch cuts lead to a situation in which minimal

states are singletons, the maximum free energy is the work function and the lower
bound on the dissipation is the weakest possible estimate, namely zero. Thus, they
have disadvantages from a theoretical point of view but are widely used in modeling
experimental results [133].

If a branch cut is along the positive imaginary axis, then (7.3.5) becomes

L′(s) =
1

2π

∫ b0

a0

dc(α)e−αs dα, s ∈ R+, dc(α) = id(iα), (7.3.8)

where a0 = −ia and b0 = −ib; the quantities a0, b0 are real and nonnegative. The
function d is defined by (7.3.6). This important special case is referred to as the
continuous-spectrum form [94]. An expression for the minimum free energy of such
materials is derived in Chap. 14. Clearly, dc must be a real quantity. In this case,
(7.3.7) becomes

L′+(ω) =
1

2π

∫ b0

a0

dc(α)dα
α + iω

, ω � [a, b].

On the negative imaginary axis, at ω = iβ, β ≤ 0, and on the positive imaginary axis
for β < a0,
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L′+(iβ) =
1

2π

∫ b0

a0

dc(α)dα
α − β

, (7.3.9)

which is a real quantity. This also follows from (7.2.1). For β ∈ [a0, b0],

L′±+ (iβ) = ± i
2
dc(β) +

1
2π

P
∫ b0

a0

dc(α)dα
α − β

,

which are complex quantities, where the real part of each is a principal value integral
but otherwise similar to that in (7.3.9); the imaginary parts are proportional to the cut
discontinuity function.

If dc is a nonnegative quantity on the cut, then L′, given by (7.3.8), is a monoton-
ically decreasing function.

Branch-cut singularities off the imaginary axis may yield oscillatory behavior in
L′, combined with relaxation behavior, due to trigonometric functions multiplying
the exponentials.

7.3.3 Essential Singularities

Essential singularities at infinity of a certain kind are associated with finite memory,
i.e., where L′(s), or a term in this function, vanishes for s > sd > 0, the quantity sd
being the duration of the memory [111]. The minimum free energies associated with
simple examples of such materials are discussed in Chap. 15.

Essential singularities at finite points on Ω(+) are the remaining possibility. It is
difficult to imagine a choice of relaxation behavior that would generate such behavior
in L′+. Such singularities are excluded from consideration in this work.

With the exception of Chap. 15, we consider materials for which L′+ is analytic at
infinity, i.e., obeys (7.2.23) for the limit taken in any direction in the complex plane,
and indeed (C.2.16) if higher derivatives of L′(s) exist at the origin.

7.4 Minimal States in the Nonisothermal Case

In the classical approach to materials with memory, the state is identified with the
history of the independent variables. Noll’s characterization of state [277] is more
convenient for application to such materials. Indeed, Noll takes the material response
as the basis for the definition of state: if an arbitrary process, acting on different given
histories up to time t, leads to the same response of the material after time t, then the
given histories are equivalent and the state is represented as the class of all these
equivalent histories. We shall refer to it as the minimal state [110].

The concept of a minimal state arises out of Definition 4.1.2 of equivalent states.
A minimal state is in effect an equivalence class under this definition. The idea has
been applied to completely linear materials in [31, 89, 90, 92, 110, 176]. In the
present nonisothermal context, where the memory terms in the constitutive equations
are linear, the definition of minimal state is now discussed. Two states (Λt

1,Λ1(t)),
(Λt

2,Λ2(t)) are equivalent, or in the same minimal state, if
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Σ1(t + s) = Σ2(t + s),

Λ1(t + s) = Λ2(t + s) + Λc, s ≥ 0,
(7.4.1)

where Σ1, Σ2 are the generalized stresses corresponding to the states (Λt
1,Λ1(t)),

(Λt
2,Λ2(t)); we are using actual rather than relative histories. In the second relation

of (7.4.1), Λc is a constant member of Γ+. This is the condition that the process
Λ̇i(t + s), i = 1, 2, s ∈ R+ (see Remark 5.1.1), acting on each is the same. Using
(7.1.13)2 and the definition of Σ0 in (7.1.14), relation (7.4.1)1 becomes

Σe(Λ01(t + s)) − Σe(Λ02(t + s)) + L(s)Λc + It(s,Λt
d) = 0,

It(s,Λt
d) =

∫ ∞

0
L′(s + u)Λt

d(u)du,

Λt
d(u) = Λt

1(u) − Λt
2(u),

(7.4.2)

whereΛ01,Λ02 areΛ0, given by (5.1.21)2, for states 1, 2, respectively. Letting s → ∞
and recalling (7.1.15), we obtain

Σe(Λ
t
01(∞)) = Σe(Λ

t
01(∞) − Λ0c),

where Λ0c is Λc with the heat flow component equal to zero. It will be assumed that
Σe is uniquely invertible, so that

Λ0c = 0.

This condition does not, however, constrain the cumulative heat flow variable m.
Thus, we conclude that the conditions for equivalence take the form

Λ01(t) = Λ02(t),

It(s,Λt
d) = It(s,Λt

1) − It(s,Λt
2) = 0, s ≥ 0.

(7.4.3)

By applying the same process to each state, we conclude from (7.4.3)1 that

Λ01(t + s) = Λ02(t + s), s ≥ 0. (7.4.4)

A functional of (Λt,Λ(t)) or (Λt
r,Λ(t)) that yields the same value for all mem-

bers of the same minimal state will be referred to as a function or functional of the
minimal state or as a minimal-state variable.

Note that (cf. Proposition 4.1.3) from (7.4.1),

W1(t + s) −W1(t) =
∫ t+s

t
Σ1(u)Λ̇1(u)du

=

∫ t+s

t
Σ2(u)Λ̇2(u)du = W2(t + s) −W2(t).

Conversely, the condition

W1(t + s) −W1(t) = W2(t + s) −W2(t), s ∈ R+,

which is satisfied for any process
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Λ̇(u) = Λ̇1(u) = Λ̇2(u), u ∈ [t, t + s],

implies that
Σ1(u) = Σ2(u), u ∈ [t, t + s],

and the two states are equivalent.
For relaxation functions in the form of finite sums of (more than one) exponen-

tials, there are typically many different histories in the same minimal state [160, 176].
For the case of integrals of exponentials, as in (7.3.5) and (7.3.8), this is not so: the
sets of equivalent states have only one member [94, 160]. A generalization of these
results is given in Sect. 16.5.

Let us assume for simplicity that (7.4.3)1 and (7.4.4) are replaced by Λ1(t + s) =
Λ2(t + s), s ≥ 0. This is true for all isothermal models, which are those mainly of in-
terest in later chapters. It is then clear from (7.4.3) that the statement that (Λt

1,Λ1(t))
is equivalent to (Λt

2,Λ2(t)) implies that (Λt
d,Λd(t)) is equivalent to the zero history

and current value. In particular, this means that Λd(t) = Λ1(t) − Λ2(t) = 0. The
converse is also true.

The following notation is introduced:

〈Λt
1,Λ

t
2〉 =

∫ ∞

0

∫ ∞

0
Λt

1(s1) · L12(s1, s2)Λt
2(s2)ds1ds2. (7.4.5)

We have
〈Λt

1,Λ
t
2〉 = 〈Λt

2,Λ
t
1〉

by virtue of (7.1.4) with (7.1.6)1.
Let (Λt

1,Λ(t)), (Λt
2,Λ(t)) be any equivalent states. Then a free energy is a func-

tional of the minimal state if

ψ(Λt
1,Λ(t)) = ψ(Λt

2,Λ(t)). (7.4.6)

It is not necessary that a free energy have this property, though it holds for many of
the free energies introduced in later chapters. Notably, this is true for the minimum
free energy, as can be shown in great generality (Remark 4.2.11) but also in other
cases. It follows from (7.1.19) and (7.4.6) that

〈Λt
1,Λ

t
1〉 = 〈Λt

2,Λ
t
2〉. (7.4.7)

Note that if Λt
d is equivalent to the zero history, then from (7.4.6),

ψ(Λt
d, 0) = 0, (7.4.8)

or from (7.4.7),
〈Λt

d,Λ
t
d〉 = 0. (7.4.9)

If the material has minimal states that are nonsingleton, then (7.4.9) implies that
the quadratic functional with kernel L12 is positive semidefinite. If the material has
singleton minimal states, then this quadratic functional is positive definite.
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In general, one cannot deduce (7.4.9) from (7.4.3) or vice versa, so that (7.4.9)
does not necessarily imply that the free energy is a functional of state. Also, (7.4.3)
does not in general imply (7.4.7) or indeed (7.4.9). However, assume that

〈Λt,Λt〉 = (pt, pt), (7.4.10)

where (·, ·) is the norm in some specified function space and pt = pt(u,Λt), u ∈ U ⊆
R, is a linear functional of Λt. Assume also that the requirement

pt(u,Λt
d) = pt(u,Λt

1) − pt(u,Λt
2) = 0 (7.4.11)

is equivalent to (7.4.3)2. Then we can deduce the following result. Relation (7.4.3)2

implies (7.4.11), which implies (7.4.7) and also (7.4.9) or (7.4.8). Thus, it follows
that free energies whose history-dependent part obeys (7.4.10) are functionals of the
minimal state and also obey (7.4.9).

We will introduce in later chapters categories of free energies derivable from
extremum requirements (for example, the minimum free energies), all of which meet
condition (7.4.10).

If (7.4.7) is used in (7.4.9), we deduce that

〈Λt
1,Λ

t
1〉 = 〈Λt

2,Λ
t
2〉 = 〈Λt

1,Λ
t
2〉. (7.4.12)

These relations in turn imply (7.4.9).

7.5 Forms of the Work Function

We seek general expressions for the total work done on the material. Allowing for
a disturbed initial state in (7.2.7)1 with t0 = −∞ and using (7.1.14)2 together with
(7.1.17)1,4, we have that

W̃(Λt,Λ(t)) = W(t) = φ(−∞) +
∫ t

−∞
Σ(u) · Λ̇(u)du

= φ(−∞) +
∫ t

−∞
Σe(u) · Λ̇(u)du +

∫ t

−∞
Σrh(u) · Λ̇(u)du

= φ(t) +
∫ t

−∞
Σrh(u) · Λ̇(u)du

= φ(t) +
∫ t

−∞

∫ ∞

0
L(s)Λ̇(u − s) · Λ̇(u)dsdu

= φ(t) +
∫ t

−∞

∫ u

−∞
L(u − v)Λ̇(v) · Λ̇(u)dvdu

= φ(t) +
∫ t

−∞

∫ t

v
L(u − v)Λ̇(v) · Λ̇(u)dvdu

= φ(t) +
∫ t

−∞

∫ t

u
L(v − u)Λ̇(u) · Λ̇(v)dudv.

(7.5.1)
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The last two forms follow from identities similar to those in (5.2.10). The symmetry
of L has also been used. Adding (7.5.1)6 and (7.5.1)8 and dividing by two gives

W(t) = φ(t) +
1
2

∫ ∞

0

∫ ∞

0
L(|s − u|)Λ̇t

(u) · Λ̇t
(s)duds (7.5.2)

after changes of variables. This is a special case of (5.2.11). By means of the relations

Λ̇
t
(u) =

∂

∂t
Λ(t − u) = − ∂

∂u
Λt

r(u)

and two partial integrations, it follows from (7.5.2) that

W(t) = φ(t) +
1
2

∫ ∞

0

∫ ∞

0
L12(|s − u|)Λt

r(u) · Λt
r(s)duds, (7.5.3)

where

L12(|s − u|) = ∂

∂s
∂

∂u
L(|s − u|) = − ∂2

∂s2
L(|s − u|) = − ∂2

∂u2
L(|s − u|). (7.5.4)

It will be useful later to write (7.5.3) in the form

W(t) = φ(t) +
1
2

∫ t

−∞

∫ t

−∞
L12(|s − u|)[Λ(u) − Λ(t)] · [Λ(s) − Λ(t)]duds. (7.5.5)

Note the relation [107]

L12(|s − u|) = −2δ(s − u)L′(|s − u|) − L′′(|s − u|) (7.5.6)

in terms of the singular delta function, where the prime denotes differentiation with
respect to the explicit argument. This follows by differentiating the relation

∂

∂s
L(|s − u|) = sign(s − u)L′(|s − u|)

with respect u.
Assume that Λ̇

t
(u) = 0, Λt

r(u) = 0, u < 0. Then application of the convolution
theorem and Parseval’s formula (Sect. C.3) to (7.5.2) and (7.5.3) gives

W(t) = φ(t) +
1

2π

∫ ∞

−∞
Λ̇

t
+(ω) · H(ω)

ω2
Λ̇

t
+(ω)dω

= φ(t) +
1

2π

∫ ∞

−∞
Λt

r+(ω) ·H(ω)Λt
r+(ω)dω,

(7.5.7)

where (7.2.22) has been used. The Fourier transforms of L(|s|) and −d2L(|s|)/ds2 (see
(7.5.4)2), required for the convolution theorem, are determined as follows. Recalling
(7.2.25), we observe further that by virtue of (C.1.5)1,

LF(ω) = 2Lc(ω) = 2
H(ω)
ω2

.
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Also, the Fourier transform of −d2L(|s|)/ds2 is given by

−(iω)2LF(ω) = 2H(ω).

The nonnegativity of H yields that the integral terms in (7.5.7) are also nonnegative.
Thus, the memory integrals in (7.5.2) and (7.5.3) have this property, which gives that

W(t) ≥ φ(t). (7.5.8)

The quantity W(t) is in fact a free energy with zero rate of dissipation in that
it meets the requirements listed in Sect. 5.1.1. Properties P1 and P2 follow from
(7.5.3), while P3 is a consequence of (7.5.8). Property P4 with D(t) = 0 follows
from (7.5.1)2. The quantity W(t) is greater than any other free energy, and so is often
referred to as the maximum free energy, denoted by ψM(t). However, it will be shown
to be a function of the minimal state only if that state is a singleton.
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Viscoelastic Solids and Fluids

We now consider special cases of the constitutive relations (7.1.13), namely linear
viscoelastic solids and fluids with linear memory under isothermal conditions in the
present chapter and an approximate version of rigid heat conductors in Chap. 9. Some
of the formulas are similar to those derived in the general case, and detailed proofs
are omitted or a different version is given. Other formulas are specific to completely
linear materials, for example.

More use will be made, for illustrative purposes, of the abstract terminology and
notation introduced in Chaps. 3 and 4 in discussing these specific materials than in
the general case. This is particularly true for Chap. 9.

Combining constitutive relations for solids and fluids with the equations of mo-
tion (1.3.25) yields the dynamical equations describing the time evolution of the
material under specified initial and boundary conditions. Questions of the existence,
uniqueness, and stability of the solutions of these integro–partial differential equa-
tions are considered in Part IV, particularly in Chap. 24. Practical methods for ob-
taining explicit solutions, particularly in the quasistatic approximation, may be found
in older texts such as [65] and especially [167].

8.1 Linear Viscoelastic Solids

In the general form of the theory, we are dealing with finite linear viscoelasticity
[73], where the stress is given by a linear memory functional of the strain history and
a nonlinear (or linear) function of the current strain. The space Γ reduces to Sym and
Lin(Γ) to Lin(Sym). Thus, (7.1.21) reduces to

Ŝ(t) = Ŝe(E(t)) +
∫ ∞

0
G′(u)Et

r(u)du, G′(u) =
ρ

κ
L′
E(u). (8.1.1)
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For the case of completely linear viscoelasticity, we replace Ŝ by the Cauchy stress
tensor T, and (8.1.1) becomes

T(t) = G∞E(t) +
∫ ∞

0
G′(u)Et

r(u)du, (8.1.2)

where the relative strain history Et
r is given by

Et
r(s) = Et(s) − E(t). (8.1.3)

The quantity G is the relaxation function of the viscoelastic material. For a vis-
coelastic solid, G(∞) = G∞ is a positive tensor, defined by (1.4.12)2. Thus, we
no longer have the condition (7.1.15)1. This property can be retained by using
G(u) = G(u) − G∞. We will not do so, however, for reasons of convention. This
means that certain partial integrations are slightly more complicated. We are there-
fore adopting what was referred to in Remark 7.1.2 as the conventional choice. Note
that the assumption (7.2.4) no longer applies. We shall assume that G(·) − G∞ ∈
L1(R+) ∩ L2(R+). Relations (7.1.13)2,3 become

Ŝ(t) = Ŝe(E(t)) + (G0 −G∞)E(t) +
∫ ∞

0
G′(u)Et(u)du,

= Ŝe(E(t)) −G∞E(t) +
∫ ∞

0
G(u)Ėt(u)du, G0 = G(0),

Ėt(u) =
∂

∂t
Et(u) = − ∂

∂u
Et(u),

where we have used (7.1.14) and assumed that Et(∞) = E(−∞) = 0. Applying
(7.2.19) to the subspace Sym of Γ gives

G0 > G∞ ≥ 0, (8.1.4)

where G∞ (or specifically its shear part may vanish for a viscoelastic fluid.
In the completely linear case, these become

T(t) = G0E(t) +
∫ ∞

0
G′(u)Et(u)du, (8.1.5)

or alternatively,

T(t) =
∫ ∞

0
G(u)Ėt(u)du. (8.1.6)

Equation (8.1.5) is identical to (1.4.11), without the explicit X dependence. The
forms (8.1.2), (8.1.5), and (8.1.6) correspond to (7.1.13).

We have already supposed in Sect. 1.4.3 that G′(·) ∈ L1(R+); now we further
assume that G′(·) ∈ L1(R+) ∩ L2(R+), in accordance with Sect. C.1. The relaxation
function is defined by

G(s) = G0 +

∫ s

0
G′(ξ)dξ. (8.1.7)

Thermodynamics implies the symmetry of G0 and G∞, as we shall see below, but not
the symmetry of G(s), s ∈ R++. However, we shall assume that G(s) is a fourth-order
symmetric tensor, a special case of (7.1.18).
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Remark 8.1.1. In a particular basis, G has components Gi jkl, all subscripts in the
range 1–3. The symmetry referred to in the previous paragraph refers to the inter-
change of {i j} and {kl}, as in (2.4.8). However, we see from (8.1.5), together with the
symmetry of T and E, respectively, that

Gi jkl = Gjikl = Gi jlk, (8.1.8)

which generalizes (2.4.7) and (2.4.9).

From (1.3.32) in Definition 1.3.10, we see that the stress power per unit volume
is T · D. In the linear approximation, D, given by (1.2.23), reduces to Ė, so that the
power now becomes T · Ė. Thus, the inequality (4.1.7), expressing the dissipation
principle, yields in this context

∫ dP

0
Ė(t) · G0E(t)dt +

∫ dP

0
Ė(t) ·

∫ ∞

0
G′(s)Et(s)ds ≥ 0, (8.1.9)

which must hold for any cycle, where Ė(t) is the process with duration dP.

8.1.1 Thermodynamic Restrictions for Viscoelastic Solids

We now examine thermodynamic restrictions on the relaxation function [118, 120]
by an approach equivalent to but more elementary than that developed in Sect. 7.2.1
for the general theory. Let us consider strain-tensor time dependence of the form

E(s) = E1 cosωs + E2 sinωs, s ≤ t, (8.1.10)

where ω ∈ R++ and E1, E2 ∈ Sym. The corresponding process P̃ ∈ Π at time t is
given by

P̃(t) = Ė(t) = −ωE1 sinωt + ωE2 cosωt, t ∈ [0, dP), (8.1.11)

where dP = 2πm/ω, m being any positive integer. Thus, we obtain a cycle, denoted
by (σ̃(t), P̃).

Theorem 8.1.2. The inequality (8.1.9) holds for any cycle (σ̃(t), P̃) only if the in-
equality

E1 · [GT
0 −G0]E2 −

∫ ∞

0
[E1 · G′(s)E1 + E2 · G′(s)E2] sinωs ds

−
∫ ∞

0
E1 · [G′(s) −G′T (s)]E2 cosωs ds ≥ 0

(8.1.12)

holds for every ω ∈ R++ and every E1, E2 ∈ Sym.
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Proof. Substitution of (8.1.10) and (8.1.11) into (8.1.9) gives
∫ dP

0
(−ωE1 sinωt + ωE2 cosωt) · G0(E1 cosωt + E2 sinωt)dt

+

∫ dP

0

{
(−ωE1 sinωt + ωE2 cosωt)

∫ ∞

0
G′(s)[E1(cosωt cosωs + sinωt sinωs)

+ E2(sinωt cosωs − cosωt sinωs)]ds} dt ≥ 0,

which, after integrating with respect to t, with dP = 2πm/ω and using (A.2.3), yields
(8.1.12). �

Some useful results can be derived by considering in (8.1.12) the limiting cases
ω → ∞ and ω → 0.

Corollary 8.1.3. The inequality (8.1.12) implies the symmetry of G0, i.e.,

G0 = GT
0 . (8.1.13)

Proof. By virtue of the Riemann–Lebesgue lemma (C.2.13), the integrals in (8.1.12)
vanish when we consider the limit ω → ∞. Hence, the arbitrariness of E1, E2 ∈ Sym
gives (8.1.13). �
Corollary 8.1.4. The inequality (8.1.12) implies the symmetry of G∞, i.e.,

G∞ = GT
∞. (8.1.14)

Proof. By virtue of (8.1.13), relation (8.1.12), in the limiting case ω → 0, gives

E1 · [GT
∞ −G∞]E2 ≥ 0,

and the arbitrariness of E1, E2 leads to (8.1.14). �
By (8.1.13), we have the following result.

Corollary 8.1.5. The inequality (8.1.12) implies that∫ ∞

0
[E1 · G′(s)E1 + E2 · G′(s)E2] sinωs ds

+

∫ ∞

0
E1 · [G′(s) −G′�(s)]E2 cosωs ds ≤ 0

(8.1.15)

for every ω ∈ R++ and every E1, E2 ∈ Sym.

Referring to (C.1.3) and (C.2.2), we put

G′
+(ω) =

∫ ∞

0
G′(u)e−iωu du = G′

c(ω) − iG′
s(ω), (8.1.16)

where G′
c and G′

s denote the Fourier cosine and sine transforms of G′. Explicitly, the
sine transform is given by

G′
s(ω) =

∫ ∞

0
G′(u) sinωu du. (8.1.17)

The following important result is a special case of (7.2.12).
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Corollary 8.1.6. The inequality (8.1.12) implies the negative definiteness of G′
s ∈

Sym for every ω ∈ R++.

Proof. Putting E1 = E2 in (8.1.15), we obtain G′
s(ω) ≤ 0, ω ∈ R+. Thus, we have

G′
s(ω) < 0, ω ∈ R++, (8.1.18)

while G′
s(0) = 0. �

If G(τ) is assumed to be symmetric for all τ ∈ R+, then condition (8.1.18) implies
that (8.1.12) and the dissipation principle (8.1.9) must hold for all histories of the
form (8.1.10). More generally, one can show that (8.1.18), for G symmetric, implies
that (8.1.9) holds for any cycle, using histories represented by Fourier series (see
Proposition 7.2.2). This procedure is presented in some detail for compressible fluids
in Sect. 8.9.3.

The definition of G′
s(ω) can be extended to R− by the relation G′

s(−ω) = −G′
s(ω),

ω ∈ R.

Corollary 8.1.7. The inequality (8.1.18) implies that (cf. (7.2.16))

G0 −G(s) > 0, s ∈ R++. (8.1.19)

Proof. From the inversion formula of the Fourier sine transform G′
s(ω), expressed

by (see (C.1.6))

G′(s) =
2
π

∫ ∞

0
sinωsG′

s(ω)dω,

we have, by integrating with respect to s,

G(s) −G0 =
2
π

∫ ∞

0

1 − cosωs
ω

G′
s(ω)dω, (8.1.20)

which, by virtue of the inequality (8.1.18), provides the desired result. �

For ease in writing let
G′

0 := G′(0).

Corollary 8.1.8. We have
G′

0 ≤ 0 (8.1.21)

and
G0 −G∞ ≥ 0. (8.1.22)

Proof. Relation (8.1.21) can be deduced in the same way as (7.2.17), while (8.1.22)
follows from (8.1.19) by taking the limit s → ∞. �

Besides the assumptions that G′
0 exists and is bounded, we now add that it is such

that
G′

0 < 0, (8.1.23)
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which is a special case of (7.2.18). Moreover, since G∞ is positive definite, from
(8.1.22) it follows that G0 also has this property.

These results were derived at different times through various approaches. The
most pertinent references are now noted.

Coleman [68] proved the symmetry of the instantaneous elastic modulus (8.1.13)
from the second law in the form of the Clausius–Duhem inequality. The symmetry of
the equilibrium elastic modulus (8.1.14) was obtained by Day [86] via the Clausius
inequality. Apart from the inequality being strict, (8.1.18) was first derived by Graffi
[169] in the case of isotropic materials by requiring that energy be dissipated in a
period of a sinusoidal strain function E(t) = E sinωt. Accordingly, (8.1.18) may be
rightly referred to as Graffi’s inequality.

The connection between (8.1.18) and energy dissipation is emphasized in [233],
where the energy dissipated in one period [0, dP], dP = 2π/ω, is shown to be

∫ dP

0
T(Et) · Ė(t)dt = −πE · G′

s(ω)E. (8.1.24)

Incidentally, that is why −G′
s(ω) is often referred to as the loss modulus. The in-

equality (8.1.21) for the initial derivative of the relaxation function was proved first
by Bowen and Chen [40], by having recourse to discontinuous histories, in the one-
dimensional case via the Clausius–Duhem inequality. The same result was proved in
[265] with C∞ histories in the three-dimensional case. The inequality (8.1.22) traces
back to Coleman [67, 68].

Apparently, the inequality (8.1.19) first appeared in [120], but it is in a sense
related to a previous result by Day [86] (cf. also [321]), who showed that as a conse-
quence of dissipativity, the relaxation function satisfies the condition

G0 −G∞ ≥ ±[G(s) −G∞]. (8.1.25)

To show the connection, observe that the limit s → ∞ in the expression (8.1.20) for
G(s) −G0 gives (cf. (7.2.19))

G∞ −G0 =
2
π

∫ ∞

0

1
ω
G′

s(ω)dω. (8.1.26)

Consequently,

G(s) −G∞ = −2
π

∫ ∞

0

cosωs
ω

G′
s(ω)dω,

and the obvious inequalities
∫ ∞

0

1
ω
|E · G′

s(ω)E|dω ≥
∫ ∞

0

| cosωs|
ω

|E · G′
s(ω)E|dω ≥

∣∣∣∣∣
∫ ∞

0

cosωs
ω

E · G′
s(ω)Edω

∣∣∣∣∣
for any E ∈ Sym yield (8.1.25).

A relation analogous to (8.1.25) can of course be given for the general theory
(Sect. 7.2.2).
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Remark 8.1.9. While (8.1.13) and (8.1.14) are enforced by thermodynamics, it is not
necessarily the case that G(τ) is symmetric for intermediate values of τ. We will,
however, assume that (cf. (7.1.18))

G(τ) = G�(τ), τ ∈ (0,∞). (8.1.27)

Since G′ ∈ L2(R+), Parseval’s formula (C.3.1) allows us to write the constitutive
equation (8.1.5) as [104]

T(t) = G0E(t) +
2
π

∫ ∞

0
G′

s(ω)Et
s(ω)dω (8.1.28)

for any Et ∈ L2(R+). This formula is obtained by extending the integral in (8.1.5) toR
and taking the odd extension of Et, using (C.1.6)1. We can replace G′

+(ω) by iG′
s(ω)

because of the oddness of Et
s(ω). Since the integrand is now even, the integration

interval can be transformed to R+.
A more general viewpoint on this kind of manipulation was adopted earlier to

yield (7.2.33) and in particular (7.2.34), which corresponds to (8.1.28).
Now it is important to generalize (8.1.28) so that it holds for all Et ∈ E, where E

is the set of histories Et such that
∣∣∣∣∣
∫ ∞

0
G′(s)Et(s)ds

∣∣∣∣∣ < ∞

for a given G′ ∈ L2(R+) ∩ L1(R+). If we denote by G the vector space defined by

G =
{
F : R+ → Lin(Sym,Sym);F = αG′ + f, ∀f ∈ C∞

0 (R+)
}
,

then E = G′, where G′ is the dual of G or the space of all linear continuous functionals
on G. Thus, the elements of E have a Fourier transform in a distributional sense.
Relation (8.1.28) can be carried over into the set E.

8.2 Decomposition of Stress

Consider the constitutive equation of linear viscoelasticity, given by (8.1.2) or
(8.1.5). The integrals with Et and Et

r suggest the introduction of certain functions
that will prove useful. These are defined by

Ĭt(τ,Et) := G(τ)E(t) +
∫ ∞

0
G′(s + τ)Et(s)ds

= G∞E(t) + It(τ,Et
r),

(8.2.1)

where (cf. (7.4.2)2)∗

∗ The quantity It was originally defined in the literature as the negative of the functional used
here. This change in sign, which is consistent with Sect. 7.4, is introduced here and later so
that its relationship with the stress functional is a little more precise.
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It(τ,Et
r) =

∫ ∞

0
G′(s + τ)Et

r(s)ds. (8.2.2)

It is easy to see that Ĭt coincides with the stress resulting from the partly static
history (1.4.10), namely T̂(Et(τ) ), where τ is the duration of the static part.

One can derive from Ĭt both E(t) and It by virtue of the following relations:

lim
τ→∞

Ĭt(τ,Et) = G∞E(t)

and
It(τ,Et

r) = Ĭt(τ,Et) − lim
τ→∞

It(τ,Et).

Also, we have

It(τ,Et) :=
∫ ∞

0
G′(s + τ)Et(s)ds

= −G(τ)E(t) + Ĭt(τ,Et) = −Ğ(τ)E(t) + It(τ,Et
r),

(8.2.3)

where
Ğ(τ) := G(τ) −G∞. (8.2.4)

The time derivative of It(·,Et
r) with respect to t will be of interest. This is given

by

İt(τ,Et
r) =

d
dt
It(τ,Et

r) = Ğ(τ)Ė(t) + It(1)(τ,E
t
r), (8.2.5)

where

It(1)(τ,E
t
r) =

d
dτ

It(τ,Et
r) =

∫ ∞

0
G′′(s + τ)Et

r(s)ds. (8.2.6)

In the following we shall also use a simpler notation by writing Ĭt(τ), It(τ), and
Ĩt(τ) instead of Ĭt(τ,Et), It(τ,Et

r), and It(τ,Et), respectively.
Let t = 0 be the initial instant when a process Pτ is applied to the material. The

stress will be a function of the initial state σ and of this process. It can be written as
follows:

T̂(σ, Pτ) = G0E(τ) +
∫ τ

0
G′(u)Eτ(u)du +

∫ ∞

τ

G′(u)Eτ(u)du.

An integration by parts and a change of variable give

T̂(σ, Pτ) =
∫ τ

0
G(τ − u)Ė(u)du +G(τ)E(0) +

∫ ∞

0
G′(ξ + τ)E(−ξ)dξ. (8.2.7)

We can identify the state σ with (E(0),E0), where the history is E0(ξ) = E(−ξ),
ξ ∈ R++, and the process Pτ with ĖP

τ , defined as Ė(u), u ∈ [0.τ). Moreover, in (8.2.7)
we can distinguish two effects by putting

T̂(0, ĖP
τ ) =

∫ τ

0
G(τ − u)ĖP

τ (u)du
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and noting that Ĭt, given by (8.2.1), has the form at t = 0

Ĭ0(τ,E0) = G(τ)E(0) +
∫ ∞

0
G′(ξ + τ)E0(ξ)dξ.

Thus, we can write the stress (8.1.5) in the form

T(τ) = T̂(0, ĖP
τ ) + Ĭ0(τ,E0). (8.2.8)

Here, we observe that T̂(0, ĖP
τ ) denotes the stress determined by the initial zero state

0 ((E(0) = 0,E0(ξ) = 0, ξ ∈ R+) and the process ĖP
τ , whereas Ĭ0(τ,E0) is the

stress determined by the initial state (E(0),E0) and the zero process 0†τ, with duration
τ ∈ R+; this zero process renders the first term on the right of (8.2.7) zero. Equa-
tion (8.2.8) means that T(τ) can be viewed as the superposition of the two effects
T̂(0, ĖP

τ ), which involves only the process ĖP
τ , and I0(τ,E0), which involves only the

state (E(0),E0).

8.3 Equivalence and Minimal States

We now suppose that the process is applied at time t, thus acting in the time interval
[t, t + τ), where τ denotes its duration. For a linear viscoelastic solid, in the initial
state Et at time t, we have

T(t + τ) = G0E(t + τ) +
∫ τ

0
G′(u)Et+τ(u)du +

∫ ∞

τ

G′(u)Et+τ(u)du

= G(τ)E(t) +
∫ τ

0
G(u)Ėt+τ(u)du +

∫ ∞

0
G′(τ + ξ)Et(ξ)dξ.

(8.3.1)

Definition 4.1.2 of equivalence yields some restrictions on the constitutive equa-
tions. The first result [31, 90] is the following theorem (cf. (7.4.3)).

Theorem 8.3.1. Two histories Et
1, E

t
2 of E are equivalent, relative to (8.1.5), if and

only if

Et
1(0) = Et

2(0),
∫ ∞

0
G′(ξ + τ)Et

1(ξ)dξ =
∫ ∞

0
G′(ξ + τ)Et

2(ξ)dξ ∀τ ≥ 0.

(8.3.2)

Proof. We have the state σ(t) = Et. The requirement T̂(Et
1, Ė

P
τ ) = T̂(Et

2, Ė
P
τ )∀τ ≥ 0,

taking into account (8.3.1), yields

G(τ)E1(t) +
∫ ∞

0
G′(ξ + t)Et

1(ξ)dξ

= G(τ)E2(t) +
∫ ∞

0
G′(ξ + t)Et

2(ξ)dξ ∀τ ≥ 0.
(8.3.3)

Taking τ → ∞ gives (8.3.2)1. Then (8.3.2)2 follows immediately. �
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Some important consequences of this theorem, considered in [123], will now be
described.

Corollary 8.3.2. For a viscoelastic material characterized by (8.1.5), the equiva-
lence conditions for two histories Et

1, E
t
2 can be expressed by

T̂(Et
1, 0

†
τ) = T̂(Et

2, 0
†
τ) ∀τ ∈ R+, (8.3.4)

where 0†τ is the zero process of duration τ ∈ R+.

Proof. For any τ ∈ R+ the relation (8.3.4) applied to (8.3.1) gives (8.3.3). �

By virtue of Theorem 8.3.1, we see that equivalent histories are characterized by
the pair (Et(0), Ĩt), where Ĩt(τ) is given by (8.2.3) (note the comment after (8.2.6)).
Consequently, the state of a linear viscoelastic solid may be identified with the pair
(Et(0), Ĩt) instead of the whole history Et. This observation was first made in [176],
where the particular case with the kernel G′ given by a sum of exponentials was
studied.

Remark 8.3.3. The class σR of equivalent histories, by virtue of (8.2.3), can also be
represented by the single function given by (8.2.1)

Ĭt(τ) = T̂(Et, 0†τ) = Ĩt(τ) +G(τ)E(t) ∀τ ∈ R+, (8.3.5)

where Et is any history among those in σR, since by definition, the function Ĭt(τ) is
the same for all Et ∈ σR. Moreover, the knowledge of Ĭt on R+ provides

E(t) = G−1
∞ lim

τ→∞
Ĭt(τ)

and hence also Ĩt by (8.3.5).

A minimal state is identified with an equivalence class represented by

σR(t) = (E(t), Ĩt(·)) (8.3.6)

or
σR(t) = Ĭt(·).

The description of a state as minimal refers to the fact that it can be characterized
by a minimum set of data. Examples are discussed in the next section.

8.4 State and History for Exponential-Type Relaxation Functions

It is of interest to consider materials for which the relaxation function is a linear
combination of decaying exponentials, i.e.,
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G(ξ) = G∞ + Λ

n∑
k=1

gk exp(−αkξ),

G′(ξ) = −Λ
n∑

k=1

αkgk exp(−αkξ),

(8.4.1)

where Λ ∈ Lin(Sym) is positive definite and the coefficients gk, αk are positive, k =
1, 2, . . . , n. We will sometimes refer to these as discrete-spectrum materials.

We will now show that the presence of exponentials allows us to express the state
σ in terms of a finite number of quantities instead of the history Et, which is infinite-
dimensional. The description of a state in terms of such quantities can be described
as minimal, since it does not contain superfluous variables.

From (8.4.1)1, we have

G0 = G∞ + Λ

n∑
k=1

gk.

Moreover, putting

Tk(t) = Λgk

[
E(t) − αk

∫ ∞

0
exp(−αkξ)E(t − ξ)dξ

]
,

the stress tensor, given by (8.1.5), becomes

T(t) = G∞E(t) +
n∑

k=1

Tk(t).

We can consider the (n+ 1)-tuple (E,T1,T2, . . . ,Tn), as the state at time t. Alter-
natively, let

Ek(t) =
∫ ∞

0
exp(−αkξ)E(t − ξ)dξ, (8.4.2)

giving

T(t) = G∞E(t) + Λ
n∑

k=1

gk[E(t) − αkEk(t)].

Thus, we can also consider the state as the (n + 1)-tuple (E,E1,E2, . . . ,En).
These two modes of description of state are related to but not the same as that dis-

cussed in Sect. 8.3. Let us now consider how σR might be described for a viscoelastic
material with a relaxation function of the form (8.4.1)1.

Let σR(t) be given by (8.3.6). Using (8.2.3)1 and (8.4.1)2, we obtain

Ĩt(τ) = −Λ
n∑
i=1

αigi exp(−αiτ)Ei(t),
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where the quantities Ei are defined by (8.4.2). The derivatives of the function Ĩt(τ)
with respect to τ, at τ = 0, are given by

Ĩtp(0) = Λ
n∑
i=1

gi(−αi)
p+1Ei(t), p = 0, 1, . . . , n − 1.

Thus, we obtain a linear system, which can be solved for E1(t), . . . ,En(t) in terms of
the quantities Ĩt(0), Ĩt1(0), . . . , Ĩt(n−1)(0). Accordingly, putting

σR = (E(t), Ĩt(0), Ĩt1(0), . . . , Ĩt(n−1)(0)),

the state is (n + 1)-dimensional.

8.5 Inversion of Constitutive Relations

The inversion of the constitutive equations of linear viscoelasticity has been studied
in [41] as a Wiener–Hopf problem. We now describe a more direct approach [123].
Let us consider the constitutive equation (8.1.5), namely

T(t) = G0E(t) +
∫ ∞

0
G′(s)E(t − s)ds, (8.5.1)

where the domain of G′ is carried over to R by putting G′(s) = 0∀s < 0. Hence, we
also have

T(t) = G0E(t) +
∫ ∞

−∞
G′(s)E(t − s)ds.

Putting, for formal convenience,

H(t) = G0E(t), K(s) = G′(s)G−1
0 ,

and assuming that H ∈ L1(R), we have

T(t) = H(t) +
∫ ∞

−∞
K(s)H(t − s)ds ∀t ∈ R.

Taking the Fourier transform and applying the convolution theorem (C.3.3) gives

TF(ω) = [1 +K+(ω)]HF(ω), (8.5.2)

where, referring to (8.1.16),

K+(ω) = G′
+(ω)G−1

0 = [G′
c(ω) − iG′

s(ω)]G−1
0 . (8.5.3)

It follows that
K+(0) = [G∞ −G0]G−1

0 = G∞G
−1
0 − 1, (8.5.4)

since G′
+(0) = G∞ − G0; this follows immediately from the definition of G′

+(ω),
given by (8.1.16)1.
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Remark 8.5.1. We see from Proposition C.2.1 that K+(ω) or [1 +K+(ω)] has all its
singularities in the upper half-plane and thus is analytic in the lower half-plane. This
is equivalent to the requirement that (8.5.1) be a causal relationship.

The quantity 1+K+(ω) is invertible for any ω ∈ R. We see this by observing that for
real ω,

Im[1 +K+(ω)] = −G′
s(ω)G−1

0 � 0 ∀ω � 0,

Re[1 +K+(0)] = G∞G
−1
0 � 0.

Accordingly, using (8.5.2), we can express HF(ω) in the form

HF(ω) = TF(ω) − [1 +K+(ω)]−1K+(ω)TF(ω).

Taking inverse Fourier transforms yields

H(t) = T(t) +G0

∫ ∞

−∞
J′(ξ)T(t − ξ)dξ,

where

G0J
′(ξ) = − 1

2π

∫ ∞

−∞
[1 +K+(ω)]−1K+(ω) exp(iωξ)dξ. (8.5.5)

Applying G−1
0 , we have

E(t) = G−1
0 T(t) +

∫ ∞

−∞
J′(ξ)T(t − ξ)dξ.

Now, this relationship must be causal; in other words, we must be able to write it in
the form

E(t) = J0T(t) +
∫ ∞

0
J′(ξ)T(t − ξ)dξ, J0 = G−1

0 > 0, (8.5.6)

so that
J′(ξ) = 0, ξ < 0.

Remark 8.5.2. It follows from Proposition C.2.1 and (8.5.5) that the zeros of 1 +
K+(ω) must also be in the upper half-plane [167]. These observations apply where
1 + K+(ω) has zeros and isolated singularities. If branch-cut singularities (see
Sect. B.1.5), in particular continuous-spectrum singularities, are present, these must
be in the upper half-plane for both 1+K+(ω) and its inverse. This is discussed further
in Sect. 16.5, in particular in Remark 16.5.1.

As in (8.1.7) for the relaxation function, we define the creep function as

J(s) = J0 +

∫ s

0
J′ (ξ)dξ, J0 = J(0). (8.5.7)
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The inverse Fourier transform of (8.5.5) gives that

G−1
0 [1 +K+(ω)]−1K+(ω) = −

∫ ∞

0
J′ (ξ)e−iωξ dξ. (8.5.8)

Let us assume that J(∞) is finite. This implies that the material is a solid [167].
Combining (8.5.4) and (8.5.8) at ω = 0, one deduces with the aid of (8.5.6)2 that

J(∞) = J∞ = G−1
∞ > 0. (8.5.9)

Recalling (8.1.22), we see that

J0 = G−1
0 ≤ G−1

∞ = J∞, (8.5.10)

so that the creep function J(s) is, at least in an overall sense, increasing, while the
relaxation function G(s) is, at least in an overall sense, decreasing.

Indeed, we can come at this result in another way. Let us write (8.5.8) in the form

G0J
′
+(ω) = −[1 +K+(ω)]−1K+(ω) = [1 +K+(ω)]−1 − 1. (8.5.11)

Since, by virtue of (8.1.27), all quantities are symmetric in Lin(Sym), we have that
K+(ω) = K∗(ω), for example. It will be assumed that K+(ω) and K+(ω) (or K∗

+(ω))
commute, so that K+(ω) is a normal transformation (see after (A.2.11)) and that they
commute with G0. These properties will in fact hold under the assumption made in
Sect. 7.1.5. Then, from (8.5.11) and (8.5.3),

[1 +K+(ω)][1 +K+(ω)]G0

[
J
′
+(ω) − J′

+(ω)
]

= K+(ω) −K+(ω) = −2iG′
s(ω)G−1

0 .
(8.5.12)

Since [1+K+(ω)][1+K+(ω)]G0 is a nonnegative invertible tensor, we deduce from
(8.1.18) that

J′
s(ω) =

1
2i

[
J
′
+(ω) − J′

+(ω)
]
> 0. (8.5.13)

The analogue of Corollary 8.1.7 yields that

J(s) − J0 > 0, s ∈ R+,

and in particular, (8.5.10) follows.
The general linear relation (7.1.33) can be inverted in a manner similar to that

outlined above.
Let E or T, on [0, t), be regarded as the process; then we can write

TP(t) = G0EP(t) +
∫ t

0
G′(s)EP(t − s)ds + Î(t) (8.5.14)

and

EP(t) = J0TP(t) +
∫ t

0
J′(ξ)TP(t − ξ)dξ + Ŷ(t), (8.5.15)
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where EP and TP denote the restrictions of E and T to [0, t). Hence, we put EP =

0, TP = 0 on (−∞, 0). Moreover, recalling (8.3.1), we see that the two equations
(8.5.14) and (8.5.15) hold if

Î(t) =

⎧⎪⎪⎨⎪⎪⎩
∫ ∞

0
G′(t + ξ)E0(ξ)dξ, ∀t > 0,

0, ∀t ≤ 0,
(8.5.16)

and

Ŷ(t) =

⎧⎪⎪⎨⎪⎪⎩
∫ ∞

0
J′(t + ξ)T0(ξ)dξ, ∀t > 0,

0, ∀t ≤ 0.

Let us now consider (8.5.14). The domain of G′ is carried over to R by putting
G′(s) = 0∀s < 0. Again, we put H(t) = G0EP(t), K(s) = G′(s)G−1

0 and assume that

H ∈ L1(R), Î ∈ L1(R).

Hence,

TP(t) = H(t) +
∫ ∞

−∞
K(s)H(t − s)ds + Î(t) ∀ t ∈ R.

After applying a Fourier transform, we can solve for HF , obtaining

HF(ω) = TP
F(ω) − ÎF(ω) − [1 +K+(ω)]−1K+(ω)[TP

F(ω) − ÎF(ω)].

Using the inverse Fourier transform, we have

EP(t) = G−1
0 [TP(t) − Î(t)] +

∫ ∞

−∞
J′(ξ)TP(t − ξ)dξ −

∫ ∞

−∞
J′(ξ)Î(t − ξ)dξ ∀ t ∈ R,

and hence

EP(t) = G−1
0 TP(t) +

∫ t

0
J′(ξ)TP(t − ξ)dξ −G−1

0 Î(t)

−
∫ ∞

0
J′(ξ)Î(t − ξ)dξ ∀ t ∈ R.

(8.5.17)

Equations (8.5.15) and (8.5.17) are required to provide the same values of EP on R.
Thus, we find that

Ŷ(t) = −J0Î(t) −
∫ ∞

0
J′(ξ)Î(t − ξ)dξ ∀t ∈ R.

8.6 Linear Viscoelastic Free Energies as Quadratic Functionals

We now give a representation of a free energy in the linear viscoelastic case and
examine some of its properties [91, 105, 158].

Relation (7.1.9) reduces to

ψ(t) = φ̃(E(t)) +
1
2

∫ ∞

0

∫ ∞

0
Et
r(s) · G12(s, u)Et

r(u)dsdu, (8.6.1)
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where

G12(s, u) =
∂2

∂s∂u
G(s, u). (8.6.2)

By Definition 4.1.6, we must have ψ ≥ 0 for all states (E(t),Et), in particular for
(0,Et), where the history is arbitrary. Thus, G12 must be a nonnegative operator in
the sense that the integral in (8.6.17) must be nonnegative for all histories. Therefore,
we have

ψ(t) ≥ φ(t), (8.6.3)

which is a special case of (5.1.25), a property that follows very generally from the
second law.

Since the integral in (8.6.1) must exist for finite relative histories, we assume that
(cf. (7.1.3)) as s → ∞, the kernel G12(s, u) goes to zero as

G12(s, u) ∼ s−1−b, b > 0, u ∈ R+, (8.6.4)

or more strongly; similarly for the limit of large u at fixed s.
Let us define (cf. (7.1.5))

G(s, u) = G∞ +

∫ ∞

s

∫ ∞

u
G12(s′, u′)ds′ du′, G∞ = G(∞,∞). (8.6.5)

Note that we are adopting the conventional choice as specified in Remark 7.1.2.
Relations (7.1.7) are replaced by

lim
s→∞

G(s, u) = G∞, lim
s→∞

∂

∂u
G(s, u) = 0, u ∈ R+, (8.6.6)

with similar limits at large u holding for fixed s.

Remark 8.6.1. In fact, (7.1.7)1 could be retained by using

G(s, u) = G(s, u) −G∞

instead of G.

We impose the conditions

G(s) = G(0, s) = G(s, 0), G(0) = G0 = G(0, 0), (8.6.7)

where G(s) is the relaxation function. This ensures the correct constitutive relations,
as does (7.1.14)3 in the general case. Relations

G1(s, 0) = G2(0, s) = G′(s), (8.6.8)

where G′(s) is the derivative of the relaxation function G(s), are an immediate con-
sequence. Note that (8.6.5) gives

G(s,∞) = G(∞, s) = G∞ ∀s ∈ R+, (8.6.9)
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from which, with (8.6.7), we deduce that

G(∞) = G∞. (8.6.10)

It follows from (8.6.5) and (8.6.4) that G1(s, u) and G2(s, u) vanish at large s, u,
respectively, a property corresponding to (7.1.8).

Equation (7.1.6)3 reduces to

G�(s, u) = G(u, s). (8.6.11)

Replacing φ̃(E(t)) by φ(t) and carrying out two partial integrations, we can write
(8.6.1) in the form

ψ(t) = φ(t) − 1
2
E(t) · G∞E(t) +

1
2

∫ ∞

0

∫ ∞

0
Ėt(s) · G(s, u)Ėt(u)dsdu. (8.6.12)

From (7.1.14)3, we have

G(s, 0) = G(0, s) = G(s). (8.6.13)

In the completely linear case,

φ(t) =
1
2
E(t) · G∞E(t). (8.6.14)

It is nonnegative by (1.4.13). Thus, (8.6.12) becomes

ψ(t) =
1
2

∫ ∞

0

∫ ∞

0
Ėt(s) · G(s, u)Ėt(u)dsdu.

Also, with the aid of (7.1.14)5, the form (7.1.19) becomes

ψ(t) = S (t) +
1
2

∫ ∞

0

∫ ∞

0
Et(s) · G12(s, u)Et(u)dsdu,

S (t) = φ(t) + E(t) · [̂S(t) − Ŝe(t) − (G0 −G∞)E(t)]

+
1
2
E(t) · (G0 −G∞)E(t).

In the completely linear case, the form of S is given by (see (7.1.34))

S (t) = E(t) · T(t) − 1
2
E(t) · G0E(t). (8.6.15)

These results derive from the general theory for which the equilibrium stress may
be nonlinear. It is instructive, however, to work through the completely linear case in
some detail.

Relation (5.1.11) reduces to the form

ψ̇(t) + D(t) = T(t) · Ė(t), (8.6.16)



194 8 Viscoelastic Solids and Fluids

for linear viscoelastic materials under isothermal conditions. The quantity D(t) de-
notes the internal dissipation function, which must be nonnegative because of ther-
modynamic considerations.

We consider the quadratic functional form

ψ(t) =
1
2
E(t) · G∞E(t) +

1
2

∫ ∞

0

∫ ∞

0
Et
r(s) · G12(s, u)Et

r(u)dsdu, (8.6.17)

instead of (8.6.1).
The functional (8.6.17) must satisfy (8.6.16), a constraint that will now be ex-

plored. The time derivative of (8.6.17), using (8.1.2), (8.1.3) and noting the relations

d
du

Et
r(u) =

d
du

Et(u) = − d
dt
Et(u) = −Ėt(u),

gives, with the aid of some integrations by parts,

ψ̇(t) = Ė(t) · G∞E(t) +
1
2

∫ ∞

0

∫ ∞

0

{
[Ėt(s) − Ė(t)] · G12(s, u)Et

r(u)

+ Et
r(s) · G12(s, u)[Ėt(u) − Ė(t)]

}
dsdu

= Ė(t) ·
[
G∞E(t) +

∫ ∞

0
G′(s)Et

r(s)ds

]

+
1
2

∫ ∞

0

∫ ∞

0
Ėt(s) · [G1(s, u) +G2(s, u)]Ėt(u)dsdu

= T(t) · Ė(t) +
1
2

∫ ∞

0

∫ ∞

0
Ėt(s) · K(s, u)Ėt(u)dsdu

= T(t) · Ė(t) +
1
2

∫ ∞

0

∫ ∞

0
Et
r(s) · K12(s, u)Et

r(u)dsdu,

(8.6.18)

where K12(s, u) denotes differentiation with respect to the arguments of†

K(s, u) = G1(s, u) +G2(s, u). (8.6.19)

Comparing (8.6.18) with (8.6.16), it follows that

D(t) = −1
2

∫ ∞

0

∫ ∞

0
Ėt(s) · K(s, u)Ėt(u)dsdu

= −1
2

∫ ∞

0

∫ ∞

0
Et
r(s) · K12(s, u)Et

r(u)dsdu ≥ 0,
(8.6.20)

so that thermodynamics requires that K and K12 must yield a nonnegative integral.
These expressions are special cases of (7.1.25) and (7.1.26).

Note that we can summarize the calculation in (8.6.18) by

† Note that the tensor K here is quite different from the quantity used briefly in the early part
of Sect. 7.1.
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˙̃ψ(Et,E(t)) =
∂

∂E(t)
ψ̃(Et),E(t) · Ė(t) + ∂tψ̃(Et,E(t)), (8.6.21)

where
∂

∂E(t)
ψ̃(Et,E(t)) = T̃(Et,E(t)) = T(t) (8.6.22)

and ∂t indicates differentiation with respect to the t dependence in Et. We express
this as a functional derivative in Sect. 5.1. Relation (8.6.22) follows by comparing
(8.6.21) with (8.6.18)4 because the rightmost term in (8.6.18)4 has no dependence on
Ė(t).

Remark 8.6.2. We treat (8.6.22), (8.6.3), and the nonnegative property of D in
(8.6.16) as the defining properties of a free energy, referred to as the Graffi conditions
in Sect. 5.1.1.

Alternative forms of relations (8.6.17) can be given in terms of histories rather
than relative histories. Partial integrations give

ψ(t) =
1
2
E(t) · G∞E(t) − 1

2
Et
r(∞) · G∞Et

r(∞)

+
1
2

∫ ∞

0

∫ ∞

0
Ėt(s) · G(s, u)Ėt(u)dsdu

if E(−∞) = Et(∞) is finite. The first two terms on the right cancel if E(−∞) is zero.
Also,

ψ(t) =
1
2
E(t) · G∞E(t) +

1
2

∫ ∞

0

∫ ∞

0
Et(s1) · G12(s1, s2)Et(s2)ds1ds2

− E(t) ·
∫ ∞

0

∫ ∞

0
G12(s1, s2)Et(s2)ds1ds2

+
1
2
E(t) ·

∫ ∞

0

∫ ∞

0
G12(s1, s2)ds1ds2E(t).

From (8.6.5) and (8.6.7)2 we have
∫ ∞

0

∫ ∞

0
G12(s2, s1)ds1ds2 = G0 −G∞.

Carrying out an integration in the second integral, we obtain

ψ(t) =
1
2
E(t) · G0E(t) + E(t) ·

∫ ∞

0
G′(s1)Et(s1)ds1

+
1
2

∫ ∞

0

∫ ∞

0
Et(s1) · G12(s2, s1)Et(s2)ds1ds2,

= S (t) +
1
2

∫ ∞

0

∫ ∞

0
Et(s1) · G12(s2, s1)Et(s2)ds1ds2,

(8.6.23)
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where S (t) is given by (8.6.15). Recalling Remark 7.1.2, we see that this relation is
a special case of (7.1.34) if we identify Le in that relation with L∞. Note that

∂S (t)
∂E(t)

= T(t),

and (8.6.22) follows immediately.

8.6.1 General Forms of a Free Energy in Terms of Stress

The representation (8.6.17) of a free energy can be given in terms of stress history,
rather than strain history, using (8.5.6). Also, consider the following argument. Let
us introduce a functional χ with the properties

∂χ(t)
∂T(t)

= E(t) (8.6.24)

and
χ̇(t) − D1(t) = E(t) · Ṫ(t). (8.6.25)

Noting the developments from (8.6.16) onward, we see that χ can be represented as

χ(t) =
1
2
T(t) · J∞T(t) +

1
2

∫ ∞

0

∫ ∞

0
Tt
r(s) · J12(s, u)Tt

r(u)dsdu,

J(s, 0) = J(0, s) = J(s), J∞ = J(∞),
(8.6.26)

in terms of the creep function defined by (8.5.5) and (8.5.7) and where J(·, ·) has sim-
ilar properties to those listed for G(·, ·) in (8.6.6)–(8.6.11). Also, referring to (8.6.19)
and (8.6.20), we see that

D1(t) =
1
2

∫ ∞

0

∫ ∞

0
Tt
r(s) · N12(s, u)Tt

r(u)dsdu,

N(s, u) = J1(s, u) + J2(s, u).
(8.6.27)

We can write (8.6.26) as

χ(t) = S 1(t) +
1
2

∫ ∞

0

∫ ∞

0
Tt(s) · J12(s, u)Tt(u)dsdu,

S 1(t) = T(t) · E(t) − 1
2
T(t) · J0T(t), J0 = J(0, 0) = J(0),

(8.6.28)

by analogy with (8.6.23) and (8.6.15). Relation (8.6.25) can be rewritten as

d
dt

[E(t) · T(t) − χ(t)] + D1(t) = T(t) · Ė(t). (8.6.29)

Comparison with (8.6.16) allows us to identify the quantity ψ, defined by the Legen-
dre transformation

ψ(t) = E(t) · T(t) − χ(t),
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as a free energy and D1(t) as the associated rate of dissipation, denoted convention-
ally by D(t). We have

∂ψ(t)
∂E(t)

= T(t) + E(t) · ∂T(t)
∂E(t)

− ∂χ(t)
∂T(t)

· ∂T(t)
∂E(t)

= T(t),

by virtue of (8.6.24). From (8.6.26) and (8.6.28), it follows that

ψ(t) = E(t) · T(t) − 1
2
T(t) · J∞T(t) − 1

2

∫ ∞

0

∫ ∞

0
Tt
r(s) · J12(s, u)Tt

r(u)dsdu

=
1
2
T(t) · J0T(t) − 1

2

∫ ∞

0

∫ ∞

0
Tt(s) · J12(s, u)Tt(u)dsdu.

(8.6.30)

Proposition 8.6.3. The kernel J12 must be such that the double integral on the right
of (8.6.30) is nonpositive and that on the right of (8.6.27) is nonnegative.

Proof. The nonpositivity of the integral on the right of (8.6.30) is sufficient to ensure
the non-negativity of ψ(t). We argue that it is also necessary. The property (8.6.3)
must always hold, where φ(t) is the free energy for the special history Et(s) = E(t),
s ≤ t. It follows from (8.1.2) that T(t) = G∞E(t) for this history and indeed T(t−u) =
T(t), u ≥ 0, so that the history of stress is also constant in this limit. Thus, we have

ψ(t) ≥ 1
2
E(t) · G∞E(t) =

1
2
T(t) · G−1

∞ T(t)

=
1
2
T(t) · J∞T(t) ≥ 1

2
T(t) · J0T(t),

by virtue of (8.5.9) and (8.5.10). This means that the double integral in (8.6.30) must
be nonpositive.

The second law requires that D1(t) in (8.6.29) be nonnegative, which leads to the
claimed property of the integral in (8.6.27). �

8.6.2 The Work Function as a Free Energy

We now consider a particular case of the expression (8.6.17), obtained on supposing
that G12(s1, s2) = G12(|s1 − s2|), which clearly obeys (8.6.8). Thus, we introduce the
following functional (cf. (7.5.3)):

ψM(t) =
1
2
E(t) · G∞E(t)+

1
2

∫ ∞

0

∫ ∞

0
Et
r(s1) · G12(|s1 − s2|)Et

r(s2)ds1ds2. (8.6.31)

Note that by (8.6.11), we can take G12(u), u ∈ R+, to be symmetric, which was
in any case assumed in Sect. 8.1 (see (8.1.27)).

Observe that for the choice of kernel in (8.6.31), the quantity K, given by
(8.6.19), vanishes, so that D is zero and (8.6.16) reduces to

ψ̇M(t) = T(t) · Ė(t). (8.6.32)
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We can therefore identify ψM with the work function

ψM(t) = ψM(t0) +
∫ t

t0

T(u) · Ė(u)du,

where t0 is some fixed time, which may be −∞ if the integral exists (see (7.5.1)1).
It is clear that ψM obeys the requirements of a free energy if the memory integral

in (8.6.31) is nonnegative. This indeed follows from the fact that (8.6.31) is a spe-
cial case of (7.5.3) and by recalling the argument leading to (7.5.8). However, it is
instructive to outline a more detailed, though equivalent, argument.

There is, however, a problem with categorizing the work function as a free en-
ergy, which arises out of Remark 18.2.

Proposition 8.6.4. Let W ∈ L2(R+) and M ∈ L1(R+); W has values in Lin(R3) and
M ∈ Lin(Lin(R3)). Also, let M� =M. The integral

J =
∫ ∞

0
W(t) ·

∫ t

0
M(t − τ)W(τ)dτdt

is positive for every nonzero W if and only if the Fourier cosine transform Mc is
positive definite for ω ∈ R++.

Proof. The faltung theorem applied to causal functions (see Sect. C.3) gives that if

V(t) =
∫ t

0
M(t − τ)W(τ)dτ,

then V+(ω) = M+(ω)W+(ω). Given two functions W and M ∈ L2(R+) that vanish
on R−, then Parseval’s formula (29.2.2) yields

∫ ∞

0
W(t) · V(t)dt =

1
2π

∫ ∞

−∞
W+(ω) · V+(ω)dω.

It follows from (C.2.2) that
∫ ∞

−∞
W+(ω) · V+(ω)dω =

∫ ∞

−∞
[Wc(ω) · Mc(ω)Wc(ω)+Ws(ω) · Mc(ω)Ws(ω)]dω.

The remaining terms vanish due to either the oddness of the integrand or a cancel-
lation that occurs by virtue of the symmetry assumption on M. Hence, we see that
J > 0 for every nonzero function W if Mc(ω) is positive definite for every ω ∈ R+.
Conversely, if J > 0 for every nonzero choice of W, then Wc(ω) · Mc(ω)Wc(ω) +
Ws(ω) · Mc(ω)Vs(ω) > 0 for ω > 0, and hence it follows that Mc(ω) is positive
definite for every ω ∈ R++. �

Relation (7.5.6) becomes, in the current context,

G12(|s1 − s2|) = −2δ(s1 − s2)G′(|s1 − s2|) −G′′(|s1 − s2|). (8.6.33)
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Using this result, we have
∫ ∞

0

∫ ∞

0
W(s1) · G12(|s1 − s2|)W(s2)ds1ds2

= −2
∫ ∞

0

∫ ∞

0
W(s1) · δ(s1 − s2)G′(|s1 − s2|)W(s2)ds1ds2

−
∫ ∞

0

∫ ∞

0
W(s1) · G′′(|s1 − s2|)W(s2)ds1ds2

= −2
∫ ∞

0
W(s) · G′

0W(s)ds − 2
∫ ∞

0

∫ t

0
W(t) · G′′(t − τ)W(τ)dτdt

= −2
∫ ∞

0
W(t) ·

∫ t

0
[G′′(t − τ) +G′

0δ(t − τ)]W(τ)dτdt.

(8.6.34)

Hence, by virtue of Proposition 8.6.4, it follows that G12 is a positive definite kernel
if and only if the cosine transform of G′′(t−τ)+G′

0δ(t−τ) is negative definite. Now,
from the definition of the Fourier cosine transform (C.1.3)4 we have

G′′
c (ω) =

∫ ∞

0
G′′(ξ) cosωξdξ

= G′(ξ) cosωξ |∞0 + ω
∫ ∞

0
G′(ξ) sinωξ dξ,

whence
G′′

c (ω) +G′
0 = ωG′

s(ω) < 0 ∀ω ∈ R++, (8.6.35)

by (8.1.18) and the oddness of G′
s. Since

∫ ∞

0
[G′′(ξ) +G′(ξ)δ(ξ)] cosωξ dξ = G′′

c (ω) +G′
0,

the quadratic form
∫ ∞

0

∫ ∞

0
W(s1) · G12(|s1 − s2|)W(s2)ds1ds2

is positive definite and hence vanishes only at W = 0. Putting W(s) = Et
r(s), we

conclude that the memory integral in (8.6.31) is nonnegative. Thus, ψM is minimal
at constant histories.

8.7 The Relaxation Property and a Work Function Norm

Let us consider the fading memory property introduced in Sect. 1.4.3 for linear vis-
coelastic materials. The function H, defined in the general case by (7.2.22), is given
in the present context by

H(ω) = −ωG′
s(ω) = ω2Gc(ω) ≥ 0 ∀ω ∈ R, (8.7.1)
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where G′
s is defined by (8.1.17). It follows in general from (7.2.23) that H is bounded

on R+.
From (8.6.34) and (8.6.35) it follows that (8.6.31) can be written as

ψ̃M(Et
r,E(t)) = ψM(t)

=
1
2
E(t) · G∞E(t) +

1
2π

∫ ∞

−∞
Et
r+(ω) · H(ω)Et

r+(ω)dω,
(8.7.2)

which is of course a special case of (7.5.7)2. From (7.2.29), we have

Et
r+(ω) = Et

+(ω) − E(t)
iω− = Et

c(ω) − i

(
Et

s(ω) − E(t)
ω

)
. (8.7.3)

The subscripts c, s indicate the cosine and sine transforms, defined by (C.1.3)3,4.
The quantity ω− may be replaced by ω, since the terms with ω− in the denominator
multiply H(ω), which vanishes quadratically at the origin. From (8.7.2) and (8.7.3),
using the evenness of H, Et

c and the oddness of Et
s, it follows that

ψ̃M(Et
r,E(t)) = ψM(t) =

1
2
E(t) · G∞E(t) +

1
π

∫ ∞

0

[(
Et

s(ω) − E(t)
ω

)

·H(ω)

(
Et

s(ω) − E(t)
ω

)
+ Et

c(ω) · H(ω)Et
c(ω)

]
dω.

(8.7.4)

Let us introduce the space H of histories (Et
r,E(t)) on R+ with values in Sym,

defined by

H =

{
(Et

r,E(t)) ∈ L2(R++) × Sym;
∫ ∞

0

[(
Et

s(ω) − E(t)
ω

)

· H(ω)

(
Et

s(ω) − E(t)
ω

)
+ Et

c(ω) · H(ω)Et
c(ω)

]
dω < ∞

}
.

The space H becomes a pre-Hilbert space with the inner product

(Et
1,E

t
2) =

1
2
E1(t) · G∞E2(t) +

1
π

∫ ∞

0

[(
Et

1s(ω) − E1(t)
ω

)

· H(ω)

(
Et

2s(ω) − E2(t)
ω

)
+ Et

1c(ω) · H(ω)Et
2c(ω)

]
dω,

where Et
1, E

t
2 are elements of H and the corresponding norm is denoted by ‖ · ‖H.

We observe that
‖Et‖2

H = ψ̃M(Et
r,E(t)). (8.7.5)

Using (8.1.2) rather than (8.1.5) for the stress functional in linear viscoelasticity, we
can write, instead of (8.1.28),

T(t) = G∞E(t) +
2
π

∫ ∞

0
G′

s(ω)

[
Et

s(ω) − E(t)
ω

]
dω.
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Indeed, this follows directly from (8.1.28) on noting (8.1.26). This is a continuous
functional with respect to the norm ‖ · ‖H [104].

Let

T (a)Et =

⎧⎪⎪⎨⎪⎪⎩
0 ∀s ∈ [0, a],

Et(s − a) ∀s ∈ (a,∞)

be the translated or partly static (see (1.4.10)) history associated with any history
Et ∈ H. From the definitions of the Fourier sine and cosine transforms (C.1.3)3,4, we
obtain

(T (a)Et)s(ω) = Et
c(ω) sinωa + Et

s(ω) cosωa,

(T (a)Et)c(ω) = Et
c(ω) cosωa − Et

s(ω) sinωa.

Using these relations, we can evaluate ψ̃M(T (a)Et), given by (8.7.4), which yields the
following expression for the norm, as defined by (8.7.5):

‖T (a)Et‖2
H =

∫ ∞

0
[Et

s(ω) · H(ω)Et
s(ω) + Et

c(ω) · H(ω)Et
c(ω)]dω.

Thus, we see that the norm ‖T (a)Et‖H, defined by (8.7.5), is independent of a, and
hence as a → ∞, it does not approach zero, so that

lim
a→∞

‖T (a)Et‖H � 0.

We observe that in the standard theory of fading memory, the norm ‖ · ‖ involves
an influence function k [72], and the relaxation property assumes the form

lim
a→∞

‖T (a)Et‖ = 0

for every history Et belonging to the corresponding function space. Hence, we might
say that with respect to the norm ‖ · ‖H, the relaxation property does not hold for
linear viscoelastic solids. However, it has the fading memory property, defined in
Sect. 1.4.3, as expressed by (1.4.12)1.

8.8 Viscoelastic Fluids

Fluids are with a symmetry group that is the full unimodular group. Memory effects
can be included also for these materials.

A viscoelastic fluidmay remember everything that ever happened to it, yet it can-
not recall any one configuration as being physically different from any other except in
regard to its mass density” [313]. Moreover, a “fluid may have definite memory of all
its past experience, [yet] it reacts to those experiences only by comparing them with
its present configuration” [312]. In other words, the stress in a fluid is unchanged by
a change of the reference configuration. Therefore, the present configuration is used
as reference.
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We confine our attention to the classical theory of linear viscoelasticity. A con-
stitutive equation of the Boltzmann type yields a hereditary law expressed by a linear
relationship between the stress and the infinitesimal strain history. A fluid character-
ized by such a constitutive equation is a simple material in the sense of the definition
given in [75, 103], and therefore and processes can be introduced as in Sect. 3.2. We
shall distinguish the cases of compressible and incompressible fluids.

8.9 Compressible Viscoelastic Fluids

Consider a viscoelastic fluid, with a constitutive equation for the stress of the form

T(ρ,Et
r) = −p(ρ)I + T̃(ρ,Et

r), (8.9.1)

where p(x, t) is the mass density, Et
r(x, s)∀s ∈ R++ is the relative strain history, given

by
Et
r(x, s) = Et(x, s) − E(x, t), (8.9.2)

while p denotes the pressure, I is the identity second-order tensor, and x is the po-
sition vector, which will be omitted henceforth. The last term T̃ is the extra stress
given by

T̃(ρ,Et
r) =

∫ ∞

0
λ1(ρ, s)Et

r(s)ds I + 2
∫ ∞

0
μ1(ρ, s)Et

r(s)ds, (8.9.3)

where Et
r(s) = tr(Et

r) and the memory kernels λ1(ρ, ·), μ1(ρ, ·) belong to L1(R+) ∩
L2(R+) for any fixed ρ > 0.

The state of such a compressible fluid can be described by means of the mass
density ρ and the history of Et

r. Thus

σ = (ρ,Et
r).

The process P is expressed by means of a piecewise continuous function DP : [0, dP)
→ Sym, defined by DP(τ) = ĖP(τ), the time derivative of the strain tensor over the
time interval [0, dP), dP being the duration of the process. We refer in this context
to the paragraph before (8.1.9). The ensuing states σ(t + τ) = (ρ(t + τ),Et+τ

r ) ∀τ ∈
(0, dP], due to the application of any process P = DP, are solutions of two differential
equations. That determining strain evolution has the form

d
dτ

Et+τ
r (s) = DP(τ − s) − DP(τ), 0 < s < τ. (8.9.4)

Moreover, referring to the conservation of mass relation (1.3.2)2, we see that since

∇ · v = trĖ = trD = D = −ρ̇/ρ, (8.9.5)
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the balance of mass in the evolving system is expressed by the equation

d
dτ

ρ(t + τ) = −ρ(t + τ)DP(τ), (8.9.6)

with solution
ρ(t + τ) = ρ(t)e−

∫ τ

0
DP(s)ds, (8.9.7)

which specifies the evolution of the density function.
We denote by Π the set of all processes P = DP with finite duration. For the set Σ

of states we give a definition characterized by the boundedness of the stress, putting

Σ =
{
σ = (ρ,Et

r); |T(ρ,Et+τ(c)
r )| < ∞ ∀τ ∈ R+

}
, (8.9.8)

where t is a parameter. Here we have used the partly static history (cf. (1.4.10))

Et+τ(c)
r =

⎧⎪⎪⎨⎪⎪⎩
Et
r(s − τ) ∀s ∈ [τ,∞),

0 ∀s ∈ (0, τ).
(8.9.9)

The extra stress, given by (8.9.3), obeys the equation

lim
τ→∞

T̃(ρ,Et+τ(c)
r ) = T̃(ρ, 0†) = 0, (8.9.10)

because of the fading memory property (Sect. 1.4.3).
The concept of equivalence of states, as defined in general by Definition 4.1.2,

can be introduced for fluids as follows.

Definition 8.9.1. Two states σ j(t) = (ρ j(t),Et
r j ) ( j = 1, 2) are equivalent if they give

the same stress,

T(ρ1(t + τ),Et+τ
r1

) = T(ρ2(t + τ),Et+τ
r2

) ∀τ ∈ (0, dP], (8.9.11)

for any process DP : [0, dP) → Sym.

The equivalence class induced by such a definition comprises the minimal states
σR of the fluid.

8.9.1 A Particular Class of Compressible Fluids

We consider the particular class of viscoelastic fluids characterized by the following
kernels:

λ1(ρ, s) = ρλ′(s), μ1(ρ, s) = ρμ′(s),

such that λ′, μ′ ∈ L1(R+) ∩ L2(R+). Also λ, μ ∈ L1(R+) ∩ L2(R+), where

λ(t) = −
∫ ∞

t
λ′(s)ds, μ(t) = −

∫ ∞

t
μ′(s)ds. (8.9.12)

Thus, in the constitutive equation (8.9.1), the extra stress T̃, given by (8.9.3),
assumes the form



204 8 Viscoelastic Solids and Fluids

T̃(ρ,Et
r) = ρV(Et

r) = ρ

∫ ∞

0
κ′(s)Et

r(s)ds I + 2ρ
∫ ∞

0
μ′(s)Ĕt

r(s)ds, (8.9.13)

where Ĕt
r = Et

r − 1
3E

t
rI is the trace-free part of Et

r and

κ′(s) = λ′(s) +
2
3
μ′(s).

We introduce a compact representation for T̃, putting

T̃(ρ,Et
r) = ρV(Et

r) = ρ

∫ ∞

0
G′(s)Et

r(s), (8.9.14)

where G′(s) is a fourth-order tensor-valued function G′ : R+ → Lin(Sym), with
representation in Lin(R6) as a diagonal matrix. The nonvanishing diagonal elements
are κ′(s) and 2μ′(s). The stress tensor, given by (8.9.1), can be written as

T(ρ,Et
r) = −p(ρ)I + ρ

∫ ∞

0
G′(s)Et

r(s)ds. (8.9.15)

For such materials, under the hypothesis that any finite density ρ yields a finite
pressure p(ρ), the space (8.9.8) of possible states can be defined as Σ = R+ × Γ,
where

Γ =

{
Et
r;

∣∣∣∣∣
∫ ∞

0
G′(s + τ)Et

r(s)ds
∣∣∣∣∣ < ∞ ∀τ ∈ R+

}
. (8.9.16)

Moreover, the space of minimal states σR, denoted by ΣR, can be characterized
as follows [100] (cf. Theorem 8.3.1).

Theorem 8.9.2. For a viscoelastic fluid of type (8.9.15), two states σ1 = (ρ1,Et
r1

)
and σ2 = (ρ2,Et

r2
) are equivalent in the sense of Definition 8.9.1 if and only if

ρ1(t) = ρ2(t),
∫ ∞

0
μ′(s + τ)Ĕt

r(s)ds = 0,
∫ ∞

0
κ′(s + τ)Et

r(s)ds = 0 ∀τ ∈ R+,
(8.9.17)

where Et
r = Et

r1
− Et

r2
.

Proof. If (8.9.17) are satisfied, then (8.9.11) follows immediately. Conversely, if
(8.9.11) holds for any process, then the expression (8.9.15) for time t + τ yields

T(ρ,Et+τ
r ) = −p(t + τ)I + ρ(t + τ)

∫ ∞

0
G′(s)Et+τ

r (s)ds

= −p(t + τ)I + ρ(t + τ)
∫ ∞

0
G′(u + τ)Et

r(u)du

+ ρ(t + τ)
∫ 0

−τ
G′(u + τ)Et

r(u)du.

(8.9.18)
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The quantity Et
r in the last integral is determined by the process through (8.9.4).

Then, from (8.9.11),

− [p(ρ1(t + τ)) − p(ρ2(t + τ))]I + ρ1(t + τ)
∫ ∞

0
G′(u + τ)Et

r1
(u)du

− ρ2(t + τ)
∫ ∞

0
G′(u + τ)Et

r2
(u)du

+ [ρ1(t + τ)) − ρ2(t + τ)]
∫ 0

−τ
G′(u + τ)Et

r(u)du = 0

(8.9.19)

is satisfied for any process. The scalar part of the process, which determines ρ1(t+τ)
and ρ2(t+τ), is specified by (8.9.7); moreover, for any fixed scalar part DP, the trace-
free part can be changed arbitrarily, affecting only the last integral in (8.9.19). Thus,
from (8.9.19) we obtain

ρ1(t + τ) = ρ2(t + τ) ∀τ ∈ R+, (8.9.20)

which, using (8.9.7), yields
ρ1(t) = ρ2(t).

These results give the other two conditions in (8.9.17), on using (8.9.20) in (8.9.19).�

This theorem allows us to state that the minimal state of a linear viscoelastic fluid
is an element of

ΣR = R
+ × (Γ/Γ0),

where Γ/Γ0 denotes the usual quotient space, where Γ0 is the set of the histories
Et
r ∈ Γ satisfying (8.9.17)2,3.

A process can be considered as a function P : Σ → Σ; thus, it maps the initial
state σi ∈ Σ into the final state Pσi = σ f ∈ Σ, and the differential equations (8.9.4)–
(8.9.6) govern the evolution. Recalling (8.9.16), we can also consider P : Γ → Γ,
such that any initial relative strain history γi ∈ Γ is associated with Pγi = γ f ∈ Γ;
then only (8.9.4) governs such an evolution.

8.9.2 Representation of Free Energies for Compressible Fluids

Under the hypothesis of isothermal processes, the dissipation principle (4.1.7) and
(5.1.10) (using only the mechanical components and replacing Ŝ by the Cauchy stress
tensor in this linearized theory; see also (3.4.9)) yield in the present context that
starting from a state σ, the work done on any cycle is nonnegative, i.e.,

W(σ, P) =
∮ dP

0

1
ρ
T(ρ,Et

r) · D(t)dt ≥ 0, (8.9.21)

where we omit the superscript on DP. For a fluid characterized by the constitutive
equation (8.9.15), we obtain two terms in (8.9.21), the first of which vanishes on a
cycle, by virtue of (8.9.5), since
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−
∮ dP

0

p(ρ)
ρ

I · D(t)dt = −
∮ dP

0

p(ρ)
ρ

D(t)dt =
∮ dP

0

p(ρ)
ρ2

ρ̇dt = 0.

This follows on observing that the quantity

φ(ρ) =
∫ ρ

ρ0

1
ξ2

p(ξ)dξ, (8.9.22)

ρ0 being the equilibrium mass density, is a single-valued function of ρ, with the
consequence that φ(ρ0) vanishes. Thus, (8.9.21) reduces to

W(σ, P) =
∮ dP

0

1
ρ
T̃(ρ,Et

r) · D(t)dt ≥ 0. (8.9.23)

We observe that the zero state is σ† = (ρ0, 0†), where 0† is the zero relative
history.

Taking into account Definitions 4.1.6 of a free energy and 4.2.1 of a minimum
free energy, we prove an important property of the free energy of a fluid characterized
by (8.9.15) [100].

Theorem 8.9.3. For materials described by (8.9.15), every free energy may be writ-
ten as the sum of two terms

ψ(σ) = φ(ρ) + ϕ(γ),

where φ is given by (8.9.22) and ϕ : SΓ → R is defined on a set SΓ that is Γ-invariant
(namely, if γ ∈ SΓ, then Pγ ∈ SΓ for every P ∈ Π) and satisfies

ϕ(γ2) − ϕ(γ1) ≤
∫ dP

0
V(Et

r) · D(t)dt, (8.9.24)

where Pγ1 = γ2. Moreover, if ψ(σ†) = 0, then

ϕ(0†) = 0.

Proof. We recall from Definition 4.1.6 that the domain of a free energy must be
invariant under the action of any process P ∈ Π . Let σ(t) = (ρ(t), γ(t)) ∈ S be a state
and P a process with duration dP. Then, Pσ(t) ∈ S if (ρ(t+ dP), γ(t+ dP)) ∈ S, where
ρ(t + dP) is the solution (8.9.7) of (8.9.6) with τ = dP and γ(t + dP) = Pγ(t), the
solution of (8.9.4). Therefore, S is invariant if and only if S = R+ × SΓ, where SΓ is
Γ-invariant.

Moreover, let P be a process of duration dP such that Pσ1 = σ2, where σ1 is the
state at time t = 0. The inequality defining a free energy (see (4.1.8)) yields

ψ(σ2) − ψ(σ1) ≤
∫ dP

0

1
ρ(t)

T(t) · D(t)dt = −
∫ dP

0

p(ρ(t))
ρ(t)

D(t)dt

+

∫ dP

0

[∫ ∞

0
κ′(s)Et

r(s)ds D(t) + 2
∫ ∞

0
μ′(s)Ĕt

r(s) · D̆(t)ds

]
dt,

(8.9.25)
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since
Ĕt
r(s) · D(t) = Ĕt

r(s) · D̆,

where D̆ is the trace-free part of D. Using (8.9.5), the first term of the right-hand side
of (8.9.25) becomes

−
∫ dP

0

p(ρ(t))
ρ(t)

D(t)dt =
∫ ρ2

ρ1

p(ρ)
ρ2

dρ = φ(ρ2) − φ(ρ1) (8.9.26)

with φ(ρ) given by (8.9.22). Substituting, we obtain

ψ(σ2) − ψ(σ1) ≤ φ(ρ2) − φ(ρ1)

+

∫ dP

0

[∫ ∞

0
κ′(s)Et

r(s)ds D(t) + 2
∫ ∞

0
μ′(s)Ĕt

r(s) · D̆(t)ds

]
dt.

From this relation it follows that the function ϕ = ψ − φ satisfies

ϕ(γ2) − ϕ(γ1) ≤
∫ dP

0

[∫ ∞

0
κ′(s)Et

r(s)ds D(t) + 2
∫ ∞

0
μ′(s)Ĕt

r(s) · D̆(t)ds

]
dt,

which is (8.9.24).
Finally, since

ψ(σ†) = φ(ρ0) + ϕ(0†), φ(ρ0) = 0,

then ψ(σ†) = 0 if and only if ϕ(0†) = 0. �

Therefore, the right-hand side of (8.9.24) gives the work done by starting from
γ ∈ Γ,

W(γ, P) =
∫ dP

0

1
ρ
T̃(ρ,Et

r) · D(t)dt =
∫ dP

0
V(Et

r) · D(t)dt. (8.9.27)

We define
WΓ(γ) = {W(γ, P); P ∈ Π}.

It is easy to prove that the minimum free energy is given by

ψm(σ) = φ(ρ) + ϕm(γ),

where, recalling (4.2.2),
ϕm(γ) = − inf WΓ(γ). (8.9.28)

The right-hand side is the able work.
A corresponding result can be proved for the general quadratic model discussed

in Chap. 7 (and therefore for all materials considered in Part III), where instead of
(8.9.15), we have (7.1.13)1, and the generalization of (8.9.26) follows from (7.1.14)2.

The discussion in Sect. 8.6 on free energies as quadratic functionals goes through
for fluids also but with φ(t), defined by (8.6.14), replaced by φ(ρ)), which is given by
(8.9.22).
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8.9.3 Thermodynamic Restrictions for Compressible Fluids

A procedure similar to that developed for viscoelastic solids in Theorem 8.1.2 and
corollaries will now be used to derive the restrictions imposed by the dissipation
principle on the constitutive equation (8.9.15).

For this purpose, taking into account (8.9.13) and (8.9.12), we can express the
constitutive equation in the form

T(t) = −p(ρ(t))I + ρ(t)
∫ ∞

0
κ(s)Ėt(s)ds I + 2ρ(t)

∫ ∞

0
μ(s)

d
dt
Ĕt(s)ds

= −p(ρ(t))I + ρ(t)
∫ ∞

0
κ(s)Dt(s)ds I + 2ρ(t)

∫ ∞

0
μ(s)D̆t(s)ds,

(8.9.29)

with the aid of two integrations by parts.

Theorem 8.9.4. The constitutive equation (8.9.29) complies with the dissipation
principle if and only if

κc(ω) > 0, μc(ω) > 0 ∀ω ∈ R++. (8.9.30)

Proof. The expression for the work given by (8.9.21), on substituting (8.9.29), has
two terms, the first of which, as we have already observed to derive (8.9.23), van-
ishes, by virtue of the balance of mass (8.9.5) and because the integral is evaluated
along a cycle. To discuss the other term, we consider the periodic function

D(t) = D1 cosωt + D2 sinωt ∀ω ∈ R++,

where D1, D2 ∈ Sym, and assume that the duration of the process P is 2π/ω times
some positive integer. As t runs over [0, dP) we obtain a cycle, since D(0) = D(dP)
and, by virtue of (8.9.7), where the integral on [0, dP) vanishes, ρ(0) = ρ(dP).

We can put D1 = D̆1+
1
3D1I, with D1 = trD1; similarly for D2. Therefore, (8.9.21)

reduces to
∮ dP

0

{∫ ∞

0
κ(s)

(
D2

1 cosω(t − s) cosωt + D2
2 sinω(t − s) sinωt

+ D1D2[cosω(t − s) sinωt + sinω(t − s) cosωt]) ds

+ 2
∫ ∞

0
μ(s)(D̆1 · D̆1 cosω(t − s) cosωt + D̆2 · D̆2 sinω(t − s) sinωt

+ D̆1 · D̆2[cosω(t − s) sinωt + sinω(t − s) cosωt]
)
ds

}
dt > 0,

and hence, by integrating with respect to t, we have

κc(ω)
(
D2

1 + D2
2

)
+ 2μc(ω)

(
D̆1 · D̆1 + D̆2 · D̆2

)
> 0 ∀ω ∈ R++

for any nonzero D1 and D2. Thus, the results (8.9.30) follow.
To show that (8.9.30) is a sufficient condition for the validity of (8.9.21), we note

that (σ(0), P) is a cycle if and only if D is periodic in [0, dP) with vanishing mean



8.9 Compressible Viscoelastic Fluids 209

value in the period. However, since any periodic history can be expressed through a
Fourier series, we can write

Dt(s) =
∞∑
h=1

{
Ăh cos hω(t − s) + B̆h sin hω(t − s)

+
1
3

[Ah cos hω(t − s) + Bh sin hω(t − s)]I
}
,

where Ah, Bh ∈ Sym and ω = 2π/dP.
The work done on a cycle is expressed by

W(γ, P) =
∮ dP

0

∫ ∞

0
κ(s)

∞∑
h,k=1

[Ah cos hω(t − s) + Bh sin hω(t − s)]

× (Ak cos kωt + Bk sin kωt)dsdt

+ 2
∮ dP

0

∫ ∞

0
μ(s)

∞∑
h,k=1

[
Ăh cos hω(t − s) + B̆h sin hω(t − s)

]

× (Ăk cos kωt + B̆k sin kωt)dsdt

=
π

ω

∞∑
k=1

[
κc(kω)

(
A2
k + B2

k

)
+ 2μc(kω)

(
Ă2

k + B̆
2
k

)]
> 0,

because of (8.9.30); thus, the work on any nontrivial cycle satisfies the dissipation
principle. �

For viscoelastic solids, the negative definiteness of the half-range sine transform
of G(s) is required by thermodynamics, as specified by (8.1.18). More generally,
we refer to (7.2.12). For viscoelastic fluids, the dissipation principle yields the posi-
tive definiteness of the half-range cosine transforms of κ(s) and μ(s). However, from
(8.9.30), taking account of the relation f ′s (ω) = −ω fc(ω) (see (7.2.13)), we also have

1
ω
κ′s(ω) < 0,

1
ω
μ′s(ω) < 0 ∀ω ∈ R++.

Hence, it follows that

Gc(ω) = − 1
ω
G′

s(ω) > 0 ∀ω ∈ R++, (8.9.31)

in terms of the kernel introduced in (8.9.14). Moreover, Gc vanishes like ω−2 for
large ω, since by (C.2.17)1, we have

lim
ω→∞

ω2Gc(ω) = −G′(0),

where G′(0) is negative definite by virtue of the same argument as that leading to
(8.1.21).
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8.10 Incompressible Viscoelastic Fluids

For compressible fluids, the pressure p is a scalar function of the density ρ, on which
also the extra stress T̃ depends. However, for incompressible fluids the density ρ does
not depend on time, and therefore, it is omitted from the constitutive equations for
the stress tensor. Consequently, the pressure p is no longer a function of ρ, but now
becomes an indeterminate function of time.

Incompressible viscoelastic fluids are the simplest materials with memory con-
sidered in this work, in that they are characterized by a single scalar memory kernel.
Some of the results presented correspond to properties demonstrated earlier for solids
and compressible fluids. Indeed, we shall abbreviate or omit certain demonstrations
because closely analogous proofs have been given earlier. Others derived in this sec-
tion have corresponding analogues for solids and compressible fluids that were not
discussed earlier. They are conveniently included here because of the simplicity of
the model. More recent work on this topic includes [11].

The constitutive equation for the stress tensor of a linear viscoelastic incompress-
ible fluid, supposed for simplicity homogeneous, is given by

T(x, t) = −p(x, t)I + 2
∫ ∞

0
μ′(s)Et

r(x, s)ds, (8.10.1)

where the material function μ′ ∈ L1(R+)∩L2(R+) yields the shear relaxation function

μ(s) = −
∫ ∞

0
μ′(τ)dτ ∀s ∈ R+. (8.10.2)

A fluid so characterized is a simple material, with state determined only by the
relative strain history, i.e.,

σ(t) = Et
r(s) ∀s ∈ R++.

The set of all states of the fluid is denoted by Σ. A process is a piecewise continuous
map P : [0, dP) → Sym defined by

P(τ) = ĖP(τ) ∀τ ∈ [0, dP). (8.10.3)

We denote by Π the set of all processes.
It is useful, as in the compressible case, to introduce the extra stress

T̃(Et
r) = T(t) + p(t)I = 2

∫ ∞

0
μ′(s)Et

r(s)ds

= 2
∫ ∞

0
μ(s)Ėt(s)ds = 2

∫ ∞

0
μ(s)D(t − s)ds,

(8.10.4)

which expresses the part of the stress due only to the relative strain history. We have
used the relation, valid in the linear approximation, that D(t) = Ė(t), which has been
invoked earlier for both solids and fluids. Note that (8.10.1) reduces to the linear
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version of the Navier–Stokes equation (2.2.15), if μ(s) is given by μ0δ(s), in terms of
the delta function. This is the short-memory limit discussed in Sect. 7.1.6.

Referring to (8.9.9) and (8.9.10), we note that similar properties hold for incom-
pressible fluids,

lim
τ→∞

T̃(Et+τ(c)
r ) = lim

τ→∞
2
∫ ∞

τ

μ′(s)Et+τ(c)
r (s)ds = T̃(0†) = 0.

For a partly static history (see (1.4.10) and (8.9.9)), we have

T̃(t + τ) = T(t + τ) + p(t + τ)I = 2
∫ ∞

0
μ′(τ + ξ)Et

r(ξ)dξ.

This expression suggests the following definition of the space of states:

Σ =

{
Et
r : R++ → Sym;

∣∣∣∣∣
∫ ∞

0
μ′(τ + ξ)Et

r(ξ)dξ
∣∣∣∣∣ < ∞ ∀τ ∈ R+

}
,

where t is a parameter.
The process P ∈ Π is applied to a given σ(t) = Et

r(s)∀s ∈ R++ and τ ∈ [0, dP) as
in (8.10.3). The extra stress is given by

T̃(t + τ) = T(t + τ) + p(t + τ)I = 2
∫ τ

0
μ(s)Ėt+τ(s)ds + It(τ,Et

r), (8.10.5)

where (cf. (8.2.2); the footnote relating to that equation applies here also)

It(τ,Et
r) = 2

∫ ∞

0
μ′(ξ + τ)Et

r(ξ)dξ, τ ≥ 0. (8.10.6)

Note that

It(τ,Et
r) = 2

∫ 0

−∞
μ′(τ − u)Et

r(−u)du, τ ≥ 0. (8.10.7)

The definition of It gives the extra stress due to a partly static relative strain history.
The decomposition in (8.10.5)2 is similar to that in (8.9.18) for compressible fluids
and (8.2.8) for solids.

Definition 8.9.1 reduces here to the following statement.

Definition 8.10.1. Two states σ j(t) = Et
r j ( j = 1, 2) are said to be equivalent if for

every process P of duration dP, the subsequent states σ j(t + τ) = Et+τ
r j ( j = 1, 2)

satisfy
T̃(Et+τ

r1
) = T̃(Et+τ

r2
) ∀τ ∈ (0, dP]. (8.10.8)

Therefore, two equivalent states are indistinguishable, since they give the same
subsequent extra stress. Thus, we can introduce an equivalence relation R in Σ, the
quotient space ΣR of which has as elements the equivalence classes σR, each of which
is a set of equivalent states. These are the minimal states of the material.
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Theorem 8.10.2. For a viscoelastic fluid of type (8.10.1), two states σ j(t) = Et
r j ( j =

1, 2) are equivalent if and only if
∫ ∞

0
μ′(ξ + τ)

[
Et
r1

(ξ) − Et
r2

(ξ)
]
dξ = 0 ∀τ > 0. (8.10.9)

Proof. The proof, simpler than that of Theorem 8.9.2 for compressible fluids, follows
at once by considering the expression (8.10.5) for the extra stress and the arbitrariness
of P and τ. �

The equivalent forms (8.10.8) and (8.10.9) can be expressed also in terms of
the function It given by (8.10.6). Two states, i.e., two relative strain histories, are
equivalent if and only if

It(τ,Et
r1

) = It(τ,Et
r2

) ∀τ > 0. (8.10.10)

Consequently, the function It represents an equivalence class or minimal state of ΣR.

8.10.1 Thermodynamic Restrictions for Incompressible Viscoelastic Fluids

Putting ρ = 1 and D(t) = Ė(t) in (8.9.21), we see that the work on a path γ performed
by going from an initial state σ to a final state ρ̂(σ, P) by means of a process P is
given by

W(σ, P) =
∫
γ

T(t) · Ė(t)dt. (8.10.11)

The path γ is not necessarily a cycle in general. The dissipation principle is expressed
by

W(σ, P) =
∮

T(t) · Ė(t)dt ≥ 0,

where the integral is evaluated on any cycle (σ, P) and the equality sign refers only
to reversible processes [297].

The analytical restrictions imposed by thermodynamics on the constitutive equa-
tion (8.10.1) have been derived in [113] and are stated by the following theorem.

Theorem 8.10.3. The constitutive equation (8.10.1) is compatible with the dissipa-
tion principle if and only if

μc(ω) > 0 ∀ω ∈ R, (8.10.12)

where μ ∈ L1(R+) and
∫ ∞

0
μ(s)ds � 0.

This follows by a simplified version of the proof of Theorem 8.9.4, where κ is
put equal to zero. The extension to R follows from the evenness of μc and the final
assumption on the integral of μ. This extension also applies to Theorem 8.9.4 under
the same assumption.
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By continuity, we have
∫ ∞

0
μ(s)ds = μc(0) > 0.

Moreover, since μ′ ∈ L1(R+) ∩ L2(R+), its Fourier transform is given by

μ′+(ω) = μ′c(ω) − iμ′s(ω) ∀ω ∈ R

and belongs to L2(R). Since
μ′s(ω) = −ωμc(ω), (8.10.13)

it follows from (8.10.1) that μ′s vanishes linearly at the origin. Also, (8.10.12) implies
that

ωμ′s(ω) < 0 ∀ω � 0. (8.10.14)

Moreover, from the inverse Fourier transform of μc(ω) given by

μ(s) =
2
π

∫ ∞

0
μc(ω) cos(ωs)dω,

we obtain that

μ(0) =
2
π

∫ ∞

0
μc(ω)dω = −1

π

∫ ∞

−∞

μ′s(ω)

ω
dω > 0.

From (C.2.17), we see that

μ′(0) = − lim
ω→∞

ω2μc(ω) ≤ 0 (8.10.15)

and that the asymptotic behavior of μ′c(ω) and μ′s(ω) is given by

μ′s(ω) ∼ μ′(0)
ω

, μ′c(ω) ∼ −μ′′(0)
ω2

,

where it is assumed that 0 � |μ′(0)| < ∞. If μ′′ ∈ L1(R+), we obtain

ωμ′s(ω) = μ′(0) + μ′′c (ω). (8.10.16)

8.10.2 The Mechanical Work

Firstly, we consider the work done on the material by the relative strain history up to
time t, when the final state is σ(t) = Et

r. Referring to (8.10.11), one has

W̃(Et
r) =

∫ t

−∞
T(τ) · Ė(τ)dτ = 2

∫ t

−∞

∫ ∞

0
μ′(s)Eτ

r (s)ds · Ė(τ)dτ, (8.10.17)

by virtue of the expression (8.10.1) for the stress tensor and the constraint of in-
compressibility, I · Ė = 0. We shall be concerned with relative strain histories that
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yield finite work, i.e., histories such that W̃(Et
r) < ∞. This work function can be ex-

pressed in various forms. We refer to Sect. 8.6.2 for analogous results applicable to
a viscoelastic solid. Similar relations can be obtained for compressible fluids. In the
present case, where the memory kernel is one scalar functional, the manipulations
are particularly simple.

Integrating by parts in (8.10.17) (see (8.10.4)) and using the definition of Et
r,

given by (8.9.2), we have

W̃(Et
r) = 2

∫ t

−∞

∫ ∞

0
μ(s)Ė(τ − s)ds · Ė(τ)dτ

=

∫ t

−∞

∫ t

−∞
μ(|ρ − u|)Ė(u) · Ė(ρ)dudρ,

where a change of variables has been implemented. Changing variables again, we
have

W̃(Et
r) =

∫ ∞

0

∫ ∞

0
μ(|η − ξ|)Ėt(ξ) · Ėt(η)dξdη, (8.10.18)

which, with two integrations by parts, yields

W̃(Et
r) =

∫ ∞

0

∫ ∞

0
μ12(|η − ξ|)Et

r(ξ) · Et
r(η)dξdη, (8.10.19)

where (cf. (8.6.33))

μ12(|η − ξ|) = ∂2

∂η∂ξ
μ(|η − ξ|) = −μ′′(|η − ξ|) − 2δ(η − ξ)μ′(|η − ξ|). (8.10.20)

The following result corresponds to that proved in Proposition 8.6.4. The manipula-
tions are particularly simple in the present case.

Lemma 8.10.4. The work done on the material by the relative strain history, Et
r(s)

∀s ∈ R++, is a nonnegative quantity.

Proof. Consider the expression (8.10.19) for W̃(Et
r). By substituting (8.10.20), we

obtain

W̃(Et
r) = −

∫ ∞

0

∫ ∞

0
μ′′(|η − ξ|)Et

r(ξ) · Et
r(η)dξdη − 2μ′(0)

∫ ∞

0
Et
r(s) · Et

r(s)ds.

Applying the convolution theorem and Parseval’s formula (Sect. C.3), together with
(C.1.5), gives

W̃(Et
r) = −1

π

∫ ∞

−∞
[μ′′c (ω) + μ′(0)]Et

r+(ω) · Et
r+(ω)dω

= −1
π

∫ ∞

−∞
ωμ′s(ω)Et

r+(ω) · Et
r+(ω)dω,

(8.10.21)

because of (8.10.16). This expression is nonnegative by virtue of (8.10.14). �
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Now we consider the work done by the process P(τ) = ĖP(τ)∀τ ∈ [0, dP), ap-
plied at time t when σ(t) = Et

r is the initial state. It is a function of the state σ and the
process P, given by (8.10.11), which, taking account of (8.10.5) and (8.10.6), yields

W(σ, P) =
∫ t+d

t
T(ξ) · Ė(ξ)dξ =

∫ d

0
T(t + τ) · ĖP(τ)dτ

=

∫ d

0

[
2
∫ τ

0
μ(τ − ξ)ĖP(ξ)dξ + It(τ,Et

r)

]
· ĖP(τ)dτ,

(8.10.22)

putting ĖP(τ) = Ė(t + τ).
The process P, defined for any τ ∈ [0, dP), dP being its finite duration, can be

extended to R+ by means of the trivial extension P(τ) = 0∀τ ∈ [dP,∞).
Firstly, we consider the case that such a process P is applied at time t = 0, when

the initial state is σ(0) = E0
r (s). Putting t = 0 and replacing τ by t, we have

W̃(E0
r , Ė) =

∫ ∞

0

[
2
∫ t

0
μ(t − τ)Ė(τ)dτ + I0(t,E0

r )

]
· Ė(t)dt

=

∫ ∞

0

[∫ ∞

0
μ(|t − τ|)Ė(τ)dτ + I0(t,E0

r )

]
· Ė(t)dt,

where ĖP is now denoted by Ė(t) (t > 0).
The work due only to the process can be evaluated by supposing that the initial

relative strain history is E0
r (s) = 0†(s) = 0∀s ∈ R++; thus, the last relation yields

W̃(0†, Ė) =
∫ ∞

0

∫ ∞

0
μ(|t − τ|)Ė(τ) · Ė(t)dτdt. (8.10.23)

We now give a definition introduced by Gentili [145] for viscoelastic solids.

Definition 8.10.5. A process P, of any duration, is said to be a finite work process if

W̃(0†, ĖP) < ∞.

This work is a positive quantity as the following lemma states [8].

Lemma 8.10.6. The work in Definition 8.10.5 satisfies the inequality

W̃(0†, ĖP) > 0.

Proof. Using the same procedure as in (8.10.21), one can show that relation (8.10.23),
the expression for the work done by P, applied at time t = 0 to the null relative strain
history 0†, can be expressed in the form

W̃(0†, ĖP) =
1
π

∫ ∞

−∞
μc(ω)ĖP+(ω) · ĖP+(ω)dω > 0. (8.10.24)

The inequality follows by virtue of (8.10.12). �
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We can characterize the set of finite work processes by means of [145],

H̃μ(R+) =

{
g : R+ → Sym;

∫ ∞

−∞
μc(ω)g+(ω) · g+(ω)dω < ∞

}
,

the completion of which, with the norm induced by the inner product

(g1, g2)μ =
∫ ∞

−∞
μc(ω)g1+(ω) · g2+(ω)dω,

yields the Hilbert space Hμ(R+) of processes.
Let us now consider the general case in which P is applied at any time t > 0. The

expression for the work done by the process P, again extended to R+ by means of its
trivial extension, becomes, using (8.10.22),

W(It, ĖP) = W̃(Et
r, ĖP)

=

∫ ∞

0

[∫ ∞

0
μ(|τ − ξ|)ĖP(ξ)dξ + It(τ,Et

r)

]
· ĖP(τ)dτ,

(8.10.25)

where (σ, P) has been replaced by (It, ĖP) or (Et
r, ĖP). This becomes, in the frequency

domain (see (8.10.24)),

W(It, ĖP) =
1
π

∫ ∞

−∞
μc(ω)ĖP+(ω) · ĖP+(ω)dω +

1
2π

∫ ∞

−∞
It+(ω) · ĖP+(ω)dω,

where It+(ω) denotes the Fourier transform of It(τ,Et
r), defined by (8.10.6) on R+.

The states σ are now expressed by means of It, which belong to the dual of Hμ(R+),
i.e.,

H′
μ(R+) =

{
It : R+ → Sym;

∫ ∞

−∞
It+(ω) · ĖP+(ω)dω < ∞ ∀ĖP ∈ Hμ(R+)

}
.

The definition of equivalence for two states, that is, for two relative strain histories,
can be expressed in terms of the work, as for viscoelastic solids [145]. A similar
result can be given for compressible fluids.

Definition 8.10.7. Two states σ j(t) = Et
r j ( j = 1, 2) are said to be w-equivalent if for

every P : [0, τ) → Sym and for every τ > 0, they satisfy

W̃(Et
r1
, ĖP) = W̃(Et

r2
, ĖP). (8.10.26)

The two definitions of equivalence coincide by virtue of the following lemma.

Lemma 8.10.8. For every fluid characterized by the constitutive equation (8.10.1),
two states are w-equivalent if and only if they are equivalent in the sense of Defini-
tion 8.10.1.
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Proof. Let us consider the expression (8.10.22) for the work corresponding to two
states σ j(t) = Et

r j ( j = 1, 2). If these two states are equivalent, then the two expres-
sions for the work for any P coincide, i.e., they are w-equivalent. On the other hand,
if (8.10.26) is satisfied for any P of any duration, then by virtue of (8.10.25), relation
(8.10.10) holds and hence also (8.10.9) and (8.10.8). Thus, two w-equivalent states
are equivalent also in the sense of Definition 8.10.1. �

The general representation of a free energy, already studied for viscoelastic solids
in Sect. 8.6, can be considered for fluids, as noted at the end of Sect. 8.9.2. For
incompressible fluids, this representation takes a particularly simple form by putting
G∞ = 0 in (8.6.17) and replacing G12(s, u) by a scalar kernel.

8.10.3 Maximum Free Energy for Incompressible Fluids

We seek to show that the mechanical work as given by (8.10.18) or (8.10.19) is the
maximum free energy for incompressible fluids, just as (8.6.31) has this property in
the case of viscoelastic solids. Let us put

ψM(t) =
∫ ∞

0

∫ ∞

0
μ12(|s − u|)Et

r(s) · Et
r(u)dsdu.

We rewrite this expression as (cf. (8.6.23))

ψM(t) = E(t) ·
[
μ0E(t) + 2

∫ ∞

0
μ′(u)Et(u)du

]

+

∫ ∞

0

∫ ∞

0
μ12(|s − u|)Et(s) · Et(u)dsdu,

using (8.9.2) and noting that
∫ ∞

0

∫ ∞

0
μ12(|s − u|)dsdu = μ(0, 0) = μ(0) = μ0.

Hence, recalling Remark 8.6.2, we observe that the property of a free energy ex-
pressed by ∂ψM/∂E = T̃ follows. Moreover, differentiating with respect to t, we
obtain

ψ̇M(t) = 2

[
μ0E(t) +

∫ ∞

0
μ′(u)Et(u)du

]
· Ė(t) + 2E(t) ·

∫ ∞

0
μ′(u)Ėt(u)du

+ 2
∫ ∞

0

∫ ∞

0
μ12(|s − u|)Ėt(s) · Et(u)dsdu.

The last integral, with an integration by parts, gives two terms, one of which vanishes
on account of the oddness of

∂μ

∂s
(|s − u|) = sign(s − u)μ′(|s − u|),
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while the second one cancels the third term in the expression of ψ̇M . Thus, taking
into account the constitutive equation (8.10.1), it follows that

ψ̇M(t) = T(t) · Ė(t), (8.10.27)

by virtue of the constraint of incompressibility. Therefore, (8.6.16) is satisfied with-
out dissipation, that is, with

D(t) = 0.

Integrating (8.6.16) over all past time, under the assumption that the integrals exist
(as in (5.1.34)), it is easy to see that ψM(t) ≥ ψ(t), where ψ is any other free energy. It
is of interest to present a demonstration that ψM is the maximum free energy, which
avoids infinite integrals.

For this purpose, we consider an arbitrary process P, applied at time t = 0 to the
zero state σ† = E0

r (s) = 0∀s ∈ R++, and we denote by σ(t) = Et
r = ρ̂(0†, P[0,t)) the

final state, belonging to

DψM =
{
Et
r; ψM(Et

r) < ∞
}
,

the set of all relative histories that yield a finite ψM(σ(t)) = ψM(Et
r). An integration

of (8.10.27) on the time interval (0, t) gives

ψM(σ(t)) =
∫ t

0
T(s) · Ė(s)ds,

since ψM(σ†) = 0. Furthermore, any other free energy ψ(σ(t)), with σ(t) = ρ̂(0†,
P[0,t)), must satisfy

ψ(σ(t)) ≤
∫ t

0
T(s) · Ė(s)ds,

because of (4.1.8) and since ψ(σ†) = 0. These last two relations yield the inequality

ψM(σ) ≥ ψ(σ),

where σ(t) = Et
r ∈ DψM is an arbitrary final state, obtained by means of any process

P. This inequality holds for any free energy functional ψ. Consequently, ψM is the
maximum free energy for incompressible viscoelastic fluids. As noted previously,
however, there is a problem with categorizing the work function as a free energy,
which arises out of Remark 18.2.
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Heat Conductors

To remove the paradox of classical Fourier theory relating to the instantaneous prop-
agation of thermal disturbances, Cattaneo [59] suggested a generalized Fourier law,
which he justified by means of statistical considerations. This constitutive equation
relates the heat flux, its time derivative, and the temperature gradient. It is referred
to as the Cattaneo–Maxwell relation, since Maxwell [254] previously obtained it but
immediately eliminated the term involving the time derivative of the heat flux. It
leads to a hyperbolic heat equation.

On the basis of Coleman’s theory for materials with memory [67], a nonlinear
model for rigid heat conductors was developed by Gurtin and Pipkin [191]. In this
work, the authors derived a linearization of their theory, corresponding to infinites-
imal temperature gradients, which yields a linearized constitutive equation for the
heat flux in terms of the history of the temperature gradient. This linear relation is a
generalization of the Cattaneo–Maxwell equation.

The Gurtin–Pipkin approach is built into the general theory developed in Chaps. 5
and 7. We refer in particular to the discussion centering on (5.1.8).

More recent work on this topic includes [4, 12, 13].

9.1 Constitutive Equations for Rigid Heat Conductors

A rigid heat conductor with memory effects within the linear theory developed in
[191] and considered also in [102] is characterized by the constitutive equation

q(x, t) = −
∫ ∞

0
k(s)gt(x, s)ds, (9.1.1)

where x denotes the position vector, t ∈ R+ is the time variable, and g = ∇θ is
the temperature gradient, expressed in terms of θ, which denotes the absolute tem-
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perature.∗ Moreover, gt(x, s) = g(x, t − s) ∀s ∈ R++ denotes the past history of the
temperature gradient. We consider the heat flux relaxation function k : R+ → Sym,
such that k ∈ L1(R+) ∩ H1(R+) [102, 115, 147] and

lim
t→∞

k(t) = 0.

Referring to the discussion around (5.1.8) and (5.1.9), we introduce the integrated
history of g [191], which is the function gt(x, ·) : R+ → R3 defined by

gt(x, s) =
∫ t

t−s
g(x, τ)dτ. (9.1.2)

Note that
∂

∂s
gt(x, s) = gt(x, s).

The constitutive equation (9.1.1) can be expressed in terms of gt, by means of an
integration by parts, yielding

q(x, t) =
∫ ∞

0
k′(s)gt(x, s)ds. (9.1.3)

The evolution problem for a rigid heat conductor is governed by the energy equa-
tion (see (3.3.7))

ė(x, t) = −∇ · q(x, t) + r(x, t), (9.1.4)

where r denotes the external heat supply per unit volume and e is the internal energy
per unit volume. This relation is also given by (5.1.2), since the Lagrangian and
Eulerian descriptions coincide for rigid bodies. We take the constant mass density ρ
to be unity. Equation (5.1.3) can be rewritten as

θη̇ ≥ ė +
1
θ
q · g, (9.1.5)

with the aid of (9.1.4), where η is the entropy per unit volume. The internal energy
is assumed to be given by the constitutive equation

e(x, t) = α0ϑ(x, t) +
∫ ∞

0
α′(s)ϑt(x, s)ds, ϑ = θ − Θ0, (9.1.6)

where α′ ∈ L1(R+)∩H1(R+) and Θ0 is a reference temperature, uniform in the body.
The internal energy relaxation function is given by

α(t) = α0 +

∫ t

0
α′(τ)dτ ∀ t ∈ R+, α0 ∈ R++. (9.1.7)

∗ Consider (7.1.23), neglecting the first two integrals on the right and carrying out an inte-
gration by parts in the third integral. In the linear approximation, d(t), defined in general by
(5.1.1), is given by −g/Θ2

0, where Θ0 is defined after (9.1.6). Absorbing the constant ρΘ2
0

into the kernel, we see that this relation is the inverted form of (9.1.1).
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We introduce the pseudoenergy [102]

ψ(x, t) = Θ0(e − Θ0η),

which will play the role of the free energy in the present context. It follows from
(9.1.5) that

ψ̇ − ėϑ
Θ0

θ
+ q · g

Θ2
0

θ2
≤ 0. (9.1.8)

The approximate theory developed in [102] requires a linearization of the Clausius–
Duhem inequality (9.1.8) to the form

ψ̇(x, t) ≤ ė(x, t)ϑ(x, t) − q(x, t) · g(x, t). (9.1.9)

We refer to [102] for a detailed derivation of (9.1.9). This approximate form of the
Clausius–Duhem relation will be used in the present chapter. By introducing the
internal dissipation function D(t) ≥ 0, we can write (9.1.9) as an equality

ψ̇(x, t) + D(t) = ė(x, t)ϑ(x, t) − q(x, t) · g(x, t). (9.1.10)

A rigid heat conductor, characterized by the constitutive equations (9.1.1) and
(9.1.6), is a simple material, and therefore, its behavior can be described by means
of states and processes, as described in Chaps. 3 and 4. We shall introduce these
concepts in a more systematic way here than was done in Chap. 8.

In the following, the dependence on x will be understood.

9.1.1 States in Terms of ϑt(s) and gt

We observe that in the linear theory, the internal energy depends on all the history
ϑt(s) = ϑ(t− s)∀s ∈ R+, that is, both on the past history ϑt(s) = ϑ(t− s)∀s ∈ R++ and
on the present value ϑ(t), while the present value of the temperature gradient does not
have an equivalent role in the constitutive equation for the heat flux. We shall identify
the history of any function f up to and including time t, f t(s) = f (t − s)∀s ∈ R+,
with the pair ( f (t), f t).

The thermodynamic state at time t and at any fixed point x of the body, taking
into account (9.1.1) and (9.1.6), is

σ(t) = (ϑ(t), ϑt, gt), (9.1.11)

The set of possible states is denoted by Σ.
The kinetic process of duration dP ∈ R+ is the map, piecewise continuous on the

time interval [0, dP), defined by

P(τ) = (ϑ̇P(τ), gP(τ)) ∀τ ∈ [0, dP), (9.1.12)

where ϑ̇P(τ) is the derivative of the temperature with respect to τ and the temperature
gradient gP(τ) is, in particular, defined also for τ = 0, corresponding to the instant
when P is applied to the body. The set of all accessible processes for the body is
denoted by Π . There exists in Π every type of restriction of a process P, of duration
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dP, to an interval [τ1, τ2) ⊂ [0, dP), denoted by P[τ1,τ2) ∈ Π ; if [τ1, τ2) ≡ [0, t) we
shall denote P[0,t) by Pt. The evolution function ρ̂ : Σ × Π → Σ is defined by the
property that σ f = ρ̂(σi, P) ∈ Σ, where σi ∈ Σ is the initial state and σ f is the final
state obtained by applying the process P ∈ Π .

Different choices of state for a heat conductor with memory have been used in
[147, 191, 279]. Following [102], we can choose as the thermodynamic state that
given by (9.1.11), but where the integrated history gt takes the place of gt.

The set of possible states Σ is the set of states σ(t) = (ϑ(t), ϑt, gt) such that the
corresponding e and q are both finite, so that

∣∣∣∣∣
∫ ∞

0
α′(s)ϑt (s)ds

∣∣∣∣∣ < ∞,

∣∣∣∣∣
∫ ∞

0
k(s)gt (s)ds

∣∣∣∣∣ < ∞. (9.1.13)

Let σ(t) = (ϑ(t), ϑt, gt) be an initial state of Σ. The evolution function gives a
family of states induced by a process P(τ) = (ϑ̇P(τ), gP(τ)) defined for every τ ∈
[0, dP) and applied at the generic time t; in particular, the temperature gradient is the
assigned function

gP : [0, dP) → R3, gP(τ) = g(t + τ) ∀τ ∈ [0, dP). (9.1.14)

The process P also determines the evolution of temperature according to

ϑP : (0, dP] → R, ϑP(τ) = ϑ(t) +
∫ τ

0
ϑ̇P(ξ)dξ ∀τ ∈ (0, dP]; (9.1.15)

thus, at each instant τ′ ≡ t + τ ≤ t + dP, the final value of the temperature, yielded by
ϑt and ϑ̇P and denoted by ϑ f (τ′) = (ϑP ∗ ϑ)(τ′), is given by

ϑ f (t + dP − s) = (ϑP ∗ ϑ)(t + dP − s) =

⎧⎪⎪⎨⎪⎪⎩
ϑP(dP − s), 0 ≤ s < dP,

ϑ(t + dP − s), s ≥ dP,
(9.1.16)

where the symbol ∗ denotes the continuation of histories with any process. Similarly,
the final value of the temperature gradient g f (τ′) = (gP ∗ g)(τ′)∀τ′ ≡ t + τ < t + dP
depends on gt and gP and is expressed by

g f (t + dP − s) = (gP ∗ g)(t + dP − s) =

⎧⎪⎪⎨⎪⎪⎩
gP(dP − s), 0 < s ≤ dP,

g(t + dP − s), s > dP,
(9.1.17)

by virtue of (9.1.14).
Given two histories of the temperature and of the temperature gradient, their

static continuations of duration a ∈ R+ are defined by

ϑta =

⎧⎪⎪⎨⎪⎪⎩
ϑt(s − a), s > a,

ϑ(t), s ∈ [0, a],
gta =

⎧⎪⎪⎨⎪⎪⎩
gt(s − a), s > a,

g(t), s ∈ [0, a].
(9.1.18)

The static continuations applied to (9.1.6) and (9.1.1) yield
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e(t + a) = α(a)ϑ(t) +
∫ ∞

0
α′(a + ξ)ϑt(ξ)dξ,

q(t + a) = −K(a)g(t) −
∫ ∞

0
k(a + ξ)gt(ξ)dξ,

(9.1.19)

where we have denoted the thermal conductivity tensor by

K(t) =
∫ t

0
k(ξ)dξ. (9.1.20)

Consequently, by virtue of (9.1.13) and (9.1.19), the set of possible states Σ is char-
acterized by

Γα =

{
ϑt : (0,∞) → R;

∣∣∣∣∣
∫ ∞

0
α′(s + τ)ϑt (s) ds

∣∣∣∣∣ < ∞ ∀τ ∈ R+
}

(9.1.21)

and

Γk =

{
gt : (0,∞) → R3;

∣∣∣∣∣
∫ ∞

0
k(s + τ)gt (s) ds

∣∣∣∣∣ < ∞ ∀τ ∈ R+
}
, (9.1.22)

where t is a parameter.
In particular, if we consider the constant histories (ϑ, ϑ†), where ϑt(s) = ϑ† =

ϑ∀s ∈ R++, and gt(s) = g† = g∀s ∈ R++, the internal energy (9.1.6) and the heat
flux (9.1.1) assume the values

e(t) = α∞ϑ, q(t) = −K∞g, (9.1.23)

where α∞ = limt→∞ α(t) and K∞ = limt→∞ K(t) are the asymptotic values of α and
K given by (9.1.7) and (9.1.20). These limits are assumed to be finite.

9.1.2 Constitutive Equations in Terms of States and Processes

We now present a decomposition for rigid heat conductors similar to (8.2.8) for vis-
coelastic solids, (8.9.18), (8.10.5) for fluids but with more detailed discussion in the
present case. The constitutive equations (9.1.1) and (9.1.6) define two linear func-
tionals q̃ : Γk → R3 and ẽ : R × Γα → R such that

q̃(gt) = −
∫ ∞

0
k(s)gt(s)ds, ẽ(ϑ(t), ϑt) = α0ϑ(t) +

∫ ∞

0
α′(s)ϑt(s)ds, (9.1.24)

which give the set of heat fluxes and internal energies related to any past history of
the temperature gradient gt ∈ Γk and the temperature ϑt ∈ Γα.

If Pτ is a process of duration τ applied at the initial time t, it is defined in the time
interval [t, t + τ); if (ϑ(t), ϑt, gt) is the initial state, then the final values of e and q
are given by
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e(t + τ) = α0ϑ(t + τ) +
∫ ∞

0
α′(s)ϑt+τ(s)ds,

q(t + τ) = −
∫ ∞

0
k(s)gt+τ(s)ds.

(9.1.25)

We consider each of the integrals in (9.1.25) as the sum of two integrals, the first of
which is evaluated between 0 and τ and the second between τ and ∞. An integration
by parts in the first one, using (9.1.15), yields

e(t + τ) = α(τ)ϑ(t) +
∫ ∞

0
α′(τ + ξ)ϑt(ξ)dξ +

∫ τ

0
α(τ − η)ϑ̇Pτ

(η)dη

= ê(ϑ(t), ϑt; 0†τ) + ê(0, 0†; ϑ̇Pτ
),

(9.1.26)

where 0† is the zero past history for the temperature, given by 0†(s) = 0∀s ∈ R++, 0†τ
denotes the zero process with duration τ, ϑ̇Pτ

(η) = 0†τ(η) = 0∀η ∈ [0, τ), and where

ê(ϑ(t), ϑt; 0†τ) = α(τ)ϑ(t) +
∫ ∞

0
α′(τ + ξ)ϑt(ξ)dξ,

ê(0, 0†; ϑ̇Pτ
) =

∫ τ

0
α(τ − η)ϑ̇Pτ

(η)dη.
(9.1.27)

In (9.1.26)2, we have a superposition of two effects, the first of which depends on the
process through ϑ̇Pτ

, while the second is expressed in terms of the initial state through
the initial data of the temperature. Explicitly, ê(0, 0†; ϑ̇Pτ

) is due to the part of the
process, characterized by ϑ̇Pτ

, starting from the initial state with a null temperature
history (ϑ(t), ϑt) = (0, 0†), while ê(ϑ(t), ϑt; 0†τ) is related to a process with ϑ̇Pτ

= 0†τ,
applied to the history (ϑ(t), ϑt). Also, after the same manipulations,

q(t + τ) = −
∫ ∞

0
k(τ + ξ)gt(ξ)dξ −

∫ τ

0
k(τ − η)gPτ

(η)dη

= q̂(gt; 0†τ) + q̂(0†; gPτ
),

(9.1.28)

where 0† denotes the zero past history for g, that is, 0†(s) = 0∀s ∈ R++, and 0†τ is the
zero process of duration τ, i.e., gPτ

(η) = 0†τ(η) = 0∀η ∈ [0, τ), and where

q̂(gt; 0†τ) = −
∫ ∞

0
k(τ + ξ)gt(ξ)dξ,

q̂(0†; gPτ
) = −

∫ τ

0
k(τ − η)gPτ

(η)dη.
(9.1.29)

Thus, also for the heat flux we have a superposition of two effects. The term q̂(0†; gPτ
)

in (9.1.29)2 expresses the heat flux due to the process Pτ characterized by gPτ
and

applied to the initial state corresponding to a null past history of the temperature
gradient 0†, whereas the quantity q̂(g0; 0†τ) is the heat flux obtained by the process
gPτ
= 0†τ applied to the initial state characterized by the past history g0.
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9.1.3 Equivalent Histories and Minimal States

We now consider the concepts introduced in Definition 4.1.2 and discussed in
Sects. 7.4, 8.3 (see also Theorems 8.9.2 and 8.10.2) for rigid heat conductors.

Definition 9.1.1. Two states σ j(t) = (ϑi(t), ϑt
i, g

t
j), j = 1, 2, of a rigid heat conductor,

characterized by the constitutive equations (9.1.24), are equivalent if

ẽ(ϑP(τ), (ϑP ∗ ϑ1)t+τ) = ẽ(ϑP(τ), (ϑP ∗ ϑ2)t+τ),

q̃((gP ∗ g1)t+τ) = q̃((gP ∗ g2)t+τ)
(9.1.30)

for every process P ∈ Π and for every τ > 0.

Thus, the definition of equivalent states ensures the same final value both for the
internal energy and for the heat flux, whatever may be their continuations obtained
by means of any process, of arbitrary duration, applied to both of them.

Theorem 9.1.2. Two states σ j(t) = (ϑ j(t), ϑt
j, g

t
j), j = 1, 2, are equivalent if and

only if

ϑ1(t) = ϑ2(t),
∫ ∞

0
α′(τ + ξ)[θt1(ξ) − θt2(ξ)]dξ = 0,

∫ ∞

0
k(τ + ξ)[gt1(ξ) − gt2(ξ)]dξ = 0

(9.1.31)

for every τ > 0.

Proof. The equivalence conditions (9.1.30), which are required to be satisfied by
the histories, must be evaluated using (9.1.15)–(9.1.17), where the duration of the
process dP is replaced by τ. Consider each integral between zero and infinity as the
sum of two integrals, the first between zero and τ and the other between τ and infinity,
as we have done in (9.1.26) and (9.1.28). Thus, for every P we have

α(τ)[ϑ1(t) − ϑ2(t)] +
∫ ∞

τ

α′(s)[θt+τ1 (s) − θt+τ2 (s)]ds = 0,
∫ ∞

τ

k(s)[gt+τ1 (s) − gt+τ2 (s)]ds = 0.

The arbitrariness of τ yields

ϑ1(t) = ϑ2(t),
∫ ∞

0
α′(τ + ξ)ϑt

1(ξ)dξ =
∫ ∞

0
α′(τ + ξ)ϑt

2(ξ)dξ,
∫ ∞

τ

k(τ + ξ)gt1(ξ)dξ =
∫ ∞

0
k(τ + ξ)gt2(ξ)dξ,

(9.1.32)

for any τ > 0. Using these same relations, the converse also follows. �
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We observe that the history (0, ϑt) characterized by a zero instantaneous value
and a given past history of the temperature and past history of the temperature gra-
dient gt is equivalent to the zero history (0, 0†) of ϑ and the zero past history 0† of
g if ∫ ∞

τ

α′(s)ϑt+τ(s)ds =
∫ ∞

0
α′(τ + ξ)ϑt(ξ)dξ = 0,

∫ ∞

τ

k(s)gt+τ(s)ds =
∫ ∞

0
k(τ + ξ)gt(ξ)dξ = 0.

(9.1.33)

Thus, from (9.1.32), (9.1.33) it follows that two states σ j(t) = (ϑ j(t), ϑt
j, g

t
j),

j = 1, 2, are equivalent in the sense of Definition 9.1.1 if the differences ϑt = ϑt
1 −ϑt

2
and gt = gt1 − gt2 satisfy (9.1.33) with ϑ(t) = ϑ1(t) − ϑ2(t) = 0; in other words, two
states σ j(t), j = 1, 2, are equivalent if the state σ(t) = σ1(t)−σ2(t) = (ϑ(t), ϑt, gt) is
equivalent to the zero state (0, 0†, 0†).

Furthermore [277], we see that two pairs of histories (ϑ j(t), ϑt
j), j = 1, 2, with

ϑ1(t) = ϑ2(t), and two past histories gtj, j = 1, 2, whose differences ϑt = ϑt
1 − ϑt

2

and gt = gt1 − gt2 satisfy the relations (9.1.33), represent the same state σ(t). Con-
sequently, this state expresses the “minimum” set of variables that give a univocal
relation between the process P(·) = (ϑ̇P(·), gP(·)), defined in [0, τ), and the internal
energy e(t + τ) = ẽ(ϑP(τ), (ϑP ∗ ϑ)t+τ) and the heat flux q(t + τ) = q̃((gP ∗ g)t+τ)
for every τ > 0. Finally [90, 176], denoting by Γα0 and Γk0 the subsets of the past
histories of Γα and Γk satisfying (9.1.33), respectively, and by Γα/Γα0 and Γk/Γk0

their usual quotient spaces, the state σ of a rigid heat conductor is characterized as
(ϑ(t), ϑt, gt) ∈ Σ = R × (Γα/Γα0 ) × (Γk/Γk0 ).

We define

Ĩtα(τ) :=
∫ ∞

0
α′(τ + ξ)θt(ξ)dξ, (9.1.34)

while for the heat flux we introduce

Ĩtk(τ) :=
∫ ∞

0
k(τ + ξ)gt(ξ)dξ. (9.1.35)

From Definition 9.1.1 and by virtue of (9.1.31), it follows that equivalent states
(ϑ j(t), ϑt

j, g
t
j), j = 1, 2, can be characterized by the triplet (ϑ(t), Ĩtα, Ĩ

t
k), where

ϑ(t) = ϑ1(t) = ϑ2(t),

Ĩtα = Ĩtα1 = Ĩtα2,

Ĩtk = Ĩtk1 = Ĩtk2.

The subscripts 1, 2 on Ĩtα, Ĩtk refer to histories (ϑt
1, g

t
1) and (ϑt

2, g
t
2). Therefore, the

minimal state of a rigid heat conductor can be described by (ϑ(t), Ĩtα, Ĩ
t
k).

Let the equivalence relation between states in Σ be denoted by R. The class σR

of equivalent states can be represented by σR = (ϑ(t), Ĩtα, Ĩ
t
k) but also by σR = (Itα, I

t
k)

if, taking into account (9.1.34)–(9.1.35) with (9.1.27)1, (9.1.29)1, we introduce

Itα(τ) = Ĩtα(τ) + α(τ)ϑ(t) = ê(ϑ(t), ϑt; 0†τ), Itk(τ) = Ĩtk(τ) = −q̂(gt; 0†τ) ∀τ > 0.
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We observe that Itα and Itk are the same for all (θ(t), θt, gt) ∈ σR.
For heat conductors with discrete-spectrum relaxation functions, namely those

consisting of sums of decaying exponentials, one can show as in Sect. 8.4 that the
state is finite-dimensional.

9.2 Thermodynamic Constraints for Rigid Heat Conductors

We now determine the restrictions imposed on constitutive equation (9.1.1) by ther-
modynamics. Let us assume that α′(s) in (9.1.6) is zero. Then, integrating (9.1.9)
over any cycle of period T , we obtain

∮ T

0
q(t) · g(t)dt ≤ 0. (9.2.1)

The equality sign occurs if and only if the history of g in (9.1.1) is zero. Conse-
quently, any cycle characterized by the history

gt(s) = g1 cosω(t − s) + g2 sinω(t − s),

where ω ∈ R++ and (g1, g2) ∈ R3 × R3\{0, 0}, must satisfy (9.2.1) as an inequality,
with q given by (9.1.1); therefore, we must have

∫ 2π/ω

0

∫ ∞

0
k(s)[g1 cosω(t − s) + g2 sinω(t − s)]ds · (g1 cosωt + g2 sinωt)dt > 0.

Integrating with respect to t, we obtain

π

ω

∫ ∞

0
[k(s)g1 · g1 + k(s)g2 · g2] cosωs ds > 0,

which, since g1 and g2 are arbitrary, yields

kc(ω) =
∫ ∞

0
k(s) cosωs ds > 0 ∀ω ∈ R++, (9.2.2)

so that

k′s(ω) = −ωkc(ω) < 0 ∀ω � 0, k(0) = −2
π

∫ ∞

−∞

1
ω
k′s(ω)dω > 0 (9.2.3)

(see (7.2.19)). Also, by (C.2.17),

lim
ω→∞

ωk′s(ω) = − lim
ω→∞

ω2kc(ω) = k′(0) ≤ 0. (9.2.4)

We assume the following stronger conditions:

kc(0) =
∫ ∞

0
k(ξ)dξ ≡ K(∞) > 0, k′(0) < 0. (9.2.5)
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Relation (9.1.20) has been used here. The assumption (9.2.5)1, in particular, yields
that the heat flux (9.1.23)2 resulting from a constant past history of the temperature
gradient has the opposite sign to that of g.

Analogously, one can show that the thermodynamic restriction on the memory
function α′ for the internal energy is expressed by [144, 147] (cf. (8.5.13))

ωα′
s(ω) > 0, ω � 0. (9.2.6)

Under the hypothesis that α′′ ∈ L1(R+) and using the analogue of (8.1.20), we have

α′′
c (ω) = ωα′

s(ω) − α′(0), α(t) − α0 =
2
π

∫ ∞

0

α′
s(ω)

ω
[1 − cos(ωt)]dω > 0. (9.2.7)

It follows from (9.2.7)2 that

α∞ − α0 =
2
π

∫ ∞

0

α′
s(ω)

ω
dω > 0. (9.2.8)

Also, referring to (9.2.4), we have

lim
ω→∞

ωα′
s(ω) = α′(0) ≥ 0.

It will be assumed that
α′(0) > 0. (9.2.9)

9.3 Thermal Work

The linearized form (9.1.9) of the Clausius–Duhem inequality allows us to introduce
the thermal power expressed by

w(t) = ė(t)ϑ(t) − q(t) · g(t); (9.3.1)

hence, the thermal work done on a process P(τ) = (ϑ̇P(τ), gP(τ)) applied for every
τ ∈ [0, dP), starting from the initial state σ(t) at time t, is expressed by

W(σ(t), P) =
∫ dP

0
[ė(t + τ)ϑP(τ) − q(t + τ) · gP(τ)]dτ, (9.3.2)

where in particular, ϑP(τ) is given by (9.1.15).

Remark 9.3.1. We observe that in the first term on the right of (9.3.1), the time deriva-
tive is on the dependent field variable e rather than the independent variable ϑ, in
contrast to (8.6.32), for example. This results in certain differences between the de-
velopments in this chapter and those in most of Chap. 8, dealing with solids and
fluids. There are similarities, however, with Sect. 8.6.1.
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9.3.1 Integrated Histories for Isotropic Heat Conductors

We consider a homogeneous and isotropic rigid heat conductor for which (9.1.6) and
(9.1.3) become

e(t) = α0ϑ(t) +
∫ ∞

0
α′(s)ϑt(s)ds,

q(t) =
∫ ∞

0
k′(s)gt(s)ds,

(9.3.3)

where gt is the integrated history (9.1.2). The relaxation function for the heat flux is
the function k : R+ → R such that k ∈ L1(R+)∩H1(R+) satisfies the thermodynamic
restrictions (9.2.2) and the consequences and assumptions (9.2.3)–(9.2.5). Similarly,
α′ : R+ → R obeys (9.2.6)–(9.2.9).

Instead of the definition (9.1.11) for the thermodynamic state of the conductor,
we now choose the triplet

σ(t) = (ϑ(t), ϑt, gt),

where the history of the temperature up to time t is again expressed by means of the
pair (ϑ(t), ϑt). The process P : [0, dP) → R × R3 is still defined by (9.1.12).

Relations (9.1.15)–(9.1.16), which express the continuation (ϑP ∗ ϑ)t+dP , also re-
main applicable, together with the set of possible states defined by (9.1.21). However,
the presence of the integrated history of the temperature gradient in the state means
that we must replace (9.1.17) with the continuation (gP ∗ g)t+dP defined by

g(t + dP − s) = (gP ∗ g)t+dP (s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ dP

dP−s
gP(ξ)dξ = gdPP (s), ∀s ∈ [0, dP),

gdPP (dP) + gt(s − dP), ∀s ≥ dP.
(9.3.4)

The integrated history of g corresponding to a static continuation of a specified past
history gt, defined in (9.1.18), is given by

gt+a(s) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫ a

a−s
g(t)dξ = sg(t) ∀s ∈ [0, a],∫ a

0
g(t)dξ +

∫ t

t−(s−a)
g(ξ)dξ = ag(t) +

∫ s−a

0
gt(ρ)dρ ∀s > a;

thus, we obtain the expression (9.1.19) modified as follows:

q(t + a) = −K(a)g(t) +
∫ ∞

0
k′(ξ + a)gt(ξ)dξ,

where the thermal conductivity K is given by the scalar form of (9.1.20). Conse-
quently, the function space (9.1.22) must be replaced by

Γk =

{
gt : R+ → R3;

∣∣∣∣∣
∫ ∞

0
k′(ξ + τ)gt(ξ)dξ

∣∣∣∣∣ < ∞∀τ ≥ 0

}
, (9.3.5)

where t is a parameter.
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Let Pτ be the restriction of a process applied at time t to the state σ(t) =
(ϑ(t), ϑt, gt). By using (9.1.16) and (9.3.4), where dP is replaced by τ, we have

e(t + τ) = α0ϑP(τ) +
∫ τ

0
α′(s)ϑτ

P(s)ds +
∫ ∞

τ

α′(s)ϑ(t + τ − s)ds,

q(t + τ) =
∫ τ

0
k′(s)gτP(s)ds +

∫ ∞

τ

k′(s)[gτP(τ) + gt(s − τ)]ds.
(9.3.6)

The constitutive equations (9.3.3) can be expressed in the general form

e(σ(t)) = ẽ(ϑ(t), ϑt), q(σ(t)) = q̂(gt).

The equivalence relation introduced in the state space Σ by means of Definition 9.1.1
can now be given as follows.

Definition 9.3.2. Two states σ j = (ϑ j, ϑ
t
j, g

t
j) ∈ Σ, j = 1, 2, of a rigid heat conductor

characterized by the constitutive equations (9.3.3) are equivalent if for every process
P ∈ Π and for every τ > 0,

ẽ(ρ(σ1, P[0,τ))) = ẽ(ρ(σ2, P[0,τ))), q̂((gP ∗ g1)t+τ) = q̂((gP ∗ g2)t+τ). (9.3.7)

The following result is the analogue of Theorem 9.1.2 and can be proved similarly.

Theorem 9.3.3. For a heat conductor characterized by the constitutive equations
(9.3.3), two states σ j = (ϑ j, ϑ

t
j, g

t
j), j = 1, 2, are equivalent if and only if

ϑ1(t) = ϑ2(t),
∫ ∞

0
α′(τ + ρ)

[
ϑt

1(ρ) − ϑt
2(ρ)

]
dρ = 0,

∫ ∞

0
k′(τ + ρ)

[
gt1(ρ) − gt2(ρ)

]
dρ = 0

(9.3.8)

for every τ > 0.

Consequently, a state σ(t) = (ϑ(t), ϑt, gt) is equivalent to the zero state σ0(t) =

(0, 0†, 0
†
), where in particular 0

†
(s) = gt(s) = 0∀s ∈ R+ is the zero integrated history

of g, if

ϑ(t) = 0,
∫ ∞

τ

α′(s)ϑt+τ(s)ds =
∫ ∞

0
α′(τ + ξ)ϑt(ξ)dξ = 0,

∫ ∞

τ

k′(s)gt(s − τ)ds =
∫ ∞

0
k′(τ + ξ)gt(ξ)dξ = 0.

Thus, two equivalent states σ j, j = 1, 2, are such that their difference σ1(t)−σ2(t) =

(ϑ1(t)−ϑ2(t), ϑt
1−ϑ

t
2, g

t
1−g

t
2) is a state equivalent to the zero state, σ0(t) = (0, 0†, 0

†
).
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9.3.2 Finite Work Processes and w-Equivalence for States

The thermal work done during the application of a process P(τ) = (ϑ̇P(τ), gP(τ))∀τ ∈
[0, dP), starting from the initial state σ(t) = (ϑ(t), ϑt, gt) at time t, is given by (9.3.2).
To evaluate it we must consider the derivative of the internal energy through (9.3.6)1

and take account of the heat flux in the form (9.3.6)2. From (9.3.6)1, by differentiating
with respect to τ and integrating by parts, we have

ė(t + τ) = α0ϑ̇P(τ) + α′(0)ϑP(τ) +
∫ τ

0
α′′(s)ϑP(τ − s)ds +

∫ ∞

τ

α′′(s)ϑ(t + τ − s)ds.

(9.3.9)

To derive the expression for the work due only to a process P of duration dP < ∞,

applied at time t = 0, we suppose that the initial state is σ0(0) = (0, 0†, 0
†
). Denoting

the ensuing fields by (ϑ0, ϑ
t
0, g

t
0), (9.1.15)–(9.1.16) with (9.3.4) yield

ϑ0(t) =
∫ t

0
ϑ̇P(s)ds,

ϑt
0(s) = (ϑP ∗ 0†)t(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ t−s

0
ϑ̇P(η)dη ∀s ∈ (0, t],

0 ∀s > t,

gt0(s) = (gP ∗ 0
†
)t(s) =

⎧⎪⎪⎨⎪⎪⎩
gt0(s) ∀s ∈ [0, t),

gt0(t) ∀s ≥ t.

(9.3.10)

Let W(σ0(0), P) be the work obtained by applying P(t) = (ϑ̇P(t), gP(t))∀ t ∈
[0, dP) to the zero state σ0(0), at time t = 0. By evaluating directly from (9.3.3)1 or
from (9.3.9), we have

ė(t) = α0ϑ̇0(t) + α′(0)ϑ0(t) +
∫ t

0
α′′(s)ϑt(s)ds

and, from (9.3.3)2 with (9.3.10)3,

−q(t) · gP(t) = −
[∫ t

0
k′(s)gt0(s)ds +

∫ ∞

t
k′(s)gt0(t)ds

]
· g0(t) =

∫ t

0
k(s)gt0(s)ds · g0(t).

We see that this work is given by

W̃(0, 0†, 0
†
; ϑ̇P, gP) =

1
2
α0ϑ

2
0(dP) + α′(0)

∫ dP

0
ϑ2

0(t)dt

+

∫ dP

0

∫ t

0
α′′(s)ϑt

0(s)dsϑ0(t)dt +
∫ dP

0

∫ t

0
k(s)gt0(t)ds · g0(t)dt.

(9.3.11)

Definition 9.3.4. A process P of duration dP is a finite work process if

W(σ0(0), P) < ∞.
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Lemma 9.3.5. The work done by any finite process is positive.

Proof. In fact, by assuming that the integrands in (9.3.11) are equal to zero for any
t > dP, we can extend the integrals to R+ and apply Parseval’s formula (C.3.1) to
obtain

W(σ0(0), P) =
1
2
α0ϑ

2
0(dP) +

α′(0)
2π

∫ ∞

−∞
|ϑ0+(ω)|2dω

+
1

2π

∫ ∞

−∞
α′′
+(ω)|ϑ0+(ω)|2dω + 1

2π

∫ ∞

−∞
k+(ω)|g0+(ω)|2dω

=
1
2
α0ϑ

2
0(dP) +

1
2π

∫ ∞

−∞
[α′(0) + α′′

c (ω)]|ϑ+(ω)|2dω

+
1

2π

∫ ∞

−∞
kc(ω)|g0+(ω)|2dω

=
1
2
α0ϑ

2
0(dP) +

1
2π

∫ ∞

−∞

{
ωα′

s(ω)|ϑ0+(ω)|2 + kc(ω)|g0+(ω)|2
}
dω > 0,

by virtue of the oddness of the sine Fourier transform together with (9.2.7)1, (9.2.6),
and the scalar form of (9.2.3)1. �

Hence, to characterize the set of finite work processes we consider the following
sets [145]:

H̃α(R+,R) =

{
ϑ : R+ → R;

∫ ∞

−∞
ωα′

s(ω)|ϑP+(ω)|2dω < ∞
}
,

H̃k(R
+,R3) =

{
g : R+ → R3;

∫ ∞

−∞
kc(ω)|g+(ω)|2dω < ∞

}
.

(9.3.12)

With the completion with respect to the norm corresponding to the inner product
(ϑ1, ϑ2)α =

∫ ∞
−∞ ωα′

s(ω)ϑ1+(ω)ϑ2+(ω)dω, we have another Hilbert space Hα(R+,R),
besides Hk(R+,R3).

Let σ(t) = (ϑ(t), ϑt, gt) be the initial state of the body at time t > 0, where
ϑt ∈ Γα and gt ∈ Γk, the spaces Γα and Γk being defined by (9.1.21) and (9.3.5), are
possible histories that yield finite work during any process, as defined by (9.3.12).
Any of these processes P = (ϑ̇P, gP) with a finite duration dP < ∞ may be extended
to R+ by putting P(τ) = (0, 0)∀τ ≥ dP. The expression (9.3.2) for the work, taking
into account (9.3.9) for ė(t + τ) and (9.3.6)2 for q(t + τ), with some integrations,
becomes

W(σ(t), P) = W̃(ϑ(t), ϑt, gt; ϑ̇P, gP)

=
1
2
α0

[
ϑ2
P(dP) − ϑ2

P(0)
]
+ α′(0)

∫ ∞

0
ϑ2
P(τ)dτ

+

∫ ∞

0

[
1
2

∫ ∞

0
α′′(|τ − η|)ϑP(η)dη + It(α)(τ, ϑ

t)

]
ϑP(τ)dτ

+

∫ ∞

0

[
1
2

∫ ∞

0
k(|τ − η|)gP(η)dη + It(k)(τ, g

t)

]
· gP(τ)dτ,

(9.3.13)
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where

It(α)(τ, ϑ
t) =

∫ ∞

0
α′′(τ + ξ)ϑt(ξ)dξ,

It(k)(τ, g
t) = −

∫ ∞

0
k′(τ + ξ)gt(ξ)dξ, τ ≥ 0.

(9.3.14)

A definition of equivalence of states is now given in terms of the work function,
which we must compare with Definition 9.3.2.

Definition 9.3.6. Two states σ j(t) = (ϑ j(t), ϑt
j, g

t
j), j = 1, 2, are said to be w-

equivalent if they satisfy

W(σ1(t), P) = W(σ2(t), P) (9.3.15)

for every process P : [0, τ) → R × R3 and for every τ > 0.

Theorem 9.3.7. Two states are equivalent in the sense of Definition 9.3.2 if and only
if they are w-equivalent.

Proof. Two states σ j(t) = (ϑ j(t), ϑt
j, g

t
j), j = 1, 2, equivalent in the sense of Def-

inition 9.3.2, satisfy (9.3.7) for every process P[0,τ) and for every τ > 0. Hence, it
follows that we have the same derivative with respect to τ of (9.3.7)1, which appears
in the expression (9.3.2) for the work, as well as the same heat flux. Thus, the work
done by the same process applied to both σ j(t), j = 1, 2, coincide and (9.3.15) holds.

On the other hand, let two states σ j(t), j = 1, 2, be w-equivalent. Then for any P
with arbitrary duration dP, taking account of (9.3.13) and (9.1.15), we obtain

α0

∫ dP

0
ϑ̇P(τ)dτ[ϑ1(t) − ϑ2(t)] + α′(0)[ϑ1(t) − ϑ2(t)]

∫ dP

0
{[ϑ1(t) + ϑ2(t)]

+ 2
∫ τ

0
ϑ̇P(ξ)dξ

}
dτ +

1
2

∫ ∞

0

∫ ∞

0
α′′(|τ − η|)[ϑ1(t) − ϑ2(t)] {[ϑ1(t) + ϑ2(t)]

+ 2

[∫ τ

0
ϑ̇P(ρ)dρ +

∫ η

0
ϑ̇P(ξ)dξ

]}
dηdτ

= −
∫ dP

0

{[
It(α)(τ, ϑ

t
1)ϑ1(t) − It(α)(τ, ϑ

t
2)ϑ2(t)

]

+
[
It(α)(τ, ϑ

t
1) − It(α)(τ, ϑ

t
2)
] ∫ τ

0
ϑ̇P(ξ)dξ

}
dτ

−
∫ ∞

0

[
It(k)(τ, g

t
1) − It(k)(τ, g

t
2)
]
· gP(τ)dτ,

where the integrals with k(|τ − η|) cancel, since they have the same gP. Since in this
relation ϑ̇P and dP, as well as gP, are arbitrary, it follows that

ϑ1(t) = ϑ2(t), It(α)(τ, ϑ
t
1) = It(α)(τ, ϑ

t
2), It(k)(τ, g

t
1) = It(k)(τ, g

t
2). (9.3.16)

The first of these conditions coincides with (9.3.8)1, while the third, by virtue of
(9.3.14)2, yields (9.3.8)3; the second equality, using (9.3.14)1, yields
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It(α)(τ, ϑ
t
1) − It(α)(τ, ϑ

t
2) =

∫ ∞

0
α′′(τ + ξ)

[
ϑt

1(ξ) − ϑt
2(ξ)

]
dξ

=
d
dτ

∫ ∞

0
α′(τ + ξ)

[
ϑt

1(ξ) − ϑt
2(ξ)

]
dξ = 0.

Hence, the function

f (τ) ≡
∫ ∞

0
α′(τ + ξ)

[
ϑt

1(ξ) − ϑt
2(ξ)

]
dξ

is equal to the constant c1, which can be evaluated by means of

c1 = lim
τ→∞

f (τ) = 0.

Thus, (9.3.16) and (9.3.8) coincide. �

9.3.3 Free Energies as Quadratic Functionals for Rigid Heat Conductors

We can express free energies obeying (9.1.10) as quadratic functionals of the inde-
pendent quantities gt and (ϑ(t), ϑt), respectively, based on the constitutive relations
(9.1.1) and (9.1.6), using a formalism analogous to that in Sect. 8.6. This yields a
free energy

ψ = ψe + ψg,

where ψe is a quadratic functional of temperature and ψg a similar functional of the
temperature gradient. Noting Remark 9.3.1, we see that an analogy with the formal-
ism sketched out in Sect. 8.6.1 is the appropriate one for ψe.

Let us write the special case of (9.3.1) in which the contribution from the tem-
perature gradient is neglected:

w(t) = ϑ(t)ė(t). (9.3.17)

The analogue of (8.6.30) in this context is

ψ(e)(t) =
1
2
α0ϑ

2(t) − 1
2

∫ ∞

0

∫ ∞

0
α12(s, u)ϑt(s)ϑt(u)dsdu,

α12(s, u) =
∂2

∂s∂u
α(s, u), α0 = α(0, 0),

(9.3.18)

where we must choose α(·, ·) so that the integral in (9.3.18)1 exists and is nonpositive
for all finite relative histories. Thus, the equivalent of condition (8.6.4) must apply.
Putting

α(s, u) = α∞ +

∫ ∞

s

∫ ∞

u
α12(s′, u′)ds′ du′,

we have
α(s,∞) = α(∞, s) = α∞.
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Also, (8.6.26)2 becomes

α(s, 0) = α(0, s) = α(s), s ∈ R,

so that α∞ = α(∞).
From (8.6.27), the rate of dissipation is given by

D(t) =
1
2

∫ ∞

0

∫ ∞

0
[α121(s, u) + α122(s, u)]ϑt

r(s)ϑ
t
r(u)dsdu. (9.3.19)

This involves the further constraint on α that the kernel in (9.3.19) must be such that
the integral is nonnegative for all relative histories of the internal energy.

By differentiation of (9.3.18)1 and use of (9.3.3)1, we have (cf. (8.6.29))

ψ̇(e)(t) + D(t) = ϑė(t).

9.3.4 The Work Function

The work function or maximum free energy (or upper bound on free energies) is
obtained from (9.3.18) by putting α(s, u) = α(|s − u|), so that

ψ(e)
M (t) =

1
2
α∞ϑ

2(t) − 1
2

∫ ∞

0

∫ ∞

0
α12(|s1 − s2|)ϑt(s1)ϑt(s2)ds1ds2.

Applying (8.10.20), we see that this agrees with the relevant terms (9.3.11) if ϑt(s)
vanishes for s > dP, using an argument similar to that leading to (7.5.2). Clearly
D(t), given by (9.3.19), vanishes in this case and

ψ̇(e)
M (t) = ė(t)ϑ(t) = w(t),

from (9.3.17).
Recall, however, that there is a problem with categorizing the work function as a

free energy, arising out of Remark 18.2.



10

Free Energies on Special Classes of Material

10.1 The General Nonisothermal Case

We present in this chapter functionals that are free energies, provided certain as-
sumptions on the relaxation function are valid. In the first section, the general non-
isothermal model introduced in Chap. 7 is considered, while in subsequent sections,
these functionals are discussed for materials introduced in Chaps. 8 and 9.

In Sects. 10.1.1 and 10.1.3, we consider quadratic functionals that are free ener-
gies only for a subcategory of materials, namely those with the property

L′(s) ≤ 0, L′′(s) ≥ 0 ∀ s ∈ R+. (10.1.1)

Remark 10.1.1. Note that the assumption L′′(u) ≥ 0, u ≥ s, implies L′(s) ≤ 0. It
implies L′(s) < 0 if L′′ is nonzero on a set of finite measure with elements u > s.
This in particular implies that L′(0) < 0 except in trivial cases.

In Sect. 10.1.2, a stronger assumption must be made.

10.1.1 The Graffi–Volterra Free Energy

Let us first present the Graffi–Volterra functional [89, 90, 174, 175]

ψG(t) = φ(t) − 1
2

∫ ∞

0
L′ (s)Λt

r(s) · Λt
r(s)ds

= S (t) − 1
2

∫ ∞

0
L′ (s)Λt(s) · Λt(s)ds,

(10.1.2)

where Λt
r is defined by (5.1.21)1. The quantity φ(t) is the equilibrium free energy,

defined in general before (5.1.24) and in the linear case by (7.1.31), while S (t) is
given by (7.1.19)2 (in the linear case, (7.1.34) or (7.1.35)). The rate of dissipation
associated with ψG may be derived from (5.1.11), in the form
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DG(t) =
1
2

∫ ∞

0
L′′(s)Λt

r(s) · Λt
r(s)ds,

which is nonnegative under assumption (10.1.1)2. From Sect. 5.1.1, we see that ψG

is a free energy if (10.1.1) holds.
The functional ψG can be expressed in the form (7.1.9), where

L(s, u) =
1
2

[L(s)I(0,s)(u) + L(u)I(0,u)(s)], s > 0, u > 0, (10.1.3)

where IS is the characteristic function of the set S, so that

I(0,s)(u) =

⎧⎪⎪⎨⎪⎪⎩
1, u ∈ (0, s),

0, u � (0, s).

We observe that L12 is unbounded.
Note the single-integral character of the Graffi–Volterra functional. In this con-

text, the reference [189] is of interest. The Graffi–Volterra free energy is a special
case of single-integral nonlinear one-dimensional free energies given in that work.

It is a functional of the minimal state if the material is such that the minimal
states are singletons, in other words, if the minimal state is simply (Λt,Λ(t)). Indeed,
if we have a history Λt

d � 0, equivalent to the zero history, as given by (7.4.3), then
(7.4.8) does not hold, because from (10.1.1), it follows that∫ ∞

0
L′(s)Λt

d(s) · Λt
d(s)ds > 0, (10.1.4)

except in the trivial case that L′ vanishes on R+.

Remark 10.1.2. If the minimal state is nonsingleton, the Graffi–Volterra free energy
is not a functional of the minimal state.

We have the following result.

Proposition 10.1.3. If L12(s1, s2) is a bounded nonnegative (positive semidefinite)
tensor (see discussion of (A.2.12)) for all s1, s2 ∈ R+, then

ψ(t) ≤ ψG(t), t ∈ R, (10.1.5)

where ψ is any functional of the form (7.1.19) and ψG is the Graffi–Volterra func-
tional (10.1.2)2.

Proof. Consider the identity

1
2

∫ ∞

0

∫ ∞

0

[
Λt(s1) − Λt(s2)

]
· L12(s1, s2)

[
Λt(s1) − Λt(s2

]
ds1ds2

=
1
2

∫ ∞

0

∫ ∞

0
Λt(s1) · L12(s1, s2)Λt(s1)ds1ds2

+
1
2

∫ ∞

0

∫ ∞

0
Λt(s2) · L12(s1, s2)Λt(s2)ds1ds2

−
∫ ∞

0

∫ ∞

0
Λt(s1) · L12(s1, s2)Λt(s2)ds1ds2.
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The left-hand side is nonnegative by virtue of the assumption on L12(s1, s2). The first
two terms on the right yield, after integration, the integral term in (10.1.2)2, and the
last term is the memory term in (7.1.19), multiplied in both cases by a factor of 2.
Relation (10.1.5) follows immediately. �

Remark 10.1.4. It must be emphasized that the non-negativity assumption on L12(s1,
s2) is not necessary in general for ψ, given by (7.1.9), to be a free energy, though L12

must be a nonnegative operator in the sense that the integral term in (7.1.9) must be
nonnegative (Remark 7.1.3).

10.1.2 Dill/Staverman–Schwarzl Free Energy

Early work on the determination of the free energy of a linear viscoelastic solid by
Staverman and Schwarzl [305] involved arguments based on mechanical models.
These authors perceived the problem of nonuniqueness and used detailed model as-
sumptions to deal with the issue. The resulting functional was given independently
by others (for example, [36, 204]). It is often referred to as the Dill free energy [96],
a terminology that will be adopted here.

The functional

ψDill(t) = φ(t) +
1
2

∫ ∞

0

∫ ∞

0
L′′(s1 + s2)Λt

r(s2) · Λt
r(s1)ds1ds2 (10.1.6)

is a free energy with rate of dissipation given by

DDill(t) = −
∫ ∞

0

∫ ∞

0
L′′′(s1 + s2)Λt

r(s2) · Λt
r(s1)ds1ds2 (10.1.7)

if and only if L is completely monotonic [89], in other words, if it is differentiable to
any order and

(−1)nL(n)(s) ≥ 0, s ∈ R+, n = 0, 1, 2, . . . , (10.1.8)

where the subscript indicates the nth derivative. Relations (10.1.6) and (10.1.7) are
special cases of (7.1.9) and (7.1.26). Note that in this case, (7.1.6)3 implies (7.1.18),
namely the symmetry of L.

Because of the non-negativity of L′′, we have, from Proposition 10.1.3, that

ψDill(t) ≤ ψG(t), t ∈ R.

The quantity ψDill is a functional of the minimal state. Indeed, in the notation of
(7.4.2)3 and (7.4.5), it obeys (the superscript t can be omitted)

〈Λt
1,Λ

t
d〉 = 〈Λt

2,Λ
t
d〉 = 0,

so that (7.4.7) and (7.4.9) hold.
Relation (10.1.8) will be true if and only if [88]

L(s) =
∫ ∞

0
e−αsdK(α),
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where K : [0,∞) �→ Lin(Γ+) is symmetric, bounded, and nondecreasing with respect
to the order relation of Sect. A.2.1. Let us assume that K is sectionally smooth, with
a finite number of discontinuities, so that

L(s) =
∫ ∞

0
K′(α)e−αs dα +

n∑
i=0

Kie
−αi s,

where αi, i = 0, 1, 2, . . . , n, are the points of discontinuity and

Ki = K(α+i ) −K(α−
i ) > 0, K0 = K(0), α0 = 0.

Then,

ψDill(t) = φ(t) +
1
2

∫ ∞

0
α2Λt

rL(α) · K′(α)Λt
rL(α)dα +

1
2

n∑
i=1

α2
iΛ

t
rL(αi) · KiΛ

t
rL(αi),

where Λt
rL is the Laplace transform (C.2.4)

Λt
rL(α) =

∫ ∞

0
e−αsΛt

r(α)ds,

while

DDill(t) =
∫ ∞

0
α3 Λt

rL(α) · K′(α)Λt
rL(α)dα +

n∑
i=1

α3
i Λ

t
rL(αi) · KiΛ

t
rL(αi).

For the restricted class of materials obeying (10.1.8), ψDill is clearly a free energy
in that it obeys all the criteria in Sect. 5.1.1. The converse, proved in [89], is more
difficult. If we assume that L(·) is infinitely differentiable and that (7.1.15) is replaced
by

L(n)(∞) = 0, n = 0, 1, . . . ,

then a simple demonstration can be given, based on the intuitive observations in
Remark 7.1.3. It follows from (7.1.12) applied to (10.1.6) that

L(n)(2s) ≥ 0, n = 0, 2, 4, . . . , (10.1.9)

for s ∈ R+. The factor 2 is irrelevant and can be dropped. The nonpositivity of odd
derivatives can be seen by integrating (10.1.9) over the interval [s,∞). Thus, (10.1.8)
holds.

Note that from (C.1.3)1,

L′
+(ω) = −

∫ ∞

0

αK′(α)
α + iω

dα −
n∑
i=1

αiKi

αi + iω
,

L′′
+(ω) =

∫ ∞

0

α2K′(α)
α + iω

dα +
n∑
i=1

α2
iKi

αi + iω
= iωL′

+(ω) +
∫ ∞

0
αK′(α)dα +

n∑
1=1

αiKi.
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Also, using the inverse Fourier transform, we have

L′′(s) =
1

2π

∫ ∞

−∞
L′′
+(ω)eiωs dω. (10.1.10)

Substituting (10.1.10) for L′′ into (10.1.6), we obtain

ψDill(t) = φ(t) +
1

4π

∫ ∞

−∞
Λt

r+(ω) · L′′
+(ω)Λt

r+(ω)dω

= φ(t) +
1

4π

∫ ∞

−∞
Λt

r+(ω) · L′′
+(ω)Λt

r+(ω)dω (10.1.11)

= φ(t) +
1

4π

∫ ∞

−∞
Re

{
Λt

r+(ω) · L′′
+(ω)Λt

r+(ω)
}
dω,

where the reality of ψDill has been invoked in writing the second and third forms.

10.1.3 Single-Integral Quadratic Functionals of It

We now introduce a functional that is a free energy for materials with the property
(10.1.1) and is a functional of the minimal state. We also present a family of re-
lated functionals that are free energies for more restrictive conditions on the material.
These results were first reported in [91].

Consider the functional

ψ̃F(It) = ψF(t) = φ(t) − 1
2

∫ ∞

0
L′−1(τ)It(1)(τ) · It(1)(τ)dτ,

It(1)(τ) =
∂

∂τ
It(τ),

(10.1.12)

where L′−1(τ) is the inverse of the tensor L′(τ) in the algebraic sense (treating them
as matrices) and It is defined by

It(τ) = It(τ,Λt
r), (10.1.13)

where the right-hand side is given by (7.4.2), withΛt
r replacing Λt

d. The integral term
in (10.1.12) is nonnegative by virtue of (10.1.1). The tensor L′−1 becomes singular at
large τ, but it is clear from the representation (10.1.15) below that the integral exists.

The domain of definition of the functional ψ̃F will be denoted by

H∗
F(R+) =

{
It;

∫ ∞

0
L′−1(τ)It(1)(τ) · It(1)(τ)dτ < ∞

}
. (10.1.14)

This space is very much larger than the domain of definition of the Graffi–Volterra
free energy, as we see for a kernel given by an exponential or a sum of exponentials.
One can choose exponentially diverging histories such that the integral in (10.1.2)
will diverge, because of the quadratic dependence on Λt

r, but for which It exists.
We can write ψF in terms of the relative history Λt

r as follows:
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ψF(t) = φ(t) +
1
2

∫ ∞

0

∫ ∞

0
L12(s1, s2)Λt

r(s1) · Λt
r(s2)ds1ds2, (10.1.15)

where

L(s1, s2) = −
∫ ∞

0
L′(τ + s2)L′−1(τ)L′(τ + s1)dτ = L(s2, s1). (10.1.16)

We see that L(s1, s2) obeys (7.1.7), by virtue of (7.1.15). Relation (7.1.8) holds if we
assume that L′′(∞) = 0. The important condition (7.1.14)3 can be shown without
difficulty. Also, the kernel in (7.1.25) is given by

−1
2

∫ ∞

0

[
L′′(τ + s1)L′−1(τ)L′(τ + s2) + L′(τ + s1)L′−1(τ)L′′(τ + s2)

]
dτ.

Partial integration with respect to τ gives

1
2
L′(s1)L̇′−1(0)L′(s2) +

1
2

∫ ∞

0
L′(τ + s1)

d
dτ

L′−1(τ)L′(τ + s2)dτ,

which yields a nonnegative dissipation, since under our assumptions,

d
dτ

L′−1(τ) = −L′−1(τ)L′′(τ)L′−1(τ) (10.1.17)

is a nonpositive tensor.
In fact, a more direct demonstration of the fact that ψF is a free energy can be

given. From (10.1.13), we have that

d
dt
It(τ) = İt(τ) = L(τ)Λ̇(t) + It(1)(τ),

giving

d
dt
It(1)(τ) = Ït(τ) = L′(τ)Λ̇(t) + It(2)(τ), It(2)(τ) =

d2

dτ2
It(τ), (10.1.18)

so that

d
dt
ψF(t) = Σ(t) · Λ̇(t) −

∫ ∞

0
L′−1(τ)It(2)(τ) · It(1)(τ)dτ

= Σ(t) · Λ̇(t) +
1
2
L′−1(0)It(1)(0) · It(1)(0) (10.1.19)

+
1
2

∫ ∞

0

[
d
dτ

L′−1(τ)

]
It(1)(τ) · It(1)(τ)dτ,

using (7.1.14)2 and the fact that It(0) is the integral term in (7.1.13)1. Thus, we have,
from (5.1.11),

DF(t) = −1
2
L′−1(0)It(1)(0) · It(1)(0) − 1

2

∫ ∞

0

[
d
dτ

L′−1(τ)

]
It(1)(τ) · It(1)(τ)dτ ≥ 0.
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Note that

DF(t) ≥ −1
2

∫ ∞

0

[
d
dτ

L′−1(τ)

]
It(1)(τ) · It(1)(τ)dτ ≥ 0. (10.1.20)

Let us assume further that there exists a nonnegative α1 such that

L′′(τ) + α1L
′(τ) ≥ 0 ∀τ ∈ R+.

This yields
d
dτ

L′−1(τ) ≤ α1L
′−1(τ) ≤ 0,

using (10.1.17) and from (10.1.20) with (10.1.12),

DF(t) ≥ α1[ψF(t) − φ(t)]. (10.1.21)

One can write down a family of free energies [91] using a simple generalization
of the above procedure [91]. These may be described as multiple-integral quadratic
forms. Consider, for a given integer n ≥ 1,

ψ̃n(It) = ψn(t) = φ(t) +
(−1)n

2

∫
n
L−1

(n)(τ)It(n)(τn) · It(n)(τn),

L(n)(τ) :=
dn

dτn
L(τ), It(n)(τ) =

dn

dτn
It(τ), (10.1.22)

∫
n

:=
∫ ∞

0
dτ1

∫ ∞

τ1

dτ2

∫ ∞

τ2

dτ3 . . .

∫ ∞

τn−1

dτn.

It is assumed that for all τ ∈ R+,

(−1)n+1L(n+1)(τ) ≥ 0. (10.1.23)

It follows that
(−1)mL(m)(τ) ≥ 0, (10.1.24)

where m is any integer in the interval 0 < m ≤ n. Using a generalization of (10.1.18),

d
dt
It(n)(τ) = L(n)(τ)Λ̇(t) + It(n+1)(τ),

one can show that

d
dt
ψn(t) = Σ(t) · Λ̇(t) +

(−1)n−1

2

∫
n−1

L−1
(n)(τn−1)It(n)(τn−1) · It(n)(τn−1)

− (−1)n

2

∫
n

[
d
dτ

L−1
(n)(τn)

]
It(n)(τn) · It(n)(τn).

For n = 1, the middle term on the right is understood to yield the middle term on the
right of (10.1.19)2. We therefore obtain
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DF(t) =
(−1)n

2

∫
n−1

L−1
(n)(τn−1)It(n)(τn−1) · It(n)(τn−1)

+
(−1)n

2

∫
n

[
d
dτn

L−1
(n)(τn)

]
It(n)(τn) · It(n)(τn) ≥ 0,

(10.1.25)

which is nonnegative since

(−1)n
d
dτ

L−1
(n)(τ) = (−1)n+1L−1

(n)(τ)L(n+1)(τ)L−1
(n)(τ) ≥ 0,

by virtue of (10.1.23). Since the first term on the right of (10.1.25) is positive, we
have

DF(t) ≥ (−1)n

2

∫
n

[
d
dτn

L−1
(n)(τn)

]
It(n)(τn) · It(n)(τn) ≥ 0.

Again, if we assume that an αn > 0 exists such that

(−1)n+1[L(n+1)(τ) + αnL(n)(τ)] ≥ 0 ∀τ ∈ R+,

then

(−1)n
d
dτ

L−1
(n)(τ) ≥ (−1)nαnL

−1
(n)(τ)

and (10.1.21) holds, with ψn and αn replacing ψF and α1.
We deduce from (10.1.24) that each ψm, 0 < m ≤ n, is also a free energy if

(10.1.23) holds.
Note that if L is completely monotonic, in other words, if (10.1.24) holds for all

integers m ≥ 0 (or (10.1.8)) [89], then there is an infinite sequence of free energies
given by (10.1.22).

There is a free energy corresponding to n = 0, which does not completely fit into
the above scheme. Consider

ψ̃0(It) = ψ0(t) = φ(t) +
1
2
L−1(0)It(0) · It(0), (10.1.26)

where the second term is positive by virtue of the fact that L−1(0) > 0. By similar
manipulations to those in (10.1.15) and (10.1.16), we obtain

L(s1, s2) = L(s1)L−1(0)L(s2),

which can be seen to obey (7.1.6)2, (7.1.7), and (7.1.8) with the aid of (7.1.15). It
also obeys (7.1.14)3. The kernel in (7.1.25) is

1
2

[L′(s1)L−1(0)L(s2) + L(s1)L−1(0)L′(s2)].

Let us assume that
L′(τ) ≤ 0 ∀τ ∈ R+,

which implies that L(τ) ≥ 0, τ ∈ R+, and further assume that there exists a nonnega-
tive α0 ∈ R++ such that
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L′(τ) + α0L(τ) = 0 ∀τ ∈ R+,

so that L consists of a single exponential term. Then, instead of (10.1.21), we have

D0(t) = 2α0 [ψ0(t) − φ(t)].

Note that we can write ψ0 as

ψ0(t) = φ(t) +
1
2
L−1(0)[Σ(t) − Σe(t)] · [Σ(t) − Σe(t)].

This functional was first considered in [43] for viscoelastic materials; it depends on
the minimal state as shown in [89].

10.2 Free Energies for Restricted Classes of Solids

We now consider functionals introduced in the last two sections for the special cases
of viscoelastic solids and fluids and also for rigid heat conductors. Indeed, these free
energies were originally introduced for viscoelastic solids, which we now discuss.

Consider the functional

ψ̃G(Et) =
1
2
E(t) · G∞E(t) − 1

2

∫ ∞

0
Et
r(ξ) · G′(ξ)Et

r(ξ)dξ, (10.2.1)

where instead of (10.1.1), we have the restrictions on the stress relaxation tensor

G′(s) ≤ 0, G′′(s) ≥ 0 ∀s ∈ R+. (10.2.2)

This is a generalization of a free energy functional determined by Graffi [175] and is
known as the Graffi–Volterra free energy for a viscoelastic solid.

The internal dissipation function DG(t) related to this free energy can be evalu-
ated by differentiating (10.2.1) with respect to time. Using the expression (8.1.3) for
Et
r(s), we obtain

ψ̇G(t) = Ė(t) ·
[
G0E(t) +

∫ ∞

0
G′(s)Et(s)ds

]
−

∫ ∞

0
Ėt(s) · G′(s)Et

r(s)ds. (10.2.3)

Integration by parts gives
∫ ∞

0
Ėt(s) · G′(s)Et

r(s)ds =
1
2

∫ ∞

0
Et
r(s) · G′′(s)Et

r(s)ds.

Substituting into (10.2.3) and taking into account (8.1.5), we obtain

ψ̇G(t) = T(t) · Ė(t) − 1
2

∫ ∞

0
Et
r(s) · G′′(s)Et

r(s)ds,

which satisfies (8.6.16) with
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DG(t) =
1
2

∫ ∞

0
Et
r(s) · G′′(s)Et

r(s)ds ≥ 0,

provided G′′(s) ≥ 0∀s ∈ R+.
Another example is the Dill free energy [96], also referred to as the Staverman–

Schwarzl free energy [305] given by

ψ̃Dill(Et) =
1
2
E(t) · G∞E(t)+

1
2

∫ ∞

0

∫ ∞

0
Et
r(ξ1) · G′′(ξ1+ξ2)Et

r(ξ2)dξ1dξ2. (10.2.4)

Its time derivative has the form

ψ̇Dill(t) = Ė(t) · G∞E(t)

+
1
2

∫ ∞

0

∫ ∞

0

[
Ėt
r(ξ1) · G′′(ξ1 + ξ2)Et

r(ξ2) + Et
r(ξ1) · G′′(ξ1 + ξ2)Ėt

r(ξ2)
]
dξ1dξ2.

(10.2.5)

Hence, taking into account the expression for Et
r as before and using (8.1.2), we

obtain, after partial integrations,

ψ̇Dill(t) =

[
G∞E(t) +

∫ ∞

0
G′(s)Et

r(s)ds

]
· Ė(t)

+

∫ ∞

0

∫ ∞

0
Ėt(ξ1) · G′(ξ1 + ξ2)Ėt(ξ2)dξ1dξ2 (10.2.6)

= T(t) · Ė(t) +
∫ ∞

0

∫ ∞

0
Ėt(ξ1) · G′(ξ1 + ξ2)Ėt(ξ2)dξ1dξ2.

Thus, (8.6.16) is satisfied with

DDill(t) = −
∫ ∞

0

∫ ∞

0
Ėt(ξ1) · G′(ξ1 + ξ2)Ėt(ξ2)dξ1dξ2 ≥ 0.

This quantity is nonnegative if and only if G is monotonic as defined in a more
general context by (10.1.8). Note that a frequency-domain representation of ψDill is
given by (10.1.11) in the general case.

Finally, let us consider free energies that are quadratic functions of It, given by
(8.2.2) (see comment after (8.2.6)), at least for the categories of material obeying
(10.2.2). The motivation for this is that such quantities will be functionals of the
minimal state, by virtue of the discussion in Sect. 8.3. These results were first re-
ported in [91].

The developments presented here are a special case of those in Sect. 10.1.3. Dif-
ferences in the formulas occur because of the fact that L(∞) vanishes by (7.1.15)1,
while G(∞) does not. Also, the general equilibrium free energy φ(t) is replaced by
its linear viscoelastic form. We define

ψF(t) =
1
2
E(t) · G∞E(t) − 1

2

∫ ∞

0
[G′(τ)]−1It(1)(τ) · It(1)(τ)dτ, (10.2.7)
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where [G′(τ)]−1 is the inverse tensor of G′(τ) in the algebraic sense and It(1)(τ) is the
derivative with respect to τ of It(τ). The assumption (10.2.2)1 yields a nonnegative
term for the integral in (10.2.7). The domain of definition is given by (10.1.14) but
with G replacing L.

This functional can be written in terms of the relative history Et
r, using (8.2.6),

as follows:

ψF(t) =
1
2
E(t) · G∞E(t)

− 1
2

∫ ∞

0

∫ ∞

0

∫ ∞

0
G′′(τ + s2)[G′(τ)]−1G′′(τ + s1)Et

r(s1) · Et
r(s2)ds1ds2dτ

=
1
2
E(t) · G∞E(t) +

1
2

∫ ∞

0

∫ ∞

0
G12(s1, s2)Et

r(s1) · Et
r(s2)ds1ds2, (10.2.8)

where we have put

G(s1, s2) = −
∫ ∞

0
G′(τ + s2)[G′(τ)]−1G′(τ + s1)dτ +G∞ = G(s2, s1) (10.2.9)

and G12 is given by (8.6.2). Relation (8.6.9) has been used. From this expression
for ψF , we see that the integral exists, even though [G′]−1 becomes singular at large
τ ∈ R+. Note that G(s1, s2) satisfies (8.6.11), by virtue of (8.1.27).

One can show that a nonnegative dissipation rate is associated with this func-
tional. The expression (8.6.19) with an integration by parts gives

K(s1, s2)

= −
∫ ∞

0
[G′′(τ + s1)[G′(τ)]−1G′(τ + s2) +G′(τ + s1)[G′(τ)]−1G′′(τ + s2)]dτ

= G′(s1)[G′(0)]−1G′(s2) +
∫ ∞

0
G′(τ + s1)

d
dτ

[G′(τ)]−1G′(τ + s2)dτ,

so that

K12(s1, s2) = G′′(s1)[G′(0)]−1G′′(s2) +
∫ ∞

0
G′′(τ + s1)

d
dτ

[G′(τ)]−1G′′(τ + s2)dτ,

which is a negative semidefinite tensor, because of the assumption on G′′(τ) and the
relationship

d
dτ

[G′(τ)]−1 = −[G′(τ)]−1G′′(τ)[G′(τ)]−1.

A more direct demonstration can also be given, by evaluating

ψ̇F(t) = Ė(t) · G∞E(t) −
∫ ∞

0
[G′(τ)]−1İt(1)(τ) · It(1)(τ)dτ, (10.2.10)

where, by virtue of (8.2.5) and (8.2.4), we have

İt(1)(τ) = G′(τ)Ė(t) + It(2)(τ),
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where

It(2)(τ) =
d2

dτ2
It(τ).

Substituting and integrating by parts, we have

ψ̇F(t) =
[
G∞E(t) + It(0)

]
· Ė(t) −

∫ ∞

0
[G′(τ)]−1It(2)(τ) · It(1)(τ)dτ

= T(t) · Ė(t) +
1
2

[G′(0)]−1It(1)(0) · It(1)(0)

+
1
2

∫ ∞

0

d
dτ

[G′(τ)]−1It(1)(τ) · It(1)(τ)dτ.

Hence, we obtain

DF(t) = −1
2

[G′(0)]−1It(1)(0) · It(1)(0)

− 1
2

∫ ∞

0

d
dτ

[G′(τ)]−1It(1)(τ) · It(1)(τ)dτ ≥ 0.
(10.2.11)

Note that

DF(t) ≥ −1
2

∫ ∞

0

d
dτ

[G′(τ)]−1It(1)(τ) · It(1)(τ)dτ. (10.2.12)

Let us further assume that there is a constant α1 ∈ R+ such that

G′′(τ) + α1G
′(τ) ≥ 0 ∀τ ∈ R+. (10.2.13)

This yields
d
dτ

[G′(τ)]−1 ≤ α1[G′(τ)]−1(τ) ≤ 0,

and therefore, on using (10.2.7), we see that (10.2.12) assumes the form

DF(t) ≥ α1

[
ψF(t) − 1

2
G∞E(t) · E(t)

]
. (10.2.14)

The generalization (10.1.22) applies in this case with notational changes [91].
Consider the functional (see (10.1.26))

ψ̃0(It) =
1
2
E(t) · G∞E(t) +

1
2

[Ğ(0)]−1It(0) · It(0),

where Ğ is defined in (8.2.4). The last term is positive, since [Ğ(0]]−1 > 0, on account
of (8.1.22). By similar manipulations to those in (10.2.8) and (10.2.9), we obtain

G(s1, s2) = Ğ(s1)[Ğ(0]]−1Ğ(s2) +G∞,

which satisfies (8.6.7). Also,

K(s1, s2) = [G′(s1)]−1[Ğ(0)]−1Ğ(s2) + [Ğ(s1]]−1Ğ−1(0)G′(s2).

Let us assume
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G′(τ) ≤ 0 ∀τ ∈ R+,

whence it follows that Ğ(τ) ≥ 0∀τ ∈ R+; moreover, if we suppose that α0 ∈ R++
exists and is such that

G′(τ) + α0Ğ(τ) = 0 ∀τ ∈ R+,

it follows that Ğ is proportional to a single decaying exponential.
Thus, we obtain (10.2.14) as an equality, where 2α0 replaces α1, which yields a

nonnegative dissipation.
Observe that ψ0 can be written as

ψ0(t) =
1
2
E(t) · G∞E(t) +

1
2
Ğ−1(0)[T(t) −G∞E(t)] · [T(t) −G∞E(t)].

This functional was first considered in [43]; it depends on the minimal state as shown
in [89], where it is also proved that it is a free energy if and only if G is proportional
to an exponential and G′(0) ≤ 0. It can be written in the form

ψ0(t)(Et) =
1
2
E(t) · G∞E(t) +

1
2

[
(G0 −G∞)−1/2

∫ ∞

0
G′(s)Et

r(s)ds

]2

, (10.2.15)

where
G(s) = G∞ +G1 exp(−γs), γ > 0,

with
G1 = G0 −G∞ > 0,

by (8.1.22) and
G′(s) = −γG1 exp(−γs) = G′(0) exp(−γs).

This is the Day free energy [121, Chapter 3]. It arises most naturally as a special
case of the minimum and other related free energies discussed in Sects. 11.9, 16.9.1,
and 17.8. For materials characterized by a single decaying exponential, it is equal to
both the minimum and maximum free energies dependent on the minimal state, the
latter quantity as defined in Sect. 16.5.

One can show that the corresponding rate of dissipation has the form

D0(t) = γ

∣∣∣∣∣(G0 −G∞)−1/2
∫ ∞

0
G′(s)Et

r(s)
∣∣∣∣∣
2

≥ 0.

Remark 10.2.1. For materials with a relaxation function given by a sum of strictly
decaying exponentials, as in (8.4.1), one can consider a general (algebraic) quadratic
form, using the quantities Ek(t), k = 1, 2, . . . , n, given by (8.4.2), and explore what
conditions it must obey in order to be a free energy. This is done in the scalar case in
Sect. 16.3.1. Such forms are functionals of the minimal state.
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10.3 Free Energies for Restricted Classes of Fluids

The free energies introduced for viscoelastic solids in Sect. 10.2 and for the general
case in Sect. 10.1 can be considered also for viscoelastic fluids with a few changes.
We shall focus here on the simplest case, that of incompressible fluids, discussed in
Sect. 8.10.

Let us firstly consider the Graffi–Volterra functional [174, 175], corresponding
to (10.2.1), which, for incompressible fluids discussed in Sect. 8.10, assumes the
following form:

ψG(t) = −
∫ ∞

0
μ′(s)Et

r(s) · Et
r(s)ds = −

∫ ∞

0
μ′(s)|Et

r(s)|2ds. (10.3.1)

Under the hypothesis that
μ′′(s) ≥ 0, s ∈ R+, (10.3.2)

yielding that
μ′(s) ≤ 0, s ∈ R+, (10.3.3)

this functional is a free energy. These restrictions were assumed by Slemrod in [300]
to study the stability question for such fluids (see [215, 216, 301]). Note that μ′(s)
will vanish only if μ′′(u) is zero for all u ≥ s.

There is no equilibrium term in (10.3.1), since the first term in (8.10.1) does no
work as a result of the incompressibility property.

One can show that the functional (10.3.1) satisfies (8.6.16), that is, ψ̇+DG = T · Ė,
where DG is the dissipation rate given by

DG(t) =
∫ ∞

0
μ′′(s)Et

r(s) · Et
r(s)ds ≥ 0.

The final inequality follows from the hypothesis (10.3.2).
Consider the Dill functional in the form (cf. (10.2.4))

ψDill(t) =
∫ ∞

0

∫ ∞

0
μ′′(ξ1 + ξ2)Et

r(ξ1) · Et
r(ξ2)dξ1dξ2.

Taking the time derivative of this quantity yields, after manipulations analogous to
those in (10.2.5) and (10.2.6),

ψ̇Dill(t) = T(t) · Ė(t) + 2
∫ ∞

0

∫ ∞

0
μ′(ξ1 + ξ2)Ėt(ξ1) · Ėt(ξ2)dξ1dξ2.

Thus, (8.6.16) is satisfied if we put

DDill(t) = −2
∫ ∞

0

∫ ∞

0
μ′(ξ1 + ξ2)Ėt(ξ1) · Ėt(ξ2)dξ1dξ2.

The quantity ψDill is a free energy (which implies that DDill(t) is nonnegative) if and
only if μ is monotonic (see (10.1.8)).
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Another functional is that considered from (10.2.7) onward [91], denoted by ψF ,

ψF(It) = −1
4

∫ ∞

0

1
μ′(τ)

It(1)(τ) · It(1)(τ)dτ, (10.3.4)

where we have denoted by It(1)(τ) the derivative of It(τ,Et
r), given by (8.10.6), with

respect to τ, that is,

It(1)(τ) =
d
dτ

It(τ,Et
r) = 2

∫ ∞

0
μ′′(ξ + τ)Et

r(ξ)dξ. (10.3.5)

The hypothesis (10.3.2) yielding (10.3.3) is assumed here also.
The domain of such a functional is (see (10.1.14))

H′
F(R+) =

{
It;

∣∣∣∣∣
∫ ∞

0

1
μ′(τ)

It(1)(τ) · It(1)(τ)dτ
∣∣∣∣∣ < ∞

}
,

which yields a much larger space than that considered for ψG.
Using the same steps as those outlined from (10.2.10) onward, we obtain

ψ̇F(t) + DF(t) = T(t) · Ė(t),

where

DF(t) = −1
4

1
μ′(0)

It(1)(0) · It(1)(0) − 1
4

∫ ∞

0

d
dτ

[
1

μ′(τ)

]
It(1)(τ) · It(1)(τ)dτ ≥ 0,

because of the properties (10.3.2) and (10.3.3) of μ. We have the following inequal-
ity:

DF(t) ≥ −1
4

∫ ∞

0

d
dτ

[
1

μ′(τ)

]
It(1)(τ) · It(1)(τ)dτ ≥ 0. (10.3.6)

Consider the particular case that there exists α ∈ R++ such that

μ′′(τ) + αμ′(τ) ≥ 0 ∀τ ∈ R+,

which is the scalar version of (10.2.13). It follows that

−μ′′(τ) ≤ αμ′(τ), − d
dτ

[
1

μ′(τ)

]
≥ − α

μ′(τ)
.

Therefore, from (10.3.6) and (10.3.4), we have (cf. (10.2.14))

DF(t) ≥ αψF(t).

The other free energy functionals described for the general case in Sect. 10.1 and
for solids in Sect. 10.2 are easily defined also for fluids.
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10.4 Free Pseudoenergies for Restricted Classes of Rigid Heat
Conductors

Several functionals are given in Sects. 10.2 and 10.3 that are free energies for re-
stricted classes of kernels. Similar results apply to rigid heat conductors. In partic-
ular, the contribution of the temperature gradient to the free energy is given by an
expression identical to each of those considered in Sect. 10.3 if we replace μ′ by k′/2
and Et

r by gt. This contribution will not be discussed further in the present context.
Thus, we consider only the contributions due to the internal energy e.

The kernel of (9.3.3)1 is assumed to be such that

α′′(s) ≤ 0 ∀s ∈ R+, (10.4.1)

so that
α′(s) > 0, ∀s ∈ R+, (10.4.2)

if we exclude the case that α′′(u) vanishes for all u > s.
The Graffi–Volterra free energy corresponding to the general quadratic form

(9.3.18) (see (10.1.3)) is given by

ψ(e)
G (t) =

1
2
α0ϑ

2(t) +
1
2

∫ ∞

0
α′(s)[ϑt(s)]2ds.

The time derivative of this quantity has the form

ψ̇(e)
G (t) = α0ϑ̇(t)ϑ(t) +

∫ ∞

0
α′(s)ϑ̇t(s)ϑt(s)ds

= ė(t)ϑ(t) +
1
2

∫ ∞

0
α′′(s)[ϑt

r(s)]
2ds,

so that the rate of dissipation is given by

D(e)
G (t) = −1

2

∫ ∞

0
α′′(s)[ϑt

r(s)]
2ds.

The Dill free energy (cf. (10.2.4)) is obtained by putting α(s, u) = α(s + u)
in (9.3.18) and (9.3.19). We must assume that α(·) is a monotonic function (see
(10.1.8)), though in this case increasing, so that the condition becomes

(−1)nα(n)(s) ≤ 0, s ∈ R+, n = 1, 2, 3, . . . .

A further example is the functional [91]

ψ(e)
F (t) = ϑ(t)e(t) − 1

2
α∞ϑ

2(t) +
1
2

∫ ∞

0

1
α′(τ)

[
It(α)(τ, ϑ

t
r)
]2
dτ, (10.4.3)

where It(α)(·, ϑ
t
r) is given by (9.3.14)1 but with ϑt

r replacing ϑt, under the hypotheses
(10.4.1) and (10.4.2). The factor 1/α′(τ), which diverges at large τ, is multiplied by
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factors that have a behavior such that the integral in (10.4.3) exists; consequently, we
can consider the domain

H′
F(R+) =

{
It;

∣∣∣∣∣
∫ ∞

0

1
α′(τ)

[
It(α)(τ, ϑ

t
r)
]2
dτ

∣∣∣∣∣ < ∞
}
.

Equation (10.4.3) corresponds to (8.6.30)1. We can also write ψ(e)
F in a form corre-

sponding to (9.3.18):

ψ(e)
F (t) =

1
2
α0ϑ

2(t) +
1
2

∫ ∞

0

1
α′(τ)

[
It(α)(τ, ϑ

t)
]2
dτ.

Relation (10.4.3) can be written as

ψ(e)
F (t) = ϑ(t)e(t) − 1

2
α∞ϑ

2(t) − 1
2

∫ ∞

0

∫ ∞

0
α12(s1, s2)ϑt

r(s1)ϑt
r(s2)ds1ds2,

where

α(s1, s2) = −
∫ ∞

0

1
α′(τ)

α′(τ + s1)α′(τ + s2)dτ,

α12(s1, s2) =
∂2

∂s2∂s1
α(s1, s2),

satisfying

α(s1, 0) = α(s1),

α(0, s2) = α(s2),

α(0, 0) = α(0).

Following steps similar to those from (10.2.10) to (10.2.11), we can show that ψ(e)
F

obeys the relation
ψ̇(e)
F (t) + D(e)(t) = ė(t)ϑ(t),

where

D(e)
F (t) =

1
2

∫ ∞

0

d
dτ

[
1

α′(τ)

] [
It(α)(τ, ϑ

t
r)
]2
dτ +

1
2

1
α′(0)

[
It(α)(0, ϑ

t
r)
]2
≥ 0,

since
d
dτ

[
1

α′(τ)

]
= − α′′(τ)

(α′(τ))2
≥ 0,

so that ψ(e)
F is a free energy.

Analogues of the other functionals described in Sects. 10.1 and 10.2 are easily
determined.
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Remark 10.4.1. For the remainder of Part III, we will consider free energies that
emerge from extremum conditions, in particular, the minimum and maximum free
energies. No special restriction is imposed on the material, of the kind introduced in
the earlier chapters of Part III. However, in order to derive expressions for these free
energies, an assumption is made of analyticity of L′

+(ω) in an open set including the
real axis, which is equivalent to restricting L′(s) so that it decays exponentially at
large s.
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The Minimum Free Energy

Breuer and Onat [42] considered the following question: what is the maximum
amount of work recoverable from a body that has undergone a specified strain his-
tory? They found that the answer for linear viscoelastic memory materials is provided
by the solution of an integral equation of Wiener–Hopf type, which is in fact a spe-
cial case of the result given in Sect. 5.2. They gave a detailed solution by elementary
means for a material with relaxation function in the form of a finite sum of decay-
ing exponentials. The nonuniqueness problem was also explicitly exposed by these
authors [43].

Day [84] presented an alternative formulation of the thermodynamics of materi-
als with memory. In [85], he revisited the problem considered in [42] within a more
rigorous framework, introducing the concept of a (time) reversible extension and dis-
cussing the maximum recoverable work in terms of this concept. An expression for
the minimum free energy of a standard linear solid (linear viscoelastic solid with a
relaxation function that has only one decaying exponential) was given in [87].

A general expression for the minimum free energy of a linear viscoelastic solid
under isothermal conditions was given in [158]. This was for a scalar constitutive
relation. A generalization to the full tensor case was presented in [92]. These results
were used in the context of the viscoelastic Saint-Venant problem in [93]. Detailed
explicit expressions for the minimum free energy and related quantities were given
in [92, 158] for discrete-spectrum materials, namely those for which the relaxation
function is a sum of exponentials. The minimum free energies of compressible and
incompressible viscoelastic fluids were determined in [5, 8, 100], while materials
with finite memory were considered in [111]. The maximum recoverable work or
equivalently the minimum free energy for rigid heat conductors was considered in
[6, 21, 22].

We now derive a general expression for the minimum free energy and the asso-
ciated rate of dissipation for a material described by the linear memory model. The
results discussed above are special cases of this, with the exception of the approxi-
mate treatment of rigid heat conductors based on (9.1.9), which corresponds to the
results of Sect. 8.6.1, as noted in Sect. 9.3.3.
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11.1 Factorization of Positive Definite Tensors

It will be required to factorize the quantity H, given by (7.2.22), in order to determine
an expression for the minimum and other free energies. This was first discussed in
[158] for the scalar case, where an appropriate factorization of the one-dimensional
counterpart of H(ω) was introduced. Such a particular factorization does not apply
to fourth-order tensors, so that the extension of the result of [158] to the general case,
which was given in [92], is not trivial.

In this section, we show that H can always be factorized. Use will be made of a
result by Gohberg and Kreı̆n [156] for tensor-valued functions. Given a nonsingular
continuous tensor-valued function K(ω) ∈ Lin(Γ(Ω)), ω ∈ R (K not connected with
the quantity in (7.1.1)), we say that K has a left [right] factorization if it can be
represented in the form

K(ω) = K(+)(ω)K(−)(ω), [K(ω) = K(−)(ω)K(+)(ω)], (11.1.1)

where the tensor functions K(±) admit analytic continuations, analytic in the interior
and continuous up to the boundary of the corresponding complex half-planes Ω±,
and are such that

detK(±)(ζ) � 0, ζ ∈ Ω±.

We say that K belongs to Fm×m,F
+
m×m, and F−

m×m, respectively, if there exists a con-
stant tensor C0 and a tensor function F(t) such that

K(ω) = C0 +

∫ ∞

−∞
F(t)e−iωt dt,

K(ω) = C0 +

∫ ∞

0
F(t)e−iωt dt, K(ω) = C0 +

∫ 0

−∞
F(t)e−iωt dt.

(11.1.2)

Note that if K ∈ F±
m×m, it has the analytic properties ascribed to K(±) above. The

main result we use is Theorem 8.2 of [156], which can be stated in our context as
follows:

Theorem 11.1.1. (Gohberg–Kreı̆n) In order that the nonsingular Hermitian tensor
function K ∈ Fm×m possesses a representation of the form

K(ω) = K(+)(ω)K∗
(+)(ω), (11.1.3)

in which the tensor functionK(+) is in F+m×m and satisfies detK(+)(ζ) � 0 for ζ ∈ Ω+,
it is necessary and sufficient that K(ω) be positive definite for every ω ∈ R.

Observe that comparison of (11.1.3) with (11.1.1)1 yields

K(−)(ω) = K∗
(+)(ω).

It follows from the assumption (7.2.20) that

lim
ω→0

H(ω)
ω2

= H0, (11.1.4)
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where H0 is symmetric and positive definite. Consider now the tensor

K(ω) :=
ω2

0 + ω
2

ω2
H(ω), (11.1.5)

where ω0 � 0 is some given frequency. The tensor K(ω) is symmetric, real (therefore
Hermitian), and positive definite ∀ω ∈ R; moreover, it is such that

lim
ω→0

K(ω) = ω2
0H0, lim

ω→∞
K(ω) = H∞.

In order to apply Theorem 11.1.1, we have to show that K ∈ Fm×m, i.e., that the
representation (11.1.2) applies.

Proposition 11.1.2. If L and L′′ are tensor functions, integrable on [0,∞), and L′
0

is finite, the tensor-valued function K, related to L through (7.2.22) and (11.1.5),
belongs to Fm×m.

Proof. Observe that from (7.2.22),

K(ω) = −
⎡⎢⎢⎢⎢⎣ωL′

s(ω) +
ω2

0

ω
L′

s(ω)

⎤⎥⎥⎥⎥⎦ . (11.1.6)

Integration by parts of the integral in (7.2.1) and of a corresponding integral for
L′′
+(ω) in terms of L′′(s) yields

− 1
ω
L′

s(ω) = Lc(ω), ωL′
s(ω) = L′(0) + L′′

c (ω),

so that (11.1.6) becomes

K(ω) =
[
−L′(0) − L′′

c (ω) + ω2
0Lc(ω)

]
. (11.1.7)

Consider now the tensors

C0 = −L′(0), F(t) =
1
2

[
−L′′(t) + ω2

0L(t)
]
, t ∈ R, (11.1.8)

where L and L′′ are extended on the real line as even functions, so that from (C.1.5),
LF = 2Lc and L′′

F = 2L′′
c . Then, in view of (11.1.8), (11.1.7) is equivalent to (11.1.2)1

and the assertion is proved. �

Since K(ω) is Hermitian and positive definite for every ω ∈ R, it satisfies Theo-
rem 11.1.1. In particular, it has a representation of the form (left factorization)

K(ω) = K(+)(ω)K∗
(+)(ω), (11.1.9)

with K(+)(ω) ∈ F+m×m and

detK(+)(ζ) � 0 for ζ ∈ Ω+.
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Moreover, such a factorization is unique up to a multiplication on the right of K(+)

by a constant unitary tensor.
Similarly, K has a right factorization of the type

K(ω) = K(−)(ω)K∗
(−)(ω) (11.1.10)

with corresponding properties. In fact, since K(ω) is an even function of ω, we can
replace ω by −ω on the right of (11.1.9). Now, K(+)(−ω) ∈ F−

m×m with nonzero
determinant in Ω(−), so that K(−)(ω) = K(+)(−ω).

By virtue of (11.1.5) and (11.1.10), H(ω) can be factorized as follows:

H(ω) = H+(ω)H−(ω), (11.1.11)

where

H+(ω) =
ω

ω − iω0
K(−)(ω), H−(ω) =

ω

ω + iω0
K∗

(−)(ω). (11.1.12)

Alternatively, the left factorization (11.1.9) may be used, though the right factoriza-
tion is more convenient in the present context. Representation (11.1.12) gives that

H±(ω) = H∗
∓(ω). (11.1.13)

We have introduced in the present work an assumption that is stronger than those
required in Theorem 11.1.1, namely that H is analytic in an open set including the
real axis R. Since H+ has the singularities of H in Ω(+), then H± will share this
property.

In general, H+ and H− do not commute, and various general results can be proved
without assuming that they do. However, in order to derive explicit forms for vari-
ous free energies, we must make an assumption that implies commutativity or, put
another way, that H± are normal tensors. This arises out of an assumption made in
Sect. 11.6.

The notation for H+(ω) and H−(ω) follows the convention used in [158], i.e., the
sign indicates the half-plane in which the singularities of the tensor lie. These factors
also have the property that any zeros in their determinant occur also in the indicated
half-plane. This latter property will not apply when factorizations leading to free
energies other than the minimum are discussed. We adopt, however, the convention
that f± has all its singularities in Ω±, respectively. This is in particular the convention
adopted in Appendix C for Fourier-transformed quantities.

Recalling (11.1.4), we see that H± each vanish linearly at the origin.
Note that we require (7.1.18) to ensure that H, and therefore K, is symmetric

(i.e., Hermitian for real tensors).
The quantity H∞, defined by (7.2.24), is given by

H∞ = H+(∞)H−(∞) = H+∞H−∞. (11.1.14)

If H±∞ can be chosen to be Hermitian, which is possible at least in the commutative
case considered in Sect. 11.6, then they are both equal to the square root of the
nonnegative tensor H∞.
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11.1.1 The Scalar Case

We can derive explicit forms for the factors if H is a scalar function. It is real and
nonnegative on R, vanishing quadratically at the origin. It is an even function of ω
and therefore a function of ω2, in view of its analyticity about the origin. Its singu-
larities are as ascribed to H (and L′

s before (7.2.22)).
We define the function

K(ω) = log[H(ω)T (ω)], T (ω) =
ω2 + ω2

0

H∞ω2
,

where ω0 may be chosen arbitrarily on R. Then, K is a well-defined analytic function
on R, vanishing like ω−2 for large values of ω. Consider the quantity

M(z) =
1

2πi

∫ ∞

−∞

K(ω)
ω − z

dω, z ∈ Ω\R,

which goes to zero like z−1 at large z (see (B.2.13)). For z ∈ Ω(+), M(z) = M−(z) is a
function analytic in Ω(+), while for z ∈ Ω(−), M(z) = M+(z), which is analytic in Ω(−)

(Sect. B.2.1). The Plemelj formulas (B.2.14) take the form

M−(ω) =
1
2
K(ω) +

1
2πi

P
∫ ∞

−∞

K(ω′)
ω′ − ω

dω′,

M+(ω) = −1
2
K(ω) +

1
2πi

P
∫ ∞

−∞

K(ω′)
ω′ − ω

dω′,

giving that
M−(ω) − M+(ω) = K(ω), ω ∈ R,

where M+(ω) (M−(ω)) are the limiting values of M+(z) (M−(z)) as z approaches the
real axis from below (above). Then, if we put

H+(ω) =
ωh∞

ω − iω0
e−M+(ω),

H−(ω) =
ωh∞

ω + iω0
e+M−(ω), h∞ = H1/2

∞ ,

(11.1.15)

it follows that H+(z) is analytic and free of zeros in Ω(−); similarly for H−(z) in Ω(+).
Also,

H+(ω)H−(ω) = H(ω). (11.1.16)

Noting that M±(ω) = M±(−ω) = −M∓(ω), we see that

H±(ω) = H∓(−ω) = H∓(ω),

H(ω) = |H±(ω)|2, ω ∈ R.
(11.1.17)

According to the general result on the uniqueness of the factorization, noted above,
a scalar factorization should be unique up to multiplication by a phase factor eiα,
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where α is a constant. Relation (11.1.17)2 reduces this arbitrariness to multiplication
by a factor ±1.

It follows from (11.1.15) that

H±(∞) = h∞ = H1/2
∞ , (11.1.18)

so that H±(∞) are real and equal.

11.2 Derivation of the Form of the Minimum Free Energy

We shall be seeking to find the continuation Λt(u), u ∈ R−−, that maximizes the
recoverable work (Theorem 4.2.3). For this purpose, our attention will be confined
to the family of continuations that vanish at large u, since it can be shown [92, 145]
that the maximum recoverable work obtained by searching in this set is equal to that
obtained by a wider search in the general set of bounded recoverable works.

The set of continuations for which

W(∞) =
∫ ∞

−∞
Σ(u) · Λ̇(u)du (11.2.1)

exists and Λ(∞) vanishes, we label C0. Using (7.5.5), we can write (11.2.1) as

W(∞) =
1
2

∫ ∞

−∞

∫ ∞

−∞
L12(|s − u|)Λ(u) · Λ(s)duds

=
1
2

∫ ∞

−∞

∫ ∞

−∞
L12(|s − u|)Λt(u) · Λt(s)duds,

(11.2.2)

where the latter form is obtained by changes of integration variables. The superscript
t is now an arbitrary parameter, which we interpret again as the current time. Apply-
ing the convolution theorem and Parseval’s formula to (7.5.5) for t = ∞, we obtain,
as in Sect. 7.5,

W(∞) =
1

2π

∫ ∞

−∞
Λt

F(ω) ·H(ω)Λt
F(ω)dω

=
1

2π

∫ ∞

−∞
Λt

rF(ω) ·H(ω)Λt
rF(ω)dω (11.2.3)

=
1

2π

∫ ∞

−∞

[
Λt

r+(ω) + Λt
r−(ω)

]
·H(ω)

[
Λt

r+(ω) + Λt
r−(ω)

]
dω

by virtue of (C.1.4). We have used the notation of Sect. 7.2.3. Relations (11.2.3)1 and
(11.2.3)2 are equal by virtue of (7.2.31), (C.2.19), and the fact that H(ω) vanishes
for ω = 0. For continuations in C0, the recoverable work from the state at time t (see
(5.2.3)) is given by

WR(t) = −
∫ ∞

t
Σ(u) · Λ̇(u)du = W(t) −W(∞). (11.2.4)
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To obtain the minimum free energy, we seek to maximize WR(t). Since W(t) is a
given quantity, this is equivalent to minimizing W(∞).

We now give three derivations of the form of the minimum free energy. The
first uses a variational technique developed in [92, 158]. Also, a quite different and
simplified version of this approach is presented. The third approach is based on the
solution of (5.2.8) in the linear memory case, where it reduces to a linear Wiener–
Hopf equation.

11.2.1 A Variational Approach

Let Λt
o be the optimal future continuation (so that Λ̇o is the optimal process) and

Λt
ro(s) = Λt

o(s) − Λ(t), s ∈ R−. (11.2.5)

Let Λt
m denote the Fourier transform of Λt

ro, so that Λt
m(ω) = Λt

ro−(ω). Put

Λt
r−(ω) = Λt

m(ω) + k−(ω), (11.2.6)

where k−(ω) is arbitrary apart from the fact that it must have the same analytic prop-
erties as Λt

r−(ω), i.e., k−(z) must be analytic in Ω+, and vanish like z−1 at large z.
Then, varying k−, we find that W(∞) will be minimized by Λt

m if
∫ ∞

−∞
Re

{
H(ω)

[
Λt

r+(ω) + Λt
m(ω)

]
· k−(ω)

}
dω = 0.

The restriction to the real part of the integral may be removed, since the imaginary
part vanishes by virtue of the symmetric range of integration and (C.1.7). Using the
factorization (11.1.11), we can rewrite this condition in the form

∫ ∞

−∞
H(ω)

[
Λt

r+(ω) + Λt
m(ω)

]
· k−(ω)dω

=

∫ ∞

−∞
H+(ω)

[
H−(ω)Λt

r+(ω) +H−(ω)Λt
m(ω)

]
· k−(ω)dω = 0.

(11.2.7)

Consider now the quantity H−(ω)Λt
r+(ω), the components of which are continuous,

indeed analytic on R, by virtue of the analyticity properties of H−(ω) and Λt
+(ω).

The Plemelj formula (B.2.15)2 gives that

Pt(ω) = H−(ω)Λt
r+(ω) = pt−(ω) − pt+(ω), (11.2.8)

where

pt(z) =
1

2πi

∫ ∞

−∞

Pt(ω′)
ω′ − z

dω′, pt±(ω) := lim
α→0∓

pt(ω + iα). (11.2.9)

Moreover, pt(z) = pt+(z) is analytic for z ∈ Ω(−), and pt(z) = pt−(z) is analytic for
z ∈ Ω(+). Both are analytic on the real axis by virtue of the argument leading up to
Remark B.2.2. We write them in the form
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pt±(ω) =
1

2πi

∫ ∞

−∞

Pt(ω′)
ω′ − ω∓ dω

′, (11.2.10)

where the notation ω± of (C.2.10) and (C.2.11) has been used. If we can determine
explicit formulas for pt±(ω), ω ∈ R (or ω ∈ Ω(∓)), then they can be analytically
continued into Ω(±), respectively, defined everywhere except at singularities, unless
a blocking branch cut prevents this (Sect. B.1). Examples will be given later. Using
(11.2.8) in (11.2.7), we obtain

∫ ∞

−∞
H+(ω)

[
pt−(ω) − pt+(ω) +H−(ω)Λt

m(ω)
]
· k−(ω)dω = 0. (11.2.11)

Note that the integral ∫ ∞

−∞
H+(ω)pt+(ω) · k−(ω)dω

vanishes identically by virtue of (B.1.14), because the integrand is analytic on Ω(−),
by Remark B.1.2, and vanishes like z−2 at large z. Therefore, (11.2.11) becomes

∫ ∞

−∞
H+(ω)

[
pt−(ω) +H−(ω)Λt

m(ω)
]
· k−(ω)dω = 0. (11.2.12)

This will be true for arbitrary k−(ω) only if the expression in brackets is a function
that is analytic in Ω(−). However, Λt

m(ω) must be analytic in Ω+. Remembering that
pt−(ω) and H−(ω) are also analytic in Ω+, we see that the expression in brackets
must be analytic in both the upper and the lower half-planes and on the real axis.
Thus, it is analytic over the entire complex plane. Now, pt−(ω) clearly vanishes like
ω−1 at infinity, as also must Λt

m(ω) by (C.2.16) if Λt
o is to be nonzero and finite at

s = 0. Therefore, the function in brackets is analytic everywhere, zero at infinity, and
consequently must vanish everywhere by Liouville’s theorem (Sect. B.1.3). Thus,

pt−(ω) +H−(ω)Λt
m(ω) = 0 ∀ω ∈ R, (11.2.13)

whence
Λt

m(ω) = −[H−(ω)]−1 pt−(ω). (11.2.14)

Using this relation and (11.1.11) in (11.2.3)3, we find that the optimal value of W(∞)
is

Wopt(∞) =
1

2π

∫ ∞

−∞
|pt+(ω)|2 dω. (11.2.15)

Note that from (11.1.11), (7.5.7)2, and (11.2.8),

W(t) = φ(t) +
1

2π

∫ ∞

−∞
|pt−(ω) − pt+(ω)|2 dω

= φ(t) +
1

2π

∫ ∞

−∞

[
|pt−(ω)|2 + |pt+(ω)|2

]
dω,

(11.2.16)

since the cross terms vanish by Proposition B.1.3. Thus, from (11.2.4), (11.2.15),
and (11.2.16), we have
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ψm(t) = φ(t) +
1

2π

∫ ∞

−∞
|pt−(ω)|2 dω. (11.2.17)

Using (11.2.14), we can write this as

ψm(t) = φ(t) +
1

2π

∫ ∞

−∞
Λt

m(ω) ·H(ω)Λt
m(ω)dω

= φ(t) +
1
2

∫ 0

−∞

∫ 0

−∞
L12(|s − u|)Λt

ro(u) · Λt
ro(s)duds

= φ(t) +
1
2

∫ 0

−∞

∫ 0

−∞
L(|s − u|)Λ̇t

o(u) · Λ̇t
o(s)duds

= φ(t) +
1

2π

∫ ∞

−∞
Λ̇

t
m(ω) · H(ω)

ω2
Λ̇

t
m(ω)dω,

(11.2.18)

where Λt
ro is defined by (11.2.5). This last form can be seen to be a special case of

(5.2.11).
From (5.1.13), we have

ψ̇m(t) + Dm(t) = Σ(t) · Λ̇(t), (11.2.19)

where Dm is the rate of dissipation corresponding to the minimum free energy and
must be nonnegative by the second law. Let us assume that the material is undisturbed
in the distant past. Integrating (11.2.19) up to time t gives a special case of (5.1.34):

ψm(t) +Dm(t) = W(t), (11.2.20)

where

Dm(t) =
∫ t

−∞
Dm(s)ds

is the total dissipation up to time t, corresponding to the minimum free energy.
Since ψm is less than or equal to any other free energy, it follows from (11.2.20)
that Dm(t) is the largest estimate of dissipation in the material element. We have,
from (11.2.15)–(11.2.17),

Dm(t) = W(t) − ψm(t) =
1

2π

∫ ∞

−∞
|pt+(ω)|2 dω = Wopt(∞) ≥ 0. (11.2.21)

Also,
Dm(t) = Ḋm(t).

In order to give an explicit expression for Dm, we note certain properties of pt±. From
(11.2.10) and (7.2.30)2, it follows that

d
dt
pt+(ω) = −iωpt+(ω) −K(t),

d
dt
pt−(ω) = −iωpt−(ω) −K(t) − H−(ω)Λ̇(t)

iω
, (11.2.22)

K(t) =
1

2π

∫ ∞

−∞
H−(ω)Λt

r+(ω)dω.
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The quantity K is in fact real if (11.6.3) below holds, which is true for commuting
factors. The relation

1
2πi

∫ ∞

−∞

H−(ω′)
iω′−(ω′ − ω+)

dω′ =
H−(ω)
iω

(11.2.23)

has been used. This follows by remembering that H−(ω) vanishes linearly at the
origin and by closing the contour on Ω(+), on which half-plane H− is analytic. If
(ω′ − ω−) occurs in the denominator, the integral vanishes. Furthermore,

lim
|ω|→∞

ωpt±(ω) = iK(t),

1
2π

∫ ∞

−∞
pt±(ω)dω = ∓1

2
K(t).

(11.2.24)

The first relation follows from (11.2.10) and the second from (B.1.13) and the first
relation, remembering the analyticity properties of pt±. Differentiating (11.2.21) with
respect to t, we find the explicitly nonnegative form for the rate of dissipation:

Dm(t) = |K(t)|2, (11.2.25)

where K is given by (11.2.22)3.

Remark 11.2.1. The following, simpler, derivation of (11.2.14) and (11.2.15) (yield-
ing (11.2.17)) can be given. Let us write (11.2.3)3 as

W(∞) =
1

2π

∫ ∞

−∞
|pt−(ω) − pt+(ω) +H−(ω)Λt

r−(ω)|2 dω.

Putting
pt1−(ω) = pt−(ω) +H−(ω)Λt

r−(ω),

where pt1− is analytic on Ω(+), we have

W(∞) =
1

2π

∫ ∞

−∞
|pt1−(ω) − pt+(ω)|2 dω = 1

2π

∫ ∞

−∞
[|pt1−(ω)|2 + |pt+(ω)|2] dω,

by Proposition B.1.3. Only pt1− depends on Λt
r−, so that the minimum must be given

by the condition
pt1−(ω) = 0,

which is (11.2.14). Relation (11.2.15) follows immediately.

11.2.2 The Wiener–Hopf Method

The first-order variation of (11.2.2)2 due to Λt(u) → Λt(u) + δΛt(u) has the form

δW(∞) =
∫ ∞

−∞

∫ ∞

−∞
L12(|s − u|)Λt(u) · δΛt(s)duds,
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where the symmetry of L12(|s− u|) has been used. We vary only the future continua-
tion, so that

δΛt(s) = 0, s ∈ R+.

The resulting δW(∞) is put equal to zero, yielding the optimization condition
∫ ∞

−∞

∂2

∂s∂u
L(|s − u|)Λt(u)du = 0, s ∈ R−.

Removing the derivative with respect to s gives a constant on the right-hand side,
which can be shown to be zero by observing that from (7.1.15)2,

lim
s→−∞

∫ ∞

−∞

∂

∂u
L(|s − u|)Λt(u)du = 0.

Thus, we obtain the Wiener–Hopf equation
∫ ∞

−∞

∂

∂u
L(|s − u|)Λt(u)du =

∫ ∞

−∞

∂

∂u
L(|s − u|)Λt

r(u)du

= −
∫ ∞

−∞

∂

∂s
L(|s − u|)Λt

r(u)du = −R(s), R(s) = 0 ∀s ∈ R−.
(11.2.26)

Relation (7.1.15)1 allows Λt(u) to be replaced by Λt
r(u). This is an integral equation

for the optimal continuation Λt
ro, defined by (11.2.5).∗ The quantity R on R+ is for

the moment undetermined. Taking Fourier transforms of (11.2.26) and multiplying
across by ω, we obtain, with the aid of the convolution theorem (C.3.3) together with
(7.2.22) and (7.2.25),

2iH(ω)
[
Λt

r+(ω) + Λt
m(ω)

]
= ωR+(ω), (11.2.27)

where Λt
m(ω) is the Fourier transform of Λt

ro on R− and is the quantity we wish to
determine. It is analytic on Ω(+) and by assumption also on R (Sect. C.2). Similarly,
R+(ω) is analytic on Ω(−) and by assumption also on R.

The factorization (11.1.11) is now used. We multiply (11.2.27) by [2iH+(ω)]−1

to obtain

H−(ω)
[
Λt

r+(ω) + Λt
m(ω)

]
=

ω

2i
[H+(ω)]−1R+(ω). (11.2.28)

Substituting (11.2.8) into (11.2.28), we obtain

A(ω) = pt−(ω) +H−(ω)Λt
m(ω) = pt+(ω) +

ω

2i
[H+(ω)]−1 R+(ω). (11.2.29)

∗ Carrying out a partial integration in (11.2.26), we have the form
∫ ∞

−∞
L(|s − u|)Λ̇t

(u)du = R(s).

This is a special case of (5.2.8), as can be seen by splitting the integral at u = s, changing
the integration variable, and recalling (7.1.17)4.
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The function A(ω) is analytic on Ω− by virtue of the first relation and analytic on
Ω+ by virtue of the second. It is therefore analytic over the entire complex plane.
By Liouville’s theorem, it must be a polynomial. However, for |ω| → ∞, A(ω) → 0
like 1/ω, on applying the argument presented after (11.2.12). Hence, it must vanish
everywhere, so that

H−(ω)Λt
m(ω) + pt−(ω) = 0,

which is (11.2.13). The right-hand side of (11.2.29) also vanishes, which yields a
relationship for R+.

The above solution can be extended to a more general set of histories. We write
(11.2.26) in the form

∫ 0

−∞

∂

∂s
L(|s − u|)Λt

r(u)du − Jt(s) = R(s), s ∈ R,

Jt(s) = −
∫ ∞

0

∂

∂s
L(|s − u|)Λt

r(u)du.

(11.2.30)

Observe that
Jt(s) = It(−s,Λt

r), s ∈ R−, (11.2.31)

where It(·,Λt
r) is defined by (7.4.2). Let us assume that Jt ∈ L1(R)∩ L2(R). Denoting

the Fourier transform of Jt by JtF ∈ L2(R), we obtain, instead of (11.2.27),

2iH(ω)Λt
m(ω) − ωJtF(ω) = ωR+(ω).

The argument proceeds as outlined above but where Pt(ω) in (11.2.8) is now defined
by

Pt(ω) = −ω

2i
[H+(ω)]−1 JtF(ω) = pt−(ω) − pt+(ω). (11.2.32)

It is assumed that JtF is analytic on R. The Fourier transform on R of a function that
is continuous at t = 0 behaves like ω−2 at large frequencies, by virtue of (C.2.16)
(putting m = 0 in (C.2.18)), so that JtF has this property. Thus, Pt(ω) ∼ ω−1 at large
ω, as required for the convergence of the integral in (11.2.9).

This formulation is valid for histories Λt that do not have a Fourier transform but
where Jt exists and has a Fourier transform [110, 145].

The quantity Λt
m is the Fourier transform of the optimal future continuation Λt

ro
introduced in (11.2.6). Consider (11.2.30) for s < 0. We differentiate this relation,
multiplying by Λt

ro, and integrate over R− to obtain

∫ 0

−∞

∫ 0

−∞
Λt

ro(s) · L12(|s − u|)Λt
ro(u)duds =

∫ 0

−∞
Jt(s) · Λt

ro(s)ds

=

∫ 0

−∞
I(−s,Λt

r) · Λt
ro(s)ds.

Relation (11.2.18)2 gives that

ψ(t) = φ(t) +
1
2

∫ 0

−∞
I(−s,Λt

r) · Λt
ro(s)ds
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and, from (11.2.17),

1
2π

∫ ∞

−∞
|pt−(ω)|2dω = 1

2

∫ 0

−∞
I(−s,Λt

r) · Λt
ro(s)ds. (11.2.33)

11.2.3 Histories Rather Than Relative Histories

In early work on the minimum and other free energies [92, 110, 158], histories, rather
than relative histories, were used. By essentially identical arguments to those above,
one can show the following result. Let

Qt(ω) := H−(ω)Λt
+(ω) = qt−(ω) − qt+(ω),

where

qt±(ω) =
1

2πi

∫ ∞

−∞

Qt(ω′)
ω′ − ω∓ dω

′.

Then,

ψ(t) = S (t) +
1

2π

∫ ∞

−∞
|qt−(ω)|2dω, (11.2.34)

where S (t) is given by (7.1.19)2, or, in the completely linear case, (7.1.34). The free
energies in Sect. 16.4 can also be expressed as functionals of histories rather than rel-
ative histories. The situation for free energies in dielectrics is in a sense reversed, as
we see from Sect. 22.3. There are two disadvantages to this approach, one noted ear-
lier, namely that S (t) is not a nonnegative quantity. The other is that Λt

+(ω) behaves
like ω−1 at large ω, while Λt

r+(ω) behaves like ω−2.

11.2.4 Confirmation That ψm Is a Free Energy

We now ascertain that ψm has the characteristic properties of a free energy.

Proposition 11.2.2. The functional ψm(t), given by (11.2.17), obeys the Graffi condi-
tions, given by P1–P4 in Sect. 5.1.1 or (5.1.30)–(5.1.33).

Proof. Property P2 follows from the fact that Λt
r+, and therefore Pt, defined by

(11.2.8), vanishes for a static history. Property P3 is immediately apparent, while
P4 follows from the fact that Dm, given by (11.2.25), is nonnegative. Property P1 can
be proved as follows. Using (7.2.29), we can write

pt−(ω) =
1

2πi

∫ ∞

−∞

H−(ω1)
[
Λt
+(ω1) − Λ(t)

iω−
1

]

ω1 − ω+
dω1, (11.2.35)

giving

∂pt−(ω)
∂Λ(t)

= − 1
2πi

∫ ∞

−∞

H−(ω1)
iω−

1 (ω1 − ω+)
dω1 = −H−(ω)

iω
, (11.2.36)



268 11 The Minimum Free Energy

where we have used (11.2.23). Also,

∂pt−(ω)
∂Λ(t)

=
H+(ω)�

iω
, (11.2.37)

by virtue of (11.1.13). Thus,

∂

∂Λ(t)
1

2π

∫ ∞

−∞
pt−(ω) · pt−(ω)dω =

∂

∂Λ(t)
1

2π

∫ ∞

−∞
pt−(ω)�pt−(ω)dω

=
1

2πi

∫ ∞

−∞

H+(ω)
ω

pt−(ω)dω − 1
2πi

∫ ∞

−∞

H+(ω)
ω

pt−(ω)dω

= Re

{
1
πi

∫ ∞

−∞

H+(ω)
ω

pt−(ω)dω

}
.

Recall that H− vanishes linearly at the origin. Also, using (11.2.8), the frequency
integral in (7.2.34), which must be real, can be written as

− i
π

∫ ∞

−∞

H(ω)
ω
Λt

r+(ω)dω = − i
π

∫ ∞

−∞

H+(ω)
ω

[pt−(ω) − pt+(ω)]dω

= − i
π

∫ ∞

−∞

H+(ω)
ω

pt−(ω)dω,
(11.2.38)

because the term involving pt+ vanishes by Cauchy’s theorem. Since the last quantity
is real, P1 follows. �

It is shown in [92] that ψm is a free energy also under the definition of Coleman
and Owen [75, 76]. This was for linear isothermal systems, but the proof applies to
the present, more general, case.

11.2.5 Double Frequency Integral Form

We can write (11.2.17) in a more explicit form by carrying out the integration over
ω. The following relationships are required. Firstly, we have

H−(ω1)Λt
r(ω1) ·H−(ω2)Λt

r(ω2) = Λt
r(ω1) ·H∗

−(ω1)H−(ω2)Λt
r(ω2)

= Λt
r(ω1) ·H+(ω1)H−(ω2)Λt

r(ω2),

where (11.1.13), (A.2.7), and (A.2.8) have been used. Also, recalling (C.2.10) and
(C.2.11), we can write for real ω1, ω2, and ω,

ω− = lim
α→0+

(ω − iα) = ω+,

ω1 − ω− = lim
α→0+

(ω1 − ω + iα) = ω+1 − ω,

ω2 − ω+ = lim
α→0+

(ω2 − ω − iα) = ω−
2 − ω,
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where the limits are taken after any integrations are carried out. Finally,

1
2πi

∫ ∞

−∞

dω
(ω+1 − ω)(ω−

2 − ω)
=

1
ω+1 − ω−

2

,

by closing the contour on either Ω(+) or Ω(−).
Using these results, we can write the expression (11.2.17) for ψm(t), where pt−(ω)

is given by (11.2.10) or (11.2.35), in the form

ψm(t) = φ(t) +
i

4π2

∫ ∞

−∞

∫ ∞

−∞

Λt
r+(ω1) ·Mm(ω1, ω2)Λt

r+(ω2)
ω+1 − ω−

2

dω1dω2,

Mm(ω1, ω2) = H+(ω1)H−(ω2).

(11.2.39)

The notation in the denominator of the integral in (11.2.39)1 means that if we inte-
grate first over ω1, it becomes (ω1 −ω−

2 ), or if over ω2 first, then it is (ω+1 −ω2). Also,
using (11.2.22)3, Dm(t), given by (11.2.25), can be expressed as

Dm(t) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
Λt

r+(ω1) ·Mm(ω1, ω2)Λt
r+(ω2)dω1dω2.

Let us write the double integral in (11.2.39) as

P−(t) =
1

2π

∫ ∞

−∞
|pt−(ω)|2dω = i

4π2

∫ ∞

−∞

∫ ∞

−∞

At(ω1, ω2)
ω+1 − ω−

2

dω1dω2,

At(ω1, ω2) = Λt
r+(ω1) ·Mm(ω1, ω2)Λt

r+(ω2).

(11.2.40)

In the same way, we obtain

P+(t) =
1

2π

∫ ∞

−∞
|pt+(ω)|2dω = − i

4π2

∫ ∞

−∞

∫ ∞

−∞

At(ω1, ω2)
ω−

1 − ω+2
dω1dω2. (11.2.41)

From (11.2.21), we see that this is the total dissipation up to time t. One can show
that

R−(t) =
i

4π2

∫ ∞

−∞

∫ ∞

−∞

Bt(ω1, ω2)
ω+1 − ω−

2

dω1dω2 = 0,

Bt(ω1, ω2) = Λt
r+(ω1) ·Mm(ω2, ω1)Λt

r+(ω2),

(11.2.42)

by integrating over ω2 for example and closing the contour on Ω(−), since H+ andΛt
r+

have no singularity in the lower half-plane. Furthermore, using the same procedure,
one obtains

R+(t) = − i
4π2

∫ ∞

−∞

∫ ∞

−∞

Bt(ω1, ω2)
ω−

1 − ω+2
dω1dω2

=
1

2π

∫ ∞

−∞
Λt

r+(ω) ·H(ω)Λt
r+(ω)dω (11.2.43)

= P−(t) + P+(t),
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by virtue of (7.5.7)2 and (11.2.16). Relation (11.2.42)1 allows us to write (11.2.40)
in the explicitly convergent form

P−(t) =
i

4π2

∫ ∞

−∞

∫ ∞

−∞

At(ω1, ω2) − Bt(ω1, ω2)
ω1 − ω2

dω1dω2, (11.2.44)

which is convenient for numerical evaluation. We can replace the (ω1 − ω2) in the
denominator by (ω+1 − ω−

2 ), which gives (11.2.40), or by (ω−
1 − ω+2 ), which gives the

same result by way of (11.2.43) and (11.2.41). Relation (11.2.44) implies that the
kernel

D(ω1, ω2) = i
[H+(ω1)H−(ω2) −H+(ω2)H−(ω1)]

ω1 − ω2

is nonnegative in the operator sense, i.e., it must yield a nonnegative value for the
integral, for all histories. Using very localized choices of Λt

+(ω), we deduce that
the “diagonal elements” of D(ω1, ω2) are nonnegative, as in Remark 7.1.3. Using a
prime to denote differentiation, we can write these as

D(ω) = i[H′
+(ω)H−(ω) −H+(ω)H′

−(ω)] ≥ 0, ω ∈ R. (11.2.45)

Proposition 11.2.3. We have∫ t

−∞
P+(u)du = − 1

4π2

∫ ∞

−∞

∫ ∞

−∞

At(ω1, ω2)
(ω−

1 − ω+2 )2
dω1dω2

= − 1
4π2

∫ ∞

−∞

∫ ∞

−∞

[
At(ω1, ω2)
(ω+1 − ω−

2 )2
+

Bt(ω1, ω2)
(ω−

1 − ω+2 )2

]
dω1dω2 (11.2.46)

− 1
2π

∫ ∞

−∞
Λt

r+(ω) ·D(ω)Λt
r+(ω)dω,

where D(·) is defined by (11.2.45) and the integral on the left is assumed to exist for
all finite values of t.

Proof. Relation (11.2.46)1 follows immediately, by time differentiation, using (7.2.30)
and the relations∫ ∞

−∞

H−(ω2)
ω−

2 (ω−
1 − ω+2 )2

dω2 =

∫ ∞

−∞

H+(ω1)
ω+1 (ω−

1 − ω+2 )2
dω1 = 0,

which follow from the fact that H± vanish linearly at the origin and Cauchy’s theo-
rem, closing the first integral on Ω(+) and the second on Ω(−). There can be no term
independent of t, since the integral on the left of (11.2.46) vanishes as t → −∞.
Equation (11.2.46)2 can be verified similarly, on noting a cancellation between the
derivatives of the single and double integral terms. Relations such as

1
2πi

∫ ∞

−∞

H−(ω2)
iω−

2 (ω+1 − ω−
2 )2

dω2 =
d

dω1

[
H−(ω1)
iω1

]
,

1
2πi

∫ ∞

−∞

H+(ω1)
iω+1 (ω+1 − ω−

2 )2
dω1 = − d

dω2

[
H+(ω2)
iω2

]
,

are required. These follow from (B.1.3). The minus sign in the second relation is a
consequence of the fact that the contour must be completed on Ω(−) (Sect. B.1.1). �
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The quantity D(·) occurs in (11.7.10) in the context of the minimum free energy
for sinusoidal histories.

11.3 Characterization of the Minimal State in the Frequency
Domain

In this section, we show that the quantity pt−, defined by (11.2.10), and occurring in
ψm(t), given by (11.2.17), is a function of the minimal state. Two histories Λt

1 and Λt
2

are equivalent if their difference Λt = Λt
1 −Λ

t
2 satisfies (7.4.3). Relation (7.4.3)2 can

be written in the form

Ft(τ) :=
∫ ∞

τ

L′(s)Λt+τ(s)ds = 0, ∀τ ≥ 0. (11.3.1)

We adopt the assumptions made before (7.4.5), so that (7.4.3)1 and (7.4.4) are re-
placed by

Λ1(t + τ) = Λ2(t + τ), τ ≥ 0. (11.3.2)

Condition (11.3.2) gives that Λt+τ(s) is equal to zero for τ ≥ s. Let us identify L′

with its odd extension on R, so that (7.2.25) applies. Then, Ft(τ) can be rewritten in
terms of Fourier transforms:

Ft(τ) =
∫ ∞

−∞
L′(s)Λt+τ(s)ds =

1
2π

∫ ∞

−∞
L′
F(ω)Λt+τ

+ (ω)dω

= − i
π

∫ ∞

−∞
L′

s(ω)Λt+τ
+ (ω)dω.

Moreover, note that

Λt+τ
+ (ω) =

∫ ∞

0
Λt+τ(s)e−iωsds =

∫ ∞

τ

Λt(s − τ)e−iω(s−τ)ds e−iωτ = Λt
+(ω)e−iωτ,

which yields

Ft(τ) =
i
π

∫ ∞

−∞

H(ω)
ω
Λt
+(ω)e−iωτ dω. (11.3.3)

This will be taken as the definition of Ft(τ) for τ ∈ R.
Remembering the factorization of H(ω) given by (11.1.11), (11.3.3) can be

rewritten as

Ft(τ) =
i
π

∫ ∞

−∞

H+(ω)
ω

H−(ω)Λt
+(ω)e−iωτ dω, (11.3.4)

and the substitution of (11.2.8) into (11.3.4) yields

Ft(τ) =
i
π

∫ ∞

−∞

H+(ω)
ω

[
pt−(ω) − pt+(ω)

]
e−iωτ dω. (11.3.5)

Observe that H+(z), pt+(z), and e−izτ (τ > 0) are analytic functions in the lower
half-plane z ∈ Ω(−), their product converging strongly to zero at infinity, so that by
Cauchy’s theorem, (11.3.5) reduces to (cf. (11.2.38))
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Ft(τ) =
i
π

∫ ∞

−∞

H+(ω)
ω

pt−(ω)e−iωτ dω. (11.3.6)

This form of Ft allows us to prove the following theorem characterizing a minimal
state in the frequency domain.

Theorem 11.3.1. For every material with linear memory and a symmetric (required
for factorization) relaxation function L, a given history Λt is equivalent to the zero
history 0† if and only if the pt− related to Λt by (11.2.10) with (11.2.8) is such that

pt−(ω) = 0, ∀ω ∈ R.

Observe that the theorem in effect states that

Ft(τ) = 0 ∀τ ≥ 0 ⇐⇒ pt−(ω) = 0 ∀ω ∈ R. (11.3.7)

Proof. The statement relating to the left-pointing arrow of (11.3.7) follows trivially
from (11.3.6). In order to prove the statement relating to the right arrow, let us invert
the Fourier transform in (11.3.6) to obtain

ft(ω) =
i
π

H+(ω)
ω

pt−(ω) =
1

2π

∫ ∞

−∞
Ft(τ)eiwτ dτ

=
1

2π

∫ 0

−∞
Ft(τ)eiwτdτ =

1
2π

∫ ∞

0
Ft(−u)e−iwu du.

(11.3.8)

It follows from Proposition C.2.1 that ft (the Fourier transform of Ft(−u), a function
that is zero on R−−) is analytic in Ω(−). The zeros in rows or columns of H+ (zeros of
detH+) cannot cancel singularities of pt−, since all such zeros are in Ω(+). Also, any
branch-cut singularity of H+ is in Ω(+), and those of pt− are in Ω(−), so there can be no
neutralization of such singularities. Thus pt− must be analytic in Ω(−) and therefore
in Ω. It goes to zero at infinity and must therefore be zero everywhere by Liouville’s
theorem (Sect. B.1.3).

�
Note that Theorem 11.3.1 is in effect saying that if a history is equivalent to the

zero history, then the minimum free energy vanishes, or (7.4.8) holds. We now show
that this implies the following result.

Proposition 11.3.2. If two states are equivalent, then (7.4.6) holds, so that the min-
imum free energy, given by (11.2.17), is a functional of the minimal state. Further-
more, (7.4.8) is true.

Proof. Let (Λt
1,Λ(t)) and (Λt

2,Λ(t)) be equivalent states. Then the difference of
their histories is equivalent to the zero history, as argued before (7.4.5). Also, let
pt−(ω,Λt

1) indicate this quantity defined by (11.2.10) for a history Λt
1 and similarly

for pt−(ω,Λt
2). Then,

pt−(·,Λt
1) − pt−(·,Λt

2) = pt−(·,Λt
1 − Λ

t
2) = 0

by the linearity of pt− and Theorem 11.3.1. Thus, (7.4.6) and (7.4.8) follow immedi-
ately. Also, (7.4.12) must be true, since (7.4.6) and (7.4.8) hold. �

The observations around (7.4.10) and (7.4.11) are relevant in the present context.
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11.4 The Space of States and Processes

We recall from Definition 4.2.1 of the minimum free energy that it must be defined
on the entire space of states. From (11.2.17), this is the space of relative histories and
current values (Λt

r,Λ(t)) such that pt−, defined by (11.2.10) with (11.2.8), belongs to
L2(R). As we have seen in Sect. 11.2.2, the Fourier transform Λt

r+ need not exist.
However, Pt, given by (11.2.32) in terms of JtF , must be finite for ω ∈ R.

Recalling (11.2.18)3,4, we define the space of processes to be [145]

HΓ(R−) =

{
φ : R− �→ Γ;

1
2

∫ 0

−∞

∫ 0

−∞
φ(s) · L(|s − u|)φ(u)dsdu

=
1

2π

∫ ∞

−∞
φ−(ω) · H(ω)

ω2
φ−(ω)dω < ∞

}
.

(11.4.1)

The dual of this space is defined as

H′
Γ(R−) =

{
f : R− �→ Γ;

∣∣∣∣∣∣
∫ 0

−∞
f(u)φ(u)du

∣∣∣∣∣∣ < ∞∀φ ∈ HΓ(R−)

}
.

The space of histories is defined as those for which

Jt ∈ H′
Γ(R−), (11.4.2)

where Jt(·) is related to I(·,Λt
r) by (11.2.31).

We now prove the following result of Gentili [145].

Proposition 11.4.1. Given the relative history Λt
r : R+ �→ Γ, then Jt ∈ H′

Γ(R−) if
and only if pt− ∈ L2(R).

Proof. For any φ ∈ HΓ(R−),
∫ 0

−∞
Jt(s) · φ(s)ds =

1
2π

∫ ∞

−∞
JtF(ω) · φ−(ω)dω

=
1

2π

∫ ∞

−∞

ω

2i
[H+(ω)]−1 JtF(ω) · 2i

ω
H�
+ (ω)φ−(ω)dω

= − i
π

∫ ∞

−∞
Pt(ω) · 1

ω
H−(ω)φ−(ω)dω,

where (11.2.32) has been used. The pt+ term in Pt yields zero by Cauchy’s theorem
and Remark B.1.2, so we have

∫ 0

−∞
Jt(s) · φ(s)ds = − i

π

∫ ∞

−∞
pt−(ω) · 1

ω
H−(ω)φ−(ω)dω

≤ 1
2π

∫ ∞

−∞
|pt−(ω)|2dω + 1

2π

∫ ∞

−∞

1
ω2

|H−(ω)φ−(ω)|2dω.

If pt− ∈ L2(R), the first term is bounded. Also, the second term is bounded by (11.4.1).
It follows that (11.4.2) holds. If Jt ∈ H′

Γ(R−), then from (11.2.33), we see that pt− ∈
L2(R). �
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11.5 Limiting Properties of the Optimal Future Continuation

We draw attention to certain properties of the optimal future continuation. From
(11.2.14) and (11.2.24)1, it follows that

Λt
m(ω) −→

ω→∞

H−1
1
2

K(t)

iω
, (11.5.1)

where
H 1

2
= H−(∞) (= H+(∞)).

The last relation holds for commutative factors, by virtue of (11.6.2) below. Thus, by
(C.2.16), the relative optimal continuation, given by (11.2.5), has the form at s = 0

Λt
ro(0) = −H−1

1
2
K(t), (11.5.2)

and the optimal continuation Λt
o(0) is given by

Λt
o(0) = Λ(t) −H−1

1
2
K(t). (11.5.3)

Therefore, the optimal continuation involves a sudden discontinuity at time t, the
magnitude of which is related to the rate of dissipation, as we see from (11.2.25).

Also, putting

H1(ω) =
1
ω
H−(ω), (11.5.4)

we have, with the aid of (11.2.10),

Λt
m(ω) ≈ − [H1(0)]−1

2πiω+

∫ ∞

−∞
H1(ω′)Λt

r+(ω′)dω′

as ω → 0. The quantity ω in the denominator is replaced by ω+, since the singulari-
ties of Λt

m(ω) must be in Ω(−). Then, with the aid of (C.2.11), we have

Λt
ro(−∞) =

[H1(0)]−1

2π

∫ ∞

−∞
H1(ω′)Λt

r+(ω′)dω′ (11.5.5)

and
Λt

o(−∞) = Λt
ro(−∞) + Λ(t).

This quantity is in general nonzero.

11.6 Time-Independent Eigenspaces

We now make the assumption (7.1.36), which immediately yields

L′(t) =
m∑
k=1

L′k(t)Bk, t ∈ R.
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Taking Fourier transforms gives

L′
+(ω) =

m∑
k=1

L′k+(ω)Bk, ω ∈ R.

This relation can also be written at −ω. Adding and subtracting give that L′
c and L′

s
can also be represented in this manner, and furthermore,

H(ω) = −ωL′
s(ω) =

m∑
k=1

Hk(ω)Bk,

Hk(ω) > 0, ω ∈ R \{0}, k = 1, . . . ,m.

Using the technique of Sect. 11.1.1, the quantities Hk can be factorized into Hk+ and
Hk−, where from (11.1.17),

Hk±(ω) = Hk∓(−ω) = Hk∓(ω); Hk(ω) = |Hk±(ω)|2. (11.6.1)

We put
Hk(∞) = Hk∞, k = 1, 2, . . . ,m.

Since the {Bk} are orthonormal projectors, it follows that

H(ω) =
m∑
k=1

Hk+(ω)Hk−(ω)Bk = H+(ω)H−(ω),

where

H±(ω) =
m∑
k=1

Hk±(ω)Bk = H�
± (ω).

The last relation follows from the symmetry of the Bk. Thus, H± are symmetric for
all frequencies. We see that the factors H+(ω) and H−(ω) commute, so that they are
normal transformations; see the comment relating to (A.2.11). Recalling (11.1.18)
and the comment after (11.1.14), we see that

H±(∞) = H1/2
∞ . (11.6.2)

The quantities H± also commute when evaluated at different frequencies, by
virtue of (A.2.11). It follows that products of these factors at the same or different
frequencies are symmetric. From (11.6.1), we have†

H±(ω) = H∓(−ω) = H∓(ω), (11.6.3)

† These relations allow us to show that

pt
±(ω) = pt

±(−ω), ω ∈ R,

with the aid of (11.2.10) and (C.1.7).
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which also hold for complex ω, where the rightmost term involves the complex con-
jugate of the functional form, leaving ω unchanged, or

H∓(ω) = H∓(ω).

These relations are consistent with but more detailed than (11.1.11). They reduce the
nonuniqueness of the factorization to an arbitrariness of sign on each eigenspace.
Also, Mm, given by (11.2.39)2, can be expanded on this basis:

Mm(ω1, ω2) =
m∑
k=1

M(m)
k (ω1, ω2)Bk,

M(m)
k (ω1, ω2) = Hk+(ω1)Hk−(ω2).

In the basis {Bk} (defined after (7.1.36)) and {Bk}, the individual components of
each of the relevant quantities obey the relationships that hold in the scalar case. We
can expand any member of Γ in this basis; in particular,

Λ(t) =
m∑
k=1

Λk(t)Bk, Λt(s) =
m∑
k=1

Λt
k(s)B

k,

Λt
r(s) =

m∑
k=1

Λt
kr(s)B

k, Λt
r±(ω) =

m∑
k=1

Λt
kr±(ω)Bk.

Scalar quadratic forms, such as the memory-dependent part of a free energy or a
rate of dissipation, are given by the sum of contributions to this quantity from each
eigenspace. In particular,

ψm(t) − φ(t) =
m∑
k=1

ψ(k)
mk(t),

where ψ(k)
mk is the minimum free energy relating to the scalar problem for Hk. Such

relations follow readily from the orthonormality and time (frequency) independence
of the basis.

In the particular example discussed in Sect. 7.1.5, we can write any free energy
(not just the minimum free energy) in the form

ψ(t) − φ(t) = 5ψS (t) + ψB1(t) + ψB2(t) + 3ψq(t),

where ψS (t), ψB1(t), ψB2(t), and ψq(t) are the memory-dependent parts of the free
energies corresponding to the scalar problems with relaxation function derivatives
G′

S ,G
′
1,G

′
2, and V ′

m and constants GS∞,G1, and G2. The coefficient 5 reflects the
degeneracy or symmetry of the five-dimensional representation of the rotation group
corresponding to shear deformation in a mechanically isotropic material, while the
coefficient 3 results from thermal isotropy. For completely linear materials, we can
include the equilibrium terms explicitly in these formulas.
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11.7 The Minimum Free Energy for Sinusoidal Histories

Consider a history and current value (Λt,Λ(t)) defined by

Λ(t) = Ceiω−t + Ce−iω+t, Λt(s) = Λ(t − s), (11.7.1)

where C is an amplitude in Γ and C is its complex conjugate. Furthermore,

ω− = ω0 − iη, ω+ = ω−, ω0 ∈ R, η ∈ R++.
The quantity η is introduced to ensure finite results in certain quantities. The quantity
Λt
+ has the form

Λt
+(ω) = C

eiω−t

i(ω + ω−)
+ C

e−iω+t

i(ω − ω+)
,

and the Fourier transform of the relative historyΛt
r(s) = Λ

t(s)−Λ(t), namelyΛt
r+(ω),

is given by

Λt
r+(ω) = Λt

+(ω) − Λ(t)
iω− = −Cω−

ω−
eiω−t

i(ω + ω−)
+ C

ω+
ω−

e−iω+t

i(ω − ω+)
. (11.7.2)

From (7.1.17) and (7.1.14)5, the generalized stress has the form

Σ(t) = Σ0(t) + Σh(t),

Σh(t) =
∫ ∞

0
L′(s)Λt(s) ds

= L′
+(ω−)Ceiω−t + L′

+(−ω+)Ce−iω+t,

Σ0(t) = Σe(t) + L0Λ(t).

(11.7.3)

The expression for Σh(t) reduces to that given in (7.2.6)3 as η → 0.
The work W(t) done on the material to achieve the state (Λt,Λ(t)) is given by

(7.5.1)1, which in this context becomes

W(t) = φ(t) +
1
2
Λ(t) · L0Λ(t)

+
1
2

[
C · L′

+(ω−)Ce2iω−t + C · L′
+(−ω+)Ce−2iω+t

]
(11.7.4)

+ C · [ω−L
′
+(−ω+) − ω+L

′
+(ω−)]C

ei(ω−−ω+)t

(ω− − ω+)
,

where the symmetry of L+ has been used. This quantity diverges as η → 0, as would
be expected on physical grounds. Taking the limit η → 0 in the terms that are con-
vergent, we can write this in the form

W(t) = φ(t) +
1
2
Λ(t) · L0Λ(t)

+
1
2

[
C · L′

+(ω0)Ce2iω0t + C · L′
+(−ω0)Ce−2iω0t

]

+ C ·
[
L′
c(ω0) − ω0

d
dω0

L′
c(ω0) − 2ω0tL

′
s(ω0)

]
C

− C · L′
s(ω0)C

ω0

η
,

(11.7.5)
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on using (7.2.1). The divergence is associated with L′
s, which is physically reason-

able.
We shall require the relation

H±(ω) = H±(−ω) (11.7.6)

for complex ω, which follows from (11.6.3). The minimum free energy ψm(t) is
given by (11.2.17). Using (11.7.2), we evaluate the integral in (11.2.9) by closing the
contour on Ω(+) to obtain

pt+(ω) = −
[

eiω−t

i(ω + ω−)
H−(−ω−)C +

e−iω+t

i(ω − ω+)
H−(ω+)C

]
(11.7.7)

and
pt−(ω) = H−(ω)Λt

r+(ω) + pt+(ω).

The expression for ψm(t) can be obtained from (11.2.21)2 combined with (11.7.4).
From (11.7.7), we obtain

1
2π

∫ ∞

−∞
|pt+(ω)|2dω = − ie2iω−t

2ω−
C ·H2

−(−ω−)C +
ie−2iω+t

2ω+
C ·H2

−(ω+)C

− 2iei(ω−−ω+)t

(ω− − ω+)
C ·H−(ω+)H−(−ω−)C,

(11.7.8)

where (11.7.6) has been used. It will be observed that the last term diverges in the
limit η → 0. The quantity given by (11.7.8) in the limit η → 0 is in fact the total
dissipation over the history, given by (11.2.21), so this divergence is an expression
of a physically obvious fact. Its derivative is the rate of dissipation.

Taking the limit η → 0 in the convergent terms, we obtain

1
2π

∫ ∞

−∞
|pt+(ω)|2dω = − ie2iω0t

2ω0
C ·H2

−(−ω0)C +
ie−2iω0t

2ω0
C ·H2

−(ω0)C

− C · [2tH(ω0) +D(ω0)]C +
1
η
C ·H(ω0)C,

where D is defined by (11.2.45).
From (11.7.4), (11.7.8), and (11.2.21)2, taking the limit η → 0, we obtain

ψm(t) = φ(t) +
1
2
Λ(t) · L0Λ(t)

+C ·B1(ω0)Ce2iω0t + C ·B1(ω0)Ce−2iω0t + C ·B2(ω0)C,
(11.7.9)

where

B1(ω0) =
1
2

[
L′
+(ω0) +

i
ω0

H2
−(−ω0)

]
,

B2(ω0) = L′
c(ω0) − ω0

d
dω0

L′
c(ω0) +D(ω0).

(11.7.10)
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The divergent terms and those proportional to t cancel. The most interesting contri-
bution to ψm is the rightmost term of (11.7.9), which gives the average over a time
cycle

(ψm)av = C ·B2(ω0)C.

We can express this quantity in terms of H and its factors, using (7.2.26). Note that
B2 must be a nonnegative quantity in general for all ω ∈ R. We recall from (11.2.45)
that D is nonnegative for all ω ∈ R.

The rate of dissipation is given by (11.2.25) and (11.2.22)3. Using (11.7.2) and
closing on Ω+, we find that

K(t) = H−(−ω0)Ceiω0t +H−(ω0)Ce−iω0t

on taking η → 0. Therefore,

D(t) = C ·H2
−(−ω0)Ce2iω0t + C ·H2

−(ω0)Ce−2iω0t + 2C ·H(ω)C. (11.7.11)

One may check that (11.2.19) holds, using (11.7.1), (11.7.3) in the limit η → 0,
(11.7.9), and (11.7.11).

Similar results apply to the free energies and dissipations in Sect. 16.4.

11.8 Example: Viscoelastic Materials

We write out the main results of the present chapter for perhaps the most important
special case, namely the isothermal theory, where temperature variation over time
and space is neglected. Only the mechanical equations are relevant.‡

Recall (8.1.16), (8.1.18), and the fact that G′
s is an odd function of ω. Following

(7.2.22) and (11.1.11), let us define H ∈ Lin(Sym) by

H(ω) = −ωG′
s(ω) = H+(ω)H−(ω) ≥ 0, ω ∈ R, (11.8.1)

where
H(∞) = −G′(0). (11.8.2)

We have kept the same notation for simplicity. The work function, giving the amount
of mechanical work required to achieve the state (Et,E(t)), has the form (cf. (7.5.1),
(7.5.3), and (7.5.7))

‡ The results of Sect. 13.1.1 overlap to some degree with those in this section. The former
results are, however, derived specifically for completely linear viscoelastic solids (as dis-
cussed in Sects. 8.1–8.7), using a somewhat different but equivalent methodology to that
developed in the present chapter.
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W̃(Et,E(t)) = W(t) = φ(−∞) +
∫ t

−∞
Ŝ(u) · Ė(u)du

= φ(t) +
1
2

∫ ∞

0

∫ ∞

0
G12(|s − u|)Et

r(u) · Et
r(s)duds

= φ(t) +
1

2π

∫ ∞

−∞
Et
r+(ω) ·H(ω)Et

r+(ω)dω,

Et
r+(ω) = Et

+(ω) − E(t)
iω− ,

(11.8.3)

where the constitutive equation (8.1.1) has been used. Again, keeping some notation
from (11.2.8),

H−(ω)Et
r+(ω) = pt−(ω) − pt+(ω),

where

pt±(ω) =
1

2πi

∫ ∞

−∞

H−(ω′)Et
r+(ω′)

ω′ − ω∓ dω′, (11.8.4)

which is the analogue of (11.2.10). We note that

Et
r+(ω) ∼ ω−2 (11.8.5)

at large ω and write the analogue of (7.2.30) as

d
dt
Et
+(ω) = −iωEt

r+(ω),
d
dt
Et
r+(ω) = −iωEt

r+(ω) − Ė(t)
iω− .

The Fourier transform of the relative optimal future continuation has the form

Et
m(ω) = −[H−(ω)]−1 pt−(ω), (11.8.6)

which is a special case of (11.2.14). Its time-domain version Et
ro is given by

Et
ro(u) = Et

o(u) − E(t) =
1

2π

∫ ∞

−∞
Et
m(ω)eiωu dω. (11.8.7)

The work function, given by (11.8.3), retains the form of (11.2.16),

W(t) = φ(t) +
1

2π

∫ ∞

−∞

[
|pt−(ω)|2 + |pt+(ω)|2

]
dω, (11.8.8)

but with pt± defined by (11.8.4), while the minimum free energy (11.2.17) retains the
form

ψm(t) = φ(t) +
1

2π

∫ ∞

−∞
|pt−(ω)|2dω. (11.8.9)

The relations in (11.2.18) become
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ψm(t) = φ(t) +
1

2π

∫ ∞

−∞
Et
m(ω) ·H(ω)Et

m(ω)dω

= φ(t) +
1
2

∫ 0

−∞

∫ 0

−∞
G12(|s − u|)Et

ro(u) · Et
ro(s)duds

= φ(t) +
1
2

∫ 0

−∞

∫ 0

−∞
G(|s − u|)Ėt

o(u) · Ėt
o(s)duds

= φ(t) +
1

2π

∫ ∞

−∞
Ėt
m(ω) · H(ω)

ω2
Ėt
m(ω)dω,

(11.8.10)

where Et
ro is defined by (11.8.7). Relation (11.2.19) reduces to

ψ̇m(t) + Dm(t) = Ŝ(t) · Ė(t), (11.8.11)

where Dm is the rate of mechanical dissipation corresponding to the minimum free
energy and must be nonnegative by virtue of the second law. Let us assume that the
material is undisturbed in the distant past. Integrating (11.8.11) up to time t gives a
special case of (11.2.20):

ψm(t) +Dm(t) = W(t),

where

Dm(t) =
∫ t

−∞
Dm(s)ds

is the total mechanical dissipation up to time t, corresponding to the minimum free
energy. We have, from (11.8.8) and (11.8.9) (see (11.2.21)),

Dm(t) = W(t) − ψm(t) =
1

2π

∫ ∞

−∞
|pt+(ω)|2 dω ≥ 0. (11.8.12)

The rate of dissipation has the form (11.2.25) or

Dm(t) = |K(t)|2, (11.8.13)

where K is given by a special case of (11.2.22)3:

K(t) =
1

2π

∫ ∞

−∞
H−(ω)Et

r+(ω)dω. (11.8.14)

Certain properties of the optimal future continuation are derived in Sect. 11.5. We
summarize them here for the isothermal case. Relation (11.5.1) becomes

Et
m(ω) −→

ω→∞

H−1
1
2

K(t)

iω
,

while (11.5.2) and (11.5.3) take the form

Et
ro(0) = −H−1

1
2
K(t), Et

o(0) = E(t) −H−1
1
2
K(t). (11.8.15)

At low frequencies and large times, we have, from (11.5.4) and (11.5.5),
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Et
ro(−∞) =

H1(0)−1

2π

∫ ∞

−∞
H1(ω′)Et

r+(ω′)dω′

and
Et
o(−∞) = Et

ro(−∞) + E(t). (11.8.16)

If we apply the assumptions of Sect. 11.6, that the eigenspaces of G are time-
independent, any problem on each of the individual eigenspaces is in effect a scalar
problem, like the one dealt with in the next section, where, however, the subscript
indicating the eigenspace is omitted.

11.9 Explicit Forms of the Minimum Free Energy for
Discrete-Spectrum Materials

We now consider the general results of earlier sections for a particular class of re-
sponse functions, namely discrete-spectrum scalar models. Here, as above and in
later sections dealing with the scalar case, we shall continue to use notation often as-
sociated with viscoelastic materials. We replace E(t) by E(t) and G(s) by G(s). How-
ever, it must be emphasized that the results apply to any time-independent eigenspace
of G (see the comment at the end of Sect. 11.8) or indeed of L, as introduced in
Sect. 11.6.

Let the relaxation function G(t) have the form

G(t) = G∞ +

n∑
i=1

Gie
−αi t, G∞ ≥ 0, (11.9.1)

where n is a positive integer, the inverse decay times αi, i = 1, 2, . . . , n, are positive,
and the coefficients Gi are also generally assumed to be positive. We arrange that
α1 < α2 < α3 . . . It follows that

G′(t) =
n∑
i=1

gie
−αi t, gi = −αiGi < 0,

and

G′
+(ω) =

n∑
i=1

gi
αi + iω

, G′
c(ω) =

n∑
i=1

αigi
α2
i + ω

2
, G′

s(ω) = ω

n∑
i=1

gi
α2
i + ω

2
,

recalling (8.1.16). Thus, from (11.8.1)1,

H(ω) = −ω2
n∑
i=1

gi
α2
i + ω

2
≥ 0, (11.9.2)

and (11.8.2) can easily be checked. Observe that f (z) = H(ω), z = −ω2, has simple
poles at α2

i , i = 1, 2, . . . , n. It will therefore have zeros at γ2
i , i = 2, 3, . . . , n, where
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α2
1 < γ2

2 < α2
2 < γ2

3 · · · , (11.9.3)

by virtue of Remark B.1.1. It will have no more than one zero between each pole be-
cause H(∞) is a finite constant. The function f (z) also vanishes at γ1 = 0. Therefore,
H is a rational function of the form

H(ω) = H∞

n∏
i=1

⎧⎪⎨⎪⎩
γ2
i + ω

2

α2
i + ω

2

⎫⎪⎬⎪⎭ , (11.9.4)

and either by inspection or by applying the general formula (11.1.15), one can show
that

H+(ω) = h∞
n∏
i=1

{
ω − iγi
ω − iαi

}
,

H−(ω) = h∞
n∏
i=1

{
ω + iγi
ω + iαi

}
, h∞ = [H∞]1/2.

(11.9.5)

By considering the residue at each pole, we find that

H−(ω) = h∞

⎡⎢⎢⎢⎢⎢⎣1 + i
n∑
i=1

Ri

ω + iαi

⎤⎥⎥⎥⎥⎥⎦ , H+(ω) = H−(ω),

Ri = (γi − αi)
n∏
j=1
j�i

{
γ j − αi

α j − αi

}
.

(11.9.6)

It follows from (11.9.6) and the fact that H− vanishes at ω = 0 that

n∑
i=1

Ri

αi
= −1. (11.9.7)

Therefore, we can also write H−(ω) in the form

H−(ω) = −h∞ω
n∑
i=1

Ri

αi(ω + iαi)
. (11.9.8)

The quantity pt−(ω), defined by the scalar version of (11.8.4), may be evaluated by
closing on Ω(−), giving, with the aid of (B.1.15)3,

pt−(ω) = ih∞
n∑
i=1

RiEt
r+(−iαi)

ω + iαi
. (11.9.9)

The quantities Et
r+(−iαi) are real. Also,

pt+(ω) = pt−(ω) − H−(ω)Et
r+(ω)

= ih∞
n∑
i=1

Ri
[Et

r+(−iαi) − Et
r+(ω)]

ω + iαi
− h∞E

t
r+(ω),
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which has singularities at those of Et
r+(ω) in Ω(+) but none in Ω(−). These explicit

relations for pt± allow their analytic continuation to the whole complex plane, ex-
cluding singular points, as discussed in Sect. B.1.2.

From (11.8.6), (11.9.5), and (11.9.9),

Et
m(ω) = −i

n∑
i=1

Ji(ω)RiE
t
r+(−iαi),

Ji(ω) =

∏n
j=1
j�i

(ω + iα j)

∏n
j=1(ω + iγ j)

=

n∑
l=1

Qil

ω + iγl
,

(11.9.10)

where

Qil =

∏n
j=1
j�i

(γl − α j)

∏n
j=1
j�l

(γl − γ j)
,

so that

Et
m(ω) = −i

n∑
l=1

Bt
l

ω + iγl
, Bt

l =

n∑
i=1

RiQilE
t
r+(−iαi). (11.9.11)

We conclude that the relative optimal deformation as defined in (11.8.7) has the form

Et
ro(s) = −

n∑
l=1

Bt
le

γl s = −Bt
1 −

n∑
l=2

Bt
le

γl s, s < 0,

since γ1 = 0. It follows that
Et
ro(−∞) = −Bt

1,

which is a special case of (11.5.5), as may be seen by using (11.9.8) to determine
the form of H1(ω) (defined by the scalar version of (11.5.4)) and (11.9.5)2 to write
H1(0). By considering ωJi(ω) for large ω, it can be deduced that

n∑
l=1

Qil = 1,

so that

Et
ro(0) = −

n∑
l=1

Bt
l = −

n∑
i=1

RiE
t
r+(−iαi). (11.9.12)

Relation (11.9.12) follows from (11.9.11)2 and (C.2.16). From (11.8.14) and (11.9.6),
we have

K(t) = h∞

⎡⎢⎢⎢⎢⎢⎣
n∑
i=1

RiE
t
r+(−iαi)

⎤⎥⎥⎥⎥⎥⎦ , (11.9.13)

since the constant term in H− yields zero by (B.1.15) and (11.8.5). Observe that
(11.9.12) and (11.9.13) agree with (11.8.15).
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We deduce from (11.9.9) and (11.8.9) that

ψm(t) = φ(t) + H∞

n∑
i, j=1

RiRj

αi + α j
Et
r+(−iαi)E

t
r+(−iα j)

= φ(t) +
1
2

∫ ∞

0
ds1

∫ ∞

0
ds2E

t
r(s1)G12(s1, s2)Et

r(s2),

(11.9.14)

where the reality of Et
r+(−iαi) has been used. The kernel G12 is given by

G12(s1, s2) = 2H∞

n∑
i, j=1

RiRj

αi + α j
e−αi s1−α j s2 .

The solution of this partial differential equation under conditions (8.6.6) is

G(s1, s2) = G∞ + 2H∞

n∑
i, j=1

RiRj

(αi + α j)αiα j
e−αi s1−α j s2 .

The relation (8.6.13) reducing in the scalar case to G(0, s) = G(s), where the latter
quantity is given by (11.9.1), can be confirmed with the aid of the identity

n∑
j=1

Rj

(αi + α j)α j
= − gi

2RiH∞
, (11.9.15)

which follows from (11.9.7) and the identity

n∑
j=1

Rj

αi + α j
= −1 +

αigi
2RiH∞

,

which in turn can be deduced by comparing the product H+(ω)H−(ω) given by
(11.9.6) near poles of H+(ω) or H−(ω) with H(ω) given by (11.9.2).

It is shown in [158] that (11.9.14) agrees with the expression by Breuer and Onat
[42] for the maximum recoverable work. Noting (11.8.13) and (11.9.13), we see that

Dm(t) = H∞

⎡⎢⎢⎢⎢⎢⎣
n∑
i=1

RiE
t
r+(−iαi)

⎤⎥⎥⎥⎥⎥⎦
2

= H∞

⎡⎢⎢⎢⎢⎢⎣
∫ ∞

0

n∑
i=1

Rie
−αis Et

r(s)ds

⎤⎥⎥⎥⎥⎥⎦
2

. (11.9.16)

For n = 1,

ψm(t) = φ(t) +
1
2
H∞α|Et

r+(−iα)|2 = φ(t) +
1
2
H∞α

[∫ ∞

0
Et
r(s)e

−αs ds

]2

, (11.9.17)

which can be shown to agree with the result of Day [87]; see also (10.2.15). Finally,
(11.9.16) becomes

Dm(t) = H∞|αEt
r+(−iα)|2 = H∞

[
α

∫ ∞

0
e−αsEt

r(s)ds

]2

. (11.9.18)
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Representation of the Minimum Free Energy in the
Time Domain

12.1 The Minimum Free Energy in Terms of Time-Domain
Relative Histories

Consider formula (11.2.17) for the minimum free energy. We wish to derive an ex-
pression for the integral term involving time-domain quantities. The method applies
also to the family of free energies derived in Chap. 16. Let us first define the quanti-
ties Yt

±,Y
t ∈ Γ:

Yt
−(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2π

∫ ∞
−∞ pt−(ω)eiωs dω, s ∈ R−,

0, s ∈ R++,

Yt
+(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1

2π

∫ ∞
−∞ pt+(ω)eiωs dω, s ∈ R+,

0, s ∈ R−−,

Yt(s) =
1

2π

∫ ∞

−∞
H−(ω)Λt

r+(ω)eiωs dω = Yt
+(s) + Yt

−(s), s ∈ R.

(12.1.1)

The second and fourth relations follow from the analyticity properties of pt± and
Proposition C.2.1. Since pt± ∈ L2(R), it follows that Yt

± ∈ L2(R±). Thus, we have

Yt
−(s) = Yt(s), s ∈ R−, Yt

+(s) = Yt(s), s ∈ R+. (12.1.2)

Recalling Parseval’s formula (C.3.1), we have, from (12.1.1)5 and (7.5.7)2, that

W(t) = φ(t) +
∫ ∞

−∞
|Yt(s)|2ds = φ(t) +

∫ 0

−∞
|Yt(s)|2ds +

∫ ∞

0
|Yt(s)|2ds,

which is the time-domain version of (11.2.16)2. It follows from (11.2.17) that

ψm(t) = φ(t) +
∫ 0

−∞
|Yt(s)|2ds (12.1.3)
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and, from (11.2.21),

Dm(t) =
∫ ∞

0
|Yt(s)|2ds.

We define U± ∈ Lin(Γ) as follows:

U−(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2π

∫ ∞
−∞

H−(ω)
ω

eiωsdω, s ∈ R−,
0, s ∈ R++,

U+(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2π

∫ ∞
−∞

H+(ω)
ω

eiωsdω, s ∈ R+,
0, s ∈ R−−,

(12.1.4)

where the second and fourth relations again follow from the analyticity properties of
H±.

We shall not assume that H± commute in this chapter. The property H+(ω) =
H∗

−(ω), as given by (11.1.13), yields

U∗
−(−s) = U+(s). (12.1.5)

Let U ∈ Lin(Γ) be given by

U(s) =
1

2π

∫ ∞

−∞

H(ω)
ω2

eiωsdω =
1
π

∫ ∞

0

H(ω)
ω2

cosωsdω, s ∈ R,

since H is an even function. Note that from (7.2.22) and (7.2.14),

U′(s) =
1
π

∫ ∞

0
L′

s(ω) sinωsdω =
1
2
L′(s),

yielding

U(s) −U(0) =
1
2

[L(s) − L0].

We see, using (7.2.19) and (7.2.22), that

U(0) =
1
2
L0,

so

U(s) =
1
2
L(s). (12.1.6)

Since, recalling (11.1.14), we see that H±(ω)/ω ∈ L2(R), it follows that U± ∈
L2(R±). Similarly, U ∈ L2(R). They go to zero at large times. Applying the Faltung
theorem (Sect. C.3) to (11.1.11), we deduce that

U(s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫ 0

−∞
U+(s − u)U−(u)du, s ∈ R+,∫ s

−∞
U+(s − u)U−(u)du, s ∈ R−,

(12.1.7)
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where (12.1.4)2,4 have been used. Applying the Faltung theorem to the fifth relation
of (12.1.1) yields

Yt(s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−i

∫ ∞

s
U′

−(s − u)Λt
r(u)du, s ∈ R+,

−i
∫ ∞

0
U′

−(s − u)Λt
r(u)du, s ∈ R−.

(12.1.8)

Recalling (C.2.12), we see from (12.1.4) that U′
±(s) will contain a singular term δ(s),

because of the fact that H±(∞) are in general nonzero. The nonsingular part belongs
to L2(R±) and in particular vanishes at large times. Now, referring to (12.1.3) and
(12.1.8)2, we see that
∫ 0

−∞
|Yt(s)|2ds =

∫ 0

−∞

∫ ∞

0
U′

−(s − u)Λt
r(u)du ·

∫ ∞

0
U′

−(s − v)Λt
r(v)dvds

=

∫ 0

−∞

∫ ∞

0

∫ ∞

0
Λt

r(u) ·U′
−(s − u)�U′

−(s − v)Λt
r(v)dudvds (12.1.9)

=
1
2

∫ ∞

0

∫ ∞

0
Λt

r(u) ·K(u, v)Λt
r(v)dudv,

where, on invoking (A.2.8), K ∈ Lin(Γ) can be written as

K(u, v) = 2
∫ 0

−∞
U′∗

− (s − u)U′
−(s − v) ds =

∂

∂u
∂

∂v
L(u, v),

in which

L(u, v) = 2
∫ 0

−∞
U∗

−(s − u)U−(s − v) ds

= 2
∫ 0

−∞
U+(u − s)U−(s − v) ds,

(12.1.10)

by virtue of (12.1.5). It follows from (12.1.9) that the components of K and therefore
L are real, so that

L∗(u, v) = L�(v, u).

Taking the Hermitian conjugate of (12.1.10) then yields

L�(u, v) = L(v, u),

which is a special case of (7.1.6)3. Relations (12.1.6) and (12.1.7) and the symmetry
of L(u) give

L(u, 0) = L(0, u) = L(u),

which is (7.1.14)3. The other relations of (7.1.6)–(7.1.8) follow from the fact that
U± and U′

± vanish at large times. Finally, from (11.2.22)3, (11.2.25), (12.1.1)5, and
(12.1.8), we have that the rate of dissipation is given by

Dm = |Yt(0)|2 =
∣∣∣∣∣
∫ ∞

0
U′(−u)Λt

r(u)du
∣∣∣∣∣
2

. (12.1.11)

The delta function in U′ does not contribute to Dm because Λt
r(0) = 0.
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12.2 The Minimum Free Energy Expressed in Terms of It

The functional It, given by (see (7.4.2)2)

It(τ,Λt) = It(τ) =
∫ ∞

0
L′(s + τ)Λt

r(s)ds, (12.2.1)

is a functional (in fact, the defining functional) of the minimal state. We can in fact
characterize the minimal state by the pair (It,Λ(t)). Since ψm is also a functional of
the minimal state (Remark 4.2.11), it is reasonable to suppose that we can express it
in terms of It. Where the second argument of It in (12.2.1) is clear, we omit it, writing
It(τ). The developments in this section are based on [110, 145] but most substantially
on [91].

For the following derivation, we put

L′(u) = 0, Λt
r(u) = 0, u ∈ R−−. (12.2.2)

Also, observe that∫ ∞

−∞
L′(u + τ)e−iωudu =

∫ ∞

−∞
L′(v)e−iωvdv eiωτ

=

∫ ∞

0
L′(v)e−iωvdv eiωτ = L′

+(ω) eiωτ,

which is an example of (C.1.8). Parseval’s formula (C.3.1) gives that

It(τ) =
1

2π

∫ ∞

−∞
L′
+(ω)Λt

r+(ω)e−iωτdω, τ ≥ 0.

We have

It(τ) =
1

2π

∫ ∞

−∞
[L′
+(ω) + λL′

+(ω)]Λt
r+(ω)e−iωτ dω, τ ≥ 0, (12.2.3)

since the added term gives zero, which can be seen by integrating over a contour
around Ω−, noting that the exponential goes to zero as Imω → −∞ (see (7.2.33)). If
λ = −1, this formula agrees with (11.3.3). We put, as in (11.2.31),

Jt(τ) = It(−τ), τ ≤ 0. (12.2.4)

Then, using the notation of (C.1.3)2 and relation (12.2.3),

Jt−(ω) =
∫ 0

−∞
Jt(τ)e−iωτ dτ

=
1

2πi

∫ ∞

−∞

[L′
+(ω′) + λL′

+(ω′)]Λt
r+(ω′)

ω′ − ω+
dω′.

(12.2.5)

We must choose ω+ so that the integration over the exponential converges. Similarly,
let Jt be defined by (12.2.3) and (12.2.4) for τ > 0. In this case, it depends on λ. We
have
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Jt+(ω, λ) =
∫ ∞

0
Jt(τ, λ)e−iωτ dτ,

= − 1
2πi

∫ ∞

−∞

[L′
+(ω′) + λL′

+(ω′)]Λt
r+(ω′)

ω′ − ω− dω′
(12.2.6)

and
JtF(ω, λ) = Jt+(ω, λ) + Jt−(ω) = [L′

+(ω) + λL′
+(ω)]Λt

r+(ω), (12.2.7)

by (C.1.4) and the Plemelj formula (B.2.15)2. We see from (7.2.23) that

JtF(ω, λ) ∼ ω−3, λ � 1, JtF(ω, 1) ∼ ω−4, λ = 1

at large ω, since, as observed after (7.2.29), Λt
r+(ω) ∼ ω−2. Note that the deriva-

tions of (12.2.5) and (12.2.6) are essentially the same as the manipulations leading
to (C.2.20).

For λ = −1, (12.2.7)2 becomes

JtF(ω,−1) = −2i
H(ω)
ω
Λt

r+(ω). (12.2.8)

Note that JtF(ω,−1) (or Jt(s,−1), s ∈ R in the time domain) corresponds to It(−τ),
defined by the odd extension of L′ to R, or

It(−τ) = −
∫ ∞

0

∂

∂τ
L(|τ − u|)Λt

r(u)du, τ ∈ R.

The integral can be extended over R by virtue of (12.2.2)2. Taking the Fourier
transform immediately yields (12.2.8) with the aid of the convolution theorem and
(7.2.22).

Also, for λ = −1, we obtain from (12.2.5) and (11.2.8) that

Jt−(ω) = −1
π

∫ ∞

−∞

H(ω′)Λt
r+(ω′)

ω′(ω′ − ω+)
dω′ = −1

π

∫ ∞

−∞

H+(ω′)[pt−(ω′) − pt+(ω′)]
ω′(ω′ − ω+)

dω′.

Now, the pt+(ω′) term vanishes on integrating over Ω−, and we have (recall (11.3.6))

Jt−(ω) = −1
π

∫ ∞

−∞

H+(ω′)pt−(ω′)
ω′(ω′ − ω+)

dω′.

Since pt− is a functional of the minimal state by Theorem 11.3.1, it follows that Jt−
also has this property, which of course it must have, as a Fourier transform of It(s),
s > 0. There is no corresponding result for Jt+.

We put

Pt(ω, λ) = −ω

2i
[H+(ω)]−1 JtF(ω, λ)

= −ω

2i
[H+(ω)]−1 [Jt−(ω) + Jt+(ω, λ)]

= pt−(ω) − pt+(ω, λ).
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This is the same quantity as in (11.2.8) (or more generally (11.2.32) when Λt
r+

does not exist) if λ = −1. We see that pt− is part of the term proportional to
[H+(ω)]−1 Jt−(ω) and is thus independent of λ. The quantities pt±(ω) are analytic on
Ω∓, respectively. They can be written, with the aid of the Plemelj formulas, in the
form

pt±(ω, λ) =
1

2πi

∫ ∞

−∞

Pt(ω′, λ)
ω′ − ω∓ dω′,

the integral being convergent, since JtF(ω) decays like ω−3 for large ω or more
strongly if λ = 1. The λ dependence applies only to pt+.

The minimum free energy is given by (11.2.17). Our objective is to write this
quantity in the time domain, as a quadratic form in It.

Let Yt(·, λ) be the inverse Fourier transform of Pt. Then,

Pt(ω, λ) =
∫ ∞

−∞
Yt(s, λ)e−iωs ds

and

pt+(ω, λ) = −
∫ ∞

0
Yt(s, λ)e−iωs ds,

pt−(ω) =
∫ 0

−∞
Yt(s, λ)e−iωs ds.

(12.2.9)

These correspond to (12.1.1) for λ = −1. The quantity Yt can be written more ex-
plicitly, by means of the Faltung theorem. However, we first need to write Pt as the
product of two functions both in L2(R). Let us divide and multiply by (ω−)2, omitting
the superscript for factors in the numerator where it is irrelevant. Thus,

Pt(ω, λ) = − [H+(ω)]−1

2iω−

[
ω2JtF(ω, λ)

]
,

where both factors are in L2(R) and where the first factor has all its singularities in
Ω(+), by virtue of the property that the zeros of detH+ are in Ω(+). We put

Jt(2)(s, λ) =
d2

ds2
Jt(s, λ) = − 1

2π

∫ ∞

−∞
ω2JtF(ω, λ)eiωs dω.

Also, let us define the complex quantity M ∈ Lin(Γ) by

M(s) =
1

2π

∫ ∞

−∞

[H+(ω)]−1

2iω− eiωs dω, s ∈ R. (12.2.10)

The integrand has a quadratic singularity near the origin, due to the explicit pole term
and the factor ω in H+(ω), which is taken, for consistency, to be ω−. This gives a
finite contribution, which is easily calculated. The quantity M vanishes∗ for s ∈ R−−,
by Proposition C.2.1. The Hermitian conjugate of M has the form

∗ This is not the case for the more general class of factorizations introduced in Chap. 16,
for which the zeros of H+ (the scalar theory is considered in that chapter) may be in either
half-plane. The method described here and the final result do not generalize readily to such
factorizations.
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M∗(s) = − 1
2π

∫ ∞

−∞

[H−(ω)]−1

2iω+
e−iωs dω, s ∈ R,

by virtue of (11.1.13). We see that M∗(−s) vanishes on R++, since H−(ω) has all its
zeros in Ω(−). It follows that M∗(s) vanishes on R−−, as is the case for M(s). By the
convolution theorem (C.3.3), we have

Yt(s, λ) =
∫ s

−∞
M(s − u)Jt(2)(u, λ)du. (12.2.11)

From (12.2.9), it is clear that only nonpositive arguments of Jt(2) contribute to pt−. For
this domain, we can drop the λ dependence, as for (12.2.5). Also, from (12.2.9) and
Parseval’s formula (C.3.1) (cf. (12.1.3)),

1
2π

∫ ∞

−∞
|pt−(ω)|2dω =

∫ 0

−∞
|Yt(s)|2ds.

Extending the upper limit in (12.2.11) to zero and interchanging integrations, we
have, using (A.2.8),

ψm(t) = φ(t) +
∫ 0

−∞

∫ 0

−∞
Jt(2)(u) ·N(u, v)Jt(2)(v)dudv, (12.2.12)

where N ∈ Lin(Γ) is given by

N(u, v) =
∫ 0

−∞
M∗(s − u)M(s − v)ds =

∫ 0

max(u,v)
M∗(s − u)M(s − v)ds.

Since ψm is real, we have
N∗(u, v) = N(v, u).

Note that
N(u, 0) = N(0, v) = 0 ∀ u, v ∈ R−

and also
N(u,−∞) = N(−∞, v) = 0 ∀ u, v ∈ R−−.

Therefore, we can write (12.2.12) as

ψm(t) = φ(t) +
∫ 0

−∞

∫ 0

−∞
Jt(1)(u) ·N12(u, v)Jt(1)(v)dudv,

N12(u, v) =
∂2

∂u∂v
N(u, v).

It follows from (12.2.10) that the quantity N12 will have singular delta distribution
terms. This can be avoided by using (12.2.12). Referring to (12.2.4), it can be written
in terms of It as

ψm(t) = φ(t) +
∫ ∞

0

∫ ∞

0
It(2)(u) ·K(u, v)It(2)(v)dudv, (12.2.13)
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where

It(2)(s) =
d2

ds2
It(s)

and

K(u, v) = N(−u,−v) =
∫ min(u,v)

0
M∗(u − s)M(v − s)ds.

Note that the same observation applies to (12.2.13) as made after (10.1.14). This
large domain of definition of the minimum free energy is reflected in the abstract
Definition 4.2.1.

We now derive an expression for the rate of dissipation. Relations (11.2.25) and
(11.2.24)1 give

Dm(t) = |K(t)|2, K(t) = −i lim
ω→∞

ωpt−(ω).

From (12.2.9)2, we deduce with the aid of (C.2.16) that (cf. (12.1.11))

K(t) = Yt(0) =
∫ 0

−∞
M(−u)Jt(2)(u)du =

∫ ∞

0
M(u)It(2)(u)du

on using (12.2.11) and (12.2.4). Therefore,

Dm(t) =
∣∣∣∣∣
∫ ∞

0
M(u)It(2)(u)du

∣∣∣∣∣
2

=

∫ ∞

0

∫ ∞

0
It(2)(u) ·M∗(u)M(v)It(2)(v)dudv.

It is easy to compare (12.1.4) and (12.2.10), which determine the kernels of the
quadratic forms for the minimum free energy in terms of Λt

r and It(2), respectively.
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Minimum Free Energy for Viscoelastic Solids, Fluids,
and Heat Conductors

We now develop formulas for the minimum free energy and related quantities ap-
plicable to three categories of linear materials (completely linear for solids and heat
conductors). The methods differ in detail from those in Chap. 11, though they are
equivalent. As in Chaps. 8 and 9, we make more use of the abstract terminology and
notation introduced in Chaps. 3 and 4.

13.1 Maximum Recoverable Work for Solids

Let G(|s|) denote the extension of G(s) on R by means of an even function. Further-
more, we suppose that any process P ∈ Π , defined over [0, dP), is identified with its
trivial extension on R+, by putting

P(t) =

⎧⎪⎪⎨⎪⎪⎩
P(t), t ∈ [0, dP),

0, t ∈ [dP,+∞).
(13.1.1)

Let σ0 = σ(0) = E0 be the history at the initial time t = 0. We wish to evaluate the
work W(σ0, P) as given by (4.1.4) but with Σ and Λ replaced by the Cauchy stress T
and the strain E [110]. The process P ∈ Π is such that P(t) = Ė(t)∀t ∈ [0, dp). Also,
Et = ρ̂(E0, Pt), and recalling (1.4.11) or (8.1.5), together with (8.3.1), we write the
stress as

T(Et) = G0E(t) +
∫ ∞

0
G′(s)Et(s)ds

= G0E(t) +
∫ t

0
G′(s)Et(s)ds + I0(t,E0),

(13.1.2)

where I0(t,E0) is given by (8.2.3)1 with t = 0 and τ substituted by t, that is,

I0(t,E0) =
∫ ∞

0
G′(s + t)E0(s)ds ∀t ∈ R+. (13.1.3)
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A slightly different notation was used in (8.5.16) for the extension of I0 to R. Note
that from (13.1.1), it follows that the limit E(∞) = limt→∞ E(t) exists. We have

W(σ, P) =
∫ ∞

0

[
G0E(t) +

∫ t

0
G′(s)Et(s)ds

]
· Ė(t)dt

+

∫ ∞

0
I0(t,E0) · Ė(t)dt =

∫ ∞

0
G0E(t) · Ė(t)dt

+

∫ ∞

0

[
G(s)E(t − s)|t0 +

∫ t

0
G(s) · Ė(t − s)ds

]
· Ė(t)dt (13.1.4)

+

∫ ∞

0
I0(t,E0) · Ė(t)dt

=
1
2

∫ ∞

0

∫ ∞

0
G(|t − τ|)Ė(τ) · Ė(t)dτdt +

∫ ∞

0
Ĭ0(t,E0) · Ė(t)dt,

where, referring to (8.2.3)2, we have put

Ĭ0(t,E0) = G(t)E(0) + I0(t,E0). (13.1.5)

The maximum recoverable work from the state σ0 = E0 can be evaluated by
considering the maximum of −W(σ0, P) with respect to the set of functions

E(t) = E(m)(t) + εe(t) ∀t ∈ R+, (13.1.6)

where ε is a real parameter and e is an arbitrary smooth function such that e(0) = 0.
If Ė(m) denotes the process corresponding to the maximum recoverable work, then
the derivative of −W for ε = 0 must be equal to zero, so that

d
dε

[−W(σ, P)] |ε=0

= −
∫ ∞

0

∫ ∞

0
G(|t − τ|)Ė(m)(t) · ė(τ)dτdt −

∫ ∞

0
Ĭ0(t,E0) · ė(t)dt = 0.

Hence, because of the arbitrariness of ė(t), we obtain
∫ ∞

0
G(|t − τ|)Ė(m)(τ)dτ = −Ĭ0(t,E0) ∀t ∈ R+. (13.1.7)

This relation (13.1.7) is an integral equation of Wiener–Hopf type, the solution of
which gives the process Ė(m), related to the maximum recoverable work. Thus, from
Theorem 4.2.3 together with relations (13.1.4)3 and (13.1.7), we obtain an expression
for the minimum free energy,

ψm(E0) =
1
2

∫ ∞

0

∫ ∞

0
G(|t − τ|)Ė(m)(τ) · Ė(m)(t)dτdt, (13.1.8)

where Ė(m) must be evaluated as the solution of the Wiener–Hopf equation (13.1.7).
It is important to prove that the solution of (13.1.7) exists and is unique.
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We can write (13.1.8) in terms of the frequency-domain quantities, by analogy
with the steps from (7.5.2) to (7.5.7)1. This yields

ψm(E0) = − 1
2π

∫ ∞

−∞

G′
s(ω)

ω
Ė(m)
+ (ω) · Ė(m)

+ (ω)dω

=
1

2π

∫ ∞

−∞
Gc(ω)E(m)

+ (ω) · E(m)
+ (ω)dω ≥ 0.

(13.1.9)

The kernel G(|t|) is a positive operator, as can be deduced from (8.1.18) by writing
(13.1.8) in the frequency domain. We introduce the set

G =

{
Ė : [0,+∞) → Sym;

∫ ∞

0

∫ ∞

0
G(|t − τ|)Ė(τ) · Ė(t)dτdt < ∞

}
. (13.1.10)

An inner product on G can be defined by means of

(
Ė1, Ė2

)
=

∫ ∞

0

∫ ∞

0
G(|t − τ|)Ė1(τ) · Ė2(t)dτdt.

The norm on G is given by

‖Ė‖2 =

∫ ∞

0

∫ ∞

0
G(|t − τ|)Ė(τ) · Ė(t)dτdt

= G∞

∣∣∣∣∣
∫ ∞

0
Ė(τ)dτ

∣∣∣∣∣
2

+

∫ ∞

0

∫ ∞

0
Ǧ(|t − τ|)Ė(τ) · Ė(t)dτdt,

(13.1.11)

where Ǧ(s) = G(s) − G∞, which is assumed to belong to L1(R+). Therefore, the
processes Ė are such that

∫ ∞

0
Ė(t)dt = E(∞) − E(0) < ∞,

∫ ∞

0

∫ ∞

0
Ǧ(|t − τ|)Ė(τ) · Ė(t)dτdt < ∞.

If Ǧ has the exponential form

Ǧ(s) = Ae−αsI,

where I is the unit operator in Lin(Sym) and A is a scalar constant, then the space G

is well defined. In fact, replacing G in (13.1.8) by Ǧ, we see from (13.1.9)2 (using
the evenness of the integrand as a function of ω) that

∫ ∞

0

∫ ∞

0
Ǧ(|t − τ|)Ė(t) · Ė(τ)dτdt =

A
π

∫ ∞

0

α

α2 + ω2

∣∣∣Ė+(ω)
∣∣∣2 dω,

so that Ė ∈ H−1(R+), the dual of the Sobolev space H1(R+). In general, we can affirm
that G ⊃ L1(R+) ∩ L2(R+).
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Remark 13.1.1. By means of the norm of G, it is possible to provide the set of pro-
cesses Π with a topology. In particular, the closure of Π , using the norm (13.1.11),
is the Hilbert space G.

We can write Eq. (13.1.7) as
AĖ = I0,

where A is an operator from G to its dual G′. It is bounded and coercive. Thus,
from the Lax–Milgram theorem, we have the result expressed by the following the-
orem [110].

Theorem 13.1.2. For any I0 ∈ G′, Eq. (13.1.7) has a unique solution Ė ∈ G such that

‖Ė‖G ≤ K‖I0‖G′ .

In other words, there exists an isomorphism between G and G′.
We now recall Theorem 4.2.8 and Corollary 4.2.10. Since the elastic free energy

at a given current strain is less than or equal to any viscoelastic free energy with the
same current strain (relation (5.1.32)), we take φM to be φ(∞), where

φ(t) =
1
2
G∞E(t) · E(t)

is the elastic or equilibrium free energy corresponding to the strain E(t).
We seek the history that maximizes the functional

W(σ, P) − φ(∞) =
1
2

∫ ∞

0

∫ ∞

0
G(|t − τ|)Ė(τ) · Ė(t)dτdt

+

∫ ∞

0
Ĭ0(t,E0) · Ė(t)dt − φ(∞), (13.1.12)

where Ĭ0(t,E0) is given by (13.1.5). Repeating the steps leading to (13.1.7), noting
that in (13.1.6) e(0) = 0 and e(∞) =

∫ ∞
0

ė(t)dt, we obtain

∫ ∞

0
G(|t − τ|)Ė(m)(τ)dτ = −Ĭ0(t,E0) +G∞E(m)(∞) ∀t ∈ R+. (13.1.13)

The solution Ė(m) of (13.1.7) can be expressed as the sum

Ė(m) = Ė(m1) + Ė(m2), (13.1.14)

where Ė(m1) denotes the solution of (13.1.13) and Ė(m2) satisfies the equation
∫ ∞

0
G(|t − τ|)Ė(m2)(τ)dτ = −G∞E(m1)(∞)

= −G∞

[
E(m1)(0) +

∫ ∞

0
Ė(m1)(τ)dτ

]
,
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derived by subtracting (13.1.13) from (13.1.7). This equation, by virtue of Theo-
rem 13.1.2, has a unique solution Ė(m2) ∈ G, which we denote formally by

Ė(m2)(t) = −E(m1)(∞)δ(t −∞).

Such a function can be deduced as the limit of the sequence

Ė(m2)(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, t < n,

−E(m1)(∞)
n , n < t < 2n,

0, t > 2n.

We note that (13.1.14) corresponds to continuations given formally by

E(m)(t) = E(m1)(t) − E(m1)(∞)H(t −∞),

where H(s) denotes the Heaviside step function.

Remark 13.1.3. We obtain the same maximum recoverable work using both func-
tionals W(σ, P) and W(σ, P) − φM(ρ̂(σ, P)); however, the processes that yield this
maximum recoverable work are different. In fact, using W(σ, P), the optimal process
is Ė(m), which satisfies (13.1.7); however, using W(σ, P) − φM(ρ̂(σ, P)), the optimal
process is Ė(m1), which satisfies (13.1.13).

We observe that (13.1.13), integrating by parts and using (13.1.5) with (13.1.3),
can be written as ∫ ∞

−∞

∂

∂t
G(|t + τ|)E0(τ)dτ = 0 ∀t ∈ R+, (13.1.15)

where the quantity E0(τ) is the given history on R+, while on R−− it is defined as

E0(τ) = E(m1)(−τ) ∀τ ∈ R−−. (13.1.16)

Thus, from Theorem 4.2.8 and Corollary 4.2.10 together with (13.1.12) and (13.1.13),
we have

ψm(E0) =
1
2

∫ ∞

0

∫ ∞

0
G(|t − τ|)Ė(m1)(τ) · Ė(m1)(t)dτdt − φ(∞) +G∞E(∞) · E(0),

where Ė(m1) is the solution of Eq. (13.1.13). Integrating by parts and taking account
of (13.1.15)–(13.1.16) with the expression (13.1.2)1 for the stress tensor, this relation
becomes

ψm(E0) = S (0) +
1
2

∫ ∞

0

∫ ∞

0

∂2

∂t∂τ
G(|t − τ|)E(m1)(τ) · E(m1)(t)dτdt, (13.1.17)

where S (t) is given by (8.6.15).

Remark 13.1.4. Thus, we see that the second formulation above, based on (13.1.12)
and leading to (13.1.15), corresponds to the developments based on (11.2.26) and
indeed all the formulations in Chap. 11. Note that the form (13.1.17) corresponds to
(11.8.10)2, the latter applying to relative histories; indeed, the two are related in the
same way as (11.2.34) and (11.2.17). On the other hand, the developments arising
out of the form (13.1.7) are somewhat different. The relationship between the two is
addressed in Remark 13.1.3.
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13.1.1 Minimum Free Energy for Solids

We refer to the footnote in Sect. 11.8 in the context of this topic.
The Fourier transform of G′ is the function G′

+(ω), which is analytic on Ω(−),
by Proposition C.2.1. It is further assumed (Hypothesis C.2.3) that G′

+ is analytic
on R and therefore on Ω−. It is defined by analytic continuation from the region of
analyticity in regions of Ω+ where the Fourier integral does not converge.

The quantity G′
+ is related to G′

c and G′
s by (C.2.2). The function G′

s has singu-
larities in both Ω(+) and Ω(−) that are mirror images of one another; thus, it must be
analytic at the origin, where it goes to zero like ωn with the integer n ≥ 1; we assume
that n = 1 (see (7.2.20) and (7.2.21)).

It is important for the following considerations to consider the function H(ω)
introduced in (8.7.1). We note that this quantity is an even function of frequency and
positive, except at the origin, where it vanishes linearly.

From (C.2.16) and (C.2.17),

i lim
ω→∞

ωG′
F(ω) = lim

ω→∞
ωG′

s(ω) = G′(0), (13.1.18)

whence we obtain
H(∞) = −G′(0) > 0,

by virtue of (8.1.23).
We extend G(s), defined for any s ∈ R+, by means of the even function

G(|s|)∀s ∈ R+; then, it follows that G′(|s|) is an odd function with Fourier trans-
form (see (C.1.6))

G′
F(ω) = −2iG′

s(ω). (13.1.19)

We shall consider the Fourier transforms Et
+(ω) and Et

−(ω) of the strain tensor
history and continuation Et(s)∀s ∈ R, defined by (see (C.1.3))

Et
+(ω) =

∫ ∞

0
exp(−iωs)Et(s)ds and Et

−(ω) =
∫ 0

−∞
exp(−iωs)Et(s)ds,

(13.1.20)
respectively. The history and continuation in some cases do not belong to L2. Thus,
if E(−∞) � 0, then defining

Et
d(s) = Et(s) − Et(∞) = Et(s) − E(−∞),

we assume that Et
d ∈ L2(R+). In this case, we have, recalling (C.2.10),

Et
+(ω) =

∫ ∞

0
exp(−iωs)Et

d(s)ds + E(−∞)
∫ ∞

0
exp(−iωs)ds

= Et
d+(ω) +

E(−∞)
iω− , ω− = lim

α→0+
(ω − iα), (13.1.21)

where the limit in the last relation is taken after any integrations over ω have been
carried out. Analogously, we also have
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Et
−(ω) = Et

d−(ω) − E(∞)
iω+

, ω+ = lim
α→0+

(ω + iα), (13.1.22)

if E(∞) � 0.
The quantity Et

+ is analytic on Ω(−) and Et
− is analytic on Ω(+) by Proposi-

tion C.2.1, while their analyticity on R is assumed by Hypothesis C.2.3. Poles that
may exist near the origin are moved slightly off the real axis as prescribed in (13.1.21)
and (13.1.22). We also assume that they are analytic at infinity, so that if Et(0) is fi-
nite, which is of course assumed, Et

± go to zero at large ω like ω−1 in all directions,
by virtue of (C.2.16).

Under the hypothesis that the strain-tensor history has a continuous derivative
(see (7.2.27)), we have

d
dt
Et
+(ω) = −iωEt

+(ω) + E(t).

Moreover, from (13.1.21), it follows that

i lim
ω→0

ωEt
+(ω) = lim

ω→0
ωEt

s(ω) = E(−∞),

and, as in (13.1.18),

i lim
ω→∞

ωEt
+(ω) = lim

ω→∞
ωEt

s(ω) = E(t).

Observe that from the definition (13.1.20)1, we have, for ω ∈ R,

Et
+(ω) = Et

+(−ω),

and hence

Et
+(ω) − Et

+(ω) = −2i
∫ ∞

0
sinωsEt(s)ds = −2iEt

s(ω).

Taking account of these last two relations and of the definition of H, given by (8.7.1),
the expression (8.1.28) for the stress tensor (with integrand extended to R) becomes

T(t) = G0E(t) +
1

2πi

∫ ∞

−∞

H(ω)
ω

[
Et
+(ω) − Et

+(−ω)
]
dω

= G0E(t) +
1
πi

∫ ∞

−∞

H(ω)
ω

Et
+(ω)dω,

where we have used the property that H(ω)/ω is an odd function of ω.
We now seek to solve the Wiener–Hopf equation (13.1.15). Replacing the param-

eter t by −t, the latter form can be written as
∫ ∞

−∞

∂

∂t
G(|t − τ|)E0(τ)dτ = R(t),

R(t) = 0 ∀t ∈ R−, E0(τ) = E(m1)(−τ), ∀τ ∈ R++,
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where E0 coincides with the given history on R+ and R(t) is defined by this relation
onR++. Taking the Fourier transform, we obtain, with the aid of (8.7.1) and (13.1.19),

2iH(ω)
[
E0
+(ω) + E(m)(ω)

]
= ωR+(ω), (13.1.23)

where E(m)(ω), which denotes the Fourier transform of E0(τ) defined on R−− by
(13.1.16), is the quantity we seek to determine. The quantity R+(ω) is analytic on
Ω(−) and by assumption also on the real axis.

The tensor H is isomorphic to a matrix in R6 × R6 and can be factorized (this is
discussed in Sect. 11.1) in the form

H(ω) = H+(ω)H−(ω), (13.1.24)

where H± is analytic and has no zeros in its determinant on Ω∓. We multiply
(13.1.23) by [H+(ω)]−1 to obtain

H−(ω)
[
E0
+(ω) + E(m)(ω)

]
=

ω

2i
[H+(ω)]−1

R+(ω). (13.1.25)

Now, using the Plemelj formulas (B.2.15), we have

Q(ω) = H−(ω)E0
+(ω) = q−(ω) − q+(ω),

q±(ω) = lim
z→ω∓

q(z),

q(z) =
1

2πi

∫ ∞

−∞

Q(ω′)
ω′ − z

dω′,

(13.1.26)

where q− is analytic on W (+) and q+ is analytic on Ω(−). Moreover, H−(ω) is analytic
in Ω+ and E0

+ in Ω−; hence, it follows that Q(ω) is analytic on R. Closing the contour
in (13.1.26)3 on the half-plane that does not contain z, we pick up the singularities
of Q in that half-plane; therefore, both q± are analytic on R. Finally, q− is defined in
Ω(−) by analytic continuation from Ω+, while q+ is correspondingly defined in Ω(+).

By substituting (13.1.26)1 into relation (13.1.25), we obtain the equality

K(ω) = q−(ω) +H−(ω)E(m)(ω) = q+(ω) +
ω

2i
[H+(ω)]−1 R+(ω).

The function K must be analytic both on Ω− by virtue of its first definition and on
Ω+ by virtue of the second one; therefore, it is analytic over all the complex plane.
Thus, using Liouville’s theorem (Sect. B.1.3), K(ω) must vanish everywhere, so that

q−(ω) +H−(ω)E(m)(ω) = 0, (13.1.27)

since K(ω) → 0 like 1/ω, as |ω| → ∞, because q− and E(m) have this property.
We can now consider the expression (13.1.17) for the minimum free energy,

which, using Parseval’s formula and the convolution theorem (Sect. C.3), becomes

ψm(E0) = S (0) +
1

2π

∫ ∞

−∞
H(ω)E(m)(ω) · E(m)(ω)dω.
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This is analogous to the derivation of (7.5.7)2 from (7.5.3). Relations (13.1.24) and
(13.1.27) yield the required expression for the free energy:

ψ̃m(E0) = S (0) +
1

2π

∫ ∞

−∞
|q−(ω)|2dω. (13.1.28)

Note that this can be put in the form [92]

ψ̃m(E0) =
1
2
E(0) ·G∞E(0) +

1
2π

∫ ∞

−∞
|p − (ω)|2dω,

p−(ω) = q−(ω) − H−(ω)E(0)
iω+

.

(13.1.29)

If the expressions (13.1.28) and (13.1.29) are to be useful, it must be possible to carry
out the factorization (13.1.24) explicitly. This issue is addressed in a general manner
in Sect. 11.6, based on the results in Sect. 11.1. Here, we content ourselves with the
observation that for an isotropic solid, G′ is diagonal and given by

[G′(s)]i jkl = μ′(s)(δikδ jl + δilδ jk −
2
3
δi jδkl) + k

′(s)δi jδkl,

k′(s) =
2
3
μ′(s) + λ′(s),

(13.1.30)

where μ′ and λ′ are scalar relaxation function derivatives corresponding to the Lamé
moduli introduced in Theorem 2.4.3, while k′ corresponds to the modulus of com-
pression (see (2.4.16)). Thus, recalling (8.7.1), we have

[H(ω)]i jkl = H(μ)(ω)(δikδ jl + δilδ jk −
2
3
δi jδkl) + H(k)(ω)δi jδkl,

H(μ)(ω) = −ωμ′s(ω), H(k)(ω) = −ωk′s(ω).
(13.1.31)

If we can factorize the scalar quantities H(μ), H(k) by

H(μ)(ω) = H(μ)
+ (ω)H(μ)

− (ω), H(k)(ω) = H(k)
+ (ω)H(k)

− (ω),

where the singularities and zeros of H(μ)
+ , H(k)

+ are in Ω(+) and those of H(μ)
− , H(k)

− are
in Ω(−), then it is easy to show that by putting

[H±(ω)]i jkl =
1
√

2
H(μ)

± (ω)(δikδ jl + δilδ jk −
2
3
δi jδkl) +

1
√

3
H(k)

± (ω)δi jδkl,

relation (13.1.24) holds. This procedure is a special case of that outlined in Sect. 11.6.
In particular, the factors H±(ω) commute. The factorization of a scalar positive func-
tion is discussed in Sect. 11.1.1.

Finally, we note that the rate of dissipation for a viscoelastic solid is given by
(11.8.13). Also, a discontinuity occurs between the optimal continuation and the his-
tory, as shown by (11.8.15). Furthermore, the optimal continuation does not vanish
at large times, as indicated by (11.8.16).
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13.1.2 Minimum Free Energies in Terms of Stress History

The minimum free energy, where stress rather than strain is the independent field
variable, can be given without difficulty. The analogous developments to those given
above can be carried through to give a formula corresponding to (13.1.28). This will
have the form

ψ̃m(T0) = S T (0) +
1

2π

∫ ∞

−∞
|qT−(ω)|2dω,

where, recalling (8.6.15),

S T (0) = T(t) · E(t) − 1
2
J0T(t) · T(t).

The quantity J0 is given by (8.5.6). Also, to determine qT− , we observe that the core
issue is to determine what replaces H given by (8.7.1) and factorized as in (13.1.24).
Let us denote it by HT . Recalling (8.5.13), we see that

HT (ω) = ωJ′
s(ω).

Using (8.5.10)1, (8.5.12), and (8.7.1), we can write

HT (ω) = [1 +K+(ω)]−1J0H(ω)J0[1 +K+(ω)]−1,

giving

HT
+(ω) = [1 +K+(ω)]−1J0H+(ω),

HT
−(ω) = J0H−(ω)[1 +K+(ω)]−1,

with H±(ω) as introduced in (13.1.24). Note that by virtue of Remarks 8.5.1 and 8.5.2,
the factors HT

+(ω) and HT
−(ω) have their singularities and zeros in the upper and

lower half-planes, respectively. The zeros of 1 +K+(ω) are the isolated singularities
of HT

+(ω), while the isolated singularities of 1 +K+(ω) cancel those of H+(ω). This
may be confirmed with the aid of (8.5.3), on noting that the isolated singularities
of H+(ω) are the same as those of G′

+(ω). The zeros of HT
+(ω) are those of H+(ω).

Corresponding observations apply to HT
−(ω), 1 +K+(ω), and H−(ω).

Thus, recalling (13.1.26), we have

qT±(ω) = lim
z→ω∓

qT (z), q(z) =
1

2πi

∫ ∞

−∞

HT
−(ω′)T0

+(ω′)
ω′ − z

dω′.

13.2 Maximum Recoverable Work for Fluids

We now present developments for fluids analogous to those in Sect. 13.1 for solids.
To determine the optimal process that maximizes the recoverable work, we consider
the trivial extension on R of a process P(t) = D(t), of duration dP < ∞, as given by
(13.1.1). Observe that with such a process, there exists E(∞) = limt→∞ E(t).
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Consider the work W(γ0, P) done by a process P, applied at time t = 0, to the
state γ0 = E0

r . Firstly, we observe that the extra stress, given by (8.9.14), becomes,
with an integration by parts, remembering that G(∞) = 0 for fluids,

1
ρ
T̃(ρ,Et

r) = V(Et
r) =

∫ t

0
G(s)Ėt(s)ds +G(t)E(0) +

∫ ∞

t
G′(s)Et(s)ds

=

∫ t

0
G(s)Ėt(s) + I0(t,E0

r ), (13.2.1)

Ėt(s) =
∂

∂t
Et(s) = − ∂

∂s
Et(s),

where we have put (cf. (8.2.2))

I0(t,E0
r ) =

∫ ∞

0
G′(t + τ)E0

r (τ)dτ

=

∫ ∞

0
G(t + τ)D(−τ)dτ =

∫ 0

−∞
G(t − u)D(u)du,

D(u) = Ė(u).

(13.2.2)

Thus, substituting (13.2.1)2 into (8.9.27), we obtain

W(γ, P) =
1
2

∫ ∞

0

∫ ∞

0
G(|t − τ|)D(t) · D(τ)dτdt +

∫ ∞

0
I0(t,E0

r ) · D(t)dt, (13.2.3)

after a change of variable in the first term and the use of the manipulation leading to
(7.5.2).

The optimal process P(m), denoted by D(m), is the time derivative of the optimal
future strain E(m). We seek the supremum of −W(γ0, P) with respect to the functions
given by (13.1.6). Substituting into (13.2.3) the time derivative of these functions,
i.e., D(t) = D(m)(t) + εė(t), and evaluating the derivative with respect to ε, we have

d[−W(γ0, P)]
dε

∣∣∣∣∣
ε=0

= −
∫ ∞

0

[∫ ∞

0
G(|t − τ|)D(m)(τ)dτ + I0(t,E0

r )

]
· ė(t)dt = 0,

whence, because of the arbitrariness of ė(t), we obtain
∫ ∞

0
G(|t − τ|)D(m)(τ)dτ = −I0(t,E0

r ) ∀t ∈ R++, (13.2.4)

which is in agreement with (13.1.7) in the light of (8.2.1), given that G∞ vanishes
for fluids.∗ This is a Wiener–Hopf equation for the quantity D(m) that maximizes the
recoverable work. By substituting (13.2.4) into (13.2.3), we obtain

∗ Note that (13.1.7) and (13.1.13) are in agreement for G∞ = 0, so that the problems dis-
cussed in Remarks 13.1.3 and 13.1.3 do not exist for fluids.



306 13 Minimum Free Energy for Viscoelastic Solids, Fluids, and Heat Conductors

ϕm(E0
r ) =

1
2

∫ ∞

0

∫ ∞

0
G(|t − τ|)D(m)(t) · D(m)(τ)dτdt, (13.2.5)

by virtue of (8.9.28). Consider the completion G of the set (cf. (13.1.10))

G̃ =

{
D : [0,∞) → Sym;

∫ ∞

0

∫ ∞

0
G(|t − τ|)D(t) · D(τ)dτdt < ∞

}
,

by means of the norm

‖ · ‖2
G =

∫ ∞

0

∫ ∞

0
G(|t − τ|)D(t) · D(τ)dτdt

=
1
π

∫ ∞

−∞
Gc(ω)D(m)

+ (ω) · D(m)
+ (ω)dω.

(13.2.6)

The second form, on the frequency domain, is derived in the same way as (13.1.9).
The thermodynamic restrictions (8.9.31) imply that both of these integrals are non-
negative.

The inner product is

(D1,D2) =
∫ ∞

0

∫ ∞

0
G(|t − τ|)D1(t) · D2(τ)dτdt,

with which G becomes a Hilbert space. The set of processes Π is a subset of G.
Thus, for fluids, we have the following results, also given for viscoelastic solids

(Remark 13.1.1 and subsequent observations).

Remark 13.2.1. Using the norm of G, we can provide the set Π of processes with a
topology; moreover, by means of the norm (13.2.6), the closure of Π is the Hilbert
space G.

Equation (13.2.4) can be put in the form

AD = I0,

where A is a bounded and coercive operator from G to its dual G′; therefore, also for
fluids, using the Lax–Milgram theorem, we have the following result.

Theorem 13.2.2. For any I0 ∈ G′, Eq. (13.2.4) has a unique solution D ∈ G such that

‖D‖G ≤ K‖I0‖G′ .

In other words, there exists an isomorphism between G and G′.

Proposition 13.2.3. Two states, characterized by E0
r j ( j = 1, 2), are equivalent in the

sense of (8.9.17)2,3 if and only if

I0(t,E0
r1

) = I0(t,E0
r2

) ∀t ∈ R+. (13.2.7)
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Proof. If (13.2.7) holds for any t ∈ R+ and E0
r = E0

r1
−E0

r2
, then I0(t,E0

r ) = 0 for any
t ∈ R+ or, from (13.2.2),∫ ∞

0
G′(t + τ)E0

r (τ)dτ = 0 ∀t ∈ R+,

which is equivalent to (8.9.17)2,3. The converse is trivial. �

Remark 13.2.4. This proposition allows us to consider a bijective map between G′

and the quotient space Γ(m) = Γ/Γ0. Thus, it is possible to identify any class of
equivalent relative strain histories with I0.

Therefore, the minimum free energy can be represented as a function defined on
Γ(m).

13.2.1 The Minimum Free Energy for Fluids

We consider the Wiener–Hopf equation (13.2.4). The solution D(m) of this equation
can be determined by virtue of the thermodynamic properties of the kernel G. The
maximum recoverable work coincides with the minimum free energy

ψ̃m(ρ,Et
r) = φ(ρ) + ϕm(Et

r), (13.2.8)

where φ is defined by (8.9.22) and (see (13.2.5))

ϕm(Et
r) ==

1
2

∫ ∞

0

∫ ∞

0
G(|τ − s|)D(m)(τ) · D(m)(s)dτds. (13.2.9)

Let us introduce the function r : R→ Sym, with the property that

r(τ) = 0 ∀τ ∈ R++.

Its value on R− is not yet determined. Using (13.2.2), we can write (13.2.4) in the
form∫ ∞

0
G(|τ − s|)D(m)(s)ds = −

∫ 0

−∞
G(τ − u)D(u)du + r(τ) ∀τ ∈ R, (13.2.10)

where supp(D(m)) ⊆ R+, supp(D)) ⊆ R−, and supp(r) ⊆ R−. Taking the Fourier
transform of this equation yields, with the aid of (C.1.5)1,

2Gc(ω)[D(m)
+ (ω) + D−(ω)] = r−(ω), (13.2.11)

in the notation of (C.1.3), where

D−(ω) =
∫ 0

−∞
D(u)e−iωudu =

∫ 0

−∞
Ė(u)e−iωudu

= E(0) + iω
∫ ∞

0
E(−u)eiωudu (13.2.12)

= iω

[
E0
+(ω) +

E(0)
iω+

]
= iωE0

r+(ω).
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We have from (8.7.1) that

Gc(ω) =
1
ω2

H(ω) ≥ 0. (13.2.13)

This is true in general. However, we are dealing here with the special case of an
isotropic material for which H has the form (13.1.31) and the factors commute.

Referring to Sect. 11.1, we see that the non-negativity property of Gc implies that
it can be factorized as follows:

Gc(ω) = G(+)(ω)G(−)(ω) = G(−)(ω)G(+)(ω), (13.2.14)

where the singularities of G(±)(ω) and the zeros of its determinant are all in Ω(±),
respectively. The factors obey the relations

G(±)(ω) = G(∓)(ω),

by virtue of (11.1.13) for symmetric tensors. We have

G(+)(ω) =
1
iω

H+(ω), G(−)(ω) = − 1
iω

H−(ω), (13.2.15)

where the quantities H± are the factors of H. Using the factorization (13.2.14),
(13.2.11) yields

G(+)(ω)D(m)
+ (ω) = −G(+)(ω)D−(ω) +

1
2
G−1

(−)(ω)r−(ω),

since detG(−)(ω) � 0∀ω ∈ R. The Plemelj formulas (B.2.15) give

G(+)(ω)D−(ω) = p(−)(ω) − p(+)(ω),

where the functions p(±)(z), analytic for z ∈ Ω∓, respectively, are defined by means
of

p(z) =
1

2πi

∫ ∞

−∞

G(+)(ω)D−(ω)

ω − z
dω z ∈ Ω\R,

p(±)(ω) = lim
α→0∓

p(ω + iα).
(13.2.16)

Remark 13.2.5. Note that by virtue of (13.2.12) and (13.2.15),

G(+)(ω)D−(ω) = H+(ω)E0
r+(ω) = H−(ω)E0

r+(ω),

which is interesting to compare with (11.2.8) and indeed (13.1.26), though the latter
is expressed in terms of nonrelative histories. We see that the quantity p(z), defined
by (13.2.16), is −p(z), as given by (11.2.9).

Thus, we obtain

G(+)(ω)D(m)
+ (ω) = −p(−)(ω) + p(+)(ω) +

1
2
G−1

(−)(ω)r−(ω),
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where G(+)(z)D
(m)
+ (z) and p(+)(z) are analytic for z ∈ Ω−, while G−1

(−)(z)r−(z) and
p(−)(z) are analytic for z ∈ Ω+. Therefore, the function

L(ω) = G(+)(ω)D(m)
+ (ω) − p(+)(ω) = −p(−)(ω) +

1
2
G−1

(−)(ω)r−(ω)

must be equal to zero everywhere, by Liouville’s theorem (Sect. B.1.3), because it is
analytic on the whole complex plane and vanishes at infinity. Thus, in particular, we
have

D(m)
+ (ω) = G−1

(+)(ω)p(+)(ω). (13.2.17)

Remark 13.2.6. Since H+(∞) is not zero in general, it follows from (13.2.15)1 that

lim
ω→∞

D(m)
+ (ω) � 0,

so that D(m)(τ) has an initial delta function-type singularity as τ → 0+, since the
Fourier transform of a constant yields a delta function, as given by (C.2.12). Thus,
the optimal continuation E(m), where D(m) = Ė(m), has an initial discontinuity as
τ → 0+, and hence Em(0+) � E(0−) = E(0) (see (11.8.15)).

Remark 13.2.7. Since detG(+)(0) � 0, we obtain

E(m)(∞) − E(0−) =
∫ ∞

0−
D(m)(τ)dτ = D(m)

+ (0) = G−1
(+)(0)p(+)(0),

where we have emphasized that the integral includes the discontinuity. Thus, the
optimal continuation tends to the finite limit

lim
τ→∞

E(m)(τ) = E(m)(∞) = E(0) +G−1
(+)(0)p(+)(0),

which corresponds to (11.8.16) for viscoelastic solids.

From (13.2.9), we have, recalling (13.2.6)2,

ϕm(Et
r) =

1
2

∫ ∞

−∞
G(|τ − s|)D(m)(τ) · D(m)(s)dτds

=
1
2

∫ ∞

−∞
Gc(ω)D(m)

+ (ω) · D(m)
+ (ω)dω (13.2.18)

=
1

2π

∫ ∞

−∞
|p(+)(ω)|2dω,

where the last form follows from (13.2.17).
Finally, the minimum free energy (13.2.8) is given by

ψm(ρ,Et
r) = φ(ρ) +

1
2π

∫ ∞

−∞
|p(+)(ω)|2dω. (13.2.19)

The integral term in relation (13.2.19) is the same as that in (13.1.29), as outlined in
Remark 13.2.5.
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Observe that
ϕm(Et

r) = ϕ̂m(γm), (13.2.20)

where γm is an element of Γ(m), defined in Remark 13.2.4, and ϕ̂m is a functional
of this quantity, by virtue of (13.2.4) and (13.2.9) and of the results expressed by
Proposition 13.2.3. Consequently, such an equivalence class γm can be represented
by the quantity p(+).

We recall the following theorem [100], which makes this idea precise.

Theorem 13.2.8. For every viscoelastic material with a symmetric relaxation func-
tion, a given relative strain history Et

r is equivalent to 0
† in the sense of (8.9.17)2,3 if

and only if the quantity p(+)(ω), defined by (13.2.16), is such that

p(+)(ω) = 0 ∀ω ∈ R.

A general proof of this result is given in Sect. 11.3. Theorem 13.2.8, with the expres-
sion (13.2.18) for ϕm(Et

r), allows us to introduce a norm in Γ(m) by means of

‖γm‖2 = ϕ̂m(γm).

Therefore, it follows that the minimum free energy (13.2.19) induces a norm in the
space of the minimal states Σ(m), defined as

‖σm‖2 = ψ̂(σm) = φ(ρ) + ϕ̂m(γm),

where σm = (σ, γm) and ψ̂(σm) = ψ(ρ,Et
r).

13.3 The Minimum Free Energy for Incompressible Fluids

We now consider the case of incompressible fluids that are discussed in Sect. 8.10.
Considering processes acting on states at time t, the Wiener–Hopf equation cor-
responding to (13.1.7) and (13.2.4) for the optimal process Ė(m)

t is given by (see
(13.2.5) and (13.2.6))

2
∫ ∞

0
μ(|τ − ξ|)Ė(m)

t (ξ)dξ = −It(τ,Et
r) ∀τ ∈ R+, (13.3.1)

where μ is defined by (8.10.2). Substituting (13.3.1) into (8.10.25), we obtain that
the maximum recoverable work, which is equal to the minimum free energy, is given
by (cf. (13.2.5))

ψm(t) =
∫ ∞

0

∫ ∞

0
μ(|τ − ξ|)Ė(m)

t (ξ) · Ė(m)
t (τ)dξdτ

=
1
π

∫ ∞

−∞
μc(ω)Ė(m)

t+ (ω) · Ė(m)
t+ (ω)dω.

The second relation follows as in (13.2.6) and earlier analogous cases. Consider the
function
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K(ω) = 2(ω2
0 + ω

2)μc(ω),

where ω0 is a fixed positive frequency. Since, by virtue of (C.2.17)1, K(ω) is not zero
for any real ω, including infinity, it can be factorized as follows (see Theorem 10.1.2):

K(ω) = K(+)(ω)K(−)(ω),

where the singularities and zeros of K(±) are in Ω(±), respectively. Thus, we have

2μc(ω) = μ(+)(ω)μ(−)(ω), (13.3.2)

where

μ(+)(ω) =
1

ω0 + iω
K(+)(ω), μ(−)(ω) =

1
ω0 − iω

K(−)(ω).

Proceeding as in Sect. 13.2.1, using (8.10.7) in the equivalent of (13.2.10), we obtain,
instead of (13.2.17),

Ė(m)
t+ (ω) =

1
μ(+)(ω)

pt(+)(ω).

The minimum free energy is given by

ψm(t) =
1

2π

∫ ∞

−∞
|pt(+)(ω)|2dω,

where

pt(z) =
1

2πi

∫ ∞

−∞

μ(+)(ω)Ėt
−(ω)

ω − z
dω, z ∈ Ω\R,

p(±)(ω) = lim
α→0∓

p(ω + iα),
(13.3.3)

and
2μ(+)(ω)Ėt

−(ω) = pt(−)(ω) − pt(+)(ω).

An alternative notation is now introduced. Referring to (13.2.12), we see also in the
present context that

Ėt
−(ω) =

∫ 0

−∞
Ėt(u)e−iωudu = iωEt

r+(ω). (13.3.4)

Relation (13.2.13) reduces in this case to

H(ω) = 2ω2μc(ω) = −2ωμ′s(ω) < 0 ∀ω ∈ R, (13.3.5)

where we have used (8.10.13). This function has an even signature, is analytic on the
real axis, and vanishes at the origin quadratically. It follows from (13.3.2) that (see
(13.2.15))

H(ω) = H+(ω)H−(ω), H+(ω) = iωμ(+)(ω), H−(ω) = −iωμ(−)(ω).

The quantity H+(ω) has no singularities or zeros in Ω(−) and is analytic in Ω−; sim-
ilarly, H−(ω) is analytic in Ω+ with no singularities or zeros in Ω(+). Observe that
(8.10.15) yields
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H(∞) = H+(∞)H−(∞) = −2μ′(0) > 0. (13.3.6)

Thus, from (13.3.3) and (13.3.4), we have

−pt(z) = 1
2πi

∫ ∞

−∞

H−(ω)Et
r+(ω)

ω − z
dω, z ∈ Ω\R,

pt±(ω) = − lim
α→0∓

pt(ω + iα),

H−(ω)Et
r+(ω) = pt−(ω) − pt+(ω),

(13.3.7)

and

ψm(t) =
1

2π

∫ ∞

−∞
|pt−(ω)|2dω. (13.3.8)

Comparing with (11.8.4), we see that the function pt in (13.3.3) is, as indicated in
Remark 13.2.5, the negative complex conjugate of that introduced in Chap. 11. The
latter corresponds to the quantity defined by (13.3.7)1. The expression for the rate of
dissipation is given by (11.8.13) and (11.8.14) for scalar H(ω).

13.3.1 The Minimum Free Energy in Terms of It

This topic, which is the analogue of that discussed in Sect. 12.2, is included here (but
not earlier in the chapter) because incompressible fluids provide a particularly simple
illustration of the technique. From Remark 4.2.11, we see that ψm can be considered
as a function of the minimal state. Therefore, it is natural to expect that it should be
expressible in terms of It, as in Sect. 12.2.

Let
Jt(s) = It(−s,Et

r) ∀s ≤ 0, (13.3.9)

where It is defined by (8.10.5). Thus,

Jt(s) = 2
∫ ∞

0
μ′(u − s)Et

r(u)du = −2
∫ ∞

0

∂

∂s
μ(|s − u|)Et

r(u)du ∀s ≤ 0.

This function can be extended to R by putting

Jt(τ) = It(−τ,Et
r) = −2

∫ ∞

0

∂

∂τ
μ(|τ − u|)Et

r(u)du ∀τ ∈ R.

Applying the convolution theorem, we obtain

JtF(ω) = −4i
ω
H(ω)Et

r+(ω),

by virtue of (13.3.5) and (C.1.6). We see that JtF(ω) decays like ω−3 at large ω,
because of the asymptotic behavior of H(ω), expressed by (13.3.6) and the fact that
Et
r+(ω) obeys (11.8.5). Let

Pt(ω) = −ω

4i
[H+(ω)]−1 JtF(ω) = H−(ω)Et

r+(ω). (13.3.10)
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We consider the function Πt(s), the Fourier transform of which is Pt(ω), i.e.,

Pt(ω) =
∫ ∞

−∞
Πt(s)e−iωsds.

From (13.3.7)3, it follows that

pt−(ω) =
∫ 0

−∞
Πt(s)e−iωsds, pt+(ω) = −

∫ ∞

0
Πt(s)e−iωsds, (13.3.11)

which is the analogue, in this context, of (12.2.9). We can write Pt(ω) as

Pt(ω) = −
{

[H+(ω)]−1

4iω−

} [
ω2JtF(ω)

]
, (13.3.12)

which is (13.3.10) multiplied and divided by (ω−)2. The latter quantity can be re-
placed by ω2 in the numerator. We observe that the two expressions in parenthe-
ses belong to L2(R) and that the singularities of [H+(ω)]−1 are in Ω(+). The inverse
Fourier transform of the first factor will be denoted by

M(s) =
1

2π

∫ ∞

−∞

[H+(ω)]−1

4iω− eiωsdω ∀s ∈ R. (13.3.13)

Also,

Jt(2)(s) = − 1
2π

∫ ∞

−∞
ω2JtF(ω)eiωsdω =

d2

ds2
Jt(s).

We note that the integrand in (13.3.13) has a quadratic singularity at the origin be-
cause of the factor ω contained in H+(ω). This becomes ω− to give the correct an-
alytic behavior of H+(ω). The singularity can be integrated to give a finite value.
Moreover, M(s) = 0∀s ∈ R−−. Thus, in (13.3.12), we have the product of two
Fourier transforms, which, by virtue of the convolution theorem (C.3.3), gives

Πt(s) =
∫ s

−∞
M(s − u)Jt(2)(u)du. (13.3.14)

Parseval’s formula (C.3.1), applied to the right of (13.3.8) and (13.3.11)1, yields

1
2π

∫ ∞

−∞
|pt−(ω)|2dω ≡ 1

2π

∫ ∞

−∞
pt−(ω) · pt−(ω)dω =

∫ 0

−∞
|Πt(s)|2ds.

Now, Jt(2)(s) contributes to pt−(ω), by means of (13.3.14), using (13.3.11)1, only for
nonpositive values of its argument. By the causal property of M(s), the upper limit
in (13.3.14) can be extended to zero. Thus, (13.3.8) becomes

ψm(t) =
∫ 0

−∞

[∫ 0

−∞
M(s − u)Jt(2)(u)du

]
·
[∫ 0

−∞
M(s − v)Jt(2)(v)dv

]
ds

=

∫ 0

−∞

∫ 0

−∞
L(u, v)Jt(2)(u) · Jt(2)(v)dudv,
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where

L(u, v) =
∫ 0

−∞
M(s − u)M(s − v)ds

=

∫ 0

max(u,v)
M(s − u)M(s − v)ds, ∀u, v ∈ R−−,

(13.3.15)

again by virtue of the causal property of M(s). We note that

L(u, v) = L(v, u) ∀u, v ∈ R−−

and, by virtue of (13.3.15)2,

L(u, 0) = L(0, v) = 0 ∀u, v ∈ R−−.

Moreover, since M ∈ L2(R+),

L(u,−∞) = L(−∞, v) = 0 ∀u, v ∈ R−−.

Finally, using (13.3.9), we have

ψm(t) =
∫ ∞

0

∫ ∞

0
K(ξ, η)It(2)(ξ,E

t
r) · It(2)(η,E

t
r)dξdη,

where

K(ξ, η) = L(−ξ,−η) =
∫ min(ξ,η)

0
M(ξ − ρ)M(η − ρ)dρ.

Remark 13.3.1. An explicit expression for the minimum free energy of incompress-
ible fluids associated with a discrete-spectrum model [8], that is, where the kernel μ
is expressed by a linear combination of strictly decaying exponentials,

2μ(t) =
n∑
i=1

μie
−αi t ∀t ≥ 0,

where n is a positive integer and μi, αi ∈ R++, i = 1, 2, . . . n, can be obtained by a
close analogy with the calculation in Sect. 11.9, replacing G(t) by 2μ(t) and putting
G∞ = 0. The fact that we are now dealing with tensor strain histories is a very minor
complication.

13.4 The Maximum Recoverable Work for Heat Conductors

To derive the expression for the maximum recoverable work, we consider the expres-
sion (9.3.13), taking ϑP(dP) = 0, so that
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W(σ(t), P) = −1
2
α0ϑ

2(t) + α′(0)
∫ ∞

0
ϑ2
P(τ)dτ

+
1
2

∫ ∞

0

∫ ∞

0
α′′(|τ − η|)ϑP(η)ϑP(τ)dηdτ

+
1
2

∫ ∞

0

∫ ∞

0
k(|τ − η|)gP(η) · gP(τ)dηdτ

+

∫ ∞

0
It(α)(τ, ϑ

t)ϑP(τ)dτ +
∫ ∞

0
It(k)(τ, g

t) · gP(τ)dτ.

(13.4.1)

Let P(m)(τ) = (ϑ̇(m)(τ), g(m)(τ)) be the optimal process, to which corresponds the
maximum recoverable work. We denote by ϑ(m) and g(m) the optimal future tempera-
ture and temperature gradient. To evaluate the maximum of −W(σ, P), let us consider
the ensuing fields expressed in terms of ϑ(m) and g(m) as follows:

ϑP(τ) = ϑ(m)(τ) + γϕ(τ), gP(τ) = g(m)(τ) + δe(τ) ∀τ ∈ R+,

where γ and δ are real parameters and ϕ and e are arbitrary smooth functions with
ϕ(0) = 0, e(0) = 0. Thus, we obtain

−W(σ, P)

= −W̃(ϑ(t), ϑt, gt; ϑ̇(m) + γϕ̇, g(m) + δe)

=
1
2
α0ϑ

2(t) − α′(0)
∫ ∞

0

{
[ϑ(m)(τ)]2 + 2ϑ(m)(τ)ϕ(τ)γ + ϕ2(τ)γ2

}
dτ

− 1
2

∫ ∞

0

∫ ∞

0
α′′(|τ − η|)

{
ϑ(m)(η)ϑ(m)(τ) + [ϑ(m)(η)ϕ(τ) + ϕ(η)ϑ(m)(τ)]γ

+ ϕ(η)ϕ(τ)γ2
}
dηdτ − 1

2

∫ ∞

0

∫ ∞

0
k(|τ − η|)

{
g(m)(η) · g(m)(τ)

+ [g(m)(η) · e(τ) + e(η) · g(m)(τ)]δ + e(η) · e(τ)δ2
}
dηdτ

−
∫ ∞

0
It(α)(τ, ϑ

t)[ϑ(m)(τ) + ϕ(τ)γ]dτ −
∫ ∞

0
It(k)(τ, g

t) · [g(m)(τ) + e(τ)δ]dτ.

Taking derivatives with respect to γ and δ gives

∂

∂γ
[−W(σ, P)]

∣∣∣∣∣
γ=0
= −2α′(0)

∫ ∞

0
ϑ(m)(τ)ϕ(τ)dτ

− 1
2

∫ ∞

0

∫ ∞

0
α′′(|τ − η|)[ϑ(m)(η)ϕ(τ) + ϕ(η)ϑ(m)(τ)]dηdτ

−
∫ ∞

0
It(α)(τ, ϑ

t)ϕ(τ)dτ = 0,

∂

∂δ
[−W(σ, P)]

∣∣∣∣∣
δ=0
= −1

2

∫ ∞

0

∫ ∞

0
k(|τ − η|)[g(m)(η) · e(τ)

+ e(η) · g(m)(τ)]dηdτ −
∫ ∞

0
It(k)(τ, g

t) · e(τ)dτ = 0.
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These relations can be written as∫ ∞

0
ϕ(τ)

[
−2α′(0)ϑ(m)(τ) −

∫ ∞

0
α′′(|τ − η|)ϑ(m)(η)dη − It(α)(τ, ϑ

t)

]
dτ = 0,

∫ ∞

0
e(τ) ·

[∫ ∞

0
k(|τ − η|)g(m)(η)dη + It(k)(τ, g

t)

]
dτ = 0.

Since ϕ and e are arbitrary, we have
∫ ∞

0
α′′(|τ − η|)ϑ(m)(η)dη + 2α′(0)ϑ(m)(τ) = It(α)(τ, ϑ

t),
∫ ∞

0
k(|τ − η|)g(m)(η)dη = −It(k)(τ, g

t) ∀τ ∈ R+.
(13.4.2)

This system is composed of two Wiener–Hopf integral equations, of the second and
of the first kind, respectively. They are solvable, by virtue of the thermodynamic
properties of the integral kernels and of certain factorization properties, as used in
earlier chapters. The solutions ϑ(m) and g(m) yield the maximum recoverable work. It
is of interest to recall Remark 9.3.1 in this context.

By substituting the expressions (13.4.2) of It(α) and It(k) into (13.4.1), we see that
the maximum recoverable work is given by

WR(σ) =
1
2
α0ϑ

2(t) + α′(0)
∫ ∞

0
[ϑ(m)(τ)]2dτ

+
1
2

∫ ∞

0

∫ ∞

0
α′′(|τ − η|)ϑ(m)(η)ϑ(m)(τ)dηdτ

+
1
2

∫ ∞

0

∫ ∞

0
k(|τ − η|)g(m)(η) · g(m)(τ)dηdτ.

Its form in the frequency domain can be derived (as noted in the context of (13.1.9)),
with the aid of (9.2.7)1, giving

WR(σ) =
1
2
α0ϑ

2(t) +
1

2π

∫ ∞

−∞
ωα′

s(ω)|ϑ(m)
+ (ω)|2dω + 1

2π

∫ ∞

−∞
kc(ω)|g(m)

+ (ω)|2dω.
(13.4.3)

13.4.1 The Minimum Free Energy for Heat Conductors

Let us identify ϑt and gt with their causal extensions to R, putting ϑt(s) = 0 and
gt(s) = 0∀s ∈ R−−; moreover, we extend the kernels α′′(s) and k′(s) to R−− as an
even function denoted by α′′(e)(s) and an odd function denoted by k′(o)(s), respec-
tively, i.e.,

α′′(e)(s) =

⎧⎪⎪⎨⎪⎪⎩
α′′(s) ∀s ≥ 0,

α′′(−s) ∀s < 0,
k′(o)(s) =

⎧⎪⎪⎨⎪⎪⎩
k′(s) ∀s ≥ 0,

−k′(−s) ∀s < 0.

These extensions allow us to write (9.3.14) as follows:
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It(α)(τ, ϑ
t) =

∫ ∞

−∞
α′′(e)(τ + ξ)ϑt(ξ)dξ,

It(k)(τ, g
t) = −

∫ ∞

−∞
k′(o)(τ + ξ)gt(ξ)dξ ∀τ ≥ 0.

(13.4.4)

Putting

It(n)

(α)(τ, ϑ
t) =

∫ ∞

−∞
α′′(e)(τ + ξ)ϑt(ξ)dξ,

It(n)

(k) (τ, g
t) = −

∫ ∞

−∞
k′(o)(τ + ξ)gt(ξ)dξ ∀τ < 0,

we can extend the functions in (13.4.4) to R:

It(R)

(α) (τ, ϑt) =
∫ ∞

−∞
α′′(e)(τ + ξ)ϑt(ξ)dξ =

⎧⎪⎪⎨⎪⎪⎩
It(α)(τ, ϑ

t) ∀τ ≥ 0,

It(n)

(a) (τ, ϑ
t) ∀τ < 0,

It(R)

(k) (τ, gt) = −
∫ ∞

−∞
k′(o)(τ + ξ)gt(ξ)dξ =

⎧⎪⎪⎨⎪⎪⎩
It(k)(τ, g

t) ∀τ ≥ 0,

It(n)

(k) (τ, g
t) ∀τ < 0.

(13.4.5)

Let ϑt
n(s) = ϑt(−s) and gtn(s) = gt(−s), defined for any s ≤ 0, be extended to R

by putting ϑt
n(s) = 0 and gtn(s) = 0∀s > 0. Their Fourier transforms are given by

ϑt
nF(ω) = ϑt

n−(ω) = ϑt
+(ω), gtnF(ω) = gtn−(ω) = gt+(ω).

We can now rewrite (13.4.5) in terms of these functions:

It(R)

(α) (τ, ϑt) =
∫ ∞

−∞
α′′(e)(τ − s)ϑt

n(s)ds,

It(R)

(k) (τ, gt) = −
∫ ∞

−∞
k′(o)(τ − s)gtn(s)ds.

The Fourier transforms of these relations are

It(R)

(α)F
(ω, ϑt) = −2α′′

c (ω)ϑt
nF(ω)

= −2[h(ω) − α′(0)]ϑt
+(ω), h(ω) = ωα′

s(ω), (13.4.6)

It(R)

(k)F
(ω, gt) = −2ik′s(ω)gtnF (ω) = 2iωkc(ω)gt+(ω),

by virtue of (9.2.7)1. The quantities kc(ω) and h(ω) are nonnegative by virtue of
(9.2.3)1 and (9.2.6). Therefore, they can be factorized in the form

h(ω) = h(+)(ω)h(−)(ω), kc(ω) = k(+)(ω)k(−)(ω), (13.4.7)

where h(+)(ω) has no singularities in Ω− or zeros in Ω(−), while h(−)(ω) is analytic in
Ω+ and has no zeros in Ω(+).

Use of the Plemelj formulas (Sect. B.2.1) yields
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1
2h(−)(ω)

It(R)

(α)F
(ω, ϑt) = ptα(−)(ω) − ptα(+)(ω),

1
2k(−)(ω)

It(R)

(k)F
(ω, gt) = ptk(−)(ω) − ptk(+)(ω),

with ptα(±)(ω) and ptk(±)(ω) defined by

ptα(z) =
1

2πi

∫ ∞

−∞

It(R)

(α)F
(ω, ϑt)/[2h(−)(ω)]

ω − z
dω,

ptα(±)(ω) = lim
α→0∓

ptα(ω + iα),

pt(k)(z) =
1

2πi

∫ ∞

−∞

It(R)

(k)F
(ω, gt)/[2k(−)(ω)]

ω − z
dω,

ptk(±)(ω) = lim
α→0∓

pt(k)(ω + iα).

Substituting (13.4.6)1,4 into these last two relations, respectively, and using
(13.4.7), we obtain

ptα(±)(ω) = − lim
z→ω∓

1
2πi

∫ ∞

−∞

h(+)(ω′)ϑt
+(ω′)

ω′ − z
dω′

+ lim
z→ω∓

α′(0)
2πi

∫ ∞

−∞

ϑt
+(ω′)/h(−)(ω′)

ω′ − z
dω′,

ptk(±)(ω) = lim
z→ω∓

1
2πi

∫ ∞

−∞

iω′k(+)(ω′)gt+(ω′)

ω′ − z
dω′,

from which

ptα(±)(ω) = lim
z→ω±

1
2πi

∫ ∞

−∞

h(−)(ω′)ϑt
+(ω′)

ω′ − z
dω′

− lim
z→ω±

α′(0)
2πi

∫ ∞

−∞

ϑt
+(ω′)/h(+)(ω′)

ω′ − z
dω′, (13.4.8)

pt(k)(±)(ω) = i lim
z→ω±

1
2πi

∫ ∞

−∞

ω′k(−)(ω′)gt+(ω′)

ω′ − z
dω′.

Since in the second integral of (13.4.8)1, ϑt
+(ω) and h(+)(ω) are analytic in Ω−, by

closing the contour on Ω(−), we see that this integral vanishes. Hence, (13.4.8)1 re-
duces to

ptα(±)(ω) = lim
z→ω±

1
2πi

∫ ∞

−∞

h(−)(ω′)ϑt
+(ω′)

ω′ − z
dω′.

We put
pt(α)(±)(ω) = ptα∓(ω), pt(k)(±)(ω) = iptk∓(ω).

Proceeding as in Sect. 13.2.1, we can solve the Wiener–Hopf equations (13.4.2) to
obtain
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ϑ(m)
− (ω) = ϑ(m)

+ (ω) = −
ptα−(ω)
h(−)(ω)

, g(m)
− (ω) = g(m)

+ (ω) = −
ptk−(ω)

k(−)(ω)
,

and (13.4.3) yields the required expression

ψm(t) =
1
2
α0ϑ

2(t) +
1

2π

∫ ∞

−∞
|ptα−(ω)|2dω + 1

2π

∫ ∞

−∞
|ptk−(ω)|2dω. (13.4.9)

The expression for the rate of dissipation corresponding to ψm is determined from
(9.3.1) and the first law (5.1.11), where the right-hand side of the latter is replaced
by w(t), so that we have

ψ̇m(t) + Dm(t) = ė(t)ϑ(t) − q(t) · g(t). (13.4.10)

Proceeding by analogy with the steps leading to (11.2.25), we obtain

Dm(t) = |Kα(t)|2 + |Kk(t)|2,

Kα(t) =
1

2π

∫ ∞

−∞
h(−)(ω)ϑt

+(ω)dω, (13.4.11)

Kk(t) =
1

2π

∫ ∞

−∞
ωk(−)(ω)ḡt+(ω)dω.

13.4.2 The Discrete-Spectrum Model for Heat Conductors

Let us assume for the kernel functions α and k the following form:

α(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α∞ −

n∑
i=1

hie−αi t ∀t ≥ 0,

0 ∀t < 0,
k(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n∑
i=1

gie−kit ∀t ≥ 0,

0 ∀t < 0,
(13.4.12)

where n is a positive integer, and the coefficients hi and gi, i = 1, 2, . . . , n, are assumed
to be positive as are the inverse decay times αi and ki, i = 1, 2, . . . , n, which we label
so that α j < α j+1 and k j < k j+1, j = 1, 2, . . . , n − 1. Note that the conditions (9.2.8)
and (9.2.9) and the scalar form of (9.2.5) are satisfied, since

α∞ − α(0) =
n∑
i=1

hi > 0, α′(0) =
n∑
i=1

αihi > 0, k′(0) = −
n∑
i=1

kigi < 0.

The kernel α(t) behaves like the creep function introduced in Sect. 8.5 for vis-
coelastic solids. This is a consequence of the observation in Remark 9.3.1. From
(13.4.12), we obtain

α′
+(ω) =

n∑
i=1

αihi
αi − iω

α2
i + ω

2
, k+(ω) =

n∑
i=1

gi
ki − iω

k2
i + ω

2
,

and
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α′
s(ω) = ω

n∑
i=1

αihi
α2
i + ω

2
, kc(ω) =

n∑
i=1

kigi
k2
i + ω

2
. (13.4.13)

Using (13.4.13)1, the quantity h defined by (13.4.6)3 becomes

h(ω) = ω2
n∑
i=1

αihi
ω2 + α2

i

≥ 0 ∀ω ∈ R, h(∞) =
n∑
i=1

αihi = α′(0) > 0.

The function f (z) = h(ω) with z = −ω2 has n simple poles at α2
i , i = 1, 2, . . . , n, and

n simple zeros at γ1 = 0 and γ2
j , j = 2, 3, . . . , n, such that

α2
1 < γ2

2 < α2
2 < · · · < α2

n−1 < γ2
n < α2

n.

Thus, we also have

h(ω) = h(∞)
n∏
i=1

⎧⎪⎨⎪⎩
γ2
i + ω

2

α2
i + ω

2

⎫⎪⎬⎪⎭ ,

with factorization (13.4.7)1 given by

h(−)(ω) = [h(∞)]1/2
n∏
i=1

{
ω + iγi
ω + iαi

}
, h(+)(ω) = [h(∞)]1/2

n∏
i=1

{
ω − iγi
ω − iαi

}
,

whence we also have

h(−)(ω) = [h(∞)]1/2

⎛⎜⎜⎜⎜⎜⎝1 + i
n∑
i=1

Ri

ω + iαi

⎞⎟⎟⎟⎟⎟⎠ , Ri = (γi − αi)
n∏

j=1, j�i

{
γ j − αi

α j − αi

}
.

Let us now consider the kernel k. Using (13.4.13)2, we introduce the function

Kk(ω) = ω2kc(ω) =
n∑
i=1

kigi
ω2

k2
i + ω

2
≥ 0 ∀ω ∈ R,

Kk(∞) = K∞ =

n∑
i=1

kigi > 0.

We can factorize Kk(ω) in the same way as h(ω), obtaining

Kk(ω) = K(+)(ω)K(−)(ω),

K(−)(ω) = K1/2
∞

n∏
i=1

{
ω + iνi
ω + iki

}
, K(+)(ω) = K(−)(ω),

where ν2
1 = 0 and ν2

j , j = 2, 3, . . . , n, denote the zeros of f (z) = K(ω) with z =

−ω2. The quantity ωk(−)(ω), which appears in (13.4.8)2, can be taken to be equal to
K(−)(ω). We put

ωk(−)(ω) = K1/2
∞

n∏
i=1

{
ω + iνi
ω + iki

}
= K1/2

∞

⎛⎜⎜⎜⎜⎜⎝1 + i
n∑
i=1

S i

ω + iki

⎞⎟⎟⎟⎟⎟⎠ ,
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where

S r = (νr − kr)
n∏

i=1,i�r

{
νi − kr
ki − kr

}
, r = 1, 2, . . . , n.

We obtain from (13.4.9) (cf. (11.9.14)) that

ψm(t) =
1
2
α0ϑ

2(t) +
1
2

∫ ∞

0

∫ ∞

0
2

⎡⎢⎢⎢⎢⎢⎢⎣h(∞)
n∑

r,l=1

RrRl

αr + αl
e−(αr s1+αl s2) ϑt(s1)ϑt(s2)

+K∞

n∑
r,l=1

S rS l

kr + kl
e−(kr s1+kl s2)gt(s1) · gt(s2)

⎤⎥⎥⎥⎥⎥⎥⎦ ds1ds2.

(13.4.14)

Using (13.4.14) in (13.4.10) (or (13.4.11) directly), we find that (cf. (11.9.16))

Dm(t) = h(∞)

⎡⎢⎢⎢⎢⎢⎣
∫ ∞

0

n∑
i=1

Rie
−αi sϑt

r(s)ds

⎤⎥⎥⎥⎥⎥⎦
2

+ K∞

⎡⎢⎢⎢⎢⎢⎣
∫ ∞

0

n∑
i=1

S ie
−ki sḡt(s)ds

⎤⎥⎥⎥⎥⎥⎦
2

.
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The Minimum Free Energy for a
Continuous-Spectrum Material

14.1 Introduction

We now examine how the formulas emerging from the methodology developed in
Chap. 11 apply to materials other than those exhibiting a discrete-spectrum response,
in particular for materials with a branch-cut-type singularity. We confine our consid-
erations to the case that the cut is on the imaginary axis. Such a material is said to
have a continuous-spectrum response, i.e., those materials for which the relaxation
function is given by an integral of a density function multiplying a strictly decaying
exponential. The results reported in this chapter were first presented in [94].

The methodology described in Chap. 11 involves factorizing the quantity H, de-
fined in general by (7.2.22), in order to solve the relevant variational problem or
the equivalent Wiener–Hopf equation for the optimal future continuation required to
determine the minimum free energy.

We know from Proposition 16.5.2 below that for materials with branch cuts, min-
imal states are singletons and the maximum free energy is the work function, though
this latter assertion is problematic because of Remark 18.2. In fact, we give a proof
of the singleton property in Sect. 14.6 for the special kinds of material considered in
this chapter, namely those with a single branch cut on the imaginary axis.

Another method was used in [42] for the discrete-spectrum case. This involved
making a natural assumption on the form of the optimal future continuation and solv-
ing algebraic equations for the various parameters. The need for factorization did not
arise. This method is also developed in the present chapter for continuous-spectrum
materials. The assumption involved in this case is also a natural one, namely that the
optimal future continuation has a singularity structure determined only by that of the
Fourier transform of the relaxation function derivative.

We consider only the scalar case and use the notation of mechanics. However, it
is emphasized again that the treatment applies equally to any scalar subspace of Γ,
with or without a nonzero equilibrium free energy.

© Springer Nature Switzerland AG 2021
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The layout of the chapter is as follows. In Sect. 14.2, fundamental relations are
summarized and continuous-spectrum materials introduced. The factorization proce-
dure is discussed in depth for the continuous-spectrum case in Sect. 14.3. The form
of the minimum free energy is derived in Sect. 14.4. The alternative approach re-
ferred to in the previous paragraph is discussed in detail in Sect. 14.5. The concept
of a minimal state for continuous-spectrum materials is explored in Sect. 14.6.

14.2 Continuous-Spectrum Materials

We consider a constitutive equation of the form

S (t) = S e(t) +
∫ ∞

0
G′ (s)Et

r(s)ds, (14.2.1)

which is a scalar version of (8.1.1). Let

F(ω) = G′
+(ω) =

∫ ∞

0
G′(s)e−iωsds = G′

c(ω) − iG′
s(ω).

The notation F is introduced to simplify later formulas. We shall require the property
of F that

lim
ω→∞

iωF(ω) = G′(0), (14.2.2)

which is a special case of (7.2.23). Properties of G′
s(ω) include the scalar version of

(8.1.18) and the oddness of sine transforms:

G′
s(ω) ≤ 0 ∀ω ∈ R++, G′

s(−ω) = −G′
s(ω) ∀ω ∈ R. (14.2.3)

The scalar version of (11.8.1)1 is given by

H(ω) =
ω

2i

[
F(ω) − F(ω)

]
= −ωG′

s(ω) = H(−ω) ≥ 0 ∀ω ∈ R,

H(ω) = H1(ω2),
(14.2.4)

where H1 is the function H expressed in terms of ω2, by virtue of the evenness
property and the analyticity of H(ω) on the real axis. It is assumed (see (7.2.20)) that
the behavior is in fact quadratic, i.e., H(ω)/ω2 tends to a finite nonzero quantity as
ω tends to zero. The singularities of H are the same as those of F in Ω(+) and of F in
Ω(−). Relation (11.8.2) reduces to

H∞ = lim
|ω|→∞

H(ω) = −G′(0) ≥ 0. (14.2.5)

We assume for present purposes that G′(0) is nonzero, so that H∞ is a finite positive
number. Then H(ω) ∈ R++ ∀ω ∈ R, ω � 0.

We adopt the following continuous-spectrum form for the relaxation function
derivative:

G′(t) =
∫ b

a
k(α)e−αtdα, t ∈ R+, b > a > 0. (14.2.6)
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It is assumed that k ∈ L1([a, b]). The upper limit b may be infinite. We take a > 0
because of the need to avoid singularities on the real axis. The Fourier transform of
(14.2.6) has the form

F(ω) =
∫ b

a

k(α)
α + iω

dα =
∫ ib

ia

k(−iu)
u − ω

du, ω ∈ R. (14.2.7)

This formula can be extended by analytic continuation to Ω, excluding singular
points (Sect. B.1.2). We restrict the density function k to be Hölder continuous on
(a, b), as defined by (B.2.3). It may be singular at the endpoints with a power less
than unity, as specified by (B.2.2). We assume that

k(α) ≤ 0, α ∈ [a, b].

This assumption is not essential but is the simplest that ensures compatibility with
thermodynamic constraint (14.2.3)1. Note that it renders G completely monotonic in
the sense discussed in [88], for example. Also, it is easily shown that F has no zeros
on the finite part of Ω\[ia, ib]. Taking the complex conjugate of (14.2.7), we have

F(ω) =
∫ b

a

k(α)
α − iω

dα =
∫ −ib

−ia

k(iu)
u − ω

du, ω ∈ R, (14.2.8)

which can similarly be continued into Ω.
The quantity F has a branch cut on [ia, ib] and F on [−ib,−ia]. As ω tends to iα,

where α ∈ R\[−b,−a], we have

F(iα) = F(−iα) =
∫ b

a

k(β)
β + α

dβ = K(α), (14.2.9)

while if α ∈ (a, b), we have, by virtue of the Plemelj formulas (B.2.6),

FR(iα) = R(α) + iI(α),

FL(iα) = R(α) − iI(α),
(14.2.10)

with

R(α) = P
∫ b

a

k(β)
β − α

dβ, I(α) = −πk(α) ≥ 0, (14.2.11)

where FR(iα) and FL(iα) are the limiting values of F(ω), approaching from the
right and the left, respectively, as one moves from ia to ib (FR corresponds to F−

in (B.2.6)). Similarly,

FR(−iα) = R(α) + iI(α) = FL(iα),

FL(−iα) = R(α) − iI(α) = FR(iα),
(14.2.12)

for α ∈ (a, b), where FR(−iα) and FL(−iα) are the limiting values of F(ω) from the
right and left, respectively, as one moves from −ia to −ib. The symbol P in (14.2.11)
indicates a principal value.

From (14.2.4), (14.2.7), and (14.2.8), we have
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H(ω) = −ω2
∫ b

a

k(α)
α2 + ω2

dα. (14.2.13)

Let us consider the behavior of F(ω) at the endpoints ia and ib for various limiting
behaviors of k(α) as α approaches a or b. If k(a) = 0, then F(ω) has a definite finite
nonzero limit as ω → ia. A similar statement applies to the limit ω → ib if k(b) = 0.
If

k(a) = ka < 0

and k is Hölder continuous near and at a, then F(ω) has a logarithmic singularity at
ω = ia. As ω approaches this endpoint along any path off [ia, ib], then by (B.2.7),

F(ω) = ka log
1

a + iω
+ F1(ω), (14.2.14)

where F1(a) is well defined. Similarly, by (B.2.8), if

k(b) = kb < 0

and k is Hölder continuous near and at b, then as ω approaches ib not along [ia, ib],
we have

F(ω) = −kb log
1

b + iω
+ F2(ω), (14.2.15)

where F2(b) is well defined. For points on (ia, ib), referring to (B.2.9) and (B.2.11),
we see that relations (14.2.14) and (14.2.15) are replaced by

R(α) →
⎧⎪⎪⎨⎪⎪⎩
ka log 1

α−a , α → ia+,

−kb log 1
b−α , α → ib−,

(14.2.16)

where R(α) is given by (14.2.11). If k(α) has dominant behavior as α → a+ along
(a, b) of the form

k(α) −→
α→a+

k1

(α − a)γ
, 0 < γ < 1, k1 < 0,

then from (B.2.10), for ω � (ia, ib),

F(ω) −→
ω→ia

Ak1

(a + iω)γ
. (14.2.17)

The detailed form of A is given in [274]. A similar observation applies to the case that
k has such behavior at b. For points on (ia, ib), (B.2.11) gives that relation (14.2.17)
is replaced by

R(α) −→
α→a+

A1k1

(α − a)γ
, (14.2.18)

where again the form of A1 may be found in [274]. A similar observation applies at
b.
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14.3 Factorization of H for a Continuous-Spectrum Material

Relations (11.1.15) and (11.1.17) give, for the factors in (11.1.16),

H+(ω) =
ωh∞

ω − iω0
e−M+(ω), h∞ = H1/2

∞ , H−(ω) = H+(−ω) = H+(ω), (14.3.1)

where M+ is given by

M+(ω) = lim
β→0−

M(ω + iβ),

M(z) =
1

2πi

∫ ∞

−∞

log[T (ω′)H(ω′)]
ω′ − z

dω′, z ∈ Ω\R,
(14.3.2)

with

T (ω) =
ω2 + ω2

0

H∞ω2
, (14.3.3)

and we have
H(ω) = H+(ω)H−(ω), (14.3.4)

where H+ has no singularities or zeros in Ω(−) and is thus analytic in Ω−. Similarly,
H− is analytic in Ω+ with no zeros in Ω(+). Therefore, the singularities of F must all
occur in H+ and those of F in H−. There may be other singularities in H± that cancel
on multiplication.

Using (14.3.3) and (14.2.4)1, one can write

log[T (ω)H(ω)] = log

[
−iω − iω0

H∞
F(ω)

]
+ logU(ω),

U(ω) =
1
2

⎡⎢⎢⎢⎢⎣1 − F(ω)
F(ω)

⎤⎥⎥⎥⎥⎦
[
ω + iω0

ω

]
.

(14.3.5)

Referring to the discussion of (B.1.9), we choose the standard branch of the logarithm
function, namely that which vanishes for argument unity. The function U is complex
but nonzero on the real line and approaches unity for large ω, by virtue of (14.2.2);
similarly for the argument of the first term on the right of (14.3.5)1. This term has all
its singularities in Ω(+), so that if we close the integral in (14.3.2)2 on Ω(−), then by
Cauchy’s integral formula (B.1.2) for a clockwise contour, its contribution to M(z) is
simply the negative of itself. Thus, we have, from (14.3.1),

H+(ω) =
−iω
h∞

F(ω)e−N+(ω), ω ∈ R,

N+(ω) = lim
β→0−

N(ω + iβ), (14.3.6)

N(z) =
1

2πi

∫ ∞

−∞

logU(ω′)
ω′ − z

dω′, z ∈ Ω\R.

We deduce that
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H−(ω) =
iω
h∞

F(ω)e−N−(ω), ω ∈ R,

N−(ω) = lim
β→0−

N(ω − iβ), (14.3.7)

N(z) = − 1
2πi

∫ ∞

−∞

logU(ω′)
ω′ − z

dω′, z ∈ Ω\R.

These exhibit the correct behavior of H± at small ω, by inspection, and at large
ω, by virtue of (14.2.2) and (14.2.5). This behavior is anyway clear from (14.3.1).

There are two motivations for the extraction of the factor F in (14.3.6) and F
in (14.3.7), rather than using the form (14.3.1), which is the natural first approach.
Firstly, the elimination of the apparent singularity at ω = ±iω0 is straightforward, as
we will see after (14.3.8) below. If these factors are not extracted, the mechanism for
this elimination is not so clear.

Singularities in F (in this case, a branch cut) must also occur in H+, while those
of F must be in H− (though in fact, H± may have other singularities). In particular,
the singular behavior of F in Ω(+), given by (14.2.14), (14.2.15), and (14.2.17), must
occur also in H+, while a similar statement applies to H− and F. Such behavior
is difficult to show with the form (14.3.1) but is explicitly present in (14.3.6) and
(14.3.7).

The function U(iα), α > 0, in (14.3.5) is real for α � [a, b]. It is discontinuous
across [a, b]. We define, for α ∈ [a, b],

UR(iα) = lim
ω→ωR

U(ω), ωR = αeiπ/2,

UL(iα) = lim
ω→ωL

U(ω), ωL = αe−3iπ/2.

Since F is never infinite on Ω(+)\[ia, ib] and its imaginary part does not vanish
on this region, as noted earlier, the function U(ω) is nonzero on Ω(+)\[ia, ib] and
approaches unity as ω → ∞. Thus, logU(ω) has a branch cut on [ia, ib] through its
dependence on F(ω) and F(ω) and no other singularity in Ω(+). Referring to (B.1.10),
we see that the factor log[(ω+ iω0)/ω] is assigned a branch cut on [0,−iω0]. Moving
the line of integration in (14.3.6)3 to the infinite half-circle in Ω(+) while going around
the branch cut, we obtain, with a change of integration variable,

N(z) =
1

2πi

∫ b

a

Δ(α)
α + iz

dα,

Δ(α) = logUR(iα) − logUL(iα),

(14.3.8)

where the branch of the logarithm function is as specified earlier. Its imaginary part
lies in [−π, π]. Note that the factor [(ω + iω0)/ω] in U(ω) cancels out of Δ(α). It can
henceforth be omitted. Thus, we put

Y(ω) =
1
2

⎡⎢⎢⎢⎢⎣1 − F(ω)
F(ω)

⎤⎥⎥⎥⎥⎦ ,
Δ(α) = logYR(iα) − log YL(iα),

(14.3.9)
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where from (14.2.9) and (14.2.10), for α ∈ (a, b),

YR(iα) =
1
2

[
1 − K(α)

R(α) + iI(α)

]
= YL(iα),

YL(iα) =
1
2

[
1 − K(α)

R(α) − iI(α)

]
= YR(iα).

(14.3.10)

For future use, we note that

YR(−iα) = YR(iα), YL(−iα) = YL(iα), (14.3.11)

by virtue of (14.2.9), (14.2.10), (14.2.12), and (14.3.9). Also,

|YR(iα)|2 = |YL(iα)|2,

so that we can write

Δ(α) = 2iA(α), A(α) = argYR(iα), −π ≤ A(α) ≤ π, (14.3.12)

and

H+(ω) = − iω
h∞

F(ω)e−N
+(ω),

N+(ω) =
1
π

∫ b

a

A(α)
α + iω

dα,
(14.3.13)

while

H−(ω) =
iω
h∞

F(ω)e−N
−(ω),

N−(ω) =
1
π

∫ b

a

A(α)
α − iω

dα.
(14.3.14)

In the notation of (14.2.11), we have

V(α) = 2
{
[R(α)]2 + [I(α)]2

}
ReYR(iα) = [R(α)]2 + [I(α)]2 − K(α)R(α),

where K(α), given by (14.2.9), is real and negative for α > −a. Also,

W(α) = 2
{
[R(α)]2 + [I(α)]2

}
ImYR(iα) = K(α)I(α) ≤ 0,

for α > −a, from which it follows that −π ≤ A(α) ≤ 0. Then,

A(α) =

⎧⎪⎪⎨⎪⎪⎩
−B(α), V(α) ≥ 0,

−π + B(α), V(α) < 0,

B(α) = arctan
∣∣∣∣∣W(α)
V(α)

∣∣∣∣∣ , 0 ≤ B(α) ≤ π

2
.

(14.3.15)

Some exploration of the sign of V is presented in [94].
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14.3.1 Properties of the Factorization Formulas

It is of interest to consider the limits of H±, given by (14.3.13) and (14.3.14), as ω
approaches the branch cuts on [ia, ib] and [−ib,−ia]. Consider (14.3.14) as ω → −iα,
α ∈ (a, b), from the left, i.e., from the fourth quadrant and from the right. Noting
(14.2.12)2 and (14.3.14), we obtain

H−L(−iα) =
α

h∞
[R(α) − iI(α)]P(α)e−iA(α) = H−R(−iα),

P(α) = exp

{
−1
π
P

∫ b

a

A(β)
β − α

dβ

}
,

(14.3.16)

where the Plemelj formulas (B.2.6) have been used. Also, from (14.2.9) and (14.3.13),

H+L(−iα) = − α

h∞
K(α)Q(α) = H+R(−iα),

Q(α) = exp

{
−1
π

∫ b

a

A(β)
β + α

dβ

}
.

(14.3.17)

Multiplying H±L together, we obtain the limit of H(ω) as ω → −iα, α ∈ (a, b),
namely

HL(−iα) = − α2

H∞
[R(α) − iI(α)]K(α)P(α)Q(α)e−iA(α). (14.3.18)

Also, from (14.2.4)1, (14.2.9), and (14.2.12), we have

HL(−iα) =
α

2
[R(α) − K(α) − iI(α)]. (14.3.19)

Equating the arguments of these two expressions for HL(−iα) gives

arg[R(α) − K(α) − iI(α)] = −A(α) + arg[R(α) − iI(α)], (14.3.20)

or, taking complex conjugates,

A(α) = arg

[
1 − K(α)

R(α) + iI(α)

]
,

which is of course simply (14.3.12)2. Equating the magnitudes of the two expressions
given by (14.3.18) and (14.3.19), we obtain

− 2αK(α)P(α)Q(α) = H∞

√
[R(α) − K(α)]2 + I2(α)

R2(α) + I2(α)
. (14.3.21)

With the aid of (14.3.20), we can write (14.3.16) in the form

H−L(−iα) =
α

h∞
[R(α) − K(α) − iI(α)]

√
R2(α) + I2(α)

(R(α) − K(α))2 + I2(α)
P(α)

= −h∞
2

R(α) − K(α) − iI(α)
K(α)Q(α)

.

(14.3.22)
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The second form is a consequence of (14.3.21). By virtue of (14.3.16)2, we see that

H−R(−iα) = −h∞
2

R(α) − K(α) + iI(α)
K(α)Q(α)

. (14.3.23)

Using (14.2.4)1 and (14.2.12), we see that

HR(−iα) =
α

2
[R(α) − K(α) + iI(α)] = HL(−iα), (14.3.24)

the last relation following from (14.3.19).
Finally, we observe that (14.2.4)1, (14.3.4), (14.3.13), and (14.3.14) give

Z(ω) =
H∞

2iω

[
1

F(ω)
− 1

F(ω)

]
= exp

[
−1
π

∫ b

a

A(α)dα
α + iω

− 1
π

∫ b

a

A(α)dα
α − iω

]
. (14.3.25)

Let us show this directly, noting that the left-hand side does not vanish at the origin
and is unity at infinity, by virtue of (14.2.2) and (14.2.5). Consider the contour C,
taken clockwise at infinity except that it excludes the positive imaginary axis above
ia and the negative imaginary axis below −ia. The quantity Z is finite and nonzero
within C. Then, we see that by Cauchy’s integral formula (B.1.2),

Z(ω) = exp

{
− 1

2πi

∫
C

log[Z(u)] du
u − ω

}
,

where ω is in the interior of C and

− 1
2πi

∫
C

log[Z(u)] du
u − ω

=
1

2πi

∫ ib

ia

log ZR(u) − logZL(u)
u − ω

du

+
1

2πi

∫ −ib

−ia

logZR(u) − log ZL(u)
u − ω

du

=
1

2πi

∫ b

a

logZR(iα) − logZL(iα)
α + iω

dα

+
1

2πi

∫ b

a

logZR(−iα) − logZL(−iα)
α − iω

dα.

Invoking an argument similar to that leading to (14.3.8) and (14.3.9), we have, from
(14.3.9)1 and (14.3.16)1,

Z(ω) =
H∞

iω
Y(ω)

F(ω)
= −H∞

iω
Y(ω)
F(ω)

, ω ∈ R,

by virtue of (14.2.9). On the cut in the upper half-plane, F is analytic and −F(iα)α =
−K(α)α > 0, so that we have

logZR(iα) − log ZL(iα) = log YR(iα) − logYL(iα) = 2iA(α).

On the cut in the lower half-plane where −F(−iα)α = −K(α)α > 0, one obtains
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logZR(−iα) − log ZL(−iα) = log YR(−iα) − log YL(−iα)

= log YR(iα) − logYL(iα) = 2iA(α),

where (14.3.11) has been used. Thus, (14.3.25) is true. This amounts to a verification
of (14.3.4).

14.4 The Minimum Free Energy

In the scalar case, (11.8.6) has the form

Et
m(ω) = −

pt−(ω)
H−(ω)

, (14.4.1)

where Et
m is the Fourier transform of the optimal future continuation and pt−(ω) is

the scalar version of one of the quantities defined by (11.8.4), given here by

pt−(ω) =
1

2πi

∫ ∞

−∞

H−(ω′)Et
r+(ω′)

ω′ − ω+
dω′.

Referring to (11.8.9) and (11.8.10), we see that the minimum free energy has the
form

ψm(t) = φ(t) +
1

2π

∫ ∞

−∞
H(ω)|Et

m(ω)|2 dω = φ(t) +
1

2π

∫ ∞

−∞
|pt−(ω)|2 dω. (14.4.2)

Note that pt− can be written as

pt−(ω) =
1

2π

∫ b

a

Δh(α)Et
r+(−iα)

α − iω
dα,

Δh(α) = −i[H−L(−iα) − H−R(−iα)],

(14.4.3)

by closing the contour on Ω(−) around the branch cut and changing variables. The
quantity H−L is given by (14.3.22) and H−R by (14.3.23). Thus, using (14.3.21), we
have

Δh(α) = −2α
h∞

I(α)P(α)

√
R2(α) + I2(α)

[R(α) − K(α)]2 + I2(α)

= h∞
I(α)

K(α)Q(α)
≤ 0, α ∈ [a, b].

(14.4.4)

The second form has the advantage that the need to evaluate a principal value integral
is avoided. The definitions of the various quantities are summarized for convenience
in Table 14.1. Explicit formulas for these quantities are given for various choices of
k in [94].

Using (14.4.2) and (14.4.3), we can write the minimum free energy in the form

ψm(t) = φ(t) +
1
2

∫ ∞

0

∫ ∞

0
Et
r(s)G12(s, u)Et

r(u)dsdu,
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Formula Equation reference

F(ω) =
∫ b

a
k(α)
α+iωdα, ω ∈ R (14.2.7)

K(α) =
∫ b

a
k(β)
β+α

dβ, α ∈ R\[−b,−a] (14.2.9)

R(α) = P
∫ b

a
k(β)
β−αdβ, I(α) = −πk(α), α ∈ (a, b) (14.2.11)

A(α) = arg
[
1 − K(α)

R(α)+iI(α)

]
, −π ≤ A(α) ≤ 0 (14.3.10), (14.3.12), (14.3.15)

P(α) = exp
[
− 1

π
P

∫ b

a
A(β)
β−α dβ

]
(14.3.16)

Q(α) = exp
[
− 1

π

∫ b

a
A(β)
β+α

dβ
]

(14.3.17)

Table 14.1. Definitions of the various quantities in the formula (14.4.4)

where

G12(s, u) =
1

2π2

∫ b

a

∫ b

a

Δh(α)e−αsΔh(β)e−βu

α + β
dαdβ,

and we understand the subscripts to mean differentiation with respect to the first and
second variables. It follows that

G(s, u) = G(∞,∞) +
1

2π2

∫ b

a

∫ b

a

Δh(α)e−αsΔh(β)e−βu

(α + β)αβ
dαdβ,

where
G(∞,∞) = G(s,∞) = G(∞, s), s ∈ R+, (14.4.5)

yielding G1(s,∞) = G2(∞, s) = 0. It is also required that (cf. (8.6.13))

G(s, 0) = G(0, s) = G(s), s ∈ R+. (14.4.6)

We deduce from (14.4.5) and (14.4.6) that

G(∞,∞) = G(∞) = G∞.

Observe that both G and G12 are positive quantities. To show that (14.4.6) holds,
observe that, for z ∈ Ω(+),

1
2πi

∫ ∞

−∞

H−(ω′)
(ω′ − z)ω′ dω

′ =
H−(z)
z
=

i
2π

∫ b

a

Δh(β)
(β − iz)β

dβ,

where the first relation is essentially a scalar version of (11.2.23) and the second
results in the same manner as (14.4.3), from the leftmost integral. It follows from
(14.3.17) and (11.1.17) extended to the complex plane (yielding H−(iα) = H+(−iα))
that

1
2π

∫ b

a

Δh(β)
(β + α)β

dβ =
1
h∞

K(α)Q(α).
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From (14.2.11)2, (14.4.4)2, and

G(s) = G∞ −
∫ b

a

k(α)
α

e−αsdα,

which follows from (14.2.6), we deduce that (14.4.6) holds.
The rate of dissipation associated with the minimum free energy is given by

(11.8.13), which, in this context, yields

Dm(t) =

[
1

2π

∫ ∞

−∞
H−(ω)Et

r+(ω)dω

]2

=

[
1

2π

∫ b

a
Δh(α)Et

r+(−iα)dα

]2

=

[
1

2π

∫ ∞

0

∫ b

a
Δh(α)Et

r(u)e−αudαdu

]2

≥ 0.

14.5 An Alternative Approach

Another approach to finding the minimum free energy of a continuous-spectrum ma-
terial is outlined in this section. Its most remarkable feature is that it does not require
explicit factorization of the function H. It was motivated initially by the method by
Breuer and Onat [42], who proposed an ansatz for the optimal continuation in the
discrete-spectrum case and solved the problem by this means. A similar ansatz can
be written down without difficulty for the continuous-spectrum case. However, it
turns out that no such explicit assumption is required.

We start from the scalar form of (11.2.26), the Wiener–Hopf equation for the
optimal future continuation, which we write in our present notation as

∫ ∞

−∞

∂

∂s
G(|s − u|)Et

r(u)du = R(u), s ∈ R, where R(s) = 0, s ∈ R−. (14.5.1)

The Fourier transform of (14.5.1) is the scalar version of (11.2.27):

2iH(ω)[Et
r+(ω) + Et

m(ω)] = ωR+(ω),

where Et
m is the Fourier transform of the optimal future continuation introduced in

(14.4.1) (which is not used here). It is analytic in Ω+. We absorb the factor 2i in R+
and seek not Et

m(ω) but
Ξt
m(ω) = iωF(ω)Et

m(ω), (14.5.2)

which is also analytic in Ω+. The reason for this change of unknown is that we
end up with formulas that are directly comparable with earlier results, in particu-
lar (14.4.1), based on the factorization of H with factors F and F extracted, as in
(14.3.6), (14.3.7), and later formulas.

Thus, recalling (14.2.4), we consider the relation
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H(ω)

[
Et
r+(ω) +

Ξt
m(ω)

iωF(ω)

]
= H(ω)Et

r+(ω) + Y(ω)Ξt
m(ω) = R+(ω),

where Y is defined by (14.3.9). We consider the discontinuity of both sides across
the cut (−ib,−ia). The quantities Et

r+ and R+ are analytic in Ω− and therefore have
no discontinuity across the cut. Using (14.3.19) and (14.3.24), we obtain

YL(−iα)Ξt
L(−iα) − YR(−iα)Ξt

R(−iα) =

⎧⎪⎪⎨⎪⎪⎩
iαI(α)Et

r+(−iα), α ∈ (a, b),

0, α � (a, b),
(14.5.3)

where Ξt
L and Ξt

R are the limits of Ξt
m on [−ib,−ia] from the left and right, respec-

tively. If it were assumed that Ξt
m could be written as a Cauchy integral of the form

(B.2.1) over [−ib,−ia], which amounts to the continuous version of the Breuer–Onat
ansatz, then (14.5.3) could be put in the form of a singular integral equation. As re-
marked earlier, this is unnecessary. The only and very natural assumption needed is
that the only singularity of Et

m and therefore Ξt
m is a branch cut on [−ib,−ia]. Note

that

Ξt
m(ω) ≈ 1

ω
(14.5.4)

for large frequencies, which follows from (14.2.2) and the behavior of Et
m in (14.5.2),

which can be deduced from (C.2.16). Relation (14.5.3) is a Hilbert problem, which
we can write in the form

Ξt+(α) = C1(α)Ξt−(α) +C2(α),

Ξt+(α) = Ξt
L(−iα), Ξt−(α) = Ξt

R(−iα),

C1(α) =
YR(−iα)

YL(−iα)
, C2(α) =

iαI(α)Er+(−iα)

YL(−iα)
.

(14.5.5)

Note that from (14.3.11),
C1(a) = C1(b) = 1. (14.5.6)

This is clear for singular endpoints as given by (14.2.16) and (14.2.18). For the non-
singular case, I(a) and I(b) vanish.

Equation (14.5.5) will now be solved for Ξt(z) = Ξt
m(−iz), which has a branch

cut on [a, b] and where Ξt+(α) and Ξt−(α) are the limits of this function from the left
and the right of the cut. The solution is subject to (14.5.4) and to the condition that
it be bounded except possibly at a or b, where it may diverge logarithmically or as a
power less than unity. This latter property reflects the assumptions made relating to
the density function k. The general solution is [274, page 237]

Ξt(z) =
X(z)
2πi

∫ b

a

C2(β)
X+(β)(β − z)

dβ + X(z)P(z),

X(z) = Π(z)eN(iz),

N(iz) =
1

2πi

∫ b

a

logC1(λ)
λ − z

dλ,

Π(z) = (z − a)λ1 (z − b)λ2 ,
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where λ1 and λ2 are integers and P(z) is an arbitrary polynomial of degree not less
than κ − 1 with

κ = −λ1 − λ2.

Observe that by virtue of (14.3.11), N(iz) is the quantity defined by (14.3.8) and
(14.3.9). The quantity X+(β) is the limit of X(z) as z → β ∈ (a, b) from the posi-
tive half-plane. Near z = a, b, the quantity N is finite because of (14.5.6) and the
observation after (B.2.9), so that

X(z) ≈
⎧⎪⎪⎨⎪⎪⎩
K1(z − a)λ1 , z → a,

K2(z − b)λ2 , z → b,

where K1 and K2 are constants. To ensure no divergence in Ξt of order unity or
stronger, we must have the integers λ1, λ2 ≥ 0 and κ ≤ 0. For κ < 0, solutions
vanishing at infinity are possible only if restrictions are placed on C2 [274], which
depends only on given physical parameters. Thus, we must have κ = 0 and λ1 = λ2 =

0. The polynomial P is zero because of (14.5.4). Therefore,

X(z) = eN(iz)

and

Ξt(iω) = Ξt
m(ω) =

X(iω)
2πi

∫ b

a

C2(β)
X+(β)(β − iω)

dβ. (14.5.7)

Observe that from (14.3.14),

X(iω) =
iωF(ω)
h∞H−(ω)

(14.5.8)

and

X+(β) =
βFL(−iβ)

h∞H−L(−iβ)
=

1
P(β)

eiA(β), β ∈ (a, b), (14.5.9)

where (14.2.12) and (14.3.16) have been used. Now, from (14.3.10) and (14.3.11),

YL(−iβ) =
1
2

[
1 − K(β)

R(β) − iI(β)

]
=

1
2

√
[R(β) − K(β)]2 + I2(β)

R2(β) + I2(β)
e−iA(β),

by virtue of (14.3.20). Thus, from (14.5.5)5 and (14.4.4),

C2(β)
X+(β)

= 2iβP(β)I(β)

√
R2(β) + I2(β)

[R(β) − K(β)]2 + I2(β)
Et
r+(−iβ)

= −ih∞Δh(β)Et
r+(−iβ).

(14.5.10)

Then, we finally obtain, from (14.5.2), (14.5.7), and (14.5.10),

Et
m(ω) = − 1

2πH−(ω)

∫ b

a

Δh(β)Et
r+(−iβ)

β − iω
dβ,
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which agrees with (14.4.1) and (14.4.3).
Observe that the quantity X, given by (14.5.8), is closely related to the factor H−.

This is how the factors of H enter the formulas. The quantity X is the solution of the
homogeneous part of the Hilbert problem (14.5.5):

X+(α) = C1(α)X−(α). (14.5.11)

We note that the factorization problem of H can be expressed as a homogeneous
Hilbert problem on the real axis:

H−(w) = H(ω)[H+(w)]−1.

It is straightforward to show that this is equivalent to (14.5.11), by taking the limit
of this relation on both sides of the branch cut on [−ib,−ia] in H− and H and using
(14.5.9).

14.6 Minimal States

Finally, let us explore the concept of minimal states in the context of continuous-
spectrum materials. Two viscoelastic states (Et

1, E1(t)) and (Et
2, E2(t)) are equivalent

or in the same minimal state if (see (7.4.3))

E1(t) = E2(t),
∫ ∞

0
G′(s + τ)

[
Et

1(s) − Et
2(s)

]
ds = 0 ∀ τ ≥ 0. (14.6.1)

Proposition 14.6.1. For the relaxation function derivative given by (14.2.6), where
k is negative on (a, b), except possibly at a finite number of isolated points, and for
histories with Et

+ analytic on R, the minimal states are singletons. In other words,
(Et, E(t)) is the minimal state.

Proof. We define (Et
d, Ed(t)) as

Ed(t) = E1(t) − E2(t),

Et
d(s) = Et

1(s) − Et
2(s), s ∈ R+.

Then (14.6.1) becomes

Ed(t) = 0,∫ ∞

0
G′(s + τ)Et

d(s)ds =
∫ b

a
k(α)e−ατEt

d+(−iα)dα = 0, ∀ τ ≥ 0.

The function

A(τ) =
∫ b

a
k(α)e−ατEt

d+(−iα)dα

can be analytically continued (Sect. B.1.2) to the complex τ plane. It is analytic (and
therefore zero) for Reτ > 0. Taking the inverse Laplace transform (see (C.2.5)), we
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deduce that k(α)Et
+(−iα) vanishes for α ∈ R+. Thus, since k(α) does not vanish for

α ∈ (a, b), except at most at a finite number of isolated points, we have

Et
d+(−iα) = 0,

over (a, b) or some open subinterval of this region, which in turn implies that Et
d+(ω)

vanishes in the region of analyticity connected to (−ib,−ia). This certainly includes
Ω− and in particular the real axis. We conclude that

Ed(t) = 0, Et
d(s) = 0, s ∈ R++.

�

A generalization of Proposition 14.6.1 is given by Proposition 16.5.2.



15

The Minimum Free Energy for a Finite-Memory
Material

15.1 Introduction

In this chapter, based on work reported in [111], we derive an expression for the mini-
mum free energy corresponding to a relaxation function with the special property that
its derivative is nonzero over only a finite interval of time. It will be seen that there
are special features associated with the analytic behavior of the frequency-space rep-
resentation of such relaxation functions that render this a nontrivial extension, with
unique features, of the general treatments presented in Chaps. 7 and 14. This prop-
erty of finite memory is of interest in the first instance because finite and infinite
memories are not necessarily experimentally distinguishable; also, the assumption
of infinite memory can lead to paradoxical results for certain problems.

Specifically, the problem of a viscoelastic membrane in a frictional medium [111]
illustrates that results running counter to physical intuition emerge from the assump-
tion of infinite memory. In fact, a result is quoted that shows that while (time) ex-
ponential decay in the displacement occurs in the elastic problem, this is not so in
the viscoelastic problem if the viscoelastic function does not decay exponentially.
One would expect that any viscoelastic function would simply enhance the elastic
exponential decay because of the dissipative effects associated with viscoelasticity.

In Sect. 15.2, it is shown that the singularity structure of the Fourier transform of
the relaxation function derivative is quite different from the infinite-memory case in
that it is an entire function with essential singularities of exponential type at infinity,
rather than poles and branch points generally in the finite complex plane, as is the
case for infinite-memory materials. The latter may of course include essential singu-
larities at infinity, though these have been excluded for simplicity from earlier (and
indeed later) chapters.

In Sect. 15.4, the crucial factorization required to determine the minimum free
energy is discussed for specific (step function) examples of finite-memory materials,
while explicit forms of the minimum free energy and the corresponding work func-
tion are given in Sect. 15.5 for two choices of finite-memory relaxation functions.

The scalar case is again dealt with in this chapter.
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In the examples considered, we find that the function H, while nonnegative, may
be zero for nonzero frequencies. This contradicts one of the assumptions of Theo-
rem 11.1.1, and in fact, we shall see that in one example, there is a lack of uniqueness
in the factorization.

15.2 Finite Memory

We adopt the constitutive equation (14.2.1). Consider the case that

G′(t) = 0, t > d > 0.

It will be assumed that
G′(d) � 0,

for reasons of simplicity. If G′(d) vanishes and G′′(d) � 0, the formulas given below
are altered slightly (Remark C.2.5). We have

G′
+(ω) =

∫ d

0
G′(s)e−iωs ds,

and the inverse relationship is

G′(s) =
1

2π

∫ ∞

−∞
G′
+(ω)eiωs dω.

The function e−iωb on Ω, where b > 0, diverges exponentially in Ω(+) as Im(ω) →
+∞. Similarly, eiωb, where b > 0, diverges exponentially in Ω(−) as Im(ω) → −∞.
The functions e±iωb decay exponentially as Imω → ±∞, respectively. As noted in
Sect. B.1.4, we shall refer to them as analytic in Ω(±).

From Proposition C.2.4, we conclude that G′
+ is an entire function with an essen-

tial singularity at infinity. Its dominant behavior is an exponential divergence given
by

G′
+(ω) −−−−−−−→

Imω→+∞
−G

′(d)
iω

e−iωd. (15.2.1)

Also, for large |Reω|,
G′
+(ω) ∼ G′(0)

iω

(
1 − e−iωd

)
, (15.2.2)

so that

G′
+(ω) −−−−−−−→

Imω→−∞

G′(0)
iω

.

The quantities of central interest are H, given by (14.2.4), and its factors H± defined
by (14.3.4). The function H has exponential divergences as Im(ω) approaches infinity
in both Ω(+) and Ω(−); the factor H+ has exponential divergences only in Ω(+) and H−
only in Ω(−). Indeed, using (15.2.1),
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H(ω) ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2
G′(d)e−iωd, Imω → +∞,

1
2
G′(d)eiωd, Imω → −∞,

(15.2.3)

so that
H+(ω) −−−−−−−→

Imω→+∞
Ae−iωd, H−(ω) −−−−−−−→

Imω→−∞
Aeiωd, (15.2.4)

where A is a constant. From (15.2.2), it follows that along the real axis or any axis
parallel to it,

lim
ω→∞

H(ω) = −G′(0)
(
1 − lim

ω→∞
cosωd

)
.

This limit does not exist. There is, however, no resultant singularity.
The factorization given by (11.1.15) is not useful in this case. Special techniques

must be employed, as outlined in Sect. 15.4.

15.3 The History Dependence of the Minimum Free Energy

The minimum free energy ψm(t) is given by (14.4.2) or the scalar version of (11.8.9)
with pt− (and pt+) defined by (11.8.4). If (recall (12.1.1)5)

Yt(s) =
1

2π

∫ ∞

−∞
H−(ω)Et

r+(ω)eiωs dω, (15.3.1)

then

H−(ω)Et
+(ω) =

∫ ∞

−∞
Yt(s)e−iωs dω = pt−(ω) − pt+(ω)

and, using (12.1.1) with (12.1.2),

pt+(ω) = −
∫ ∞

0
Yt(s)e−iωs ds, pt−(ω) =

∫ 0

−∞
Yt(s)e−iωs ds. (15.3.2)

One can deduce from (15.2.4)2 that Yt(s), given by (15.3.1), vanishes for s < −d
by closing the contour on Ω(−), recalling that H− has no singularities at finite points.
Therefore, (15.3.2)2 becomes

pt−(ω) =
∫ 0

−d
Yt(s)e−iωs ds. (15.3.3)

Proposition 15.3.1. For a material with finite memory of duration d, the minimum
free energy ψm(t) depends only on that part of the history for which G′ is nonzero,
i.e., Et

r(s), 0 ≤ s ≤ d, while the work function W(t) may depend on the entire history
of strain.



342 15 The Minimum Free Energy for a Finite-Memory Material

Proof. We have from (15.3.1) that

Yt(s) =
1

2π

∫ ∞

−∞
H−(ω)

∫ ∞

0
Et
r(u)eiω(s−u)dudω.

It follows from (15.2.4)2 that
∫ ∞

−∞
H−(ω)eiω(s−u)dω = 0 ∀ s + d < u,

so that

Yt(s) =
1

2π

∫ ∞

−∞
H−(ω)

∫ s+d

0
Et
r(u)eiω(s−u)dudω.

It is clear now that pt−(ω), given by (15.3.3), depends only on Et
r(s), 0 ≤ s ≤ d.

However, pt+(ω), given by (15.3.2)1, may depend on the entire history of strain. The
result follows from (14.4.2) and the scalar version of (11.8.8). �

A consequence of Proposition 15.3.1 is that a time-domain representation of the
minimum free energy, with history-dependent part given by (12.1.9), reduces to the
form

ψm(t) = φ(t) +
1
2

∫ d

0

∫ d

0
Et
r(s1)

∂2

∂s1∂s2
G(s1, s2)Et

r(s2)ds1ds2

rather than this expression with infinite integrations as in the general case.
The condition that a state (Et

1, E1(t)) is in the same minimal state as (Et, E(t)) in
a finite-memory material can be adapted from (14.6.1) to give

E1(t) = E(t),
∫ d−τ

0
G′(s + τ)

[
Et

1(s) − Et(s)
]
ds = 0 ∀ τ ∈ [0, d]. (15.3.4)

Thus, Et
1(s), s > d, can be chosen arbitrarily, so that the state is certainly nonsingle-

ton.

Remark 15.3.2. It is interesting to consider Proposition 15.3.1 against the back-
ground of this observation on minimal states. We see from (15.3.4) that a functional
of the minimal state can depend only on the history in the interval [0, d], since values
outside of this interval can be varied arbitrarily without altering the minimal state.
Thus, pt− and ψm must have this property, which is in effect Proposition 15.3.1.

15.4 Factorization of H(ω)

Let us now address the problem of factorization of H(ω) as given by (14.3.4) in the
finite-memory case, for specified forms of the relaxation function. It turns out that
progress on this issue is possible for step function choices of G′. Explicit factoriza-
tions seem not to be possible for more general and realistic relaxation functions.

Consider the ansatz
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H+(ω) = e−iωd/2 [H(ω)]1/2, H−(ω) = eiωd/2 [H(ω)]1/2, ω ∈ R, (15.4.1)

where [H(ω)]1/2 is assumed to be analytic at all finite points in Ω. We note that H
vanishes at ω = 0, where it has a quadratic zero that does not produce a branch point.
It is assumed that any other zero of H in Ω is of even power type. The relations in
(15.4.1) are consistent with (15.2.3) and (15.2.4).

Let us now look at specific cases. Consider first the choice

G′(t) =

⎧⎪⎪⎨⎪⎪⎩
−K0, 0 ≤ t < d,

0, t ≥ d,
(15.4.2)

where, referring to (8.1.4),

K0 =
G0 −G∞

d
> 0.

Then,

G′
+(ω) =

iK0

ω

(
1 − e−iωd

)
,

H(ω) = K0 (1 − cosωd) = 2K0 sin2 ωd
2
,

which has zeros at ωd = 2nπ for all integer values of n and is thus not positive
definite for nonzero ω. Also,

[H(ω)]1/2 =
√

2K0 sin
ωd
2
,

so that from (15.4.1),

H+(ω) =

√
K0

2

(
1 − e−iωd

)
,

H−(ω) =

√
K0

2

(
1 − eiωd

)
,

(15.4.3)

where a factor i has been omitted.
Relation (15.4.1) is not useful in the next example. Consider the case where

G′(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−K0, 0 ≤ t < d/2,

−K1, d/2 ≤ t < d,

0, t ≥ d,

0 < K1 < K0. (15.4.4)

We have that
K0 + K1

2
=

G0 −G∞

d

and

G′
+(ω) =

i
ω

[
K0 − (K0 − K1)e−iωd/2 − K1e

−iωd
]
.

It follows that
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H(ω) = K0 − (K0 − K1) cos
ωd
2

− K1 cosωd ≥ 0 ∀ω ∈ R,

which again vanishes for discrete nonzero values of ω obeying cos(ωd/2) = cos(ωd) =
1. We look for factors of the form

H+(ω) = b0 + b1e
−iωd/2 + b2e

−iωd,

H−(ω) = b0 + b1e
iωd/2 + b2e

iωd,

where b0, b1, and b2 are real. Using (14.3.4) and comparing coefficients give the
conditions

b2
0 + b

2
1 + b

2
2 = K0,

b1(b0 + b2) =
K1 − K0

2
,

b0b2 = −K1

2
,

(15.4.5)

with solution

b1 = ε1

√
K0 − K1

2
, ε1 = ±1,

b0 =
1
2

{
−b1 + ε2

√
b2

1 + 2K1

}
,

b2 =
1
2

{
−b1 − ε2

√
b2

1 + 2K1

}
,

ε2 = ±1.

(15.4.6)

Observe that
b0 + b1 + b2 = 0, (15.4.7)

as required for H± to have zeros at ω = 0. If we choose

K0 = 2K1,

then these reduce to

b1 = ε1

√
K0

2
,

b0 =

√
K0

4

(
−ε1 + ε2

√
5
)
,

b2 =

√
K0

4

(
−ε1 − ε2

√
5
)
.

(15.4.8)

Since H± are arbitrary up to a constant real phase factor, we choose ε1 = 1. However,
there remain two possible solutions, corresponding to an interchange of b0 and b2.
A choice will be made between these two possibilities below. This is the lack of
uniqueness of the factorization referred to in the introduction to this chapter.

Some discussion of more general step behavior in relaxation functions may be
found in [111].



15.5 Explicit Forms of the Minimum Free Energy 345

15.5 Explicit Forms of the Minimum Free Energy

For the relaxation function derivative given by (15.4.2), we have that the stress, given
by (14.2.1), has the form

S (t) = S e(t) − K0

∫ d

0
Et
r(s)ds = S e(t) − K0

∫ t

t−d
[E(v) − E(t)] dv,

and the work function is given by the scalar version of (11.8.3)1. Assuming that E(v)
vanishes at large negative v, we have the identities

∫ t

−∞

∫ u−c

u−d
(E(v) − E(u))Ė(u)dvdu

=

∫ t

−∞

∫ u−c

u−d
[E(v) − E(u)]

∂

∂u
[E(u) − E(v)]dvdu

= −1
2

∫ t

−∞

∫ u−c

u−d

∂

∂u
[E(v) − E(u)]2dvdu

= −1
2

∫ t

−∞

d
du

∫ u−c

u−d
[E(v) − E(u)]2dvdu

+
1
2

∫ t

−∞

{
[E(u − c) − E(u)]2 − [E(u − d) − E(u)]2

}
du

= −1
2

∫ t−d

t−c
[E(v) − E(t)]2dv

+
1
2

∫ t

∞

{
[E(u − c) − E(u)]2 − [E(u − d) − E(u)]2

}
du,

(15.5.1)

where c is a constant. We can show, putting c equal to zero, that

W(t) = φ(t) +
K0

2

∫ d

0
[Et

r(s)]
2ds +

K0

2

∫ ∞

0

[
Et
r(s + d) − Et

r(s)
]2

ds. (15.5.2)

Similarly, for G′ given by (15.4.4),

S (t) = S e(t) − K0

∫ d/2

0
Et
r(s)ds − K1

∫ d

d/2
Et
r(s)ds

= S e(t) − K0

∫ t

t−d/2
[E(u) − E(t)]du − K1

∫ t−d/2

t−d
[E(u) − E(t)] du.

Using (15.5.1) for c = 0 and c = d/2, we can show that the work function has the
form
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W(t) = φ(t) +
K0

2

∫ d/2

0

[
Et
r(s)

]2
ds +

K1

2

∫ d

d/2

[
Et
r(s)

]2
ds

+
K0 − K1

2

∫ ∞

0

[
Et
r(s) − Et

r

(
s +

d
2

)]2

ds

+
K1

2

∫ ∞

0

[
Et
r(s) − Et

r(s + d)
]2

ds

= φ(t) + K0

∫ ∞

0

[
Et
r(s)

]2
ds + (K1 − K0)

∫ ∞

0
Et
r(s)E

t
r

(
s +

d
2

)
ds

− K1

∫ ∞

0
Et
r(s)E

t
r(s + d)ds.

(15.5.3)

We now write down the form of the minimum free energy and associated quan-
tities for the explicit factorizations considered in Sect. 15.4. Consider first (15.4.2),
where the factors are given by (15.4.3). The quantity Yt, defined by (15.3.1), has the
form

Yt(s) =
1

2π

√
K0

2

∫ ∞

−∞

(
1 − eiωd

)
Et
r+(ω)eiωs dω =

√
K0

2

[
Et
c(s) − Et

c(s + d)
]
,

where Et
c is the function Et

r with Et
c(s) = 0, s < 0. This property can be demonstrated

by closing the contour of integration on Ω(−) for s < 0. From (15.3.3), we see that

pt−(ω) = −
√

K0

2

∫ 0

−d
Et
c(s + d)e−iωs ds = −

√
K0

2
eiωd

∫ d

0
Et
c(u)e−iωu du,

and, referring to (15.3.2)1,

pt+(ω) = −
√

K0

2

∫ ∞

0

[
Et
c(s) − Et

c(s + d)
]
e−iωs ds.

From Parseval’s formula (C.3.1) and (14.4.2)2, we see that

ψm(t) = φ(t) +
K0

2

∫ d

0

[
Et
c(s)

]2
ds

and
1

2π

∫ ∞

−∞
|pt+(ω)|2dω = K0

2

∫ ∞

0

[
Et
c(s) − Et

c(s + d)
]2

ds.

This is the total dissipation corresponding to the minimum free energy, as given by
the scalar version of (11.8.12). Differentiating it with respect to t gives the rate of
dissipation associated with the minimum free energy. We can switch to a derivative
with respect to s, using (5.1.14). Then the integration can be carried out to give

Dm(t) =
K0

2

[
Et
c(d)

]2
.
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This formula can also be derived using the scalar version of (11.8.13) and the obser-
vation that K(t) = Yt(0). The scalar version of (11.8.8) gives

W(t) = φ(t) +
1

2π

∫ ∞

−∞
[|pt−(ω)|2 + |pt+(ω)|2]dω, (15.5.4)

which yields an expression in agreement with (15.5.2), on noting that we can replace
Et
c by Et

r.
For the second case, where G′ is defined by (15.4.4), we have

Yt(s) =
1

2π

∫ ∞

−∞

(
b0 + b1e

iωd/2 + b2e
iωd

)
Et
r+(ω)eiωs dω

= b0E
t
c(s) + b1E

t
c

(
s +

d
2

)
+ b2E

t
c(s + d),

so that

pt−(ω) = b1

∫ 0

−d/2
Et
c

(
s +

d
2

)
e−iωs ds + b2

∫ 0

−d
Et
c(s + d)e−iωs ds,

and

pt+(ω) = −
∫ ∞

0

[
b0E

t
c(s) + b1E

t
c

(
s +

d
2

)
+ b2E

t
c(s + d)

]
e−iωs ds. (15.5.5)

Thus,

ψm(t) = φ(t) + b2
1

∫ d/2

0

[
Et
c(s)

]2
ds + b2

2

∫ d

0

[
Et
c(s)

]2
ds

+ 2b1b2

∫ d/2

0
Et
c(s)E

t
c

(
s +

d
2

)
ds

(15.5.6)

after changing variables in the integrations. Formula (15.5.3) can also be reproduced
from (15.5.4) and (15.5.5) with the aid of the conditions in (15.4.5). The second form
of (15.5.3) is best used for this purpose.

One can show as above that the rate of dissipation is

Dm(t) =

∣∣∣∣∣∣b1E
t
c

(
d
2

)
+ b2E

t
c(d)

∣∣∣∣∣∣
2

.

Relation (15.5.6) can be written in the form

ψm(t) = φ(t) + a1

∫ d/2

0

[
Et
c(s)

]2
ds + a2

∫ d

d/2

[
Et
c(s)

]2
ds,

− b1b2

∫ d/2

0

[
Et
c(s) − Et

c

(
s +

d
2

)]2

ds,

a1 = b2
0 − b1b2 =

K0

2
, a2 = b2

2 + b1b2 =
K1

2
.
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The last two relations may be verified by manipulating (15.4.5). The first relation can
be transformed into (15.5.6) by using in particular the fact that

b2
0 − b2

2 − 2b1b2 = b2
1,

which is a consequence of (15.4.7). We see therefore that the largest choice of b2

minimizes ψm and thus choose ε2 = −1 in (15.4.6). This is the choice referred to
after (15.4.8).

The results of this section are consistent with Proposition 15.3.1.



16

Free Energies for the Case of Isolated Singularities

We now focus on the case of materials characterized by memory kernels with only
isolated singularities in the frequency domain and derive explicit expressions for a
family of free energies, including the minimum free energy discussed in Chap. 11
and the maximum free energy. All of these will be shown to be functionals of the
minimal state.

We will briefly deal with the general case of isolated singularities here, where
poles can be of any finite order, as discussed in Sect. 7.3.1. The poles may be on the
positive imaginary axis or, if not on this axis, must occur in pairs that are mirror im-
ages in that axis. These restrictions are consequences of the reality condition (7.3.4).
The number of poles is taken to be finite. For such materials, any quantity of interest
in the frequency domain is a rational function of frequency and can be expressed as
a ratio of two polynomials. In principle, the general result can be obtained by first
writing down the formula for simple poles (poles of order 1) and then allowing zeros
and poles to coagulate, yielding the final form, though substantial algebra may be
involved. We therefore focus mainly on the simple pole case.

The treatment of materials with only simple poles is usually algebraically easier
than for those with higher order poles. Such simple poles correspond to decaying
exponentials in the time domain (see (7.3.2)). Materials with this type of singularity,
restricted to poles on the positive imaginary axis, corresponding to strictly decaying
exponentials (Sect. 7.3.1), are discrete-spectrum materials.

The developments in this chapter are based on [101, 110, 160, 161]. In the in-
terests of simplicity, certain results presented in this context, in the first edition, are
omitted.

Remark 16.0.1. In the light of the fact that on each eigenspace, the formulas are
given by the scalar version, we shall treat only the scalar case in this and some later
chapters. In order to use them in the tensor case, one simply attaches a subscript
k with values in the range 1, 2, . . . ,m to each field quantity and to all parameters,
both integer and continuous, where k refers to the particular eigenspace in question.

© Springer Nature Switzerland AG 2021
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The memory term of any free energy is given by the sum over all eigenspaces of the
formulas in each eigenspace.

We shall use the mechanics symbols E and T and the terms strain and stress to
represent the independent and dependent scalar fields, though emphasizing that these
can be any of the eigenvalues ofΛ or Σ. Indeed, similar results can be given with little
extra difficulty, for viscoelastic fluids, nonisothermal problems, electromagnetism,
nonsimple materials, etc. There is no connection between T and the quantity used
in Sect. 5.1.2 and later to indicate a time period. A typical eigenvalue of L′ will be
denoted by G′.

16.1 Constitutive Relations, Histories, and Free Energy
Properties for the Scalar Case

For convenience, the scalar version of certain tensor relations, derived earlier, will
now be recorded. Firstly, we consider the scalar version of certain formulae in
Sects. 5.1 and 7.1.1. To begin with, no restriction will be placed on the type of sin-
gularities in the frequency-domain memory function.

The current value of the strain function is E(t), while the strain history and rela-
tive history are given by

Et(s) = E(t − s), Et
r(s) = Et(s) − E(t), s ∈ R+. (16.1.1)

It is assumed here that
lim
s→∞

Et(s) = lim
u→−∞

E(u) = 0, (16.1.2)

which simplifies certain formulae. The state of the material, in the most basic sense,
is specified by (Et, E(t)) or (Et

r, E(t)). Another definition of state, corresponding to
that in Sect. 7.4, will be introduced in Sect. 16.5.1.

Let T (t) be the stress∗ at time t. Then the constitutive relations with linear mem-
ory terms have the equivalent forms

T (t) = Te(t) +
∫ ∞

0
G′(u)Et

r(u)du

= T0(t) +
∫ ∞

0
G′(u)Et(u)du

= Te(t) −G∞E(t) +
∫ ∞

0
G(u)Ėt(u)du

= Te(t) +
∫ ∞

0
G̃(u)Ėt(u)du,

T0(t) = Te(t) + (G0 −G∞)E(t),

G′(u) =
d
du

G(u), G̃(u) = G(u) −G∞,

Ėt(u) =
∂

∂t
Et(u) = − ∂

∂u
Et(u) = − ∂

∂u
Et
r(u), Ët(u) = − ∂

∂u
Ėt(u),

(16.1.3)

∗ This choice is more common than (14.2.1) in a linear context.
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where Te(t) is the stress function for the equilibrium limit (Et
r(u) = 0, u ∈ R+), and

the quantity G(·) : R+ �→ R+ is the relaxation function of the material. We define

G∞ = G(∞), G0 = G(0), G̃(0) = G0 −G∞ = G̃0. (16.1.4)

The assumption is made that

G̃, G′ ∈ L1(R+) ∩ L2(R+), (16.1.5)

which will be relevant in the context of taking the Fourier transform of these quanti-
ties. For a completely linear material, Te(t) is given by the form

Te(t) = G∞E(t). (16.1.6)

16.1.1 Frequency-Domain Quantities for the Scalar Case

The scalar versions of certain formulae in Sect. 7.2, together with some others, are
now listed. We have

G̃+(ω) =
∫ ∞

0
G̃(s)e−iωsds = G̃c(ω) − iG̃s(ω),

G′
+(ω) =

∫ ∞

0
G′(s)e−iωsds = G′

c(ω) − iG′
s(ω).

(16.1.7)

Applying a partial integration in (16.1.7)3 yields that

G′
+(ω) = −G̃0 + iωG̃+(ω), (16.1.8)

so that
G′

c(ω) = −G̃0 + ωG̃s(ω), G′
s(ω) = −ωG̃c(ω),

and
G0 +G

′
+(ω) = G∞ + iωG̃+(ω) =M+(ω), ω ∈ Ω−, (16.1.9)

where M+(ω) is the complex modulus of the material [167]. Its real and imaginary
parts for ω ∈ R are given by

M+(ω) = R(ω) + iI(ω),

R(ω) = G0 +G
′
c(ω) = G∞ + ωG̃s(ω),

I(ω) = −G′
s(ω) = ωG̃c(ω).

(16.1.10)

Note the properties of G̃+ and G′
+ that (see (C.2.16) and (C.2.17))

lim
ω→∞

iωG̃+(ω) = lim
ω→∞

ωG̃s(ω) = G̃0,

lim
ω→∞

iωG′
+(ω) = lim

ω→∞
ωG′

s(ω) = − lim
ω→∞

ω2G̃c(ω) = G′(0).
(16.1.11)

Further properties of G̃c(ω) and G′
s(ω) include (see (7.2.12))
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G̃c(ω) ≥ 0, G′
s(ω) ≤ 0 ∀ ω ∈ R++, (16.1.12)

which are consequences of the second law. We also have

G̃0 > 0, G∞ > 0,

the latter relation being true for a viscoelastic solid. The quantity H(ω) is defined by

H(ω) = −ωG′
s(ω) = ω2G̃c(ω) = ωI(ω) ≥ 0, ω ∈ R, (16.1.13)

where the inequality is a consequence of (16.1.12). From (16.1.13)2, it follows that
the quantity H(ω) goes to zero quadratically at the origin. Using (16.1.11)4,5 and
(16.1.13), one can show that

H∞ = lim
ω→∞

H(ω) = −G′(0) ≥ 0.

We assume for present purposes that G′(0) is nonzero so that H∞ is a finite positive
number. Then H(ω) ∈ R++ ∀ ω ∈ R, ω � 0. By virtue of the general theorem
for tensor quantities in Sect. 11.1 (and Sect. 11.1.1 for the scalar case), the quantity
H(ω) can always be expressed as the product of two factors

H(ω) = H+(ω)H−(ω), (16.1.14)

where H±(ω) are analytic on Ω∓, respectively. IfG(s), s ∈ R+, is extended to the even
function G(|s|) on R, then dG(|s|)/ds is an odd function with the Fourier transform
(see (13.1.19))

G′
F(ω) = −2iG′

s(ω) =
2i
ω
H(ω). (16.1.15)

We list here some scalar versions of relations involving histories in the frequency
domain, given in Sect. 7.2.3.

The Fourier transform of Et(s) and Et
r(s), given by (16.1.1) for s ∈ R+, is denoted

by Et
+(ω) and Et

r+(ω). These have the same analyticity properties as G̃+(ω). However,
Et
r(s) does not have the property (16.1.5), so that Et

r+(ω) must be defined with care
(Sect. C.2.3). For a constant history, Et(s) = E(t), s ∈ R+, we have

Et
+(ω) =

E(t)
iω− ,

where the notation ω− (and ω+) is defined in Sect. C.2.3. Thus, we have

Et
r+(ω) = Et

+(ω) − E(t)
iω− . (16.1.16)

Also,
d
dt
Et
+(ω) = Ėt

+(ω) = −iωEt
+(ω) + E(t) = −iωEt

r+(ω), (16.1.17)

and
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d
dt
Ėt
+(ω) = −iωĖt

+(ω) + Ė(t),

d
dt
Et
r+(ω) = Ėt

r+(ω) = −iωEt
r+(ω) − Ė(t)

iω− .

(16.1.18)

Similarly to (16.1.11), we have, for large ω,

Et
+(ω) ∼ E(t)

iω
, Et

r+(ω) ∼ A(t)

ω2
, (16.1.19)

where A(t) is independent of ω. Also, from (16.1.17),

Ėt
+(ω) ∼ A(t)

iω
, (16.1.20)

for large ω. Relation (16.1.17) is convenient for converting formulae from those in
terms of Et

r+(ω) to equivalent expressions in terms of Ėt
+(ω) or vice versa.

Applying Parseval’s formula (C.3.1) to (16.1.3)1,4, we obtain

T (t) = Te(t) +
1

2π

∫ ∞

−∞
G′
+(ω)Et

r+(ω) dω

= Te(t) +
1

2π

∫ ∞

−∞
G̃+(ω)Ėt

+(ω) dω.
(16.1.21)

The integral in these expressions must be real. This can be demonstrated by chang-
ing the integration variable from ω to −ω. Using (16.1.17), relation (16.1.21)1

can be shown to agree with (16.1.21)2 with the aid of (16.1.8) and the property∫ ∞
−∞ Et

r+(ω)dω = 0, which follows from Cauchy’s theorem (B.1.1).
The line of argument now followed is that described in Sect. 7.2.4, but with both

forms given in (16.1.21). If we replace G′
+(ω) in (16.1.21)1 by [G′

+(ω)+F(ω)] where
F(ω) is analytic on Ω− and goes to zero at large frequencies at least as ω−1, the
relationship still holds. A similar statement applies to (16.1.21)2. These follow by a
simple application of Cauchy’s theorem. In particular, we have

T (t) = Te(t) +
1

2π

∫ ∞

−∞
[G′
+(ω) + λ1G

′
+(ω)]Et

r+(ω)dω

= Te(t) +
1

2π

∫ ∞

−∞
[G̃+(ω) + λ2G̃+(ω)]Ėt

+(ω)dω,
(16.1.22)

where λ1 and λ2 are arbitrary complex constants. For λ1 = −1 and λ2 = 1, we have

T (t) = Te(t) +
1
πi

∫ ∞

−∞

H(ω)
ω

Et
r+(ω)dω

= Te(t) +
1
π

∫ ∞

−∞

H(ω)

ω2
Ėt
+(ω)dω.

(16.1.23)

Using the same type of argument as for (16.1.22), one can also replace (16.1.21)2 by
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T (t) = Te(t) +
1

2π

∫ ∞

−∞
G̃+(ω)Ėt

F(ω) dω,

Et
F(ω) = Et

+(ω) + Et
−(ω),

(16.1.24)

where Et
−(ω) is the Fourier transform of a strain continuation into the future,

Et(s), s ∈ R−−. This quantity is arbitrary, subject to the requirement that the in-
tegral in (16.1.24) exists.

16.1.2 Defining Properties of Free Energies

The scalar version of the defining properties of a free energy, given in the general
tensor case in Sect. 5.1.1, is now stated, in a somewhat altered form.

We denote a particular free energy at time t by ψ(t) = ψ̃(Et, E(t)), where ψ̃ is
understood to be a functional of Et and a function of E(t). It is assumed that ψ is
differentiable with respect to E(t) and Fréchet differentiable with respect to Et. Then,

P1
∂

∂E(t)
ψ̃(Et, E(t)) =

∂

∂E(t)
ψ(t) = T (t). (16.1.25)

P2 For any history Et,

ψ̃(Et, E(t)) ≥ φ̃(E(t)) or ψ(t) ≥ φ(t), (16.1.26)

where φ(t) is the equilibrium value of the free energy ψ(t), defined as

φ̃(E(t)) = φ(t) = ψ̃(Et, E(t)), Et(s) = E(t) ∀ s ∈ R+. (16.1.27)

Thus, equality in (16.1.26) is achieved for equilibrium conditions. This property
combines P2 and P3 of Sect. 5.1.1.

P3 For any (Et, E(t)), we have the first law (balance of energy)

ψ̇(t) + D(t) = T (t)Ė(t), (16.1.28)

where D(t) ≥ 0 is the rate of dissipation of energy associated with ψ(t). This
non-negativity requirement on D(t) is an expression of the second law.

The basic condition is P3. Relations P1 and P2 follow from P3 [67].
Integrating (16.1.28) over (−∞, t] yields that

ψ(t) +D(t) = W(t), D(t) ≥ 0, (16.1.29)

where

W(t) =
∫ t

−∞
T (u)Ė(u)du, D(t) =

∫ t

−∞
D(u)du ≥ 0. (16.1.30)

We assume that these integrals are finite. The quantity W(t) is the work function,
while D(t) is the total dissipation resulting from the entire history of deformation of
the body.
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The quantity Te(t) in (16.1.3) is given by

Te(t) =
∂φ(t)
∂E(t)

. (16.1.31)

For a completely linear material,

φ̃(E(t)) = φl(t) =
1
2
G∞E

2(t). (16.1.32)

Observe that, in this case, (16.1.31) gives (16.1.6).

16.2 Materials with Only Isolated Singularities

Consider the kth time-independent eigenspace of L′ (Sect. 7.1.5), where the eigen-
value in the frequency domain is given by

L′k+(ω) =
S k∑
l=1

mlk∑
j=1

rl jk
(ζlk − ω) j

, ζlk ∈ Ω(+). (16.2.1)

To simplify notation (see Remark 16.0.1), the subscript k will be omitted, hence-
forth, so that we are dealing essentially with a scalar problem. Relation (16.2.1)
corresponds to the time-domain form

L′(s) = G′(s) =
S∑
l=1

gl(s)e
iζl s, gl(s) =

ml−1∑
j=0

clj s
j, clj−1 =

rl j(i) j

( j − 1)!
, (16.2.2)

where S is the number of points at which singularities occur and ml is the highest
order singularity at the point ζl. We have used (7.3.3). Individual values of rl j may
of course be zero, though not for j = ml, which defines the highest power at a given
singular point.

In order to satisfy (7.3.4), we write (16.2.1) in the form

G′
+(ω) =

I∑
l=1

ml∑
j=1

gl j
(ζl − ω) j

+

T∑
l=I+1

ml∑
j=1

⎧⎪⎪⎨⎪⎪⎩
rl j

(ζl − ω) j
+

rl j

(ζ l + ω) j

⎫⎪⎪⎬⎪⎪⎭ , ω ∈ R,

ζl = iαl, αl ∈ R++, l = 1, 2, . . . , I, gl j = (−1) jgl j,

ζl ∈ Ω(+), l = I + 1, . . . ,T, rl j = (−1) jrl j. (16.2.3)

Thus, there are I singularities on the imaginary axis and M = T − I pairs of singular-
ities at (ζl,−ζ l), l = I + 1, . . . ,T , so that S = I + 2M.

We consider H(ω) (see (16.1.13)) for ω ∈ R, given as follows:

H(ω) = H∞

∏Z
l=1 [(ω − ηl)(ω − ηl)]

nl

∏S
l=1

[
(ω − ζl)(ω − ζ l)

]ml
> 0 (16.2.4)
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with factors

H+(ω) = h∞

∏Z
l=1(ω − ηl)nl∏S
l=1(ω − ζl)ml

,

ζl ∈ Ω(+), n1 = 1, η1 = 0, ηl ∈ Ω(+), l = 2, 3, . . . ,Z,

(16.2.5)

H−(ω) = H+(ω),

where h∞ is real and h2
∞ = H∞. The quantity Z is the number of zeros of the function

H in Ω(+). Also,
Z∑
l=1

nl =
S∑
l=1

ml = q.

The reality condition (7.3.4) implies that G′
s(−ω) = −G′

s(ω) or H(−ω) = H(ω) for
real ω, which in turn is guaranteed if for each ζl and ηi off the imaginary axis, there
exist ζn and η j such that

ζ l = −ζn, ml = mn, ηi = −η j, ni = n j. (16.2.6)

This is a statement that each singularity and zero in a given half-plane must have a
corresponding singularity and zero each of which is a reflection of the first in the
imaginary axis. Note that

(ω − ζl)(ω − ζ l)(ω − ζn)(ω − ζn) = (ω2 + |ζl|2)2 − 4ω2(Reζl)
2,

(ω − ηi)(ω − ηi)(ω − η j)(ω − η j) = (ω2 + |ηi|2)2 − 4ω2(Reηi)
2,

if (16.2.6) holds. If a singularity or zero is on the imaginary axis, then property
(16.2.6) is satisfied for i = j and (ω− ζl)(ω− ζ l) = ω2 + |ζl|2, with a similar result for
zeros. These relations ensure that H(ω) is an even function. Also, observe that

(ω − ζ l)(ω − ζn) = (ω − ζ l)(ω + ζl) = (−ω − ζl)(−ω − ζn),

with a similar property applying to zeros. These yield the property

H±(ω) = H±(−ω).

The constitutive equation of a material is determined by H and the parameters
of the term without memory. In particular, for completely linear materials, these
parameters reduce to one, namely G∞.

The special case of a material where nl = ml = 1 for l = 1, 2, . . . ,Z and S = Z is
of particular interest. It will be described as a simple pole material. In this context,
we put

S = Z = n

and

G′(s) =
n∑
l=1

gle
iζl s, G′

+(ω) =
n∑
l=1

igl
ζl − w

. (16.2.7)



16.3 Free Energies as Discrete Quadratic Forms 357

The quantity G′
+(ω) can be expressed in the form (16.2.2), with ml = 1 and gl = cl0.

Strictly, the fact that all poles are simple does not necessarily imply that the zeros
will also be simple. However, there are always materials with only simple zeros as
close as desired to a material with higher powers, by virtue of continuity arguments.
For such simple pole materials,

H(ω) = H∞

∏n
l=1 (ω − ηl)(ω − ηl)∏n
l=1(ω − ζl)(ω − ζ l)

> 0, (16.2.8)

with factors

H+(ω) = h∞

∏n
l=1(ω − ηl)∏n
l=1(ω − ζl)

,

ζl ∈ Ω(+), η1 = 0, ηl ∈ Ω(+), l = 2, 3, . . . , n,

(16.2.9)

H−(ω) = H+(ω).

Note that, starting with a simple pole material characterized by H in the form
(16.2.8), we can modify this into the form describing a general material with iso-
lated singularities, namely (16.2.4), by merging singularities and zeros. Thus, the
simple pole case is completely general, at least in principle. A special case of a sim-
ple pole materials is a discrete-spectrum material, where the poles and zeros are on
the positive imaginary axis. This category was used in various contexts in earlier
chapters, in particular in Sect. 11.9.

16.3 Free Energies as Discrete Quadratic Forms

In this section, we divert briefly to discuss the most general form of free energy that
is a functional of the minimal state, for materials with linear memory constitutive
relations characterized in the frequency domain by simple poles. The free energy
is expressed in terms of discrete quadratic forms of Et

r+, evaluated at the various
singularities.

From (16.2.7), replacing gl with cl, and the reality of G′, we have

G′(s) =
n∑
l=1

cleiζl s =
n∑
l=1

cle−iζl s

=
1
2

n∑
l=1

[
cleiζl s + cle−iζ l s

]
.

Thus, the requirement thatG′ be real means that if Reζl � 0, there must also be a term
with e−iζl s. If Reζl = 0, the two terms merge into one strictly decaying exponential.
We obtain from (16.1.3), (16.1.16), and (16.1.17) that
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T (t) = T e(t) +
n∑
l=1

clEt
r+(−ζl)

= T e(t) +
n∑
l=1

clEt
r+(ζl)

= T e(t) +
1
2

n∑
l=1

[
clEt

r+(−ζl) + clEt
r+(ζl)

]
,

Et
+(−ζl) = Et

+(ζl),
d
dt
Et
+(ζl) = −iζlEt

r+(ζl).

(16.3.1)

It follows from (7.4.3) that two states are equivalent if and only if the differences
between the current strains and histories, denoted by (Et

d, Ed(t)), have the following
properties, for a scalar theory:

Ed(t) = 0,
∫ ∞

0
G′(s + τ)Et

d(s)ds = 0, τ ∈ R+.

Now,

G′(s + τ) =
n∑
l=1

cleiζl(s+τ).

The arbitrariness of the factor eiζlτ allows us to put each individual term in the sum-
mation over l to zero. Therefore, the final conditions of equivalence are

Ed(t) = 0,
∫ ∞

0
eiζl sEt

d(s)ds = Et
d+(−ζl) = 0, l = 1, 2, . . . , n. (16.3.2)

Remark 16.3.1. These are necessary and sufficient conditions for equivalence. Thus,
the quantities

E(t), Et
+(−ζl), l = 1, 2, . . . , n,

uniquely define the minimal state for materials with only simple poles.

Define a vector e in Rn, with components

el(t) = iζlE
t
r+(−ζl), el(t) = −iζlEt

r+(ζl), l = 1, 2, . . . , n. (16.3.3)

Using (16.1.16), we see that

∂

∂E(t)
el =

∂

∂E(t)
el = 1, l = 1, 2, . . . , n. (16.3.4)

Consider the quantity

ψ(t) = φ(t) +
1
2
e∗Ce = φ(t) +

1
2
e · Ce, (16.3.5)

where φ(t) is the equilibrium free energy and C is a Hermitian (see (A.2.9)) positive
definite tensor with components Ckl, k, l = 1, 2, . . . , n. The quantity e∗ is the Hermi-
tian conjugate of the vector e; in other words, if e is a column vector, e∗ = e�, which
is a row vector. We write (16.3.5) in full as
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ψ(t) = φ(t) +
1
2

n∑
k=1

n∑
l=1

ekCklel.

The Hermitian property of Ckl gives the relation

Clk = Ckl. (16.3.6)

Clearly, ψ(t) has property P2, given by (16.1.26), of a free energy. For a stationary
history, Et(s) = E(t), s ∈ R+, yielding for ω ∈ Ω that Et

+(ω) = E(t)/(iω) so that
el(t) = 0, l = 1, 2, . . . , n. Therefore, ψ(t) obeys (16.1.27). To demonstrate property
P1, given by (16.1.25), we first note that

∂

∂E(t)
ψ(t) = T e(t) +

1
2

n∑
k=1

n∑
l=1

Cklel +
1
2

n∑
k=1

n∑
l=1

ekCkl, (16.3.7)

which follows from (16.3.4). The relationship (16.1.31) has been used. Comparing
(16.3.7) and (16.3.1)3, we see that

n∑
k=1

Ckl = −i c
l

ζl
, l = 1, 2, . . . , n,

n∑
l=1

Ckl =

n∑
l=1

Clk = i
ck

ζk
, k = 1, 2, . . . , n.

(16.3.8)

Using (16.1.18)3, we have

ėl(t) = iζlel(t) + Ė(t), ėl(t) = −iζlel(t) + Ė(t). (16.3.9)

Referring to (16.3.1), one can show that

ψ̇(t) + D(t) = T (t)Ė(t), D(t) =
1
2
e · Γe,

Γkl = i(ζk − ζl)Cnl, k, l = 1, 2, . . . , n,
(16.3.10)

where Γnl are the elements of the matrix Γ. The final requirement, given after
(16.1.28), is that D(t) ≥ 0, so that Γ will be assumed to be at least semidefinite.
Thus, under these constraints, the quantity ψ(t), given by (16.3.5), is a free energy.

Remark 16.3.2. It follows from (16.3.2), or more particularly Remark 16.3.1, that
free energies of the form (16.3.5), for a given history, are functions of the minimal
state. They manifestly obey (7.4.7) and therefore (7.4.6).

Remark 16.3.3. The set of quadratic free energies expressible in the form (16.3.5),
where C has the required positivity properties, is identical to the set of free energies
associated with the equivalence class containing (e, E(t)), which are functions of the
minimal state. This is clear from Remark 16.3.1. It is a convex set, by virtue of
Proposition 4.1.7.



360 16 Free Energies for the Case of Isolated Singularities

16.3.1 Discrete-Spectrum Materials

For the discrete-spectrum case discussed in, for example, Sect. 11.9, these formulas
simplify significantly. The results are obtained by replacing the singularity positions
ζl by iαl, l = 1, 2, . . . , n, where αl ∈ R++. Such materials have been studied by Graffi
and Fabrizio [175–177] and Fabrizio et al. [105].

Consider a material with relaxation function of the form (11.9.1). From this rela-
tion and (16.1.3)1, we have that

T (t) = Te(t) +
n∑
i=1

GiĖ
t
+(−iαi). (16.3.11)

As previously, two states are equivalent if and only if the difference between the
states has the properties

Ed(t) = 0, E(i)
d (t) =

∫ ∞

0
e−αi sEt

d(s)ds = Et
d+(−iαi) = 0,

i = 1, 2, . . . , n, αi ∈ R+.

The vector e in Rn, defined by (16.3.3), becomes

ei(t) = −αiE
t
r+(−iαi) = E(t) − αiE

t
+(−iαi) =

d
dt
Et
+(−iαi), i = 1, 2, . . . , n. (16.3.12)

The quantities Et
+(−iαi) are real. Consider the function

ψ(t) = φ(t) +
1
2
e · Ce, (16.3.13)

where φ(t) is the equilibrium free energy and C is a symmetric positive definite
matrix with components Ci j, i, j = 1, 2, . . . , n. The arguments after (16.3.6) apply,
with minor changes, to this special case. Condition (16.3.8) reduces to

n∑
j=1

Ci j = Gi, i = 1, 2, . . . , n, (16.3.14)

where the quantities Gi are the coefficients occurring in (11.9.1). With the aid of
(16.3.12) or by invoking (16.3.9), we obtain

ėi(t) = Ė(t) − αiei(t), i = 1, 2, . . . , n.

It is easy to show that

ψ̇(t) + D(t) = T (t)Ė(t),

D(t) =
1
2
e · Γe, Γi j = (αi + α j)Ci j,

(16.3.15)

where Γi j are the elements of the matrix Γ. The requirement in P3 that D(t) ≥ 0
implies that Γ must be at least positive semidefinite.

Relation (11.9.14)1 yields an explicit form for C corresponding to the minimum
free energy. Comparing this relation with (11.9.16)1, we see that (16.3.15)3 holds.

One can show that for the Dill free energy, C is diagonal [175].
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16.4 The Minimum and Related Free Energies

We return to the developments described in Sect. 16.2.
A much larger class of factorizations of H is now considered. These are obtained

by interchanging the corresponding zeros of H+ and H− (i.e., the complex conjugates
of each other), excluding of course the simple zero at the origin. Such interchanges
leave the singularity structure unchanged. There are

N = 2n−1

distinct factorizations of this kind, which we distinguish by the label f = 1, 2, . . . ,N.
In the case f = 1, no zeros are interchanged, and for f = N, all zeros are inter-
changed. For real ω, we have

H(ω) = H f
+(ω)H f

−(ω),

H f
+(ω) = h∞

∏n
l=1(ω − ηl)a

f
l (ω − ηl)

b f
l∏n

l=1(ω − ζl)
,

H f
−(ω) = H

f
+(ω),

a f
l + b

f
l = 1, l = 2, 3, . . . , n, a f

l , b
f
l ≥ 0.

(16.4.1)

The integers af
l and b f

l can take value 0 or 1. Note that the permutation f is com-

pletely specified by the (n − 1)-dimensional vector a f
l (or b f

l ), l = 2, 3, . . . , n.
We can consider the different factorizations in the following way. The quantity

Xl(ω) =
ω − ηl
ω − ηl

(16.4.2)

for real ω is a phase transformation. Then,

H f
+(ω) =

⎧⎪⎪⎨⎪⎪⎩
n∏
l=2

X
bf
l

l (ω)

⎫⎪⎪⎬⎪⎪⎭H+(ω).

The corresponding H f
− is obtained by taking the complex conjugate.

Note that if one of a pair of zeros related by (16.2.6) is interchanged but not the
other, then we no longer have the property

H
f
±(ω) = H f

±(−ω).

Remark 16.4.1. It will now be shown explicitly that to each factorization of H, there
corresponds a free energy, and moreover, this free energy is a functional of the min-
imal state.

Noting (11.2.8) and (11.2.9), we write

P( f t)(ω) = H f
−(ω)Et

r+(ω) = p( f t)
− (ω) − p( f t)

+ (ω), (16.4.3)
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where p( f t)
− (ω) is analytic in Ω+, going to zero at large ω as ω−1, while p( f t)

+ (ω) is
analytic in Ω− with similar large-ω behavior. They are given by (see (11.2.10))

p( f t)
± (ω) =

1
2πi

∫ ∞

−∞

P( f t)(ω′)
ω′ − ω∓ dω

′

=
1

2πi

∫ ∞

−∞

H f
−(ω′)Et

r+(ω′)
ω′ − ω∓ dω′.

(16.4.4)

The analyticity of these quantities on R follows by the argument leading up to Re-
mark B.2.2. They are defined over the entire complex plane by analytic continuation,
except at singularities (and in regions blocked by branch cuts, which are excluded in
the present context, unless otherwise stated).

We can show, using (16.1.17), that (cf. (11.2.22))

d
dt

p( f t)
+ (ω) = −iωp( f t)

+ (ω) − Kf (t),

d
dt

p( f t)
− (ω) = −iωp( f t)

− (ω) − Kf (t) −
H f

−(ω)Ė(t)
iω

,

(16.4.5)

where

Kf (t) =
1

2π

∫ ∞

−∞
H f

−(ω)Et
r+(ω)dω = lim

ω→∞
[−iωp f t

− (ω)]. (16.4.6)

Also, we have
lim
|ω|→∞

ωp( f t)
± (ω) = iK f (t),

1
2π

∫ ∞

−∞
p( f t)
± (ω)dω = ∓1

2
Kf (t),

(16.4.7)

by similar arguments to those yielding (11.2.24). Finally, we have (cf. (11.2.36) and
(11.2.37))

∂p( f t)
− (ω)
∂E(t)

= − 1
2πi

∫ ∞

−∞

H f
−(ω1)

iω−
1 (ω1 − ω+)

dω1 = −H f
−(ω)
iω

(16.4.8)

and
∂p( f t)

− (ω)
∂E(t)

=
H f
+(ω)
iω

. (16.4.9)

Let us define the quantity

ψ f (t) = φ(t) +
∫ ∞

−∞
|p( f t)

− (ω)|2dω, (16.4.10)

which will be shown to be the free energy corresponding to the factorization (16.4.1).
The factorizations will be assigned a code f in such a way that f = 1 corresponds
to the minimum free energy (no exchange of zeros) and f = N to the maximum free
energy, which is discussed in detail in Sect. 16.5. It is shown in Sect. 16.6 that the
total dissipation is given by
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D f (t) =
1

2π

∫ ∞

−∞
|p f t
+ (ω)|2 dω, (16.4.11)

and the associated rate of dissipation has the form

Df (t) = |Kf (t)|2, (16.4.12)

which can be proved by differentiating (16.4.11), using (16.4.5) and (16.4.7).
Having introduced in (16.4.1) a factorization such that the zeros of H f

± are not
necessarily in Ω±, we now generalize to allow the possibility of non-isolated (branch-
cut) singularities in H along with the isolated singularities and zeros. After factor-
ization, of course, the branch-cut singularities in H f

± must be in Ω(±), respectively.
We now show that p(ft)

− is a functional of the minimal state.

Lemma 16.4.2. For every material with linear memory, a given history Et is equiv-
alent to the zero history if and only if the quantity p( f t)

− related to Et, by (16.4.4), is
such that

p( f t)
− (ω) = 0 ∀ω ∈ R.

Proof. We wish to show that the quantity Ft(τ), τ ≥ 0, given by (11.3.1) and (11.3.3)
for the general tensor case, vanishes if and only if p( f t)

− (ω) = 0 for all ω ∈ R. The
steps leading from (11.3.4) to (11.3.6) go through for any factorization of H, so we
obtain

Ft(s) =
i
π

∫ ∞

−∞

H f
+(ω)
ω

p( f t)
− (ω)e−iωsdω. (16.4.13)

This gives immediately that Ft vanishes if p( f t)
− is zero for all ω ∈ R, which is one

of the conclusions sought. We now wish to show that if Ft(s) = 0, s ∈ R+, then p( f t)
−

vanishes. Noting (11.3.8), we see that Ft vanishing on R+ implies that

H f
+(ω)
ω

p( f t)
− (ω)

is analytic on Ω(−). This can be true only if H f
+(ω)/ω vanishes at each of the isolated

singularities of p( f t)
− in Ω(−). Thus, H f

+(ω) must vanish at these points. For each cut-
type singularity in p( f t)

− , we must have a compensating singularity of the same kind
in H f

+(ω)/ω. Since H f
+(ω)/ω is analytic in Ω(−), p( f t)

− cannot have cuts in this half-
plane. As for isolated singularities, the case that no permutation of zeros has taken
place ( f = 1) is covered by Theorem 11.3.1.

If permutations of zeros are allowed, then H f
+ has zeros in Ω(−). Consider the

definition of p( f t)
− , given by (16.4.4). Evaluating the integral by closing the contour

on Ω(−), referring to (B.1.15)3, shows that p( f t)
− may have singularities in Ω(−), where

H f
− has singularities, and these must be isolated, as concluded above. If a zero in H f

+

cancels a singularity in H f
−, then the zero and the singularity would cancel in H. In

other words, there would be no singularity or zero to begin with. Therefore, the only
option is that p( f t)

− is free of singularities in Ω(−) and, by Liouville’s theorem, must
be zero. �
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If p( f t)
− is a function of the minimal state, then in general p( f t)

+ = p( f t)
− − H f

−E
t
r+

will not be, because of the occurrence of the transformed history, which will not
necessarily vanish when the history is equivalent to the zero history.

Observe that by applying the argument that yields (16.4.13) (see also (11.2.38))
to (16.1.23)1, using (16.4.3), the quantity T , at time t, can be written as

T (t) = Te(t) +
1
πi

∫ ∞

−∞

H f
+(ω)
ω

p( f t)
− (ω)dω (16.4.14)

for each permutation f . All of these are of course equivalent.
These various formulae apply in particular to the case where no exchange of

zeros takes place, which is denoted by f = 1. In this case, the formulae in fact apply
to all materials, not just those with isolated singularities. This may be seen from
Chaps. 11–14.

We can write ψ f (t) in the form [160] (cf. results in Sect. 11.2.5)

ψ f (t) = φ(t) +
i

4π2

∫ ∞

−∞

∫ ∞

−∞

Et
r+(ω1)H f

+(ω1)H f
−(ω2)Et

r+(ω2)
ω+1 − ω−

2

dω1dω2. (16.4.15)

The total dissipation, given by (16.4.11), can be shown by similar manipulations to
have the form

D f (t) = − i

4π2

∫ ∞

−∞

∫ ∞

−∞

E
t
r+(ω1)H f

+(ω1)H f
−(ω2)Et

r+(ω2)
ω−

1 − ω+2
dω1dω2, (16.4.16)

while Df (t), given by (16.4.12), can be expressed as

Df (t) =
1

4π2

∫ ∞

−∞
Et
r+(ω1)H f

+(ω1)H f
−(ω2)Et

r+(ω2)dω1dω2. (16.4.17)

All the free energies (16.4.15) are on the boundary of the convex set of free energies
associated with a given state of the material, since the rate of dissipation given by
(16.4.17) is a nonnegative rather than a positive definite functional. Also, they are
all functionals of the minimal state by virtue of Lemma 16.4.2. The factorization
(16.2.9) yields the minimum free energy ψm(t). Each exchange of zeros, starting
from these factors, will be shown to yield a free energy which is greater than or
equal to the previous quantity.

Note that there are several (indeed many, for a large number of isolated singular-
ities) different zero exchange pathways leading from the minimum to the maximum
free energy.

We can simplify (16.4.1) for discrete-spectrum materials. Let us introduce an
n-dimensional vector with components ε

f
i , i = 1, 2, . . . , n, where each ε

f
i can take

values ±1. We define ρ
f
i = ε

f
i γi and write

H f
+(ω) = h∞

n∏
i=1

⎧⎪⎪⎨⎪⎪⎩
ω − iρ f

i

ω − iαi

⎫⎪⎪⎬⎪⎪⎭ , H f
−(ω) = h∞

n∏
i=1

⎧⎪⎪⎨⎪⎪⎩
ω + iρ f

i

ω + iαi

⎫⎪⎪⎬⎪⎪⎭ . (16.4.18)
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The interchange of zeros means switching a given γi to −γi in both H+(ω) and H−(ω).
If no zeros are interchanged, we have the minimum free energy, for which the factors
are given by (11.9.5). The case where all the zeros are interchanged [110] is labeled
f = N. The resulting factors are given by

HN
+ (ω) = h∞

n∏
i=1

{
ω + iγi
ω − iαi

}
, HN

− (ω) = h∞
n∏
i=1

{
ω − iγi
ω + iαi

}
. (16.4.19)

16.5 Equivalent States and the Maximum Free Energy

We consider the maximum free energy of a given state, defined as the minimum
energy required to achieve this state (for example, [75, 76, 101, 104, 110, 266]) from
an initial state (see Theorem 4.2.12), where this initial state is taken to be the zero
state.

If the minimal state σR is a singleton, then in the present context, there is no
nontrivial set over which the minimization can take place. There is only one state,
which defined by the given history, and the required work is the work function.

If, on the other hand, σR is not a singleton, then there will be a state σmin ∈ σR

that minimizes the required work, and this minimal work will be less than the work
function.

Thus, there are two distinct cases here: (1) the maximum free energy is equal
to the work function; this occurs when the set of minimal states, defined by the
equivalence conditions (7.4.3), is a singleton, and (2) the maximum free energy is
less than the work function, which is true in the case of materials for which the space
of minimal states contains more than one member.

There are problems with identifying the work function as the maximum free
energy, which are discussed in Sect. 18.2. These can be avoided by identifying the
maximum free energy as the limit of a sequence.

A difference between isolated and branch-cut singularities is that the former
always have infinite behavior associated with them, while the latter are character-
ized by generally finite discontinuities, though in fact, infinities may occur at branch
points and indeed on the cut. However, there is the following clear-cut distinction,
which is important in the present context.

Remark 16.5.1. If a function F : Ω �→ R has isolated singularities at a set of points,
then 1/F will have zeros at these points, while if F has a branch cut between two
branch points, then 1/F will also have a branch cut between these two branch points.
The converses of these two statements also hold.

We consider a material characterized by isolated singularities or branch cuts or
both and a factorization in which zeros, if present, may be interchanged. The notation
of (16.4.1)1 will be used.
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16.5.1 Minimal States

The concept of a minimal state, as discussed in Sect. 7.4, can be expressed for the
scalar model as follows: two viscoelastic states (Et

1, E1(t)), (Et
2, E2(t)) are equivalent

or in the same equivalence class or minimal state if

E1(t) = E2(t),∫ ∞

0
G′(s + τ)

[
Et

1(s) − Et
2(s)

]
ds = It(τ, Et

1) − It(τ, Et
2) = 0 ∀ τ ≥ 0,

It(τ, Et) =
∫ ∞

0
G′(s + τ)Et

r(s)ds =
∫ ∞

0
G̃(s + τ)Ėt(s)ds = It(τ).

(16.5.1)

The abbreviated notation It(τ) will be used henceforth. Note the property

lim
τ→∞

It(τ) = 0. (16.5.2)

It follows from (16.1.3)1 and (16.5.1) that

It(0) = T (t) − Te(t). (16.5.3)

A functional of (Et, E(t)) that yields the same value for all members of the same
minimal state is referred to as a functional of the minimal state, or a minimal state
variable, as outlined in Sect. 7.4. We will adopt the abbreviation FMS to indicate
such a functional. The quantity It(τ) is an FMS, in fact, the defining example of an
FMS.

For discrete-spectrum materials,

It(τ) =
n∑
i=1

GiĖ
t
+(−iαi)e

−αiτ,

which is consistent with (16.3.11) and (16.5.3). Various formulae relating to the func-
tional It are given in [163].

The condition that minimal states are nonsingleton is that the integral equation
∫ ∞

0
G′(s + τ)Et

d(s)ds = 0, τ ∈ R+, (16.5.4)

for Et
d(s) = Et

1(s) − Et
2(s), has nonzero solutions. The other requirement (16.5.1)1

will be enforced below (see (16.5.14)). Putting Et
d(s) = 0, s ∈ R−, and τ = −u, we

can write (16.5.4) as
∫ ∞

−∞

∂

∂u
G(|u − s|)Et

d(s)ds = 0, u ∈ R−. (16.5.5)

This is a Wiener–Hopf equation, which can be solved by a standard technique. We
put
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∫ ∞

−∞

∂

∂u
G(|u − s|)Et

d(s)ds =

⎧⎪⎪⎨⎪⎪⎩
J(u), u ∈ R++

0, u ∈ R−,
(16.5.6)

where J(u) is a quantity to be determined. Taking the Fourier transform of both sides,
we obtain, with the aid of the convolution theorem and (16.1.15),

2i
ω
H(ω)Et

d+(ω) = J+(ω). (16.5.7)

Using (16.4.1)1 and (16.4.3), we can write (16.5.7) in the form

2i
ω

{
H f
+(ω)

[
p f t
d−(ω) − p f t

d+(ω)
]}
= J+(ω), (16.5.8)

where the subscript d implies that Et
d+ is used in (16.4.3) and (16.4.4). The value of

the superscript f will be assigned below. Because p f t
− (ω) is an FMS (Lemma 16.4.2),

we have
p f t
d−(ω) = 0. (16.5.9)

It then follows from (16.5.8) that

p f t
d+(ω) = −ω

2i
J+(ω)

H f
+(ω)

. (16.5.10)

Using (16.5.10) in (16.5.7), we obtain

H(ω)Et
d+(ω) = −H f

+(ω)p f t
d+(ω), (16.5.11)

or

Et
d+(ω) = −

p f t
d+(ω)

H f
−(ω)

. (16.5.12)

Now, Et
d+, if it is nonzero, must be analytic in Ω−. Therefore, from Remark 16.5.1,

H f
− can have no branch-cut singularities, and we adopt the form (16.4.1)2 for H f

±. It
follows from (16.4.1)1 and (16.4.1)3 that H f

+ and H have the same property. Thus,
we have the following result.

Proposition 16.5.2. For a material such that G′
+ has no essential singularities, the

set of minimal states has more than one member only if G′
+ possesses no branch-cut

singularities.

In other words, G′
+ can have only isolated singularities.

Also from (16.5.12), the zeros of H f
−(ω) must be in Ω(+), which means that the

factorization must be associated with f = N, namely where all the zeros are inter-
changed.

Thus, if we can find a quantity Et
d+(ω) which satisfies (16.5.9), it satisfies

(16.5.11) and (16.5.12) by virtue of (16.4.4), applied to this history difference. Rela-
tion (16.5.11) is equivalent to (16.5.7), with J+(ω) determined by (16.5.10). There-
fore, a solution to (16.5.6) or (16.5.5) is provided by any choice of Et

d(s) where the
corresponding Et

d+(ω) satisfies (16.5.9). Now, from (16.4.4),
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pNtd−(ω) =
1

2πi

∫ ∞

−∞

HN
− (ω′)Et

d+(ω′)

ω′ − ω+
dω′ = 0. (16.5.13)

If there are non-isolated singularities in the material, the only solution is the trivial
one, Et

d+(ω) = 0. Thus, we can focus on the case of a material with only isolated
singularities.

16.5.1.1 Explicit Examples of Minimal States

The simplifying assumption will now be made that Et
d+(ω) is a rational function.

More generally, it could also have branch cuts in Ω(+). We confine the discussion to
discrete-spectrum materials.

At large ω, we must have

Et
d+(ω) ∼ 1

ω2
, (16.5.14)

by virtue of (16.1.19) and (16.5.1)1. If the zeros of Et
d+(ω) cancel the poles in HN

− (ω),
given by (16.4.19)2, then, by taking the contour around Ω(−), we see that (16.5.13) is
obeyed. Thus, nontrivial solutions to (16.5.7) are given by

Et
d+(ω) =

E0(t)
ω − iχ0

n∏
j=1

{
ω + iα j

ω − iχ j

}
1

ω − iχn+1
, (16.5.15)

where the constants χi, i = 0, 1, . . . , n + 1, indicate the positions of singularities
on the imaginary axis in Ω(+). These are arbitrary positive quantities, though they
may include some or all of the zeros of HN

− (ω), given by (16.4.19)2, if these are not
cancelled by some other means in (16.5.12). The factor E0(t), which determines the
time dependence of Et

d+(ω), is also arbitrary. We can write (16.5.15) in the form

Et
d+(ω) = −iE0(t)

n+1∑
i=0

Ai

ω − iχi
,

Ai =
χi + αi

χi − χ0

n∏
j=1
j�i

{
χi + α j

χi − χ j

}
1

χi − χn+1
, i = 1, 2, . . . , n,

A0 =

n∏
j=1

{
χ0 + α j

χ0 − χ j

}
1

χ0 − χn+1
,

An+1 =
1

χn+1 − χ0

n∏
j=1

{
χn+1 + α j

χn+1 − χ j

}
,

(16.5.16)

where, to satisfy (16.5.14), we must have

n+1∑
i=0

Ai = 0.
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Taking the inverse transform of (16.5.16)1, we obtain that

Et
d(s) = E0(t)

n+1∑
i=0

Aie
−χi s = Et

d(χ j, j = 0, 1, . . . , n + 1; s).

A given history Et
1(s) belongs to the minimal state with members

Et(χ j, j = 0, 1, . . . , n + 1; s) = Et
1(s) + Et

d(χ j, j = 0, 1, . . . , n + 1; s),

where the parameters χ j may take any positive value.
If (16.5.4) is true for G̃ given by (11.9.1), we must have

n+1∑
j=0

Aj

χ j + αi
= 0, i = 1, 2 . . . , n,

which is simply a statement that Et
d+(ω), given by (16.5.16)1, vanishes at ω equal to

each −iαi.

16.5.1.2 The Maximum Free Energy

We now seek the choice of state (E1(t), Et
r1) such that the work done to achieve this

state is least among members of the minimal state that has (Et
r, E(t)) as a member.

We have from (7.5.7)2 and (16.4.3), recalling also Proposition B.1.3 and (11.2.16),

W1(t) = φ(t) +
1

2π

∫ ∞

−∞
Et
r1+(ω)H(ω)Et

r1+(ω)dω

= φ(t) +
1

2π

∫ ∞

−∞

[
|p(Nt)

1− (ω)|2 + |p(Nt)
1+ (ω)|2

]
dω,

(16.5.17)

where

p(Nt)
1± (ω) =

1
2πi

∫ ∞

−∞

HN
− (ω′)Et

r1+(ω′)dω′

ω′ − ω∓ . (16.5.18)

Now, recalling (16.5.9), we see that p(Nt)
1− is fixed by virtue of the fact that it is equal

to p(Nt)
− , defined by (16.5.18), but with Et

r1+ replaced by Et
r+. However, p(Nt)

1+ can be
varied, and the choice that minimizes W1 is clearly

pNt)m+(ω) = 0, ω ∈ R,

where p(Nt)
m+ is the optimal choice, corresponding to an optimal relative history Et

m.
Noting that

p(Nt)
d+ (ω) = p(Nt)

m+ (ω) − p(Nt)
+ (ω) = −p(Nt)

+ (ω),

where p(Nt)
+ is given by (16.5.18) with Et

r1+ replaced by Et
r+, we see that (16.5.12)

gives
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Et
m+(ω) = Et

r+(ω) +
[
HN

− (ω)
]−1

p(Nt)
+ (ω)

= [HN
− (ω)]−1[p(Nt)

− (ω) − pNt)+ (ω) + p(Nt)
+ (ω)] (16.5.19)

=
[
HN

− (ω)
]−1

p(Nt)
− (ω),

with the help of the Plemelj formulas (B.2.14) applied to HN
− (ω)Et

r+(ω).

Proposition 16.5.4. For materials such that G′
F has only isolated singularities, the

maximum free energy is given by

ψM(t) = φ(t) +
1

2π

∫ ∞

−∞
|p(Nt)

− (ω)|2dω < W(t), (16.5.20)

and the Fourier-transformed optimal history associated with this quantity has the
form

Et
m+(ω) =

[
HN

− (ω)
]−1

p(Nt)
− (ω), (16.5.21)

where

p(Nt)
− (ω) =

1
2πi

∫ ∞

−∞

HN
− (ω′)Et

r+(ω′)dω′

ω′ − ω+
.

The associated rate of dissipation is given by

DM(t) = |KM(t)|2, KM(t) =
1

2π

∫ ∞

−∞
HN

− (ω)Et
r+(ω)dω. (16.5.22)

If G′
+ has branch-cut singularities, then the maximum free energy is equal to the work

function (but see Sect. 18.2).

Relation (16.5.21), which is the final form of (16.5.19), substituted into (16.5.17)1

with Et
r1+ replaced by Et

m+, yields (16.5.20). Just as for (11.2.16) and indeed
(16.5.17)2, we can write (cf. (11.2.20))

W(t) = φ(t) +
1

2π

∫ ∞

−∞

[
|p(Nt)

− (ω)|2 + |p(Nt)
+ (ω)|2

]
dω = ψM(t) +DM(t),

where

DM(t) =
1

2π

∫ ∞

−∞

∣∣∣p(Nt)
+ (ω)

∣∣∣2 dω,

which is the total dissipation up to time t associated with the maximum free energy.
The rate of dissipation (16.5.22) is found by differentiating DM(t) with respect to
time, using (16.4.5) and (16.4.7) for f = N.

Relation (16.5.22)1 confirms (16.1.28) or property P3 of the Graffi conditions
in Sect. 16.1.2. Property P2 follows immediately from (16.5.20), while P1 may be
demonstrated in a manner similar to that applied to (11.2.17) in Sect. 11.2.4, noting
(16.4.8) and (16.4.9).

The quantity ψM , given by (16.5.20), is the maximum in a family of free energies
introduced below in Sect. 16.4 that are functionals of the minimal state. As indicated
by (16.5.20), it is less than W(t).
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16.6 Scalar Product Notation for ψ f and Related Quantities as
Quadratic Functionals

A convenient and compact notation is now introduced and used to confirm that ψ f is
a free energy.

Based on (7.5.3) and (7.5.7), we define the scalar product for E1, E2 :

(E1, E2) =
1
2

∫ ∞

−∞

∫ ∞

−∞
G12(|s − u|)Et

1(u)Et
2(s)duds

=
1

2π

∫ ∞

−∞
H(ω)Et

1F(ω)Et
2F(ω)dω

= (E2, E1),

(16.6.1)

where

Et
F(ω) =

∫ ∞

−∞
e−iωsEt(s)ds = Et

+(ω) + Et
−(ω),

and (16.1.15) has been used. If quantities defined in frequency space are in parenthe-
ses, it is understood that the second form of (16.6.1) is to be used. The norm of E is
defined by

‖E‖2 = (E, E) = ‖EF‖2 = (EF , EF) ≥ 0.

Some formulae are expressed in terms of relative histories. The quantity ‖Er‖2 corre-
sponds to the integral terms in (7.5.3) or (7.5.7)2 if Et

r vanishes onR− or, equivalently,
if Et

r−(ω) is zero. We have in fact

W(t) = φ(t) + ‖Et
r‖2. (16.6.2)

It is also convenient to introduce a conventional scalar product

〈g, h〉 = 1
2π

∫ ∞

−∞
g(ω) · h(ω)dω

as well as (16.6.1). Observe that g and h are orthogonal in this scalar product under
conditions specified by Proposition B.1.3. We write

〈g, g〉 = ‖g‖2
L,

indicating the Lebesgue L2 norm. Note that, from (16.4.10),

ψ f (t) = φ(t) + ‖p( f t)
− ‖2

L. (16.6.3)

The Fourier transform of the relative optimal history/continuum is given by

Et
f (ω) = − p( f t)

− (ω)

H f
−(ω)

= Et
f+(ω) + Et

f−(ω). (16.6.4)

This quantity is a generalization to all f of the quantity given by (11.2.14). The
inverse Fourier transform of Et

f (ω), which we denote by Et
m(s), is nonzero on R± for

f = 2, 3, . . . ,N − 1. It is nonzero only on R− for f = 1 and on R+ for f = N.
Relation (16.6.3) can be put in the form

ψ f (t) = φ(t) + ‖Et
f ‖

2.
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16.6.1 Confirmation That ψ f Is a Free Energy

Let us now show that ψ f has the required properties of a free energy as listed in
Sect. 16.1.2. Properties P1 and P2 follow from (16.6.3); see (16.4.8) and (16.4.14).
Property P3 or (16.1.28) becomes in this context

T (t)Ė(t) = Ẇ(t) = ψ̇ f (t) + Df (t), Df (t) ≥ 0. (16.6.5)

Using the frequency-domain version of (16.6.2) and (16.4.3), we can write

W(t) = φ(t) + ‖p( f t)
− − p( f t)

+ ‖2
L

= φ(t) + ‖p( f t)
− ‖2

L + ‖p
( f t)
+ ‖2

L

= ψ f (t) + ‖p( f t)
+ ‖2

L,

where the orthogonality of pf t)
− , p( f t)

+ follows from Proposition B.1.3. We therefore
identify the total dissipation as (cf. (16.4.11))

D f (t) = ‖p( f t)
+ ‖2

L

and the rate if dissipation as (16.4.12) or

Df (t) =
d
dt
‖p( f t)
+ ‖2

L) = |Kf |2 ≥ 0. (16.6.6)

16.7 Asymptotic Behavior and Discontinuities

Let us denote the optimal history/continuation Et
m by E( f t)

o , and let us separate it into
history E( f t)

oh and continuation E( f t)
oc , defined by

E( f t)
oh = E( f t)

o , s ≥ 0,

E( f t)
oc = E( f t)

o , s < 0.

These quantities are the inverse Fourier transforms of Et
f+ and Et

f−, respectively,
which are defined by (16.6.4). Recalling (C.2.10) and (C.2.11), we write

E( f t)
oh (∞) = i lim

ω→0
ωEt

f+(ω),

E( f t)
oc (−∞) = −i lim

ω→0
ωEt

f−(ω).
(16.7.1)

Also, from (C.2.16),
E( f t)
oh (0+) = i lim

ω→∞
ωEt

f+(ω),

E( f t)
oc (0−) = −i lim

ω→∞
ωEt

f−(ω).
(16.7.2)

The quantities E( f t)
oh (∞) and E( f t)

oc (−∞) are generally nonzero. In fact, from (16.6.4)
and (16.7.1), it is clear that their difference is given by
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E( f t)
oh (∞) − E( f t)

oc (−∞) =
[
H( f )

1 (0)
]−1 1

2π

∫ ∞

−∞
H( f )

1 (ω)Et
r+(ω)dω,

H( f )
1 (ω) =

H f
−(ω)
ω

.

(16.7.3)

We deduce that

Et
f (ω) −→

ω→∞
−
Kf (t)

iωh∞
.

Relation (16.7.2) then gives

E( f t)
oh (0+) − E( f t)

oc (0−) = −
Kf (t)

h∞
. (16.7.4)

Remark 16.7.2. We see from (16.6.6) that the discontinuity at the origin is closely
related to the rate of dissipation Df (t).

In the case of the minimum free energy, E( f t)
oh (0+) is zero and we obtain (11.5.2),

identifying (−E( f t)
oc (0−)) as the optimal continuation at the origin. In the case of the

maximum free energy, E( f t)
oc (0−) is zero and there is a jump of magnitude Kf (t)/h∞ in

the optimal history at the origin, recalling that we are dealing with relative histories
and Et

r(s) vanishes at the origin. The result also follows from (16.5.21).
Equations (16.7.3) and (16.7.4) leave E( f t)

oh and E( f t)
oc arbitrary to within an addi-

tive constant, the same constant in each quantity, for the intermediate cases, though
not for the optimal continuation/history leading to the minimum and maximum free
energies.

16.8 Partial Orderings of the ψ f

We return to the discussion of the free energies ψ f . A partial ordering will be estab-
lished among these quantities. A special case of this result was first given in [110],
and the general derivation presented here is taken from [160].

Starting from ψm, one can show that interchanging one zero at a time, the result-
ing ψ f is not less than the previous one. This leads to a chain of inequalities up to
the maximum free energy ψM . We recall the quantity Xl(ω) given by (16.4.2). The
function

Il(ω1, ω2) =
Xl(ω1)
Xl(ω2)

=

(
ω1 − ηl
ω1 − ηl

) (
ω2 − ηl
ω2 − ηl

)
(16.8.1)

is the interchange operator, transferring ηl from H f
−(ω2) to H f

+(ω1) and ηl from
H f
+(ω1) to H f

−(ω2). It is required to show that

i
4π2

∫ ∞

−∞

Et
r+(ω1)H f

+(ω1)[Il(ω1, ω2) − 1] H f
−(ω2)Et

r+(ω2)
ω+1 − ω−

2

dω1dω2 ≥ 0. (16.8.2)

We have
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Il(ω1, ω2) − 1 = −2i
(Imηl)(ω1 − ω2)

(ω1 − ηl)(ω2 − ηl)
.

From (16.2.5), Imηl > 0 for all l, so that the integral in (16.8.2) becomes

Imηl

2π2

∣∣∣∣∣∣∣
∫ ∞

−∞

H f
−(ω)Et

r+(ω)
ω − ηl

dω

∣∣∣∣∣∣∣
2

> 0.

The first and subsequent choices of zeros exchanged determine a pathway of nonde-
creasing free energies, starting from the minimum free energy ψm and ending, when
all zeros have been exchanged, with the maximum free energy ψM (Sect. 16.5). If
there are p factors, excluding zero, then, we have p! such pathways.

16.9 Explicit Forms for ψ f

Expressions for p( f t)
± and Kf are now derived, in terms of the parameters of the

isolated singularities, that allow straightforward evaluation of ψ f and Df through
(16.6.3) and (16.6.6).

The quantities p( f t)
± (ω), given by (16.4.4), have the form

p( f t)
− (ω) =

n∑
l=1

Zl(ω,ω
′, ζl)

∣∣∣∣∣∣∣
ω′=ζl

,

Zl(ω,ω
′, ζl) =

⎡⎢⎢⎢⎢⎢⎣H
f
−(ω′)(ω′ − ζl)Et

r+(ω′)
ω − ω′

⎤⎥⎥⎥⎥⎥⎦ ,
p( f t)
+ (ω) = p( f t)

− (ω) − H f
−(ω)Et

+(ω),

(16.9.1)

as may be seen from (B.1.3) and by closing the contour on Ω(−), so that only the
singularities ξl of H f

−, all of which lie in this half-plane, are picked up. Observe that
p( f t)
− (ω) depends on Et

r only through the quantities Et
r+(ζl), so that it is a minimal

state variable by Remark 16.3.1 and indeed by Lemma 16.4.2.
The free energy ψ f (t), given by (16.6.3), has the form

ψ f (t) = φ(t) + i
n∑

k,l=1

⎧⎪⎪⎨⎪⎪⎩
(ω1 − ζk)(ω2 − ζl)At

f (ω1, ω2)

ω1 − ω2

⎫⎪⎪⎬⎪⎪⎭
∣∣∣∣∣∣∣ω1=ζn
ω2=ζl

, (16.9.2)

where
At

f (ω1, ω2) = Et
r+(ω1)H f

+(ω1)H f
−(ω2)Et

r+(ω2).

The quantity Kf (t), given by (16.4.5)3, is best evaluated using (16.4.7)1 and
(16.9.1) to give

Kf (t) = −i
n∑
l=1

[
H f

−(ω′)(ω′ − ζl)E
t
r+(ω′)

]∣∣∣∣∣∣∣
ω′=ζl

.
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Using (16.6.6)2, we obtain

Df (t) = |Kf (t)|2 =
n∑

k,l=1

{
(ω1 − ζk)(ω2 − ζl)A

t
f (ω1, ω2)

}∣∣∣∣∣∣∣ω1=ζn
ω2=ζl

. (16.9.3)

The quantity Kf is a linear function of Et
r+(ζl) and therefore of the vector elements

el j, defined by (16.3.3)3. This means that Df will be a quadratic form as in (16.3.10),
where Γ is positive semidefinite rather than strictly positive definite (Remark A.2.1).

Recalling Proposition 4.1.7, we see that the N free energies defined by different
factorizations are all in a convex set F.

The boundary of the convex set F will be indicated by the breakdown in the pos-
itive definiteness of either C or Γ or both. Thus, we are on the boundary of F in
the sense that the positive definiteness of Γ f is breaking down to positive semidefi-
niteness. In this sense, the free energies formed from the different factorizations are
extrema, which has of course been well recognized with regard to the minimum and
maximum free energies.

16.9.1 Explicit Forms of the Minimum and Related Free Energies for
Discrete-Spectrum Materials

To obtain the minimum free energy, one chooses the factorization of (11.9.4) given
by (11.9.5), while the factorizations (16.4.18) yield ψ f (t), f = 1, 2, . . . ,N. We have

H f
−(ω) = ih∞ω

n∑
i=1

Rf
i

αi(αi − iω)
, H f

+(ω) = H
f
−(ω),

Rf
i = (ρ f

i − αi)
n∏
j=1
j�i

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ
f
j − αi

α j − αi

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

(16.9.4)

We have the relation [16]

Gi = 2H∞

n∑
j=1

Rf
i R

f
j

(αi + α j)αiα j
,

which reduces to (11.9.15) for f = 1. The quantity p f t
− (ω) is given by (16.9.1). Using

(16.3.3), we obtain in this special case

p f t
− (ω) = −ih∞

n∑
i=1

Rf
i ei(t)

αi(ω + iαi)
. (16.9.5)

Using (16.9.5) in (16.4.6)2, we obtain

Kf (t) = −h∞
⎡⎢⎢⎢⎢⎢⎣

n∑
i=1

Rf
i ei(t)

αi

⎤⎥⎥⎥⎥⎥⎦ . (16.9.6)
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It follows from (16.9.5) and (16.6.3) that

ψ f (t) = φ(t) + H∞

n∑
i, j=1

Rf
i R

f
j

(αi + α j)αiα j
ei(t)e j(t), (16.9.7)

where the reality of the quantities ei(t) has been used. This can be recast in the form
(16.3.13) with

C f
i j = 2H∞

Rf
i R

f
j

αiα j(αi + α j)
. (16.9.8)

From (16.4.12) and (16.9.6), we see that

Df (t) = H∞

⎡⎢⎢⎢⎢⎢⎣
n∑
i=1

Rf
i

αi
ei(t)

⎤⎥⎥⎥⎥⎥⎦
2

=
1
2

n∑
i, j=1

Γi jei(t)e j(t), (16.9.9)

where

Γi j == 2H∞
Rf
i R

f
j

αiα j
,

which obeys (16.3.15)3. Again, referring to Remark A.2.1, it may be seen that Γ is
positive semidefinite.

Consider materials characterized by a relaxation function with only one decaying
exponential, so that we have

G̃(s) = G1e
−αs, G′(s) = −αG1e

−αs, H(ω) =
ω2αG1

α2 + ω2
. (16.9.10)

All free energies for such materials are equal to the Day free energy functional [87].
From (16.9.7) and (16.9.9), this free energy and the corresponding rate of dissipation
are equal to

ψDay(t) = φ(t) +
G1

2
e2(t), DDay(t) = αG1e

2(t), e(t) = Ėt
+(−iα). (16.9.11)

Returning to the general case and following the developments of Sect. 11.9, we find
that the quantity p( f t)

+ (ω) has the form

p( f t)
+ (ω) = p( f t)

− (ω) − H f
+(ω)Et

r+(ω)

= ih∞
n∑
i=1

Rf
i [Et

r+(−iαi) − Et
r+(ω)]

ω + iαi
− h∞E

t
+(ω).

Also, from (16.6.4), using similar manipulations to those in (11.9.10) and subsequent
relations,

Et
f (ω) = i

n∑
l=1

B( f t)
l

ω + iρl
,

B( f t)
l =

n∑
i=1

Rf
i Q

f
ilE

t
+(−iαi), Qf

il =

∏n
j=1
j�i

(ρl − α j)

∏n
j=1
j�l

(ρl − ρ j)
.
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In the case f = 1, where no exchange of zeros has taken place, Et
f (ω) = −Et

m(ω),
given by (11.9.11). Recalling (16.6.4), we see that

Et
f−(ω) = −

B( f t)
1−
iω+
+ i

∑
ρl>0

B( f t)
l

ω + iρl
,

Et
f+(ω) = −

B( f t)
1+

iω− + i
∑
ρl<0

B( f t)
l

ω + iρl
,

B( f t)
1+ + B( f t)

1− = B( f t)
1 ,

(16.9.12)

where B( f t)
1 corresponds to the first zero, which is ρ f

1 = γ1 = 0. In the time domain,
we have

E f t
oc(s) = B( f t)

1− +
∑
ρl>0

B( f t)
l eρl s, s < 0,

E f t
oh(s) = −B( f t)

1+ −
∑
ρl<0

B( f t)
l eρl s, s > 0.

We know from (16.7.4) that E f t
oh(0+) � E f t

oc(0−) and from (16.7.3) that E f t
oh(∞) �

E f t
oc(−∞). Equations (16.7.3) and (16.7.4) are relations that must be obeyed by the

coefficients B( f t)
1± and B( f t)

l . It was noted at the end of Sect. 16.7 that E f t
oh and E f t

oc

are arbitrary to within a constant. Thus, we cannot determine uniquely the quantities
B( f t)

1± that occur in (16.9.12).

16.10 The Central Free Energy and Related Dissipation

In this section, we derive the form of a free energy and its associated rate of dissipa-
tion, using the free energies ψ f (t), f = 1, 2, . . . ,N. It can be viewed as an average of
these quantities, so that we will refer to it as the central free energy. The results pre-
sented were first given in [160], where it was proposed as a candidate for the physical
free energy. Such a viewpoint may retain a certain validity, but the whole question of
what is or is not a physical free energy is best approached as outlined in Sect. 17.1.

The convexity of F means that we can form (see (4.1.10)) a family of free ener-
gies given by

ψ(t) =
∑
f

λ fψ f (t),
∑
f

λ f = 1, λ f ≥ 0, f = 1, 2, . . . ,N, (16.10.1)

where the sum is in general over all N factorizations. Clearly, this free energy must be
bounded by the minimum and maximum free energies, so that ψm(t) ≤ ψ(t) ≤ ψM(t),
the latter quantity being discussed in Sect. 16.5.

Recalling (16.4.15), we can write
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ψ(t) = φ(t) +
j

4π2

∫ ∞

−∞

∫ ∞

−∞

Et
r+(ω1)L(ω1, ω2)Et

r+(ω2)
ω+1 − ω−

2

dω1dω2,

L(ω1, ω2) =
∑
f

λ f H
f
+(ω1)H f

−(ω2).
(16.10.2)

The central free energy is given by the special case of (16.10.2):

ψc(t) = φ(t) +
i

4π2

∫ ∞

−∞

∫ ∞

−∞

Et
r+(ω1)Lc(ω1, ω2)Et

r+(ω2)
ω+1 − ω−

2

dω1dω2,

Lc(ω1, ω2) =
1
N

∑
f

H f
+(ω1)H f

−(ω2).
(16.10.3)

Recalling the interchange operator given by (16.8.1), we define

I(ω1, ω2) =
1
N

n∏
l=2

{1 + Il(ω1, ω2)}.

The kernel Lc can be expressed in terms of this quantity in the form

Lc(ω1, ω2) =
1
N
H+(ω1)

n∏
l=2

{1 + Il(ω1, ω2)}H−(ω2)

=
1
N
H∞ω1ω2

∏n
l=2{(ω1 − ηl)(ω2 − ηl) + (ω2 − ηl)(ω1 − ηl)}∏n

l=1[(ω1 − ζl)(ω2 − ζl)]
,

where, from (16.2.9),

H+(ω) = h∞

∏n
l=1(ω − ηl)∏n
l=1(ω − ζl)

, H−(ω) = H+(ω).

We can also write Lc in the form

Lc(ω1, ω2) = H∞ω1ω2

∏n
l=2

{
ω1ω2 + |ηl|2 − (ω1 + ω2)Reηl

}
∏n

l=1[(ω1 − ζl)(ω2 − ζl)]
,

where N cancels out.
The corresponding rate of dissipation can be determined to be

Dc(t) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
Et
r+(ω1)Lc(ω1, ω2)Et

r+(ω2)dω1dω2.

The quantities ψc and Dc obey (cf. (16.6.5))

ψ̇c(t) + Dc(t) = T (t)Ė(t),

which can be demonstrated with the aid of (16.1.18), (16.1.23), and contour integra-
tion. Also, the relation
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Lc(ω,ω) = H(ω)

is required, which follows either directly or from (16.10.3)2. One can show that (cf.
(11.2.42)) ∫ ∞

−∞

∫ ∞

−∞

Et
r+(ω1)Lc(ω2, ω1)Et

r+(ω2)
ω+1 − ω−

2

dω1dω2 = 0

by completing the ω1 integration into a contour over Ω(+). Thus, we can express ψc(t)
in an explicitly finite form:

ψc(t) = φ(t) +
i

4π2

∫ ∞

−∞

∫ ∞

−∞

Et
r+(ω1) [Lc(ω1, ω2) − Lc(ω2, ω1)] Et

r+(ω2)
ω1 − ω2

dω1dω2.

It is also possible to give more explicit expressions for ψc(t), Dc(t) using the same
approach as in Sect. 16.9, but applied directly to the double integration in (16.10.3).
We obtain formulas similar to (16.9.2) and (16.9.3). Let

At
c(ω1, ω2) = Et

r+(ω1)Lc(ω1, ω2)Et
r+(ω2).

Then, we have

ψc(t) = φ(t) + i
n∑

k,l=1

(ω1 − ζk)(ω2 − ζl)At
c(ω1, ω2)

ω1 − ω2

∣∣∣∣∣∣∣ω1=ζk
ω2=ζl

= φ(t) + iH∞

n∑
k,l=1

Et
r+(ζk)Nc(ζk, ζl)Et

r+(ζl)

ζk − ζ l
,

Nc(ζk, ζl) =
ζkζl

∏n
j=2{ζkζl + |η j|2 − (ζk + ζl)Reη j}∏n
j=1
j�k

(ζk − ζ j)
∏n

j=1
j�l

(ζl − ζ j)
.

Also,

Dc(t) = H∞

n∑
k,l=1

Et
r+(ζk)Nc(ζk, ζl)E

t
r+(ζl).

We can write these formulas in the time domain as follows:

ψc(t) = φ(t) +
1
2

∫ ∞

0
ds1

∫ ∞

0
ds2E

t
r(s1)Fc(s1, s2)Et

r(s2),

Fc(s1, s2) = 2iH∞

n∑
k,l=1

Nc(ζk, ζl)

ζk − ζl
ei(ζk s1−ζl s2),

and

Dc(t) =
1
2

∫ ∞

0
ds1

∫ ∞

0
ds2E

t
r(s1)Mc(s1, s2)Et

r(s2),

Mc(s1, s2) = 2H∞

n∑
k,l=1

Nc(ζk, ζl)e
i(ζk s1−ζl s2).
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Let all the singularities be on the imaginary axis. The zeros will also have this
property and obey (11.9.3). We put

ζk = iαk, k = 1, 2, . . . , n, ηl = iγl, l = 1, 2, . . . , n,

αk > 0, k = 1, 2, . . . , n, γ1 = 0, γl > 0, l = 2, 3, . . . , n.

Then,

Fc(s1, s2) = 2H∞

n∑
k,l=1

Nc(iαk,−iαl)
αk + αl

e−αk s1−αl s2 ,

Nc(iαk,−iαl) =
αkαl

∏n
j=2{αkαl + |γ j|2}∏n

j=1
j�k

(αk − α j)
∏n

j=1
j�l

(αl − α j)
.

The quantity C in (16.3.13) is given for this case by a matrix with components

(Cc)kl = 2H∞
Nc(iαk,−iαl)

αk + αl
,

while from (16.3.15), we deduce that

(Γc)kl = 2H∞Nk(iαk,−iαl).

For one singularity at iα, we obtain Day’s [87] formulas (11.9.17) and (11.9.18)
for the minimum free energy, which is also the maximum free energy and all the
intermediate free energies ψ f .

In [160], detailed formulas for the case of two poles are presented, both the case
in which the two poles and the single zero (other than the one at the origin) are on
the positive imaginary axis and also that in which both poles are off the imaginary
axis and are conjugate pairs in the sense noted after (16.2.3).

16.11 Plots of Free Energies

In this section, certain free energy functionals for materials with memory are plot-
ted for sinusoidal strain histories. We deal with discrete-spectrum materials in the
completely linear case. These plots show an interesting proximity between appar-
ently unconnected functionals. A more comprehensive range of plots and detailed
expressions for the free energies may be found in [16].

Consider a history and current value (Et, E(t)) defined by

E(t) = E0e
iω−t + E0e

−iω+t, Et(s) = E(t − s), (16.11.1)

where E0 is an amplitude and E0 its complex conjugate. Furthermore,

ω− = ω0 − iη, ω+ = ω−, ω0, η ∈ R++. (16.11.2)
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The parameter η is introduced to ensure finite results in certain quantities. In the limit
η → 0, any real algebraic quadratic form in E(t) or real functional quadratic form in
Et(s) can be written as

V = ME2
0e

2iω0t + M E0
2
e−2iω0t + N|E0|2. (16.11.3)

The quantity N must be real. If V is restricted to be nonnegative, as in the present
context, then the conditions

N ≥ 0, 2|M| ≤ N

must apply. The first relation follows by taking a time average over a cycle and the
second by expressing the first two terms in (16.11.3) in polar form and combining
them into a cosine function.

Our choice of inverse decay times αi, i = 1, 2, . . . , n, is based on classical the-
oretical arguments. We adopt the following formula, which emerges from simple
Brownian motion molecular theories (see references in [133, 157], for example):

αr = αnκr, κr =
sin2

[
rπ

2(n + 1)

]

sin2
[

nπ
2(n + 1)

] , r = 1, 2, . . . , n. (16.11.4)

We take n = 4 [16]. The coefficients Gi in (11.9.1) are all taken to be the same [133]:

Gi = G1, i = 1, 2, . . . , n. (16.11.5)

We take E0 in (16.11.1) to be real, so that

E(t) = 2E0 cosω0t.

It is assumed that
G0 = E0 = E1 = ω0 = 1,

for a fully dimensionless version. Also, [16],

G1 =
1
n

[1 −G∞] ∈
[
0,

1
n

]
. (16.11.6)

In Figs. 16.1, 16.2, and 16.3, free energies and rates of dissipation are plotted against
time. In Fig. 16.1, the minimum, maximum, and two of the intermediate free energies
are shown for sinusoidal histories, while the corresponding rates of dissipation are
presented in Fig. 16.2. Several free energies are plotted in Fig. 16.3, including the
Graffi–Volterra functional, which is not an FMS, and ψc(t), denoted on the plot as
ψp(t), which is the original notation.

The main information content is the vertical ordering of the free energies. In
particular, the close proximity (Fig. 16.3) of the minimum free energy ψm(t) and
ψF(t) is noteworthy. They appear to be almost equal. There is no apparent algebraic
evidence for equality. The almost equally close correspondence between ψDill(t) and
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Fig. 16.1. Minimum, maximum, and intermediate free energies

ψm(t), ψF(t) is also interesting. This feature does not appear to be a consequence of
the special assumptions made in this section, in particular (16.11.5). Even when this
is altered, the close proximity of these quantities is retained.

In Fig. 16.3, ψG(t) crosses over the curve for ψM(t). There is no contradiction here
since ψM(t) is the maximum of free energies which are functionals of the minimal
state, while ψG(t) does not have this property.
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Fig. 16.2. Rates of dissipation relating to the free energies on Fig. 16.1
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Constructing Free Energies for Materials with
Memory

We now discuss methods for deriving new functionals which have the properties of
a free energy. Perhaps the central difficulty in constructing such quantities arises in
making choices that ensure both a nonnegative quadratic form for the free energy
and the rate of dissipation. Typically, if one chooses a suitable functional for the free
energy, the associated rate of dissipation does not have the non-negativity property.
A technique is presented in this chapter (see also [162]) which in effect reverses this
procedure. We choose a nonnegative functional for the rate of dissipation and derive
formulae which give the associated free energy functional in terms of the dissipation
rate kernel. It emerges that the resulting free energy has the required non-negativity
property.

The main topics dealt with in this chapter are based on [162] and are a develop-
ment of the discussion in Sect. 7.1.3. Also, Sects. 17.1 and 17.6 are based on results
in [18].

Also discussed in this chapter is the issue of approximating a general discrete-
spectrum relaxation function by a relaxation function with one decaying exponential,
corresponding to the Day free energy.

Finally, we consider single-integral free energies in terms of the functional It,
which is the functional of the minimal state defined by (16.5.1).

17.1 Two Equivalent Interpretations of the Set of Free Energies

Before deriving the main results of this chapter, we discuss two possible interpreta-
tions of the set of free energy functionals associated with a given constitutive equa-
tion relating stress and strain.

Let us identify a particular material with memory, which will be referred to as
material I. It is assumed to exhibit linear behavior. The stress-strain or constitutive
relation of this material is known, in other words, its relaxation function is given.
There are generally many free energies and corresponding dissipation functionals
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associated with material I. All of these generate the same stress and therefore have
the same relaxation function. As in earlier chapters, we denote this convex set by F,
which is of course dependent on the choice of strain history. The physical free energy
for material I, yielding the observed rate of dissipation, is a member of F, as well as
all free energies generating the given stress.

It is shown in [162, 164] (see also Sect. 17.2) that any material with memory
can be uniquely characterized by specifying the kernel of its physical rate of dis-
sipation functional. This quantity determines the associated free energy kernel and
the relaxation function, which in turn yields the stress-strain or constitutive relation,
for a given strain history. The work function can be deduced from these quantities.
Also, the dissipation kernel determines the amount of dissipation under deformation.
We will consider the set of all such kernels associated with materials with a speci-
fied constitutive relation; this set will be denoted by K. For a given choice of strain
history, K generates a set of free energies F, corresponding to our chosen consti-
tutive relation. It will emerge that the boundaries of K and F are at least roughly
determined by the relaxation function of the constitutive relation.

The following alternative viewpoint is now described. We interpret the set of
kernels K as specifying all the distinct linear materials with the same constitutive
relation but different dissipation rates as a result of deformation. These can be labeled
by individual members of K. One of them yields the physical free energy in F for
material I. Other members of F would traditionally be regarded as approximations
to or bounds on (notably the minimum and maximum free energy) this physical free
energy. Instead, we now regard these, or more specifically the corresponding kernels
in K, as describing different actual materials with the same constitutive relation, but
different dissipation properties. For the material labeled by a particular kernel, the
relevant member of F for a given strain history is the physical free energy for that
material. Particular examples may not currently exist as real materials but it seems
reasonable to assume that they could be manufactured, to a close approximation, now
or in the future.

Both of the above viewpoints are valid and can be adopted as context demands.
We will refer to the more traditional viewpoint, where K is the set of kernels produc-
ing the physical free energy of material I as well as approximations to and bounds
on this quantity, as Interpretation 1 or I1. The viewpoint that each K(s, u) ∈ K fully
describes a separate material, each equally of interest and with the same constitutive
equation, will be referred to as I2.

Under I2, the set K is defined not by the choice of material I but by the consti-
tutive equation of the materials. If we replace material I by another material with the
same stress-strain relation, the set K remains unchanged. We do not focus on one
specific example but rather treat all materials labeled by members of K on an equal
footing.

The Day free energy, a discrete-spectrum material with one decay time, is the
only free energy that is a functional of the minimal state. It is therefore the unique
physical free energy for that material. This quantity and the associated dissipation
are explored for a choice of relaxation function approximately equal to that for the
more general set of materials under consideration.
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17.2 Unique Characterization of Materials with Memory

Materials with linear memory constitutive relations, i.e., a linear functional of the
strain history, are characterized by a relaxation function, if we leave aside the matter
of stored and dissipated energy. Following the discussion in Sects. 7.1.3 and 17.1,
it is proposed that a material is characterized by the kernel of the rate of dissipation
functional. This will be shown to yield a unique free energy and relaxation function.
It also answers the question posed in Sect. 7.1.3 about two alternatives, by choosing
the second option, though the first option remains of interest since all free energies
obtained to date are examples of this.

There are generally many rates of dissipation and free energy kernels which
yield a given relaxation function. Such non-uniqueness means that there is no sim-
ple method of identifying which is the physical free energy and rate of dissipation
of a particular material. Ideally, the behavior of this kernel should be determined
by measurements carried out on the material of interest, in which case it would be
the physical kernel. This would lead to a unique, valid, free energy and provides a
formula for the relaxation function. Thus, it is a complete characterization of the ma-
terial. Of course, we are not referring to a real material, but rather a mathematical
model, approximately describing some aspects of the behavior of a real material.

The kernel of the rate of dissipation functional is, however, difficult to measure,
particularly in a non-isothermal context. For an isothermal problem, a quadratic func-
tional using this kernel is the amount of heat produced per unit time by work on the
material. The issue of measurement is briefly discussed in Sect. 7.1.3.

The standard approach to determining free energy functionals is to specify the
relaxation function and seek free energy functionals either explicitly dependent on
this quantity, or through a factorization process on a function derivable from it (see
option 1 in Sect. 7.1.3). The first method is applicable only if this relaxation function
is a monotonically decaying quantity, while the second approach yields the mini-
mum and related free energies, which lie on the boundaries of F. However, since we
generally cannot determine the physically correct choice, this approach provides a
complete description of constitutive behavior in the sense of stress-strain relations,
but gives at best a partial characterization of energy storage and dissipation.

Our assertion is that a material with memory should be characterized by the ker-
nel of the rate of dissipation, K(·, ·), defined in (17.3.12). Using a simple formula, the
kernel of a unique free energy, G̃(·, ·), with the correct non-negativity property, can
then be deduced, from which in turn the relaxation function can be obtained.

It is assumed that, as a separate exercise, the equilibrium free energy has been
fully determined. For completely linear materials, as given by (16.1.32) and (16.1.6),
this amounts to measuring G∞, which is part of the task of determining the relaxation
function.

Thus, all properties of the material are uniquely defined.
These developments are discussed in Sects. 17.4 and 17.5; see also [164].
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17.3 Quadratic Models for Free Energies

Materials with linear constitutive relations will have free energies that are quadratic
functionals. Let us first consider the simplest models for such materials.

17.3.1 A Single-Integral Model

Consider the form

ψ(t) = φ(t) +
1
2

∫ ∞

0
C(s)[Et

r(s)]
2ds. (17.3.1)

The integral term in (17.3.1) must be nonnegative for all histories by virtue of condi-
tion P2 or (16.1.26) of the Graffi conditions, which requires that C(s) be a nonnega-
tive quantity for all s ∈ R+. If (16.1.25) is to yield the constitutive relations (16.1.3)1

for any arbitrary choice of history of strain, we must put C(s) = −G′(s) where G′(s)
is assumed to be nonnegative, giving

ψ(t) = φ(t) − 1
2

∫ ∞

0
G′(s)[Et

r(s)]
2ds

= S (t) − 1
2

∫ ∞

0
G′(s)[Et(s)]2ds,

S (t) = φ(t) + (T (t) − T0(t))E(t) +
1
2

(G0 −G∞)E2(t).

(17.3.2)

The quantity S (t) is the quantity defined by (7.1.19)2, modified in the manner speci-
fied before (7.1.35), for scalar theories. The rate of dissipation associated with ψ can
be determined from (16.1.28) to have the form

D(t) =
1
2

∫ ∞

0
G′′(s)[Et

r(s)]
2ds ≥ 0, (17.3.3)

provided it is assumed that G′′(s) ≥ 0, ∀s ∈ R+. We conclude that there is only one
example of a single-integral quadratic free energy in terms of strain history and this
quantity is a free energy only if the conditions

G′(s) ≤ 0, G′′(s) ≥ 0, ∀s ∈ R+ (17.3.4)

hold. This is of course the Graffi–Volterra free energy functional discussed in
Sect. 10.1.1.

Remark 17.3.1. The first condition in (17.3.4) yields the non-negativity of the inte-
gral term in the free energy and ensures that Graffi condition P2 is satisfied, while
the second condition relates to P3, ensuring that the rate of dissipation is nonnegative
or the second law holds. The second condition implies the first condition, as can be
seen from the relation

G′(s) = −
∫ ∞

s
G′′(u)du.
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However, the first condition does not in general imply the second. Thus, for func-
tional forms which are free energies only for materials obeying (17.3.4), the re-
quirement that the rate of dissipation be nonnegative is sufficient to ensure the non-
negativity of the free energy, but not vice-versa. This is not surprising since P2 actu-
ally follows from P3 [67].

17.3.2 A Double Integral Model

For a scalar theory with a linear memory constitutive relation for the stress, the most
general form of a free energy is

ψ(t) = φ(t) +
1
2

∫ ∞

0

∫ ∞

0
Et
r(s)G(s, u)Et

r(u)dsdu

= S (t) +
1
2

∫ ∞

0

∫ ∞

0
Et(s)G(s, u)Et(u)dsdu

= φ(t) − φl(t) +
1
2

∫ ∞

0

∫ ∞

0
Ėt(s)G(s, u)Ėt(u)dsdu

= φ(t) +
1
2

∫ ∞

0

∫ ∞

0
Ėt(s)G̃(s, u)Ėt(u)dsdu,

G(s, u) =
∂2

∂s∂u
G(s, u) = G12(s, u), G̃(s, u) = G(s, u) −G∞,

(17.3.5)

where S (t) is defined by (17.3.2)3, φl(t) by (16.1.32) and T0(t) by (16.1.3)5. This is
the scalar version of the full tensor developments of Sect. 7.1. There is no loss of
generality in taking

G̃(s, u) = G̃(u, s), G(s, u) = G(u, s). (17.3.6)

The following properties of G will be assumed to hold for s, u ∈ R+:

G∞ = G(∞, u) = G(s,∞),

G1(s,∞) = G2(∞, u) = 0,

G1(∞, s) = G2(u,∞) = 0 ∀ s, u ∈ R+.
(17.3.7)

Furthermore, we have
G0 = G(0, 0). (17.3.8)

The relaxation function G(u) is given by

G(u) = G(0, u) = G(u, 0) ∀ u ∈ R+, (17.3.9)

yielding
G′(u) = G2(0, u) = G1(u, 0). (17.3.10)

Relation (17.3.9) is the basic constraint ensuring that (16.1.25) holds. Conversely, if
(16.1.25) is valid for all histories, then (17.3.9) must be true.

Relation (17.3.7)1,2 for s = u = 0 and (17.3.8) agree with (16.1.4), by virtue of
(17.3.9). The Graffi condition P2, given by (16.1.26), requires that the kernels G and
G̃ must be such that the integral terms in (17.3.5)1,4 are nonnegative.
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Remark 17.3.2. We will consider all free energies associated with a given constitutive
equation. Thus, the quantity G(u) is the same for all choices of free energy, i.e., for
all choices of G(s, u).

Referring to the quantity S (t) in (17.3.2) and (17.3.5)2, we see that

∂

∂E(t)
S (t) = T (t),

which is condition P1 or (16.1.25).
The rate of dissipation can be deduced from (16.1.28) and (16.1.3)10,11 to be

D(t) = −1
2

∫ ∞

0

∫ ∞

0
Ėt(s)K(s, u)Ėt(u)dsdu

= −1
2

∫ ∞

0

∫ ∞

0
Et
r(s)K(s, u)Et

r(u)dsdu,
(17.3.11)

where

K(s, u) = G1(s, u) +G2(s, u), K(s, u) = G1(s, u) + G2(s, u). (17.3.12)

The quantity G must be such that the integral in (17.3.11) is non-positive, as required
by P3 of the Graffi conditions. We have

K(s, u) =
∂2

∂s∂u
K(s, u) = K12(s, u). (17.3.13)

The quantities K and K can also be taken to be symmetric in their arguments, i.e.,

K(s, u) = K(u, s), K(s, u) = K(u, s). (17.3.14)

The non-negativity requirements on G̃, G, −K, and −K imply in particular that

G̃(s, s) ≥ 0, G(s, s) ≥ 0,

K(s, s) ≤ 0, K(s, s) ≤ 0, s ∈ R+.
(17.3.15)

In the approach developed in this chapter, the quantity K(s, u) will play a more fun-
damental role than G(s, u).

Seeking to express D(t) given by (16.1.30)2 as a general quadratic functional
form similar to those in (17.3.5) or (17.3.11), we put

D(t) =
1
2

∫ ∞

0

∫ ∞

0
Ėt(s)Q(s, u)Ėt(u)dsdu

=
1
2

∫ ∞

0

∫ ∞

0
Et
r(s)Q(s, u)Et

r(u)dsdu.
(17.3.16)

There are two equivalent alternatives for the developments outlined below, the
first being to use G̃(s, u), K(s, u), Ėt(s) and the second to use G(s, u), K(s, u), Et

r(s).
Both have been widely adopted in discussing the minimum and related free energies.
The first approach will be favored in the present context, though in earlier chapters,
the other formulation is widely used, so there is a need to move between the two
notations.
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Remark 17.3.3. The Principle of Causality must apply to all physical systems and
in the present context means that quantities such as T (t), ψ(t), D(t), etc. can only
depend on E(s), s ≤ t. Therefore, we can write (16.1.3)4 and (17.3.5)4, for example,
in the form

T (t) = Te(t) +
∫ ∞

−∞
G̃(s)Ėt(s)ds,

ψ(t) = φ(t) +
1
2

∫ ∞

−∞

∫ ∞

−∞
Ėt(s)G̃(s, u)Ėt(u)dsdu,

provided that

Ėt(s)G̃(s, u)Ėt(u) = 0, s, u < 0, G̃(s)Ėt(s) = 0, s < 0. (17.3.17)

The simplest way to enforce (17.3.17) is to take either option (a) or (b), given by

(a) Ėt(s) = 0, G̃(s, u), G̃(s) arbitrary, f or s, u < 0;

(b) G̃(s, u), G̃(s) = 0, Ėt(s) arbitrary, f or s, u < 0.
(17.3.18)

The arbitrariness of G̃(·, ·), G̃(·), and Et(·) for negative arguments is subject to the re-
quirement that certain integrals of these quantities (for example, Fourier transforms)
converge.

17.3.3 The Work Function

This quantity, given by (16.1.30)1, can be put in the following forms (see Sect. 7.5):

W(t) = φ(t) +
1
2

∫ ∞

0

∫ ∞

0
Ėt(s)G̃(|s − u|)Ėt(u)duds

= φ(t) +
1
2

∫ ∞

0

∫ ∞

0
Et
r(s)

∂2

∂s∂u
G(|s − u|)Et

r(u)duds

= φ(t) +
1

2π

∫ ∞

−∞

H(ω)

ω2
|Ėt
+(ω)|2dω

= φ(t) +
1

2π

∫ ∞

−∞
H(ω)|Et

r+(ω)|2dω.

(17.3.19)

Both versions of the frequency domain formulation are manifestly nonnegative. One
follows from the other by invoking (16.1.17). We see that it can be cast in the forms
(17.3.5)1,4 by putting

G̃(s, u) = G̃(|s − u|), G12(s, u) =
∂2

∂s∂u
G(|s − u|). (17.3.20)

Remark 17.3.4. The quantity W(t) can be formally regarded as a free energy, but with
zero dissipation, which is clear from (16.1.29). Because of the vanishing dissipation,
it must be the maximum free energy associated with the material or greater than
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this quantity, an observation which follows from (16.1.29) for any free energy ψ(t).
Indeed, we have in general the requirement that

ψ(t) ≤ W(t). (17.3.21)

A problem with the treatment of W(t) as a free energy is raised in Chap. 18.

From (16.1.29), (17.3.16), (17.3.19) and (17.3.20), we deduce that

Q(s, u) = G̃(|s − u|) − G̃(s, u),

Q(s, u) = G12(|s − u|) − G(s, u),
(17.3.22)

from which it follows that

Q1(s, u) + Q2(s, u) = −G1(s, u) −G2(s, u) = −K(s, u),

Q1(s, u) + Q2(s, u) = −G1(s, u) − G2(s, u) = −K(s, u).
(17.3.23)

Relations (17.3.22) also yield

Q(s, 0) = Q(0, u) = 0 ∀ s, u ∈ R+, (17.3.24)

and ∫ ∞

0
Q(s, v)dv =

∫ ∞

0
Q(v, u)dv = 0 ∀ s, u ∈ R+, (17.3.25)

by virtue of (17.3.7), (17.3.9) and (17.3.10). A consequence of (17.3.25) is that
(17.3.16)2 can be replaced by

D(t) =
1
2

∫ ∞

0

∫ ∞

0
Et(s)Q(s, u)Et(u)dsdu.

A requirement similar to (17.3.15) must be imposed on Q. In the light of (17.3.22)1,
we have

Q(s, s) = G̃0 − G̃(s, s) = G0 −G(s, s) ≥ 0, ∀ s ∈ R+.

The corresponding relation for Q presents difficulties in that the quantities involved
have a delta function singularity, which arises from the differentiations in (17.3.22)2.

17.4 Time Domain Representation of Free Energies in Terms of
the Kernel K(·, ·)

We now present the results on which the assertions of Sect. 17.2 are based.
Two equivalent versions of the argument will now be presented, one in the time

domain, the other in the frequency domain. A formalism is developed in this section
for the time domain and in Sect. 17.5 for the frequency domain, which extend the
developments of Sect. 7.1.3 and allow us to apply the new strategy.

We treat (17.3.12)1 as a first order partial differential equation for G(s, u), s, u ∈
R
+, where K(s, u), s, u ∈ R+ is presumed to be known and has the property that
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∫ ∞

0

∫ ∞

0
f (s)K(s, u) f (u)dsdu ≤ 0 (17.4.1)

for all choices of f such that the integral exists. We use the variables (7.1.29):

x = s + u, y = s − u, (17.4.2)

in terms of which (17.3.12)1 becomes

∂

∂x
Gn(x, y) =

1
2
Kn(x, y), Gn(x, y) = G(s, u), Kn(x, y) = K(s, u),

with general solution

Gn(x, y) = Gn(x0, y) +
1
2

∫ x

x0

Kn(x
′, y)dx′, (17.4.3)

where x0 is an arbitrary nonnegative real quantity. This is the scalar version of
(7.1.30). It follows from (17.3.6)1 and (17.3.14)1 that

Gn(x, y) = Gn(x,−y) = Gn(x, |y|), Kn(x, y) = Kn(x,−y) = Kn(x, |y|). (17.4.4)

Observe that (17.3.9) yields

G(u) = Gn(u, u) = Gn(u,−u) = Gn(u, |u|), u ∈ R+. (17.4.5)

Putting
x′ = s′ + u′, y = s′ − u′ = s − u,

we have

s′ =
1
2

(x′ + y), u′ =
1
2

(x′ − y).

In particular, these yield (s, u) corresponding to x′ = x. Letting x0 → ∞ gives a
solution of the form

Gn(x, y) = G∞ − 1
2

∫ ∞

x
Kn(x

′, y)dx′. (17.4.6)

We have

G(s, u) = Gn(x, y) = G∞ − 1
2

∫ ∞

s+u
Kn(x′, s − u)dx′

= G∞ − 1
2

∫ ∞

s+u
K(

1
2

(x′ + s − u),
1
2

(x′ − s + u))dx′.

Let us change the x′ variable of integration to z ≥ 0, defined by

x′ = 2z + s + u, (17.4.7)

so that
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G̃(s, u) = −
∫ ∞

0
K(z + s, z + u)dz. (17.4.8)

A similar relation for G(s, u) can be deduced from (17.3.5)5 and (17.3.13).
We assume that K(s, u) in (17.3.12)1 is given, so that the rate of dissipation for

a particular strain history of the material, specified by (17.3.11), is uniquely known.
The following proposition will now be proved.

Proposition 17.4.1. For free energy functionals and rates of dissipation of the forms
(17.3.5) and (17.3.11), respectively, if we assume that the rate of dissipation is non-
negative (which is the second law), then it follows that the integral term in (17.3.5)4

is nonnegative.
Thus, the property noted at the end of Remark 17.3.1 is confirmed.

Proof. Multiplying (17.4.8) by Ėt(s) and Ėt(u) and integrating yields

ψ(t) = φ(t) − 1
2

∫ ∞

0

∫ ∞

0
Ėt(s)

∫ ∞

0
K(z + s, z + u)dzĖt(u)dsdu

= φ(t) − 1
2

∫ ∞

0

∫ ∞

0

∫ ∞

0
Ėt(s)K(z + s, z + u)Ėt(u)dsdudz,

(17.4.9)

on interchanging integrations. Now
∫ ∞

0

∫ ∞

0
Ėt(s)K(z + s, z + u)Ėt(u)dsdu

=

∫ ∞

z

∫ ∞

z
Ėt(v − z)K(v,w)Ėt(w − z)dvdw.

Let us put

f (v) =

⎧⎪⎪⎨⎪⎪⎩
Ėt(v − z), v ≥ z

0, 0 ≤ v < z

for arbitrary choices of Ėt. By virtue of assumption (17.4.1), it follows that the inte-
gral term in (17.4.9) is nonnegative. �

We identify the relaxation function, in accordance with (17.3.9), as

G(s) = G(s, 0) = G∞ −
∫ ∞

0
K(z + s, z)dz = G∞ −

∫ ∞

0
K(z, z + s)dz, (17.4.10)

which ensures that the condition P1 or (16.1.25) is satisfied. It follows from (17.4.10)
that

G̃0 = −
∫ ∞

0
K(z, z)dz, (17.4.11)

using the notation of (16.1.4).
We take s ≥ u and y = s − u. Choosing x0 = y in (17.4.3), we have
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G(s, u) = Gn(s + u, s − u) = G(s − u) +
1
2

∫ s+u

s−u
Kn(x

′, s − u)dx′

= G(s − u) +
∫ 0

−u
K(z + s, z + u)dz,

(17.4.12)

where (17.4.5) and (17.4.7) have been used. Comparing the two solutions (17.4.8)
and (17.4.12), we obtain

G(s − u) = G∞ −
∫ ∞

−u
K(z + s, z + u)dz

= G∞ −
∫ ∞

0
K(w,w + s − u)dw,

which agrees with (17.4.10). A similar result follows if we take u ≥ s and y = u − s.
We can write (17.4.12) in a manner covering both cases as follows:

G(s, u) = G(|s − u|) +
∫ 0

−min(s,u)
K(z + s, z + u)dz

= G(|s − u|) +
∫ min(s,u)

0
K(s − v, u − v)dv.

This is the solution obeying the boundary conditions (17.3.9). Substituting this rela-
tion into the quadratic forms in (17.3.5)4 and (17.3.19)1, we obtain

ψ(t) = W(t) +
1
2

∫ ∞

0
ds

∫ ∞

0
duĖt(s)

∫ min(s,u)

0
dvK(s − v, u − v)Ėt(u). (17.4.13)

The integral term in (17.4.13) is non-positive by virtue of (17.3.21). It is of course
the negative of the total dissipation (−D(t)), by virtue of (16.1.29).

17.4.1 Some Examples

1. Discrete-spectrum materials: The kernels G̃ and K have the form

G̃(s, u) =
n∑

i, j=1

Ci je
−αi s − α ju,

K(s, u) = −
n∑

i, j=1

(αi + α j)Ci je
−αi s − α ju,

(17.4.14)

since if these are substituted into (17.3.5)4 and (17.3.11)1, they yield (16.3.13)
and (16.3.15)2,3. It is clear that (17.4.8) applied to (17.4.14)2 yields (17.4.14)1.
Let the kernel K(·, ·) have the form

K(s, u) = −
n∑

i, j=1

Γi je
−αi s − α ju, (17.4.15)
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where the symmetric matrix Γ with components Γi j, i, j = 1, 2, . . . , n is nonneg-
ative. The material is characterized by Γ and the vector α, with components
αi, i = 1, 2, . . . , n. These parameters are assumed to be known. Then, from
(17.3.11)1,

D(t) =
1
2

n∑
i, j=1

Γi jei(t)e j(t) =
1
2
e · Γe,

ei(t) = Ėt
+(−iαi), i = 1, 2, . . . , n, e = (e1(t), e2(t), . . . , en(t)).

(17.4.16)

This expression for D(t) agrees with (16.3.15). The final relation is a definition of
the vector quantity e(t), which is that introduced earlier by (16.3.12). Applying
(17.4.8), we obtain

G̃(s, u) =
n∑

i, j=1

Γi j

αi + α j
e−αi s − α ju,

so that from (17.3.5)2

ψ(t) = φ(t) +
1
2

n∑
i, j=1

Γi j

αi + α j
ei(t)e j(t) = φ(t) +

1
2
e · Ce, (17.4.17)

where the matrix C has components of the form (see (16.3.15)3)

Ci j =
Γi j

αi + α j
, i, j = 1, 2, . . . , n.

The last form of (17.4.17) is of course (16.3.13). Then the relaxation function is
given by

G̃(0, u) = G̃(u) =
n∑
j=1

Gje
−α ju, Gj =

n∑
i=1

Γi j

αi + α j
, j = 1, . . . , n.

2. The Dill free energy: Using (17.3.5)4, we put

K(s, u) = 2G′(s + u),

so that, from (17.4.8),
G̃(s, u) = G̃(s + u).

This yields the functional

ψDill(t) = φ(t) +
1
2

∫ ∞

0

∫ ∞

0
G̃(s1 + s2)Ėt(s2)Ėt(s1)ds1ds2, (17.4.18)

which is a free energy with rate of dissipation (cf. (17.3.11)1) given by

DDill(t) = −
∫ ∞

0

∫ ∞

0
G′(s1 + s2)Ėt(s2)Ėt(s1)ds1ds2 (17.4.19)
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if and only if G(·) is completely monotonic, as defined in [89].
For discrete-spectrum materials, these are given by

ψDill(t) = φ(t) +
1
2

n∑
i=1

Gie
2
i (t), DDill(t) =

n∑
i=1

αiGie
2
i (t). (17.4.20)

3. Short-term memory free energy: We now construct a new free energy. Let us con-
sider K(s, u) given by the product form k(s)k(u) which guarantees non-negativity
of the rate of dissipation. Consider

k(s) = ae−λs
2
, a, λ > 0, (17.4.21)

which could be taken to model sharply declining or short-term memory behavior.
Relation (17.4.21) yields

K(s, u) = −a2 exp
[
−λ(s2 + u2)

]
= −a2 exp

[
−1

2
λ(x2 + y2)

]
,

where the variables x and y are defined by (17.4.2). We obtain, from (17.4.6),

G̃(s, u) =
1
2

∫ ∞

x
a2 exp

[
−1

2
λ((x′)2 + y2)

]
dx′

=
1
2

√
π

2λ
a2

⎡⎢⎢⎢⎢⎢⎣1 −Φ

⎛⎜⎜⎜⎜⎜⎝
√

λ

2
(s + u)

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦ exp

[
−1

2
λ(s − u)2

]
,

(17.4.22)

where Φ(·) is the probability integral [168]:

Φ(z) =
2
√
π

∫ z

0
e−u

2
du.

From (17.4.10), (17.4.11), and (17.4.22), we have

G̃(s) =
1
2

√
π

2λ
a2

⎡⎢⎢⎢⎢⎢⎣1 −Φ

⎛⎜⎜⎜⎜⎜⎝
√

λ

2
s)

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦ exp

[
−1

2
λs2

]
,

G̃0 =
1
2

√
π

2λ
a2.

17.5 Frequency Domain Representations of Free Energies in
Terms of the Kernel K+−(·, ·)

The first discussion of the topic developed in this section was given in [158]. Also,
special cases of the formulae given below, namely those relating to the minimum and
associated free energies, were presented in [161] (see also (16.4.15)–(16.4.17)). One
of our aims here is to provide generalizations of these formulae. However, our main
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goal is to derive certain results which will prove more convenient for determining
new free energy functionals.

Let us now consider free energies with general kernels. We define

Z+−(ω1, ω2) =
∫ ∞

0

∫ ∞

0
Z(s, u)e−iω1s + iω2udsdu, (17.5.1)

where Z(s, u) represents any one of the kernels G̃(s, u), K(s, u), or Q(s, u). Note that

Z+−(ω1, ω2) = Z+−(−ω1,−ω2) = Z+−(ω2, ω1), (17.5.2)

so that Z+−(ω,ω) is real. The quantity Z+−(ω1, ω2) is analytic in the lower half of the
ω1 complex plane and in the upper half of the ω2 plane.

Note that

Z+−(ω1, ω2) = Z+−(−ω2,−ω1),

Z+−(ω1, ω2) = Z+−(−ω1,−ω2) = Z+−(ω2, ω1), ω1, ω2 ∈ Ω,
(17.5.3)

where the property Z(s, u) = Z(u, s) has been used. These relations hold if ω1, ω2 are
points of analyticity of Z+−(ω1, ω2). It follows from (17.5.3) that Z+−(ω1, ω2) is real
if ω2 = ω1. In particular, Z+−(ω0, ω0) is real if ω0 is real. Thus, Z+−(ω1, ω2) is given
by analytic continuation from the real axis for ω1 ∈ Ω(−) and ω2 ∈ Ω(+).

Inverting Fourier transforms in (17.5.1) yields that

Z(s, u) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
Z+−(ω1, ω2)eiω1s − iω2udω1dω. (17.5.4)

We shall not explicitly discuss the frequency domain version of the kernels G(s, u),
K(s, u), and Q(s, u) in this section. These occur in quadratic forms expressed in terms
of Et

r+(ω) rather than Ėt
+(ω). We can, however, easily switch to this type of functional

by using (16.1.17). Relations (17.3.12)1, (17.3.23)1, (17.3.24), and (17.5.1), yield
that

i(ω1 − ω2)G̃+−(ω1, ω2) = K+−(ω1, ω2) + G̃+(ω1) + G̃+(ω2)

= K(1)(ω1, ω2),

i(ω1 − ω2)Q+−(ω1, ω2) = −K+−(ω1, ω2),

(17.5.5)

where G̃+(ω) is defined by (16.1.7)1. From (17.3.9), (16.1.7)1, and (17.5.1), it follows
that

G̃+−(ω1, ω2) ∼

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

G̃+(ω1)
−iω2

as ω2 → ∞,

G̃+(ω2)
iω1

as ω1 → ∞.

(17.5.6)

By an analogous argument to that yielding (17.5.6), we can deduce similar properties
for K+−(ω1, ω2).

We can write (17.3.5)4, (17.3.11)1, and (17.3.16)1 in the forms
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ψ(t) = φ(t) +
1

8π2

∫ ∞

−∞

∫ ∞

−∞
Ėt
+(ω1)G̃+−(ω1, ω2)Ėt

+(ω2)dω1dω2,

D(t) = − 1

8π2

∫ ∞

−∞

∫ ∞

−∞
Ėt
+(ω1)K+−(ω1, ω2)Ėt

+(ω2)dω1dω2,

D(t) =
1

8π2

∫ ∞

−∞

∫ ∞

−∞
Ėt
+(ω1)Q+−(ω1, ω2)Ėt

+(ω2)dω1dω2,

(17.5.7)

where Ėt
+(ω) is defined by (16.1.17). Note that (17.5.7)2 can be written in the form

D(t) = − 1

8π2

∫ ∞

−∞

∫ ∞

−∞
Et
r+(ω1)ω1ω2K+−(ω1, ω2)Et

r+(ω2)dω1dω2,

by virtue of (16.1.17). A similar observation applies to (17.5.7)1,3. Using the analyt-
icity properties of the kernels (see (16.1.24)), we can write (17.5.7) in the form

ψ(t) = φ(t) +
1

8π2

∫ ∞

−∞

∫ ∞

−∞
Ėt
F(ω1)G̃+−(ω1, ω2)Ėt

F(ω2)dω1dω2,

D(t) = − 1

8π2

∫ ∞

−∞

∫ ∞

−∞
Ėt
F(ω1)K+−(ω1, ω2)Ėt

F(ω2)dω1dω2,

D(t) =
1

8π2

∫ ∞

−∞

∫ ∞

−∞
Ėt
F(ω1)Q+−(ω1, ω2)Ėt

F(ω2)dω1dω2,

(17.5.8)

where Et
F(ω) is defined by (16.1.24)2. Referring to Remark 17.3.3, we see that

(17.5.8) corresponds to case (b) of (17.3.18), as is also true for (16.1.24).
As for the time domain expressions, we conclude from P2 and P3 (see (16.1.26),

(16.1.28)) that the quadratic functionals in (17.5.7)1 and (17.5.7)3 must be nonneg-
ative, while those in (17.5.7)2 must be nonpositive. A similar statement applies to
(17.5.8). We seek therefore to write down the analogue of (17.3.15). It follows from
(17.5.8) that

G̃+−(ω,ω) ≥ 0, K+−(ω,ω) ≤ 0 ∀ ω ∈ R. (17.5.9)

Relations (17.5.9) do not follow from (17.5.7) because of the analyticity properties
of Ėt

+(ω) which, as we will see in Sect. 17.5.2, allow considerable non-uniqueness in
the kernels of (17.5.7), so that in particular the diagonal quantities (ω1 = ω2) are not
unique. Such non-uniqueness is not present in (17.5.8). The quantity Q+−(ω1, ω2) is
excluded because it contains singularities at ω1 = ω2, which arises from the fact that
(17.3.19)3,4 can be written in the form (17.5.8) but with a delta function.

It follows from (17.5.5)2 that

ψ(t) = φ(t) − i

8π2

∫ ∞

−∞

∫ ∞

−∞

Ėt
+(ω1)K(1)(ω1, ω2)Ėt

+(ω2)
ω+1 − ω−

2

dω1dω2. (17.5.10)

The notation in the denominator of this last form means that if we integrate first over
ω1, it becomes (ω1−ω−

2 ) or if ω2 first then it is (ω+1 −ω2). This choice of denominator,
rather than (ω−

1 −ω
+
2 ), is initially assigned by using the example given by (16.4.15). It

will be justified below by means of a general argument. The terms in K(1) depending
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only on one variable (ω1 or ω2) do not contribute to the integral. To see this, consider,
for example, the term

− i

8π2

∫ ∞

−∞

∫ ∞

−∞

Ėt
+(ω1)G̃+(ω1)Ėt

+(ω2)
ω+1 − ω−

2

dω1dω2 (17.5.11)

and carry out the integral over ω2, completing the contour over Ω(−), on which
Ėt
+(ω2) is analytic. The denominator becomes ω+1 − ω2. The infinite part of the con-

tour yields a vanishing contribution, by virtue of (16.1.20), so the result is zero. We
note, however, for later use that if ω+1 were replaced by ω−

1 , the result would be

− 1
4π

∫ ∞

−∞
Ėt
+(ω1)G̃+(ω1)Ėt

+(ω1)dω1. (17.5.12)

Thus, (17.5.10) can be replaced by

ψ(t) = φ(t) − i

8π2

∫ ∞

−∞

∫ ∞

−∞

Ėt
+(ω1)K+−(ω1, ω2)Ėt

+(ω2)
ω+1 − ω−

2

dω1dω2

= φ(t) − i

8π2

∫ ∞

−∞

∫ ∞

−∞

Et
r+(ω1)ω1ω2K+−(ω1, ω2)Et

r+(ω2)
ω+1 − ω−

2

dω1dω2,

(17.5.13)

on using (16.1.17). Let us apply the Plemelj formulae to the integral in (17.5.13)1

over ω1 to obtain

ψ(t) = φ(t) − i

8π2
P

∫ ∞

−∞

∫ ∞

−∞

Ėt
+(ω1)K+−(ω1, ω2)Ėt

+(ω2)
ω1 − ω2

dω1dω2

− 1
8π

∫ ∞

−∞
Ėt
+(ω)K+−(ω,ω)Ėt

+(ω)dω,

(17.5.14)

where the symbol “P” indicates a principal value integral over ω1. Also, consider the
integral (see (17.5.5)3)

D1(t) =
i

8π2

∫ ∞

−∞

∫ ∞

−∞

Ėt
+(ω1)K+−(ω1, ω2)Ėt

+(ω2)
ω−

1 − ω+2
dω1dω2.

Differentiating with respect to t, we find, with the aid of (16.1.18)1, that

Ḋ1(t) = D(t), (17.5.15)

where D(t) is given by (17.5.7)2. The relation

∫ ∞

−∞

Ėt
+(ω1)K+−(ω1, ω2)

ω−
1 − ω2

dω2 = 0, (17.5.16)

and a similar one involving integration over ω1, have been used. Equation (17.5.16)
follows by closing the contour on Ω(+) and recalling that a property similar to (17.5.6)



17.5 Frequency Domain Representations of Free Energies in Terms. . . 401

applies to K+−(ω1, ω2). Relation (17.5.15) implies that D1(t) = D(t) + k, where k is
a constant which can be shown to be zero because D1(−∞) = 0 = D(−∞). This
follows by observing that Ėt

+, given by (16.1.17), tends to zero as t → −∞, because
of assumption (16.1.2). We conclude that

D(t) = D1(t) =
i

8π2

∫ ∞

−∞

∫ ∞

−∞

Ėt
+(ω1)K+−(ω1, ω2)Ėt

+(ω2)
ω−

1 − ω+2
dω1dω2

=
i

8π2

∫ ∞

−∞

∫ ∞

−∞

Et
r+(ω1)ω1ω2K+−(ω1, ω2)Et

r+(ω2)
ω−

1 − ω+2
dω1dω2.

(17.5.17)

In a similar manner to the derivation of (17.5.14), we have

D(t) =
i

8π2
P

∫ ∞

−∞

∫ ∞

−∞

Ėt
+(ω1)K+−(ω1, ω2)Ėt

+(ω2)
ω1 − ω2

dω1dω2

− 1
8π

∫ ∞

−∞
Ėt
+(ω)K+−(ω,ω)Ėt

+(ω)dω.

Therefore,

ψ(t) +D(t) = φ(t) − 1
4π

∫ ∞

−∞
Ėt
+(ω)K+−(ω,ω)Ėt

+(ω)dω

= φ(t) +
1

2π

∫ ∞

−∞
Ėt
+(ω)

H(ω)

ω2
Ėt
+(ω)dω,

by virtue of (16.1.29) and (17.3.19) for arbitrary histories. It follows from this result
together with (16.1.7)1 and (16.1.13) that

K+−(ω,ω) = −2
H(ω)

ω2
= −2G̃c(ω)

= −
G′
+(ω)
iω

+
G′
+(ω)
iω

= −G̃+(ω) − G̃+(ω),

(17.5.18)

where (16.1.8) has also been invoked. This relation can in fact be shown directly.
From (17.5.1), we can write

K+−(ω,ω) =
∫ ∞

0

∫ ∞

0
K(s, u)e−iω(s − u)dsdu.

Transforming to the variables x, y defined by (17.4.2), we obtain

K+−(ω,ω) = −1
2

∫ ∞

0
dx

∫ x

−x
dyKn(x, y)e−iωy

= −
∫ ∞

0
dx

∫ x

0
dyKn(x, y) cosωy,

where (17.4.4) has been used. We can write this in the form
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K+−(ω,ω) = −
∫ ∞

0
dy

∫ ∞

y
dxKn(x, y) cosωy

= −2
∫ ∞

0
G̃(y) cosωydy = −2G̃c(w),

by virtue of (17.4.6) and (17.4.5). This proves the result.

Remark 17.5.1. We see from this derivation that the constraint in the time domain
equivalent to (17.5.18) is (17.4.5) combined with (17.4.6) (which yield (17.4.10)).
Relation (17.4.5) (or (17.3.9)) is of course the property P1 or (16.1.25). The fre-
quency domain form (17.5.18) is more useful for deriving explicit forms of free
energies, as we shall see.

Remark 17.5.2. Relation (17.5.18) can be used to prove P1 or (16.1.25), from
(17.5.13)2, by differentiating the latter equation with respect to E(t).

Note that (17.5.18) implies that K(1)(ω,ω), defined by (17.5.5)2, vanishes. The
quantity K+−(ω,ω) is independent of the choice of free energy. Observe that (17.5.18)
is consistent with (17.5.9)2. Both the non-positivity of K+−(ω,ω) and the non-
negativity of H(ω) are direct consequences of the second law (see P3 after (16.1.28),
(16.1.12) and (16.1.13)).

If we were to take the other choice of denominator, namely ω−
1 −ω+2 , in (17.5.13)

and ω+1 −ω−
2 in (17.5.17), there would be a positive sign on 2H(ω)/ω2 in (17.5.18)1,

which contradicts the second law, as expressed by (17.5.9)2.
We now show that (17.4.9) is the time domain version of (17.5.13)1. Substituting

(17.5.4) for Z(s, u) = K(s, u) into (17.4.8)1 yields

G̃(s, u) = − 1

4π2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0
K+−(ω1, ω2)eiω1(s + z) − iω2(u + z)dzdω1dω2

= − i

4π2

∫ ∞

−∞

∫ ∞

−∞

K+−(ω1, ω2)
ω+1 − ω−

2

eiω1s − iω2udω1dω2.

(17.5.19)
The denominator results from putting

ei(ω1 − ω2)z = ei(ω1 − ω−
2 )z = ei(ω

+
1 − ω2)z, (17.5.20)

which ensures that the integral over z exists. If G̃(s, u), given by (17.5.19), is inserted
into (17.3.5)4, we obtain (17.5.13)1. The argument based on (17.5.20) is perhaps
the simplest way of showing that the denominator in (17.5.13) is the correct choice,
rather than the alternative in (17.5.17).

Using (16.1.25) to obtain the form of the stress function from (17.5.13)1, we find,
by virtue of (16.1.17), that

T (t) = Te(t) −
i

4π2

∫ ∞

−∞

∫ ∞

−∞

K+−(ω1, ω2)Ėt
+(ω2)

ω+1 − ω−
2

dω1dω2.
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This involves combining two terms which can be shown to be equal with the help
of (17.5.2). Carrying out the ω1 integration by closing the contour on Ω(−) and using
(17.5.18), we obtain (16.1.23)2.

Thus, if K+−(ω1, ω2) is given for all ω1 and ω2 ∈ R, the material is completely
characterized by (17.5.13) and (17.5.18).

Relations (16.4.15) and (16.4.17) are special cases of (17.5.13)2 and (17.5.7)2

(the latter expressed in terms of Et
r+), where

ω1ω2K+−(ω1, ω2) = −2H f
+(ω1)H f

−(ω2),

while (16.4.16) is a special case of (17.5.17)2. Also, replacements corresponding
to (17.5.22) below can be implemented here. The particular case referred to in Re-
mark 17.5.3 is obtained by subtracting a term H f

+(ω2)H f
−(ω1) from the kernels in

(16.4.15), which yields an alternative expression involving non-singular integrals:

ψ f (t) = φ(t) +
i

4π2

∫ ∞

−∞

∫ ∞

−∞

Et
r+(ω1)N(ω1, ω2)Et

r+(ω2)
ω1 − ω2

dω1dω2,

N(ω1, ω2) = H f
+(ω1)H f

−(ω2) − H f
+(ω2)H f

−(ω1).

This is a special case of (17.5.26) below, with Ėt
+(ω) replaced by −iωEt

r+(ω), by
virtue of (16.1.17). Using the same relation, we can interchangeably express the
above formulae in terms of Ėt

+(ω) or Et
r+(ω).

17.5.1 Example: Discrete-Spectrum Materials

This was already discussed in the context of the time domain theory, as expressed by
(17.4.14). From (17.5.1) and (17.4.15), it follows that

K+−(ω1, ω2) = −
n∑

i, j=1

Γi j

(αi + iω1)(α j − iω2)
,

G̃+−(ω1, ω2) =
n∑

i, j=1

Γi j

(αi + α j)(αi + iω1)(α j − iω2)
,

G̃+(ω) =
n∑
i=1

Gi

αi + iω
=

n∑
i, j=1

Γi j

(αi + α j)(αi + iω1)
.

(17.5.21)

The formula for G̃+(ω) also follows from (17.5.6). Observe that

K+−(ω,ω) = −
n∑

i, j=1

Γi j

(αi + α j)

{
1

αi + iω
+

1
α j − iω

}

= −
n∑

i, j=1

Γi j

(αi + α j)

{
1

αi + iω
+

1
αi − iω

}
= −2H(ω)

ω2
,

by virtue of (17.5.21)3,4. This agrees with (17.5.18).
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The positivity of the individualGj is not in itself a requirement. What is important
is that G̃c(ω) be nonnegative, as required by (16.1.12). Now, from (17.5.21)4,

G̃c(ω) =
n∑
i, j

αiΓi j

α2
i + ω

2
=

n∑
i, j

α jΓi j

α2
j + ω

2

=
1
2

n∑
i, j

(ω2 + αiα j)Γi j

(α2
i + ω

2)(α2
j + ω

2)
.

This is the sum of two terms, one proportional to ω2 in the numerator, and the other
proportional to αiα j. Both of these can be seen to be separately nonnegative, on
recalling that Γ is a nonnegative matrix, so we have the desired property (16.1.12).

17.5.2 Non-uniqueness of the Kernels

We now consider how the kernels in (17.5.7) are not unique. This phenomenon is
the frequency domain version of Causality constraints outlined in Remark 17.3.3.
We deal here with case (a) of (17.3.18). Using the same argument as that leading to
(16.1.22), we can express (17.5.7) in different forms. Consider the replacement

Z+−(ω1, ω2) → Y(ω1, ω2) = Z+−(ω1, ω2) + z2+(ω1, ω2) + z1−(ω1, ω2), (17.5.22)

where Z+−(ω1, ω2) becoming Y(ω1, ω2) represents either K+−(ω1, ω2) becoming
L(ω1, ω2) or G̃+−(ω1, ω2) becoming R(ω1, ω2), both of which will be used later.
The functions z2+(ω1, ω2) and z1−(ω1, ω2) correspondingly represent k2+(ω1, ω2) and
k1−(ω1, ω2) for K+−(ω1, ω2) and g2+(ω1, ω2) and g1−(ω1, ω2) for G̃+−(ω1, ω2), re-
spectively.

The function z2+(ω1, ω2) has singularities on the ω2 complex plane only in Ω(+)

and z1−(ω1, ω2) has singularities on the ω1 complex plane only in Ω(−).
Such substitutions leave the relations in (17.5.7) unchanged, as may be seen by

closing the relevant integral on Ω(±) as appropriate, and invoking Cauchy’s theo-
rem. It is required, however, that the contributions from the infinite parts of the con-
tours vanish. Noting (16.1.20) in this context, we see that the quantities k2+(ω1, ω2),
k1−(ω1, ω2) and g2+(ω1, ω2), g1−(ω1, ω2) must decay to zero at large ω1 or ω2.

Similar substitutions can be made for Q+− in (17.5.7)3.
Interesting special cases are as follows:

Y(ω1, ω2) = Z+−(ω1, ω2) + a1Z+−(−ω1, ω2) + a2Z+−(ω1,−ω2)

+ a3Z+−(−ω1,−ω2),

where the ai, i = 1, 2, 3, are arbitrary complex constants which may be different for
each quantity represented by Z. Similar remarks apply to Q+−(ω1, ω2).

Remark 17.5.3. If we choose a1 = a2 = 0 and a3 = −1, then from (17.5.2), it follows
that Y(ω,ω) = 0.
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Thus, we can write a general form of (17.5.7)1,2, incorporating substitutions of the
kind outlined above, as follows:

ψ(t) = φ(t) +
1

8π2

∫ ∞

−∞

∫ ∞

−∞
Ėt
+(ω1)R(ω1, ω2)Ėt

+(ω2)dω1dω2

D(t) = − 1

8π2

∫ ∞

−∞

∫ ∞

−∞
Ėt
+(ω1)L(ω1, ω2)Ėt

+(ω2)dω1dω2,

(17.5.23)

in the notation specified after (17.5.22), so that, for example,

L(ω1, ω2) = K+−(ω1, ω2) + k2+(ω1, ω2) + k1−(ω1, ω2).

If (17.5.7) is replaced by (17.5.8), the non-uniqueness of the kernels no longer holds,
as noted after (17.5.9). Equation (17.5.23)1 can be replaced by

ψ(t) = φ(t) − i

8π2

∫ ∞

−∞

∫ ∞

−∞

Ėt
+(ω1)L(ω1, ω2)Ėt

+(ω2)
ω+1 − ω−

2

dω1dω2, (17.5.24)

by virtue of the relation

− i

8π2

∫ ∞

−∞

∫ ∞

−∞

Ėt
+(ω1)[k2+(ω1, ω2) + k1−(ω1, ω2)]Ėt

+(ω2)
ω+1 − ω−

2

dω1dω2 = 0,

so that (17.5.24) reduces to (17.5.13)1. The term k2+(ω1, ω2) yields zero by integrat-
ing the variable ω2 over a contour enclosing Ω(−), which is a generalization of the
argument relating to (17.5.11). Similarly for the term k1−(ω1, ω2), which is zero by
virtue of the integration over ω1.

However, for D(t), we have

D(t) =
i

8π2

∫ ∞

−∞

∫ ∞

−∞

Ėt
+(ω1)L(ω1, ω2)Ėt

+(ω2)
ω−

1 − ω+2
dω1dω2

+
1

4π

∫ ∞

−∞
Ėt
+(ω) [k2+(ω,ω) + k1−(ω,ω)] Ėt

+(ω)dω.

(17.5.25)

This follows by a generalization of the argument leading to (17.5.12). Applying the
Plemelj formulae to (17.5.24) and (17.5.25), we find that the condition (17.5.18)
re-emerges.

Note that if
L(ω1, ω2) = K+−(ω1, ω2) − K+−(−ω1,−ω2),

as specified by Remark 17.5.3, then the integrals in (17.5.24) and (17.5.25) are non-
singular because L(ω,ω) vanishes, by virtue of (17.5.2). Thus,

ψ(t) = φ(t) − i

8π2

∫ ∞

−∞

∫ ∞

−∞

Ėt
+(ω1)L(ω1, ω2)Ėt

+(ω2)
ω1 − ω2

dω1dω2. (17.5.26)

The general forms of free energies or dissipation functionals can be specialized
in two ways: specifying histories or choosing particular functional forms for the rate
of dissipation kernels K(·, ·). We now explore both of these approaches.
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17.6 General Dissipative Materials for Specified Histories

In this section, we choose general kernels and particular histories.
As noted in Sect. 17.2, a given material with memory typically has a set of many

free energy functionals associated with it, all members of which yield the same
constitutive relations. Explicit formulae are derived in this chapter for the free en-
ergy and total dissipation of such a material in the cases of step function and si-
nusoidal/exponential histories. Expressions for the fraction of stored and dissipated
energy are deduced.

17.6.1 Free Energy and Dissipation Functionals for Particular Histories

Two important dimensionless parameters are

β =
G∞

G0
, χ =

G0 −G∞

G0
= 1 − β = − 1

G0

∫ ∞

0
K(z, z)dz, β, χ ∈ [0, 1]. (17.6.1)

The relation (17.3.15) has been used. These parameters provide simple measures of
the memory contribution and therefore, the amount of energy loss due to material
deformation. The smaller the quantity β or the larger the parameter χ, the greater the
energy loss.

The fraction of energy stored and dissipated, respectively, for any given history,
can be determined according to the formulae

Fs(t) =
ψ(t)
W(t)

, Fd(t) =
D(t)
W(t)

, Fs(t) + Fd(t) = 1. (17.6.2)

The interpretation of these quantities is discussed further in [18].
Expressions for the free energy, total dissipation, and the ratios Fs(t), Fd(t) will

be given in the case of a general rate of dissipation kernel K(s, u), and three different
types of strain history. These quantities are important characteristic properties of the
material described by this kernel.

Any choice of K(s, u) ∈ K will describe the stress-strain and energy behavior of
one specific material. Matters are more difficult when we seek to reverse this process
and determine the kernel K(s, u) which describe a pre-chosen material, referred to as
material I in Sect. 17.1.

Let the quantity K+−(ω1, ω2), determined from each K(s, u) ∈ K by (17.5.1),
form a set KF .

As already noted, the functionals ψ f (t), f = 1, 2, . . . ,N lie on the boundary of
F, in particular the minimum and maximum free energies which provide lower and
upper bounds; similarly for K f

+−(ω1, ω2) with respect to KF . The factors H f
±(ω)

and therefore all these quantities are deduced from the parameters of the relaxation
function. The size of the set F (and KF or K) is, in this sense, determined by the
relaxation function.

We seek to give detailed expressions for free energies and related quantities for
general choices of the kernel K(s, u) ∈ K and histories with step function and SE
behavior.
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17.6.1.1 Step Function Histories

This is the simplest non-constant behavior of the strain history, given as follows.
Consider E(u), u ≤ t where t is the current time, assumed to be positive. Let

E(u) =

⎧⎪⎪⎨⎪⎪⎩
0, u ≤ 0,

E0, 0 < u ≤ t,
(17.6.3)

giving

Ė(u) =
dE(u)
du

= E0δ(u),

in terms of the singular delta function. Thus,

Ėt(s) = E0δ(t − s).

It follows from this relation and (17.3.11) that

D(t) = −
E2

0

2
K(t, t). (17.6.4)

Also, from (17.4.8), (17.3.5)4 and (16.1.32), we have

ψ(t) = φ(t) −
E2

0

2

∫ ∞

0
K(t + z, t + z)dz

=
1
2
G∞E

2
0 −

E2
0

2

∫ ∞

t
K(y, y)dy, t ≥ 0.

(17.6.5)

The integral term is nonnegative, by virtue of (17.3.15). Relation (17.4.11) yields
that

1
2
G0E

2
0 =

1
2
G∞E

2
0 −

E2
0

2

∫ ∞

0
K(y, y)dy. (17.6.6)

Thus,

ψ(t) ≤ 1
2
G0E

2
0.

It follows from (17.3.19) that

W(t) =
1
2
G0E

2
0,

so that (17.3.21) is satisfied. Relation (16.1.29) gives that

D(t) = −
E2

0

2

∫ t

0
K(y, y)dy.

The finite range of the integral is easily understood, from a physical point of view.
For the infinite period specified by (17.6.3)1, there is no dissipation. At time t = 0,
dissipation begins. Referring to (17.6.2), we see that
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Fd(t) = − 1
G0

∫ t

0
K(y, y)dy, Fs(t) = 1 − Fd(t).

Differentiating with respect to time, we obtain

d
dt
Fd(t) = − 1

G0
K(t, t),

d
dt
Fs(t) = − d

dt
Fd(t),

so that Fd(t) is monotonically increasing and Fs(t) is monotonically decreasing. Note
that

Fd(∞) =
G0 −G∞

G0
= χ = 1 − β, Fs(∞) =

G∞

G0
= β,

in terms of the quantities introduced in (17.6.1). Thus, χ measures the energy dissi-
pation and β the energy storage for any material in K, due to a sudden step change
in strain.

The quantity Fd(t) is zero at t = 0 and increases monotonically to χ as t → ∞,
while Fs(t) = 1 at t = 0 and decreases monotonically to β at large t. Note that K(y, y)
must tend to zero as y → ∞ to yield convergent integrals in (17.6.5) or (17.6.6).

Observe from (17.6.4) that, if D(t) can be determined, this yields a measurement
of K(t, t). To obtain measurements of K(s, u), s, u ∈ R+, one needs to consider his-
tories with two steps (Sect. 7.1.3). Of course, this is not a very practical technique
since step function histories are difficult to approximate closely.

17.6.1.2 SSE Histories

Consider the history and current value (Et, E(t)) defined by (16.11.1). Furthermore,
ω± are given by (16.11.2). For η = 0, we have purely sinusoidal behavior, while for
ω0 = 0, the history is exponentially growing. The derivative Ėt(s) has the form

Ėt(s) = iω−E0e
iω−(t − s) − iω+E0e

−iω+(t − s). (17.6.7)

Also, the quantity Et
+(ω) is given by

Et
+(ω) = E0

eiω−t

i(ω + ω−)
+ E0

e−iω+t
i(ω − ω+)

, (17.6.8)

while

Ėt
+(ω) = E0ω−

eiω−t

ω + ω−
− E0ω+

e−iω+t
ω − ω+

= −iωEt
r+(ω), (17.6.9)

by virtue of (16.1.17).
Using (16.1.3) and (17.6.7), we find that the stress is given by

T (t) =M+(ω−)E0e
iω−t +M+(−ω+)E0e

−iω+t, (17.6.10)

where M+(ω) is defined by (16.1.9). Referring to (17.6.8) and (17.6.9), we see that
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Et
+(−iα) = E0

eiω−t

α + iω−
+ E0

e−iω+t
α − iω+

,

Ėt
+(−iα) = iE0

ω−eiω−t

α + iω−
− iE0

ω+e−iω+t
α − iω+

.

It follows from (17.6.9) that

Et
r+(−iαi) = −iE0

ω−

αi

eiω−t

αi + iω−
+ iE0

ω+
αi

e−iω+t
αi − iω+

= −ei(t)
αi

, i = 1, 2, . . . , n,

where the ei are given by (17.4.16) with the aid of (16.1.17).
The real quadratic form

V(t) = ME2
0e

2iω−t + M E0
2
e−2iω+t + N|E0|2ei(ω− − ω+)t

= 2Re[ME2
0e

2iω−t] + N|E0|2ei(ω− − ω+)t

=

[
2Re

(
ME2

0e
2iω0t

)
+ N|E0|2

]
e2ηt

(17.6.11)

will be denoted by
V(t) = {M,N} . (17.6.12)

which is a generalization of (16.11.3). The quantity N is real. All free energies, total
dissipations, rates of dissipation and work functions can be represented in the form
V(t), for histories given by (16.11.1). Note that

∫ t

−∞
V(s)ds =

{
M

2iω−
,

N
i(ω− − ω+)

}
,

V̇(t) = {2iω−M, i(ω− − ω+)N} .
(17.6.13)

Remark 17.6.1. For η = 0, the quantity V = {M,N} will be completely periodic if M
and N are finite quantities, independent of t.

We have, from (17.6.7) for s = 0 and (17.6.10),

T (t)Ė(t) = iω−M+(ω−)E2
0e

2iω−t − iω+M+(−ω+)E0
2
e−2iω+t

+ i [ω−M+(−ω+) − ω+M+(ω−)] |E0|2ei(ω− − ω+)t

= {iω−M+(ω−), i [ω−M+(−ω+) − ω+M+(ω−)]} .

(17.6.14)

Using (16.1.30)1, (17.6.13)1, and (17.6.14), we see that

W(t) = {MW ,NW } ,

where
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MW =
1
2
M+(ω−), NW =

ω−M+(−ω+) − ω+M+(ω−)
ω− − ω+

. (17.6.15)

The term NW diverges in the purely sinusoidal limit as η → 0.
A general free energy (17.3.5)1 for histories of the form (16.11.1) is given by

ψ(t) =
{
Mψ,Nψ

}
. (17.6.16)

where

Mψ =
1
2

[
G∞ − ω2

−G̃+−(ω−,−ω−)
]

=
1
2

[
M+(ω−) +

iω−

2
K+−(ω−,−ω−)

]
,

(17.6.17)

by virtue of (16.1.9), (17.5.1), and (17.5.5). Also, from (16.1.9), (17.5.3)1 and sub-
sequent observations,

Nψ = G∞ +
1
2

{
|ω−|2G̃+−(ω−, ω+) + |ω+|2G̃+−(−ω+,−ω−)

}

= G∞ + |ω−|2G̃+−(ω−, ω+)

= G∞ +
|ω−|2

i(ω− − ω+)

[
K+−(ω−, ω+) + G̃+(ω−) + G̃+(ω+)

]

=
−i|ω−|2K+−(ω−, ω+) + ω−M+(−ω+) − ω+M+(ω−)

ω− − ω+
,

(17.6.18)

again using (17.5.5). From (17.3.11), (17.5.3), and (17.6.7), we find that

D(t) = {MD,ND} , (17.6.19)

where

MD =
ω2
−

2
K+−(ω−,−ω−),

ND = −|ω−|2
2

{K+−(ω−, ω+) + K+−(−ω+,−ω−)}

= −|ω−|2K+−(ω−, ω+).

(17.6.20)

Let
D(t) = {MD,ND} .

Then, from (17.6.13)1,

MD = − iω−

4
K+−(ω−,−ω−), ND = i|ω−|2

K+−(ω−, ω+)
ω− − ω+

. (17.6.21)

We see from (17.6.15), (17.6.17), (17.6.18), and (17.6.21) that (16.1.29) is obeyed.
Note that ND diverges in the sinusoidal limit.

The ratios (17.6.2) are given by

Fd(t) =
VD(t)
VW (t)

, Fs(t) = 1 − Fd(t),
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where VD(t) has the form (17.6.11) with M = MD and N = ND given by (17.6.21).
Also, VW (t) is similarly defined, with MW and NW given by (17.6.15).

The factor e2ηt, giving the exponential part of the history, cancels out of the
ratios, yielding for Fd(t),

Fd(t) =
MDE2

0e
2iω0t + MDE2

0e
−2iω0t + ND|E0|2

MWE2
0e

2iω0t + MWE2
0e
−2iω0t + NW |E0|2

. (17.6.22)

Now, we have

MWE
2
0e

2iω0t + MWE2
0e
−2iω0t + NW |E0|2 > 0, (17.6.23)

which is a consequence of the fact that W(t), given by (17.3.19), is positive, as is
the cancelled factor e2ηt. Also, by averaging over any interval of duration π/ω0, the
oscillatory terms vanish and we deduce that NW > 0. The expression in (17.6.23)
may be written as

NW |E0|2
[
1 +

2|MW | cos(2ω0t + λ)
NW

]
, λ = arg[MWE

2
0],

where the term in brackets must be positive. It follows that, for all t,

NW > 2|MW | cos(2ω0t + λ). (17.6.24)

We can therefore write (17.6.22) as the numerator multiplying the factor

1

NW |E0|2
[1 + A],

where A is an infinite expansion of powers of terms involving e±2iω0t. This expan-
sion is convergent by virtue of the inequality (17.6.24). If we take the average of
Fd(t) over any time interval of duration π

ω0
, it reduces to

Fdc =
ND

NW
=

i|ω−|2K+−(ω−, ω+)
ω−M+(−ω+) − ω+M+(ω−)

,

Fsc = 1 − Fdc =
Nψ

NW

=
−i|ω−|2K+−(ω−, ω+) + ω−M+(−ω+) − ω+M+(ω−)

ω−M+(−ω+) − ω+M+(ω−)
.

(17.6.25)

17.6.1.3 Purely Sinusoidal Histories

For this case, the quantities W(t) and D(t) diverge, as pointed out after (17.6.15) and
(17.6.21). We can write an approximate version of (11.7.5) as
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W(t) = {MW ,NW },

MW =
1
2

[
G0 +G

′
+(ω0)

]

NW = G0 +G
′
c(ω0) − ω0

∂

∂ω0
G′

c(ω0) −G′
s(ω0)ω0

(
2t +

1
η

)
.

In the limit η → 0, the quantity NW does not meet the criterion specified in Re-
mark 17.6.1, so that W(t) does not obey condition P4.

In this limit, where η → 0, (17.6.11) and (17.6.12) become

{M,N} = ME2
0e

2iω0t + M E0
2
e−2iω0t + N|E0|2. (17.6.26)

Relation (17.6.14) converges to a finite result of the form

T (t)Ė(t) = {iω0M+(ω0), 2H(ω0)},

where (16.1.10) and (16.1.13) have been invoked. Also, (17.6.17) and (17.6.18) yield

Mψ =
1
2

{
M+(ω0) +

iω0

2
K+−(ω0,−ω0)

}
,

Nψ = R(ω0) − ω0
d

dω0
R(ω0) + U(ω0),

U(ω0) =
iω2

0

2

[
− ∂

∂ω1
K+−(ω1, ω2) +

∂

∂ω2
K+−(ω1, ω2)

] ∣∣∣∣∣
ω1=ω2=ω0

,

(17.6.27)

where R(ω) is defined by (16.1.10). Finally, from (17.6.19) and (17.6.20), we deduce
that

D(t) =

⎧⎪⎪⎨⎪⎪⎩
ω2

0

2
K+−(ω0,−ω0), 2H(ω0)

⎫⎪⎪⎬⎪⎪⎭ , (17.6.28)

where (17.5.18) has been used. Applying (17.6.13)2 in the sinusoidal limit, one can
show that (16.1.28) is obeyed.

Comparison with Special Cases

We now compare these results with previously given particular examples of sinu-
soidal histories. The minimum free energy is discussed in detail for such histories in
Sect. 11.7. Precisely analogous formulae apply to all the ψ f (t). Thus, we have, in the
notation (17.6.26), using the complex modulus given by (16.1.9), rather than G′(ω0)
or G̃(ω0),

ψ f (t) =

{
1
2

[
M+(ω0) +

i
ω0

[
H f

−(−ω0)
]2

]
,R(ω0) − ω0

d
dω0

R(ω0) + Qf (ω0)

}
,

(17.6.29)
where Qf (ω) is given by

Qf (ω) = i

[
d
dω

H f
+(ω)H f

−(ω) − H f
+(ω)

d
dω

H f
−(ω)

]
≥ 0, ω ∈ R. (17.6.30)
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The rate of dissipation is given by (16.4.12) and (16.4.6). It can be shown that

Kf (t) = H f
−(−ω0)E0e

iω0t + H f
−(ω0)E0e

−iω0t,

yielding

Df (t) = {[H f
−(−ω0)]2, 2H(ω0)} = {[H f

+(ω0)]2, 2H(ω0)}, (17.6.31)

where (16.4.1) has been used.
We see that relations (17.6.29) and (17.6.31) are the special cases of (17.6.27)

and (17.6.28) for ω1ω2K+−(ω1, ω2) = −2H f
+(ω1)H f

+(ω2). In particular, the quantity
Qf (ω) in (17.6.30) is equal to U(ω) in (17.6.27) for this choice of kernel.

17.6.1.4 Exponential Histories

This can be treated either by direct calculation, or as a special case of the general
formulae of Sect. 17.6.1.2, where ω0 → 0. We consider a history and current value
(Et, E(t)) given by (16.11.1) with ω0 = 0, so that

E(t) = Eee
ηt, Et(s) = E(t − s), Ee = E0 + E0.

The stress function, given by (17.6.10), has the form

T (t) =M+(−iη)E(t), M+(−iη) = G∞ + ηG̃+(−iη), (17.6.32)

where the forms of M+(−iη) can be deduced from (16.1.9). This quantity is real.
From (17.6.32) or as special cases of (17.6.14) and (17.6.15), we have

T (t)Ė(t) = ηM+(−iη)E2(t) =
1
2
M+(−iη)

d
dt
E2(t),

W(t) =
1
2
M+(−iη)E2(t).

(17.6.33)

Also, (17.6.16), (17.6.17), and (17.6.18) reduce to

ψ(t) =
1
2

[M+(−iη) +
η

2
K+−(−iη, iη)]E2(t). (17.6.34)

The rate of dissipation and total dissipation are special cases of (17.6.19) and
(17.6.21), given by

D(t) = −η2

2
K+−(−iη, iη)E2(t), D(t) = −η

4
K+−(−iη, iη)E2(t). (17.6.35)

The results for the various quadratic quantities above can be summarized in a simple
formula. Putting ω0 = 0 in (17.6.11), we have

V(t) = V0e
2ηt, V0 = ME2

0 + M E0
2
+ N|E0|2.
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It can be shown using (17.3.5), (17.3.11), and (17.3.19), relating, respectively, to
ψ(t), D(t), and W(t), that

M = M =
N
2
, (17.6.36)

for exponential histories. This relation must therefore hold true for D(t), by virtue
of (16.1.29). Equation (17.6.36) can also be shown using various explicit formulae
from (17.6.15) to (17.6.21). It gives that V0 = ME2

e or

V(t) = ME2(t). (17.6.37)

Each result in (17.6.33)–(17.6.35) has the form (17.6.37) where, for example, if
M = M(ω−, ω+) in the general sinusoidal/exponential case, this is replaced by
M = M(−iη, iη). The property (17.6.37) was first noted in [16].

The quantities Fs and Fd, defined by (17.6.2), are time-independent and given by

Fs =
M+(−iη) + η

2K+−(−iη, iη)

M+(−iη)
, Fd = −η

2
K+−(−iη, iη)
M+(−iη)

.

Note that
Fs = Fsc, Fd = Fdc,

where Fsc and Fdc are the quantities introduced in (17.6.25), with ω± replaced by
±iη, as in the comment after (17.6.37).

Various detailed expressions for step function and SE histories are presented in
[18]. Plots of some of these functions are also presented.

17.7 Product Formulae in the Time and Frequency Domains

We now choose general histories and special forms of kernels, using results obtained
in Sect. 17.5 to help determine new nonnegative rates of dissipation and from these
to deduce new free energies.

In the time and frequency domains, we have the corresponding conditions
(17.4.10) and (17.5.18), which constrain the choice of kernels for the rate of dis-
sipation. This category is in fact very general and will be explored in this section.

The simplest method of creating nonnegative quadratic functionals is to assume
that the relevant kernels have the form of sums of products.

Also, a family of free energy functionals is introduced, which is a generalization
of the category discussed in Sect. 16.4 consisting of the minimum and related free
energies.

It should be emphasized that all developments in the time and frequency domains
are equivalent.
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17.7.1 The Time Domain

Let us take

K(s, u) = −
m∑

i, j=1

Ai jki(s)k j(u), (17.7.1)

for some positive integer m, where it is assumed that all quantities
∫ ∞

0
ki(s)Ėt(s)ds,

i = 1, 2, . . . ,m exist, for the class of histories of interest. The matrix A is assumed to
be nonnegative. The rate of dissipation is given by

D(t) =
1
2

∫ ∞

0

∫ ∞

0

m∑
i, j=1

Ėt(s)Ai jki(s)k j(u)Ėt(u)dsdu ≥ 0. (17.7.2)

We obtain from (17.4.9) that

ψ(t) = φ(t) +
1
2

∫ ∞

0

∫ ∞

0

∫ ∞

0
Ėt(s)

m∑
i, j=1

Ai jki(z + s)k j(z + u)dzĖt(u)dsdu. (17.7.3)

From (17.4.10), it follows that

G̃(s) =
∫ ∞

0

m∑
i, j=1

Ai jki(z)k j(z + s)dz. (17.7.4)

The simplest case of (17.7.1) is where m = 1. Absorbing
√
A11 into k(s), we obtain

K(s, u) = −k(s)k(u), D(t) =
1
2

[∫ ∞

0
k(s)Ėt(s)ds

]2

, (17.7.5)

and

G̃(s, u) =
∫ ∞

0
k(z + s)k(z + u)dz,

giving

ψ(t) = φ(t) +
1
2

∫ ∞

0

∫ ∞

0

∫ ∞

0
Ėt(s)k(z + s)k(z + u)Ėt(u)dsdudz. (17.7.6)

Relation (17.7.4) becomes

G̃(s) =
∫ ∞

0
k(z)k(z + s)dz. (17.7.7)

The quantity G̃(s) is the given relaxation function characterizing the material, while
the free energy determined by (17.7.6) is one of (usually) many functionals that gen-
erate this quantity. Relation (17.7.7) can be regarded as a nonlinear integral equation
for k(·) in terms of G̃(s).

The quantity k(s) determines K(s, u) in accordance with (17.7.5)1 and therefore
the corresponding D(t) and ψ(t). We return to this case in Sect. 17.7.2,
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Two further special cases will be considered, that where

Ai j = 1 or Ai j = δi j, i, j = 1, 2, . . . ,m, (17.7.8)

where δi j is the standard Kronecker delta notation. For (17.7.8)1, relation (17.7.2)
becomes

D(t) =
1
2

⎡⎢⎢⎢⎢⎢⎣
m∑
i=1

∫ ∞

0
ki(s)Ė

t(s)ds

⎤⎥⎥⎥⎥⎥⎦
2

, (17.7.9)

which is clearly nonnegative. It follows from (17.7.3) that the corresponding free
energy has the form

ψ(t) = φ(t) +
1
2

∫ ∞

0

∫ ∞

0

∫ ∞

0
Ėt(s)

m∑
i, j=1

ki(z + s)k j(z + u)dzĖt(u)dsdu. (17.7.10)

For example, consider the results of Sect. 16.9.1. Referring to (16.9.9), we see that,
for Df (t), the quantity ki(s) in (17.7.9) is given by

ki(s) =

√
2h∞R

f
i e
−αi s

αi
, i = 1, 2, . . . , n,

where m = n, so that (17.7.10) gives (16.9.7).
For (17.7.8)2, we obtain

K(s, u) = −
m∑
i=1

ki(s)ki(u). (17.7.11)

The rate of dissipation has the form

D(t) =
1
2

m∑
i=1

[∫ ∞

0
ki(s)Ė

t(s)ds

]2

≥ 0. (17.7.12)

It follows from (17.7.3) that

ψ(t) = φ(t) +
1
2

∫ ∞

0

∫ ∞

0

∫ ∞

0
Ėt(s)

m∑
i=1

ki (z + s)) ki (z + u)) dzĖt(u)dsdu. (17.7.13)

Also, from (17.7.4),

G̃(s) =
∫ ∞

0

m∑
i=1

ki(z)ki(z + s)dz. (17.7.14)

Putting
ki(s) =

√
2αiGie

−αi s

in (17.7.12) gives (17.4.20)2 while (17.7.13) yields (17.4.20)1, relating to the Dill
free energy.
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17.7.1.1 New Category of Free Energies: Time Domain

We now sketch a systematic approach to the construction of a new family of free
energies. This can be developed only in general terms for the time domain repre-
sentation. The frequency representation is considered in Sect. 17.7.2.1 below, and it
emerges that one can give explicit formulae for the new free energies in that formal-
ism.

Remark 17.7.1. Let us assume that G̃(s) can be decomposed into m components
G̃i(s), i = 1, 2, . . . ,m, so that

G̃(s) =
m∑
i=1

G̃i(s), (17.7.15)

where each G̃i(s) is the relaxation function of a well-defined material, obeying the
laws of thermodynamics, in particular (16.1.12). The term sub-material will be used
in reference to each of these. The strain function is assumed to be the same in each
sub-material.

For example, in the case of discrete-spectrum materials, G̃(s) is given by (11.9.1).
We could take G̃i(ω) to be any partial sum of the terms in that expression, e.g.,

G̃i(s) =
mi∑
k=ni

Gke
−αk s, n ≥ mi > ni ≥ 1. (17.7.16)

The choice of terms in this relation need not reflect our original order.
We put

G̃i(s) =
∫ ∞

0
ki(z)ki(z + s)dz, i = 1, 2, . . .m, (17.7.17)

yielding a relation of the form (17.7.14). For each i, (17.7.17) can be regarded as
a nonlinear integral equation for ki(s) in terms of the known quantity G̃i(s). These
equations can be solved in the same way as (17.7.7) (see Sect. 17.7.2.1 below). The
solutions yield the form of K(s, u) as given by (17.7.11), and therefore allow us to
determine D(t) and ψ(t).

17.7.2 The Frequency Domain

Referring to (17.5.1) and (17.7.1), we have

K+−(ω1, ω2) = −
m∑

i, j=1

Ai jki+(ω1)k j−(ω2) = −
m∑

i, j=1

Ai jki−(ω1)k j−(ω2), (17.7.18)

where

ki−(ω) =
∫ ∞

0
ki(s)e

iωsds, ki+(ω) = ki−(ω). (17.7.19)

Condition (17.5.18)1 gives that



418 17 Constructing Free Energies for Materials with Memory

m∑
i, j=1

Ai jki−(ω)k j−(ω) = 2
H(ω)

ω2
. (17.7.20)

In the case where m = 1, we have

K+−(ω1, ω2) = −k+(ω1)k−(ω2) (17.7.21)

and relation (17.7.20) becomes

k+(ω)k−(ω) = |k−(ω)|2 = 2
H(ω)

ω2
. (17.7.22)

We solve (17.7.7) at this point and show that it is equivalent to (17.7.22). Substituting
the inverse transforms of (17.7.19) into (17.7.7) and carrying out two time domain
integrations yields

G̃+(ω) = − 1

4π2

∫ ∞

−∞

∫ ∞

−∞

k−(ω1)k+(ω2)
(ω−

1 − ω+2 )(ω− − ω+2 )
dω1dω2

= − 1
2πi

∫ ∞

−∞

k+(ω′)k−(ω′)
ω′ − ω− dω′.

(17.7.23)

The choice ω+2 in the first form is dictated by the need for the time domain integrals to
converge. The final form is obtained by integrating ω1 over Ω(+). Taking the complex
conjugate of (17.7.23)2 and applying the Plemelj formulae give

G̃+(ω) + G̃+(ω) = 2G̃c(ω) = 2
H(ω)

ω2
= k+(ω)k−(ω) = |k−(ω)|2, (17.7.24)

which agrees with (17.7.22).
Relation (17.7.22) or (17.7.24) is of course the factorization problem for H(ω).

The solution is given either by the factors (16.1.14), which yield the minimum free
energy for all materials, or those given by (16.4.1) for materials with only isolated
singularities. Thus, for some materials, the solution of (17.7.22) is non-unique. We
put

k−(ω) =
√

2
H f

−(ω)
ω

. (17.7.25)

It follows from (17.7.21) that

K+−(ω1, ω2) = −2
H f
+(ω1)H f

−(ω2)
ω1ω2

. (17.7.26)

Equation (17.7.26) yields the rate of dissipation Df (t) given by (16.4.17) and ψ f (t)
of the form (16.4.15), both expressed in terms of Ėt

+ with the aid of (16.1.17).
We now assume that A is the unit matrix so that

K+−(ω1, ω2) = −
m∑
i=1

ki−(ω1)ki−(ω2). (17.7.27)



17.7 Product Formulae in the Time and Frequency Domains 419

Relations (17.5.7)2 and (17.5.13) give

D(t) =
1

8π2

m∑
i=1

|
∫ ∞

−∞
ki−(ω)Ėt

+(ω)|2dω,

ψ(t) = φ(t) +
i

8π2

∫ ∞

−∞

∫ ∞

−∞

Ėt
+(ω1)

∑m
i=1 ki−(ω1)ki−(ω2)Ėt

+(ω2)

ω+1 − ω−
2

dω1dω2.

Condition (17.5.18)1 gives that

m∑
i=1

ki−(ω)ki−(ω) =
m∑
i=1

|ki−(ω)|2 = 2
H(ω)

ω2
. (17.7.28)

An immediate example of (17.7.27) satisfying (17.7.28) is obtained by taking m = N
and

ki−(ω) = k f−(ω) =

√
2λ f H

f
−(ω)

ω
, (17.7.29)

giving

K+−(ω1, ω2) = −2
N∑
f=1

λ f
H f
+(ω1)H f

−(ω2)
ω1ω2

.

Other solutions of (17.7.28) may of course exist.

17.7.2.1 New Category of Free Energies: Frequency Domain

The developments in this section are the frequency domain version of those in
Sect. 17.7.1.1. Here, we use (17.7.27) and (17.7.28) to determine a family of free
energies, corresponding to (17.7.11) and (17.7.14) in Sect. 17.7.1.1.

It follows from Remark 17.7.1 that the quantity H(ω) can be decomposed into m
components Hi(ω), i = 1, 2, . . . ,m, corresponding to (17.7.15) so that

H(ω) =
m∑
i=1

Hi(ω), (17.7.30)

where each Hi(ω) is related to G̃i(s) in accordance with (16.1.13) and in particular is
nonnegative for ω ∈ R. It is the quantity H(ω) for the sub-material with relaxation
function G̃i(s).

For example, in the case of discrete-spectrum materials, H(ω) is given by
(11.9.2). We could take Hi(ω) to be any partial sum of the terms in that expression,
e.g.,

Hi(ω) = ω2
mi∑
k=ni

αkGk

α2
k + ω

2
, n ≥ mi > ni ≥ 1,

corresponding to (17.7.16).
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In general, each Hi(ω) can be factorized as in (16.1.14) or, for a material with
only isolated singularities, (16.2.9). Thus, we write

Hi(ω) = H f
i+(ω)H f

i−(ω), H f
i±(ω) = H f

i∓(−ω) = H f
i∓(ω).

For materials with only isolated singularities, the factorization indicated by the su-
perscript f will vary with the subscript i.

Starting from (17.7.17) and applying the procedure leading to (17.7.24) and
(17.7.25) for each i, we obtain (17.7.28) by virtue of (17.7.30). Relation (17.7.25)
for each i and (17.7.30) can be written as

ki−(ω) =
√

2
H f

i−(ω)

ω
,

m∑
i=1

ki−(ω)ki−(ω) = 2
m∑
i=1

H f
i+(ω)H f

i−(ω)

ω2
= 2

H(ω)

ω2
,

for the range of possible choices of f corresponding to each i, where H f
i±(ω) are a

particular pair of factors of Hi(ω). Thus, we have

K+−(ω1, ω2) = −2
m∑
i=1

H f
i+(ω1)H f

i−(ω2)

ω1ω2
. (17.7.31)

The superscript f will now be dropped to simplify notation.
If (17.7.31)1 is inserted into (17.5.7) expressed in terms of Et

r+(ω) by means of
(16.1.17), we obtain

D(t) =
m∑
i=1

|Ki(t)|2,

Ki(t) =
1

2π

∫ ∞

−∞
Hi−(ω)Et

r+(ω)dω.

(17.7.32)

These relations are analogous to (16.4.12) and (16.4.6) with Hi−(ω) playing the role
of H f

−(ω). Substituting (17.7.31)1 into (17.5.13)2 gives a sum of terms identical to
(16.4.15) but with Hi± replacing H f

±. Substituting (17.7.31)1 into (17.5.17)2 yields a
sum of terms of the form (16.4.16) with Hi± rather than H f

±. Again, each term can
be put in the form (16.4.11) with the above replacements. The free energy and total
dissipation can therefore be written as

ψ(t) = φ(t) +
1

2π

m∑
i=1

∫ ∞

−∞
|pti−(ω)|2dω, D(t) =

m∑
i=1

∫ ∞

−∞
|pti+(ω)|2dω,

where

pti−(ω) =
1

2πi

∫ ∞

−∞

Hi−(ω′)Et
r+(ω′)

ω′ − ω+
dω′,

pti+(ω) =
1

2πi

∫ ∞

−∞

Hi−(ω′)Et
r+(ω′)

ω′ − ω− dω′.
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These new free energies clearly obey (16.1.26). The rate of dissipation is nonneg-
ative, by virtue of (17.7.32). Also, we can demonstrate that (16.1.25) holds by an
argument analogous to that in Proposition 11.2.2.

The ordering of these free energy functionals is discussed in some detail in [162].

17.8 Approximation of a Discrete-Spectrum Material by a Day
Functional

This and the following section of the present chapter deal with topics that are not
closely related to those in earlier sections.

For materials with relaxation function containing one decaying exponential, the
associated Day functional is the physical free energy. For general discrete-spectrum
materials, we seek a best fit of the relaxation function with one decaying exponential
to that for the general case.

For the case n = 1, the relations (16.3.13) and (16.3.15) reduce to the formulae
for the Day free energy and rate of dissipation (see (10.2.15), (16.9.10) and [87]). A
relaxation function with only one decaying exponential, has the form (see (10.2.15),
(16.9.10), and (16.9.11))

GD(t) = G∞ +Gde
−αt, Gd = G0 −G∞. (17.8.1)

This behavior has, in some contexts, been referred to as the standard linear model
[167]. The complex modulus, defined by (16.1.9)2, is given by

M+(ω) = G∞ + iω
n∑
i=1

Gi

αi + iω
,

so that for n = 1

M+(ω) =
(α + iω)G∞ + iωGd

α + iω
. (17.8.2)

By virtue of (16.3.14) and (16.3.15)4, we must have

C11 = Gd, Γ11 = 2αGd.

The Day free energy functional is given by

ψD(t) = φ(t) +
Gd

2
e2

1(t), (17.8.3)

in terms of e1(t) defined by (16.3.12). The corresponding rate of dissipation is

DD(t) = αGde
2
1(t).

From (17.6.15) and (17.8.2), we can determine MW and NW for this case. In particu-
lar,
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NW = G∞ +Gd
(ω2

0 + η
2)(α + η)

η[(α + η)2 + ω2
0]
.

The kernels (17.4.14) reduce to

G̃(s, u) = Gde
−α(s + u), K(s, u) = −2αGde

−α(s + u), (17.8.4)

and (17.5.21) becomes

G̃+−(ω1, ω2) =
Gd

(α + iω1)(α − iω2)
,

K+−(ω1, ω2) = − 2αGd

(α + iω1)(α − iω2)
,

which yield explicit functions for MD and ND, given by (17.6.21). Thus, we obtain
that

MD =
iGd

2
(w0 − iη)α

(α + η + iω0)2
, ND = Gd

α(ω2
0 + η

2)

η[(α + η)2 + ω2
0]
.

Relations (16.9.9) and (16.9.7) are particular cases of the general formulae (16.3.13)
and (16.3.15), and must have the same limit for n = 1. This can be seen by noting
that

H∞ = −G′(0) = αGd,

and
R1

1 = −α,

which follows from the generalization of (11.9.7) to Rf
i , for n = 1.

The fundamental point made in this chapter is that a material with memory is
completely characterized by choosing K(s, u) rather than the relaxation function.
However, for the n = 1 case, specifying the relaxation function parameters fixes
uniquely the kernel K(s, u) and therefore determines the material completely. Thus,
the set K for n = 1 is a singleton given by (17.8.4)2, and there is only one mate-
rial with the constitutive relation generated by the relaxation function (17.8.1), with
parameters as specified.

Remark 17.8.1. If a material behavior can be adequately simulated by one decay
constant α, together with coefficients G∞ and Gd, then ψD(t), given by (17.8.3), is
the physical free energy for that material.

We now seek the Day relaxation function which is closest to the actual relaxation
function for the materials in K.

The αi, i = 1, 2, . . . , n, in (11.9.1) are given by (16.11.4), while the Gi, i =
1, 2, . . . , n, are determined by the assumption that theGi are all equal [18]. We choose
G0, G∞ and α such that the resulting n = 1 relaxation function approximates (11.9.1)
as closely as possible.

We choose G0 and G∞ to be the same for the materials with relaxation function
given by (11.9.1) and (17.8.1), respectively.
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Choosing the optimal value of α is somewhat more difficult. Consider

f (α) =
1

G2
d

∫ ∞

0
[GD(s) −G(s)]2 ds

=
1

G2
d

∫ ∞

0

⎡⎢⎢⎢⎢⎢⎣Gde
−αs −

n∑
i=1

Gie
−αi s

⎤⎥⎥⎥⎥⎥⎦
2

ds,

(17.8.5)

which is a L2(R+) norm of the difference between the relaxation functions for the
Day case and that in (11.9.1) . Then, we put

fm = min
α>0

f (α), (17.8.6)

and this minimum is achieved at αd, so that

f (αd) = fm ≤ f (α) ∀α ∈ R+. (17.8.7)

The quantity αd is the inverse time decay constant that will be used in the Day free
energy and dissipation. The function f (α), given by (17.8.5), can be explicitly calcu-
lated. Let us replace α by α0. Then

f (α0) =
n∑

i, j=0

cic j
αi + α j

, α0 ∈ (0, 1],

ci =

⎧⎪⎪⎨⎪⎪⎩
1, i = 0,

−Gi
Gd

, i = 1, 2, . . . , n.

(17.8.8)

This can be written in the form

f (α0) =
1

2α0
+ 2

n∑
i=1

ci
α0 + α j

+

n∑
i, j=1

cic j
αi + α j

, (17.8.9)

so that

f ′(α0) = − 1

2α2
0

− 2
n∑
i=1

ci
(α0 + α j)2

.

Thus, the α0 satisfying (17.8.7) is the solution of the equation

1 + 4
n∑
i=1

ciα2
0

(α0 + α j)2
= 0. (17.8.10)

The solution gives a minimum value of f (α) if f ′′(α0) > 0. This quantity α0 is equal
to αd.

It makes little difference what value of n is adopted. We choose n = 5 as
an example. The numerical values of αr, r = 1, 2, 3, 4, 5, given by (16.11.4), are
0.0718, 0.2679, 0.5359, 0.8038 and 1.0.
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The appropriate Day relaxation function is determined by (17.8.5) - (17.8.7)
where f (α) has the form (17.8.9). Since the Gi are all equal, (17.8.8)2 becomes

ci =

⎧⎪⎪⎨⎪⎪⎩
1, i = 0,

−1
n , i = 1, 2, . . . , n,

with the aid of (16.11.6) and (17.8.1)2. We look for a solution to (17.8.10) where
α0 ∈ (0, 1]. This is equal to 0.3225 [18], with optimum choice f (αd) = fm = 0.0968.

Thus, an approximate form of the physical free energy for all the materials asso-
ciated with the relaxation function G̃(s) of the form (11.9.1), with parameter values
as stated, is given by (17.8.3) with α1 = αd. There are in general many such materials
so the approximation is probably not very accurate in most cases.

17.9 Single-Integral Free Energies in Terms of It Derivatives

Single-integral free energy functionals that are expressible as quadratic forms of the
state functional It (see (16.5.1)) are considered in this section. The discussion is
based on [163].

This form is shown to include the functional ψF . There is also, however, a further
category of functionals of this kind for materials with non-singleton minimal states.
These latter functionals are difficult to construct, since basic inequalities relating to
thermodynamics must be explicitly imposed; they are therefore not so useful for
practical applications, in contrast to ψF .

The following notation will be useful:

Itk(τ) =
dk

dτk
It(τ), k = 1, 2, . . . . (17.9.1)

Then,

It1(τ) =
∫ ∞

0
G′(τ + u)Ėt(u)du, It2(τ) =

∫ ∞

0
G′′(τ + u)Ėt(u)du. (17.9.2)

Also,

∂

∂t
It1(s) = G′(s)Ė(t) + It2(s),

∂

∂t
It2(s) = G′′(s)Ė(t) + It3(s). (17.9.3)

Just as in (16.5.2), we have

lim
τ→∞

Itk(τ) = 0, k = 1, 2, 3, . . . . (17.9.4)

Consider the functional

ψ(t) = φ(t) +
1
2

∫ ∞

0
L(τ)[It1(τ)]2dτ. (17.9.5)
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This quantity is assumed to be a free energy. We now explore the constraints on L(τ)
imposed by this requirement.

The relation (16.1.28) must hold. Using (16.1.31), (17.9.3)1, and (17.9.4), we
deduce that

ψ̇(t) = Ė(t)

[
Te(t) +

∫ ∞

0
G′(τ)L(τ)It1(τ)dτ

]

+

∫ ∞

0
It2(τ)L(τ)It1(τ)dτ

= T (t)Ė(t) − 1
2
L(0)[It1(0)]2 − 1

2

∫ ∞

0
L′(τ)[It1(τ)]2dτ,

provided that the condition
∫ ∞

0
G′(τ)L(τ)It1(τ)dτ = T (t) − Te(t)

holds. With the help of (16.1.3), (16.5.3), and (17.9.2)1, this can be written as
∫ ∞

0
[G′(τ)L(τ) + 1]It1(τ)dτ

=

∫ ∞

0

∫ ∞

0
[G′(τ)L(τ) + 1]G′(τ + u)Ėt(u)dτdu = 0,

which must be true for arbitrary histories. Let us write the resulting condition as an
integral equation of the form

∫ ∞

0
G′(τ + u) f (τ)dτ = 0 ∀u ∈ R+, f (τ) = G′(τ)L(τ) + 1. (17.9.6)

An alternative pathway to (17.9.6) is to express (17.9.5) in the form (17.3.5) with

G̃(s, u) =
∫ ∞

0
G′(τ + s)L(τ)G′(τ + u)dτ,

and to impose the constraint (17.3.9), written in terms of G̃(u). Condition (17.9.6)
has the same form as (16.5.4), leading to

2i
ω
H(ω) f+(ω) = J+(ω),

where J+(ω) is an unknown function, analytic in Ω(−). This corresponds to (16.5.7).
If the material has only isolated singularities, there are many nontrivial solutions

of (17.9.6) given by a form similar to (16.5.15), as shown in [163].
If the material has branch cut singularities, then f (τ) = 0, τ ∈ R+ is the only

solution of (17.9.6), so that

L(τ) = − 1
G′(τ)

, τ ∈ R+,
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and the only possibility for a free energy given by a single-integral quadratic form
is the quantity ψF (see Sect. 10.1.3). In the scalar theory, this functional and the
associated rate of dissipation have the forms

ψF(t) = φ(t) − 1
2

∫ ∞

0

[It1(τ)]2

G′(τ)
dτ, (17.9.7)

and

DF(t) = −1
2

[It1(0)]2

G′(0)
− 1

2

∫ ∞

0

[
d
dτ

1
G′(τ)

]
[It1(τ)]2dτ

= −1
2

[It1(0)]2

G′(0)
+

1
2

∫ ∞

0
G′′(τ)

[
It1(τ)

G′(τ)

]2

dτ.

These quantities are nonnegative and ψF(t) is a valid free energy if conditions
(17.3.4) hold, not only for materials with branch point singularities, but for all mate-
rials. It is a relatively simple functional, convenient for applications.

The case of double integral quadratic forms is studied in depth in [163]. It is
shown that the only such form that is a free energy is that for the minimum free
energy discussed in Sect. 12.2.
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Minimal States and Periodic Histories

This chapter deals with the following two topics [17, 165].
Using a standard representation of a free energy associated with a linear memory

constitutive relation, a new condition, involving linear functionals, is derived which,
if satisfied, ensures that the free energy is a functional of the minimal state. Using this
condition and results on constructing free energy functionals in Chap. 17, it is shown
that if the kernel of the rate of dissipation functional is given by sums of products,
the associated free energy functional is a FMS. Because this condition is linear rather
than a quadratic, it is easier to explore and to apply in new contexts.

Also, it is argued that for a free energy functionals to be physically realistic, it
should exhibit strict periodic behavior for histories that have been periodic for all
past times. The work function does not have this property, which causes difficulties
in ascribing free energies to materials with singleton minimal states. A method of
avoiding this difficulty is outlined.

18.1 A New Linear Condition for Determining If a Free Energy
Is a FMS

A viscoelastic state is defined in general by the history and current value of strain
(Et, E(t)). The concept of a minimal state is introduced in Sect. 7.4. It can be ex-
pressed as follows (in slightly simplified form, ignoring the constant term in (7.4.1)2:
two viscoelastic states (Et

1, E1(t)), (Et
2, E2(t)) are equivalent or in the same equiva-

lence class or minimal state if for

E1(t + u) = E2(t + u), ∀u ≥ 0, (18.1.1)

we have
T1(t + u) = T2(t + u), ∀u ≥ 0. (18.1.2)

It is of interest to express these conditions for linear materials. In this case, the defin-
ing state functional of minimal states It, used earlier in various contexts, is given by
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It(τ) =
∫ ∞

0
G′(s + τ)Et

r(s)ds =
∫ ∞

0
G̃(s + τ)Ėt(s)ds, (18.1.3)

for any history Et and relative history Et
r. Let (Et

1, E1(t)) and (Et
2, E2(t)) be two his-

tories and current values, which we wish to check for equivalence. Then

Iti (τ) =
∫ ∞

0
G′(s + τ)Et

ir(s)ds =
∫ ∞

0
G̃(s + τ)Ėt

i(s)ds, i = 1, 2,

Itd(τ) =
∫ ∞

0
G′(s + τ)Et

dr(s)ds =
∫ ∞

0
G̃(s + τ)Ėt

d(s)ds,
(18.1.4)

where

Et
d(s) = Et

2(s) − Et
1(s), ∀ s ≥ 0, Ed(t) = E2(t) − E1(t). (18.1.5)

The condition that Et
1 and Et

2 are equivalent histories then takes the form

Ed(t) = 0, Itd(τ) = It2(τ) − It1(τ) = 0, ∀τ ≥ 0. (18.1.6)

Note that (18.1.6) is also the condition that Et
d is equivalent to the zero history. We

point out that the notation Iti (·), i = 1, 2, in (18.1.4) has a different meaning to that in
Sect. 17.9.1.

The interesting situation is where (18.1.6) applies for Et
d(s) � 0, which corre-

sponds to non-singleton minimal states. It will therefore be assumed that the relax-
ation function of the material under consideration has only isolated singularities.

For such materials, there is a maximum free energy that is less than the work
function W(t) and also a range of related intermediate free energies. Furthermore,
the free energy functional is positive semidefinite (see (7.4.9)).

A free energy ψ(t) = ψ̃(Et, E(t)) is a FMS if it has the property that any two
members (Et

1, E(t)), (Et
2, E(t)) of the same minimal state yield equal values of ψ̃, or

ψ̃(Et
1, E(t)) = ψ̃(Et

2, E(t)), (18.1.7)

which is the scalar form of (7.4.6).

Remark 18.1.1. In the discussion (18.1.1)–(18.1.6), the history Et
1 can be chosen ar-

bitrarily, while Et
2 is restricted to a degree by the conditions (18.1.6). This observa-

tion is important for Proposition 18.1.1 below.

Relations (18.1.1) and (18.1.2) for u = 0 become

E1(t) = E2(t), T1(t) = T2(t),

or

Ed(t) = 0, Itd(0) =
∫ ∞

0
G′(s)Et

d(s)ds = 0. (18.1.8)

Observe that they yield the equality

T1(t) = T2(t), (18.1.9)
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where T1 and T2 are the stress function T , for histories and current values (Et
1, E1(t))

and (Et
2, E2(t)), respectively.

Relation (18.1.7) is a constraint on quadratic functionals of the history. We now
derive a linear condition that is equivalent to (18.1.7).

Proposition 18.1.1. If (18.1.8) holds for Et
d, defined by (18.1.5)1, then the condition

(18.1.7) is equivalent to either
∫ ∞

0
G(s, u)Et

d(s)ds =
∫ ∞

0
G(u, s)Et

d(s)ds = 0, or
∫ ∞

0
G̃(s, u)Ėt

d(s)ds =
∫ ∞

0
G̃(u, s)Ėt

d(s)ds = 0, ∀u ∈ R+.
(18.1.10)

Proof. If (18.1.7) is applied to (17.3.5)2, using (18.1.9), it reduces to
∫ ∞

0

∫ ∞

0
Et

1(s)G(s, u)Et
1(u)dsdu =

∫ ∞

0

∫ ∞

0
Et

2(s)G(s, u)Et
2(u)dsdu,

or ∫ ∞

0

∫ ∞

0
G(s, u)[Et

1(s)Et
1(u) − Et

2(s)Et
2(u)]dsdu = 0. (18.1.11)

Now
Et

1(s)Et
1(u) − Et

2(s)Et
2(u) = (Et

1(s) − Et
2(s))(Et

1(u) + Et
2(u))

+ Et
2(s)Et

1(u) − Et
2(u)Et

1(s).

Noting that
∫ ∞

0

∫ ∞

0
G(s, u)[Et

2(s)Et
1(u) − Et

2(u)Et
1(s)]dsdu = 0,

by virtue of (17.3.6)2 and an interchange of integration variables, we see that
(18.1.11) can be replaced by

∫ ∞

0

∫ ∞

0
G(s, u)(Et

1(s) − Et
2(s))(Et

1(u) + Et
2(u))dsdu = 0.

This relationship can be written as
∫ ∞

0

∫ ∞

0
G(s, u)Et

d(s)(2Et
1(u) + Et

d(u))dsdu = 0,

where the history Et
1 can be arbitrarily chosen (Remark 18.1.1). Therefore, (18.1.7)

implies (18.1.10)1, while (18.1.10)2 follows from (17.3.6). Also, since the steps of
the proof are reversible, (18.1.10)1,2 imply (18.1.7). �

If we integrate (18.1.10)2 over [u1,∞), the result is
∫ ∞

0
G2(u1, s)E

t
d(s)ds = 0, (18.1.12)
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for all u1 ≥ 0. In particular, for u1 = 0, we have∫ ∞

0
G2(0, s)Et

d(s)ds = 0. (18.1.13)

Relation (18.1.10)3,4 can be shown to be equivalent to (18.1.10)1,2, using integration
by parts in (18.1.12).

These results are derived under the constraints (18.1.8). For the stronger assump-
tion (18.1.6) for τ ≥ 0, it remains of course true that (18.1.7) and (18.1.10) are
equivalent. The condition (18.1.10) states that the linear functionals∫ ∞

0
G(s, u)Et(s)ds =

∫ ∞

0
G(u, s)Et(s)ds, and

∫ ∞

0
G̃(s, u)Ėt(s)ds =

∫ ∞

0
G̃(u, s)Ėt(s)ds, ∀ u ∈ R+

(18.1.14)

are FMSs. One can replace Et(s) by Et
r(s) in (18.1.14)1.

Proposition 18.1.1 can be expressed as a statement that the free energy corre-
sponding to G(s, u) is a FMS if and only if, given that (18.1.13) holds, then (18.1.12)
is true for all u1 > 0.

If Et
d is equivalent to the zero history, then (18.1.7) yields that (see (7.4.9))

ψ̃(Et
d, 0) =

∫ ∞

0

∫ ∞

0
Et
d(s)G(s, u)Et

d(u)dsdu = 0. (18.1.15)

Condition (18.1.10) yields, more generally, that if either (but not both) of the histories
Et
d is replaced by an arbitrary history, (18.1.15)2 still holds.

18.1.1 Some Examples of Application of the New Condition

The Graffi–Volterra free energy: This functional is given by (17.3.2). The rate of
dissipation associated with ψGV has the form (17.3.3). The functional ψGV (t) is
a free energy only if the conditions (17.3.4) hold.
We can formally express ψGV (t) in the form (17.3.5) by putting

G(s, u) = −1
2

[G′(s) +G′(u)]δ(s − u), s, u ∈ R+,

where δ(s − u) is the singular delta function. Thus,∫ ∞

0
G(s, u)Et

d(u)du = −G′(s)Et
d(s) � 0,

so that (18.1.10) is not obeyed and ψGV is not a FMS. This is shown by another
method in Sect. 10.1.1 and earlier in [89].

The Dill free energy: This functional is given by (17.4.18) is a free energy with rate
of dissipation given by (17.4.19) if and only if G(·) is completely monotonic, as
defined for the general tensor case by (10.1.8). Thus, G̃(s, u) = G̃(s + u) and it
follows immediately from Proposition 18.1.1 that the Dill free energy is a FMS,
because (18.1.10) has the same form as (18.1.6)2,3.



18.1 A New Linear Condition for Determining If a Free Energy Is a FMS 431

18.1.2 Corresponding Frequency Domain Results

Relation (18.1.10)3, for G̃(s, u) given by (17.4.8), becomes
∫ ∞

0

∫ ∞

0
K(z + s, z + u)Ėt

d(s)dsdz = 0, u ≥ 0. (18.1.16)

Taking the Fourier transform of the free variable u in (18.1.10)4, and applying
Parseval’s formula to the integrated product, we obtain

∫ ∞

−∞
G̃+−(ω,ω1)Ėt

d+(ω1)dω1 = 0, ω ∈ R, (18.1.17)

where Et
d+ is the Fourier transform of Et

d, defined by (18.1.5). Then, (17.5.5) gives

∫ ∞

−∞

K+−(ω,ω1)Ėt
d+(ω1)

ω1 − ω± dω1 = −G̃+(ω)
∫ ∞

−∞

Ėt
d+(ω1)

ω1 − ω± dω1

−
∫ ∞

−∞

G̃+(ω1)Ėt
d+(ω1)

ω1 − ω± dω1, ∀ ω ∈ R.

(18.1.18)

The versions with ω+ and ω− will be shown to be equivalent. Consider the first
integral on the right of (18.1.18), for ω+. Closing the contour on Ω(−), it is clear that

∫ ∞

−∞

Ėt
d+(ω1)

ω1 − ω+
dω1 = 0. (18.1.19)

Condition (18.1.6)3 has the form [163]

Itd(τ) =
1

2π

∫ ∞

−∞
[G̃+(ω1) + λG̃+(ω1)]Ėt

d+(ω1)e−iω1τdω1 = 0, τ ≥ 0, (18.1.20)

where λ is any complex constant. It follows that
∫ ∞

0
Itd(τ)e−iωτdτ = Itd+(ω) = 0, ω ∈ R.

From the complex conjugate of this relationship, Itd+(ω) = 0, we deduce that

∫ ∞

−∞

[G̃+(ω1) + λG̃+(ω1)]Ėt
d+(ω1)

ω1 − ω+
dω1 = 0, ∀ ω ∈ R, (18.1.21)

where the choice ω+ is dictated by convergence requirements. The enforcement of
(18.1.21) ensures that Ėt

d+(ω) is the Fourier transform of a history equivalent to zero.
Combining (18.1.19), multiplied by G̃+(ω), with (18.1.21) for λ = 0, we obtain from
(18.1.18) that ∫ ∞

−∞

K+−(ω,ω1)Ėt
d+(ω1)

ω1 − ω+
dω1 = 0. (18.1.22)
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From (18.1.22), (17.5.18) and the Plemelj formulae, we obtain

1
2πi

∫ ∞

−∞

K+−(ω,ω1)Ėt
d+(ω1)

ω1 − ω− dω1 = 2
H(ω)

ω2
Ėt
d+(ω), (18.1.23)

which is equal to the right-hand side of (18.1.18), for ω− in the denominator. Either
(18.1.22) or (18.1.23) express condition (18.1.17) or (18.1.10).

18.1.3 Application of Product Formulae in the Time and Frequency Domains

For the time domain, the rate of dissipation (17.3.11) becomes (17.7.2) and the free
energy has the form (17.7.3). Also, relation (17.7.4) holds.

The condition that Ėt
d is equivalent to the zero history takes the form

m∑
i, j=1

∫ ∞

0
Ai jki(z)

[∫ ∞

0
k j(z + s + u)Ėt

d(s)ds

]
dz = 0, ∀ u ≥ 0 (18.1.24)

by virtue of (17.7.4) and (18.1.6). We see that, since (18.1.24) holds for arbitrary u,
the individual constraints∫ ∞

0
ki(y + s)Ėt

d(s)ds = 0, ∀ y ≥ 0, i = 1, 2, . . . ,m, (18.1.25)

must be obeyed. Condition (18.1.16) becomes, for K(s, u) given by (17.7.1),

m∑
i, j=1

∫ ∞

0

∫ ∞

0
Ai jki(z + s)k j(z + u)Ėt

d(s)dsdz

=

m∑
i, j=1

∫ ∞

0
Ai jk j(z + u)

[∫ ∞

0
ki(z + s)Ėt

d(s)ds

]
dz = 0, u ≥ 0,

(18.1.26)

which is true by virtue of (18.1.25). Conversely, since u is arbitrary, we see that
(18.1.26) implies the conditions (18.1.25).

Relation (18.1.26) is equivalent to the statement that any free energy functional
with rate of dissipation kernel given by (17.7.1) is a FMS, by virtue of Proposi-
tion 18.1.1. The conditions (18.1.25) are a statement that the quantities

∫ ∞

0
ki(z + s)Ėt(s)ds, ∀ z ≥ 0, i = 1, 2, . . . ,m (18.1.27)

are FMSs.
For the frequency domain, we consider the forms (17.7.18) and (17.7.19). The

quantities ki−(ω) have all their singularities in Ω(−) and are analytic on an open set
including Ω(+), just as for the functions H f

−(ω). We put

i
ki−(ω)
ω

Ėt
+(ω) = qti−(ω) − qti+(ω),

qti±(ω) =
1

2πi

∫ ∞

−∞

ki−(ω′)Ėt
+(ω′)

ω′ − ω∓ dω′, i = 1, 2 . . . ,m.
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Condition (17.5.18)1 gives that

m∑
i, j=1

Ai jki−(ω)k j−(ω) = 2
H(ω)

ω2
.

This equation implies that the singularities of k j±(ω) are a subset (or the full set) of
those in H(ω). The possibility of extra singularities occurring in individual terms,
which drop out of the summation due to cancellation between terms, is excluded by
assumption.

Relations (17.5.7)2 and (17.5.13) yield

D(t) =
1

8π2

∫ ∞

−∞

∫ ∞

−∞
Ėt
+(ω1)

m∑
i, j=1

Ai jki−(ω1)k j−(ω2)Ėt
+(ω2)dω1dω2,

ψ(t) = φ(t)

+
i

8π2

∫ ∞

−∞

∫ ∞

−∞

Ėt
+(ω1)

∑m
i, j=1 Ai jki−(ω1)k j−(ω2)Ėt

+(ω2)

ω+1 − ω−
2

dω1dω2.

(18.1.28)

The case m = 1, as in Sect. 17.7.2, is precisely that discussed in Sect. 16.4. For
m > 1, we are dealing with more general classes of free energies.

The following result is proved in [17], using arguments similar to those in
Lemma 16.4.2 and Theorem 11.3.1.

Proposition 18.1.2. The quantities

qtj−(ω) =
1

2πi

∫ ∞

−∞

k j−(ω1)Ėt
+(ω1)

ω1 − ω+
dω1, j = 1, 2, . . . ,m,

are FMSs.

Also, from [17],

Proposition 18.1.3. Any free energy of the form (18.1.28)2 is a FMS.

Proof. Relation (18.1.22) takes the form

m∑
i, j=1

Ai jki−(ω)
∫ ∞

−∞

k j−(ω1)Ėt
d+(ω1)

ω1 − ω+
dω1 = 0.

This is always satisfied for Ėt
d+ equivalent to the zero history, by virtue of Proposi-

tion 18.1.2. Thus, (18.1.28)2 is a FMS. �

These results show that, for all materials described by (17.7.1) or (17.7.18), the
resulting free energy is a FMS. Proposition 18.1.3 suggests the conjecture in [17]
that, other than certain degenerate cases, all finite quadratic functionals are FMSs.
An example of a degenerate form of (17.3.5) is given by the Graffi–Volterra free
energy.



434 18 Minimal States and Periodic Histories

We note that Parseval’s formula, applied to (18.1.25), gives (cf. (18.1.20))
∫ ∞

−∞
ki−(ω)Ėt

d+(ω)e−iωydω = 0, ∀ y ≥ 0, i = 1, 2 . . . ,m.

Taking the Fourier transform of the complex conjugate of this relation gives

qtdi−(ω) =
1

2πi

∫ ∞

−∞

ki−(ω1)Ėt
d+(ω1)

ω1 − ω+
dω1 = 0, i = 1, 2, . . . ,m,

where ω+ is the choice required for convergence. Thus, the results of the time and
frequency domains are in agreement.

The cases (17.7.29) are discussed in [17], as are the new categories based on
(17.7.30), or equivalently, (17.7.15). All the free energies generated by these methods
are FMSs, by virtue of Proposition 18.1.3.

18.2 Free Energies for Singleton Minimal States

In the light of the analysis of Sect. 5.1.2, we assume that any free energy function ex-
hibits strict periodic behavior for histories that have been periodic for all past times.
This is not the case for the work function, though it has the usual defining proper-
ties of a free energy. Forms given in fairly recent years for the minimum (Chap. 11)
and related free energies of linear materials with memory (see Sect. 16.3) have this
property, as have the various functionals in Chap. 10.

Materials for which the minimal states are all singletons are those for which at
least some of the singularities of the Fourier transform of the relaxation function are
not isolated. For such materials, the maximum free energy is the work function, and
free energies intermediate between the minimum free energy and the work function
should be given by a linear relation involving these two quantities. Discussion of
these topics may be found in Sect. 16.5. Thus,

ψ(t) = c1ψm(t) + c2W(t), c1, c2 ∈ R+, c1 + c2 = 1,

where ψm(t) is the minimum free energy for such materials. All such functionals,
except the minimum free energy, therefore do not have strict periodic behavior for
periodic histories, which contradicts our assumption.

A way out of the difficulty is explored which involves approximating the relax-
ation function by a form for which the minimal states are no longer singletons. A
representation can then be given of an arbitrary free energy as a linear combina-
tion of the minimum, maximum, and intermediate free energies derived in Chap. 16,
where the maximum free energy is less than the work function. This representation
obeys our periodicity assumption.

Remark 18.2.1. The relation (5.1.35) will be regarded as a basic property of any free
energy functional, sufficiently important to label it as P4, following P3, defined by
(16.1.28).
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Therefore, we have

P4 For a long established periodic history, where transient effects have died away, a
free energy functional must obey the condition

ψ(t + T ) = ψ(t), t ∈ R. (18.2.1)

where T is the core period. From (5.1.37) it follows that (18.2.1) does not hold
for W(t) if the material is dissipative.

The special property of ψ(t), not shared by D(t) and W(t), that it is finite for
infinite periodic histories is a reflection of the fact that it is related to energy stored
in the body, which must be finite. In particular, the minimum free energy, for a given
state, is equal to the maximum recoverable work from that state.

Remark 17.3.2 is assumed to apply here also.

18.2.1 Approximating Continuous-Spectrum Behavior by Discrete-Spectrum
Formulae

The form of the minimum free energy for continuous-spectrum materials is discussed
in detail in Chap. 14, with explicit formulae given for all quantities of interest. We
wish to explore another approach here, which is to approximate the continuous-
spectrum case by a discrete-spectrum material.

Let the quantity H(ω) be given by (14.2.13), but with k(s) replaced by g(s). This
formula can be approximated by a quadrature formula

H(ω) = ω2
n∑
i=1

αiκig(αi)

α2
i + ω

2
, (18.2.2)

where the constants αi, i = 1, 2, . . . , n are values of α ∈ [a, b] and κi are the quadra-
ture coefficients associated with the particular method chosen (trapezoidal, Simpson,
Gauss, etc.). Comparing with (11.9.2), we put

Gi = κig(αi), i = 1, 2, . . . , n (18.2.3)

to obtain a discrete-spectrum material approximating the continuous-spectrum ma-
terial under discussion.

In the numerical work described in Sect. 18.2.5, we use the simplest option,
namely the trapezoidal rule, so that

αi = a +
(i − 1)(b − a)

n − 1
, i = 1, 2, . . . , n,

κi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b − a
n − 1 , i = 2, 3, . . . , n − 1,
b − a

2(n − 1) , i = 1, n.

(18.2.4)
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18.2.2 The Minimum Free Energy for Continuous-Spectrum Materials

The form (17.3.5)1 is used in Chap. 14. We will use (17.3.5)3 here, giving

ψm(t) = φ(t) +
1
2

∫ ∞

0

∫ ∞

0
Ėt(s)G̃m(s, u)Ėt(u)dsdu,

G̃m(s, u) =
1

2π2

∫ b

a

∫ b

a

Δ(α)e−αsΔ(β)e−βs
(α + β)αβ

dαdβ,

(18.2.5)

where

Δ(α) = πh∞
αg(α)

K(α)Q(α)
,

K(α) = −
∫ b

a

βg(β)
β + α

dβ, α � [−b,−a],

L(β) = −P
∫ b

a

λg(λ)
λ − β

dλ, β ∈ (a, b),

Q(α) = exp

{
−1
π

∫ b

a

A(β)
β + α

dβ

}
,

A(β) = arg

[
1 − K(β)

L(β) + iπαg(β)

]
, −π ≤ A(β) ≤ 0.

(18.2.6)

The symbol P indicates a principal value integral. If we evaluate (18.2.5)2 by quadra-
ture, the result is

G̃m(s, u) =
1

2π2

n∑
i, j=1

κiΔ(αi)κ jΔ(α j)

(αi + α j)αiα j
e−αi s − α ju, (18.2.7)

where the κi were introduced in (18.2.2), and specified for the trapezoidal rule by
(18.2.4). Since the range of α and β in (18.2.5) are both [a, b], which is divided
into n − 1 intervals, we have replaced β j by α j in (18.2.7). Comparing (18.2.7) with
(16.9.8) for f = 1 and invoking (17.4.14), we see that

κiΔ(αi)√
2π
=

√
2h∞Ri, (18.2.8)

where the quantities Ri are the Rf
i for f = 1, as given by (16.9.4), or more specifically

by (11.9.6)3. The validity of this relation will be demonstrated for particular material
parameters and strain histories in Sect. 18.2.5.

18.2.3 Proposed Method for Approximating Free Energies for Materials with
Singleton Minimal States

It is assumed that we can approximate continuous-spectrum materials as discrete-
spectrum materials, by means of (18.2.2). Arbitrary free energies greater than or
equal to the minimum free energy are approximated by (16.10.1).
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We need to confirm that this approximation improves as n gets larger, so that
there is a convergent process for increasing n. The value of n finally chosen to ap-
proximate the continuous-spectrum material should be such that convergence is es-
sentially complete, yielding a virtually unique choice of ψ(t). Based on numerical
results described in Sect. 18.2.5 (see also [17, 165]), it will be taken to be 8. For
this value of n, there are 126 free energies ψ f (t) lying between ψm(t) and ψM(t), and
indeed those given by (16.10.1).

Remark 18.2.2. It is asserted that all these free energies can be treated as free energy
functionals of the continuous-spectrum material. The difficulty with this assertion is
that if some other value than n = 8 is chosen, for example, n = 9, the intermedi-
ate free energies ψ f (t), f = 2, 3, . . . ,M − 1 are given by quite different formulae.
However, the minimum and maximum free energies converge to fixed functionals.
Numerical confirmation that this is true to a good approximation is presented in
Sect. 18.2.5.

18.2.4 Free Energy Functionals for Sinusoidal/Exponential Histories Which
Vanish for t < 0

A change of variable in (16.1.3)4 gives

T (t) = Te(t) +
∫ t

−∞
G̃(t − s)Ė(s)ds.

If the strain history is zero for t < 0, then

T (t) = Te(t) +
∫ t

0
G̃(t − s)Ė(s)ds, t ≥ 0,

and vanishes for t < 0. By a double change of variables, we can express (17.3.5)3

(and analogously (17.3.5)1,2) in the form

ψ(t) = φ(t) +
1
2

∫ t

−∞

∫ t

−∞
Ė(s)G̃(t − s, t − u)Ė(u)dsdu,

so that in relation to histories which vanish for negative times, we have

ψ(t) = φ(t) +
1
2

∫ t

0

∫ t

0
Ė(s)G̃(t − s, t − u)Ė(u)dsdu, t ≥ 0. (18.2.9)

Again, it is equal to zero for t < 0.
For discrete-spectrum materials, in particular those defined by (18.2.3), we give

expressions for the work function and the free energy functionals ψ f (t), ψDill(t), and
ψF(t), in the case of a history of the strain that vanishes at negative times. Firstly, we
note that the stress is given by

T (t) = Te(t) +
n∑
i=1

GiS i(t),

S i(t) = e−αit
∫ t

0
eαi sĖ(s)ds, t ≥ 0.

(18.2.10)
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Similarly, (18.2.9) becomes

ψ(t) = φ(t) +
1
2

n∑
i, j=1

Ci jS i(t)S j(t), (18.2.11)

in the light of (17.4.14).
Let us now specialize to the case where the history, at positive times, is sinusoidal

with frequency ω0, but combined with exponential behavior. Consider a history and
current value (Et, E(t)) defined by

E(t) = −iE1[eiω−t − e−iω+t] = 2E1e
ηt sin(ω0t), t > 0,

= 0, t ≤ 0,

Et(s) = E(t − s),

(18.2.12)

where 2E1eηt is the amplitude. The parameter η determines the exponential factor. In
the present context, it will be allowed to have both positive, negative and zero values.
Equation (18.2.12) yields that

Ė(t) = E1[ω−e
iω−t + ω+e

−iω+t], t > 0. (18.2.13)

Thus,

S i(t) = 2E1Re

{
ω−

αi + iω−

[
eiω−t − e−αit

]}
. (18.2.14)

Also, from (18.2.10) and (18.2.13),

W(t) = φ(t) +
n∑
i=1

∫ t

0
GiS i(u)Ė(u)du

= φ(t) + 2E2
1

n∑
i=1

GiRe

{
ω−

2i(αi + iω−)
(e2iω−t − 1)

+
|ω−|2

2η(αi + iω−)
(e2ηt − 1)

+
2ω−

(αi + iω−)
Re

[
ω−

(αi − iω−)
(e(iω− − αi)t − 1)

]}
.

(18.2.15)

The quantity ψ f (t) becomes

ψ f (t) = φ(t) + H∞

n∑
i, j=1

Rf
i R

f
j

(αi + α j)αiα j
S i(t)S j(t), (18.2.16)

by virtue of (16.9.8) and (18.2.11), where S i(t) has the form (18.2.14).
If η = −|η| < 0, the exponential behavior of the history is decaying for large times

rather than increasing.
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The functional ψM(t) rapidly approaches W(t) for increasing exponential histo-
ries, as n gets larger. Matters are more complex for decaying exponential histories.
As t increases, we have from (18.2.15) for η < 0 that

W(t) → −2E2
1

n∑
i=1

∫ t

0
GiRe

{
ω−

2i(αi + iω−)
+

|ω−|2
2η(αi + iω−)

+
2ω−

(αi + iω−)
Re

[
ω−

(αi − iω−)

]}
= Λ � 0,

(18.2.17)

where Λ is independent of t. In contrast,

S i(t) −→ 0 as t → ∞, (18.2.18)

so that the approximate equality ψM(t) ≈ W(t) does not hold at large values of t.
If Ė(u) = 0 for u < 0, relation (18.2.9) gives that

ψDill(t) = φ(t) +
1
2

∫ t

0

∫ t

0
Ė(s)G̃(2t − s − u)Ė(u)dsdu, t ≥ 0,

and vanishes for t < 0. From this, we have

ψDill(t) = φ(t) +
1
2

n∑
i=1

GiS
2
i (t), t ≥ 0. (18.2.19)

The functional ψF(t) in the scalar case is defined by (17.9.7) where It1(τ) is de-
fined by (17.9.1). If Ė(u) is equal to zero for u < 0, then

It(τ) =
∫ t

0
G̃(t − u + τ)Ė(u)du, t ≥ 0,

and zero for t < 0, giving

It(τ) =
n∑
i=1

GiS i(t)e
−αiτ, t ≥ 0,

so that

ψF(t) = φ(t) +
1
2

n∑
i, j=1

CF
i jS i(t)S j(t), t ≥ 0,

CF
i j = αiα jGiG j

∫ ∞

0

e−(αi + α j)τ∑n
l=1 αlGle−αlτ

.

(18.2.20)

The functionals ψDill(t) and ψF(t), given by (18.2.19) and (18.2.20), were plot-
ted for various parameters and found to be remarkably close to ψm(t). They could
therefore be replaced by ψm(t) and omitted from further explicit consideration.
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18.2.5 Numerical Results Relevant to the Method for Approximating
Continuous-Spectrum Materials

The proposals put forward in Sect. 18.2.3 indicate how the problem noted at the
beginning of Sect. 18.2 can be avoided. In this section, we will present numerical
results relating to these proposals, based on particular materials defined below and
the histories introduced in Sect. 18.2.4. More detailed numerical results are presented
in [17] or [165].

Consider the discrete-spectrum approximation to the continuous-spectrum theory
as given by (18.2.2) and (18.2.3), yielding (18.2.16). This produces, for f = 1, a
minimum free energy which should approximate the continuous-spectrum formulae
in [94] more and more closely, as we increase the number of sub-divisions of the
interval [a, b] in (18.2.2). This can be checked using (18.2.8), and turns out to be
remarkably accurate, even for low values of n.

The discrete-spectrum approximation also gives a maximum free energy, which
converges rapidly to W(t), as n increases, at least for diverging exponential histo-
ries [16]. Indeed, for n = 4, the two quantities are virtually equal, at least for the
parametric values in that reference. This property does not always hold.

Regarding the behavior of the maximum free energy for increasingly large val-
ues of n in (18.2.2), it is established that convergence to a unique functional, not
necessarily W(t), occurs. Also, n = 8 is the value at which, for practical purposes,
this is achieved. This approach also yields 126 intermediate free energies ψ f (t),
f = 2, 3, . . . , 127. All the free energies ψ f , for any n, have the property P4.

The material parameters and those of the histories are now specified. Dimensions
will be removed from all expressions for free energies by dividing byG0E2

1 [16]. This
amounts to taking

G0 = E1 = 1.

Also, G∞, in the dimensionless version, is equal to G∞/G0 in terms of dimensional
quantities, and varies in the range [0, 1]. It is chosen to be 0.1. We take g(α) in
(18.2.6) to be a constant quantity g0, so that (18.2.3), for the trapezoidal rule, be-
comes

Gi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b − a
n − 1g0, i = 2, 3, . . . , n − 1
b − a

2(n − 1)g0, i = 1, n,

where a and b are assigned values 0.5 and 1.5, respectively. Noting that (b − a)g0 =

1 −G0, we have

Gi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 −G∞
n − 1 , i = 2, 3, . . . , n − 1,

1 −G∞
2(n − 1) , i = 1, n.

Also, the quantities αi are given by (18.2.4)1.
We take ω0 = 1 in (16.11.2) and consider values of η/ω0 in the range [0.1, 1.0]

and [−1.0,−0.1].
Let us first check the validity of (18.2.8) for these materials. Since g(α) is con-

stant, the quantity K(α), defined by (18.2.6)2, has the form
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K(α) = −g0

[
b − a − α log

(
b + α
a + α

)]
, α � [−b,−a],

while L(α), given by (18.2.6)3, becomes

L(β) = −g0

[
b − a + β log|b − β

a − β
|
]
, β ∈ (a, b).

We define

Ci =
κiΔ(αi)
2πh∞

, i = 1, 2, . . . , n,

where h∞ is given by (11.1.18). Observe that (18.2.8) can be written as Ci = Ri,
i = 1, 2, . . . , n. Values of Ci and Ri, given by (16.9.4) for f = 1, corresponding
to ε

f
i = 1, i = 2, 3, . . . , n, were compared for all values of n considered, namely

n = 3, 4, . . . , 8. In all cases, the quantities Ci and Ri were virtually identical.
Recall that (18.2.8) follows from a comparison of (18.2.7) (in the light of

(17.4.14)) and (16.9.8). The numerical results are a good check on these results or
on the formulae (18.2.5), (18.2.6) on the one hand, and (16.9.7) for f = 1, on the
other. It should be emphasized that the derivations of these two sets of results are
entirely different. The level of agreement between them also provides support for the
discretization procedure outlined in Sect. 18.2.1 and in (18.2.7).

The notation ψ(n)
f (t) will be used to denote (18.2.16) and W (n)(t) for (18.2.15). The

superscript (n) on these quantities was omitted up to now to minimize cumbersome
notation.

Next, we consider whether ψ(n)
M (t) approaches W (n)(t), as n increases. This issue

has been addressed earlier by (18.2.17) and (18.2.18). The data plotted on Fig. 18.1
indicates that this is true to a high degree of accuracy for η > 0. Indeed, the conver-
gence is rapid. For n = 8, they are virtually identical, and are very close from n = 4
onwards.

However, for η < 0, there is rapid convergence on the interval t ∈ (0.0, 1.0)
approximately, while for larger times, we have a perceptible difference for n = 8.
This is consistent with the observation made after (18.2.18).

In general, ψ(n)
M (t) converges to W (n)(t) on a subset C of R+, where, in some but

not all cases, C = R+.
The next question to explore is whether ψ(n)

M (t) converges to a definite value,
which may or may not be very close to W (n)(t) for t ∈ R+. Convergence occurs for
t ∈ C and for η > 0, we have C = R+. This is confirmed on Fig. 18.2, which also
illustrates that convergence is virtually complete for n = 4, as noted in the context of
Fig. 18.1.

For η < 0, we see from Fig. 18.3 that convergence to a definite function ψ(8)
M (t)

occurs over the range of times shown. However, the convergence is not uniform. It
is very rapid up to about t = 1, where convergence to W (8)(t) is taking place. For
larger times, the convergence is more gradual, but is essentially complete for n = 8.
We conclude that there is evidence that ψ(n)

M (t) converges to a definite functional, not
always equal to W (8)(t).
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Second-Order Approximation for Heat Conduction:
Dissipation Principle and Free Energies

19.1 Introduction

This chapter is based on [20].
In the context of new models of heat conduction, the second-order approxima-

tion of Tzou’s theory, derived by Quintanilla and Racke [289, 290] and generalized in
[126], is considered as a fading memory material, for which it is of interest to deter-
mine free energy functionals. The kernel∗ does not satisfy the convexity restrictions
(17.3.4), which allow us to obtain various traditional free energies for materials with
fading memory. It is therefore necessary to restrict the study to the minimum and re-
lated free energies, which do not require these restrictions. We first derive an explicit
expression for the minimum free energy. Also, simple modifications of this expres-
sion give an intermediate free energy and the maximum free energy for the material.
These derivations differ in certain important respects from those in mechanics.

After Cattaneo’s pioneering work [59] on heat conduction with a finite propaga-
tion speed, many theories with this property, known also as theories of second sound,
have been considered in order to remove the difficulty of infinite propagation speed
associated with Fourier’s law.

Thus, Tzou, to replace Fourier’s law, has suggested in [315] the following con-
stitutive equation for any x of a body B ⊂ R3

q(x, t + τq) = −k(x)∇θ(x, t + τθ), τq > 0, τθ > 0, q ∈ R3. (19.1.1)

The coefficient k(x) is positive. Also, τq and τθ are delay times related to the heat
flux and the gradient of temperature, respectively. Obviously, by assuming τq = 0
and τθ = 0, Fourier’s law follows.

The general form (19.1.1) cannot be used since, as has been recently observed in
[125], it is not in agreement with the second law of thermodynamics. Consequently,
several constitutive equations for the heat flux have been obtained by means of Tay-

∗ The description “kernel” has been used in earlier chapters in a somewhat different sense to
its present usage, which is analogous to a relaxation function in linear viscoelasticity.
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lor’s expansions of (19.1.1) up to different orders with respect to the parameters τq
and τθ. In this manner, some models have been proposed for which the required
compatibility with thermodynamics is satisfied.

It is interesting to observe that the expansion of the left-hand side of (19.1.1) to
first order with respect to the parameter τq, while putting τθ = 0, yields Cattaneo’s
theory [59]

τqq̇(x, t) + q(x, t) = −k∇θ(x, t). (19.1.2)

If the second-order approximation is considered both for the heat flux and for the
temperature gradient, then we obtain the following equation:

q(x, t) + τqq̇(x, t) +
τ2
q

2
q̈(x, t) = −k

⎡⎢⎢⎢⎢⎣∇θ(x, t) + τθ∇θ̇(x, t) +
τ2
θ

2
∇θ̈(x, t)

⎤⎥⎥⎥⎥⎦ , (19.1.3)

which was derived in [289, 290]. Several authors have considered this equation and
studied mathematical problems of existence, uniqueness, and stability in relation to
it. Some restrictions on the constants τq and τθ (see, for example, [288, 319]) have
been established by such studies.

In [126], Eq. (19.1.3) has been expressed as a fading memory model, so the heat
flux depends on the history of the temperature gradient, as for Gurtin and Pipkin’s
theory [191]. Moreover, a restriction on τq and τθ given by

(
2 −

√
3
)
τθ < τq <

(
2 +

√
3
)
τθ (19.1.4)

has been obtained from the requirement of compatibility with thermodynamics.

19.2 A Fading Memory Constitutive Equation and the Second
Law

We now express (19.1.3) as a relation between the heat flux and the history of the
temperature gradient. The Cattaneo–Maxwell equation (19.1.2) can be written in the
form (recall also (9.1.1))

q(x, t) = −
∫ t

−∞
κ(x, t − s)∇θ(x, s)ds, (19.2.1)

where the kernel has the form

κ(x, s) =
1
τq

k(x)e
− 1

τq
s
. (19.2.2)

For simplicity, we take the kernels to be scalar quantities, though indeed, the results
for tensor kernels can also be given, using the methods outlined below. The depen-
dence on x will be omitted henceforth. Relation (19.1.3) can also be rewritten in the
form [126]

q(t) = − k

τ2
q

[
τ2
θ∇θ(t) + 2

(
τq − τθ

) ∫ t

−∞
κ(s)∇θt(s)ds

]
, (19.2.3)
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where the kernel κ is given by

κ(s) = e
− 1

τq
s
[
τθ
τq

cos
s
τq
+ sin

s
τq

]
(19.2.4)

and θt(s) = θ(t − s) is the history of the temperature. This generalizes (19.2.1).
As noted above, the kernel κ(s), given by (19.2.4), does not in general obey the

sign restrictions κ(s) ≥ 0, κ′(s) ≤ 0, s ∈ R+, which are true for (19.2.2).
For materials with memory such as (19.2.3), the state σ(t) is defined by the past

history of the temperature gradient. Thus,

σ(t) = ∇θ(t − s) := ∇θt(s),

while a process P of duration dP ∈ R+ is defined by

P(t) = ∇θ(t) , t ∈ [0, dP) .

We denote by Σ the state space and by Π the set of processes. The mapping
ρ̂ : Σ × Π → Σ is the evolution function such that σ f = ρ̂(σi, P), where σi and σ f

are, respectively, the initial and final states, while P is the process connecting these.

Definition 19.2.1. A closed cycle is defined by a pair (σ, P) such that

ρ̂(σ, P) = σ.

Second Law of Thermodynamics On any closed cycle, we have
∮

q(t) · ∇θ(t)dt ≤ 0. (19.2.5)

19.3 Fundamental Relations

Let us record in this section the basic equations required in order to derive the form
of the minimum and other related free energies. We write (19.2.3) in the form

q(t) = K0h(t) +
∫ t

−∞
K′(t − u)h(u)du

= K0h(t) +
∫ ∞

0
K′(s)ht(s)ds,

K′(s) = k
2(τq − τθ)

τ2
q

κ(s), ht(s) = h(t − s), h(u) = −∇θ(u),

K(s) = K0 +

∫ s

0
K′(u)du, K0 = K(0) = k

τ2
θ

τ2
q

,

(19.3.1)

where κ(s) is given by (19.2.4). Let us write the kernel K′(s) as follows:
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K′(s) = Aeiζs + Ae−iζs, (19.3.2)

where
ζ = α(1 + i), A = kα(1 − ρ) (ρ − i) ,

α =
1
τq

, ρ =
τθ
τq

, K0 = kρ2.
(19.3.3)

In the frequency domain, we have

K′
+(ω) =

∫ ∞

0
K′(s)e−iωsds

=
iA

ζ − ω
− iA

ζ + ω
,

which indicates a structure of two isolated simple poles placed symmetrically about
the upper imaginary axis in the complex plane of frequencies. Unless indicated oth-
erwise, the frequency ω will be assumed to be real.

In Chap. 16, a general theory of minimum and related free energies is developed
for materials where the memory functions in the frequency domain have arbitrary,
within allowed constraints, isolated singularities of any finite order. The present the-
ory is developed in notation closely matching viscoelastic materials with linear mem-
ory. Note, for example, the relations in (19.3.1) above, where there is a close analogy
based on assigning to ht(s) a role corresponding to the strain history.

There is however a significant difference between the theory for viscoelastic ma-
terials and the present case, illustrated in particular by (19.2.5). The negative of the
gradient of temperature, h(t) in the notation introduced in (19.3.1)4, is not differen-
tiated with respect to time, as is the case for the strain function in the rate of work
done on viscoelastic materials. Therefore, the analogy with viscoelastic materials is
not precise and is a source only of general guidance.

The form of the condition imposed by the second law may be determined from
(19.2.5), as shown in [126]. This can be expressed as

K0 + K′
c(ω) > 0, K′

c(ω) =
∫ ∞

0
K′(s) cosωsds, (19.3.4)

in the notation of (19.3.1). Also, using (19.3.1)1, we see that the total thermal work
done on the rigid conductor has the form
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∫ t

−∞
q(u) · h(u)du = K0

∫ t

−∞
|h(u)|2 du +

∫ t

−∞

∫ u

−∞
h(u) · K′(u − s)h(s)dsdu

= K0

∫ t

−∞
|h(u)|2 du + 1

2

∫ t

−∞

∫ t

−∞
h(u) · K′(|u − s|)h(s)dsdu

= K0

∫ ∞

0

∣∣∣ht(u)
∣∣∣2 du + 1

2

∫ ∞

0

∫ ∞

0
ht(u) · K′(|u − s|)ht(s)dsdu

=
K0

2π

∫ ∞

−∞

∣∣∣ht+(ω)
∣∣∣2 dω + 1

2π

∫ ∞

−∞
ht+(ω) · K′

c(ω)ht+(ω)dω

=
1

2π

∫ ∞

−∞
ht+(ω) · H(ω)ht+(ω)dω ≥ 0,

ht+(ω) =
∫ ∞

0
ht(u)e−iωudu,

H(ω) = K0 + K′
c(ω) = K0 +

1
2

[
K′
+(ω) + K

′
+(ω)

]
,

|h(u)|2 = h(u) · h(u).
(19.3.5)

The various forms given in (19.3.5) follow by virtue of a standard development as
outlined in, for example, Sect. 7.5. Note that the quantity H(ω) is nonnegative by
virtue of (19.3.4)1, which is an expression of the second law. It can therefore be
concluded that ∫ t

−∞
q(u) · h(u)du ≥ 0.

We can write (19.3.1)1 in the frequency domain as

q(t) = K0h(t) +
1

2π

∫ ∞

−∞
K′
+(ω)ht+(ω)dω

=
K0

π

∫ ∞

−∞
ht+(ω)dω +

1
2π

∫ ∞

−∞
K′
+(ω)ht+(ω)dω.

(19.3.6)

Observe that the first term on the right of (19.3.6)2 has a factor of 2 over what one
might expect. This term emerges from the time domain version by integrating over
the lower frequency complex plane in a contour yielding zero, noting however that
the infinite part of the contour makes a nonzero contribution, which can be evaluated
using

ht+(ω) ∼ h(t)
iω

,

at large ω. This contribution must be subtracted from the contour integral and the
result shown in (19.3.6)2 emerges. Using a manipulation discussed in Sect. 7.2.4, we
can replace (19.3.6)2 by

q(t) =
K0

π

∫ ∞

−∞
ht+(ω)dω +

1
2π

∫ ∞

−∞
[K′
+(ω) + K′

+(ω)]ht+(ω)dω

=
1
π

∫ ∞

−∞
H(ω)ht+(ω)dω.

(19.3.7)
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On substituting (19.3.2) into (19.3.1)1, we obtain

q(t) = K0h(t) + Aht+(−ζ) + Aht+(ζ). (19.3.8)

Observe that ht+(ζ) = ht+(−ζ). The relation

d
dt
ht+(−ζ) = h(t) + iζht+(−ζ) (19.3.9)

will be used later.
The property that the histories ht1(s) and ht2(s) are in the same minimal state has

the standard form which follows from (19.3.1)1, namely

h1(t) = h2(t),
∫ ∞

0
K′(s + u)ht1(u)du =

∫ ∞

0
K′(s + u)ht2(u)du, s ≥ 0.

It can be shown that the second relation is equivalent to the requirements (see Re-
mark 16.3.1)

ht1+(−ζ) = ht2+(−ζ), ht1+(ζ) = ht2+(ζ),

so that an equivalence class of histories is characterized by the triplet V = (ht+(−ζ),
ht+(ζ),h(t)). A functional of a minimal state containing ht(s) must have the property
that its dependence on ht(s) is expressible as a dependence only on V . This is in
particular true of the minimum free energy discussed below.

We can show that

H(ω) =
N(ω)
D(ω)

,

N(ω) = aω4 + bω2 + c, a = K0, b = i(Aζ − Aζ) − K0(ζ2 + ζ
2
),

c = [K0 |ζ |2 − i(Aζ − Aζ)] |ζ |2 ,
D(ω) = (ζ − ω)(ζ + ω)(ζ − ω)(ζ + ω)

= (ζ2 − ω2)(ζ
2 − ω2) = |ζ − ω|2 |ζ + ω|2 ≥ 0.

(19.3.10)

The polynomial N(ω) is clearly real for real ω. It must also be nonnegative, which
is the constraint imposed by the second law, as discussed in the context of (19.3.4)
and (19.3.5). Note that it is positive for large values of ω. To ensure non-negativity
for all real ω, the form of N(ω) given by (19.3.10)2, expressed as a function of ω2,
cannot have real roots. These roots are given by

η2 =
1

2a
[−b ±

√
b2 − 4ac], (19.3.11)

so that we must have
b2 − 4ac ≤ 0.

For ζ and A given by (19.3.3), we obtain

a = kρ2 > 0, b = −2kα2(ρ − 1)2 < 0, c = 4α4k > 0, (19.3.12)
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and
b2 − 4ac = 4k2α4[(ρ − 1)4 − 4ρ2]

= 4k2α4(ρ2 + 1)(ρ − 2 +
√

3)(ρ − 2 −
√

3) ≤ 0.
(19.3.13)

This inequality yields
2 −

√
3 < ρ < 2 +

√
3,

which is (19.1.4), as expected.
We can write N(ω) in a form similar to D(ω):

N(ω) = K0(η − ω)(η + ω)(η − ω)(η + ω)

= K0(η2 − ω2)(η2 − ω2) = K0 |η − ω|2 |η + ω|2 ≥ 0.

The quantity −b/(2a) is always positive for values specified by (19.3.12). The roots
given by (19.3.11) are therefore in the first and fourth quadrants of the complex
plane. These have the form

η2 = x + iy, x =
α2

ρ2
(ρ − 1)2,

y =
α2

ρ2

√
ρ2 + 1

√
4ρ − ρ2 − 1.

(19.3.14)

It follows that

x2 + y2 = 4
α4

ρ2
.

If η = u + iv, then

u2 =
1
2

(
√
x2 + y2 + x) =

1
2
α2

ρ2
(ρ2 + 1),

v2 =
1
2

(
√
x2 + y2 − x) =

1
2
α2

ρ2
(4ρ − ρ2 − 1).

We choose u > 0 and v > 0 so that η is in the first quadrant and

u =
1
√

2

α

ρ

√
ρ2 + 1, v =

1
√

2

α

ρ

√
4ρ − ρ2 − 1.

The thermodynamic constraint expressed by the inequality in (19.3.13) can be writ-
ten in the form

4ρ − ρ2 − 1 ≥ 0,

which will be useful later.
The quantity H(ω) can be factorized as follows:

H(ω) = H+(ω)H−(ω),

H+(ω) =
√
K0

(ω − η)(ω + η)

(ω − ζ)(ω + ζ)
,

H−(ω) =
√
K0

(ω + η)(ω − η)

(ω + ζ)(ω − ζ)
= H+(ω),

(19.3.15)
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where the singularities and zeros of H+(ω) are in the upper half of the complex plane,
while H−(ω) = H+(ω) has all singularities and zeros in the lower half.

We note in passing that the number of nontrivial zeros of H(ω) in the present
case is twice that in the corresponding viscoelastic problem. This is related to the
fact that H(0) is not zero.

19.4 The Minimum Free Energy for Second-Order Heat
Conduction

We now use the results of Sect. 19.3 to derive an explicit expression for the minimum
free energy in the case of second-order heat conduction.

With the aid of the Plemelj formulae, one can show that the thermal work given
by the negative of (19.3.5) can be expressed in the form

∫ t

−∞
q(u) · h(u)du =

1
2π

∫ ∞

−∞
[
∣∣∣pt+(ω)

∣∣∣2 + ∣∣∣pt−(ω)
∣∣∣2]dω,

pt±(ω) =
1

2πi

∫ ∞

−∞

H−(ω1)ht+(ω1)
ω1 − ω∓ dω1,

∣∣∣pt±(ω)
∣∣∣2 = pt±(ω) · pt±(ω).

(19.4.1)

It is convenient to use histories of the temperature gradient in the present work,
rather than relative histories. In particular, histories are used in the definition of
pt±(ω), so that these quantities are most closely related to those in [158]†. We note
however that the quantities pt±(ω) used here differ somewhat from those in [158]
because of the fact that H(0) is not zero in the present model.

Using any of the arguments presented in Sect. 11.2, we can deduce that the min-
imum free energy is given by

ψm(t) =
1

2π

∫ ∞

−∞

∣∣∣pt−(ω)
∣∣∣2 dω ≥ 0. (19.4.2)

The time derivative of relation (19.4.1)1 is in fact the energy balance equation or First
Law of Thermodynamics in the context of the minimum free energy. We can write it
as

ψ̇m(t) + Dm(t) = q(t) · h(t),

Dm(t) =
d
dt

1
2π

∫ ∞

−∞

∣∣∣pt+(ω)
∣∣∣2 dω ≥ 0,

(19.4.3)

where Dm(t) is the rate of dissipation related to the minimum free energy. By follow-
ing steps closely related to those in [158], we can show that

† Note that the quantities pt
±(ω) here are designated as qt

±(ω) in [158]; see also Sect. 11.2.3.
We avoid this notation because of possible confusion with the magnitude of the heat flow
vector q(t).
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Dm(t) = |J(t)|2 ,

J(t) =
1

2π

∫ ∞

−∞
H−(ω)ht+(ω)dω +

1
2

√
K0h(t)

=
1

2π

∫ ∞

−∞
H−(ω)

[
ht+(ω) − h(t)

iω−

]
dω + H−(0)h(t).

(19.4.4)

The term with H−(0) is not present in the developments of [158]. The non-negativity
of Dm(t), which is clear from (19.4.4), is an expression of the second law.

We can write H±(ω), given by (19.3.15), in the form

H+(ω) =
√
K0

⎡⎢⎢⎢⎢⎣1 − M
ω − ζ

+
M

ω + ζ

⎤⎥⎥⎥⎥⎦ ,

H−(ω) =
√
K0

⎡⎢⎢⎢⎢⎣1 + M
ω + ζ

− M

ω − ζ

⎤⎥⎥⎥⎥⎦ ,

M =
(η − ζ)(η + ζ)

(ζ + ζ)
].

(19.4.5)

One can show that

M =
1

2α
[|η|2 + ζ(η − η) − ζ2] =

α

ρ
[1 − e + i(e − ρ)],

e =

√
2ρ − ρ2 + 1

2
.

(19.4.6)

Closing the contour of (19.3.7)2 on Ω(−) and using (19.4.5), we obtain

q(t) = K0h(t)−2iK0

⎡⎢⎢⎢⎢⎣1 + M
2ζ

− M

ζ − ζ

⎤⎥⎥⎥⎥⎦Mht+(−ζ)

+ 2iK0

⎡⎢⎢⎢⎢⎣1 − M

ζ − ζ
+

M

2ζ

⎤⎥⎥⎥⎥⎦Mht+(ζ).

(19.4.7)

Comparing with (19.3.8), it will be observed that

A = −2iK0

[
M +

M2

2ζ
− |M|2

ζ − ζ

]
,

where A is defined in (19.3.3). This relation can be confirmed with the help of
(19.4.6).

We deduce from (19.4.1)2 and (19.4.5) that

pt−(ω) =
√
K0

⎡⎢⎢⎢⎢⎣Mht+(−ζ)
ω + ζ

− M
ht+(ζ)

ω − ζ

⎤⎥⎥⎥⎥⎦ , (19.4.8)

by closing the contour on Ω(−). Let us define
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ht+(−ζ) = htr(α) + ihti(α),

htr(α) =
∫ ∞

0
ht(s)e−αs cos(αs)ds,

hti(α) =
∫ ∞

0
ht(s)e−αs sin(αs)ds,

(19.4.9)

with the aid of (19.3.1)1

Using (19.4.2) and (19.4.8), the minimum free energy can be written in the form

ψm(t) = iK0

⎧⎪⎪⎨⎪⎪⎩
[|M|2

∣∣∣ht+(−ζ)
∣∣∣]2

iα
−

[Mht+(−ζ)]2

2ζ
+

[Mht+(ζ)]2

2ζ

⎫⎪⎪⎬⎪⎪⎭ , (19.4.10)

where
[Mht+(−ζ)]2 = M2ht+(−ζ) · ht+(−ζ),

and similarly for the complex conjugate term and others introduced below. Let us
define

M =
α

ρ
(λ + iμ), λ = 1 − e, μ = e − ρ.

Then ψm(t) can be expressed as

ψm(t) =
1
2

∫ ∞

0

∫ ∞

0
ht(s) ·G(s, s′)ht(s′)dsds′,

G(s, s′) = 2K0Re

{
ei(ζs − ζs′) |M|2

α
− ieiζ(s + s′) M

2

ζ

}

= 2K0e
−α(s + s′) α

ρ2

{
(λ2 + μ2) cosα(s − s′)

− 1
2

(λ2 − μ2 − 2λμ) cosα(s + s′)

+
1
2

(λ2 − μ2 + 2λμ) sinα(s + s′)

}

= 2K0e
−α(s + s′) α

ρ2

{
2[2ρ − e(1 + ρ)] cosα(s − s′)

− [3ρ − ρ2 − 2e] cosα(s + s′)

+[1 + 2eρ − 3ρ] sinα(s + s′)
}
,

(19.4.11)

in terms of the quantities α, ρ, and K0 defined in (19.3.3) and e which is introduced
in (19.4.6). Either by expanding the trigonometric functions in (19.4.11) or by using
(19.4.9) in (19.4.10), we can also express the minimum free energy as the quadratic
form

ψm(t) =
K0α

ρ2
h�Ah, h = (htr(α),hti(α)),

A =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
λ2 + 3μ2 + 2λμ λ2 − μ2 + 2λμ

λ2 − μ2 + 2λμ 3λ2 + μ2 − 2λμ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ≥ 0.
(19.4.12)
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The non-negativity property of A can be shown for general values of λ and μ. In the
present context,

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ρ(1 + ρ − 2e) 1 − 3ρ + 2eρ

1 − 3ρ + 2eρ 7ρ − ρ2 − 4e − 2eρ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (19.4.13)

The rate of dissipation associated with ψm(t) is given by (19.4.4), which, in the light
of (19.4.5), becomes

Dm(t) = K0

[
h(t) − iMht+(−ζ) + iMht+(ζ)

]2

= K0

{
h2(t) − 2iMht+(−ζ) · h(t) + 2iMht+(ζ) · h(t)

+2 |M|2
∣∣∣ht+(−ζ)

∣∣∣2 − [Mht+(−ζ)]2 − [Mht+(ζ)]2
}
.

(19.4.14)

It is of interest to confirm that (19.4.3)1 holds for the above formulae. Using (19.3.9)
and (19.4.7), we see that

ψ̇m(t) = iK0

⎧⎪⎪⎨⎪⎪⎩
|M|2

iα
[ht+(ζ) + ht+(−ζ)] −

M2ht+(−ζ)
ζ

+
M

2
ht+(ζ)

ζ

⎫⎪⎪⎬⎪⎪⎭ · h(t)

− K0

{
2 |M|2

∣∣∣ht+(−ζ)
∣∣∣2 − [Mht+(−ζ)]2 − [Mht+(ζ)]2

}

= q(t) · h(t) − Dm(t).

(19.4.15)

We observe that this relation is satisfied in a somewhat different way from that for
viscoelastic problems. For these other materials, the quantity ψ̇m(t) generates the rate
of dissipation Dm(t) and the rate of work. In the present case, ψ̇m(t) generates those
parts of the rate of dissipation and the rate of work q(t) · h(t), which are quadratic in
M and M, while the terms in the rate of dissipation which are linear in M and M or
independent of these quantities provide the remainder of the rate of work.

In relation to this difference, consider the quantityG(s, s′) in (19.4.11). The quan-
tity G(s, 0) = G(0, s) in viscoelasticity is the relaxation function of the material. In
the present case, using (19.4.7) and (19.4.11)2, we see that

q(t) = K0h(t) +
∫ ∞

0
G(0, s)ht(s)ds − 2iK0M

∫ ∞

0
eiζsht(s)ds

+ 2iK0M
∫ ∞

0
e−iζsht(s)ds,

so that G(0, s) is that part of the relaxation function that is quadratic in M and M.
The quantity Dm(t) can be expressed as
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Dm(t) = K0|h(t)|2 + 4K0
α

ρ
h(t) · [μhtr(α) + λhti(α)]

+
1
2

∫ ∞

0

∫ ∞

0
ht(s) · L(s, s′)ht(s′)dsds′,

L(s, s′) = 4K0Re

{
ei(ζs − ζs′) |M|2 − eiζ(s + s′)M2

}

= 4K0e
−α(s + s′)α

2

ρ2

{
(λ2 + μ2) cosα(s − s′)

−(λ2 − μ2) cosα(s + s′) + 2λμ sinα(s + s′)
}

= 4K0e
−α(s + s′)α

2

ρ2

{
2[2ρ − e(1 + ρ)] cosα(s − s′)

− [1 − ρ2 + 2e(ρ − 1)] cosα(s + s′)

+[2e(1 + ρ) + (ρ − 1)2 − 4ρ] sinα(s + s′)
}
.

(19.4.16)

Note that

L(s, s′) = − ∂

∂s
G(s, s′) − ∂

∂s′
G(s, s′).

As for the minimum free energy given by (19.4.12), we can also express the rate of
dissipation as the quadratic form

Dm(t) = K0|h(t)|2 + 4K0
α

ρ
(m�h) · h(t) + 2

K0α
2

ρ2
h�Bh,

m = (μ, λ) = (e − ρ, 1 − e),

B = 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
μ2 λμ

λμ λ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
4ρ + ρ2 − 1 − 4eρ 2e(1 + ρ) + (ρ − 1)2 − 4ρ

2e(1 + ρ) + (ρ − 1)2 − 4ρ 1 − 4e + 4ρ − ρ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

(19.4.17)

This matrix is positive semidefinite. The full expression for Dm(t), given by (19.4.16),
is not manifestly nonnegative. However, the earlier form (19.4.14) is clearly so.

19.5 Free Energies Related to the Minimum Free Energy

We now proceed to derive certain other free energies from the expression for the
minimum free energy, using a procedure analogous to that in Sect. 16.8.
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Replacing the zero at ω = η of H−(ω) by the zero η of H+(ω) gives another
free energy, which we now examine. This is the quantity, which we denote by ψ1(t),
related to the factorization of H(ω) given by

H(ω) = H(1)
+ (ω)H(1)

− (ω),

H(1)
− (ω) = H−(ω)

ω − η

ω − η
=

√
K0

(ω − η)(ω + η)

(ω + ζ)(ω − ζ)
=

√
K0

ω2 − η2

(ω + ζ)(ω − ζ)
,

H(1)
+ (ω) = H+(ω)

ω − η

ω − η
=

√
K0

(ω − η)(ω + η)

(ω − ζ)(ω + ζ)
=

√
K0

ω2 − η2

(ω − ζ)(ω + ζ)
.

(19.5.1)

The zeros of H(1)
+ (ω) are no longer only in the upper half of the complex plane, while

those of H(1)
− (ω) = H(1)

+ (ω) are no longer only in the lower half.
We must have ψ1(t) ≥ ψm(t), since the latter is the minimum of the set of free

energies for the material. It follows also from the general property that exchanging
zeros in this manner results in a nondecreasing sequence (Sect. 16.8).

Instead of (19.4.5), we have

H(1)
− (ω) =

√
K0

[
1 +

M1

ω + ζ
− M2

ω − ζ

]
,

H(1)
+ (ω) =

√
K0

⎡⎢⎢⎢⎢⎣1 − M2

ω − ζ
+

M1

ω + ζ

⎤⎥⎥⎥⎥⎦ ,

M1 =
(η2 − ζ2)

ζ + ζ
, M2 =

(η2 − ζ
2
)

ζ + ζ
.

(19.5.2)

Note that M2 � M1, in contrast to the minimum free energy case (19.4.5). Replacing
(19.4.6), we have

M1 =
(η2 − ζ2)

2α
=

α

ρ

[
β

ρ
− 1 + i

(
e1

ρ
− ρ

)]
,

M2 =
(η2 − ζ

2
)

2α
=

α

ρ

[
β

ρ
− 1 + i

(
e1

ρ
+ ρ

)]
,

β =
ρ2 + 1

2
, e1 =

√
β(2ρ − β),

(19.5.3)

where (19.3.14) has been used. Closing the contour of (19.3.7)2 on Ω(−) and using
(19.4.5), we obtain

q(t) = K0h(t)−2iK0

⎡⎢⎢⎢⎢⎣1 + M2

2ζ
− M1

ζ − ζ

⎤⎥⎥⎥⎥⎦M1ht+(−ζ)

+ 2iK0

⎡⎢⎢⎢⎢⎣1 − M2

ζ − ζ
+

M1

2ζ

⎤⎥⎥⎥⎥⎦M2ht+(ζ).

Comparing with (19.3.8), it will be observed that
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A = −2iK0

⎡⎢⎢⎢⎢⎣M1 +
M1M2

2ζ
− |M1|2

ζ − ζ

⎤⎥⎥⎥⎥⎦

= −2iK0

⎡⎢⎢⎢⎢⎣M2 −
|M2|2

ζ − ζ
+

M1M2

2ζ

⎤⎥⎥⎥⎥⎦ ,
(19.5.4)

where A is defined in (19.3.3). Note that (19.5.4) implies the condition

M1 −
|M1|2

ζ − ζ
= M2 −

|M2|2

ζ − ζ
, (19.5.5)

which in fact follows from (19.5.2)4,5. Equation (19.5.4)1 can be confirmed with the
help of (19.5.3).

We deduce from (19.4.1)2 and (19.5.2) that

pt−(ω) =
√
K0

⎡⎢⎢⎢⎢⎣M1
ht+(−ζ)
ω + ζ

− M2
ht+(ζ)

ω − ζ

⎤⎥⎥⎥⎥⎦ , (19.5.6)

by closing the contour on Ω(−). Using (19.4.2) and (19.5.6), ψ1(t) can be written in
the form

ψ1(t) = iK0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(|M1|2 + |M2|2)

∣∣∣ht+(−ζ)
∣∣∣2

2iα

−
M1M2[ht+(−ζ)]2

2ζ
+

M1M2[ht+(ζ)]2

2ζ

⎫⎪⎪⎬⎪⎪⎭ .

Let us define

M1 =
α

ρ
(λ1 + iμ1), M2 =

α

ρ
(λ1 + iμ2),

λ1 =
β

ρ
− 1 =

(ρ − 1)2

2ρ
, μ1 =

e1

ρ
− ρ, μ2 =

e1

ρ
+ ρ.

Then, ψ1(t) can be expressed as

ψ1(t) =
1
2

∫ ∞

0

∫ ∞

0
ht(s) ·G1(s, s′)ht(s′)dsds′,

G1(s, s′) = 2K0Re

⎧⎪⎨⎪⎩ei(ζs − ζs′) |M1|2 + |M2|2
2α

− ieiζ(s + s′) M1M2

ζ

⎫⎪⎬⎪⎭
= 2K0e

−α(s + s′) α

ρ2

{
[λ2

1 +
1
2

(μ2
1 + μ

2
2)] cosα(s − s′)

− 1
2

[λ2
1 + μ1μ2 − λ1(μ1 − μ2)] cosα(s + s′)

+
1
2

[λ2
1 + μ1μ2 + λ1(μ1 − μ2)] sinα(s + s′)

}

= 2K0e
−α(s + s′) α

ρ2

{
(1 + ρ2) cosα(s − s′)

− (1 − ρ) cosα(s + s′) +ρ(1 − ρ) sinα(s + s′)
}
,

(19.5.7)
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in terms of the quantities α, ρ, and K0 defined in (19.3.3). Following the steps leading
to (19.4.12), we can also express ψ1(t) as the quadratic form

ψ1(t) =
K0α

ρ2
h�A1h,

using the notation of (19.4.12)2, where

A1 =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Λ + Δ(λ1 + Δ) Λ + λ1Δ

Λ + λ1Δ 3Λ + Δ(Δ − λ1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ≥ 0,

Λ = λ2
1 + μ1μ2, Δ = μ1 − μ2.

The non-negativity property of A1 can be shown for general values of λ1, μ1, and μ2.
In the present context,

A1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ρ(1 + ρ) ρ(1 − ρ)

ρ(1 − ρ) ρ2 − ρ + 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (19.5.8)

The rate of dissipation associated with ψ1(t) is given by the analogue of (19.4.4)
for the factorization (19.5.1), which, in the light of (19.5.2), becomes

D1(t) = K0|h(t) − iM1ht+(−ζ) + iM2ht+(ζ)|2

= K0

{
|h(t)|2 − 2Re[iM1ht+(−ζ) − iM2ht+(ζ)] · h(t)

+(|M1|2 + |M2|2)
∣∣∣ht+(−ζ)

∣∣∣2 − M1M2[ht+(−ζ)]2 − M1M2[ht+(ζ)]2
}
.

(19.5.9)

It is of interest to confirm that the analogue of (19.4.3)1 holds for the above formulae.
Using (19.3.9) and (19.4.7), we see that

ψ̇1(t) = iK0

{
|M1|2 + |M2|2

2iα
[ht+(ζ) + ht+(−ζ)]

−
M1M2ht+(−ζ)

ζ
+

M1M2ht+(ζ)

ζ

⎫⎪⎪⎬⎪⎪⎭ · h(t)

− K0
{
(|M1|2 + |M2|2)

∣∣∣ht+(−ζ)
∣∣∣2

− M1M2[ht+(−ζ)]2 − M1M2[ht+(ζ)]2}
= q(t) · h(t) − D1(t).

(19.5.10)

The demonstration of (19.5.10)2 requires the use of condition (19.5.5). The observa-
tion after (19.4.15) also applies here. The quantity D1(t) can be expressed as
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D1(t) = K0|h(t)|2 + 2K0
α

ρ
h(t) · [(μ1 − μ2)htr(α) + 2λ1hti(α)]

+
1
2

∫ ∞

0

∫ ∞

0
ht(s) · L1(s, s′)ht(s′)dsds′,

L1(s, s′) = 2K0Re

{
ei(ζs − ζs′)(|M1|2 + |M2|2) − 2eiζ(s + s′)M1M2

}

= 2K0e
−α(s + s′)α

2

ρ2

{
(2λ2

1 + μ
2
1 + μ

2
2) cosα(s − s′)

−2(λ2
1 + μ1μ2) cosα(s + s′) + 2λ1(μ1 − μ2) sinα(s + s′)

}

= 4K0e
−α(s + s′)α

2

ρ2

{
(ρ2 + 1) cosα(s − s′)

+(ρ2 − 1) cosα(s + s′) − (ρ − 1)2 sinα(s + s′)
}
.

(19.5.11)

Note that

L1(s, s′) = − ∂

∂s
G1(s, s′) − ∂

∂s′
G1(s, s′).

We can also express the rate of dissipation in a form similar to (19.4.17):

D1(t) = K0|h(t)|2 + 2K0
α

ρ
(m�h) · h(t) + 2

K0α
2

ρ2
h�B1h,

m = (μ1 − μ2, 2λ1) =

(
−2ρ, 2

(
β

ρ
− 1

))
,

B1 =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(μ1 − μ2)2 2λ1(μ1 − μ2)

2λ1(μ1 − μ2) 4λ2
1 + (μ1 + μ2)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
4ρ2 −2(ρ − 1)2

−2(ρ − 1)2 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

This matrix is positive definite. The full expression for D1(t), given by (19.5.11), is
not manifestly nonnegative. However, the earlier form (19.5.9) is clearly so. From
(19.4.13) and (19.5.8), we find that

A1 − A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2eρ 2ρ(1 − e) − (ρ − 1)2

2ρ(1 − e) − (ρ − 1)2 2e(2 + ρ) − 4e2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (19.5.12)

which can be shown to be nonnegative.
The other intermediate free energy is obtained by exchanging the other zeros in

H±(ω), so that the factor (ω − η)/(ω − η) in the second line of (19.5.1) is replaced
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by (ω + η)/(ω + η). The resulting formulae are similar, but with η replaced by η or
e1 replaced by (−e1), which follows by virtue of (19.3.14) and the last relation of
(19.5.3). This actually produces the same free energy, because (19.5.7) and (19.5.8)
do no depend on the square root quantity e1, given in (19.5.3), but only on its square.

The maximum free energy is obtained by exchanging both zeros in H±(ω). This
amounts to changing the sign of e in the formulae (17.3.2) and (19.4.13). The result-
ing matrix corresponding to A in (19.4.13) is easily shown to be greater than or equal
to A. It can also be shown to be greater than or equal to A1, given by (19.5.8), using
a procedure similar to the demonstration that A1 − A in (19.5.12) is nonnegative.
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Free Energies for Nonlinear Materials with Memory

20.1 Introduction

Expressions are obtained in this chapter for free energies of materials with a cer-
tain type of nonlinear constitutive relation. These developments are based on certain
aspects of results presented in [166].

We recall the integrated form of the energy balance relation, given by (16.1.29),
where D(t) and W(t) are the total dissipation and the work function , respectively, of
the material, defined by

D(t) = D̃(Et, E(t)) =
∫ t

−∞
D(u)du ≥ 0, Ḋ(t) = D(t),

W(t) =
∫ t

−∞
T (u)Ė(u)du = W̃(Et, E(t)) = W(t; E(t)),

(20.1.1)

while T (t) = T̃ (Et, E(t)) is the stress. It is assumed that these integrals exist. We
note that W(t) behaves similarly to a free energy functional with zero dissipation
associated with it (except that it does not have property P4, stated in Sect. 18.2).
From (20.1.1), it follows that

Ẇ(t) = T (t)Ė(t), (20.1.2)

which is P3 for D(t) = 0. It is also clear from (16.1.26) and (20.1.1)3 that

W(t) ≥ ψ(t) ≥ φ(t), (20.1.3)

where ψ(t) is any free energy functional, so that W(t) is either the maximum free
energy or greater than this quantity. Also, φ(t) is ψ(t) for a static history.

Let us now briefly demonstrate that it also obeys P1, given by (16.1.25) (using
an intuitive and modified version of the argument in [67]) and P2. Relation (20.1.3)
is equivalent to (16.1.26), though it must be shown that equality is achieved only for
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static histories. We can write

Ẇ(t) =
∂

∂E(t)
W̃(Et, E(t))Ė(t) + δW̃,

where the rightmost term is a Fréchet differential of W̃, defined within a suitable
Hilbert space (for example, (5.1.17)). Thus, (20.1.2) can be written in the form

[
∂

∂E(t)
W̃(Et, E(t)) − T̃ (Et, E(t))

]
Ė(t) = −δW̃.

The quantity Ė(t) can take arbitrary values, so that (16.1.25) or P1 must hold for ψ̃
replaced by W̃, giving

∂

∂E(t)
W(t) = T (t). (20.1.4)

Also, the quantity δW̃ must vanish. Using P1 for ψ(t), we obtain

∂

∂E(t)
ψ(t) =

∂

∂E(t)
W(t) = T (t).

It follows that
∂D(t)
∂E(t)

= 0,

giving
D̃(Et, E(t)) = D̃(Et).

For the static history E†, the quantity T̃ (Et, E(t)) will be denoted by T̃e(E(t)) = Te(t),
a function only of the current strain. We see that

dφ̃(E(t))
dE(t)

=
dφ(t)
dE(t)

= T̃e(E(t)) = Te(t), (20.1.5)

giving

φ̃(E(t)) =
∫ E(t)

E0

T̃e(ε)dε,

where E0 is chosen to be some convenient value of strain. Equation (20.1.1)3 for the
static history yields that

W̃(E†, E(t)) =
∫ t

−∞

dφ(u)
dE(u)

Ė(u)du = φ(t),

so that equality in (20.1.3)2 is achieved for the static history.

20.2 A Generalized Quadratic Model

We seek explicit forms for free energies of materials which yield constitutive rela-
tions with memory functionals that are nonlinear in a particular sense. The equilib-
rium term of these relations, which has no memory effects, may be unrestrictedly
nonlinear.
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The free energy ψ̃(Et, E(t)) can be approximated by the scalar version of (7.1.1):

ψ(t) = φ(t) +
1
2

∫ ∞

0

∫ ∞

0
Et
r(u)G12(u, v; E(t))Et

r(v)dudv

= φ(t) +
1
2

∫ ∞

0

∫ ∞

0
Ėt(u)G̃(u, v; E(t))Ėt(v)dudv,

= φ(t) − φl(t) +
1
2

∫ ∞

0

∫ ∞

0
Ėt(u)G(u, v; E(t))Ėt(v)dudv,

Ėt(u) =
∂

∂t
Et(u) = − ∂

∂u
Et(u) = − ∂

∂u
Et
r(u)

φl(t) =
1
2
G∞(E(t))E2(t),

(20.2.1)

where G12(u, v; E(t)) and G̃(u, v; E(t)) may be assumed to be symmetric in the inter-
change of u and v. Also,

G12(u, v; E(t)) =
∂2

∂u∂v
G(u, v; E(t))

G̃(u, v; E(t)) = G(u, v; E(t)) −G∞(E(t)),
(20.2.2)

and

lim
u→∞

G(u, v; E(t)) = G∞(E(t)), lim
u→∞

∂

∂v
G(u, v; E(t)) = 0, u ∈ R+. (20.2.3)

Relation (20.2.3)1 is a definition of the quantity G∞(E(t)) used in (20.2.1)7 and
(20.2.2)2. Note that it is independent of v, which is a restriction on G(u, v; E(t)).
The quantity G∞(E(t)) is unique to the material and therefore not dependent on the
choice of kernel G(u, v; E(t)). Also,

lim
u→∞

∂

∂u
G(u, v; E(t)) = 0, v ∈ R+, lim

v→∞

∂

∂v
G(u, v; E(t)) = 0, u ∈ R+.

Note that (20.2.1)1 follows from (20.2.1)2, by virtue of (20.2.1)6. We have G∞(E) >
0 for all values of E.

If we choose φ(t) in (20.2.1) to be equal to φl(t), then

ψ(t) =
1
2

∫ ∞

0

∫ ∞

0
Ėt(u)G(u, v; E(t))Ėt(v)dudv.

Remark 20.2.1. The quantity φ(t) is always taken to be a nonnegative function of
E(t), zero only if E(t) = 0, while (20.1.3)2 gives that the integral terms in (20.2.1)
are nonnegative. From (20.2.1)1, it is clear that the integral terms vanish for the static
history. They are positive for all other histories. The kernels G̃ and G12 must be such
that this property holds. The linear functional terms are omitted from the expression
because they may take any sign.
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If the effect on the kernels of the variation of E(t) can be neglected, we obtain the
standard quadratic form for free energies, yielding linear memory terms in the con-
stitutive relations. For example, if E(t) varies only to a small extent from a constant
strain Ec, the kernel can be well approximated by G(u, v, Ec), which yields a linear
memory constitutive relation.

We refer to a theory based on such a kernel as a linear memory theory. The
associated free energy will be referred to as a linear memory free energy, though it is
in fact a quadratic functional; similarly for the related rate of dissipation. These are
of course the functionals that have been discussed in the previous chapters of Part III.

Let us consider the kernel G(u, v, E1) for any arbitrary time-independent choice
of the strain E1 (which may be different from Ec) as that for a particular, known,
linear memory free energy. We can in general write

G(u, v; E(t)) = G(u, v, E1) +G(E)(u, v; E(t)), G(E)(u, v; E1) = 0. (20.2.4)

The quantity G(u, v, E1) is assumed to be nonzero, since it is important that a term
independent of E(t) is present, and the limiting linear memory constitutive equation
exists.

The simplest possibility for G(u, v, E(t)) is where it is a polynomial in E(t) − Ec,
including a term independent of E(t). The difference E(t) − Ec is not now regarded
as negligible. If the highest power of the polynomial is N, we refer to the model as
of order N.

An example is the model of order 2, given by

G(u, v; E(t)) = G(0)(u, v) + (E(t) − Ec)
2G(2)(u, v). (20.2.5)

The term proportional to E(t) − Ec is omitted because there are positivity require-
ments on the kernel, and this linear term can take any sign. The quantities G(i)(u, v),
i = 0, 2, must be such that G(u, v; E(t)) has the property imposed by (20.1.3)2 and
referred to in Remark 20.2.1, for any choice of E(t). It follows that both must be
suitable kernels for linear memory free energies, in the sense of the non-negativity
requirements deriving from (20.1.3)2.

Equation (20.2.1) can be written in the form

ψ(t) = σ(t) +
1
2

∫ ∞

0

∫ ∞

0
Et(u)G12(u, v; E(t))Et(v)dudv,

σ(t) = φ(t) − 1
2

[G∞(E(t)) −G0(E(t))] E2(t)

+ E(t)
∫ ∞

0
G′(u; E(t))Et(u)du,

(20.2.6)

where
G(u; E(t)) = G(0, u; E(t)) = G(u, 0; E(t)), u ∈ R+. (20.2.7)

The left-hand side of this relation will be referred to as the relaxation function, which
is a unique characteristic property of the material. There are typically many choices
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of the free energy kernel G(u, v; E(t)) with G(0, u; E(t)) equal to G(u; E(t)). The re-
laxation function is generally assumed to be a nonnegative quantity.

The prime on G(u; E(t)) in (20.2.6)2 indicates differentiation with respect to its
first argument. Furthermore,

G0(E(t)) = G(0; E(t)), G∞(E(t)) = lim
u→∞

G(u, E(t)).

Note that G∞(E(t)) is the same as the quantity introduced in (20.2.3)1. For φ(t) =
φl(t),

σ(t) =
1
2
G0(E(t))E2(t) + E(t)

∫ ∞

0
G′(u; E(t))Et(u)du.

Corresponding to (20.2.4) and taking account of (20.2.7), we have

G(u; E(t)) = G(u; E1) +G(E)(u, E(t)), G(E)(u; E1) = 0. (20.2.8)

The model of order 2, given by (20.2.5), corresponds to the form of the relaxation
function

G(u; E(t)) = G(0)(u) + (E(t) − Ec)
2G(2)(u),

G(i)(u) = G(i)(u, 0), i = 0, 2.
(20.2.9)

The quantities G(i)(u) must be such that G(u; E(t)) has the required properties for a
relaxation function, for any value of E(t). This implies that both these quantities are
valid relaxation functions for a linear memory material.

We will use the model of order 2, given by (20.2.5) and (20.2.9) as our ma-
terial model for discussion of our free energy functional in the nonlinear case. The
extension of this discussion to models of order 2N, where N = 1, 2, 3, . . . , is straight-
forward.

Remark 20.2.2. For even powered polynomial models, and indeed any model where
G(u, v; E(t)) diverges positively for large values of |E(t)|, a limit most be imposed on
the size of |E(t)|, which we denote by El > 0. For example, this could be slightly
below a critical strain at which failure or a phase transition occurs.

Equivalent expressions for the total work done on the material are now presented.
We seek quadratic forms for W(t) similar to (20.2.1) or (20.2.6) and for which the
kernel K of the rate of dissipation, given by (20.3.7) below, vanishes. Also, the linear
memory result must readily emerge. The only choices obeying these requirements
are given by

W(t) = φ(t) +
1
2

∫ ∞

0

∫ ∞

0
G12(|u − v|; E(t))Et

r(u)Et
r(v)dudv

= σ(t) +
1
2

∫ ∞

0

∫ ∞

0
G12(|u − v|; E(t))Et(u)Et(v)dudv

= φ(t) +
1
2

∫ ∞

0

∫ ∞

0
G̃(|u − v|; E(t))Ėt(u)Ėt(v)dudv,

G̃(u, E(t)) = G(u, E(t)) −G∞(E(t)),

(20.2.10)
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where the kernel is the relaxation function introduced in (20.2.7). We also define the
functional

W(t; E1) = φ1(t) +
1
2

∫ ∞

0

∫ ∞

0
G12(|u − v|; E1)Et

r(u)Et
r(v)dudv, (20.2.11)

where E1 is a given strain, independent of t, and φ1(t) is φ(t) with any occurrence of
E(t) in G∞(·) or G0(·) replaced by E1.

20.3 Dissipation

Using (20.2.1)2 and (20.2.10)3, we see that

G(u, v; E(t)) + Δ(u, v) = G(|u − v|; E(t)), (20.3.1)

where Δ(u, v) is the kernel of the total dissipation. Relations (20.2.7), (20.3.1), and
(20.2.3)1 give that

Δ(u, 0) = Δ(0, u) = 0, u ∈ R+,
lim
u→∞

Δ(u, v) = lim
u→∞

Δ(v, u) = 0, v ∈ R+. (20.3.2)

The relations in (20.3.2)1,2 have been given previously in (17.3.24). The total dissi-
pation has the form

D(t) =
1
2

∫ ∞

0

∫ ∞

0
Δ(u, v)Ėt(u)Ėt(v)dudv

=
1
2

∫ ∞

0

∫ ∞

0
Δ12(u, v)Et

r(u)Et
r(v)dudv,

(20.3.3)

where the second form requires (20.2.1)6. Using (20.3.2), we find that (20.3.3)2 be-
comes

D(t) =
1
2

∫ ∞

0

∫ ∞

0
Δ12(u, v)Et(u)Et(v)dudv.

Since Δ(u, v) in (20.3.1) is independent of E(t), we can put

Δ(u, v) = G(|u − v|; E1) −G(u, v; E1), (20.3.4)

for any choice of E1 and in particular for the parameter introduced in (20.2.4). Using
this in (20.3.1), we obtain

G(u, v; E(t)) = G(u, v; E1) +G(|u − v|; E(t)) −G(|u − v|; E1), (20.3.5)

or, recalling (20.2.4) and (20.2.8),

G(E)(u, v; E(t)) = G(E)(|u − v|; E(t)) = G(|u − v|; E(t)) −G(|u − v|; E1).
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These are significant restrictions on G(u, v; E(t)). They ensure the uniqueness of the
constitutive relations. Note that Δ(u, v) depends in general on the parameter E1. We
rewrite (20.2.5) as

G(u, v; E(t)) = G(0)(u, v) + (E(t) − Ec)
2G(2)(|u − v|), (20.3.6)

where G(2)(u) is the same quantity as in (20.2.9).
Using (20.3.3)1, (20.3.2), and (20.3.4), we find that the rate of dissipation, given

by the derivative of D(t), has the form

D(t) = D(t; E1) = −1
2

∫ ∞

0

∫ ∞

0
Ėt(u)K(u, v; E1)Ėt(v)dudv

= −1
2

∫ ∞

0

∫ ∞

0
Et
r(u)K12(u, v; E1)Et

r(v)dudv,

K(u, v; E1) = G1(u, v; E1) +G2(u, v; E1).

(20.3.7)

The kernel K(u, v, E1) is independent of E(t). However, we see from (20.3.7)2 that
D(t; E1) may depend on E(t).

20.4 General Form of a Free Energy for Nonlinear Materials

By virtue of (20.3.5), we find that the general form of the free energy functional is

ψ(t) = ψl(t; E1) +W(t; E(t)) −W(t; E1),

ψl(t; E1) = φ1(t) +
1
2

∫ ∞

0

∫ ∞

0
G12(u, v; E1)Et

r(u)Et
r(v)dudv.

(20.4.1)

The quantity ψl(t; E1) is a quadratic functional of the form (20.2.1), yielding a linear
memory free energy, while φ1(t) is defined after (20.2.11). For the model of order 2,
we see from (20.3.6) that it has the form

G(u, v; E1) = G(0)(u, v) + (E1 − Ec)
2G(2)(|u − v|).

The quantity W(t; E1) is defined by (20.2.11)3. The free energy ψ(t) will in general
depend on the choice of E1, so that we denote it by ψ(t; E1).

Remark 20.4.1. It is assumed that the quantity ψl(t; E1) is a valid linear memory free
energy with kernel G12(u, v; E1), which is independent of E(t). The associated total
dissipation is

Dl(t; E1) = W(t; E1) − ψl(t; E1) ≥ 0, (20.4.2)

while the rate of dissipation Dl(t; E1) is given by (20.3.7) and must be nonnegative,
by virtue of (16.1.28), for ψl(t; E1).

The total dissipation relating to ψ(t; E1) can be seen from (20.4.1) to be equal to
Dl(t; E1), so that
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D(t) = D(t; E1) = W(t; E1) − ψl(t; E1) ≥ 0,

which is independent of E(t). The time derivative yields D(t; E1), as given by
(20.3.7).

We must show that ψ(t; E1), given by (20.4.1), obeys the properties P1–P3 listed
in Sect. 16.1.2. Property P1 follows from (20.1.4).The time derivative of (20.4.1)
gives

ψ̇(t; E1) + D(t; E1) = T (t)Ė(t),

D(t; E1) = Dl(t; E1) = Ḋl(t; E1) ≥ 0,

as noted after (20.4.2). It follows that P3 is true also for ψ(t; E1).
Property P2 can be shown as follows. It is essentially a statement that the integral

terms in (20.2.1)1,2 are nonnegative. Substituting (20.3.6) into the integral terms of
(20.2.1) and recalling that G(0)(u, v) and G(2)(|u− v|) are valid linear memory kernels
yielding a free energy and a work function, respectively, we conclude that these are
both nonnegative integrals, so that P2 holds.

20.4.1 Generalizing Specified Linear Memory Free Energies

It is of interest to discuss natural generalizations of standard free energy functional
forms in the linear memory case to the nonlinear materials of interest here. These
are given by (20.4.1), where ψl(t; E1) is taken to be the linear memory free energy
of interest. In particular, examples where ψl(t; E1) is put equal to the Graffi–Volterra
and Dill functionals, together with ψF , are presented in [166]. These are free ener-
gies in the linear memory case, provided the relaxation function obeys certain decay
conditions (see Sect. 10.1.2 and (17.3.4)). The only modification necessary to the
familiar expressions for these quantities is to insert dependence on the parameter E1

into the relaxation function G(u). The resulting generalized free energy functionals
ψGV (t; E1) ψD(t; E1) and ψF(t; E1) will depend on this parameter.

A similar procedure can be applied to the minimum free energy ψm and, for
materials with only isolated singularities, the related free energies ψ f introduced in
Sect. 16.4. In the case of ψm(t; E1), there is the extra stage of seeking the value of E1,
which minimizes this functional or maximizes the associated total dissipation [166].

20.5 Constitutive Relations

From P1, we obtain the following forms of the stress function:
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T (t) = T̃e(E(t)) +
∫ ∞

0
G′(u; E(t))Et

r(u)du

+
1
2

∫ ∞

0

∫ ∞

0
Et
r(u)G12E(|u − v|; E(t))Et

r(v)dudv

= T̃e(E(t)) +
∫ ∞

0
G̃(u; E(t))Ėt(u)du

+
1
2

∫ ∞

0

∫ ∞

0
Ėt(u)G̃E(|u − v|; E(t))Ėt(v)dudv

= T̃0(Et, E(t)) +
1
2

∫ ∞

0

∫ ∞

0
Et(u)G12E(|u − v|; E(t))Et(v)dudv,

(20.5.1)

where T̃e(E(t)) is defined by (20.1.5). Also,

G̃(u; E(t)) = G(u; E(t)) −G∞(E(t)),

T̃0(Et, E(t)) =
∂σ(t)
∂E(t)

= T̃e(E(t)) − [G∞(E(t)) −G0(E(t))] E(t)

+

∫ ∞

0
G′(u; E(t))Et(u)du + E(t)

∫ ∞

0
G′

E(u; E(t))Et(u)du,

where the second relation follows from (20.2.6). Furthermore,

GE(|u − v|; E(t)) =
∂

∂E(t)
G(|u − v|; E(t)),

G12E(|u − v|; E(t)) =
∂

∂E(t)
G12(|u − v|; E(t)).

The forms given by (20.5.1) differ from what is known as finite linear viscoelas-
ticity [73, 121] by the extra terms involving the derivative with respect to E(t) of the
kernels in the quadratic memory terms. They are also clearly derivable from a free
energy functional.
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Free Energies for Nonlocal Materials

When nonlocal materials are considered, the classical laws of thermodynamics must
be modified by expressing these laws in terms of internal powers or by introducing
directly into them suitable extra fluxes, characteristic of the material under consider-
ation [117], as discussed in some detail in Sect. 3.7. The first formulation, in terms
of internal powers, is more general than the second one, since it is defined a priori by
means of the constitutive equations, by taking into account the power balance laws;
in the second method, there is the problem of introducing a posteriori the vector
fluxes in order that compatibility with the laws of thermodynamics be satisfied.

In Sects. 21.1 and 21.2 of this chapter, we shall be concerned with two fur-
ther types of nonlocal materials other than those considered in Sect. 3.7. These are
second-gradient thermoviscoelastic fluids and heat flux in rigid conductors with non-
local behavior, in both cases with memory. The latter case is related to an example
discussed in Sect. 3.7, namely the material described by (3.7.34). Our main emphasis
here will be on proposing and discussing free energy functionals that generalize the
forms given in Chaps. 10 and 11 for simple materials.

Finally, in Sect. 21.3, a general theory of nonlocal materials, based on [15], is
described. As in earlier chapters, the terms nonlocal and nonsimple are taken to be
interchangeable; similarly for local and simple.

21.1 Second-Gradient Thermoviscoelastic Fluids

Incompressible second-order fluids with memory and thermal effects, characterized
by a constitutive equation for the stress tensor T expressed by

T(t) = [−p(t) + αϑ(t)]I + 2
∫ +∞

0
μ′(s)Et

r(s)ds −
∫ +∞

0
κ
′(s)∇ ·

[
∇Et

r(s)
]
ds,

ϑ = θ − θ0,
(21.1.1)
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are considered in this section, where p and θ are the pressure and the absolute temper-
ature, θ0 is the constant ambient absolute temperature, while μ and κ are two smooth
positive functions, which belong to L1(R+) ∩ H1(R+). The quantity Et

r is the relative
strain history defined by (8.1.3) in terms of the linear strain tensor. Equation (21.1.1)
generalizes the theory introduced in [139] in which memory effects are absent.

Since the constitutive equation assumed for T is not local, these fluids are non-
simple materials.

For convenience of reference, some basic equations from Sect. 3.7 are repeated
here. Referring to Sect. 3.7.1, we note that the first law assumes the form

ρė(t) = ρh(t) + Pi
m(t), (21.1.2)

where e is the internal energy, h is the specific internal heat (or thermal) power,
defined as the rate at which heat is absorbed per unit mass, and Pi

m denotes the
internal mechanical power. The heat balance law (see (3.7.13)) is given by

ρh = −∇ · q + ρr, (21.1.3)

where r is the heat supply. The heat flux q is determined by the Fourier law q =
−k0∇θ. Moreover, the second law yields the existence of the entropy η such that (see
(3.7.24))

ρη̇ ≥ −∇ ·
(q
θ

)
+ ρ

r
θ
,

whence it follows that
ρη̇ ≥ ρ

h
θ
− k0

θ2
(∇θ)2.

Introducing the free energy ψ = e − θη, this inequality becomes

ψ̇ ≤ −ηθ̇ + 1
ρ
Pi
m +

k0

ρθ
(∇θ)2. (21.1.4)

The mechanical balance of power is given by

ρ
d
dt

(
1
2
v2

)
= (∇ · T) · v + ρb · v = [∇ · (Tv)] − T · ∇v + ρb · v, (21.1.5)

where b denotes the body forces. This is obtained by taking the scalar product of
v with (2.2.14)1. The integral of (21.1.5) over part or all of the fluid generalizes
(2.2.16). To derive the expression for Pi

m related to the material under consideration,
we substitute the constitutive equation (21.1.1) into (21.1.5), to obtain

ρ
d
dt

(
1
2
v2

)
+ 2

∫ +∞

0
μ′(s)Et

r(s) · ∇v(t)ds +
∫ +∞

0
κ
′(s)∇Et

r(s) · ∇∇v(t)ds

= ∇ ·
({

(−p + αθ)I + 2
∫ +∞

0
μ′(s)Et

r(s)ds −
∫ +∞

0
κ
′(s)∇ ·

[
∇Et

r(s)
]
ds

}
v(t)

+

∫ +∞

0
κ
′(s)∇Et

r(s)ds∇v(t)

)
+ ρb · v,

which must be compared with (3.7.2). Since the divergence term becomes a surface
integral when integrated over the body, or any part of it, we associate this term with
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the external mechanical power and deduce that the internal mechanical power is
given by

Pi
m(t) = 2

∫ +∞

0
μ′(s)Et

r(s) · ∇v(t)ds +
∫ +∞

0
κ
′(s)∇Et

r(s) · ∇∇v(t)ds. (21.1.6)

To characterize the behavior of our fluid, let us introduce the state

σT (t) = (θ, σ(t)) =
(
θ,Et

r(s),∇Et
r(s)

)
(21.1.7)

and the process PT , of duration d, given by a piecewise continuous map defined as

PT (τ) = (θ̇P, P) = (θ̇P,∇vP(τ),∇∇vP(τ)) ∀τ ∈ [0, d). (21.1.8)

Now consider a free energy ψ of the form

ψ(t) = ψ1(θ) + ψ2

(
Et
r(s),∇Et

r(s)
)
.

Substituting into (21.1.4), we obtain
[
∂ψ1(θ)
∂θ

+ η

]
θ̇ + ψ̇2

(
Et
r(s),∇Et

r(s)
)
≤ 1

ρ
Pi
m +

k0

ρθ
(∇θ)2.

This inequality, taking account of (21.1.6), is satisfied if

η = −∂ψ1(θ)
∂θ

,

ψ̇2

(
Et
r(s),∇Et

r(s)
)
≤ 1

ρ

[
2
∫ +∞

0
μ′(s)Et

r(s) · ∇v(t)ds

+

∫ +∞

0
κ
′(s)∇Et

r(s) · ∇∇v(t)ds

]
,

k0

ρθ
(∇θ)2 ≥ 0.

(21.1.9)

Taking account of the incompressibility of the fluid, we absorb the density into the
kernels and write (21.1.9)2 as follows:

ψ̇2

(
Et
r(s),∇Et

r(s)
)
≤ A(σ, P), (21.1.10)

where A is the mechanical action, defined by

A(t) = A(σ, P) = 2
∫ +∞

0
μ′(s)Et

r(s)ds · ∇v(t) +
∫ +∞

0
κ
′(s)∇Et

r(s)ds · ∇∇v(t)

= 2
∫ +∞

0
μ′(s)Et

r(s)ds · Ė(t) +
∫ +∞

0
κ
′(s)∇Et

r(s)ds · ∇Ė(t).

(21.1.11)
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The state, as indicated in (21.1.7), is given by σ(t) = (Et
r(s),∇Et

r(s)), while P is as
specified by (21.1.8).

By introducing a nonnegative function D2(x, t), the internal rate of dissipation,
we can transform the inequality (21.1.10) into an equality of the form

ψ̇2(t) + D2(t) = A(t). (21.1.12)

The total mechanical action B(σ, P) of the material during the application of a
process P of duration d is defined as

B(σ, P) =
∫ t+d

t
A(ξ)dξ.

For any cycle (σ, P), we have
B(σ, P) ≥ 0, (21.1.13)

by virtue of the dissipation principle (see (4.1.7)), which follows from (21.1.12) and
the nonnegativity of D2, this latter requirement being in effect the second law. The
equality sign in (21.1.13) occurs if and only if the cycle is reversible.

A generalization of the method noted in Sect. 8.10.1 (described in more detail in
the proof of Theorem 8.9.4) allows us to show that

μp(ω) > 0, κp(ω) > 0 ∀ω ∈ R, (21.1.14)

under the hypotheses that μp(0) � 0 and κp(0) � 0. Moreover, it follows that

lim
ω→+∞

ωμ′s(ω) = − lim
ω→+∞

ω2μp(ω) = μ′(0) ≤ 0,

lim
ω→+∞

ωκ′s(ω) = − lim
ω→+∞

ω2
κp(ω) = κ′(0) ≤ 0;

in particular, we shall assume

μ′(0) < 0, κ
′(0) < 0. (21.1.15)

We now focus on ψ2(t), omitting the subscript 2.

21.1.1 The Nonlocal Graffi–Volterra Free Energy for Thermoviscoelastic
Fluids

We firstly consider a generalization of the Graffi–Volterra functional (10.3.1) in the
form

ψG(t) = −
∫ +∞

0
μ′(s)Et

r(s) · Et
r(s)ds −

1
2

∫ +∞

0
κ
′(s)∇Et

r(s) · ∇Et
r(s)ds, (21.1.16)

which is nonnegative if the conditions

μ′(s) < 0, κ
′(s) < 0 ∀s ∈ R+ (21.1.17)
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are satisfied. Other constraints must also be imposed on each kernel in order to obtain
a nonnegative rate of dissipation, that is,

μ′′(s) ≥ 0, κ
′′(s) ≥ 0 ∀s ∈ R+, (21.1.18)

which generalize (10.3.2). As pointed out in the context of Sect. 10.3, (21.1.18) im-
plies a weaker form of (21.1.17). The derivative with respect to time of (21.1.16), by
integrating by parts and using

d
dt
Et
r(s) = −Ė(t) − d

ds
Et
r(s)

with the analogous relation for d
dt∇E

t
r(s), gives

ψ̇G(t) = −2
∫ +∞

0
μ′(s)Et

r(s) ·
d
dt
Et
r(s)ds −

∫ +∞

0
κ
′(s)∇Et

r(s) ·
d
dt
∇Et

r(s)ds

= 2
∫ +∞

0
μ′(s)Et

r(s)ds · ∇v(t) +
∫ +∞

0
κ
′(s)∇Et

r(s)ds · ∇∇v(t)

−
∫ +∞

0
μ′′(s)

[
Et
r(s)

]2
ds − 1

2

∫ +∞

0
κ
′′(s)

[
∇Et

r(s)
]2
ds

= A(t) − DG(t),

by virtue of (21.1.11). Therefore, (21.1.10) and (21.1.12) are satisfied by

DG(t) =
∫ +∞

0
μ′′(s)

[
Et
r(s)

]2
ds +

1
2

∫ +∞

0
κ
′′(s)

[
∇Et

r(s)
]2
ds ≥ 0,

which expresses the nonnegative internal dissipation related to the Graffi–Volterra
functional.

Note that
∂

∂E(t)
ψG(t) = 2

∫ ∞

0
μ′(s)Et

r(s)ds,

so that the standard (for simple materials) relation (5.1.30) does not apply. However,
we have

∂

∂∇E(t)
ψG(t) =

∫ ∞

0
κ′(s)∇Et

r(s)ds,

giving, with the aid of (21.1.1),

T (t) =
∂

∂E(t)
ψG(t) − ∇ · ∂

∂∇E(t)
ψG(t). (21.1.19)

This is the generalization of (5.1.30) to the case of the nonsimple materials consid-
ered in this section and the next. It applies to all the free energy functionals intro-
duced in the present chapter. Note that we can write (21.1.19) in the form

T (t) =
δ

δE(t)
ψG(t), (21.1.20)



478 21 Free Energies for Nonlocal Materials

where the quantity on the right is an example of a variational derivative in the sense of
the calculus of variations. A generalization of this approach, applicable to cases with
higher than second gradients, is presented in Sect. 21.3. We will see that (21.1.20)
applies to the broader theory, where the variational derivative is the form appropriate
to the calculus of variations, where higher gradients are present.

21.1.2 A Single-Integral Free Energy in Terms of the Minimal State

The free energy ψF (Sects. 10.1.3 and 10.3) can be adapted to our fluid. For this
purpose, let us introduce the functions

It(τ,Et
r) = 2

∫ +∞

0
μ′(τ + η)Et

r(η)dη,

(t(τ,∇Et
r) =

∫ +∞

0
κ
′(τ + η)∇Et

r(η)dη,

which express a minimal state of the fluid just as (8.10.6) does for the simple case.
Consider the functional

ψF(t) = −1
4

∫ +∞

0

1
μ′(τ)

|It(1)(τ,E
t
r)|2dτ −

1
2

∫ +∞

0

1
κ′(τ)

∣∣∣(t
(1)(τ,∇E

t
r)
∣∣∣2 dτ,

where It(1) and (t
(1) are the derivatives with respect to τ of It and (t, as in (10.3.5).

The absolute value squared notation indicates scalar products of It(1) and (t
(1) with

themselves in the appropriate vector space.
Using the same algebra as in Chap. 10, it follows that

ψ̇F(t) = 2
∫ +∞

0
μ′(η)Et

r(η)dη · ∇v(t) +
∫ +∞

0
κ
′(η)∇Et

r(η)dη · ∇∇v(t) − DF(t),

where the internal dissipation has the form

DF(t) =
1
2

∫ +∞

0

μ′′(τ)
2[μ′(τ)]2

∣∣∣It(1)(τ,E
t
r)
∣∣∣2 dτ − 1

4μ′(0)

∣∣∣It(1)(0,E
t
r)
∣∣∣2

+
1
2

∫ +∞

0

κ
′′(τ)

[κ′(τ)]2

∣∣∣(t
(1)(τ,∇E

t
r)
∣∣∣2 dτ − 1

2κ′(0)

∣∣∣(t
(1)(0,∇E

t
r)
∣∣∣2 ≥ 0,

because of the hypotheses (21.1.15) and (21.1.18).
One can show without difficulty that (21.1.19) holds in this case also.

21.1.3 The Nonlocal Minimum Free Energy for Thermoviscoelastic Fluids

Let us write (21.1.12) for the minimum free energy in the form

ψ̇m(t) + Dm(t) = A(t), (21.1.21)
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where Dm(t) is the rate of internal dissipation associated with ψm. It will be assumed
that the material under consideration is undisturbed in the distant past in such a way
that (21.1.21) can be integrated from t = −∞, giving (cf. (11.2.20))

ψm(t) +Dm(t) = B(t), B(t) =
∫ t

−∞
A(ξ)dξ.

We identify A(t) with the right-hand side of (4.1.9) in the abstract theory and con-
clude from Theorem 4.2.3 that the minimum free energy is that associated with the
maximum of the quantity

BR(t) = −
∫ ∞

t
A(ξ)dξ,

where future continuations are constrained so that the integral on the right exists.
Proceeding as in Sect. 11.2, noting in particular the observation after (11.2.4), we
seek ψm on the basis of the constraint that B(∞) is minimum.

Generalizing the procedure leading to (8.10.21), we conclude that

B(t) =
1

2π

∫ ∞

−∞
Hμ(ω)Et

r+(ω) · Et
r+(ω)dω +

1
2π

∫ ∞

−∞
Hκ(ω)∇Et

r+(ω) · ∇Et
r+(ω)dω,

Hμ(ω) = −2ωμ′s(ω) = 2ω2μp(ω) ≥ 0,

Hκ(ω) = −ωκ′s(ω) = ω2
κp(ω) ≥ 0,

where (21.1.14) has been invoked. The quantities Hμ and Hκ can be factorized ac-
cording to (11.1.16). Note that Hμ is precisely that quantity given by (13.3.5). We
define ptμ±(ω) and pt

κ±(ω) by substituting Hμ− and Hκ−, respectively, for H−, in
(11.2.10) with (11.2.8), where Λt

r+ is replaced by Et
r+ in the Hμ term and by ∇Et

r+ in
the Hκ term. Following any∗ one of the lines of argument described in Sect. 11.2 (or
indeed by a somewhat different but equivalent route as in Sect. 13.3), we conclude
that

ψm(t) =
1

2π

∫ ∞

−∞
|ptμ−(ω)|2dω + 1

2π

∫ ∞

−∞
|pt
κ−(ω)|2dω,

Dm(t) = |Kμ(t)|2 + |Kκ(t)|2,

where Kμ(t) and Kκ(t) are defined by (11.2.22)3 with the same substitutions as spec-
ified above for ptμ±(ω) and pt

κ±(ω). The result proved in Sect. 11.2.4 can be used to
demonstrate that (21.1.19) holds.

21.2 Heat Flux in a Rigid Conductor with Nonlocal Behavior

We now consider quite a different material but one for which the equations have
significant similarities to those of Sect. 21.1.

∗ The simplest being that in Remark 11.2.1.
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Guyer and Krumhansl [192] (see also [66]) have obtained from kinetic theory,
with a suitable approximation, the generalization (3.7.34) of the Cattaneo–Maxwell
equation for the heat flux, given here with a slight change of notation:

τq̇(x, t) + q(x, t) = −k∇θ(x, t) + α[∇ · ∇q(x, t) + 2∇∇ · q(x, t)],

where τ is the relaxation time, k > 0 is the heat conduction coefficient, and α is a
constant. An argument similar to that used by Guyer and Krumhansl (see also [66])
yields the new equation

τq̇(x, t) + q(x, t) = −h1g(x, t) + h2∇ · ∇g(x, t), (21.2.1)

where, besides the effect of g, we also have the contribution of the divergence of its
gradient ∇g. This new constitutive equation is equivalent, in the Gurtin–Pipkin [191]
sense, to

q(x, t) = −
∫ +∞

0

h1

τ
e−γsgt(x, s)ds + ∇ ·

∫ +∞

0

h2

τ
e−γs∇gt(x, s)ds, γ =

1
τ
. (21.2.2)

In fact, its time derivative, taking account of ġt(s) = − d
dsg

t(s) and integrating by
parts, can be expressed in the form

q̇(x, t) =
h1

τ

∫ +∞

0
e−γs

d
ds

gt(x, s)ds − ∇ · h2

τ

∫ +∞

0
e−γs

d
ds

∇gt(x, s)ds

= γ

[∫ +∞

0

h1

τ
e−γsgt(x, s)ds − ∇ ·

∫ +∞

0

h2

τ
e−γs∇gt(x, s)ds

]

− 1
τ

[h1g(x, t) − h2∇ · ∇g(x, t)]

=
1
τ

[−q(x, t) − h1g(x, t) + h2∇ · ∇g(x, t)],

so that (21.2.1) is satisfied by assuming γ = 1
τ
.

In this section we study a constitutive equation more general [9] than (21.2.2), of
the form

q(x, t) =
∫ +∞

0
K′

1(s)ḡt(x, s)ds − ∇ ·
∫ +∞

0
K′

2(s)∇ḡt(x, s)ds, (21.2.3)

where K1 and K2 ∈ L1(R+) ∩ Ł2(R+) are two smooth positive functions and

ḡt(x, s) =
∫ s

0
gt(x, ξ)dξ =

∫ t

t−s
g(x, λ)dλ.

As proved in Sect. 3.7, using the heat balance law (21.1.3), the second law for
nonlocal materials can now be written as (see (3.7.33))

η̇ ≥ Pi
η =

h
θ
+

1
θ2
q · ∇θ − ∇ ·Φ, (21.2.4)
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where Φ is a suitable vector depending on the material. Also, since we are dealing
with a rigid conductor, the first law (21.1.2) reduces to

ė = h.

The inequality (21.2.4) becomes

ψ̇ ≤ −ηθ̇ − 1
θ
q · g + θ∇ ·Φ, (21.2.5)

on introducing the free energy ψ = e − θη. Following the viewpoint of [102], we
consider a linearization in a neighborhood of the ambient temperature θ0 and the null
values of ḡt and ∇ḡt; therefore, in particular, we suppose that θ(x, t) = θ0 + εθ1(x, t),
where ε � 1 and θ1(x, t) is the relative temperature. Then the linearization of (21.2.5)
yields the inequality

ψ̇ ≤ −ηθ̇ − 1
θ0
q · g + θ0∇ ·Φ. (21.2.6)

The behavior of a homogeneous and isotropic rigid heat conductor with the
constitutive equation (21.2.3) is characterized by states

σT (t) = (θ, σ(t)) =
(
θ, ḡt,∇ḡt

)

and processes that are piecewise continuous maps PT : [0, d) → R × R3, given by

PT (τ) = (θ̇P, P) = (θ̇P, gP(τ),∇gP(τ)) ∀τ ∈ [0, d),

where d is the duration of the process.
Consider a free energy ψ of the form

ψ
(
θ, ḡt,∇ḡt

)
= ψ1 (θ) + ψ2

(
ḡt,∇ḡt

)
.

Then the inequality (21.2.6) can be satisfied if we put

∂

∂θ
ψ1(θ) = −η(θ),

ψ̇2

(
ḡt,∇ḡt

)
≤ − 1

θ0
q · g + θ0∇ ·Φ.

(21.2.7)

In the following, it will be supposed that

θ0 = 1. (21.2.8)

From the linearized constitutive equation (21.2.3), it follows that

q(t) · g(t) =
∫ +∞

0
K′

1(s)ḡt(s)ds · g(t)

+

∫ +∞

0
K′

2(s)∇ḡt(s)ds · ∇g(t) − ∇ ·
{[∫ +∞

0
K′

2(s)∇ḡt(s)ds
]
g(t)

}
.

(21.2.9)
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Taking

Φ(t) = −
[∫ +∞

0
K′

2(s)∇ḡt(s)ds
]
g(t) (21.2.10)

and using (21.2.8), the inequality (21.2.7)2 reduces to

ψ̇2(t) ≤ −q · g + ∇ ·Φ

≤ −
∫ +∞

0
K′

1(s)ḡt(s)ds · g(t) −
∫ +∞

0
K′

2(s)∇ḡt(s)ds · ∇g(t).
(21.2.11)

Introducing the entropy action

A(t) = A(σ, P) = −
∫ +∞

0
K′

1(s)ḡt(s)ds ·g(t)−
∫ +∞

0
K′

2(s)∇ḡt(s)ds ·∇g(t), (21.2.12)

the inequality (21.2.11)2 can be rewritten as

ψ̇2

(
ḡt,∇ḡt

)
≤ A(t).

Let us introduce the internal rate of dissipation D2(x, t), a nonnegative function obey-
ing

ψ̇2(t) + D2(t) = A(t) ≡ −q(t) · g(t) + ∇ ·Φ(t), (21.2.13)

by virtue of (21.2.9) and (21.2.12).
The total entropy action B(σ, P) of the material during the application of a pro-

cess P of duration d is defined as

B(σ, P) =
∫ t+d

t
A(ξ)dξ.

For any cycle (σ, P), we have
B(σ, P) ≥ 0,

where the equality sign occurs if and only if the cycle is reversible. This follows from
(21.2.13)1 and is another example of the dissipation principle (4.1.7). It is of course
analogous to (21.1.13).

By a simple generalization of the method used to show (9.2.2), we can prove
that if K1p (ω) and K2p(ω) are the half-range Fourier cosine transforms of the kernels
K1(s) and K2(s), then [9]

K1p(ω) > 0, K2p (ω) > 0 ∀ω ∈ R,

under the hypotheses that K1p(0) � 0 and K2p (0) � 0. Note that K1 and K2 correspond
to k in Chap. 9 for purposes of this generalization. Furthermore, we obtain

lim
ω→+∞

ωK′
is (ω) = − lim

ω→+∞
ω2Kip(ω) = K′

i (0) ≤ 0 (i = 1, 2),

but it will be assumed that

K′
i (0) < 0 (i = 1, 2).
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21.2.1 The Graffi–Volterra Free Energy for Nonlocal Rigid Conductors

The Graffi–Volterra free energy can be generalized to our nonsimple heat conductors
with the form

ψG(t) = −1
2

∫ +∞

0
K′

1(s)ḡt(s) · ḡt(s)ds − 1
2

∫ +∞

0
K′

2(s)∇ḡt(s) · ∇ḡt(s)ds, (21.2.14)

which is nonnegative if we assume that

K′
i (s) < 0 ∀s ∈ R+ (i = 1, 2). (21.2.15)

Other constraints will be imposed on these kernel functions, namely

K′′
i (s) ≥ 0 ∀s ∈ R+ (i = 1, 2), (21.2.16)

to ensure a nonnegative rate of dissipation. We note the application of the observation
after (21.1.18) in this context. Taking account of

d
dt
ḡt(s) = g(t) − d

ds
ḡt(s)

and the analogous relation for d
dt∇ḡ

t(s), the derivative with respect to time of
(21.2.14) can be expressed as

ψ̇G(t) = −
∫ +∞

0
K′

1(s)ḡt(s) · d
dt
ḡt(s)ds −

∫ +∞

0
K′

2(s)∇ḡt(s) · d
dt
∇ḡt(s)ds

= −
∫ +∞

0
K′

1(s)ḡt(s)ds · g(t) −
∫ +∞

0
K′

2(s)∇ḡt(s)ds · ∇g(t)

− 1
2

∫ +∞

0
K′′

1 (s)
[
ḡt(s)

]2
ds − 1

2

∫ +∞

0
K′′

2 (s)
[
∇ḡt(s)

]2
ds

= A(t) − DG(t),

(21.2.17)

with the aid of an integration by parts and (21.2.12). The last form confirms
(21.2.13)1, provided we take

DG(t) =
1
2

∫ +∞

0
K′′

1 (s)
[
ḡt(s)

]2
ds +

1
2

∫ +∞

0
K′′

2 (s)
[
∇ḡt(s)

]2
ds ≥ 0.

This is the nonnegative internal rate of dissipation corresponding to the Graffi–
Volterra functional.

We can derive from (21.2.17)3 the relation (21.2.11)1, or (21.2.13)2, in terms of
the extra flux, since

ψ̇G(t) = −
[∫ +∞

0
K′

1(s)ḡt(s)ds − ∇ ·
∫ +∞

0
K′

2(s)∇ḡt(s)ds
]
· g(t)

− 1
2

∫ +∞

0
K′′

1 (s)
[
ḡt(s)

]2
ds − 1

2

∫ +∞

0
K′′

2 (s)
[
∇ḡt(s)

]2
ds

+ ∇ ·
{[
−

∫ +∞

0
K′

2(s)∇ḡt(s)ds
]
g(t)

}

= −q(t) · g(t) − DG(t) + ∇ ·Φ(t) ≤ −q(t) · g(t) + ∇ ·Φ(t),
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where (21.2.10) has been invoked.

21.2.2 A Nonlocal Free Energy in Terms of the Minimal State

We now consider the analogy, for a rigid conductor, of the free energy ψF, discussed
in Sect. 21.1.2. Let us introduce the quantities

It(τ, ḡt) =
∫ +∞

0
K′

1(τ + η)ḡt(η)dη,

(t(τ,∇ḡt) =
∫ +∞

0
K′

2(τ + η)∇ḡt(η)dη,

which define a minimal state. In particular, we have

It(0, ḡt) =
∫ +∞

0
K′

1(η)ḡt(η)dη, (t(0,∇ḡt) =
∫ +∞

0
K′

2(η)∇ḡt(η)dη.

Now, denoting by It(1) and (t
(1) the derivatives with respect to τ of It and (t, let us

consider the functional

ψF(t) = −1
2

∫ +∞

0

1
K′

1(τ)

∣∣∣∣It(1)(τ, ḡ
t)
∣∣∣∣2dτ − 1

2

∫ +∞

0

1
K′

2(τ)

∣∣∣∣(t
(1)(τ,∇ḡ

t)
∣∣∣∣2dτ,

under the hypotheses that K′
i (s) and K′′

i (s)(i = 1, 2) satisfy (21.2.15) and (21.2.16).
The absolute value squared notation is analogous to that in Sect. 21.1.2. In order to
verify that this expression gives a possible free energy ψ2(ḡt,∇ḡt) for our body, we
evaluate its derivative with respect to t, which can be put in the following form:

ψ̇F(t) = −
[∫ +∞

0
K′

1(η)ḡt(η)dη · g(t) +
∫ +∞

0
K′

2(η)∇ḡt(η)dη · ∇g(t)

]

− 1
2

∫ +∞

0

K′′
1 (τ)

[K′
1(τ)]2

∣∣∣It(1)(τ, ḡ
t)
∣∣∣2 dτ − 1

2

∫ +∞

0

K′′
2 (τ)[

K′
2(τ)

]2

∣∣∣(t
(1)(τ,∇ḡ

t)
∣∣∣2 dτ

+
1
2

1
K′

1(0)

∣∣∣It(1)(0, ḡ
t)
∣∣∣2 + 1

2
1

K′
2(0)

∣∣∣(t
(1)(0,∇ḡ

t)
∣∣∣2 .

Referring to (21.2.12), we conclude that

ψ̇F(t) ≤ A(t),

so that ψ̇F(t) is indeed a valid free energy.

Remark 21.2.1. The other free energies considered in Chaps. 10 and 11 and indeed
those introduced in the later chapters can also be generalized in a similar manner to
these nonsimple materials.

For the heat flux problem, an explicit formula for the minimum free energy is
given in [9]. Alternatively, the argument summarized in Sect. 21.1.3 can be applied
to obtain a similar formula.
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21.3 Free Energies in a General Nonlocal Theory of a Material
with Memory

A general theory of nonlocal materials, with linear constitutive equations and mem-
ory effects, is now developed within a thermodynamic framework. These develop-
ments are based on certain results in [15]. In contrast to various earlier chapters, the
full tensor version is presented. The formulations in Sects. 21.1 and 21.2 are gener-
alized to apply to a range of field theories with linear memory constitutive equations.

Referring to the two approaches described at the beginning of this chapter, we
attempt to consider both in parallel. It is shown that these approaches are consis-
tent with an hypothesis on the form of a generalized work function, which will be
introduced below. This hypothesis is the basis of the general theory presented here.

21.3.1 Derivation of the Field Equations

The approach adopted here is a generalization to nonlocal materials of the develop-
ments of Sect. 5.1, though where the distinction between material and spatial coordi-
nates (see (1.2.3)) is neglected. This distinction is important in nonlinear mechanics,
which is considered in [15].

Let us begin by stating the First and Second Laws of Thermodynamics. The
internal energy per unit mass and the entropy per unit mass at (x, t), both scalar
quantities, are denoted, respectively, by e(x, t) and η(x, t), as in Sect. 5.1. Similarly
for the local absolute temperature, θ(x, t) ∈ R+, the heat flux vector q(x, t) ∈ R3 and
the coldness κ(x, t), given by 1/θ > 0. We define g,d ∈ R3 as in Sect. 5.1.1, by

g = ∇θ, d = ∇κ = − 1

θ2
g.

The energy balance equation or First Law of Thermodynamics has the form

p − ρė − ∇ · q − ∇ ·Φe + ρr = 0, (21.3.1)

where p is a power term related to the case of simple materials and Φe ∈ R3 is an
extra flux, the interstitial work flux, associated with the internal energy and the first
law to take account of nonlocal behavior [97, 252]. This generalizes (5.1.2). The
quantity ρ is the mass density, while r is the external radiation absorbed per unit
time, per unit mass at (x, t).

In the alternative formulation [127], the first law for thermomechanical systems
can be written as

ρė = Pi
m + P

i
h, Pi

h = −∇ · q + ρr, (21.3.2)

where Pi
m is the internal mechanical power which, for simple materials, reduces to p.

The correspondence between the two formulations is expressed by Pi
m = p − ∇ ·Φe.

The second law can be written as

D = η̇ +
1
ρ
∇ ·

(q
θ

)
+

1
ρ
∇ ·Φη − κr ≥ 0, (21.3.3)
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where the quantity D(x, t) is the total rate of entropy production per unit mass, while
Φη is an extra flux of entropy [268] associated with nonlocal behavior.

The Helmholtz free energy per unit mass is defined by

ψ = e − θη.

In terms of this quantity, we can write (21.3.1) as

ψ̇ + θD =
p
ρ
− ηθ̇ − 1

ρ
∇ ·Φe +

θ

ρ
∇ ·Φη −

1
ρθ

q · g. (21.3.4)

In the alternative formulation, we write (21.3.3) in the form [127]

η̇ − 1
ρ
Ai

en = D ≥ 0,

where Ai
en is the internal entropy action given by

Ai
en = −∇ · q

θ
+ ρ

r
θ
− ∇ ·Φη = Ae

en.

The latter quantity is the external entropy action [127]. Instead of (21.3.4), we have

ψ̇ + θD =
1
ρ

(
Pi − θAi

en

)
− ηθ̇, Pi = Pi

m + P
i
h,

where Pi
m and Pi

h are introduced in (21.3.2). For a general framework explaining
actions in systems, see [75].

Further discussion of thermodynamics is given in [15], essentially a generaliza-
tion of developments in Sect. 5.1, involving an alternative choice of free energy. We
now, for simplicity, consider an isothermal theory, neglecting the terms ηθ̇ and that
proportional to q · g in (21.3.4), so that the alternative choice of free energy is not
relevant. The average temperature and density are taken to be unity.

A convenient compact notation is now introduced. Let the field variables be Λ :
R �→ Γ, Σ : R �→ Γ, where Γ is a given finite-dimensional vector space. We will treat
Λ as the independent and Σ as the dependent field quantity. One can write (21.3.4)as†

ψ̇ + D = Ẇ(t) = Σ · Λ̇ − ∇ ·Φ, (21.3.5)

where p is equal to Σ · Λ̇, which has a form typical of mechanical systems and, with
some modifications, electromagnetic systems. If the thermal variables are reintro-
duced in (21.3.5), heat flow systems can also be changed into this form.

We now seek to develop a nonlocal theory with linear constitutive equations
which generalizes the results of Sects. 21.1 and 21.2 (also [9, 14]), so that they apply
to a wide range of linear nonsimple theories.

† Note the two quite different uses of the dot product in (21.3.5). The first is in Γ, while the
second is in R3, indicating a divergence.
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The introduction of nonsimple behavior can be achieved (see [238, 313], for
example) by adding n more independent field quantities that consist of gradient op-
erators acting on Λ.

The new independent field variables are ∇Λ, ∇2Λ, ∇3Λ,. . . ,∇nΛ. The operators
∇r, r = 2, 3, . . . , n, are completely symmetric. The number of independent quantities
among their 3r components on a given basis is (r + 1)(r + 2)/2 (see [131], page 39).
The new histories are denoted by

∇Λt(x, s), ∇2Λt(x, s), . . . , ∇nΛt(x, s), s ∈ R+,

where the standard notation for the history

Λt(x, s) = Λ(x, t − s) (21.3.6)

has been used.

The Fundamental Hypotheses

To completely determine the first and second laws as given by (21.3.5) and (21.3.3),
one must specify Ẇ, ψ, and D. Indeed, it emerges that if we specify Ẇ and ψ, then
the requirement of consistency with the second law yields the form of D and indeed
the detailed form of the constitutive equations for the material. We first give the form
of Ẇ and show how it is consistent in general with (21.3.5).

For a wide class of nonsimple materials, the generalized rate of work can be put
in the form

Ẇ = Σ0 · Λ̇ + Σ1 · ∇Λ̇ + Σ2 · ∇2Λ̇ + · · · + Σn · ∇nΛ̇, (21.3.7)

where the tensor functions Σr, r = 0, 1, 2, . . . , n, are fundamental to the theory.
In particular, for simple mechanical materials, Σr = 0, r = 1, 2, . . . , n, and Σ0 is
proportional to the stress tensor‡. The quantity Σr in a given basis will have the same
number of subscripts with the same symmetry properties as ∇rΛ̇ and each element of
this tensor quantity belongs to Γ. The inner product notation Σr ·∇rΛ̇means that each
∇ is connected to a specific dimension of Σr in the sense that, on a particular basis,
the components of a given ∇ are summed over a particular subscript of Σr and each
term in the summation is a scalar product Γ×Γ �→ R. Thus, on a particular basis, Σ2,
for example, has components which we denote by Σ(2)i j = Σ(2) ji, i, j = 1, 2, 3, and

∇2 will be represented as ∂2

∂xi∂x j
= ∂i∂ j, giving that Σ2 · ∇2Λ̇ = Σ(2)i j · ∂i∂ jΛ̇ ∈ R.

The dot product in this last expression is the scalar product Γ×Γ �→ R between Σ(2)i j

and Λ̇.

Proposition 21.3.1. For Ẇ given by the right-hand side of (21.3.5)2, where ∇ · Φ is
explicitly a divergence of a vector quantity Φ, then Σ in (21.3.5) is uniquely deter-
mined to be

Σ = Σ0 − ∇ · Σ1 + ∇2 · Σ2 + · · · + (−1)n∇n · Σn, (21.3.8)

where the notation ∇r ·Σr ∈ Γ means that each ∇ forms a divergence with respect to
its corresponding tensor index of Σr for r = 1, 2, . . . , n.

‡ The quantity 0 will be used for the zero in any vector space with dimensions greater than
unity.
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Proof. We seek to extract a scalar term G·Λ̇, where G ∈ Γ from the quantity Σr ·∇rΛ̇,
for example. Given the available differential operators and field quantities, G must
have the form

G = α∇r · Σr, (21.3.9)

where α ∈ R is a constant. Indeed, there is no finite manipulation that could yield an
irrational number in this role, so that it can be assumed to be a rational number.

The basic tool of transformation of expressions such as (21.3.7) is the product
rule of calculus§

(∇p · Σr) · (∇qΛ̇) = ∇ ·
[
(∇p · Σr) · (∇q−1Λ̇)

]
− (∇p+1 · Σr) · (∇q−1Λ̇), (21.3.10)

or the inverse of this, transferring a ∇ operator fromΣr to Λ̇. The latter transformation
is not of interest here. Consider the right-hand side of (21.3.10). The divergence
term is included in the overall divergence term, and we can reapply the operation
to the second term, which approaches the desired form (21.3.9). By systematically
proceeding in this manner, we uniquely obtain the relation

Σr · ∇rΛ̇ = (−1)r(∇r · Σr) · Λ̇ + ∇ ·Φr,

Φr = Σr · (∇r−1Λ̇) − (∇ · Σr) · (∇r−2Λ̇) + . . .

+ (−1)s(∇s · Σr) · (∇r−s−1Λ̇) + · · · + (−1)r−1(∇r−1 · Σr) · Λ̇.

Thus, we have
Φ′ = Φ1 +Φ2 + · · · +Φn, (21.3.11)

and (21.3.5) applies, where Σ is given by (21.3.8) and ∇ ·Φ′ = ∇ ·Φ. �

The simplest assumption regarding Φ is to take it equal to Φ′ as given by
(21.3.11).

Remark 21.3.1. The quantity Σ(t) is the dependent variable with an immediate phys-
ical interpretation. For example, in mechanics, it is proportional to the physical stress
tensor. The quantities Σi(t), i = 0, 1, 2, . . . , are also physically measurable quantities
and expressions for them will be given below.

The fundamental constitutive assumption, which characterizes the material, is that
the free energy ψ depends in a specified way on the independent field variables at the
current time t and on their histories. Thus, we write

ψ(t) =ψ̃(x,Λt(x, ·),Λ(x, t),∇Λt(x, ·),∇Λ(x, t),

∇2Λt(x, ·),∇2Λ(x, t), . . . ,∇nΛt(x, ·),∇nΛ(x, t)).
(21.3.12)

§ For the expression in the first bracket, the dot product implies that each ∇ in ∇p, on a given
basis, is summed over its corresponding index in Σr. The dot product between the two terms
in brackets means that q of the remaining dimensions in Σr are summed over the indices in
∇q and a scalar product Γ × Γ �→ R occurs for each multiplication of objects in Γ. Thus,
for example, using the notation introduced earlier, we have that (∇2 · Σ5) · (∇2Λ̇) ∈ R3 has
components ∂i∂ jΣ(5)i jklm · ∂k∂lΛ̇ in a given basis, where the remaining dot product refers to
the scalar product Γ × Γ �→ R between Σ(5)i jklm and Λ̇.
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The dependence on x, over and above that in the independent field variables, allows
the possibility of spatial inhomogeneity. We will henceforth mainly omit all space
variables.

It is assumed that ψ̃ is differentiable with respect to the independent variables
at the current time and Fréchet differentiable with respect to the histories within a
suitable Hilbert space H (fading memory principle; see Sect. 5.1 and also [67, 71]).
The time derivative ψ̇ is given by

ψ̇ = ∂tψ + ∂hψ, (21.3.13)

where ∂t indicates differentiation with respect to field variables at the current time t,
while ∂hψ indicates differentiation with respect to the remainder of the time depen-
dence, which will consist of Fréchet differentials of ψ at the histories of the indepen-
dent field quantities, in the direction of the time derivatives of these histories.

The quantity ∂tψ is given by

∂tψ =
∂ψ

∂Λ(t)
· Λ̇(t) +

∂ψ

∂∇Λ(t)
· ∇Λ̇(t)

+
∂ψ

∂∇2Λ(t)
· ∇2Λ̇(t) + · · · + ∂ψ

∂∇nΛ(t)
· ∇nΛ̇(t).

(21.3.14)

The derivatives with respect to field quantities are assumed to be continuous in their
arguments. Consider the relation (21.3.5)1. Using (21.3.13) with (21.3.14) to substi-
tute for ψ̇ and (21.3.7) for Ẇ(t), we generalize a standard argument [71]; see also
(5.1.18), based on the indeterminacy of the signs of Λ̇(t), ∇Λ̇(t), ∇2Λ̇(t), . . . , ∇nΛ̇(t).
This yields the detailed constitutive relations

Σ0(t) =
∂ψ

∂Λ(t)
, Σ1(t) =

∂ψ

∂∇Λ(t)
,

Σ2(t) =
∂ψ

∂∇2Λ(t)
, . . . ,Σn(t) =

∂ψ

∂∇nΛ(t)
,

(21.3.15)

together with an expression for the rate of dissipation

D = −∂hψ ≥ 0.

Thus, the Fréchet differentials, which crucially involve the history dependence of ψ,
yield the rate of dissipation of the material. Using (21.3.15) in (21.3.14), we see from
(21.3.7) that

∂tψ(t) = Ẇ(t). (21.3.16)

An immediate consequence of (21.3.15) and (21.3.8) is that

Σ(t) =
∂ψ

∂Λ(t)
− ∇ · ∂ψ

∂∇Λ(t)
+ ∇2 · ∂ψ

∂∇2Λ(t)
+ . . .

+ (−1)n∇n · ∂ψ

∂∇nΛ(t)
=

δψ

δΛ
,

(21.3.17)
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where δψ
δΛ

is a variational derivative, as in the calculus of variations, with respect to
the independent field variables at the current time, ∇rΛ(t), r = 0, 1, 2, . . . , n.

Let us introduce another compact notation on an encompassing vector space B

containing all the field variables. We define the independent variable

C(t) = (Λ(t),∇Λ(t),∇2Λ(t), . . . ,∇nΛ(t)) ∈ B (21.3.18)

and the dependent variable

D(t) = (Σ0(t),Σ1(t),Σ2(t), . . . ,Σn(t)) ∈ B. (21.3.19)

Relations (21.3.7) and (21.3.16) yield that

∂tψ = Ẇ(t) = D(t) ) Ċ(t), (21.3.20)

where the symbol ) is the dot product in B, implying a scalar product of the individ-
ual components in their respective vector spaces. Let us denote the dimension of B
by m. The sequence of operators ∇ and ∇a are defined as

∇ = (1,∇,∇2, . . . ,∇n),

∇a = (1,−∇,+∇2, . . . , (−1)n∇n).

Then (21.3.18) can be written symbolically as

C(t) = ∇Λ(t).

Also, from (21.3.8) and (21.3.17),

Σ(t) =
δψ

δΛ(t)
= ∇a ) D(t). (21.3.21)

We can write the dependence of ψ on the independent field variables given by
(21.3.12) as

ψ = ψ̃(Ct,C(t)),

where Ct is the past history, given by (see (21.3.6))

Ct(s) = C(t − s), s ∈ R++.

The relative history is defined as

Ct
r(s) = Ct(s) − C(t).

It will be assumed that
lim
s→∞

Ct(s) = 0 (21.3.22)

Note that
∂

∂t
Ct(s) = − ∂

∂s
Ct(s) = − ∂

∂s
Ct

r(s),

∂

∂t
Ct

r(s) =
∂

∂t
Ct(s) − Ċ(t).
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From (21.3.5)1 and (21.3.20), we can write the first law as

ψ̇ + D = D ) Ċ. (21.3.23)

By virtue of the requirement that D be nonnegative (see (21.3.3)), it will always be
true that

ψ̇ ≤ Ẇ = D ) Ċ. (21.3.24)

From (21.3.23), we see that if Ċ(s) = 0, s ∈ [t,∞) (which is true if Λ̇(s) = 0,
s ∈ [t,∞)), then ψ̇(s) ≤ 0 ∀ s ≥ t. Thus, over this interval, ψ(s) is nonincreasing if
the independent field variables are constant in time. It follows that [67]

ψ̃(Ct,C(t)) = ψ(t) ≥ φ(t) = φ̃(C(t)), (21.3.25)

where φ̃(C(t)) is the equilibrium form of ψ, or this functional for constant histories,
specifically those given by Ct(s) = C(t), s ∈ R++.

Using (21.3.19), we can write (21.3.15) in compact form as

∂

∂C(t)
ψ̃(Ct,C(t)) = D̃(Ct,C(t)) = D(t). (21.3.26)

Requirements for a Free Energy

Let us gather together the properties which must be associated with a functional ψ̃ if
it is to be a free energy for a material with nonlocal behavior.

P1 We have

D(t) =
∂ψ

∂C(t)
,

which is (21.3.26). Then, from (21.3.17),

δψ

δΛ(t)
= Σ(t).

P2 Let C† be a static history, equal to C(t) at the current and all past times. Then,

ψ(C†,C(t)) = φ̃(C(t)),

which is the definition of φ̃(C(t)) = φ(t). Also,

ψ̃(Ct,C(t)) ≥ φ̃(C(t)),

which is (21.3.25).
P3

d
dt
ψ̃(Ct,C(t)) ≤ D(t) ) Ċ(t),

which is the second law. This is (21.3.24).
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These may be referred to as the nonlocal Graffi conditions. The extra condition P4,
introduced by (18.2.1), also applies to nonlocal materials.

A substantial advantage of the compact notation, which emerges below, is that it
exposes the fact that the nonlocal theory is closely analogous to the local tensor case.
This applies to all aspects of the theory, including procedures for constructing free
energy functionals. Note in particular that the nonlocal Graffi conditions are identical
to the local conditions given in Sect. 5.1.1, except for P1 which connects the theory
to the quantity Σ(t).

21.3.2 A Nonlocal Quadratic Model for Free Energies

The simplest choice of ψ is obtained by means of a functional Taylor expansion of
ψ̃(Ct,C(t)), stopping at the quadratic term. This procedure is formally identical to
that for simple materials in Sect. 7.1. We put

ψ(t) = φ̃(C(t)) +
1
2

∫ ∞

0

∫ ∞

0
Ct

r(s) )�(s, u)Ct
r(u)dsdu. (21.3.27)

The operator � ∈ Lin(B) is at least positive semidefinite in the sense that the
function �(·, ·) is such that the integral is nonnegative. It is assumed that �(·, ·) ∈
L1(R+ × R+) and, in particular,

lim
s→∞
�(s, u) = 0, u ∈ R+.

A similar relation holds for the limit of large u at fixed s. There is no loss of generality
in taking

��(s, u) =�(u, s), (21.3.28)

where the transpose refers to Lin(B). Any space dependence in � is neglected, so
that we are dealing with a homogeneous material.

Defining �(s, u) as in (7.1.5), we write (21.3.27) as

ψ(t) = φ̃(C(t)) +
1
2

∫ ∞

0

∫ ∞

0
Ct

r(s) ) �12(s, u)Ct
r(u)dsdu

=
1
2

∫ ∞

0

∫ ∞

0
Ċt(s) ) �(s, u)Ċt(u)dsdu,

Ċt(u) =
∂

∂t
Ct(u) = − ∂

∂u
Ct(u) = − ∂

∂u
Ct

r(u),

lim
s→∞
�(s, u) = lim

u→∞
�(s, u) = 0.

It is possible to develop the theory without restriction, for a general equilibrium term
φ. However, for simplicity, we specialize here to the case of a fully linear theory by
taking

φ̃(C(t)) = φ(t) =
1
2
C(t) ) �∞C(t) ≥ 0. (21.3.29)
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It follows that � must be a nonnegative operator in the same sense as�. Also, from
(21.3.29), we have �∞ ≥ 0.

Constitutive relations are given as follows. Applying (21.3.26) to (17.3.5) yields,
with the aid of (21.3.28),

D(t) = �∞C(t) +
∫ ∞

0
�′(u)Ct

r(u)du

= �0C(t) +
∫ ∞

0
�′(u)Ct(u)du

=

∫ ∞

0
�(u)Ċt(u)du,

where Ct(0) = C(t).
Consider the case where (21.3.18) and (21.3.19) reduce to C(t) = (Λ(t),∇Λ(t))

and D(t) = (Σ0(t),Σ1(t)). More explicitly, we write

C(t) = ∇Λ(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ(t)

∂1Λ(t)

∂2Λ(t)

∂3Λ(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, D(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Σ0(t)

Σ(1)1(t)

Σ(1)2(t)

Σ(1)3(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

∂i =
∂

∂xi
, i = 1, 2, 3.

Also,
∇a) = (1 − ∂1 − ∂2 − ∂3),

yielding in particular (see (21.3.21))

Σ(t) = ∇a ) D(t) = Σ0(t) − ∂1Σ(1)1(t) − ∂2Σ(1)2(t) − ∂3Σ(1)3(t).

The tensor � is representable as a 4 × 4 matrix of transformations in Lin(Γ).
The rate of dissipation D can be determined by (21.3.23), as outlined in

Sect. 7.1.2, to obtain

D(t) = −1
2

∫ ∞

0

∫ ∞

0
Ċt(s) ) [�1(s, u) + �2(s, u)]Ċt(u)dsdu,

when the terms proportional to Ċ(t) are omitted. With further partial integrations, we
can also write D in the form

D(t) = −1
2

∫ ∞

0

∫ ∞

0
Ct

r(s) ) [�121(s, u) + �122(s, u)]Ct
r(u)dsdu.



494 21 Free Energies for Nonlocal Materials

It is clear that the correspondence between this nonlocal theory and that presented
in Chap. 7 is exact. This applies to all developments in the frequency domain as well
as the time domain. Every general property, including the forms of all the free energy
and dissipation functionals, can be taken over unchanged. The same applies to the
definition of minimal states. More details and examples are given in [15].



22

The Minimum and Related Free Energies for
Dielectric Materials

22.1 Introduction and General Relations

Free energies in electromagnetism, as in mechanics, are not in general uniquely de-
termined by the constitutive equations but form a convex set with a minimum and a
maximum element. A formula for the minimum free energy of a dielectric material
with a linear memory-dependent constitutive equation was first given in [35], based
on results in mechanics [158]. This was generalized in [151, 152], which form the
basis of the present chapter.

We note also [10], dealing with the case of a conductor. This topic was discussed
from a general point of view in Sect. 6.3.2.2. There is a close analogy with mechanics
(particularly if the integrated history is used), which allows the minimum and other
free energies to be determined.

The developments in this work are similar to the corresponding theory for me-
chanics and heat flow, described in earlier chapters. However, there are important
differences, which we will discuss. The application of thermodynamics to electro-
magnetism is described in Chap. 6.

Some results in this context were given independently [153–155] for dielectric
materials with memory, but with quite different methods, notation, and terminology.
These papers emerged out of ongoing work over a decade or so, exploring various
physical issues in optics, quite distant from the continuum thermodynamics environ-
ment described here. References [151, 152] seek to bring these two streams together.
In particular, the correspondence between the two terminologies is noted.

Functionals that are free energies only for materials with kernels obeying mono-
tonicity conditions are discussed in [91, 121, 122] for example and in Chap. 10. With
the exception of ψF , these emerge from the older literature. They are less relevant for
dielectrics than for mechanics, in that the required monotonicity restrictions may not
so frequently apply. This issue also arises in Chap. 19.

Consider a rigid dielectric material, subject to a varying electromagnetic field.
Let the body under consideration occupy a volume B ⊂ R3. The electric field on this
region is E(x, t), with electric displacement denoted by D(x, t). The magnetic field
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is H(x, t) and the magnetic induction B(x, t). The quantities Λ : R3 × R �→ R6 and
Σ : R3 × R �→ R6, respectively, the electromagnetic vector and the electromagnetic
induction, are defined by

Λ = (E,H), Σ = (D,B).

We shall denote R6 by V. The quantity Λ will be treated as the independent variable.
The rate of work done by the electromagnetic field on the body, per unit volume, is
([122] and references therein)

p = Σ̇ · Λ, (22.1.1)

where the dot product here represents a scalar product in V.
Thermodynamic relations can be developed analogously to those in Sect. 5.1. Let

us consider the isothermal case where θ is independent of space and time variables.
It is put equal to unity. Then, q is zero. The quantity r is assumed to be negligible.
Also, we take ρ to be constant and put it equal to unity. Then, recalling (5.1.11), we
have the energy balance equation or First Law of Thermodynamics

ψ̇ + D = Σ̇ · Λ, (22.1.2)

where D is the entropy. The second law is imposed through the requirement that

D = Σ̇ · Λ − ψ̇ ≥ 0. (22.1.3)

Remark 22.1.1. In a mechanics context, the time differentiation in (22.1.2) would be
on the Λ, corresponding to the strain tensor, rather than on the Σ, corresponding to
the stress tensor. Thus, the theory developed here is analogous to the case in me-
chanics where the stress is treated as the independent variable and, as we shall see,
the memory functions involved will behave similarly to creep rather than relaxation
functions, in the sense that they tend to increase rather than decrease with time. The
phenomenon of creep is discussed in Sect. 8.5.

Let us define the free enthalpy as

F = ψ − Σ · Λ, (22.1.4)

which is analogous to the Gibbs free energy in mechanics. The quantity Σ · Λ is of
course unique, so that to each free energy, there is a corresponding free enthalpy. In
terms of this quantity, (22.1.2) becomes

Ḟ + D = −Σ · Λ̇, D ≥ 0, (22.1.5)

the latter being the second law. A constitutive assumption is now made by requiring
that the free enthalpy F depends in a specified way on the history and current value
of Λ. We put

F(t) = F̃d
s>0

(
Λt

r(s),Λ(t)
)
, (22.1.6)

where the relative history Λt
r is defined by

Λt
r(s) = Λ

t(s) − Λ(t). (22.1.7)
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A relative future continuation is also defined by (22.1.7) for s ∈ R−−.
We define the equilibrium free enthalpy Fe(t) to be given by (22.1.6) for the static

history Λt(s) = Λ(t), s ∈ R+, or equivalently with Λt
r(s) = 0, s ∈ R+. This quantity

depends only on Λ(t), so that

Fe(t) = F̃e(Λ(t)).

It can be deduced from (22.1.5), by means of a fading memory argument [69], that

Fe(t) ≤ F(t), ∀ t ∈ R, (22.1.8)

giving that the equilibrium free enthalpy is less than or equal to the free enthalpy
for an arbitrary history. The notation Fe(t) will be used in most cases rather than
F̃e(Λ(t)).

We can write (22.1.6) in the form

F(t) = Fe(t) + F̃M

(
Λt

r(s),Λ(t)
)
,

where the second term on the right must be nonnegative by virtue of (22.1.8). It
contains the memory contributions.

Let us state the characteristic properties of a free enthalpy, provable within a
general framework [35, 69, 70]:

P1
∂F(t)
∂Λ(t)

= −Σ(t). (22.1.9)

P2 For any relative history Λt
a and current value Λa(t),

F̃(Λt
a,Λa(t)) ≥ F̃e(Λa(t)),

which is (22.1.8).
P3 Condition (22.1.5) holds.

These will be referred to as the Graffi conditions by analogy with those for a free
energy in mechanics given, for example, in Sect. 5.1.1. The additional condition P4,
given by (18.2.1), must also apply.

22.2 A Linear Memory Model for Dielectric Materials

By analogy with the developments of Sect. 7.1 for the free enthalpy rather than the
free energy, we obtain, instead of (7.1.9) and (7.1.10),

F(t) = Fe(t) −
1
2

∫ ∞

0

∫ ∞

0
Λt

r(s) · �12(s, u)Λt
r(u)dsdu

= Fe(t) −
1
2

∫ ∞

0

∫ ∞

0
Λ̇t(s) · �̃(s, u)Λ̇t(u)dsdu,

(22.2.1)
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where

Λ̇t(u) =
∂

∂t
Λt(u) = − ∂

∂u
Λt(u) = − ∂

∂u
Λt

r(u),

�̃(s, u) = �(s, u) − �∞.

(22.2.2)

The negative sign on the integral is required to maintain (22.1.8), given that the
double integral is nonpositive (see Proposition 8.6.3; also, note the sign on the right-
hand side of (22.1.5), which contrasts with that in (5.1.11); this sign difference also
appears in (22.1.9) and (5.1.30). Relation (22.1.9) gives

Σ(t) = Σ̃e(Λ(t)) +
∫ ∞

0
�′(u)Λt

r(u)du

= Σ0(t) +
∫ ∞

0
�′(u)Λt(u)du

= Σ̃e(Λ(t)) +
∫ ∞

0
�̃(u)Λ̇t(u)du,

(22.2.3)

where
�(u) = �(0, u), �0 = �(0, 0) = �(0),

�̃(u) = �(u) − �∞, �′(u) =
d
du
�(u),

and

Σ̃e(Λ(t)) = Σe(t) = −dF̃e (Λ(t))
dΛ(t)

,

Σ0(t) = Σ̃e(Λ(t)) + (�0 − �∞)Λ(t).

(22.2.4)

It is shown below (see (22.2.24)) that �∞, the equilibrium modulus, is a positive
definite matrix. It is assumed that Λ(−∞) = Λt(∞) vanishes. Also,

�∞ = �(s,∞) = �(0,∞) = �(∞).

The quantity �0 is the instantaneous modulus and, on the basis of physical evidence
[35],

�0 > 0. (22.2.5)

It will be assumed here, as in (7.1.18), that

�(u) = ��(u), u ∈ R+. (22.2.6)

We deduce from (22.1.5), (22.2.2), and the time derivative of (22.2.1)2 that

D(t) =
1
2

∫ ∞

0

∫ ∞

0
Λ̇t(s) · [�1(s, u) + �2(s, u)] Λ̇t(u)dsdu

=
1
2

∫ ∞

0

∫ ∞

0
Λt

r(s) · [�112(s, u) + �212(s, u)]Λt
r(u)dsdu.

(22.2.7)

The first expression results from two partial integrations. Further partial integrations,
using (22.2.2), gives the second form.
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Relation (22.2.3) allows for general nonlinear behavior in the equilibrium term
Σe. We now however specialize to the case of linear behavior. Following [35, 122],
we write (22.2.3)2 as

Σ(t) = �0Λ(t) +
∫ ∞

0
�′(u)Λt(u)du, (22.2.8)

so that, from (22.2.4)3,
Σe(t) = �∞Λ(t), (22.2.9)

and equations (22.2.3)1,3 become

Σ(t) = �∞Λ(t) +
∫ ∞

0
�′(u)Λt

r(u)du

=

∫ ∞

0
�(u)Λ̇t(u)du.

It follows from (22.2.4)2 and (22.2.9) that

Fe(t) = −1
2
Λ(t) · �∞Λ(t), (22.2.10)

provided we add the condition that Fe(t) must vanish when Λ(t) = 0. Relation
(22.2.1)1 becomes

F(t) = −1
2
Λ(t) · �∞Λ(t) − 1

2

∫ ∞

0

∫ ∞

0
Λt

r(s) · �12(s, u)Λt
r(u)dsdu

=
1
2
Λ(t) · �0Λ(t) − Σ(t) · Λ(t)

− 1
2

∫ ∞

0

∫ ∞

0
Λt(s) · �12(s, u)Λt(u)dsdu.

(22.2.11)

Since the integral term in (22.2.11)2 is independent of Λ(t), we must have

∂

∂Λ(t)

[
1
2
Λ(t) · �0Λ(t) − Σ(t) · Λ(t)

]
= −Σ(t),

which is easily checked. From (22.1.4) and (22.2.11), we deduce that

ψ(t) = φ0(t) − 1
2

∫ ∞

0

∫ ∞

0
Λt(s) · �12(s, u)Λt(u)dsdu

= U(t) − 1
2

∫ ∞

0

∫ ∞

0
Λt

r(s) · �12(s, u)Λt
r(u)dsdu,

(22.2.12)

where

φ0(t) =
1
2
Λ(t) · �0Λ(t), U(t) = Σ(t) · Λ(t) − 1

2
Λ(t) · �∞Λ(t). (22.2.13)

Using (22.1.1), we see that the total work done by the electromagnetic field up to
time t is
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W(t) =
∫ t

−∞
Σ̇(u) · Λ(u)du = Σ(t) · Λ(t) −

∫ t

−∞
Σ(u) · Λ̇(u)du. (22.2.14)

It is assumed here and below that field quantities vanish at large negative times
sufficiently strongly so that various required integrals exist. Integrating (22.1.2)1 on
(−∞, t], we have

ψ(t) +D(t) = W(t), (22.2.15)

where

D(t) =
∫ t

−∞
D(u)du ≥ 0 (22.2.16)

is the total dissipation up to time t.
The physical content of (22.2.8) is hidden to some degree by the generality of

the notation. It is worthwhile writing out in detail the relations implied by this ex-
pression. These are the most general within the category of an isothermal linear con-
stitutive relation. We have

D(t) = �E0E(t) + �H0H(t)

+

∫ ∞

0
�′

E(u)Et(u)du +
∫ ∞

0
�′

H(u)Ht(u)du,

B(t) =�E0E(t) +�H0H(t)

+

∫ ∞

0
�′

E(u)Et(u)du +
∫ ∞

0
�′

H(u)Ht(u)du,

�E0,�H0,�E0,�H0 ∈ Lin(R3),

�′
E ,�

′
H ,�

′
E ,�

′
H : R+ �→ Lin(R3),

�E0 = �E(0), �H0 = �H(0),

�E0 =�E(0), �H0 =�H(0).

(22.2.17)

It follows from (22.2.6) that

�E0 = �
�
E0, �′

E(u) =
[
�′

E(u)
]� ,

�H0 =�
�
H0, �′

H(u) =
[
�′

H(u)
]� ,

�H0 =�
�
E0, �′

H(u) =
[
�′

E(u)
]� , u ∈ R+.

Remark 22.2.1. The concept of minimal states may be developed in electromag-
netism (for example, [151, 152]) as in mechanics (Sect. 7.4).

22.2.1 The Kernel �(u) for Dielectric Materials

We can write the Fourier transforms of �′ and �̃ in (22.2.3) as

�′
+(ω) = �′

c(ω) − i�′
s(ω),

�̃+(ω) = �̃c(ω) − i�̃s(ω).

By partial integration, one can show that
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�′
+(ω) = −(�0 − �∞) + iω�̃+(ω), (22.2.18)

giving, in particular, that
�′

s(ω) = −ω�̃c(ω). (22.2.19)

The notation �′
F will be reserved for a somewhat different use in (22.2.30) below.

If the system is in a given state at time t0 and returns to this state at time t0 + T ,
then we have a cycle, as discussed for the electromagnetic context in Sect. 6.3.3.
In fact, for materials with memory, this situation can only exist if the independent
variables have exhibited periodic behavior over a sufficiently long period of time
to allow transient effects to die away so that the system is in a fully periodic state.
In particular, Σ(t), ψ(t), and F(t) will be periodic functions. Integrating (22.1.3) or
(22.1.5) over a cycle gives

∫ t0+T

t0

Σ̇(u) · Λ(u)du ≥ 0 or
∫ t0+T

t0

Σ(u) · Λ̇(u)du ≤ 0, (22.2.20)

which is a statement of the second law.
Consequences of these inequalities can be derived ([121, 122] and Sect. 7.2.1),

by considering the case where Λ(t) has sinusoidal behavior. In particular, it follows
that

�′
s(ω0) > 0 or �̃c(ω0) < 0, 0 < ω0 < ∞, (22.2.21)

which are equivalent by virtue of (22.2.19). These inequalities have the opposite sign
to those for the relaxation function in mechanics.

Following the steps outlined in Sect. 7.2.2, we obtain the analogue of (7.2.15), or

�(u) − �(0) =
2
π

∫ ∞

0

1 − cos(ωu)
ω

�′
s(ω)dω > 0.

It follows that
�(u) ≥ �(0) = �0. (22.2.22)

In particular,

�(∞) − �(0) = �∞ − �0 =
2
π

∫ ∞

0

�′
s(ω)

ω
dω > 0. (22.2.23)

Then, from (22.2.5) and (22.2.23), we also have that

�∞ > 0. (22.2.24)

Relations (22.2.22) and (22.2.23) indicate that �(u) behaves similarly to a creep
function in mechanics rather than a relaxation function (see Remark 22.1.1). It is
interesting to note that this follows from (22.2.21), which itself is a consequence
of (22.1.1), leading to the negative sign on the left-hand side of (22.1.5) and more
specifically the nonpositivity of the integral in (22.2.20)2.

A quantity central to our considerations is defined by

�(ω) = ω�′
s(ω) = −ω2�̃c(ω), (22.2.25)
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where (22.2.19) has been invoked. It is a nonnegative, even tensor function of the
frequency, which vanishes quadratically at ω = 0. The relation

i lim
ω→∞

ω�′
+(ω) = lim

ω→∞
ω�′

s(ω) = �′(0)

yields
�′(0) = �(∞) = �∞. (22.2.26)

22.2.2 The Work Function for Dielectric Materials

The integral term in (22.2.14)2 has exactly the mechanics form, so that, by virtue of
the developments of Sect. 7.5 for example, we obtain

W(t) = U(t) − 1
2

∫ t

−∞

∫ t

−∞
�12(|u − s|)(Λ(u) − Λ(t)) · (Λ(s) − Λ(t))dsdu

= U(t) − 1
2

∫ ∞

0

∫ ∞

0
�12(|u − s|)Λt

r(u) · Λt
r(s)dsdu

= U(t) − 1
2

∫ ∞

−∞

∫ ∞

−∞
�12(|u − s|)Λt

r(u) · Λt
r(s)dsdu,

(22.2.27)

in terms of relative histories, where U(t) is defined by (22.2.13) and where the last re-
lation assumes that Λt

r(u) vanishes for u < 0. We can write W(t) in terms of histories
as follows:

W(t) = φ0(t) − 1
2

∫ ∞

0

∫ ∞

0
�12(|s − u|)Λt(u) · Λt(s)duds

= φ0(t) − 1
2

∫ ∞

−∞

∫ ∞

−∞
�12(|s − u|)Λt(u) · Λt(s)duds,

(22.2.28)

where (22.2.28)2 requires that Λt(u) vanishes for u < 0. Relations (22.2.28)1 and
(22.2.27)2 are special cases of (22.2.12).

In terms of frequency domain quantities, we find that

W(t) = U(t) +
1

2π

∫ ∞

−∞
Λ

t
r+(ω) ·�(ω)Λt

r+(ω)dω,

= φ0(t) +
1

2π

∫ ∞

−∞
Λ

t
+(ω) ·�(ω)Λt

+(ω)dω.
(22.2.29)

These relations follow from application of the convolution theorem and Parseval’s
formula, together with the fact that the Fourier transform of the even function
d2

ds2�(|s|) for s ∈ R, is given by (−iω)2�̃F(ω) (see near the end of Sect. 7.5 and

(17.3.20)3,4) , where

�̃F(ω) = 2�̃c(ω) = −2
�(ω)

ω2
. (22.2.30)
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22.3 The Minimum Free Energy for Dielectric Materials

The tensor� can be regarded as a matrix in V×V. The quantity�(ω) can always be
factorized as follows (see Sect. 11.1, in particular (11.1.11)):

�(ω) = �+(ω)�−(ω), �±(ω) = �∗
∓(ω), (22.3.1)

where all the zeros of det(�±(ω)) and the singularities of �±(ω) are in Ω(±), respec-
tively. The factorization is unique up to multiplication by a constant unitary matrix
on the right of�+(ω). The quantity�(ω) is even in ω so that it is a function of ω2. It
has an isolated singularity at a point ω2 = −α2 if any one of its elements has a pole
at this point. Then �±(ω) has a pole at ω = ±iα, respectively. Also, �(ω) may have
non-isolated singularities, i.e., branch cuts. The quantity det(�(ω)) will be zero at
the point ω if at least one element in each row (column) of�(ω) is zero at this point.
In (22.3.1), �∗

∓(ω) is the Hermitian conjugate of �∓(ω). It is assumed that �±(ω)
commute with each other.

The quantity �∞, defined by (22.2.26), is given by

�∞ = �+(∞)�−(∞) = �+∞�−∞.

If �±∞ can be chosen to be Hermitian, which is possible at least in the commutative
case, then they are both equal to the square root of the nonnegative tensor �∞. We
therefore put

�+∞ = �−∞ = �sr. (22.3.2)

The quantity �(∞) vanishes for the dielectric discussed in Sect. 22.4.
It will be assumed that Λ(∞) = 0. From (22.2.27)1, one obtains

W(∞) =
∫ ∞

−∞
Σ̇(u) · Λ(u)du = −

∫ ∞

−∞
Σ(u) · Λ̇(u)du

= −1
2

∫ ∞

−∞

∫ ∞

−∞
�12(|s − u|)Λ(u) · Λ(s)duds

= −1
2

∫ ∞

−∞

∫ ∞

−∞
�12(|s − u|)Λt(u) · Λt(s)duds

=
1

2π

∫ ∞

−∞
Λt

F(ω) ·�(ω)Λt
F(ω)dω

=
1

2π

∫ ∞

−∞

(
Λt
+(ω) + Λt

−(ω)
)
·�(ω)

(
Λt
+(ω) + Λt

−(ω)
)
dω,

(22.3.3)

since U(∞) vanishes. In (22.3.3)4, the quantity t is now an arbitrary parameter, which
can be reidentified as the current time. Equation (22.3.3)5 follows from (22.3.3)4. The
recoverable work from the state at time t is given by

WR(t) = −
∫ ∞

t
Σ̇(u) · Λ(u)du = W(t) −W(∞). (22.3.4)

To obtain the minimum free energy, we seek to maximize this quantity (for example,
[69, 70, 104] and Theorem 4.2.3). The optimization is carried out by varying the
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future continuation. Equivalently, one can minimize W(∞), given by (22.3.3), since
W(t) is not affected by the optimization process.

With the aid of the Plemelj formulae [274] (see also (B.2.15)), we write

Qt(ω) = �−(ω)Λt
+(ω) = qt−(ω) − qt+(ω)

qt±(ω) = lim
z→ω∓

qt(z)

qt(z) =
1

2πi

∫ ∞

−∞

Qt(ω′)
ω′ − z

dω′,

(22.3.5)

where qt−(ω) is analytic on Ω(+), going to zero at large ω as ω−1 and qt+(ω) is analytic
on Ω(−) with similar behavior at large ω. The quantities qt±(ω) are analytic on an open
region including R. In Ω(−), away from singularities, qt−(ω) is defined by analytic
continuation from Ω+, while qt+(ω) is correspondingly defined in Ω(+). We will write
them as

qt±(ω) =
1

2πi

∫ ∞

−∞

Qt(ω′)
ω′ − ω∓ dω

′, ω ∈ R. (22.3.6)

From (22.2.29)2 and (22.3.5)1,2, we have

W(t) = φ0(t) +
1

2π

∫ ∞

−∞
|qt−(ω) − qt+(ω)|2dω

= φ0(t) +
1

2π

∫ ∞

−∞

[
|qt−(ω)|2 + |qt+(ω)|2

]
dω,

(22.3.7)

since the cross terms vanish by virtue of Proposition B.1.3.
Different methods of deriving the formula for the minimum free energy are out-

lined in Sect. 11.2 and Sect. 16.5 for the maximum free energy. A version of the
latter method is used here. With the aid of (22.3.1), let us write (22.3.3)6 as

W(∞) =
1

2π

∫ ∞

−∞
|qt−(ω) − qt+(ω) +�−(ω)Λt

−(ω)|2 dω.

Putting
qt1−(ω) = qt−(ω) +�−(ω)Λt

−(ω),

where qt1−(ω) is analytic on Ω(+), we have

W(∞) =
1

2π

∫ ∞

−∞
|qt1−(ω) − qt+(ω)|2 dω

=
1

2π

∫ ∞

−∞
[|(qt1−(ω)|2 + |qt+(ω)|2] dω.

Only qt1−(ω) depends on Λt
−(ω). Therefore, the minimum must be given by choosing

a value of Λt
−(ω) such that

qt1−(ω) = 0,

as the optimal continuation Λt
m−(ω). It follows that
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Λt
m−(ω) = − [�−(ω)]−1 qt−(ω) = − [�−(ω)]−1

2πi

∫ ∞

−∞

�−(ω′)Λt
+(ω′)

ω′ − ω+
dω′. (22.3.8)

The resulting minimum value of W(∞) is

Wopt(∞) =
1

2π

∫ ∞

−∞
|qt+(ω)|2dω. (22.3.9)

The maximum value of WR(t), given by (22.3.4), is the minimum free energy and has
the form

ψm(t) = φ0(t) +
1

2π

∫ ∞

−∞
|qt−(ω)|2dω

= φ0(t) +
1

2π

∫ ∞

−∞
Λt

m−(ω) ·�(ω)Λt
m−(ω)dω,

(22.3.10)

which follows from (22.3.4), (22.3.7), and (22.3.9). It can be confirmed that this
quantity has the required properties of a free energy, by the method outlined in
Sect. 11.2.4.

With the aid of (22.3.6) and (7.2.27), we obtain [92, 158]

d
dt
qt+(ω) = −iωqt+(ω) −K(t),

d
dt
qt−(ω) = −iωqt−(ω) −K(t) +�−(ω)Λ(t),

K(t) =
1

2π

∫ ∞

−∞
�−(ω)Λt

r+(ω)dω,

(22.3.11)

and
lim
|ω|→∞

ωqt+(ω) = iK(t),

lim
|ω|→∞

ωqt−(ω) = i(K(t) −�srΛ(t)),

1
2π

∫ ∞

−∞
qt+(±ω)dω = −1

2
K(t),

1
2π

∫ ∞

−∞
qt−(±ω)dω =

1
2

(K(t) −�srΛ(t)).

(22.3.12)

From (22.3.7), (22.3.9), (22.3.10), and (22.2.15), we deduce that the total dissipation
corresponding to the minimum free energy is given by

Dm(t) =
∫ t

−∞
Dm(u)du =

1
2π

∫ ∞

−∞
|qt+(ω)|2dω = Wopt(∞) ≥ 0. (22.3.13)

If we differentiate this relation with respect to t, using (22.3.11) and (22.3.12), the
result is

Dm(t) = |K(t)|2. (22.3.14)
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From (22.3.8) and (22.3.12)2, it follows that

Λt
m−(ω) −→

ω→∞
−Λ(t) − [�sr]−1 K(t)

iω
,

which indicates a discontinuity between the history Λt(s), s ∈ R+, leading to Λ(t)
and the optimal continuation Λt

opt(s), at s = 0, given by

Λt
opt(0) = Λ(t) − [�sr]

−1 K(t).

This discontinuity has the form

Λt(0) − Λt
opt(0) = [�sr]

−1 K(t) (22.3.15)

and is related to the rate of dissipation (22.3.14).
If �sr vanishes (which is true for the case dealt with in Sect. 22.4), then the dis-

continuity, as given by (22.3.15), becomes infinite. The associated free energy, given
by (22.3.10), and the rate of dissipation, given by (22.3.14), are finite quantities,
however.

We can reexpress these results in terms of relative histories. Instead of (22.3.5),
we write

Pt(ω) = �−(ω)Λt
r+(ω) = pt−(ω) − pt+(ω) = Qt(ω) − �−(ω)

iω
Λ(t),

pt±(ω) =
1

2πi

∫ ∞

−∞

Pt(ω′)
ω′ − ω∓ dω

′ = qt±(ω) +
1

2π

∫ ∞

−∞

�−(ω′)
ω′(ω′ − ω∓)

dω′Λ(t).

(22.3.16)
By closing the contour on Ω+, we find that

pt−(ω) = qt−(ω) − �−(ω)
iω
Λ(t), pt+(ω) = qt+(ω). (22.3.17)

With the aid of (22.2.29), relation (22.3.7) is replaced by

W(t) = U(t) +
1

2π

∫ ∞

−∞

[
|pt−(ω)|2 + |pt+(ω)|2

]
dω. (22.3.18)

The minimum free energy has the form

ψm(t) = U(t) +
1

2π

∫ ∞

−∞
|pt−(ω)|2dω, (22.3.19)

which is an alternative form of (22.3.10)1. Equations (22.3.13) and (22.3.14) are
unchanged.

Using (22.3.10)1 and (22.3.19)1, we can write ψm(t) in the form (cf. (11.2.39) and
also Sect. 17.5)

ψm(t) = φ0(t) +
i

4π2

∫ ∞

−∞

∫ ∞

−∞

Λt
+(ω1) ·�m(ω1, ω2)Λt

+(ω2)
ω+1 − ω−

2

dω1dω2

= U(t) +
i

4π2

∫ ∞

−∞

∫ ∞

−∞

Λt
r+(ω1) ·�m(ω1, ω2)Λt

r+(ω2)
ω+1 − ω−

2

dω1dω2,

�m(ω1, ω2) = �+(ω1)�−(ω2),

(22.3.20)
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by carrying out the integration with respect to ω over Ω+ or over Ω− (see Sect. 11.2.5).
Also, Dm(t), given by (22.3.14), can be expressed as

Dm(t) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
Λt

r+(ω1) ·�m(ω1, ω2)Λt
r+(ω2)dω1dω2. (22.3.21)

From (22.3.13), we deduce that

Dm(t) = − i

4π2

∫ ∞

−∞

∫ ∞

−∞

Λt
+(ω1) ·�m(ω1, ω2)Λt

+(ω2)
ω−

1 − ω+2
dω1dω2

= − i

4π2

∫ ∞

−∞

∫ ∞

−∞

Λt
r+(ω1) ·�m(ω1, ω2)Λt

r+(ω2)
ω−

1 − ω+2
dω1dω2.

(22.3.22)

Alternative forms of (22.3.20) and (22.3.22) are derived in [151], including an ex-
plicitly convergent form of the free energy, similar to (11.2.44). It is also shown that
ψm is a functional of the minimal state.

The free enthalpy corresponding to the minimum free energy may be deduced
from (22.1.4), (22.2.13), (22.3.10)1, and (22.3.19) to be

Fm(t) = ψm(t) − Σ(t) · Λ(t) = −S (t) +
1

2π

∫ ∞

−∞
|qt−(ω)|2dω

= −φ∞(t) +
1

2π

∫ ∞

−∞
|pt−(ω)|2dω,

(22.3.23)

where (see (7.1.35) and (22.2.10))

S (t) = Σ(t) · Λ(t) − φ0(t), φ∞(t) =
1
2
Λ(t) · �∞Λ(t) = −Fe(t). (22.3.24)

It is easy to show that Fm(t) obeys the Graffi conditions listed at the end of
Sect. 22.1. Property P2 is immediately apparent, while P3 is equivalent to (22.1.2).
The relation (22.2.15) holds for the minimum free energy. The time derivative of
(22.2.15) gives (22.1.2), on recalling the derivation of (22.3.14). Property P1 can be
proved with the aid of (22.3.23)2, by showing that

∂S (t)
∂Λ(t)

= Σ(t), (22.3.25)

which is a special case of (7.1.20).
A representation of the minimum free energy, given by (22.3.10), in terms of time

domain quantities, analogous to results in Chap. 12, is deduced in [151]. Also, the
form of ψm and related quantities for sinusoidal histories are deduced in that paper.

22.4 Free Energies for Non-magnetic Materials

Consider a rigid non-magnetic isotropic dielectric material subject to a varying elec-
tric field. Let the body under consideration occupy a volume B ⊂ R3. A typical point
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in B is x, while t is a given time. The electric field on this region is E(x, t), with elec-
tric displacement denoted by D(x, t). The magnetic field and induction contributions
are neglected.

Let ψ(t) be any free energy of the material, for the isothermal case, and D(t) the
rate of dissipation. The laws of thermodynamics are as outlined in (22.1.2)–(22.1.5),
where Σ̇ ·Λ is replaced by Ḋ ·E, so that we define the free enthalpy in this context as

F = ψ − D · E. (22.4.1)

We define the equilibrium free enthalpy Fe(t) to be that given for the static history
Et(s) = E(t), s ∈ R+. Therefore,

Fe(t) = F̃e(E(t)).

A special case of the linear model introduced in Sect. 22.2 is now considered.
All kernels are scalar quantities, reflecting an electromagnetic isotropy. Relation
(22.2.11) becomes

F(t) = Fe(t) −
1
2

∫ ∞

0

∫ ∞

0
Ėt(s) · G̃(s, u)Ėt(u)dsdu,

=
1
2
G0|E(t)|2 − D(t) · E(t) − 1

2

∫ ∞

0

∫ ∞

0
Et(s) ·G12(s, u)Et(u)dsdu

= Fe(t) −
1
2

∫ ∞

0

∫ ∞

0
Et
r(s) ·G12(s, u)Et

r(u)dsdu

Fe(t) = −1
2
G∞|E(t)|2, |E(t)|2 = E(t) · E(t), G̃(s, u) = G(s, u) −G∞,

(22.4.2)
where (22.4.2)3 follows from (22.4.2)1 by partial integrations. The linear constitutive
relation in this case is given by

D(t) = G∞E(t) +
∫ ∞

0
G′(u)Et

r(u)du = G0E(t) +
∫ ∞

0
G′(u)Et(u)du

= G∞E(t) +
∫ ∞

0
G̃(u)Ėt(u)du =

∫ ∞

0
G(u)Ėt(u)du,

(22.4.3)

where
G(u) = G(0, u), G0 = G(0, 0) = G(0),

G̃(u) = G(u) −G∞, G′(u) =
d
du

G(u).
(22.4.4)

Relation (22.4.3)2 is a special case of (22.2.17)1. In writing the final form of (22.4.3),
we are assuming that E(−∞) = Et(∞) vanishes; we furthermore assume that it goes
to zero sufficiently strongly so that various integrals, introduced below, exist. The
quantity G∞ is related to G(s, u) through

G∞ = G(s,∞) = G(0,∞) = G(∞).

The relations in (22.2.7) reduce to
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D(t) =
1
2

∫ ∞

0

∫ ∞

0
Ėt(s) · [G1(s, u) +G2(s, u)] Ėt(u)dsdu

=
1
2

∫ ∞

0

∫ ∞

0
Et
r(s) · [G112(s, u) +G212(s, u)]Et

r(u)dsdu.

From (22.4.1) and (22.4.2), we deduce that

ψ(t) = φ0(t) − 1
2

∫ ∞

0

∫ ∞

0
Et(s) ·G12(s, u)Et(u)dsdu

= U(t) − 1
2

∫ ∞

0

∫ ∞

0
Et
r(s) ·G12(s, u)Et

r(u)dsdu,

= U(t) − 1
2

∫ ∞

0

∫ ∞

0
Ėt(s) · G̃(s, u)Ėt(u)dsdu,

(22.4.5)

where

φ0(t) =
1
2
G0|E(t)|2, U(t) = D(t) · E(t) − 1

2
G∞|E(t)|2. (22.4.6)

The total work done by the electric field up to time t is

W(t) =
∫ t

−∞
Ḋ(u) · E(u)du = D(t) · E(t) −

∫ t

−∞
D(u) · Ė(u)du. (22.4.7)

Relations (22.2.15) and (22.2.16) hold in the present context.
We take G0 to be equal to the vacuum permittivity ε0 [153–155], giving

D(t) = ε0E(t) + P(t),

where, using (22.4.3)2, one sees that the polarization P(t) is given by the causal
relationship

P(t) =
∫ ∞

0
G′(u)Et(u)du =

∫ t

−∞
G′(t − s)E(s)ds.

Then, (22.4.7)1 becomes

W(t) = φ0(t) +Wint(t), φ0(t) =
1
2
ε0|E(t)|2,

where Wint(t) is given by

Wint(t) =
∫ t

−∞
Ṗ(s) · E(s)ds,

is the accumulation of energy (density) transferred to the medium at the point under
consideration, from the beginning of the pulse–medium interaction until time t. We
can write (22.2.15) as

ψint(t) +D(t) = Wint(t),

where ψint(t) is given by the integral term in (22.4.5)1.



510 22 The Minimum and Related Free Energies for Dielectric Materials

22.4.1 The Kernel G(u) for Non-magnetic Materials

We can write the Fourier transforms of G′(u) and G̃(u) in (22.4.3) as

G′
+(ω) = G′

c(ω) − iG′
s(ω) = χ+(ω) = χc(ω) − iχs(ω),

G̃+(ω) = G̃c(ω) − iG̃s(ω).

The quantity χ+(ω) is the susceptibility, denoted by χ(ω) in [153–155]. Equation
(22.2.18) reduces to

G′
+(ω) = −(G0 −G∞) + iωG̃+(ω),

giving, in particular, that

G′
s(ω) = χs(ω) = −ωG̃c(ω) > 0, 0 < ω < ∞.

We see that
G+

′
(ω) = χ+(ω) = G′

+(−ω) = χ+(−ω). (22.4.8)

As a special case of (22.2.23), we have G∞ > G0. Also, G0 = ε0 > 0, so that G∞ > 0.
The quantity �, defined by (22.2.25), reduces to a scalar quantity H defined by

H(ω) = ωG′
s(ω) = ωχs(ω) = −ω2G̃c(ω). (22.4.9)

It is a nonnegative, even function of the frequency and goes to zero quadratically at
the origin. The relation

i lim
ω→∞

ωG′
+(ω) = lim

ω→∞
ωG′

s(ω) = G′(0)

yields
G′(0) = H(∞) = H∞.

For the model considered later, H(ω) goes to zero at large ω so that H∞ = 0.
Relations (22.2.27)2 and (22.2.28)1 reduce to

W(t) = U(t) − 1
2

∫ ∞

0

∫ ∞

0
G12(|u − s|)Et

r(u) · Et
r(s)dsdu

= φ0(t) − 1
2

∫ ∞

0

∫ ∞

0
G12(|u − s|)Et(u) · Et(s)dsdu,

where U(t) and φ0(t) are defined by (22.4.6). In terms of frequency domain quanti-
ties, we find that (22.2.29) becomes

W(t) = U(t) +
1

2π

∫ ∞

−∞
E
t
r+(ω) · H(ω)Et

r+(ω)dω,

= φ0(t) +
1

2π

∫ ∞

−∞
E
t
+(ω) · H(ω)Et

+(ω)dω.
(22.4.10)



22.4 Free Energies for Non-magnetic Materials 511

22.4.2 Factorization of H(w) for Non-magnetic Dielectrics

We consider materials such that G′
+(ω) (or G̃+(ω)) has no branch cuts and a finite

number of isolated singularities in Ω(+). Thus, H(ω) has only isolated singularities in
Ω(±), which are mirror images of each other in the real axis. This means that it can be
put in the form of a ratio of polynomials. We will take the singularities to be a finite
number of simple poles. The quantity H(ω) has a finite number of zeros in Ω±(ω),
also mirror images of each other. It is real and nonnegative on R, an even function
of ω and therefore a function of ω2, in view of its analyticity about the origin. It
vanishes quadratically at the origin. This nonnegative quantity can be factorized in
general as outlined in [158] and Sect. 11.1.1, according to (11.1.16) and (11.1.17).

The quantity H+(ω) (H−(ω)) has all its singularities in Ω(+) (Ω(−)) and all its zeros
in Ω+ (Ω−). There are many other factorizations, obtained by interchanging some or
all of the zeros of H+(ω) and H−(ω), while retaining the same singularity structure.
The different factorizations will be labeled by the subscript or superscript f and are
given by (16.4.1).

Each factorization generally yields a different free energy ψ f (t), f = 1, 2, . . . ,N,
where N is the total number of factorizations of H(ω), though there may be excep-
tions. The factorization with no exchange of zeros, which is that given by (11.1.16),
yields the minimum free energy ψm(t).

Remark 22.4.1. Each exchange of zeros, starting from these factors, can be shown
to yield a free energy, which is greater than or equal to the previous quantity
(Sect. 16.8).

Note that the zeros of H f
±(ω) at the origin play no part in these exchanges.

We denote by ψM(t) the free energy obtained by interchanging all the zeros. This
can be identified as the maximum free energy among all those that are functionals of
the minimal state. It is discussed for a mechanics context in Sect. 16.5.

The subscript f = N is chosen to denote the maximum free energy.
The most general free energy arising from these factorizations is given by

(16.10.1).

22.4.3 The Free Energy for the Non-magnetic Case Associated with a
Particular Factorization

Consider a particular factorization H f
+(ω), H f

−(ω) of H(ω). We define

H f
−(ω)Et

+(ω) = q f t
− (ω) − q f t

+ (ω),

q f t
± (ω) =

1
2πi

∫ ∞

−∞

H f
−(ω′)Et

+(ω′)
ω′ − ω∓ dω′,

(22.4.11)

where the q f t
± (ω) are analytic in Ω∓, respectively. The singularities of q f t

− (ω) are the
same as those of H f

−(ω), as may be perceived by closing the contour in (22.4.11)2 on
Ω(−). Singularities on the real axis are excluded by assumption.
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The free energy associated with this particular factorization is a generalization of
the form (22.3.10), given by

ψ f (t) = φ0(t) +
1

2π

∫ ∞

−∞
|q f t

− (ω)|2dω. (22.4.12)

Relations (22.3.11) and (22.3.12) for the scalar quantities H±(ω) apply here also.

Remark 22.4.2. For the material considered in Sect. 22.4.4 below, the quantity H(ω)
vanishes for large values of ω. Thus, the scalar version of �sr in (22.3.2) and
(22.3.12) is zero. Also, ∫ ∞

−∞

H f
−(ω)
ω

= 0,

as can be seen by closing the contour on Ω(+), so that (22.3.11)4 can be replaced by

K f (t) =
1

2π

∫ ∞

−∞
H f

−(ω)Et
+(ω)dω. (22.4.13)

The work function, given by (22.4.10), takes the form

W(t) = φ0(t) +
1

2π

∫ ∞

−∞

[
|q f t

− (ω)|2 + |q f t
+ (ω)|2

]
dω. (22.4.14)

From (22.2.15), (22.4.12), and (22.4.14), we deduce that the total dissipation corre-
sponding to the free energy ψ f (t) is given by

D f (t) =
∫ t

−∞
Df (u)du =

1
2π

∫ ∞

−∞
|q f t
+ (ω)|2dω.

Differentiating this relation with respect to t and using (22.3.11)1 and (22.3.12)3 for
scalar � give

Df (t) = |K f (t)|2. (22.4.15)

Since K f (t), given by (22.4.13), can vanish for nonzero histories, Df (t) is a positive
semidefinite rather than a positive definite quadratic form.

The results for relative histories as defined for the general case by
(22.3.16)–(22.3.19) can be adopted without difficulty to the present case, similarly
for (22.3.20)–(22.3.25).

22.4.4 A Detailed Dielectric Model

We have, from (22.4.9),

H(ω) = ωχs(ω) = −ω

2i
(χ+(ω) − χ+(ω)) ≥ 0, ω ∈ R. (22.4.16)

As in [153–155], we take the susceptibility to be modeled by a sum of Lorentz oscil-
lators:
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χ+(ω) =
N∑
n=1

fnω2
pn

ω2
n − iγnω − ω2

, (22.4.17)

in terms of the oscillator strength fn, the plasma frequency ωpn , the resonant fre-
quency ωn , and the damping rate γn of each oscillator. All of these are positive
parameters.

This behavior, while often used to describe memory behavior of dielectrics, is not
usually applied to viscoelastic materials. The singularity structure given by (22.4.17)
corresponds to exponential decay with sinusoidal behavior in the time domain (see
also Chap. 19), while viscoelastic materials are generally modeled by simple expo-
nential decay, which in the frequency domain yields simple poles on the positive
imaginary axis.

It is assumed that

ω2
n >

γ2
n

4
.

The singularities of χ+(ω) are of course isolated. They are simple poles at

ζn =
1
2

[
iγn + σn

]
, ζ′n =

1
2

[
iγn − σn

]
= −ζn,

σn =

√
4ω2

n − γ2
n, n = 1, 2, . . . ,N.

(22.4.18)

Thus, they occur in pairs, equidistant from the positive imaginary axis. Separating
the poles in (22.4.17), we can write

χ+(ω) = −
N∑
n=1

fnω2
pn

σn

{
1

ω − ζn
− 1
ω − ζ′n

}
. (22.4.19)

In the time domain, this translates into

G′(s) = i
N∑
n=1

fnω2
pn

σn
(eiζns − eiζ

′
ns), s ∈ R+, (22.4.20)

which are decaying exponentials multiplying sine functions [122], so that there will
be oscillatory behavior superimposed on the exponential decay. From (22.4.17) and
(22.4.16), we have

H(ω) =
N∑
n=1

fnω2
pnγnω

2

(ω2
n − ω2)2 + γ2

nω
2
,

which can be written as a ratio of two (factored) polynomials:

H(ω) = H1ω
2

∏N−1
l=1

[
(ω − ηl)(ω − η′l)(ω − ηl)(ω − η′l)

]
∏N

l=1

[
(ω − ζl)(ω − ζ′l )(ω − ζ l)(ω − ζ

′
l)
] ,

H1 =

N∑
n=1

fnω
2
pnγn, ω ∈ R,

(22.4.21)
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where the denominator of (22.4.21)1 uses the notation of (22.4.18), while the nu-
merator is factored to yield the zeros of H(ω); these must occur also in pairs, as in
(22.4.18), so that η′l = −ηl for each l. We have explicitly included the fact that H(ω)
vanishes quadratically at the origin. Note that the smaller number of zeros reflects
the fact that H(ω) behaves as ω−2 for large ω.

The factorization can be carried out by inspection. We obtain

H−(ω) = h1ω

∏N−1
l=1 (ω − ηl)(ω − η′l)∏N
l=1(ω − ζl)(ω − ζ′l )

,

ζl ∈ Ω(−), l = 1, 2, . . . ,N, ηl ∈ Ω(−), l = 1, 2, . . . ,N − 1,

H+(ω) = H−(ω) = H−(−ω),

(22.4.22)

where h2
1 = H1.

The most general case of a rational function, which is considered in [160] and
Chap. 16, can be obtained from (22.4.21) by allowing singularities to coalesce. As a
result of this, some zeros may also coalesce. Indeed, we cannot exclude the possibil-
ity that some of the zeros in (22.4.21) have a power higher than unity, even if all the
singularities are simple poles. For simplicity, it is assumed that this does not happen
for our choice of parameters.

Let us define for l = 1, 2, . . . , 2N − 2,

αl =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ζ l + 1
2

, l odd,

ζ′l
2
, l even,

βl =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

η l + 1
2

, l odd,

η′l
2
, l even,

and
α2N−1 = ζN , α2N = ζ′N .

We can write (22.4.19) as

χ+(ω) =
2N∑
l=1

gl
ω − αl

= −
2N∑
l=1

gl
ω + αl

, αl ∈ Ω(+), (22.4.23)

where (22.4.8) has been used and

gl =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−
fiω2

pi

σi
, i =

l + 1
2

, l odd,

fiω2
pi

σi
, i =

l
2
, l even.

In this notation, (22.4.20) becomes

G′(s) = i
2N∑
l=1

gle
iαl s = −i

2N∑
l=1

gle
−iαl s. (22.4.24)
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We define the quantities

el(t) = Et
+(αl), l = 1, 2, . . . , 2N,

for which
el(t) = Et

+(αl) = Et
+(−αl), l = 1, 2, . . . , 2N.

For ω = αl, we have
ėl(t) = −iαlel(t) + E(t), (22.4.25)

which is a special case of (7.2.27).
Let us now consider the free energies ψ f (t). We can put (22.4.22) in the form

H−(ω) = h1ω

∏2N−2
l=1 (ω − βl)∏2N
l=1(ω − αl)

= h1ω

2N∑
i=1

Ri

ω − αi
,

αl ∈ Ω(−), l = 1, 2, . . . , 2N, βl ∈ Ω(−), l = 1, 2, . . . , 2N − 2,

(22.4.26)

where

Ri = (ω − αi)H−(ω)
∣∣∣∣∣
ω=αi

= h1αi

∏2N−2
l=1 (αi − βl)∏2N
l=1
l�i

(αi − αl)
.

Also,

H+(ω) = h1ω

∏2N−2
l=1 (ω − βl)∏2N
l=1(ω − αl)

= −h1ω

∏2N−2
l=1 (ω + γl)∏2N
l=1(ω + αl)

= h1ω

2N∑
i=1

Ri

ω − αi
= h1ω

2N∑
i=1

Ri

ω + αi
.

(22.4.27)

The relationship
2N∑
i=1

Ri = 0 (22.4.28)

must hold since H−(ω) tends to h1ω
−1 at large ω. Therefore, we can also write

(22.4.26)2 and (22.4.27)3,4 as

H−(ω) = h1

2N∑
i=1

αiRi

ω − αi
,

H+(ω) = h1

2N∑
i=1

αiRi

ω − αi
= h1

2N∑
i=1

αiRi

ω + αi
.

We identify also a much larger class of factorizations of H(ω), determined by inter-
changing particular βl in (22.4.26)1 with βl in (22.4.27)1. These different factoriza-
tions are labeled by the subscript or superscript f . Thus,
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H f
−(ω) = h1ω

∏2N−2
l=1 (ω − ζ

f
l )∏2N

l=1(ω − αl)
= h1ω

2N∑
i=1

Rf
i

ω − αi
= h1

2N∑
i=1

αiR
f
i

ω − αi
,

αl ∈ Ω(−), l = 1, 2, . . . , 2N, βl ∈ Ω(−), l = 1, 2, . . . , 2N − 2,

ζ
f
l = λ

f
l βl + (1 − λ

f
l )βl, λ

f
l = 0 or 1,

Rf
i = (ω − αi)H

f
−(ω)

∣∣∣∣∣
ω=αi

= h1αi

∏2N−2
l=1 (αi − ζ

f
l )∏2N

l=1
l�i

(αi − αl)
.

(22.4.29)

Observe that (22.4.28) also holds for the Rf , a property that has been used in writing
(22.4.29)3. There are 22N−2 different factorizations. Referring to the discussion in
Sects. 22.4.2 and 22.4.3, we note that if all the λ

f
l are equal to one, then ψ f (t) is

the minimum free energy ψm(t), while if all are zero, we obtain the maximum free
energy ψM(t). All other possibilities yield functionals that are intermediate between
these two extremes. These observations follow from Remark 22.4.1. Observe that

H(ω) = H f
+(ω)H f

−(ω) = H1ω
2

2N∑
i, j=1

Rf
i R

f
j

(ω − αi)(ω − α j)

= H1ω
2

2N∑
i, j=1

Rf
i R

f
j

αi − α j

{
1

ω − αi
− 1
ω − α j

}
.

Now, we have the relation

χ+(ω) =
1
π

∫ ∞

−∞

H(ω′)
ω′(ω′ − ω−)

dω′,

which follows by applying an integration over R to (22.4.16) divided by ω′(ω′ −ω−)
and completing the contour over Ω(−). The integral over χ+(ω) vanishes. Thus, we
have, on integrating over Ω+,

χ+(ω) =
H1

π

∫ ∞

−∞

ω′

ω′ − ω−

2N∑
i, j=1

Rf
i R

f
j

αi − α j

{
1

ω′ − αi
− 1
ω′ − α j

}
dω′

= −2iH1

2N∑
i, j=1

αiR
f
i R

f
j

(αi − α j)(ω − αi)
.

(22.4.30)

The quantity q f t
− (ω), defined by (22.4.11), may be evaluated by closing the con-

tour on Ω(−), giving

q f t
− (ω) =

1
2πi

∫ ∞

−∞

H f
−(ω′)Et

+(ω′)
ω′ − ω+

dω′ = h1

n∑
i=1

αiR
f
i ei(t)

ω − αi
. (22.4.31)

From (22.4.11)1, we have
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q f t
+ (ω) = q f t

− (ω) − H f
−(ω)Et

+(ω)

= h1

n∑
i=1

Rf
i

[
αiEt

+(αi) − ωEt
+(ω)

]
ω − αi

,

which has singularities at those of Et
+(ω) in Ω(+) but none in Ω(−). These explicit

relations allow analytic continuation of qt±(ω) to the whole complex plane, excluding
singular points. From (22.4.25), (22.4.29), and (22.4.31), we see that the quantity
p f t
− (ω) is given by

p f t
− (ω) =

1
2πi

∫ ∞

−∞

H f
−(ω′)Et

r+(ω′)
ω′ − ω+

dω′ = ih1

n∑
i=1

Rf
i ėi(t)

ω − αi
. (22.4.32)

The optimal history/continuation in the frequency domain, which is a special case
of (22.3.8), is given by formulae that are generalizations of those in Sect. 16.9.1.

We deduce from (22.4.12)2 and (22.4.31) that

ψ f (t) = φ0(t) + iH1

2N∑
i, j=1

αiα jR
f
i R

f
j

αi − α j
ei(t) · e j(t)

= φ0(t) − 1
2

∫ ∞

0

∫ ∞

0
Et(s1) ·Gf

12(s1, s2)Et(s2)ds1ds2,

(22.4.33)

where

Gf
12(s1, s2) = −2iH1

2N∑
i, j=1

αiα jR
f
i R

f
j

αi − α j
eiαi s1 − iα j s2 .

Also, from (22.4.32),

ψ f (t) = U(t) + iH1

2N∑
i, j=1

Rf
i R

f
j

αi − α j
ėi(t) · ė j(t)

= U(t) − 1
2

∫ ∞

0

∫ ∞

0
Ėt(s1) · G̃ f (s1, s2)Ėt(s2)ds1ds2,

(22.4.34)

where

G̃ f (s1, s2) = −2iH1

2N∑
i, j=1

Rf
i R

f
j

αi − α j
eiαi s1 − iα j s2 . (22.4.35)

We write (22.4.33)1 and (22.4.34)1 in the form

ψ f (t) = φ0(t) +
1
2

2N∑
i, j=1

C′
f i jei(t) · e j(t),

= U(t) +
1
2

2N∑
i, j=1

C f i jėi(t) · ė j(t), C f i j = 2iH1

Rf
i R

f
j

αi − α j
.
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Comparing (22.4.30)2 with (22.4.23), we see that

gi = −2iH1

2N∑
j=1

αiR
f
i R

f
j

αi − α j
= −2iH1

2N∑
j=1

α jR
f
i R

f
j

αi − α j
, (22.4.36)

where (22.4.28), for the Rf
i , has been used. The relation (22.4.4)1, which yields that

Gf
2 (0, s) = G′(s), where the latter quantity is given by (22.4.24), can be confirmed

with the aid of (22.4.35) and (22.4.36).
From (22.4.13) and (22.4.29)2,3, we have

K f (t) = −ih1

⎡⎢⎢⎢⎢⎢⎣
n∑
i=1

αiR
f
i ei(t)

⎤⎥⎥⎥⎥⎥⎦ = h1

⎡⎢⎢⎢⎢⎢⎣
n∑
i=1

Rf
i ėi(t)

⎤⎥⎥⎥⎥⎥⎦ ,

so that

Df (t) = H1

∣∣∣∣∣∣∣
n∑
i=1

αiR
f
i ei(t)

∣∣∣∣∣∣∣
2

= H1

∣∣∣∣∣∣∣
n∑
i=1

Rf
i ėi(t)

∣∣∣∣∣∣∣
2

= H1

2N∑
i, j=1

Rf
i R

f
j ėi(t) · ė j(t)

= H1

2N∑
i, j=1

αiα jR
f
i R

f
j ei(t) · e j(t).

(22.4.37)

Note that Df (t) vanishes if

2N∑
i=1

αiR
f
i ei(t) = 0.

Solutions to this equation will exist for nonzero values of ei(t). Therefore, (22.4.37)3

is a positive semidefinite rather than a positive definite quadratic form, so that the
associated matrix will have some zero eigenvalues. If one of these zero eigenvalues
were to become slightly negative, then the second law would no longer hold. Thus,
the free energy ψ f (t) is on the boundary of the set of free energies. A more general
related observation was made after (22.4.15).
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Fractional Derivative Models of Materials with
Memory

23.1 Introduction

Materials with constitutive equations expressed in terms of fractional derivatives [47]
are of increasing interest in recent years (see [214, 287]). It is well known that such
materials can be considered in the class of materials with memory and may describe
elastic, fluid, viscoelastic, and electromagnetic materials, but also other kinds of phe-
nomena, such as heat flux models.

The fractional derivative central to the present study is that of Caputo [48, 51].
We consider thermomechanical models with memory within this fractional deriva-
tive framework, and compare them with the classical Volterra theory, which is that
described and used throughout most of the present work. It emerges that the two
viewpoints are formally similar [250]. Indeed, fractional models are those for which
the viscoelastic memory kernel (or relaxation function) G(s) is given by

G(s) =
k0

sα
, α ∈ (0, 1) , k0 > 0. (23.1.1)

However, in contrast to the Volterra theory for fluids with memory, this kernel is not
L1(0,∞), which implies significant dissimilarity in the behavior of solutions of the
dynamical equations, compared with the traditional theory. The differences are more
evident for solid materials. Therefore, the fractional and Volterra models provide
viewpoints which are not reconcilable. Various of these differences between the two
models are noted in [128].

An analysis of the thermodynamic restrictions provides compatibility conditions
on the kernels. These conditions, combined with analogies with the Volterra theory,
yield certain free energies, which enable the definition of a topology on the history
space. A similar analysis can be carried out for the phenomenon of heat propagation
with memory.

The derivation of the minimum free energy in this context is presented in partic-
ular detail because it requires careful treatment of the factorization problem.
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For solid viscoelastic materials, some experimental observations are particularly
in agreement with models using fractional derivatives, because of the power law
behavior of the relaxation function given by (23.1.1) (see [50, 167, 202, 280, 293,
296, 303]). The creep function for such models also has a power law form. Such
experimental backing has motivated many studies of materials with fading memory
given by a fractional derivative, including [26, 48, 140, 200, 214, 249, 261] and in
the frequency domain [202, 303] .

Many experimental observations on a variety of materials subject to a constant
load show plastic behavior, which can be described by the fractional derivative ap-
proach. However, this is not predicted by Volterra models, which under constant load
describe elastic materials. Moreover, when the load is removed, fractional models
predict recovery of a portion of the deformation, unlike for the case of classical vis-
cous fluids. Thus, the fractional derivative approach allows us to describe materials
displaying both elastic and viscous/plastic behavior.

The fractional theory can also be applied to heat diffusion. It seems natural to
generalize the Fourier law and the Cattaneo–Maxwell equation, using a fractional
derivative instead of the time derivative. This approach allows us to describe a wider
range of phenomena and gives a good description of oscillating behavior [1, 223,
285, 299].

In recent decades, the fractional calculus has been widely used, as indicated by
the many mathematical volumes dealing with this topic (e.g., Baleanu et al. [28],
Caponetto [53], Caputo [46], Diethelm [95], Hilfer [198], Jiao et al. [214], Kilbas et
al. [219], Kyriakova [222], Mainardi [248], McBride [259], Miller and Ross [264],
Petras [286], Samko et al. [295], Podlubny [287], Sabatier et al. [294], Torres and
Malinowska [309], Ying and Chen [327]), by the many meetings dedicated to it and
the plethora of articles appearing in mathematical (e.g., Kilbas and Marzan [218],
Heinsalu et al. [196], Luchko and Gorenflo [246]) and non-mathematical journals.

The use of derivative of fractional order has also spread into many other fields of
science besides mathematics and physics (e.g., Laskin [229], Naber [275], Baleanu et
al. [29], Zavada [328], Baleanu et al. [30], Caputo and Fabrizio [55]) such as biology
(e.g., Cesarone et al. [62], Caputo and Cametti [52]), economics (e.g., Caputo [54]),
demography (e.g., Jumarie [217]), geophysics (e.g., Iaffaldano [207]) and medicine
(e.g., El Sahed [99], Magin [247]). However, its somewhat cumbersome mathemat-
ical definition and the consequent complications in the solution of fractional order
differential equations have led to some difficulties.

23.2 Fractional Derivatives

In this section, the original Caputo fractional derivative is introduced, together with
certain new fractional derivative formulae without singularities in the kernel.

23.2.1 The Caputo Fractional Derivative

We begin with an argument which provides motivation for the formula, introduced
below [47].
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Let f (z) be analytic on an open subset O of the complex plane, where O includes
the real axis. Then, an immediate consequence of Cauchy’s Integral Formula, (B.1.2)
is

f (n)(z) =
n!
2πi

∮
C

f (z′)

(z′ − z)n+1
dz′

=
(n − 1)!

2πi

∮
C

f ′(z′)
(z′ − z)n

dz′,

where f (n)(z) is the nth derivative of f (z), while f ′(z) = f (1)(z). The contour C ⊂ O
includes the point z. Let us replace n by α ∈ R+. We take z to be on the real axis,
denoted by t, and the contour to be tightly around the branch cut joining the branch
point t to infinity. This step forces the exclusion of integrals with α ∈ (1,∞). The cut
is assumed to lie along the semi-infinite interval (−∞, t). The integration variable is
changed to τ. We have therefore

f (α)(t) =
Γ(α)
2πi

∮
C

f ′(τ)

|τ − t|αeiθ
dτ, (23.2.1)

where θ is the argument of the denominator, which varies as we move around the
contour, anti-clockwise. Below the cut, we have θ = −πα, while above the cut, it is
θ = πα. The quantity Γ(·) is the Gamma function, given for any β > 0, by

Γ(β) =
∫ ∞

0
rβ−1e−r dr. (23.2.2)

Thus,

f (α)(t) =
Γ(α) sin(πα)

π

∫ t

−∞

f ′(τ)
|τ − t|α dτ.

Using the standard formula

Γ(1 − z)Γ(z) =
π

sin(πz)
, (23.2.3)

relation (23.2.1) becomes

f (α)(t) =
1

Γ(1 − α)

∫ t

−∞

f ′(τ)
|τ − t|α dτ. (23.2.4)

The analyticity property assumed for f can be weakened but must ensure that the
derivative and integral in (23.2.4) exist.

The general form of the Caputo α fractional derivative, defined for any α ∈ (0, 1),
is given by

C
a D

α
t f (t) =

1
Γ(1 − α)

∫ t

a

f ′(τ)
(t − τ)α

dτ, (23.2.5)

where a ∈ (−∞, t), f ∈ H1(a, b), where b > t. We can take a = −∞, since if necessary
it is always possible to extend f to the interval (−∞, a) by the zero function. Thus,
we have
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C
−∞D

α
t f (t) =

1
Γ(1 − α)

∫ t

−∞

f ′(τ)
(t − τ)α

dτ = F(t), (23.2.6)

which agrees with the form (23.2.4). We assume that f (t) → 0, as t tends to −∞.
Now, (23.2.6) can be written as

F(t) =
α

Γ(1 − α)

∫ t

−∞

f (t) − f (τ)
(t − τ)1+α

dτ, (23.2.7)

or, by a change of variable,

F(t) = − α

Γ(1 − α)

∫ ∞

0

f (t − s) − f (t)
s1+α

ds, (23.2.8)

which are equivalent representations of the Caputo derivative. Thus, the definition
(23.2.5) may be rewritten as

C
−∞D

α
t f (t) =

α

Γ(1 − α)

∫ t

−∞

f (t) − f (τ)
(t − τ)1+α

dτ

= − α

Γ(1 − α)

∫ ∞

0

f (t − s) − f (t)
s1+α

ds.

(23.2.9)

Remark 23.2.1. As α tends to zero, we see from (23.2.6) that

C
−∞D

α
t f (t) → f (t). (23.2.10)

If α tends to 1, the integral in (23.2.5) diverges. However, there is a limit which gives
a finite value (as must be true, given the derivation of (23.2.4)). Before the limit
α → 1 is taken, let us reverse the shrinking of the contour described above, so that
the integral exists for all nonnegative powers of the denominator. In particular, as
α → 1, we have

C
−∞D

α
t f (t) = f ′(t). (23.2.11)

23.2.2 Fractional Derivatives Without Singular Kernels

We present a new definition of fractional derivative with a smooth kernel which takes
on two different representations for the temporal and spatial variables, respectively.
For the first, operating on time variables, it is natural to use the Laplace transform.
For the other representation, related to the spatial variables by a nonlocal fractional
derivative, it is more convenient to use the Fourier transform. The interest in this new
approach with a regular kernel in terms of spatial variables arose from the perception
that there is a class of nonlocal models, which have the ability to describe mate-
rial heterogeneities and fluctuations on different scales, which cannot be described
adequately by classical local theories or by fractional models with singular kernels.

The original definition of fractional derivative appears to be particularly conve-
nient for mechanical and electromagnetic phenomena involving plasticity, fatigue,
damage, and electromagnetic hysteresis. When these effects are not present it seems
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more appropriate to use the new temporal fractional derivative to describe, for exam-
ple, the behavior of classical viscoelastic materials, thermal media, and electromag-
netic systems.

The new nonlocal fractional derivative for spatial variables can describe mate-
rial heterogeneities and structures with different scales, which cannot be described
adequately by classical local theories.

23.2.2.1 A New Fractional Time Derivative
We refer to the usual Caputo fractional time derivative as UFDt. For order α, it is
given by (23.2.5), or in somewhat simplified notation, by

D(α)
t f (t) =

1
Γ(1 − α)

∫ t

a

f ′(τ)
(t − τ)α

dτ (23.2.12)

with α ∈ [0, 1] and a ∈ (−∞, t) , f ∈ H1(a, b), b > a. By replacing the kernel
(t − τ)−α with the function exp(− α

1−α (t − τ)) and 1
Γ(1−α) with M(α)

1−α , we obtain the
following definition of a new fractional time derivative, denoted by NFDt, and given
by the formula

D
(α)
t f (t) =

M(α)
1 − α

∫ t

a
f ′(τ) exp

[
−α(t − τ)

1 − α

]
dτ = N(t), (23.2.13)

where M(α) is a normalization coefficient with the property that M(0) = M(1) = 1.
According to the definition (23.2.13), the NFDt is zero when f (t) is constant, as is
the UFDt. However, in contrast to the UFDt, the kernel in (23.2.13) does not have a
singularity for t = τ.

The NFDt can also be applied to functions that do not belong to H1(a, b). Indeed,
the definition (23.2.13) can be formulated also for f ∈ L1(−∞, b) and for any α ∈
(0, 1), which can be seen by expressing (23.2.13) in the form

D
(α)
t f (t) =

αM(α)
(1 − α)2

∫ t

−∞
( f (t) − f (τ)) exp

[
−α(t − τ)

1 − α

]
dτ.

If we put

σ =
1 − α

α
∈ [0,∞] , α =

1
1 + σ

∈ (0, 1) ,

definition (23.2.13) of NFDt assumes the form

D̃
(σ)
t f (t) =

(1 + σ)M∗(σ)
σ

∫ t

a
f ′(τ) exp

[
− (t − τ)

σ

]
dτ, (23.2.14)

where σ ∈ (0,∞) and M∗(σ) is the corresponding normalization term to M(α), and
is such that M∗(0) = M∗(∞) = 1.

In the context of mechanical models discussed later, for a → −∞, the relation
(23.2.14) corresponds to a relaxation function given by

G(s) =
(1 + σ)M∗(σ)

σ
exp

[
− s
σ

]
,
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instead of that given by (23.1.1) for the Caputo fractional derivative. This describes
the well-known Maxwell material (for example [167]), which is a very simple model
of a viscoelastic fluid.

For α → 1, we have σ → 0. Also,

lim
σ→0

1 + σ
σ

exp

[
− (t − τ)

σ

]
= δ(t − τ).

Therefore (see [150] and [197]),

lim
α→1

D
(α)
t f (t) = lim

α→1

M(α)
1 − α

∫ t

a
f ′(τ) exp

[
−α(t − τ)

1 − α

]
dτ

(23.2.15)

= lim
σ→0

(1 + σ)M∗(σ)
σ

∫ t

a
f ′(τ) exp

[
− (t − τ)

σ

]
dτ = f ′(t).

Also, for α → 0 we have σ → +∞. Hence,

lim
α→0

D
(α)
t f (t) = lim

α→0

M(α)
1 − α

∫ t

a
f ′(τ) exp

[
−α(t − τ)

1 − α

]
dτ

(23.2.16)

= lim
σ→+∞

(1 + σ)M∗(σ)
σ

∫ t

a
f ′(τ) exp

[
− (t − τ)

σ

]
dτ = f (t) − f (a).

If f (a) = 0, then
lim
α→0

D
(α)
t f (t) = f (t). (23.2.17)

Thus, (23.2.15) and (23.2.17) indicate that for α = 0 and 1, the NFDt behaves as
expected in the integer limit.

Simulations comparing the UFDt and NFDt for particular choices of f (·) were
described in [56]. These suggested that for α = 0.66 the classical NFDt is very
similar to the UFDt. However, for models with α close to 0, we see different behavior.
For α = 0.1 differences between NFDt and UFDt become apparent. In particular
the classical UFDt is more affected by past history than NFDt, which exhibits rapid
stabilization.

For integer n where n ≥ 1, and α ∈ [0, 1] the fractional time derivative D(α+n)
t f (t)

of order (n + α) is defined by

D
(α+n)
t f (t) := D

(α)
t (D(n)

t f (t)). (23.2.18)

Theorem 23.2.1. If the function f (t) is such that

f (s)(a) = 0, s = 1, 2, . . . , n,

then we have
D

(n)
t (D(α)

t f (t)) = D
(α)
t (D(n)

t f (t)).
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Proof. Consider the case n = 1. From definition (23.2.18) of D(α+1)
t f (t), we obtain

D
(α)
t

(
D

(1)
t f (t)

)
=

M(α)
1 − α

∫ t

a
f ′′(τ) exp

[
−α(t − τ)

1 − α

]
dτ.

By means of an integration by parts, using the property f ′(a) = 0, we obtain

D
(α)
t

(
D

(1)
t f (t)

)
=

M(α)
(1 − α)

∫ t

a

(
d
dτ

f ′(τ)

)
exp−

[
α(t − τ)
1 − α

]
dτ

=
M(α)

(1 − α)

[∫ t

a

d
dτ

{
f ′(τ) exp

[
−α(t − τ)

1 − α

]}
dτ

− α

1 − α

∫ t

a
f ′(τ) exp

[
−α(t − τ)

1 − α

]
dτ

]

=
M(α)

(1 − α)

[
f ′(t) − α

1 − α

∫ t

a
f ′(τ) exp

[
−α(t − τ)

1 − α

]
dτ

]
.

Also,

D
(1)
t (D(α)

t f (t)) =
d
dt

{
M(α)
1 − α

∫ t

a
f ′(τ) exp

[
−α(t − τ)

1 − α

]
dτ

}

=
M(α)
1 − α

[
f ′(t) − α

1 − α

∫ t

a
f ′(τ) exp

[
−α(t − τ)

1 − α

]
dτ

]
.

It is easy to generalize the proof for any n > 1. �

The property asserted in Theorem 23.2.1 is implied by the notation on the left of
(23.2.18). Also, note that (23.2.18), together with (23.2.15) and (23.2.16) yield that

lim
α→0

D
(α+n)
t f (t) = f (n)(t), lim

α→1
D

(α+n)
t f (t) = f (n+1)(t),

which, again, is expected behavior for a non-integer derivative.
In the following, we suppose the function M(α) = 1. We can rewrite the definition

(23.2.14) in the form

D̃
(ν)
t f (t) = V(ν)

∫ t

a
f ′(τ) exp[−ν(t − τ)]dτ (23.2.19)

obtained from (23.2.13) or (23.2.14) with ν = 1/σ > 0, where V(ν) = (ν+1)M∗(1/ν).
Then, we have the following theorem.

Theorem 23.2.2. If the function f ∈ W1,1(a, b), then the integral in (23.2.19) exists
for t ∈ [a, b] and D̃

(ν)
t f (t) ∈ L1 [a, b] .

Proof. Let us write
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D̃
(ν)
t f (t) = V(ν)

∫ t

a
f ′(τ) exp[−ν(t − τ)]dτ =

(23.2.20)

= V(ν)
∫ ∞

−∞
pν(t − s)q(s)ds,

where pν(y) = exp(−vy), when 0 < y < b − a, with pν(y) = 0 when y < 0 or
y > b − a. Also, q(y) = f ′(y) when a ≤ y ≤ b. Finally, q(y) = 0 when y < a or y > b.
Hence, under the hypotheses of the theorem, the functions pν, q ∈ L1(a, b). Then, by
the classical results on Lebesgue integrals (see [326]), the integral (23.2.19) exists
almost everywhere in t ∈ [a, b] and D̃

(ν)
t f (t) ∈ L1 [a, b].

The definition (23.2.19) can be generalized by choosing pν in (23.2.20) to be any
function with the properties assigned to the exponential kernel in Theorem 23.2.2,
where pν(0) is a finite number, chosen for convenience to be unity. This latter prop-
erty ensures that it constitutes a non-singular kernel. It can be shown without diffi-
culty that Theorem 23.2.1 also applies to the generalized definition.

23.2.2.2 Some Results for Given Histories

It is of interest to see the fractional derivatives of elementary functions according to
the new definition (23.2.13). We begin with sinωt and cosωt. It is convenient to first
consider f (t) = exp(iωt), which combined both of these. In fact, we have

D
(α)
t exp(iωt) = D

(α)
t (cosωt) + iD(α)

t (sinωt),

and

D
(α)
t exp(iωt) = iωE(α)

∫ t

0
exp(−ν(t − s) + iωs)ds

=
iωE(α)
iω + ν

[exp(iωt) − exp(−νt)]

= iωE(α)
(cosωt + i sinωt − exp(−νt))(ν − iω)

ν2 + ω2
,

ν =
α

1 − α
,

where E(α) = M(α)
1 − α

. We have, from these relations that

D
(α)
t (sinωt) =

E(α)ω

ν2 + ω2
[ν cosωt + ω sinωt − ν exp(−νt)]

=
E(α)ω

ν2 + ω2
[
√
ν2 + ω2 sin(ωt + λ) − ν exp(−νt)]

= E(α) cos λ[sin(ωt + λ) − sin λ exp(−νt)],

where λ is such that
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tan λ =
ν

ω
, sin λ =

ν
√
ν2 + ω2

, cos λ =
ω

√
ν2 + ω2

.

Thus, the new derivative of sinωt yields a change of phase by amount λ, while the
amplitude becomes

E(α) cos λ =
ωE(α)
√
ν2 + ω2

.

Also,
D

(α)
t (cosωt) = E(α) cos λ[cos(ωt + λ) − cos λ exp(−νt)],

which also exhibits a phase change and the same amplitude variation noted for the
case of sinωt.

The new derivative, for an exponential history, has the form

D
(α)
t (expωt) =

E(α)ω
ν + ω

{
exp(ωt) − exp(−νt)}

=
E(α)ω
ν + ω

exp(ωt)
{
1 − exp[−(ω + νt)]

}
.

Finally, for a linear history, defined by

f (t) =

⎧⎪⎪⎨⎪⎪⎩
t, t ≥ 0,

0, t < 0,

we obtain

D
(α)
t t =

M(α)
1 − α

∫ t

0
exp(−ν(t − s))ds

=
M(α)
α

[1 − exp(−νt)], 0 < α ≤ 1.

23.2.2.3 The Laplace Transform of the NFDt

The Laplace transform of the NFDt, defined by Eq. (23.2.13), will be of interest. We
have

NL(p) =
∫ ∞

0
exp(−pt)Dα

t f (t)dt =
∫ ∞

0
exp(−pt)N(t)dt,

N(n)
L (p) =

∫ ∞

0
exp(−pt)Dα+n

t f (t)(t)dt =
∫ ∞

0
exp(−pt)N(n)(t)dt.

One can show that
∫ ∞

0
exp(−pt) f ′(t)dt = [ f ′L](p) = p fL(p) − f (0),

∫ ∞

0
exp(−pt) exp

[
− αt

1 − α

]
dt =

1 − α

p + α(1 − p)
.

Because of the convolution form of N(t) in (23.2.13), we have
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NL(p) = M(α)
p fL(p) − f (0)
p + α(1 − p)

. (23.2.21)

Similarly,

N(1)
L (p) = M(α)

p2 fL(p) − p f (0) − f ′(0)
p + α(1 − p)

,

and, more generally,

N(n)
L (p) = M(α)

pn+1 fL(p) − pn f (0) − pn−1 f
′
(0) . . . − f (n)(0)

p + α(1 − p)
.

23.2.2.4 Fractional Gradient Operator

We introduce a new concept of fractional gradient, which can describe nonlocal de-
pendence in constitutive equations [324, 325].

Let us consider a set Ω ∈ R3 and a scalar function u(·) : Ω → R. We define the
fractional gradient of order α ∈ [0, 1] as follows

∇(α)u(x) =
α

(1 − α)
√
πα

∫
Ω

∇u(y) exp

[
−α2(x − y)2

(1 − α)2

]
dy (23.2.22)

with x, y ∈ Ω. The nonlocal property of this fractional derivative relates to the inte-
gration of y over Ω. A rotationally invariant three-dimensional Normal (Gaussian)
distribution has been chosen to describe this nonlocality.

It is easy to prove from definition (23.2.22) that

∇(1)u(x) = ∇u(x),

using the relation

lim
α→1

α

(1 − α)
√
πα

exp

[
−α2(x − y)2

(1 − α)2

]
= δ(x − y).

Thus, when α = 1, ∇(α)u(x) loses the nonlocality property. Also, we clearly have

∇(0)u(x) = 0.

This fractional gradient is easily generalized to the case of a vector u(x), where
the gradient is assumed to exist on Ω. We define the fractional gradient of this vector
by

∇(α)u(x) =
α

(1 − α)
√
πα

∫
Ω

∇u(y) exp

[
−α2(x − y)2

(1 − α)2

]
dy.

Thus, a material with a nonlocal property may be described by fractional consti-
tutive equations. As an example we consider an elastic nonlocal material, defined by
the following constitutive equation between the stress tensor T and ∇(α)u(x)

T(x, t) = A∇(α)u(x, t) , α ∈ (0, 1] ,
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where A is a fourth order symmetric tensor. The nonlocal property is clear from the
detailed form

T(x, t) =
αA

(1 − α)
√
πα

∫
Ω

∇u(y) exp

[
−α2(x − y)2

(1 − α)2

]
dy.

Likewise, we can introduce the fractional divergence, defined for a smooth u(·) :
Ω → R3 by

∇(α) · u(x) =
α

(1 − α)
√
πα

∫
Ω

∇ · u(y) exp

[
−α2(x − y)2

(1 − α)2

]
dy. (23.2.23)

Theorem 23.2.3. From definitions (23.2.22) and (23.2.23), we have for any u(x) :
Ω → R, such that

∇u(x) · n|∂Ω = 0, (23.2.24)
the following identity

∇ · ∇(α)u(x) = ∇(α) · ∇u(x). (23.2.25)

Proof. Using (23.2.22), we obtain

∇ · ∇(α)u(x) =
α

(1 − α)
√
πα

∫
Ω

∇u(y) · ∇x exp

[
−α2(x − y)2

(1 − α)2

]
dy

= − α

(1 − α)
√
πα

∫
Ω

∇u(y) · ∇ exp

[
−α2(x − y)2

(1 − α)2

]
dy

=
α

(1 − α)
√
πα

∫
Ω

∇ · ∇u(y) exp

[
−α2(x − y)2

(1 − α)2

]
dy

− α

(1 − α)
√
πα

∫
∂Ω

∇u(y) · n exp

[
−α2(x − y)2

(1 − α)2

]
dy.

Hence, for the boundary condition (23.2.24), the identity (23.2.25) is proved, because

∇(α) · ∇u(x) =
α

(1 − α)
√
πα

∫
Ω

∇ · ∇u(y) exp

[
−α2(x − y)2

(1 − α)2

]
dy.

23.2.2.5 Fourier Transform of the Fractional Gradient and Divergence

For a smooth function u(x) : R3 → R, the Fourier transform of the fractional gradient
is defined by

(∇(α)u)F(ξ) =
∫
R3
∇(α)u(x) exp

[−iξ · x] dx.

This quantity is given by

(∇αu)F(ξ) =
α

(1 − α)
√
πα

(∫
R3
∇u(y) exp

[
−α2(x − y)2

(1 − α)2

]
dy

)
F

(ξ)

=
α

(1 − α)
√
πα

(∇u)F(ξ)

(
exp

[
− α2x2

(1 − α)2

])
F

(ξ),
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where the well-known formula for the Fourier transform of a convolution product
has been used. From

(
exp

[
− α2x2

(1 − α)2

])
F

(ξ) =
(1 − α)

√
π

α
exp

[
− (1 − α)2ξ2

4α2

]
,

we obtain

(∇αu)F(ξ) =
√
π1−α(∇u)F(ξ) exp

[
− (1 − α)2ξ2

4α2

]
.

The Fourier transform of fractional divergence is defined by

(∇α · u)F(ξ) =
α

(1 − α)
√
πα

(∫
Ω

∇ · u(y) exp

[
−α2(x − y)2

(1 − α)2

]
dy

)
F

(ξ),

from which we have

(∇α · u)F(ξ) =
√
π1−α (∇ · u)F (ξ) exp

[
− (1 − α)2ξ2

4α2

]
.

23.2.2.6 Fractional Laplacian

In the study of partial differential equations, the Laplacian is of considerable interest.
It is therefore of interest to determine the factional Laplacian. Based on the defini-
tions of fractional gradient and divergence, we suggest a representation of the frac-
tional Laplacian for a smooth function f (x): Ω → R3, such that ∇ f (x) · n|∂Ω = 0,
of the form

(∇2)α f (x) =
α

(1 − α)
√
πα

∫
Ω

∇ · ∇ f (y) exp

[
−α2(x − y)2

(1 − α)2

]
dy.

By the use of Theorem 23.2.3, we have

(∇2)α f (x) = ∇ · ∇α f (x) = ∇α · ∇ f (x).

Suppose that
f (x) = 0 on ∂Ω.

Then, we can extend the function f (x) to R3 by taking it to be zero on R3\Ω. This
allows us to consider the Fourier transform

(
(∇2)α f

)
F

(ξ) =
α

(1 − α)
√
πα

(∫
R3
∇2 f (y) exp

[
−α2(x − y)2

(1 − α)2

]
dy

)
F

(ξ)

=
α

(1 − α)
√
πα

(∇ · ∇ f )F(ξ)

(
exp

[
− α2x2

(1 − α)2

])
F

(ξ)

= 4π |ξ|2 fF(ξ)
√
π1−α exp

[
− (1 − α)2ξ2

4α2

]
.

(23.2.26)
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Finally, if α = 1 we obtain from (23.2.26)

(
∇2 f

)
F

(ξ) = lim
α→1

4π |ξ|2 fF(ξ)
√
π1−α exp

[
− (1 − α)2ξ2

α2

]

= 4π |ξ|2 fF(ξ).

23.2.2.7 Memory Operators

Fractional derivatives are memory operators which usually represent dissipation of
energy [128, 248, 287] or damage [55] in the medium, as in the case of anelastic
media or diffusion in porous media. In general, they are in agreement with the Second
Law of Thermodynamics [109, 128].

Their validity rests not only on the fact that they represent appropriately a variety
of phenomena, but also, in the case of the Caputo derivative, because they have the
“elegant and rigorous property” that when the order of differentiation is integer, they
coincide with the classic derivative of that order. However, this property is not rele-
vant to the effects they represent in physical phenomena. It may be that using other
differential operators, possibly simpler but without this property, one may obtain the
same results as for Caputo fractional derivatives.

The effects of the fractional memory formalism for the new fractional derivative
(NFDt), compared with the Caputo derivative (UFDt) on a linear trend are presented
in [56].

A distributed order fractional memory operator may be introduced, which is sim-
pler and easier to handle than the Caputo derivative [326]. It is defined by

aPb f (t) =
∫ b

a
g(α)D(α)

t f (t)dα

=

∫ b

a
g(α)

∫ t

0
exp(− α

1 − α
(t − τ)) f ′(τ)dτdα,

(23.2.27)

where g(α) is a weight function and 0 < a < b < 1. We now take the Laplace trans-
form of (23.2.27). Following the method of Caputo [45, 46, 56], one may interchange
the order of integration of α and t. Thus, we obtain

(aPb f (t))L (p) =
∫ ∞

0

∫ b

a

[
g(α)D(α)

t f (t)
]

exp(−pt)dαdt

=

∫ ∞

0

∫ b

a

[
g(α)

∫ t

0
exp(− α

1 − α
(t − τ)) f ′(τ)dτ

]
exp(−pt)dαdt

=

∫ b

a

{∫ ∞

0

[∫ t

0
exp(− α

1 − α
(t − τ)) f ′(τ)dτ

]
exp(−pt)dt

}
g(α)dα.

By virtue of the convolution form of the integral over τ, we have, as in (23.2.21),

(aPb f )L(p) =
r(p)F(p)

p

∫ b

a

g(α)(1 − α)
r(p) + α

dα,

F(p) = p fL(p) − f (0), r(p) =
p

1 − p
,
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which represents the filtering properties of the operator and is simpler than that ob-
tained using the Caputo derivative.

As an example we may consider the simple case g(α) = 1, which gives

(aPb f )L (p) =
r(p)
p

F(p)
∫ b

a

1 − α

α + r(p)
dα (23.2.28)

=
r(p)
p

F(p)

[∫ b

a

1
α + r(p)

dα −
∫ b

a

α

α + r(p)
dα

]
.

This can be written as follow

(aPb f )L (p) =
1

1 − p
F(p)

{
1

1 − p
log

b + r(p)
a + r(p)

− (b − a)

}

= F(p)

{
1

(1 − p)2
log

b + r(p)
a + r(p)

− 1
1 − p

(b − a)

}
.

23.3 The Fractional Derivative Memory Model

Fractional derivatives and their connection with power law relaxation functions are
now discussed. Constraints imposed by thermodynamics are derived, and the Graffi–
Volterra free energy for fractional derivative models is introduced.

23.3.1 Power Laws and Fractional Derivatives

Let us assume that the viscoelastic memory kernel or relaxation function �(s) is
given by the power law form (23.1.1)

�(s) =
�

Γ(1 − α)sα
, α ∈ (0, 1), (23.3.1)

where Γ(·) is the gamma function and � is a fourth order tensor. Relaxation functions
of this type are discussed briefly in [167, page 32], where references to older works
are given. We have

�(∞) = �∞ = 0, lim
s→0
�(s) = �0 = ∞. (23.3.2)

The property �∞ = 0 in the classical Volterra theory corresponds to that for vis-
coelastic fluids. In the fractional model though the kernel (23.3.1) is not L1(0,∞), we
will see (Remark 23.3.1 below) that this is true for values of α close to 1. However,
for solid viscoelastic materials, some experimental observations are in approximate
agreement with predictions based on (23.3.1) [167, 280, 293, 296], notably the prop-
erty that the loss angle [167] is independent of frequency, as indicated by (23.5.2)
below.

It follows from (23.3.1) that
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�′(s) = − α�

Γ(1 − α)s1+α
. (23.3.3)

The creep function for materials characterized by (23.3.1) or (23.3.3) also has a
power law form [167].

Observe from (23.3.1) that there are no dimensional parameters in the theory,
other than the overall coefficient � and the time dimensional quantity s. This implies
that various quantities can be simply determined to within a multiplying constant, by
means of dimensional analysis.

It is in fact advisable to introduce an extra parameter ξ with the dimension of
time. This can usually be absorbed into � or η, if the parameter α is no being explic-
itly varied. For solids, we put

� = �1ξ
α, (23.3.4)

so that �1 has dimensions of stress. For fluids, we have

η = η1ξ
α,

where η1 has dimensions of stress.
The use of the Caputo fractional derivative, defined for any α ∈ (0, 1) by any

of the forms (23.2.6)–(23.2.9), is equivalent to adopting (23.3.1) as the relaxation
function of the material. This model may be applied to both fluids and solids.

We follow here the classical papers [249] on fractional derivatives in defining the
constitutive equation of viscoelasticity by

T(x, t) =
�(x)

Γ(1 − α)

∫ t

a

Ė(x, τ)
(t − τ)α

dτ. (23.3.5)

Let us take a = −∞, since if necessary it is always possible to extend E to the interval
(−∞, a) by the null tensor. Thus, (23.3.5) can be written as

T(x, t) =
α�(x)

Γ(1 − α)

∫ t

−∞

E(x, t) − E(x, τ)
(t − τ)1+α

dτ, (23.3.6)

or, by a change of variable,

T(x, t) = − α�(x)
Γ(1 − α)

∫ ∞

0

Et
r(x, s)
s1+α

ds, (23.3.7)

which are equivalent representations of the Caputo derivative. Using the notation of
Sect. 23.2.1, relations (23.3.5)–(23.3.7) may be put in the form

T(x, t) = C
−∞D

α
t [�(x)E(x, t)]. (23.3.8)

The constitutive equations (23.3.6) or (23.3.7) allow us to define the domain of
definition of these functionals by a fractional Sobolev space, now called a Gagliardo
space [142], defined for any x ∈ Ω,
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Wα,1(−∞,∞)

=

{
E(t) ∈ L1(−∞,∞) ,

E(t) − E(τ)
(t − τ)1+α

∈ L1((−∞, t) × (−∞,∞))

}
,

with norm given by

‖E‖Wα,1
(−∞,∞)

=

(∫ ∞

0
|E(t)| dt +

∫ ∞

−∞

α

Γ(1 − α)

∫ t

−∞

|E(x, t) − E(x, τ)|
(t − τ)1+α

dτ dt

)
.

In this framework, the constitutive equation of an incompressible viscoelastic
fluid is entirely analogous to (23.3.5), (23.3.6) or (23.3.7), with the formal difference
that instead of the tensor C(x), we now have a scalar constant η, which is related to
the viscosity of the fluid. So, the constitutive functional is given by the stress

T(x, t) = −p(x, t)I + TE(x, t),

where p denotes the pressure and TE the extra-stress defined by

TE(x, t) =
2η

Γ(1 − α)

∫ t

−∞

Ė(x, τ)
(t − τ)α

dτ

=
η

Γ(1 − α)

∫ t

−∞

∇v(x, τ) + (∇v(x, τ))T

(t − τ)α
dτ,

(23.3.9)

where v is the fluid velocity. Alternative forms are given by

TE(x, t) =
2αη

Γ(1 − α)

∫ t

−∞

E(x, t) − E(x, τ)
(t − τ)1+α

dτ = − 2αη
Γ(1 − α)

∫ ∞

0

Et
r(x, s)
s1+α

ds.

(23.3.10)

Remark 23.3.1. Note that when α is close to 0, the model well represents a viscoelas-
tic solid. When α is close to 1, we have a viscoelastic fluid. These features of the
model are implied by the (23.3.8), in view of the properties of the Caputo fractional
derivative given by (23.2.10) and (23.2.11), leading to

T(x, t) =

⎧⎪⎪⎨⎪⎪⎩
�1(x)E(x, t) solids,

ξη1(x)Ė(x, t) fluids,

where we have used (23.3.4).

Remark 23.3.2. Another important feature of a solid is the existence of only one null
strain E0 (or reference configuration) such that the space of histories is a subset of

Gt
S =

{
Et(·) : [0,∞) → S ym(R3); Et ∈ L1(0,∞); lim

s→∞
Et(s) = E0

}
,

where, from (23.3.5) or (23.3.6), if Et(s) = E0 we have T(Et(s)) = 0.
For a fluid, the set of histories belongs to

Gt
F =

{
Et(·) : [0,∞) → S ym(R3); Et ∈ L1(0,∞)

}
.
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The main difference between the Volterra and fractional derivative models, is
evident in the study of solid materials, if we examine stress behavior for t → ∞.
Indeed, in the context of the Volterra theory, if the system is subject to a constant
strain E0, then stress will tend to G∞E0. This can be proved by assuming a constant
strain E0(x) for t > t0, so that the following limit is obtained

lim
t→∞

T(x, t) = �∞(x)E0(x)

+ lim
t→∞

∫ ∞

t−t0
�′(x, s)(E(x, t − s) − E0(x))ds

= �∞(x)E0(x), t > t0.

(23.3.11)

On the other hand, in the fractional theory we find that the stress will go to zero.
Indeed,

lim
t→∞

α�(x)
Γ(1 − α)

∫ t0

−∞

E0(x) − E(x, τ)
(t − τ)1+α

dτ = 0, t > t0.

In this case, the material undergoes a kind of plastic deformation [49].

Remark 23.3.3. It is interesting to observe that Volterra sought to describe properties
related to dislocation phenomena in terms of memory effects. However, it is now
known that the model with the standard constitutive relation ((8.1.5), for example) is
not capable of describing plastic effects produced by dislocations.

23.4 Thermodynamical Constraints and Free Energies

The issue of compatibility of fractional derivative models with thermodynamics is
explored in this section. Only isothermal processes will be considered, so that the
Second Law of Thermodynamics reduces to the Dissipation Principle

ρ(x)ψ̇(x, t) ≤ T(x, t) · Ė(x, t), (23.4.1)

where ψ denotes a free energy and ρ is the mass density. This is equivalent to property
P3 given by (16.1.28). We have from (23.4.1) that on any cyclic process of period
T = 2π/ω with ω ∈ R++,

∫ T

0
T(x, t) · Ė(x, t) dt ≥ 0. (23.4.2)

In particular, for periodic strain processes of the form

E(x, t) = E1(x) cosωt + E2(x) sinωt,

it follows from (23.4.2) (see [108, 124]) that for all E1,E2 ∈ S ym(V),
∫ ∞

0

(
E1 ·

�

s1+α
E1 + E2 ·

�

s1+α
E2

)
sinωs ds

+

∫ ∞

0
E1 ·
� − �T

s1+α
E2 cosωs ds ≤ 0 , for all ω ∈ R+.

(23.4.3)
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The second term can vary arbitrarily in sign and magnitude for different choices of
E1 and E2, so that it can be concluded that the fourth order tensor � is symmetric.
Also, in the first term, the quantity E · �E must have a definite signature for the
inequality to be obeyed in a simple manner. We choose E · �E ≥ 0 so that � is at
least positive semidefinite. Thus, the condition (23.4.3) becomes

∫ ∞

0

1
s1+α

sinωs ds ≤ 0 for all ω ∈ R+. (23.4.4)

Remark 23.4.1. For a fluid defined by (23.3.10), we obtain from the second law the
same inequality (23.4.4). Alternatively, if (23.3.9) is used, the equivalent condition
emerges ∫ ∞

0

1
sα

cosωs ds ≥ 0 f or all ω ∈ R. (23.4.5)

We observe that (23.4.5) has the form (16.1.12) for the case of a fractional deriva-
tive relaxation function. It will be confirmed that this property is actually true in
Remark 23.5.1.

23.4.1 The Graffi–Volterra Free Energy

We now consider a particular free energy within fractional derivative theory. Let us
first take the case of a solid, described by Eq. (23.3.7). This functional is denoted by
ψS . Any free energy functional must satisfy the inequality (23.4.1). Thus, we must
have

ρ(x)ψ̇S (x, t) ≤ T(x, t) · Ė(x, t). (23.4.6)

For simplicity, let us take the �(x) to be a scalar quantity C(x). Using the identity

d
dt
E(x, t) = − d

ds
Et
r(x, s) −

d
dt
Et
r(x, s),

we have

T(x, t) · Ė(x, t) = − αC(x)
Γ(1 − α)

∫ ∞

0

Et
r(x, s)
s1+α

ds · Ė(x, t)

=
αC(x)

Γ(1 − α)

∫ ∞

0

Et
r(x, s)
s1+α

· d
dt
Et
r(x, s))ds

+
αC(x)

Γ(1 − α)

∫ ∞

0

Et
r(x, s)

s1+α
· d
ds

Et
r(x, s)ds.

(23.4.7)

Let us assume that ψS (x, t) is given by

ψS (x, t) =
αC(x)

2ρ(x)Γ(1 − α)

∫ ∞

0

|Et
r(x, s)|2

s1+α
ds. (23.4.8)

This is the Graffi–Volterra free energy for fractional derivative models. It is discussed
in a more general context in Sects. 17.3.1 and 10.1.1, where it is shown to be the only
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free energy that is a single-integral quadratic form. The inequality (23.4.6) is satisfied
because by (23.4.7) we obtain

ρ(x)ψ̇S (x, t) = T(x, t) · Ė(x, t) − αC(x)
2Γ(1 − α)

∫ ∞

0

d
ds |E

t
r(x, s))|2

s1+α
ds

= T(x, t) · Ė(x, t) − αC(x)(1 + α)
2Γ(1 − α)

∫ ∞

0

|Et
r(x, s)|2

s2+α
ds.

Hence
ρ(x)ψ̇S (x, t) = T(x, t) · Ė(x, t) − D(x, t), (23.4.9)

where D(x, t) ≥ 0 denotes the rate of dissipation, given by

D(x, t) =
αC(x)(1 + α)

2Γ(1 − α)

∫ ∞

0

|Et
r(x, s)|2

s2+α
ds. (23.4.10)

The set of histories Ht
S available with this model is defined by

Ht
S =

{
Et : [0,∞) → S ym(V); ψS (E(t),Et(·)) < ∞

}
.

For a viscoelastic fluid, we use the constitutive Eq. (23.3.10), which is more con-
venient than (23.3.9). This gives

TE(x, t) · Ė(x, t) =
2αη

Γ(1 − α)

∫ t

−∞

E(x, t) − E(x, τ)
(t − τ)1+α

dτ · Ė(x, t)

=
2αη

Γ(1 − α)

∫ t

−∞

E(x, t) − E(x, τ)

(t − τ)1+α
· d
dt

(E(x, t) − E(x, τ))dτ

=
αη

Γ(1 − α)

[
d
dt

∫ t

−∞

|E(x, t) − E(x, τ)|2

(t − τ)1+α
dτ

−(1 + α)
∫ t

−∞

|E(x, t) − E(x, τ)|2

(t − τ)2+α
dτ

]
.

The Graffi–Volterra for fluids is given in this case by

ψF(x, t) =
αη

ρ(x)Γ(1 − α)

∫ t

−∞

|E(x, t) − E(x, τ)|2

(t − τ)1+α
dτ

or, using the variable s = t − τ, the equivalent form

ψF(x, t)) =
αη

ρ(x)Γ(1 − α)

∫ ∞

0

|(Et
r(x, s)|2

s1+α
ds.

Of course, it has a similar form to (23.4.8) for solids. We may define the set of
histories Ht

F available with this model by

Ht
F =

{
Et : [0,∞) → S ym(V); ψF(E(t),Et(·)) < ∞

}
.



538 23 Fractional Derivative Models of Materials with Memory

The rate of dissipation D(x, t) is given by

D(x, t) =
αη(1 + α)
Γ(1 − α)

∫ t

−∞

|E(x, t) − E(x, τ)|2

(t − τ)2+α
dτ ≥ 0,

or

D(x, t) =
αη(1 + α)
Γ(1 − α)

∫ ∞

0

|Et
r(x, s)|2

s2+α
ds ≥ 0.

23.5 Frequency-Domain Quantities for Scalar Fractional
Derivative Materials

In the next two sections, we deal, for simplicity, with the scalar theory, for which the
relaxation function and strain history are scalar quantities. Also, we generally omit
the space variable x.

23.5.1 Complex Modulus for the Fractional Derivative Model

It follows from (23.3.3) and (16.1.7)2 that the quantity G′
+(ω) does not exist for

fractional derivative forms, while G̃+(ω), given by (16.1.7)1, is finite. Therefore, the
complex modulus, defined by (16.1.9)2, is finite. Recalling (23.3.1) and (23.3.2), we
see that it is given by

M(ω) = iω
∫ ∞

0
G(s)e−iωsds = iω

k
Γ(1 − α)

∫ ∞

0
s−αe−iωsds,

where the coefficient k corresponds to � (orC) and η in Sect. 23.3. From dimensional
analysis, we can determine that

M(ω) = k cωα,

where c is a dimensionless constant to be determined. Putting z = iω and rotating
it to a point on the positive real axis, the integral can be evaluated in terms of the
Gamma function. Rotating back, we find that ([167, page 33])

M(ω) = iωG+(ω) = k cωα ∀ω ≥ 0, c = exp
(
i
απ

2

)
.

The real and imaginary parts of M(ω) have the form

M1(ω) = ωGs(ω) = kωα cos
(
απ

2

)
,

M2(ω) = ωGc(ω) = kωα sin
(
απ

2

)
∀ω ≥ 0.

(23.5.1)

Remark 23.5.1. The positivity of Gc(ω) is clear from (23.5.1), for ω ∈ R+ and there-
fore for all real ω. This confirms the thermodynamic constraint (16.1.12)1.
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The loss angle γ, defined by the relationship

M2(ω)
M1(ω)

= tan γ,

is given by

γ =
απ

2
, (23.5.2)

which is independent of ω, as noted earlier.
It is apparent from (23.5.1) that the only singularity inG+(ω) is a branch cut from

the origin to infinity. Thus, minimal states for power law materials are singletons, in
accordance with Proposition 16.5.2. The branch cut must lie in Ω+. Apart from this
constraint, we can choose it to be in any direction. Each choice yields a different
function. We choose it to be along the positive imaginary axis. An expression for the
minimum free energy of this material is derived in Chap. 14. Thus, we can reach the
negative real axis, without crossing singularities, by a rotation e−iπ of ω. This gives

M(−ω) = −iωG+(−ω) = k|ω|α exp
(
−iαπ

2

)
= M(ω), ∀ω ≥ 0, (23.5.3)

which has a branch cut along the negative imaginary axis.
From (16.1.21)4, we see that the frequency-domain version of the constitutive

relation has the form

T (t) =
1

2π

∫ ∞

−∞
M(ω)Et

r+(ω)dω

=
k

2π

∫ ∞

0
e
−iαπ

2 ωαEt
r+(ω)dω +

k
2π

∫ 0

−∞
e
i
απ

2 (−ω)αEt
r+(ω)dω

= −k sin(απ)
π

∫ ∞

0
rαEt

r+(−ir)dr.

(23.5.4)

The last forms are obtained by moving the contour to closely surround the cut on
the negative imaginary axis. The first term of (23.5.4)2 becomes the integral over
[0,−i∞) on the right side of the negative imaginary axis, while in the second term
becomes the integral over (−i∞, 0] on the left side. Relation (16.1.17) has been in-
voked in writing the last equation.

Using (16.1.13), (23.5.1)2 and (23.5.3), we deduce that the function H is defined
over R by

H(ω) = a|ω|α + 1, ∀ω ∈ R, where a = k sin
(
απ

2

)
. (23.5.5)

Using (16.1.23)1, we can write T (t) in the form
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T (t) =
1
πi

∫ ∞

−∞

H(ω)
ω

Et
r+(ω)dω

=
a
πi

∫ ∞

0
ωαEt

r+(ω)dω − a
πi

∫ 0

−∞
(−ω)αEt

r+(ω)dω

= −k sin(απ)
π

∫ ∞

0
rαEt

r+(−ir)dr = k
sin(απ)

π

∫ ∞

0
rα − 1Ėt

+(−ir)dr.

(23.5.6)

The penultimate form is obtained by transforming the integrals according to the
changes described in relation to (23.5.4), while the final form uses (16.1.17).

23.5.2 The Work Function for Fractional Derivative Materials

Relation (17.3.19) for the work function becomes

W(t) =
k

2Γ(1 − α)

∫ ∞

0

∫ ∞

0

Ėt(s)Ėt(u)

|s − u|α
duds,

which involves an integrable singularity. Using (23.5.5), relations (17.3.19) become

W(t) =
1

2π

∫ ∞

−∞

H(ω)

ω2
|Ėt
+(ω)|2 dω =

1
2π

∫ ∞

−∞
H(ω)|Et

r+(ω)|2dω

=
a

2π

∫ ∞

−∞
|ω|α − 1|Ėt

+(ω)|2 dω =
a

2π

∫ ∞

−∞
|ω|α + 1|Et

r+(ω)|2dω.
(23.5.7)

The basic property Ẇ(t) = T (t)Ė(t) can be shown using (23.5.6)1, (23.5.7), (16.1.18)2

and the evenness of H(ω).

23.6 The Minimum Free Energy for Fractional Derivative Models

We now derive the form for the minimum free energy and the corresponding rate of
dissipation for fractional derivative materials. These are for general histories. Simple
explicit formulae are also given for sinusoidal and exponential histories. The deriva-
tions are for the scalar case.

23.6.1 General Form of the Minimum Free Energy

The factors H±(ω) of H(ω) have the form

H+(ω) =
√
aωηeiλ(ω),

H−(ω) =
√
aωηe−iλ(ω), η =

α + 1
2

∈ (
1
2
, 1),

(23.6.1)

for ω > 0. The phase λ(ω) remains to be determined. On the complex plane, H±(ω)
are analytic continuations of these quantities, except at their singularities, which are
now described.
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The singularities of H+(ω) are chosen to be along the positive imaginary axis,
similarly to G+(ω) as described before (23.5.3). Then H−(ω) is the complex conju-
gate of this function with singularities consisting of a branch cut along the negative
imaginary axis.

If we had chosen different straight line branch cuts, the resulting factors would
differ from those we determine here by a constant phase factor. This can be seen
from (23.6.1) by considering a transformed complex plane with typical point ω1 =

ω exp(iδ), where δ is a constant. It is relevant that λ(ω) is later shown to be indepen-
dent of ω. The phase factor δ would not affect the resulting formula for the minimum
free energy.

The branch cuts described are simple consequences of the factors ωη in (23.6.1).
The product of H±(ω) will lead to branch cuts in H(ω). The factors of H(ω) obey the
following relationships, for general complex ω:

H±(ω) = H±(ω) = H∓(ω) = H±(−ω),

from which it follows that H+(ω) (H−(ω)) must be real on the negative (positive)
imaginary axis; indeed, this property applies to any point on the imaginary axis where
these factors exist. Thus,

λ(re
i
π

2 ) = λ(re
−iπ

2 ) =
πη

2
. (23.6.2)

The discontinuity in H−(ω) across the branch cut along the imaginary axis is given
by the discontinuity in

H−(ω) =
H(ω)
H+(ω)

, H+(re
−iπ

2 ) =
√
arη.

Thus, the discontinuity is determined by H(ω), divided by a real quantity of the form
H+(r exp(−iπ2 )). Therefore, the singularities in H−(ω) are determined by those in
H(ω). Similar observations apply to the singularities of H+(ω).

Proposition 23.6.1. The phase λ(ω) is independent of ω.

Proof. The phase factors e±iλ(ω) are continued analytically to the whole complex
plane. By the argument just outlined, they cannot contribute new singularities over
and above those determined by H(ω), which is independent of λ(ω). Thus, we con-
clude that the phase factors will yield no singularities and must therefore be entire
functions. However, this means either that they contribute essential singularities at
infinity, which must be excluded in the same way as singularities on the finite plane,
or they are constant. Therefore, the quantity λ is independent of ω. �

The factorization (16.1.14) clearly allows us to replace H±(ω) by −H±(ω).
For ω ∈ R++, we have

H+(ω) =
√
aωη eiλ,

H−(ω) =
√
aωη e−iλ,

(23.6.3)
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where, from (23.6.2),

λ =
πη

2
. (23.6.4)

We put
ω = reiθ

so that θ = arg(ω). The behavior of H+(ω) as ω approaches the positive imaginary
axis from the first and second quadrants, respectively, are given by

H+(ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

√
a rη e

i
π(α + 1)

4
+ iλ

, 1st quadrant, θ = π
2 ,

√
a rη e

−3i
π(α + 1)

4
+ iλ

, 2nd quadrant, θ = −3π
2 .

(23.6.5)

Similarly, the behavior of H−(ω) as it approaches the negative imaginary axis from
the fourth and third quadrants, respectively, are given by

H−(ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

√
a rη e

−iπ(α + 1)
4

− iλ
, 4th quadrant, θ = −π

2 ,

√
a rη e

3i
π(α + 1)

4
− iλ

, 3rd quadrant, θ = 3π
2 .

(23.6.6)

In the light of (23.6.4), the limiting values (23.6.5) and (23.6.6) reduce to

H+(ω) =

⎧⎪⎪⎨⎪⎪⎩
√
a rη e2iλ, 1st quadrant, θ = π

2 ,√
a rη e−2iλ, 2nd quadrant, θ = −3π

2 ,

and

H−(ω) =

⎧⎪⎪⎨⎪⎪⎩
√
a rη e−2iλ, 4th quadrant, θ = −π

2 ,√
a rη e2iλ, 3rd quadrant, θ = 3π

2 .

Let us use (23.6.3) to extend H±(ω) to ω ∈ R. We take θ = −π to obtain H+(ω), and
θ = π for H−(ω). This gives, for ω < 0,

H+(ω) =
√
a rη e−iηπ + iλ =

√
a|ω|ηe−iλ,

H−(ω) =
√
a rη eiηπ − iλ =

√
a|ω|ηeiλ.

(23.6.7)

These formulae are consistent with (22.1.8). Note that on multiplying the factors in
(23.6.3) and (23.6.7) together, we obtain (23.5.5) for ω ∈ R.

The quantity pt−(ω) has the form

pt−(ω) =

√
a

2πi
e−iλ

∫ ∞

0

ω
η
1 E

t
r+(ω1)

ω1 − ω+
dω1

+

√
a

2πi
eiλ

∫ 0

−∞

(−ω1)ηEt
r+(ω1)

ω1 − ω+
dω1,
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on using (23.6.3) and (23.6.7). The singularities of Et
r+(ω) are in �(+). Recalling the

position of the cut in H−(ω), we see that the integrations over the real axis can be
moved into the lower half-plane to closely surround the branch cut, yielding

pt−(ω) =

√
a

2πi

∫ ∞

0

r
η
1 E

t
r+(−ir1)

r1 − iω

(
e−2iλ − e2iλ

)
dr1

= −
√
a sin 2λ
π

∫ ∞

0

r
η
1 E

t
r+(−ir1)

r1 − iω
dr1,

where Et
r+(−ir1) is a real quantity given by

Et
r+(−ir1) =

∫ ∞

0
Et
r(u)e−r1udu. (23.6.8)

Using

ψm(t) =
1

2π

∫ ∞

−∞
|pt−(ω)|2dω

and Cauchy’s integral formula, we obtain

ψm(t) = κ

∫ ∞

0

∫ ∞

0

(r1r2)ηEt
r+(−ir1)Et

r+(−ir2)
r1 + r2

dr1dr2

= κ

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

(r1r2)ηEt
r(u)Et

r(v)e−r1u − r2v

r1 + r2
dr1dr2dudv,

κ =
a

π2
sin2

[
π

2
(α + 1)

]
=

k

π2
sin

απ

2
cos2 απ

2
.

(23.6.9)

Using (16.1.17), we can also write (23.6.9) in the form

ψm(t) = κ

∫ ∞

0

∫ ∞

0

(r1r2)η − 1Ėt
+(−ir1)Ėt

+(−ir2)
r1 + r2

dr1dr2

= κ

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

(r1r2)η − 1Ėt(u)Ėt(v)e−r1u − r2v

r1 + r2
dr1dr2dudv.

(23.6.10)
The quantity η is defined by (23.6.1)3.

The minimum free energy may be written in the form (see (11.9.14))

ψm(t) =
1
2

∫ ∞

0

∫ ∞

0
Ėt(s)Gm(s, u)Ėt(u)dsdu,

where the equilibrium term vanishes, since G∞ = 0. We must have

G(u) = G(0, u) = G(u, 0) =
k

Γ(1 − α)uα
, (23.6.11)

where G(u) is the relaxation function. Thus, we have
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Gm(u, v) = 2κ
∫ ∞

0

∫ ∞

0

(r1r2)η − 1e−r1u − r2v

r1 + r2
dr1dr2.

Recalling (23.3.2), we see that the properties (17.3.7) are valid in this case. Relation
(23.6.11) is confirmed since

2κ
∫ ∞

0

∫ ∞

0

(r1r2)η − 1e−r2v

r1 + r2
dr1dr2

= 2κ
∫ ∞

0

∫ ∞

0

(r1r2)η − 1e−r1v

r1 + r2
dr1dr2

=
k sinαπ

π

∫ ∞

0
rα − 1

1 e−r1vdr1

=
k sinαπΓ(α)

πvα
=

k

Γ(1 − α)vα
,

by virtue of the formula, for complex z ([168, page 285]),

∫ ∞

0

rμ − 1

r + z
dr =

π zμ − 1

sin πμ
, |arg z| < π, 0 < μ < 1, (23.6.12)

together with the relations (23.2.2) and (23.2.3). We now seek to determine the rate
of dissipation corresponding to the minimum free energy. Relation (16.1.18)2 yields
that

d
dt
Et
r+(−ir) = −rEt

r+(−ir) − Ė(t)
r

,

so that, from (23.6.9), we have

ψ̇m(t) = −κ
∣∣∣∣∣
∫ ∞

0
r
η
1 E

t
r+(−ir1)dr1

∣∣∣∣∣
2

− 2κĖ(t)
∫ ∞

0

∫ ∞

0

r
η
1 E

t
r+(−ir1)r

η − 1
2

r1 + r2
dr1dr2.

(23.6.13)

Using (23.6.12) and the expression (23.6.9)3 for κ, the last term of (23.6.13) becomes

−k sinαπ
π

∫ ∞

0
rα1 Et

r+(−ir1)dr1Ė(t) = T (t)Ė(t),

by virtue of (23.5.6). Consequently, recalling (16.1.28), it follows that the rate of dis-
sipation is given by the negative of the first term on the right-hand side of (23.6.13),
where we have used (16.1.17). These relations can be deduced also from (16.4.12).
The quantity Dm(t) can be written in the form (17.3.11) with

Km(s, u) = −2κΓ2(η)
(su)η

,
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Dm(t) = κ

∣∣∣∣∣
∫ ∞

0
rηEt

r+(−ir)dr
∣∣∣∣∣
2

= κ

∣∣∣∣∣
∫ ∞

0
rη − 1Ėt

+(−ir)dr
∣∣∣∣∣
2

= κ

∣∣∣∣∣
∫ ∞

0

∫ ∞

0
rη − 1e−ruĖt(u)drdu

∣∣∣∣∣
2

= κΓ2(η)

∣∣∣∣∣∣
∫ ∞

0

Ėt(u)
uη

du

∣∣∣∣∣∣
2

≥ 0.

(23.6.14)

23.6.2 The Minimum Free Energy for Simple Histories

Free energies and rates of dissipation for sinusoidal and increasing exponential his-
tories are discussed in [15, 16]. Sinusoidal histories are useful in many practical
contexts, though the total dissipation and the work function, defined by (16.1.30), are
infinite. Increasing exponential histories provide a simple example where all quan-
tities are finite. Also, the algebra involved is similar to, though simpler than, the
sinusoidal case.

23.6.2.1 Sinusoidal Histories

Formulae relating to general materials for sinusoidal histories are presented in
[15, 16] and earlier papers. Also, for exponential histories, similar general results
are introduced in [16]. Here, we consider the specific cases (23.6.10) and (23.6.14)
directly for the relevant forms of the strain history.

Consider a history and current value (Et, E(t)) defined by

E(t) = E0e
iω0t + E0e

−iω0t, Et(s) = E(t − s), (23.6.15)

where E0 is an amplitude and E0 its complex conjugate. The quantities Et
+ and Ėt

+

have the form

Et
+(ω) = E0

eiω0t

i(ω + ω0)
+ E0

e−iω0t

i(ω − ω0)
,

Ėt
+(ω) = ω0E0

eiω0t

ω + ω0
− ω0E0

e−iω0t

ω − ω0
.

(23.6.16)

From (17.6.8)2, we find that

Ėt
+(−ir) = ω0E0

eiω0t

ω0 − ir
+ ω0E0

e−iω0t

ω0 + ir
, (23.6.17)

where r is real. The final form of (23.5.6), together with (23.6.12) and (23.6.17) give

T (t) = kωα0

[
eiπα/2E0e

iω0t + e−iπα/2E0e
−iω0t

]
. (23.6.18)

Any real algebraic quadratic form in E(t) or real functional quadratic form in Et(s)
can be written in the form (16.11.3), denoted by V . Recalling (17.6.12) we introduce
the abbreviated notation
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V = {A, B}. (23.6.19)

Thus, we can write ψm(t), given by (23.6.10), as

ψm(t) = {A, B},

where, by dimensional arguments, it follows that

A = k ρωα0 , B = k χωα0 . (23.6.20)

The dimensionless quantities ρ and χ are to be determined. We find, using (23.6.17),
that

A = −κω2
0

∫ ∞

0

∫ ∞

0

(r1r2)η − 1

(r1 + iω0)(r2 + iω0)(r1 + r2)
dr1dr2,

B = 2κω2
0Re

∫ ∞

0

∫ ∞

0

(r1r2)η − 1

(r1 + iω0)(r2 − iω0)(r1 + r2)
dr1dr2.

The following integrals, together with (23.6.12), will be required in the calculations
below. For complex y, z, we have

∫ ∞

0

rμ − 1

(r + y)(r + z)
dr =

π

sin μπ

⎡⎢⎢⎢⎢⎢⎣y
μ − 1 − zμ − 1

z − y

⎤⎥⎥⎥⎥⎥⎦ , |arg y|, |arg z| < π,

∫ ∞

0

rμ − 1

(r + z)2
dr = −π(μ − 1)

sin μπ
zμ − 2, 0 < μ < 2, |arg z| < π.

(23.6.21)

Relation (23.6.21)1 is given in [168, page 289], while (23.6.21)2 is a special case of a
result in [168, page 285]. The latter can also be obtained by differentiating (23.6.12)
with respect to z.

With the aid of (23.6.21)1, we find that

A = −
κω2

0π

sin ηπ

∫ ∞

0

r
η − 1
2

[
(iω0)η − 1 − r

η − 1
2

]

r2
2 + ω

2
0

dr2,

B = 2
κω2

0π

sin ηπ
Re

∫ ∞

0

r
η − 1
2

[
(iω0)η − 1 − r

η − 1
2

]

(r2 − iω0)2
dr2.

These integrals can also be evaluated using (23.6.21). With the use of results deriv-
able from (23.6.21)1, we find that ρ in (23.6.20)1 has the form

ρ = −1
4

sinαπ

⎡⎢⎢⎢⎢⎢⎣1 − 1

sin πα
2

− i
1 − sin απ

2
cos απ2

⎤⎥⎥⎥⎥⎥⎦

=
1
2

(
1 − sin

πα

2

)
e
i
πα

2 .

Also, using (23.6.21)2, one can show that the quantity χ in (23.6.20)2 is given by
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χ = k(1 − α) cos
απ

2
≥ 0.

Observe that
ψ̇m(t) = {2 iω0 A, 0} =

{
2 i k ρωα + 1

0 , 0
}
.

The rate of dissipation given by (23.6.14)2 is now considered. Let us put
∫ ∞

0
r
η − 1
1 Ėt

+(−ir1)dr1 = K0e
iω0t + K0e

−iω0t.

Then
Dm(t) = κ

{
K2

0 , 2|K0|2
}
= kωα + 1

0 {D1,D2} , (23.6.22)

in the notation (23.6.19), where from (23.6.17) and (23.6.12),

K0 = iω0

∫ ∞

0

rη − 1

r + iω0
dr = (iω0)η

π

sin ηπ
.

In the rightmost form of (23.6.22), D1 and D2 are dimensionless constants, which
are now determined. The coefficient in this term emerges from dimensional analysis.
Relation (23.6.22)1 becomes

Dm(t) =
κπ2ω

2η
0

sin2 ηπ

{
eiπη, 2

}
= k sin

απ

2
ωα + 1

0

{
exp

(
iπ
α + 1

2

)
, 2

}
,

which gives

D1 = sin
απ

2
exp

[
i
π(α + 1)

2

]
, D2 = 2 sin

απ

2
.

From (23.6.15) and (23.6.18), we see that the rate of input of mechanical energy
is given by

T (t)Ė(t) = kωα + 1
0 {W1,W2},

W1 = exp

[
i
π(α + 1)

2

]
, W2 = 2 sin

απ

2
.

By virtue of (16.1.28), we must have

2iρ + D1 = W1, D2 = W2,

which are easily confirmed. Relation (16.1.29) involves divergent quantities, namely
D(t) and W(t), for sinusoidal histories [15, 16].

23.6.2.2 Exponential History

Consider a history and current value (Et, E(t)) given by

E(t) = E1e
γt, Et(s) = E(t − s), s ∈ R+, (23.6.23)
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where E1 is a constant amplitude. Some of the formulae for this history may be
obtained from the sinusoidal case by simple substitutions [16]. However, we present
direct derivations here. Instead of (23.6.16), we have

Et
+(ω) =

E1eγt

(γ + iω)
=

E(t)
(γ + iω)

,

Ėt
+(ω) =

γE(t)
γ + iω

, Ėt
+(−ir) = γE(t)

γ + r
.

The stress function becomes
T (t) = kE(t)γα, (23.6.24)

on using (23.6.12). The minimum free energy ψm(t), given by (23.6.10)1, has the
form

ψm(t) = E2
1e

2γtAγ = E2(t)Aγ, (23.6.25)

where Aγ is given by

Aγ = κγ2
∫ ∞

0

∫ ∞

0

(r1r2)η − 1

(r1 + γ)(r2 + γ)(r1 + r2)
dr1dr2,

=
κγ2π

sin ηπ

∫ ∞

0

r
η − 1
2

[
γη − 1 − r

η − 1
2

]

(r2 + γ)(r2 − γ)
dr2,

=
1
2
k γα (1 − sin

απ

2
) ≥ 0,

with the aid of (23.6.21) and the integral ([168, page 289])

∫ ∞

0

rμ − 1

(r + γ)(r − γ)
dr = −πγμ − 2

2 sin μπ
(1 + cos μπ), γ > 0, 0 < Reμ < 2.

This formula is in fact in a similar category to (23.6.21) but where the parameters are
in a different range. We conclude that

ψ̇m(t) = k E2
1 γ

α + 1 e2γt
(
1 − sin

απ

2

)
.

It follows from (23.6.9)3, (23.6.12), and (23.6.14) that

Dm(t) = k E2
1 γ

α + 1 e2γt sin
απ

2
. (23.6.26)

Finally, from (23.6.23) and (23.6.24) we find that

T (t)Ė(t) = k E2
1 γ

α + 1 e2γt, (23.6.27)

and (16.1.28) is obeyed. Indeed, we can also consider (16.1.29) in the case of expo-
nential histories, since there are no convergence difficulties. We write ψm(t), given
by (23.6.25), and the integrated forms of (23.6.26) and (23.6.27), as
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ψm(t) = FmW(t), Fm = 1 − sin
απ

2
, W(t) =

1
2
k E2

1 γ
α e2γt,

Dm(t) = SmW(t), Sm = sin
απ

2
.

Thus, (16.1.29) is also clearly obeyed.

23.6.2.3 The Physical Free Energy

The physical free energy, discussed in several different contexts in the present work
is defined by the property that its associated rate of dissipation is the true rate for the
material. We tentatively identify the physical free energy of a fractional derivative
material, as the minimum free energy by virtue of the following argument.

Two functionals have been identified as being associated with such materials, the
Graffi–Volterra and the minimum free energies. The Graffi–Volterra functional is a
degenerate version of the full two variable quadratic form discussed in earlier chap-
ters. As such, it cannot be included as a free energy with deeper physical meaning,
though it is a simple functional with the correct positivity properties and therefore
very useful as a mathematical tool.

Invoking the property P4 introduced in (18.2.1), we see that the work function
cannot be a valid free energy. Also, it has degenerate features somewhat similar to
the Graffi–Volterra functional. Therefore, the minimum free energy, given by the el-
ementary explicit expression (23.6.10), is the only non-degenerate free energy func-
tional associated with the material. It must therefore be identified as the physical free
energy of this material. Furthermore, the physical rate of dissipation has the form
(23.6.14).

23.7 Application to Viscoelastic Systems

We now consider the dynamical equations for viscoelastic solids and fluids within
the framework of fractional derivative models. An energy theorem is proved in both
of these cases.

23.7.1 Viscoelastic Solids

Let Ω ⊂ R3 be a smooth bounded domain of a linear viscoelastic solid, whose con-
stitutive equation is given by the fractional model with constitutive relation given by
(23.3.7). The initial boundary value problem is defined by the differential system in
the domain Q = Ω × (0,T ) by

ρ0(x)
∂2u(x, t)

∂t2
= ∇ · T(x, t) + ρ0(x)f(x, t)

= − α

Γ(1 − α)
∇ ·

[
�(x)

∫ ∞

0

Et
r(x, s)
s1+α

ds

]

+ ρ0(x)f(x, t),

(23.7.1)
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where ρ0(x) denotes the mass density, u(x, t) the displacement such that E = 1
2 (∇u +

∇uT ) and f(x, t) the body forces. The initial conditions are

u(x, 0) = u0(x) ,
∂u(x, t)

∂t

∣∣∣∣∣
t=0
= v0(x)

along with the boundary conditions

u(x, t)|∂Ω = u0(x), (23.7.2)

where u0 and v0 are given functions.
Using the definition of fractional derivative given in (23.3.8), Eq. (23.7.1) can be

rewritten in the form

ρ0(x)
∂2u(x, t)

∂t2
= ∇ ·

[
C
−∞D

α
t �(x)E(x, t)

]
+ ρ0(x)f(x, t). (23.7.3)

Now, our purpose is to obtain an energy theorem for the problem (23.7.1) and
(23.7.2). To this end, we multiply (23.7.3) by the first time derivative of u(x, t). Then,
after an integration on Q = Ω × (0,T ), we obtain

∫ T

0

∫
Ω

ρ0(x)
∂2u(x, t)

∂t2
· ∂u(x, t)

∂t
dx dt

=

∫ T

0

∫
Ω

{
(∇ ·

[
C
−∞D

α
t �(x)E(x, t)

]
· ∂u(x, t)

∂t
+ ρ0(x)f(x, t) · ∂u(x, t)

∂t

}
dx dt,

(23.7.4)
where dx is the three-dimensional space volume element. Hence, using the diver-
gence theorem and the boundary condition (23.7.2), it follows from (23.7.4) that

∫ T

0

∂

∂t
1
2

∫
Ω

ρ0(x)

(
∂u(x, t)

∂t

)2

dx dt

=

∫ T

0

∫
Ω

[
−�(x)

(
C
−∞D

α
t E(x, t)

)
· ∂E(x, t)

∂t
+ ρ0(x)f(x, t) · ∂u(x, t)

∂t

]
dx dt

=

∫ T

0

∫
Ω

[
−T(x, t) · Ė(x, t) + ρ0(x)f(x, t) · ∂u(x, t)

∂t

]
dx dt.

Then, from (23.4.6) or (23.4.9), we obtain

∫ T

0

∂

∂t
1
2

∫
Ω

ρ0(x)

⎡⎢⎢⎢⎢⎢⎣
(
∂u(x, t)

∂t

)2

+ ΨS (x, t)

⎤⎥⎥⎥⎥⎥⎦ dx dt

≤
∫ T

0

∫
Ω

ρ0(x)f(x, t) · ∂u(x, t)
∂t

dx dt,

where ΨS (x, t) is the Graffi–Volterra free energy functional for solids, given by
(23.4.8). Finally, carrying out the time integration, we find that
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1
2

∫
Ω

ρ0(x)

⎡⎢⎢⎢⎢⎢⎣
(
∂u(x, t)

∂t

)2

+ ΨS (x, t)

⎤⎥⎥⎥⎥⎥⎦ dx

≤ 1
2

∫
Ω

ρ0(x)
(
v0(x)2 + ΨS (x, 0)

)
dx +

∫ T

0

∫
Ω

ρ0(x)f(x, t) · ∂u(x, t)
∂t

dx dt.

It is easily checked that the same inequalities hold for any free energy for the system.
This in effect means any positive functional obeying (23.4.6) or (23.4.9). A similar
observation applies to the case of fluids, which is now discussed.

23.7.2 Viscoelastic Fluids

The initial boundary value problem for a viscoelastic incompressible fluid described
by the velocity v(x, t), the pressure p(x, t) and the constant density ρ0, is defined by
the differential system

ρ0
∂v(x, t)

∂t
= −∇p + ∇ · TE(x, t) + ρ0f(x, t)

= −∇p + 2η
Γ(1 − α)

∇ ·
∫ t

−∞

E(x, t) − E(x, τ)

(t − τ)1+α
dτ + ρ0f(x, t)

= −∇p + η

Γ(1 − α)
∇ ·

∫ t

−∞

∇v(x, τ)
(t − τ)α

dτ + ρ0f(x, t),

∇ · v(x, t) = 0,

(23.7.5)

with initial and boundary conditions

v(x, 0) = v0(x) , v(x, t)|∂Ω = 0. (23.7.6)

We again seek an energy theorem. It follows from (23.7.5)3 and (23.7.6), together
with a standard step involving integration by parts, that

∫ T

0

d
dt

∫
Ω

ρ0 v2(x, t)dxdt

=

∫ T

0

∫
Ω

[∇TE(x, t) · v(x, t) + ρ0f(x, t) · v(x, t)
]
dx dt

=

∫ T

0

∫
Ω

[
TE(x, t) · Ė(x, t) + ρ0f(x, t) · v(x, t)

]
dx dt.

Using the inequality (23.4.6), we obtain
∫ T

0

d
dt

∫
Ω

[
ρ0 v2(x, t) + ΨF(x, t)

]
dxdt ≤

∫ T

0

∫
Ω

ρ0f(x, t) · v(x, t)dxdt.

Hence, we have ∫
Ω

[
ρ0 v2(x, t) + ΨF(x, t))

]
dx

≤
∫
Ω

[
ρ0 v2(x, 0) + ΨF(x, 0))

]
dx +

∫ T

0

∫
Ω

ρ0f(x, t) · v(x, t)dxdt.
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23.8 Application to Rigid Heat Conductors

In this section, we use the fractional method to describe the behavior of heat conduc-
tors. The literature on this topic, including [1, 141, 299], is motivated by experimental
findings such as those reported in [223, 285].

The classical Fourier constitutive equation is given by

q(t) = −kcg(t),

where q is the heat flux , g the temperature gradient and kc > 0 is the thermal conduc-
tivity, which may be space dependent. In order to obtain a finite wave propagation
speed, Cattaneo [59] proposed the modified constitutive relation

−γq̇(t) = q(t) + kcg(t), γ > 0.

This is the Cattaneo–Maxwell or, for brevity the Cattaneo equation. It can be put in
the form of an integral equation, describing a material with thermal memory

q(t) = −
∫ t

−∞
k(t − s)g(s)ds = −

∫ ∞

0
k(s)gt(s)ds,

gt(s) = g(t − s), k(s) = k0e
−λs, λ =

1
γ
, kc = γk0.

(23.8.1)

Relation (23.8.1) can be expressed in terms of the NFDt, given by (23.2.13) or
(23.2.14), where

σ = γ, k0 =
1 + σ
σ

M∗(σ), α =
1

1 + σ
.

Thus, (23.8.1)1 can be written as

q(t) = −D(α)
t g(t), (23.8.2)

where

g(t) =
∫ t

0
g(u)du, ġ(t) = g(t).

23.8.1 UFDt Fractional Cattaneo Equation

Let us replace the NFDt in (23.8.2) by the UFDt as defined by (23.2.12) or (23.2.6).
Thus, we put

k(s) =
k0

Γ(1 − α)
1
sα
,

giving

q(t) = −k0D
(α)
t g(t) = − k0

Γ(1 − α)

∫ t

−∞

ġ(τ)
(t − τ)α

dτ

=
αk0

Γ(1 − α)

∫ t

−∞

g(τ) − g(t)

(t − τ)1+α
dτ =

αk0

Γ(1 − α)

∫ ∞

0

gtr(s)

s1+α
ds,
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where, recalling (9.1.2), we introduce gtr(s), defined as

gtr(s) = g(t − s) − g(t) = −
∫ t

t−s
g(u)du,

to emphasize an analogy between heat flow and viscoelasticity whereby −g(t), q(t)
correspond to E(t), T(t). It can be concluded from this and (23.4.8) that the functional

ψ(t) =
αk0

2Γ(1 − α)

∫ ∞

0

gtr(s) · g
t
r(s)

s1+α
ds

is the Graffi-Volterra free energy for fractional Cattaneo models, with corresponding
rate of dissipation deduced from (23.4.10) to be

D(t) =
α(1 + α)k1

2Γ(1 − α)

∫ ∞

0

gtr(s) · g
t
r(s)

s2+α
ds.

Indeed, the minimum free energy for isotropic materials of this kind can be written
down immediately from (23.6.9) and (23.6.10), replacing Ėt(u)Ėt(v) by gt(u) · gt(v).
Thus, we obtain

ψm(t) = κ

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

(r1r2)η − 1gt(u) · gt(v)e−r1u − r2v

r1 + r2
dr1dr2dudv,

κ =
k0

π2
sin

απ

2
cos2 απ

2
.

The quantity η is defined by (23.6.1). The coefficient k1 replaces � in Sect. 23.3 or
k in Sects. 23.5 and 23.6. Similarly, the corresponding rate of dissipation is deduced
from (23.6.14)3 by replacing Ėt(u) with −gt(u), yielding

Dm(t) = κΓ2(η)

∣∣∣∣∣∣
∫ ∞

0

gt(u)
uη

du

∣∣∣∣∣∣
2

≥ 0.

23.8.2 The NFDt Model

Analogous results can be derived for the NFDt model given by (23.8.2), which is of
course the Cattaneo equation. Free energies for this relationship are those for a simple
memory function k(s) described in (23.8.1). This has one decaying exponential and
goes to zero at large times. The Graffi-Volterra free energy corresponding to this form
is given by

ψ(t) =
1
2
λk0

∫ ∞

0
e−λsgtr(s) · g

t
r(s)ds,

while the corresponding rate of dissipation is

D(t) = λ2k0

∫ ∞

0
e−λsgtr(s) · g

t
r(s)ds.
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Also, for a relaxation function consisting of one decaying exponential, the minimum
free energy has the form

ψD(t) =
1
2
λ2k0

∣∣∣∣∣
∫ ∞

0
e−λsgtr(s)ds

∣∣∣∣∣
2

,

DD(t) = λ3k0

∣∣∣∣∣
∫ ∞

0
e−λsgtr(s)ds

∣∣∣∣∣
2

.

These are a special case of the Day free energy and rate of dissipation where the
relaxation function goes to zero at large times.

23.9 Application to Electromagnetic Systems

We now explore some properties of two electromagnetic bodies, which are char-
acterized by constitutive equations expressed as fractional models. The form of a
particular free energy will be derived in both cases. These are examples or general-
izations of the Graffi–Volterra free energy discussed in Sect. 23.4.1. This section is
based on [19].

23.9.1 Visco-Ferromagnetic Materials

Let us consider a visco-ferromagnetic material characterized by the following con-
stitutive equation

B(x, t) =
C(x)

Γ(1 − α)

∫ t

a

Hτ(x, τ)
(t − τ)α

dτ, Hτ(x, τ) =
∂

∂τ
H(x, τ), (23.9.1)

where the magnetic induction B(x, t) and the magnetic field are H(x, t) are defined for
any point x ∈ Ω, the smooth bounded domain occupied by the material; moreover,
the quantity C(x) is a second-order positive tensor, defined for any point x ∈ Ω.

This equation is expressed in terms of the α−Caputo fractional derivative (23.2.5);
see also [47]

CD
α
t H(x, t) =

1
Γ(1 − α)

∫ t

a

Hτ(x, τ)
(t − τ)α

dτ.

Using this definition, Eq. (23.9.1) assumes the following form

B(x, t) = C(x) CD
α
t H(x, t).

Taking a = −∞ and carrying a time integration by parts, (23.9.1) assumes the more
useful form

B(x, t) = − α

Γ(1 − α)

∫ t

−∞
C(x)

H(r)(x, τ)
(t − τ)α+1

dτ,H(r)(x, τ) = H(x, τ) −H(x, t),

where H(r) denotes the relative history of the magnetic field.
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The dissipation law states that, for any simple electromagnetic material, there
exists at least one state functional, denoted by ψ(x, t, and referred to as a free energy,
which satisfies the following fundamental requirement:

∂

∂t
ψ(x, t) ≤ B(x, t) ·Ht(x, t). (23.9.2)

By introducing the rate of dissipation D(x, t) ≥ 0, the dissipation law can be written
as

∂

∂t
ψ(x, t) +D(x, t) = B(x, t) ·Ht(x, t). (23.9.3)

Taking account of (23.9.1), we can apply an integration by parts to the scalar
product on the right-hand side of both Eqs. (23.9.2) and (23.9.3); the expression so
derived allows us to identify the following functional as a free energy:

ψ(t) =
α

2Γ(1 − α)

∫ ∞

0
C(x)

H(r)(x, t − s) ·H(r)(x, t − s)
sα+1

ds.

This is a particular example of the Graffi-Volterra free energy. The related rate of
dissipation is given by

D(x, t) =
α(α + 1)

2Γ(1 − α)

∫ ∞

0
C(x)

H(r)(x, t − s) ·H(r)(x, t − s)
sα+2

ds.

23.9.2 Nonlocal Visco-Ferromagnetic Materials

The behavior of nonlocal visco-ferromagnetic materials can be described by means
of a constitutive equation expressed in terms of the fractional operator Mβ

x of order
β ∈ ( 1

2 , 1), acting on a function f(x), introduced in [56] and expressed by

M
β
xF(x) =

βπ−
β
2

1 − β

∫
Ω

f(y)e
− β2

1−β2 (x−y)2

dy,

where x, y ∈ Ω.
By replacing f(x) with C(x, y)H(x, τ), we can introduce the following new con-

stitutive equation for the ferromagnetic induction

B(x, t) =M
β
xD

α
t
[
C(x, y)H(x, t)

]

=
βπ−

β
2

(1 − β)Γ(1 − α)

∫
Ω

∫ t

a

1
(t − τ)α

C(x, y)Hτ(y, τ)e
− β2

1−β2 (x−y)2

dτdy, (23.9.4)

where the scalar α, assumed to be in the interval
(
0, 1

2

)
, is the degree of the Caputo

fractional derivative, denoted by Dα
t , while the second-order tensor C(x, y) is taken

to be symmetric in x and y and positively defined.
We note that, for nonsimple materials characterized by (23.9.4), the magnetic

induction B(x, t) at any fixed point x ∈ Ω depends on the values of the magnetic field
H(y, t) ∀y ∈ Ω.
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The total internal power can be obtained by integrating over Ω the scalar product
in the right-hand side of both Eqs. (23.9.2) and (23.9.3); thus, by virtue of (23.9.4),
it is given by∫

Ω

B(x, t) ·Ht(x, t)dx =
∫
Ω

M
β
xD

α
t
[
C(x, y)H(x, t)

] ·Ht(x, t)dx

(23.9.5)

=
βπ−

β
2

(1 − β)Γ(1 − α)

∫
Ω

[∫
Ω

∫ t

a
C(x, y)

Hτ(y, τ)
(t − τ)α

e
− β2

1−β2 (x−y)2

dτdy
]
·Ht(x, t)dx

and the global free energy has the form:

ψ(Ω, t) ≡
∫
Ω

ψ(x, t)dx. (23.9.6)

If we assume H(·, τ) = 0 for τ ≤ a, the inequality (23.9.2), by using (23.9.5) and
(23.9.6), becomes

ψ̇(Ω, t) ≡ ∂

∂t

∫
Ω

ψ(x, t)dx ≤
∫
Ω

B(x, t) ·Ht(x, t)dx

=
βπ−

β
2

(1 − β)Γ(1 − α)

∫
Ω

∫
Ω

∫ t

−∞
C(x, y)

[
H(y, τ) −H(y, t)

]
τ

(t − τ)α
e
− β2

1−β2 (x−y)2

dτdy

· ∂
∂t

[H(x, t) −H(x, τ)] dx,

whence, with a time integration by parts, it follows that

∂

∂t

∫
Ω

ψ(x, t)dx ≤
∫
Ω

B(x, t) ·Ht(x, t)dx

=
αβπ−

β
2

(1 − β)Γ(1 − α)

∫
Ω

∫
Ω

∫ t

−∞
C(x, y)

H(y, t) −H(y, τ)
(t − τ)α+1

· ∂
∂t

[H(x, t) −H(x, τ)] e
− β2

1−β2 (x−y)2

dτdydx.

This inequality is satisfied by the following functionals:

ψ(Ω, t) =
αβπ−

β
2

2(1 − β)Γ(1 − α)

∫
Ω

∫
Ω

∫ t

−∞

1
(t − τ)α+1

[
H(y, t) −H(y, τ)

]

·C(x, y) [H(x, t) −H(x, τ)] e
− β2

1−β2 (x−y)2

dτdydx,

which gives the global free energy ψ(Ω, t), and

D(Ω, t) =
α(α + 1)βπ−

β
2

2(1 − β)Γ(1 − α)

∫
Ω

∫
Ω

∫ t

−∞

1
(t − τ)α+2

[
H(y, t) −H(y, τ)

]

·C(x, y) [H(x, t) −H(x, τ)] e
− β2

1−β2 (x−y)2

dτdydx,

which is the expression for the related global rate of dissipation D(Ω, t).



Part IV

The Dynamical Equations for Materials with Memory



24

Existence and Uniqueness

24.1 Introduction to Existence and Uniqueness

The study of differential problems related to materials with fading memory began
with the work of Graffi [170, 172]. Later on, these studies were considered by
many authors, and in particular, a new important description of such phenomena
was given by Dafermos in [79, 80], using semigroup theory, where besides existence
and uniqueness of the solution, the interesting problem of asymptotic stability was
also examined.

In 1979, Fichera [135] considered the question of well-posedness for the so-
called quasistatic problem, by exhibiting various counterexamples, proposed also in
subsequent work [137, 138]. This problem was solved by assigning initial conditions
for the quasistatic problem as Fichera suggested.

A recent new formulation of these problems for materials with memory effects
has been introduced in [91] and [106], where instead of using the past history to
characterize the initial state, the notion of a minimal state I0, defined in (7.4.2)2, is
preferred.

This new point of view starts from the observation that if we consider a vis-
coelastic medium, the differential equation in terms of the displacement vector u is
given by

ρü(x, t) = ∇ ·
[
G0(x)E(x, t) +

∫ ∞

0
G′(x, s)Et(x, s)ds

]
+ ρf(x, t)

∀ (x, t) ∈ Ω × (0,∞),
(24.1.1)

where Et(x, s) = E(x, t − s) is the history of the strain tensor E = ∇u+(∇u)T

2 . We take
ρ = 1 in the present chapter. The initial conditions∗

∗ In this chapter, we adopt the widely used (in this context) notation that Ω ⊂ R3 is the region
occupied by the body under consideration. In Part III, it is used to denote the complex
frequency plane. It is also used to denote the complex plane in Chap. 27.
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u(x, 0) = u0(x), u̇(x, 0) = u̇0(x) ∀x ∈ Ω,

ut=0(x, s) = u0(x, s) ∀(x, s) ∈ Ω × [0,∞)
(24.1.2)

must be associated with (24.1.1), together with boundary conditions, which, for ex-
ample, can be expressed by

u(x, t) = 0 ∀(x, t) ∈ ∂Ω × [0,∞). (24.1.3)

We now observe that two initial histories u0
1(x, s), u0

2(x, s) yield the same solution
if the initial data satisfy the relation

∫ ∞

0
G′(τ + s)E0

1(s)ds =
∫ ∞

0
G′(τ + s)E0

2(s)ds ∀τ ≥ 0,

as well as conditions (24.1.2). In fact, it is easy to show that (24.1.1) can be written
in the form

ü(x, t) = ∇ ·
[
G0(x)E(x, t) +

∫ t

0
G′(x, s)Et(x, s)ds

]
+ ∇ · F(x, t) + f(x, t),

where

F(x, t) =
∫ ∞

t
G′(x, s)Et(x, s)ds =

∫ ∞

0
G′(x, t + s)E0(x, s)ds.

Thus, two different initial histories u0
1(x, s) and u0

2(x, s) to which corresponds
the same quantity F(x, t) yield the same solution to the problem (24.1.1)–(24.1.3).
Consequently, these different histories can be considered as the same state of the
material.

Therefore, from considerations related to the differential problem, we arrive at
the notion of equivalence between initial histories, characterized by

E1(0) = E2(0),
∫ ∞

0
G′(τ+ s)E0

1(s)ds =
∫ ∞

0
G′(τ+ s)E0

2(s)ds ∀τ ≥ 0, (24.1.4)

as discussed in Sect. 7.4 and used in later chapters. Note that E1(0) and E2(0) in
(24.1.4)1 correspond to u(x, 0) in (24.1.2).

For certain classes of material, (24.1.4) can be satisfied by different histories,
while for others, it is true only in the trivial case of equal histories. This distinction
is discussed in detail in Sect. 16.5.

The origin of the idea that different histories represent the same state of the ma-
terial can be found in the concept of equivalence between states introduced by Noll
in his axiomatic formulation of continuum mechanics [277].

The introduction of this notion of equivalence provides meaningful insights into
the study of stability problems and, even in some measure, into the choice of spaces
used to prove existence and uniqueness theorems. We remark here that in the study
of conditions for stability, the topology chosen for the spaces of states affects the
results to a remarkable degree.
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In the literature, stability is almost always studied in relation to the topology
associated with the Graffi–Volterra free energy (Sects. 10.1.1, 10.2, etc.) defined by

ψG(Et) =
1
2
G∞E(t) · E(t) +

1
2

∫ ∞

0
G′(s)

[
Et(s) − E(t)

]
·
[
Et(s) − E(t)

]
ds, (24.1.5)

where the dependence on x is understood.
It is easy to prove that the norm related to the free energy (24.1.5) introduces

an unnatural separation between histories. In fact, two equivalent histories have a
nonzero distance between them in this norm, which contrasts with the impossibility
of distinguishing the future effects of the two histories by calculating the stress or
determining the solution. We refer in this context to (10.1.4) and Remark 10.1.2.

Furthermore, it is possible to prove that the topology related to the free energy ψG

appears coarser with respect to other topologies defined on minimal states, which, in
the study of stability, can yield curious results.

It therefore appears natural to consider a formulation of these problems based
on the notion of a minimal state for the material, defined by σ = (E(t), It), where It

represents the equivalence class of the relative strain histories Et
r(s) = Et(s) − E(t)

given by (see (8.2.2) and the comment after (8.2.6))

It(τ) =
∫ ∞

0
G′(τ + s)Et

r(s)ds ∀τ ≥ 0.

We shall therefore develop this formulation and seek to express both function
spaces and free energies in terms of minimal states.

For this purpose, free energies that are functionals of the minimal state, as defined
by (7.4.6), are particularly of interest, notably ψF defined in Sect. 10.1.3 (later for
various specific materials) and the minimum free energy introduced in Chap. 11.

A further relevant point here is that the space of definition of the free energy ψG

is much smaller than that of ψF and the minimum free energy, so that stability results
will have more restricted application (see observations after (10.1.14) and (12.2.13)).

24.2 Dynamics of Viscoelastic Solids

24.2.1 Existence and Uniqueness of Solutions

It is worthwhile recalling the traditional initial boundary value problem for a vis-
coelastic material.

In the linear case, the constitutive equation for the stress tensor T in a viscoelastic
material is given by (8.1.5), and if we include space dependence, it becomes

T(x, t) = G0(x)E(x, t) +
∫ ∞

0
G′(x, s)Et(x, s)ds, (24.2.1)

where E is the infinitesimal strain tensor given by E = 1
2 [∇u + (∇u)T ], where u

denotes the displacement field. The quantity G∞(x) is defined by
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G∞(x) = G0(x) +
∫ ∞

0
G′(x, s)ds.

The symmetry of the tensors G0(x) and G∞(x) is required by thermodynamics and
expressed by (8.1.13) and (8.1.14), respectively, while that of G′(x, s) is ensured
by assumption (8.1.27). For solids, G∞(x) is positive definite, so that from (8.1.22),
G0(x) has the same property. We shall also assume that −G′(x, s) is a positive tensor.

The constitutive equation (24.2.1) can be written as

T(x, t) = G0(x)∇u(x, t) +
∫ ∞

0
G′(x, s)∇u(x, t − s)ds, (24.2.2)

by virtue of (8.1.8).
Therefore, on a smooth bounded domain Ω ⊂ R3, the differential problem is

expressed by the equation

ü(x, t) = ∇ ·
[
G0(x)∇u(x, t) +

∫ ∞

0
G′(x, s)∇u(x, t − s)ds

]
+ f(x, t) (24.2.3)

together with the initial conditions

u(x, 0) = u0(x), u̇(x, 0) = u̇0(x), ut=0(x, s) = u0(x, s) ∀s ∈ R+

and, for example, Dirichlet boundary conditions

u(x, t)|∂Ω = 0,

the quantity f in (24.2.3) being the body forces.
In this framework the kernel G, defined by (8.1.7), is assumed continuous in

x ∈ Ω and such that for any x ∈ Ω,

(a) G(x, ·) ∈ H1(0,∞),
(b) G0(x) > 0 as stated above.

Classical theorems on existence, uniqueness, and continuous dependence can be
found in the work of Dafermos [79] (see [114] also).

24.2.2 Quasistatic Problem in Linear Viscoelasticity: Fichera’s Problem

The Fichera problem consists in the study of the quasistatic problem for a viscoelas-
tic material. Fichera observed that such a problem cannot be resolved, as in linear
elasticity, without providing the datum on the initial history and so working on the
time interval [0,∞). Other authors [119] studied the same problem on the interval
(−∞,∞), but they had to assign suitable decay conditions for t → −∞ on the solu-
tions, which is the same as giving initial conditions.

We recall that Fichera exhibited some counterexamples related to the well-
posedness of Cauchy’s problem, in consequence of his related correspondence with
Capriz and Gurtin and also with Morro. The first counterexample, proposed by
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Fichera in [135] for the one-dimensional problem, is characterized by the relaxation
function G(s) given by

G(s) = 1 − λ + λ exp(−s),
where λ is a real-valued parameter. With such a relaxation function, Fichera showed
that the spectrum of (24.2.2) is λ ≥ 1; consequently, it follows that for λ satisfying
this condition, we cannot have uniqueness for the solution to the quasistatic problem
in L1(R; H1

0(Ω)).
However, since the condition λ > 1 implies G(s) < 0 for large enough values of

s, while the value λ = 1, which yields G∞ = 0, corresponds to fluids, the counterex-
ample is not significant [136].

Thus, with a second counterexample, characterized by

G(s) =
1
2
− s exp(−s). (24.2.4)

Fichera proved that the requirement G(s) > 0 does not guarantee existence and
uniqueness; in fact, with such a relaxation function, nonuniqueness can be easily
seen.

However, this counterexample is not very interesting, since the relaxation func-
tion (24.2.4) does not satisfy the constraint (8.1.18) imposed by the Second Law of
Thermodynamics.

A third counterexample, satisfying this constraint, was then given by Fichera, on
assuming a relaxation function

G(s) = G∞ + (G0 −G∞) exp(−λs),

with G∞,G0 − G∞, λ ∈ R++. However, the strain E(t) = exp[−(λG∞/G0)t] is an
eigensolution of

G0E(t) +
∫ ∞

0
G′(s)E(t − s)ds = 0,

thus showing that the solution to the one-dimensional version of the quasistatic prob-
lem is nonunique.

The Fichera elaboration of these counterexamples effected an interesting im-
provement in such studies. Later on, the problem of existence and uniqueness of
the solution to several problems related to viscoelastic materials was thus consid-
ered, especially by Italian researchers on continuum mechanics (see, for example,
[184]). We only observe that we agree with what Fichera wrote to Morro, i.e., that
the difficulties related to the problem of existence and uniqueness arise because the
infinite extent of the memory causes the problem to be affected by the topology of
the space of solutions.

Relation (24.2.2) can be written in the form

T(x, t) = G(x, t)∇u(x, 0) +
∫ t

0
G(x, t − τ)∇u̇(x, τ)dτ + Ĩ0(x, t),

with the aid of an integration by parts, where Ĩ is defined in (8.2.3)1 (see comment
after (8.2.6)). Thus, the equation of motion (24.2.3) becomes
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ü(x, t) = ∇ ·
∫ t

0
G(x, t − τ)∇u̇(x, τ)dτ + b(x, t), (24.2.5)

where
b(x, t) = f(x, t) + ∇ · [Ĩ0(x, t) +G(x, t)∇u(x, 0)]

is a given function in Ω×R+. Putting v = u̇, the differential equation (24.2.5) can be
written as

v̇(x, t) = ∇ ·
∫ t

0
G(x, t − τ)∇v(x, τ)dτ + b(x, t) ∀(x, t) ∈ Ω × R+. (24.2.6)

This is a differential equation for the unknown function v. We must add the initial
and boundary conditions. In the general case we have initial conditions expressed by
a given function v(x, 0) = v0(x); however, we assume the data

v(x, 0) = 0 ∀x ∈ Ω̄, v(x, t) = 0 ∀(x, t) ∈ ∂Ω × R+, (24.2.7)

since it is well known that v0(x) can always be supposed equal to zero with a suitable
change of the sources, as elaborated after (24.2.29) below.

Let w be a smooth vector function on Ω̄×R+, vanishing on the boundary ∂Ω and
such that w(x,T ) = 0 ∀x ∈ Ω. Using the expression (8.2.1)1 for Ĭ, inner multiplying
by w, and integrating on Ω × [0,T ], we obtain

∫ T

0

∫
Ω

v̇(x, t) · w(x, t)dxdt +
∫ T

0

∫
Ω

∫ t

0
G(x, t − τ)∇v(x, τ) · ∇w(x, t)dτdxdt

+

∫ T

0

∫
Ω

Ĭ0(x, t) · ∇w(x, t)dxdt −
∫ T

0

∫
Ω

f(x, t) · w(x, t)dxdt = 0,

(24.2.8)
which corresponds to the virtual work principle and allows us to provide a new defi-
nition of weak solution.

Now we consider the quasistatic problem, which is connected with Eqs. (24.2.8)
and (24.2.7), on the time domain (0,∞), and is given in a weak sense by the system

∫ ∞

0

∫
Ω

∫ t

0
G(x, t − τ)∇v(x, τ) · ∇w(x, t)dτdxdt

−
∫ ∞

0

∫
Ω

[f(x, t) · w(x, t) − Ĭ0(x, t) · ∇w(x, t)]dxdt = 0,

v(x, 0) = 0 ∀x ∈ Ω̄, v(x, t) = 0 ∀(x, t) ∈ ∂Ω × R+.

(24.2.9)

In order to obtain a rigorous definition of solution according to the equality
(24.2.9), one must fix the domain of the functions v(x, t) and w(x, t). We introduce
the function space

HG(R+; H1
0(Ω)) ={

v ∈ L2
loc(R

+; H1
0(Ω));

∫ ∞

0

∫ ∞

0

∫
Ω

G(x, |τ − τ′|)∇v(x, τ′) · ∇v(x, τ)dxdτ′dτ < ∞
}
,
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while the states Ĭ0(x, t) are elements of the space H′
G

(R+; H1
0(Ω)).

The space HG(R+; H1
0(Ω)) is a Hilbert space with respect to the inner product

(v1, v2)HG
=

∫ ∞

0

∫ τ

0

∫
Ω

[G∞(x) + Ğ(x, τ − τ′)][∇v1(x, τ′) · ∇v2(x, τ)

+∇v1(x, τ) · ∇v2(x, τ′)]dxdτ′ dτ,

where Ğ(x, s) = G(x, s) −G∞(x).

Definition 24.2.1. A function v ∈ HG(R+; H1
0(Ω)) is called a weak solution of the

quasistatic problem related to Eqs. (24.2.6)–(24.2.7) with data f ∈ H′
G

(R+; H−1(Ω))
and Ĭ0 ∈ H′

G
(R+; H1

0(Ω)) if it satisfies the identity (24.2.9) for any w ∈ HG

(R+; H1
0(Ω)).

We can now prove the following theorem [7].

Theorem 24.2.2. Assume that the kernel Ğ(x, ·) ∈ L1(R+; L∞(Ω)) satisfies the ther-
modynamic condition Ğc(x, ω) > 0, for any (x, ω) ∈ Ω̄ × R. Then there exists a
unique weak solution v ∈ HG(R+; H1

0(Ω)) of the problem (24.2.6)–(24.2.7) for any
Ĭ0 ∈ H′

G
(R+; H1

0(Ω)) and f ∈ L2(R+; H−1(Ω)).

Proof. The Fourier transform applied to the system (24.2.6)–(24.2.7) under the qua-
sistatic hypothesis yields

∇ · [G+(x, ω)∇v+(x, ω)] = −f+(x, ω) − ∇ · Ĭ0
+(x, ω),

v+(x, ω)|∂Ω = 0.
(24.2.10)

For any fixed ω ∈ R, we consider the sesquilinear form

a(v+(x, ω),w+(x, ω)) =
∫
Ω

G+(x, ω)∇v+(x, ω) · ∇w+(x, ω)dx, (24.2.11)

which is a bounded and coercive form in H1
0(Ω). It is easy to see that it is bounded.

To show coercivity, we must prove that for any fixed ω ∈ R, the inequality

|a(v+(x, ω), v+(x, ω))| ≥ k(ω)‖v+(x, ω)‖H1
0

holds for all v+ ∈ H1
0(Ω), where k(ω) is a positive constant. From the definition

(24.2.11) of a, and the relation G+(x, ω) = Gc(x, ω) − iGs(x, ω), we obtain, for any
ω ∈ R,

|a(v+(x, ω), v+(x, ω))| ≥
∫
Ω

Gc(x, ω)∇v+(x, ω) · ∇v+(x, ω)dx

≥ k(ω)‖v+(x, ω)‖H1
0
,

where k(ω) = inf{|Gc(x, ω)|, x ∈ Ω}.
Hence, it follows that for any fixed ω ∈ R, the problem (24.2.10) admits a solu-

tion v+ ∈ H1
0(Ω) if the supply
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F+(x, ω) = f+(x, ω) + ∇ · Ĭ0
+(x, ω)

belongs to H−1(Ω).
Now we study the behavior of v+ when ω → ∞. Parseval’s formula applied to

(24.2.8), after an integration by parts, yields
∫ ∞

−∞

∫
Ω

{
v+(x, ω) · [iωw+(x, ω) − w0(x)] −G+(x, ω)∇v+(x, ω) · ∇w+(x, ω)

}
dxdω

= −
∫ ∞

−∞

∫
Ω

{
f+(x, ω) · w+(x, ω) − Ĭ0

+(x, ω) · ∇w+(x, ω)
}
dxdω.

(24.2.12)
We recall that for any vector function f ∈ H−1(Ω), there exists at least a tensor
function A ∈ L2(Ω) such that for all v ∈ H1(Ω),

∫ ∞

0

∫
Ω

f(x, t) · v(x, t)dxdt =
∫ ∞

0

∫
Ω

A(x, t) · ∇v(x, t)dxdt,

and moreover, that in our case,

v(x, 0) =
1
π

∫ ∞

−∞
v+(x, ω)dω = 0.

Thus, (24.2.12), written for w(x, t) = v(x, t), gives
∫ ∞

−∞

∫
Ω

{
−v+(x, ω) · iωv+(x, ω) +G+(x, ω)∇v+(x, ω) · ∇v+(x, ω)

}
dxdω

=

∫ ∞

−∞

∫
Ω

[A+(x, ω) − Ĭ0
+(x, ω)] · ∇v+(x, ω)dxdω.

(24.2.13)

The first term of this equation is an odd function of ω, and therefore, its integral over
R vanishes. The integral of the second term reduces to

∫ ∞

−∞

∫
Ω

G+(x, ω)∇v+(x, ω) · ∇v+(x, ω)dxdω

=

∫ ∞

−∞

∫
Ω

Gc(x, ω)∇v+(x, ω) · ∇v+(x, ω)dxdω,

since G is symmetric, G+ = Gc − iGs, and Gs is an odd function. Using the Schwarz
inequality in the integral on the right-hand side of (24.2.13), it follows that

∫ ∞

−∞

∫
Ω

G+(x, ω)∇v+(x, ω) · ∇v+(x, ω)dxdω

≤
{∫ ∞

−∞

∫
Ω

G−1
+ (x, ω)[A+(x, ω) − Ĭ0

+(x, ω)] · [A+(x, ω) − Ĭ0
+(x, ω)]dxdω

} 1
2

×
{∫ ∞

−∞

∫
Ω

G+(x, ω)∇v+(x, ω) · ∇v+(x, ω)dxdω
} 1

2
,
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whence
∫ ∞

−∞

∫
Ω

Gc(x, ω)∇v+(x, ω) · ∇v+(x, ω)dxdω

≤
∫ ∞

−∞

∫
Ω

G−1
+ (x, ω)[A+(x, ω) − Ĭ0

+(x, ω)] · [A+(x, ω) − Ĭ0
+(x, ω)]dxdω.

(24.2.14)
Therefore, if A − Ĭ0 ∈ H′

G
(R+; L2(Ω)), then v ∈ HG(R+; H1

0(Ω)). From (24.2.14),
applying the Poincaré theorem, it follows that there exists a constant C(Ω) such that

C(Ω)
∫ ∞

−∞

∫
Ω

Gc(x, ω)v+(x, ω) · v+(x, ω)dxdω

≤
∫ ∞

−∞

∫
Ω

G−1
+ (x, ω)[A+(x, ω) − Ĭ0

+(x, ω)] · [A+(x, ω) − Ĭ0
+(x, ω)]dxdω.

Hence, if the supplies f and I0 satisfy f ∈ H′
G

(R+; H−1(Ω)) and I0 ∈ H′
G

(R+; L2(Ω)), the function v belongs to HG(R+; H1(Ω)) and it is a virtual work so-
lution of the problem (24.2.6)–(24.2.7) in the sense of Definition 24.2.1. �

24.2.3 Dynamical Problem in Linear Viscoelasticity

Let Ω ⊂ R3 be a smooth bounded domain occupied by a continuous linear viscoelas-
tic solid whose constitutive equation is given by (24.2.2). The dynamical problem
for such a material is expressed by the equation

ü(x, t) = ∇ · T(x, t) + f(x, t) ∀x ∈ Ω, ∀t > 0. (24.2.15)

Boundary and initial conditions must be added. For this purpose, on assuming elastic
boundary conditions on ∂Ω, we put

T(x, t)n(x) + α(x)u(x, t) = 0 ∀x ∈ ∂Ω, ∀t > 0,

u(x, 0) = u0(x), u̇(x, 0) = v0(x), u(x, τ) = u0(x,−τ) ∀x ∈ Ω, ∀τ ≤ 0,
(24.2.16)

where n is the outward normal on ∂Ω, and the scalar function α belongs to L2(∂Ω)∩
L∞(∂Ω) and a.e. in ∂Ω satisfies

α(x) ≥ αm > 0. (24.2.17)

Also u0 is the initial history of the displacement vector [114].
The instantaneous elastic modulus G0 and the Boltzmann relaxation function

derivative G′ in (24.2.2) are symmetric fourth-order tensors such that

G0 ∈ C(Ω̄), G′ ∈ L1(R+; Ω̄) ∩ L2(R+;Ω); (24.2.18)

consequently, the relaxation function G, given by (8.1.7), is well defined; moreover,
it is continuous in Ω̄ × R+ and differentiable in Ω × R++ with
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G∞(x) = lim
t→∞

G(x, t) = G0(x) +
∫ ∞

0
G′(x, s)ds.

Since the body is a solid, we require that G∞ be uniformly positive definite in Ω, i.e.,
that there exists a scalar, denoted g∞m > 0, such that

0 < g∞m |A|2 ≤ inf
x∈Ω

A ·G∞(x)A ∀A ∈ Sym\{0}. (24.2.19)

Also, by virtue of the thermodynamic constraint (8.1.18), −Gs(x, ω) is uniformly
positive definite in Ω for any ω > 0, i.e.,

gm(ω)|A|2 ≤ − inf
x∈Ω

A ·G′
s(x, ω)A ∀A ∈ Sym, (24.2.20)

where gm(ω) denotes a continuous function gm : R++ → R
++ From the inequality

(24.2.20) it follows that (see (8.1.21) and (C.2.17)2)

G′(x, 0) = lim
ω→∞

ωG′
s(x, ω)

is uniformly negative semidefinite in Ω. A more restrictive property of definiteness
is here assumed by supposing that there exists g′0 > 0 such that

g′0|A|
2 ≤ − inf

x∈Ω
A ·G′

s(x, 0)A ∀A ∈ Sym.

Using the Fourier inversion formula to obtain (8.1.20) and then applying the Riemann–
Lebesgue lemma (C.2.13) (see also (7.2.19)) yields the asymptotic relation

G∞(x) −G0(x) =
2
π

∫ ∞

0

G′
s(x, ω)

ω
dω. (24.2.21)

Thus
G′

s(x, ω)

ω
∈ L1(R) ∀x ∈ Ω,

which follows from (24.2.20) and the boundedness of the left-hand side of (24.2.21).
These relationships also give that G0 −G∞ is uniformly positive in Ω. Therefore, G0

has this property so there exists a scalar, denoted by g0m > 0, such that

0 < g0m |A|2 ≤ inf
x∈Ω

A ·G0(x)A ∀A ∈ Sym\{0}. (24.2.22)

The requirements (24.2.18), (24.2.20), and (24.2.22) on the relaxation function en-
sure that ωG′

s(x, ·) ∈ L∞(R) and G′
s(x, ·) belong to L1(R)∩L2(R) for every x ∈ Ω (see

[25, Theorem 6.5 d]). The quantities G0, G∞, and G′
s(·, ω) are uniformly bounded in

Ω, i.e., for every A ∈ Sym,

sup
x∈Ω

G0(x)A · A ≤ g0M |A|2, sup
x∈Ω

G∞(x)A · A ≤ g∞M |A|2,

sup
x∈Ω

−G′
s(x, ω)A · A ≤ gM(ω)|A|2,

(24.2.23)

where the constants g0M , g∞M and the continuous function gM : R++ → R
++ are

related to G0, G∞, and G′
s(·, ω), respectively.
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24.2.3.1 Weak Solution in a Variational Sense

In order to formulate the concept of a weak solution, we consider Hamilton’s varia-
tional principle, related to the following differential problem.

The expression for the stress tensor (24.2.2) can be written in the form

T(τ) =
∫ τ

0
G′(s)∇u(τ − s)ds +G0∇u(τ) + Ĩ0(τ), (24.2.24)

where (see (8.2.3) and after (8.2.6)),

Ĩ0(τ) =
∫ ∞

0
G′(τ + s)∇ut=0(s)ds.

The equation of motion can be expressed in terms of the unknown function u(x, t) ∈
C2,2(Ω × R+;R3) as follows:

Lu := ü − ∇ · (G0∇u +G′ ∗ ∇u) − f = 0 in Ω × R++.

Here, the symbol * denotes the convolution product (C.3.4), so that

(G′ ∗ ∇u)(τ) =
∫ τ

0
G′(τ − s)∇u(s)ds

and
f(τ) = b(τ) + ∇ · Ĩ0(τ),

where the body force b and Ĩ0 are known functions in Ω̄ × R+. Moreover, suppose
that the boundary ∂Ω of Ω consists of two subsets ∂Ωu and ∂ΩT such that

∂Ωu ∪ ∂ΩT = ∂Ω, ∂Ωu ∩ ∂ΩT = ∅.

Then we consider a mixed value problem P defined as follows:

Lu = 0 in Ω × R++,
u = 0 on ∂Ωu × R+, u(0) = u0, u̇(0) = u̇0 in Ω̄,

Tn = t̂ − Ĩ0n on ∂ΩT × R+,
(24.2.25)

where t̂ is a known function.
Let us introduce the functional

F(u) =
1
2

∫
Ω

[u̇ ∗ u̇ + ∇u ∗G0∇u + ∇u ∗G′ ∗ ∇u

− 2u ∗ f − 2u · u̇0]dx −
∫
∂ΩT

u ∗
(
t̂ − Ĩ0n

)
dx,

which provides a variational formulation of this problem, as the following theorem
states.
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Theorem 24.2.3. Let K be the set of functions in C2,2(Ω×R+;R3) that satisfy condi-
tions (24.2.25)2. Then the functional F(u) has a stationary point u ∈ K if and only if
u is a solution of the mixed problem P.

Proof. Let u ∈ K and let ϕ ∈ K be a function that vanishes on ∂Ωu ×R+ and at τ = 0
with its time derivative on Ω̄. Then we have u + νϕ ∈ K for any ν ∈ R and

dF(u|ϕ) =
dF(u + νϕ)

dν

∣∣∣∣∣
ν=0

=

∫
Ω

[∫ τ

0
∇ϕ(τ − s) ·G0∇u(s)ds

+

∫
Dτ

∇ϕ(ξ) ·G′(τ − ξ − η)∇u(η)dξdη

+

∫ τ

0
ϕ̇(τ − s) · u̇(s)ds −

∫ τ

0
ϕ(τ − s) · f(s)ds

− ϕ(τ) · u̇0]dx −
∫
∂ΩT

∫ τ

0
ϕ(τ − s) ·

(
t̂ − Ĩ0n

)
(s) dsdx,

(24.2.26)

where
Dτ =

{
(ξ, η) ∈ R2; 0 ≤ ξ + η ≤ τ

}
and n is the outward normal to ∂ΩT . Integrating by parts, we have∫

Ω

∫ τ

0
∇ϕ(τ − s) ·G0∇u(s)dsdx = −

∫
Ω

∫ τ

0
ϕ(τ − s) · ∇ · [G0∇u(s)]dsdx

+

∫
∂ΩT

∫ τ

0
ϕ(τ − s) ·G0∇u(s)n dsdx;

analogously, we obtain∫
Ω

∫
Dτ

∇ϕ(ξ) ·G′(τ − ξ − η)∇u(η)dξdηdx

= −
∫
Ω

∫ τ

0
ϕ(τ − s) · ∇ ·

∫ s

0
G′(s − η)∇u(η)dηdsdx

+

∫
∂ΩT

∫ τ

0
ϕ(τ − s) ·

∫ s

0
G′(s − η)∇u(η)ndηdsdx

and finally∫
Ω

∫ τ

0
ϕ̇(τ − s) · u̇(s)dsdx =

∫
Ω

[∫ τ

0
ϕ(τ − s) · ü(s)ds + ϕ(τ) · u̇0

]
dx.

Substituting these results, we obtain

dF(u|ϕ) =∫
Ω

∫ τ

0
ϕ(τ − s) ·

[
ü(s) − ∇ ·G0∇u(s) − ∇ ·

∫ s

0
G′(s − η)∇u(η)dη − f(s)

]
dsdx

−
∫
∂ΩT

{∫ τ

0
ϕ(τ − s) ·

[
t̂(s) −

(
Ĩ0(s) +G0∇u(s) +

∫ s

0
G′(s − η)∇u(η)dη

)
n
]
ds

}
dx.
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From the arbitrariness of ϕ on Ω × R++ and ∂ΩT × R++ it follows that

dF(u|ϕ) = 0 ∀ϕ ∈ K (24.2.27)

only if the conditions in (24.2.25) are satisfied.
Conversely, the validity of (24.2.25) yields that F is stationary at the solution u.

�

In terms of (24.2.27), we can give the following definition, useful for proving
existence, uniqueness, and stability results.

Definition 24.2.4. A function u ∈ H(Ω,R+) = H1(R+; L2(Ω)) ∩ L2(R+; H1
0(Ω)) is

a weak solution of the initial boundary value problem (24.2.25), with data u0 ∈
H1(Ω) and u̇0 ∈ L2(Ω), if it satisfies the stationarity condition (24.2.27) for all ϕ ∈
H(Ω,R+).

Remark 24.2.5. Using (24.2.26) and (24.2.27) we obtain an equivalent definition of
weak solution by means of

dF(u|ϕ) =
∫
Ω

[∫ τ

0
∇ϕ(τ − s) ·G0∇u(s)ds

+

∫
Dτ

∇ϕ(ξ) ·G′(τ − ξ − η)∇u(η)dξdη

+

∫ τ

0
ϕ̇(τ − s) · u̇(s)ds −

∫ τ

0
ϕ(τ − s) · f(s)ds

− ϕ(τ) · u̇0]dx −
∫
∂ΩT

∫ τ

0
ϕ(τ − s) ·

(
t̂ − Ĩ0n

)
(s) dsdx = 0.

24.2.3.2 Virtual Power Solution

In the dynamics of viscoelastic solids it is possible to give a different definition of
solution by using, instead of a variational principle as in Definition 24.2.4, the classi-
cal principle of virtual power. This alternative definition seems more consistent with
the use of the natural space of solutions related to the domain of definition of the free
energy given by Breuer and Onat in [42].

To this purpose we observe that the equation of motion

ü = ∇ · T + f,

combined with (24.2.24), written in the form

T(t) = G(t)∇u(0) +
∫ t

0
G(t − τ)∇u̇(τ))dτ + Ĩ0(τ),

yields (see (24.2.6))

v̇(t) = ∇ ·
∫ t

0
G(t − τ)∇v(τ)dτ + b(t) in Ω × R++, (24.2.28)
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where we put v = u̇ and

b(t) = f(t) + ∇ ·
[
Ĩ0(t) +G(t)∇u(0)

]
.

In this equation, the unknown function is now v; we associate with it the following
initial and boundary conditions:

v(x, 0) = v0(x) = 0 ∀x ∈ Ω, v(x, t)|∂Ω = 0 ∀(x, t) ∈ ∂Ω × R+. (24.2.29)

There is no loss of generality in assuming the homogeneous condition. Indeed, let us
drop the assumption that v0(x) is zero (see [232]). Now define the function z such
that z ∈ C∞(R+; H1

0(Ω)) and

z(x, 0) = −v0(x), ż(x, 0) = −b(x, 0).

Then ṽ = v+ z satisfies (24.2.28) with homogeneous initial boundary conditions and
with b(x, t) replaced by

b(x, t) + ż(x, t) − ∇ ·
∫ t

0
G(x, t − s)∇z(x, s)ds.

Without changing notation strictly required by this observation, we inner multiply
(24.2.28) by a smooth function ϕ(x, t), defined on Ω × R+ with properties

ϕ(x, t)|∂Ω = 0, ϕ(x,T ) = 0,

and integrate on Ω × [0,T ] to obtain
∫ T

0

∫
Ω

v(t) · ϕ̇(t)dxdt =
∫ T

0

∫
Ω

∫ t

0
∇ϕ(t) ·G(t − τ)∇v(τ)dτdxdt

+

∫ T

0

∫
Ω

∇ϕ(t) ·
[
Ĩ0(t) +G(t)∇u(0)

]
dxdt

−
∫ T

0

∫
Ω

ϕ(t) · f(t)dxdt.

(24.2.30)

The weak formulation of the dynamics of a viscoelastic body expressed by
(24.2.30) calls to mind the principle of virtual power. Now, the unknown function
is the velocity v, of which only the first-order derivatives ∇v are involved; moreover,
the test function ϕ is any vector function on Ω × R+ that vanishes on ∂Ω and also at
time T .

In order to give a definition of the weak solution v associated with (24.2.30), we
must introduce function spaces for v and ϕ. For this purpose, it is convenient to refer
to the minimum free energy due to Breuer and Onat [42].

We consider the following function spaces:

HG(R+; H1
0(Ω))

=

{
v ∈ L2

loc(R
+; H1

0(Ω));
∫ ∞

0

∫ ∞

0

∫
Ω

∇v(τ) ·
[
G∞ + Ğ(τ − η)

]
∇v(η)dxdηdτ < ∞

}
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and
F(Q) = H1/2(R+; L2(Ω)) ∩HG(R+; H1

0(Ω)),

where Q = Ω × R+ and Ğ(x, η) = G(x, η) −G∞(x) as defined in (8.2.4).
These spaces are Hilbert spaces with the inner products

(v1, v2)HG =

∫ ∞

0

∫ τ

0

∫
Ω

{
∇v2(τ) ·

[
G∞ + Ğ(τ − η)

]
∇v1(η)

+ ∇v1(τ) ·
[
G∞ + Ğ(τ − η)

]
∇v2(η)

}
dxdηdτ

and

(v1, v2)F = −1
2

∫ ∞

0

∫
Ω

[v1(x, t) · v̇2(x, t) + v2(x, t) · v̇1(x, t)]dxdt + (v1, v2)HG

=
1
2

∫
Ω

v1(x, 0) · v2(x, 0)dx + (v1, v2)HG .

Moreover, the states Ĩ0 are elements of the dual space

H∗
G(R+; L2(Ω)) =

{
Ĩ0 ∈ L2

loc(R
+; L2

loc(Ω));∫ ∞

0

∫
Ω

Ĩ0(τ) · ∇v(τ)dxdτ < k‖v‖HG ∀v ∈ HG(R+; H1
0(Ω))

}
.

We can now give the following definition of a virtual power solution.

Definition 24.2.6. A function v ∈ F(Q) is said to be a virtual power solution of
the problem (24.2.28), (24.2.29) with data v0 = 0 and f ∈ H−1/2(R+; L2(Ω)) ∩
H∗

G(R+; H−1(Ω)), Ĩ0 ∈ H∗
G(R+; L2(Ω)) if it satisfies the identity (24.2.30) for any

ϕ ∈ F(Q).

24.2.3.3 Existence and Uniqueness

We now give a proof of existence and uniqueness of the solution for the dynamical
problem.

Using the constitutive equation (24.2.2), the following system can be derived:

ü(x, t) = ∇ · {G0(x)∇u(x, t) + [G′ ∗ ∇u](x, t)}
+ ∇ · T0(x, t) + f(x, t) ∀x ∈ Ω, ∀t > 0,

{G0(x)∇u(x, t) + [G′ ∗ ∇u](x, t) + T0(x, t)}n(x)

+ α(x)u(x, t) = 0 ∀x ∈ ∂Ω, ∀t > 0,

n(x, 0) = u0(x), v(x, 0) = v0(x) ∀x ∈ Ω,

(24.2.31)

where

T0(x, t) =
∫ ∞

t
G′(x, s)∇u0(x, s − t)ds



574 24 Existence and Uniqueness

and

[G′ ∗ ∇u](x, t) =
∫ t

0
G′(x, s)∇ut(x, s)d s.

This system is an integrodifferential mixed problem with a radiation boundary con-
dition.

A variational formulation of this problem can be given by introducing the func-
tion space

H(Ω,R+) = H1(R+; L2(Ω)) ∩ L2(R+; H1(Ω)).

This is a Hilbert space with the inner product

(ϕ1,ϕ2)H =
∫ ∞

0

∫
Ω

[∇ϕ1(x, t) · ∇ϕ2(x, t) + ϕ̇1(x, t) · ϕ̇2(x, t)] dxdt

+

∫ ∞

0

∫
∂Ω

ϕ1(x, t) · ϕ2(x, t)dxdt,
(24.2.32)

comparable to the usual inner product
∫ ∞

0

∫
Ω

[∇ϕ1(x, t) · ∇ϕ2(x, t) + ϕ1(x, t) · ϕ2(x, t) + ϕ̇1(x, t) · ϕ̇2(x, t)]dxdt,

by virtue of the estimate

‖f‖2
Ω ≤ K1‖∇f‖2

Ω + K2‖f‖2
∂Ω, (24.2.33)

which holds for functions f ∈ H1(Ω), where Ω is a bounded regular open subset of
R

3, K1 and K2 being constants depending on Ω [298].

Definition 24.2.7. A function u ∈ H(Ω,R+) is a weak solution of the initial boundary
value problem (24.2.31) with data f, ∇ · T0 ∈ L2(R+; L2(Ω)), u0 ∈ H1(Ω) and v0 ∈
L2(Ω) if u(x, 0) = u0(x) almost everywhere in Ω and

∫ ∞

0

∫
Ω

{[
G0(x)∇u(x, t) +

∫ t

0
G′(x, s)∇ut(x, s)d s

]
· ∇ϕ(x, t)

− u̇(x, t) · ϕ̇(x, t)}dxdt +
∫ ∞

0

∫
∂Ω

α(x)u(x, t) · ϕ(x, t)dxdt

=

∫
Ω

v0(x) · ϕ(x, 0)dx +
∫ ∞

0

∫
Ω

[f(x, t) · ϕ(x, t) − T0(x, t) · ∇ϕ(x, t)]dxdt

(24.2.34)
for all ϕ ∈ H(Ω,R+).

Before proving the theorem of existence and uniqueness of a weak solution of
the evolution problem (24.2.31), we consider the following.
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24.2.3.4 Transformed Problem

The dynamical problem under consideration can be transformed by means of the
Fourier transform by introducing HF(Ω,R+), the space of Fourier transforms of the
functions of H(Ω,R+). For causal time functions we have

ϕF ∈ L2(R; H1(Ω)), iωϕF − ϕ0 ∈ L2(R; H1(Ω)),

where
ϕ0(x) = lim

t→0+
ϕ(x, t).

By applying Parseval’s formula to (24.2.32), an inner product in HF(Ω,R+) can
be naturally defined by means of

(ϕ1F
,ϕ2F

)HF =
1

2π

∫ ∞

−∞

∫
Ω

{
∇ϕ1F

(x, ω) · ∇ϕ2F
(x, ω)

+ [iωϕ1F
(x, ω) − ϕ10

(x)] · [iωϕ2F
(x, ω) − ϕ20

(x)]}dxdω

+
1

2π

∫ ∞

−∞

∫
∂Ω

ϕ1F
(x, ω) · ϕ2F

(x, ω)dxdω.

Thus, there exists a natural isomorphism between H(Ω,R+) and HF(Ω,R+) [310].
Let us introduce the sesquilinear form

a(uF ,ϕF) =
1

2π

∫ ∞

−∞

∫
Ω

−[iωuF(x, ω) − u(x, 0)] · [iωϕF(x, ω) − ϕ(x, 0)]dxdω

+
1

2π

∫ ∞

−∞

∫
Ω

[G0 +G
′
F(x, ω)]∇uF(x, ω) · ∇ϕF(x, ω)dxdω

+
1

2π

∫ ∞

−∞

∫
∂Ω

αuF(x, ω) · ϕF(x, ω)dxdω −
∫
Ω

u̇(x, 0) · ϕ(x, 0)dx,

which allows us to write (24.2.34) as

a(uF ,ϕF) =
1

2π

∫ ∞

−∞

∫
∂Ω

[
fF(x, ω)·ϕF(x, ω)−T0F(x, ω)·∇ϕF(x, ω)

]
dxdω, (24.2.35)

by virtue of Parseval’s formula. Therefore, HF(Ω,R) is the natural space for the
Fourier transform of the weak solution of (24.2.31).

Lemma 24.2.8. A function uF ∈ HF(Ω,R) is the Fourier transform of a weak solu-
tion of the initial boundary value problem (24.2.31) in the sense of Definition 24.2.7
if and only if the equality (24.2.35) holds for all ϕF ∈ HF(Ω,R).

Proof. The sesquilinear form a, taking account of

ϕ(x, 0) =
1
π

∫ ∞

−∞
ϕF(x, ω)dω, ϕ̇(x, 0) =

1
π

∫ ∞

−∞
[iωϕF(x, ω) − ϕ(x, 0)]dω,

can be written as
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a(uF ,ϕF) = − 1
2π

∫ ∞

−∞

∫
Ω

[ω2uF(x, ω) + u̇(x, 0) + iωu(x, 0)] · ϕF(x, ω)dxdω

+
1

2π

∫ ∞

−∞

∫
Ω

[G0 +G
′
F(x, ω)]∇uF(x, ω) · ∇ϕF(x, ω)dxdω

+
1

2π

∫ ∞

−∞

∫
∂Ω

αuF(x, ω) · ϕF(x, ω)dxdω.

(24.2.36)
From (24.2.35), using (24.2.36) and putting ϕF(x, ω) = ϕ1(x)ϕ2(ω), where ϕ1 ∈
H1(Ω) and ϕ2 ∈ L2(R) is an arbitrary function, it follows that for almost all ω ∈ R,

−
∫
Ω

[ω2uF(x, ω) + u̇0(x) + iωu0(x)] · ϕ1(x)dx

+

∫
Ω

[G0 +G
′
F(x, ω)]∇uF(x, ω) · ∇ϕ1(x)dx +

∫
∂Ω

αuF(x, ω) · ϕ1(x)dx

=

∫
∂Ω

[
fF(x, ω) · ϕ1(x)dx − T0F(x, ω) · ∇ϕ1(x)

]
dx

(24.2.37)

holds for every ϕ1 ∈ H1(Ω). This identity yields that uF(·, ω) is a generalized solution
in H1(Ω) for the elliptic problem

− ω2uF(x, ω) − ∇ · {[G0(x) +G′
F(x, ω)]∇uF(x, ω)}

= u̇0(x) + iωu0(x) + fF(x, ω) + ∇ · T0F(x, ω) ∀x ∈ Ω,

[G0(x) +G′
F(x, ω)]∇uF(x, ω)n(x) + α(x)uF(x, ω)

= −T0F(x, ω)n(x) ∀x ∈ ∂Ω.

This problem, with zero initial data (24.2.31)3, becomes

− ω2uF(x, ω) − ∇ · {[G0(x) +G′
F(x, ω)]∇uF(x, ω)}

= fF(x, ω) + ∇ · T0F(x, ω) ∀x ∈ Ω,

[G0(x) +G′
F(x, ω)]∇uF(x, ω)n(x) + α(x)uF(x, ω) = 0 ∀x ∈ ∂Ω.

(24.2.38)

Remark 24.2.9. Since G∞ and G′
s(·, ω) are bounded and positive definite, we have,

using (24.2.20) and (24.2.23)3 with (24.2.19) and (24.2.23)2,

gm(ω)‖∇uF(ω)‖2 ≤ −
∫
Ω

G′
s(x, ω)∇uF(x, ω) · ∇uF(x, ω)dx

≤ gM(ω)‖∇uF(ω)‖2 ∀ω > 0,

g∞m‖∇uF(0)‖2 ≤
∫
Ω

G∞(x)∇uF(x, 0) · ∇uF(x, 0)dx ≤ g∞M ‖∇uF(0)‖2ω = 0.

So the problem (24.2.38) is Fredholm solvable in H1(Ω) for every source in L2(Ω)
(see Theorem 4.1, page 186 of [224]); moreover, as a consequence of Fredholm’s
theorems, the existence theorem follows from the uniqueness theorem. �
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Theorem 24.2.10. (Uniqueness) For every ω ∈ R the problem (24.2.38) has almost
one solution uF(·, ω) ∈ H1(Ω).

Proof. To prove uniqueness, one must show that for every ω ∈ R, the problem

− ω2uF(x, ω) − ∇ · {[G0(x) +G′
F(x, ω)]∇uF(x, ω)} = 0 ∀x ∈ Ω,

[G0(x) +G′
F(x, ω)]∇uF(x, ω)n(x) + α(x)uF(x, ω) = 0 ∀x ∈ ∂Ω,

has only the trivial solution. Thus, (24.2.37) can be written as
∫
Ω

{
ω2uF(x, ω) · ϕ(x) − [G0(x) +G′

F(x, ω)]∇uF(x, ω) · ∇ϕ(x)}dx

−
∫
∂Ω

αuF(x, ω) · ϕ(x)dx = 0.
(24.2.39)

Hence, if ω = 0, putting ϕ = uF(·, 0) and noting that G0(x) +G′
s(x, ·) is a contin-

uous function of ω such that

lim
ω→0

[G0(x) +G′
F(x, ω)] = lim

ω→0
[G0(x) +G′

c(x, ω)] = G∞(x), (24.2.40)

it follows that∫
Ω

G∞(x)∇uF(x, 0) · ∇uF(x, 0)dx +
∫
∂Ω

α(x)|uF(x, 0)|2dx = 0.

The symmetry and positive definiteness of G∞ together with the positivity of α give

‖sym∇uF(·, 0)‖ = 0, ‖uF(·, 0)‖∂Ω = 0.

Then uF(·, 0) ∈ H1
0(Ω) and Korn’s inequality [98] yields ‖uF(·, 0)‖ = 0.

Let ω � 0 and ϕF = uF(·, ω); then the imaginary part of (24.2.39) gives
∫
Ω

G′
s(x, ω)∇uF(x, ω) · ∇uF(x, ω)dx = 0.

Thus, the assumption (24.2.20) ensures that ‖sym∇uF(·, ω)‖ = 0. Therefore, since
fF = 0 and T0F = 0, (24.2.39) yields

∫
Ω

ω2uF(x, ω) · ϕ(x)dx = 0 ∀ϕ ∈ C∞
0 (Ω),

that is, ‖uF(·, ω)‖ = 0. �

Remark 24.2.11. From Theorem 24.2.10 and Remark 24.2.9 it follows that the differ-
ential operator T(ω) defined by the system (24.2.38) is an isomorphism of H1(Ω) into
L2(Ω); moreover, it is a continuous function of ω, and the inverse operator T−1(ω) is
a continuous function of ω (see Lemma 44.1 of [310]).

This remark allows us to prove the following theorem.
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Theorem 24.2.12. For every ω ∈ R the problem (24.2.38) has one and only one
solution uF(·, ω) ∈ H1(Ω). Also, the following inequality holds:

‖∇uF(ω)‖ + ‖ωuF(ω)‖ + ‖uF(ω)‖∂Ω ≤ A(ω)[‖fF(ω)‖ + ‖ωT0F(ω)‖], (24.2.41)

with A ∈ L∞(R).

Proof. Let uF be a solution of the problem (24.2.38). Then we have the equality
∫
Ω

{−|ωuF(x, ω)|2 + [G0(x) +G′
F(x, ω)]∇uF(x, ω) · ∇uF(x, ω)}dx

+

∫
∂Ω

α(x)|uF(x, ω)|2dx

=

∫
∂Ω

[
fF(x, ω) · uF(x, ω)dx − T0F(x, ω) · ∇uF(x, ω)

]
dx.

(24.2.42)

Firstly, consider ω close to 0. By virtue of (24.2.40), there exists ω1 such that if
|ω| < ω1,

inf
x∈Ω

‖G0(x) +G′
F(x, ω)‖ ≥ inf

x∈Ω
‖G0(x) +G′

c(x, ω)‖ ≥ 1
2
g∞m > 0; (24.2.43)

moreover, using (24.2.33), we can find ω2 such that if |ω| < ω2 ≤ ω1,

‖ωuF(ω)‖2 ≤ ω2
2[K1‖∇uF(ω)‖2 + K2‖uF(ω)‖2

∂Ω]

≤ 1
4
g∞m‖∇uF(ω)‖2 +

1
2
αm‖uF(ω)‖2

∂Ω.
(24.2.44)

Then if |ω| < ω2, the real part of (24.2.42), (24.2.43), and (24.2.44) give

1
4
g∞m‖∇uF(ω)‖2 +

1
2
αm‖uF(ω)‖2

∂Ω

≤
∫
Ω

[G0(x) +G′
c(x, ω)]∇uF(x, ω) · ∇uF(x, ω)dx

+

∫
∂Ω

α(x)|uF(x, ω)|2dx − ω2‖uF(ω)‖2

≤ ‖fF(ω)‖‖uF(ω)‖ + ‖T0F(ω)‖‖∇uF(ω)‖
≤ [K1‖fF(ω)‖ + ‖T0F(ω)‖]‖∇uF(ω)‖ + K2‖fF(ω)‖‖uF(ω)‖∂Ω;

hence, with straightforward calculations, it follows that

‖∇uF(ω)‖ + ‖uF(ω)‖∂Ω ≤ λ[‖fF(ω)‖ + ‖T0F(ω)‖] ∀|ω| < ω2, (24.2.45)

where λ depends on g∞m , αm, K1, and K2.
Thus, we get the inequality (24.2.41) for |ω| < ω2 from (24.2.45) and from the

classical inequality [224]

‖uF‖2
∂Ω ≤ ‖∇uF‖2 + K3‖uF‖2, (24.2.46)
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which holds for functions of uF ∈ H1(Ω), where Ω is a bounded and regular domain
and K3 a constant depending on Ω.

Consider ω close to ∞. The imaginary and real parts of (24.2.42) yield

gm(ω)‖∇uF‖2 ≤ ‖fF(ω)‖‖uF(ω)‖ + ‖T0F(ω)‖‖∇uF(ω)‖,
‖ωuF(ω)‖2 ≤ β‖∇uF(ω)‖2 + αM‖uF(ω)‖2

∂Ω

+ ‖fF(ω)‖‖uF(ω)‖ + ‖T0F(ω)‖‖∇uF(ω)‖,
(24.2.47)

where
αM = ess supα

x∈∂Ω
(x), β = sup

(x,ω)∈Ω×R
|G0(x) +G′

c(x, ω)| < ∞.

The notation | · | indicates here a norm in the finite-dimensional space Lin {Sym},
such as that given by (A.2.5). From the inequalities (24.2.46) and (24.2.47) we have

‖∇uF‖2 ≤ 1
ωgm(ω)

‖fF(ω)‖‖ωuF(ω)‖ + 1
gm(ω)

‖T0F(ω)‖‖∇uF(ω)‖,

‖ωuF(ω)‖2 ≤ αM + β + gm(ω)
gm(ω)

[
1
ω
‖fF(ω)‖‖ωuF(ω)‖ + ‖T0F(ω)‖‖∇uF(ω)‖

]

+ αMK3‖uF(ω)‖2,
(24.2.48)

and for ω2 > 2αMK3, (24.2.48)2 gives

1
2
‖ωuF(ω)‖2 ≤ αM + β + gm(ω)

gm(ω)

[
1
ω
‖fF(ω)‖‖ωuF(ω)‖ + ‖T0F(ω)‖‖∇uF(ω)‖

]
.

(24.2.49)
Moreover, after some calculations, we obtain from (24.2.48)1 and (24.2.49)

‖∇uF(ω)‖+‖ωuF(ω)‖ ≤ 2
2[αM + β + gm(ω)] + 1

ωgm(ω)
[‖fF(ω)‖+‖ωT0F(ω)‖]. (24.2.50)

The positive definiteness of G′
0 ensures that for |ω| ≥ ω3 >

√
2αMK3,

2
2[αM + β + gm(ω)] + 1

ωgm(ω)
< 4

2αM + 2β + 3
g′0

, (24.2.51)

and for |ω| ≥ ω3, (24.2.41) follows from (24.2.50), (24.2.51), and (24.2.46).
Finally, the continuity of the inverse operator T−1(ω) ensures that (24.2.41) holds

in the compact set ω2 ≤ |ω| ≤ ω3. �

We can now prove the existence and uniqueness theorem of the evolution prob-
lem.

Theorem 24.2.13. For any linear viscoelastic solid obeying (24.2.2) with relax-
ation function G satisfying the constitutive assumptions (24.2.18)–(24.2.23), the
evolution problem (24.2.31), with α satisfying (24.2.17), f ∈ L2(R+; L2(Ω)), T0 ∈
H1

0(R+; H1
0(Ω)), and initial data equal to zero, has one and only one weak solution

u ∈ H(Ω,R+).
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Proof. By virtue of Theorem 24.2.12 and the assumptions on the data, we have
∫ ∞

−∞

[
‖∇uF(ω)‖2 + ‖ωuF(ω)‖2 + ‖uF(ω)‖2

∂Ω

]
dω

≤
∫ ∞

−∞
A2(ω)[‖fF(ω)‖ + ‖ωT0F(ω)‖]2dω < ∞

and hence uF ∈ HF(Ω,R+). Moreover, uF is the Fourier transform of the solution u ∈
H(Ω,R+) of the problem (24.2.31), because of the isomorphism between H(Ω,R+)
and HF(Ω,R+). �

24.2.3.5 Domain-of-Dependence Inequality

It is possible to define the maximum free energy potential as a consequence of the
hypotheses assumed for the constitutive equation (24.2.2) using the results related
to thermodynamic potentials [114]. Moreover, in [114] it is proved that the energy
propagates through the space with a finite speed, since a priori there exists a domain-
of-dependence inequality for the evolution problem (24.2.15) and (24.2.16), with an
initial history u0 that has finite maximum free energy. Some results about the exis-
tence of a domain-of-dependence inequality were also derived in [57, 245]; however,
in these works the maximum propagation speed of disturbances depends on time.

The thermodynamic potentials can be considered functionals of E. Any history
Et(x, ·) : R+ → Sym, for which the stress T is bounded is called an admissible history
characterized by ∣∣∣∣∣

∫ ∞

0
G′(x, s)Et(x, s)ds

∣∣∣∣∣ < ∞. (24.2.52)

Moreover, we note that any such histories may be considered linear continuous func-
tions of the space F and that we can take the set of admissible histories equal to the
larger F′, the space of all continuous functionals on F. With a straightforward calcu-
lation F′ turns out to be the set of histories Et ∈ D′, the dual of C∞

0 (R+), such that
(24.2.52) holds.

We consider the set of all admissible histories G ⊂ F′, where any free energy is
well defined and its subset G0 is equal to

{
Et : R+ → L2(Ω); ‖Et(·)‖ ∈ L2(R+)

}
.

Recall that [114] for any Et ∈ G0, since G′(x, ·) ∈ L1(R+)∩ L2(R+) and G′
s(x, ·) ∈

L1(R) ∩ L2(R), Parseval’s formula allows us to give the constitutive equation for the
stress tensor (24.2.1) the form

T(x, t) = G∞(x)E(x, t) +
2
π

∫ ∞

0
G′

s(x, ω)

[
Et

s(x, ω) − E(x, t)
ω

]
dω, (24.2.53)

which is a special case of (7.2.34), written on R+ rather than R. Moreover, under the
hypotheses assumed for the relaxation function G, we can consider the free energy
density ψM in the form
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ψM(Et(x, ·)) = 1
2
G∞(x)E(x, t) · E(x, t)

− 1
2π

∫ ∞

0
ωG′

s(x, ω)

[
Et

s(x, ω) − E(x, t)
ω

]
·
[
Et

s(x, ω) − E(x, t)
ω

]
dω

for every history Et ∈ G0.

Proposition 24.2.14. The functional ψM defines a norm, namely

|Et(x, ·)|2M := 2ψM(Et(x, ·)), (24.2.54)

and the spaceHM, obtained as a completion of G0 relative to this norm, is a Banach
space. Moreover, the stress tensor T is well defined and is continuous on HM, in the
sense that

|T(x, t)|2 ≤ [|G0(x) −G∞(x)| + |G∞(x)|]|Et(x, ·)|2M . (24.2.55)

Proof. For any symmetric and positive definite tensor A, we can define the symmet-
ric and positive tensor

√
A (Sect. A.2.1) such that

√
A
√
A = A and |

√
A| =

√
|A|.

Thus, from (24.2.53) we have

|T(x, t)|2 ≤ (1 + α)|G∞(x)|E(x, t) ·G∞(x)E(x, t)

−
(
1 +

1
α

)
2
π

∣∣∣∣∣
∫ ∞

0
−
G′

s(x, ω)

ω
dω

∣∣∣∣∣ 1
π

∫ ∞

0
ωG′

s(x, ω)

[
Et

s(x, ω) − E(x, t)
ω

]

×
[
Et

s(x, ω) − E(x, t)
ω

]
dω,

since G∞ and G′
s are positive definite. Hence, by putting α = |G0(x)−G∞(x)|

|G∞(x)| and using
(24.2.21) with (24.2.54), the relation (24.2.55) follows. �

Also, for every Et ∈ HM , we have (see (8.6.32)) [114]

ψ̇M(Et(x, ·)) = T(x, t) · Ė(x, t). (24.2.56)

Let us denote by eM(t) the total maximum mechanical energy at time t, related to
the maximum free energy ψM , expressed in terms of u by means of

eM(t) =
∫
Ω

[
1
2
|u̇(x, t)|2 + ψM(∇ut(x, ·))

]
dx +

1
2

∫
∂Ω

α(x)|u(x, t)|2dx.

Proposition 24.2.15. For every history ut, where Et ∈ HM, there exists a positive
constant k such that

‖u̇(t)‖2 + ‖∇u(t)‖2 + ‖u(t)‖2 ≤ keM(t). (24.2.57)
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Proof. Using the positive definiteness of G∞ and −G′
s, we see that∫

Ω

ψM(Et(x, ·))dx ≥ 1
2
g∞m‖sym∇u(t)‖2;

therefore,
‖u̇(t)‖2 + g∞m‖sym∇u(t)‖2 + αm‖u(t)‖2

∂Ω ≤ 2eM(t),

from which, using Korn’s inequality, (24.2.57) follows. �

To derive a domain-of-dependence inequality we introduce the following defini-
tion.

Definition 24.2.16. A function u ∈ H(Ω, (0, τ)) is a weak solution of the initial
boundary value problem (24.2.15) and (24.2.16) in the space-time domain Ω× (0, τ)
with initial conditions (24.2.31)3 and f ∈ L2(Ω, (0, τ)) if u(x, 0) = u0(x, 0) almost
everywhere in Ω and

∫ τ

0

∫
Ω

{[
G0(x)∇u(t) +

∫ ∞

0
G′(x, s)ut(x, s)ds

]
· ∇φ(x, t)

− u̇(x, t) · φ̇(x, t)
}
dxdt +

∫ τ

0

∫
∂Ω

α(x)u(x, t) · φ(x, t)dxdt

=

∫
Ω

v0(x) · φ(x, 0)dx +
∫ τ

0

∫
Ω

f(x, t) · φ(x, t)dxdt,

for every φ(x, t) ∈ H(Ω, (0, τ)).

Proposition 24.2.17. Let u ∈ H(Ω, (0, τ)) be a weak solution in the sense of Defini-
tion 24.2.16. Then

ess sup
(x,t)∈Ω×(0,τ)

2|T(x, t)u̇(x, t)|
|u̇(x, t)|2 + |Et(x, ·)|2M

= γ(τ) ≤
√
|G0 −G∞| + |G∞|. (24.2.58)

Proof. A classical algebraic inequality and (24.2.55) give

2|T(x, t) · u̇(x, t)| ≤ 1
β

[|G0(x) −G∞(x)| + |G∞(x)|]|Et(x, ·)|2M + β|u̇(x, t)|2, (24.2.59)

where β > 0. Letting β2 = |G0(x) −G∞(x)| + |G∞(x)|, (24.2.59) gives (24.2.58). �

Theorem 24.2.18. (Domain-of-Dependence Inequality) Any solution of the problem
(24.2.15)–(24.2.16) satisfies∫

Ω∩S r(x0)

[
|u̇(x, τ)|2 + |Eτ(x, ·)|2M

]
dx +

∫
∂Ω∩S r(x0)

α(x)|u(x, τ)|2dx

≤
∫
Ω∩S r+γτ(x0)

[
|u̇(x, 0)|2 + |E0(x, ·)|2M

]
dx +

∫
∂Ω∩S r+γτ(x0)

α(x)|u(x, 0)|2dx

+ 2
∫
Ω∩S r+γ(τ−t)(x0)

f(x, t) · u̇(x, t)dx,

(24.2.60)
where S r(x0) = {x; |x − x0| < r} and γ is defined in (24.2.58).
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Proof. Let u : [0, τ] → H1(Ω) be a weak solution of the problem (24.2.15) and
(24.2.16) and φ ∈ C∞

0 (R3 × R). We consider the function

eφ(t) =
∫
Ω

[
1
2
|u̇(x, t)|2 + ψM(Et(x, ·))

]
φ(x, t)dx +

1
2

∫
∂Ω

α(x)|u̇(x, t)|2dx,

whose first derivative can be seen to be given by

d
dt
eφ(t) =

∫
Ω

[
ü(x, t) − ∇ · T(Et(x, ·))

]
· u̇(x, t)φ(x, t)dx

+

∫
Ω

{[
1
2
|u̇(x, t)|2 + ψM(Et(x, ·))

]
φ̇(x, t) − T(Et(x, ·))u̇(x, t) · ∇φ(x, t)

}
dx

+
1
2

∫
∂Ω

α(x)|u̇(x, t)|2φ̇(x, t)dx,

(24.2.61)
using (24.2.56) with an integration by parts. Let φ have the form

φ(x, t) = φδ(|x − x0| − r − γ(τ − t)),

where γ is given by (24.2.58), φδ ∈ C∞(R), and

φδ(s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 ∀s ≤ −δ,

0 ∀s > δ,

0 ≤ φδ(s) < 1, φ′δ(s) ≤ 0 ∀s ∈ R,

whence
∇φ(x, t) = ∇|x − x0|φ′δ, φ̇(x, t) = γφ′δ.

Thus, using (24.2.15), it follows from (24.2.61) that

d
dt
eφ(t) =

∫
Ω

f(x, t) · u̇(x, t)φδ(|x − x0| − r − γ(τ − t))dx

+

∫
Ω

{
γ

[
1
2
|u̇(x, t)|2 + ψM(Et(x, ·))

]
− T(Et(x, ·))u̇(x, t) · ∇|x − x0|

}

φ′δ(|x − x0| − r − γ(τ − t))dx

+
1
2

∫
∂Ω

α(x)|u̇(x, t)|2γφ′δ(|x − x0| − r − γ(τ − t))dx

≤
∫
Ω

f(x, t) · u̇(x, t)φδ(|x − x0| − r − γ(τ − t))dx,

whence a time integration yields

eφ(τ) − eφ(0) ≤
∫ τ

0

∫
Ω

f(x, t) · u̇(x, t)φδ(|x − x0| − r − γ(τ − t))dxdt. (24.2.62)

Finally, since, when δ → 0, φδ tends boundedly to the characteristic function for
S r+γ(τ−t)(x0), the limit of (24.2.62) gives (24.2.60). �
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The free energy ψM exists for any relaxation function satisfying the minimal set
of properties required by thermodynamics. When further properties are assumed for
the relaxation function G, other free energy functionals can be considered for linear
viscoelastic materials, namely those discussed in Chap. 10.

In particular, if the relaxation function G is compatible with thermodynamics and
obeys (10.2.2), the Graffi–Volterra functional [173]

ψG(Et(x, ·)) = 1
2
G∞(x)E(x, t) · E(x, t)

− 1
2

∫ ∞

0
G′(x, s)[Et(x, s) − E(x, t)] · [Et(x, s) − E(x, t)]ds

can be used. It defines a norm, as the following proposition states.

Proposition 24.2.19. The functional ψG defines a norm |Et(x, ·)|2G := 2ψG(Et(x, ·)),
and the space HG, obtained as a completion of G0 relative to this norm is a Banach
space. Moreover, the stress tensor T is well defined and is continuous on HG, in the
sense that

|T(x, t)|2 ≤ [|G0(x) −G∞(x)| + |G∞(x)|]|Et(x, ·)|2G. (24.2.63)

Proof. From (24.2.2), since G∞ and −G′ are positive definite, we have

|T(x, t)|2 ≤ (1 + β)|G∞(x)|E(x, t) ·G∞(x)E(x, t)

−
(
1 +

1
β

) ∣∣∣∣∣
∫ ∞

0
−G′(x, s)ds

∣∣∣∣∣
×

∫ ∞

0
G′(x, s)[Et(x, s) − E(x, t)] · [Et(x, s) − E(x, t)]ds,

(24.2.64)

with β > 0. Putting β = |G0(x)−G∞(x)|
|G∞(x)| , the inequality (24.2.63) follows from (24.2.64).

�

We note that the inequality (24.2.63) leads to a domain-of-dependence inequality
for weak solutions of (24.2.15) and (24.2.16) with initial history u0 ∈ HG.

It is interesting to consider the scalar relaxation function

G(x, s) = G∞(x) +
n∑

k=1

Ak(x)e−αkS , (24.2.65)

where we have a sum of exponential functions with αk (k = 1, 2, . . . ,N) positive
constants, G∞ and Ak (k = 1, 2, . . . ,N) positive functions belonging to C(Ω̄)∩C1(Ω).
For such viscoelastic materials (indeed for any material with completely monotonic
relaxation functions, as defined by (10.1.8)), the Dill free energy functional (see
(10.2.4))

ψDill(Et(x, ·)) = 1
2
G∞(x)E(x, t) · E(x, t)

+
1
2

∫ ∞

0

∫ ∞

0
G′′(x, s1 + s2)[Et(x, s1) − E(x, t)] · [Et(x, s2) − E(x, t)]ds1ds2

can be introduced.
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Proposition 24.2.20. The functional ψDill defines a norm, namely |Et(x, ·)‖2
Dill :=

2ψDill(Et(x, ·)), and the space HDill obtained as a completion of G0 relative to this
norm is a Banach space. Moreover, the stress tensor T is well defined and is contin-
uous on HDill, in the sense that

|T(x, t)|2 ≤ G0(x)|Et(x, ·)|2Dill. (24.2.66)

Proof. The constitutive equation (24.2.2) becomes

T(x, t) = G∞(x)E(x, t) −
n∑

k=1

αkAk(x)Ek(x, t),

where Ek(x, t) =
∫ ∞

0
e−αks [Et(x, s) − E(x, t)]ds. Hence, we have

|T(x, t)|2 ≤
⎛⎜⎜⎜⎜⎜⎝G∞(x) +

n∑
k=1

Ak(x)

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝G∞(x)E2(x, t) +

n∑
k=1

α2
kAk(x)E2

k(x, t)

⎞⎟⎟⎟⎟⎟⎠ . (24.2.67)

The inequality (24.2.66) follows from (24.2.67) and the relations

G∞(x) +
n∑

k=1

Ak(x) = G0(x),
n∑

k=1

α2
kAk(x)e−αk(s1+s2) = G′′(x, s1 + s2).

�

Remark 24.2.21. For such models characterized by a scalar relaxation function, we
have

|G0(x) −G∞(x)| + |G∞(x)| = G0(x);

moreover, (24.2.55) and (24.2.63) become

|T(x, t)|2 ≤ G0(x)|Et(x, ·)|2M , |T(x, t)|2 ≤ G0(x)|Et(x, ·)|2G.

The spaces HG and HDill are larger than HM , because they, for example, include
bounded periodic histories, which are not in HM . Thus, the domain-of-dependence
inequality for the evolution problem (24.2.15)–(24.2.16) can be proved in relation to
a larger class of initial data for relaxation functions appropriate to ψG (i.e., obeying
(10.2.2)) and for (24.2.65), which indeed also obeys (10.2.2). However, if initial his-
tories belong to G0, the best estimate of speed of propagation is defined in (24.2.58),
since ψM is the maximum free energy.

24.2.3.6 Hyperbolicity

We recall the definition of hyperbolicity for differential operators of the following
type:

Lu(x, t) = 0 ∀(x, t) ∈ Ω × (0, τ0),

u(x, 0) = u0(x) ∀x ∈ Ω.
(24.2.68)
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Definition 24.2.22. The operator L is hyperbolic if for every smooth initial datum u0

satisfying u0(x) = 0 for x ∈ Ω\S r(x0), the problem (24.2.68) has a unique smooth
solution u(x, t) having a finite signal speed, i.e., there exists a positive scalar constant
c such that u at time t vanishes outside the set S r+ct ∩ Ω [83, 199].

By substituting the initial data u0 with the history of u at time t = 0, ut=0(x, s) =
u0(x, s), this definition can be extended to an integrodifferential system.

Theorem 24.2.23. Under the hypotheses of Theorem 24.2.18, the problem (24.2.15)
and (24.2.16), with sources f = 0 in Ω × (0, τ0), has a unique solution u, which at
time t vanishes outside the set Ω ∩ S r+ct(x0), where c =

√
|G0 −G∞| + |G∞|.

Proof. Let u be a weak solution of (24.2.15) and (24.2.16) and x̄ ∈ Ω\(S 2r+ct(x0) ∩
Ω). The hypotheses on the source and the initial history together with (24.2.60) yield

∫
Ω∩S r(x̄)

[
|u̇(x, t)|2 + |Et(x, ·)|2M

]
dx +

∫
∂Ω∩S r(x̄)

α(x)|u(x, t)|2dx = 0,

which, by virtue of (24.2.57), ensures that u(x, t) = 0 in Ω ∩ S r(x̄).
Since x̄ is an arbitrary point of Ω\(S 2r+ct(x0) ∩ Ω), it follows that u(x, t) = 0

outside S r+ct(x0) ∩ Ω. �

We observe that the existence of an upper bound for the propagation speed of
disturbances is very important, because in the absence of this upper bound, the hy-
perbolicity of the integrodifferential problem cannot be obtained as a consequence
of the domain-of-dependence inequality.



25

Controllability of Thermoelastic Systems with
Memory

25.1 The Controllability Problem: Generalities and Types

The evolution of any material system is described by means of partial differential
equations. With a suitable choice of controls, which may be source terms or boundary
conditions, we can act on a given state of the material.

If we fix an initial state and a final one for the system, we can look for a control,
to be applied at any time t ∈ [0,T ], such that the solution of the differential equations
matches both the initial state at time t = 0 and the final one at time t = T .

Such a study is said to be a controllability problem for the system.
Here, we present a class of problems related to thermoelastic systems of memory

type dealing with “hyperbolic-like” dynamics. For this purpose some results obtained
in the controllability context are reviewed (see, e.g., [271, 272]).

We start by recalling some useful definitions (for more details see, e.g., [323]).
Let H and U be two Hilbert spaces and let A : H → H and B : U → H be two

linear operators. Consider the linear differential system

zt(t) = Az(t) + B f (t), z(0) = z0 ∈ H, t ≥ 0, (25.1.1)

where the subscript t expresses the time derivative d
dt . We denote by

R(T ; z0) = {z(T ); f ∈ L2(0,T ;U)}, T > 0,

the set of reachable final states.
Let us list the following types of controllability:

1. Approximate controllability: System (25.1.1) is said to be approximately con-
trollable at time T if the set of reachable states R(T ; z0) is dense in H for every
z0 ∈ H.

2. Exact controllability: System (25.1.1) is said to be exactly controllable at time
T if R(T ; z0) = H for all z0 ∈ H. That is, system (25.1.1) can be driven from any
state to any state belonging to the same space of states as the system evolves.
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3. Null controllability: System (25.1.1) is said to be null controllable at time T if
0 ∈ R(T ; z0) for all z0 ∈ H. This means that an arbitrary state can be transferred
to the null state at time T . Null controllability is a physically interesting notion,
since the null state is an equilibrium point for system (25.1.1). In the case of
linear systems, null controllability is equivalent to the controllability to trajec-
tories. System (25.1.1) is said to be controllable to trajectories at time T > 0
if for any initial datum z0 in a suitable space H, there exists a control function
f ∈ L2(0,T ;U) such that the corresponding solution z of (25.1.1) is defined on
[0,T ] and satisfies

z(T ) = ẑ(T ),

where ẑ is a solution of (25.1.1) defined on [0,T ] and associated with given
initial datum ẑ0 in the same space H and a given function f̂ ∈ L2(0,T ;U).

Obviously, every exactly controllable system is null and approximately control-
lable too. When the linear infinite-dimensional system (25.1.1) is time-reversible,
null and exact controllability are equivalent notions, as in the finite-dimensional case.
In general, the converse is not true.

Let us consider, for instance, the heat equation with distributed control in the
domain Ω,

zt(x, t) − Δz(x, t) = f (x, t) in Ω × (0,T ),

z(x, t) = 0 on ∂Ω × (0,T ),

z(x, 0) = 0 in Ω,

with the control f belonging to L2(Ω× (0,T )). As proved, e.g., in [323, Theorem 2.7
(i), p. 214], the set of reachable states satisfies R(T ; 0) = H1

0(Ω) � L2(Ω) = H.
We are interested in the study of the exact controllability of a thermoelastic sys-

tem with thermal memory.
As is well known, in the classical linear theory of thermoelasticity, the Fourier

law is used to describe heat conduction in a body (see, e.g., [58]). This theory is
unable to account for the thermal memory effect that may prevail in some materials,
particularly at low temperatures. The heat equation resulting from the Fourier law is
of parabolic type and predicts that a thermal disturbance at one point of the body is
instantly felt everywhere in the body, as noted at the beginning of Chap. 9. Following
that discussion, the Fourier law for the heat flux is replaced by the Gurtin–Pipkin
law (9.1.1) [191], which contains the memory effect referred to above. In this case
the thermoelastic system is fully hyperbolic (see, e.g., [82, 129, 191]), which, in
particular, implies a finite speed of propagation of thermal disturbances, a property
that is physically more realistic.

Let Ω be a bounded, open, and connected subset of Rn, n ≥ 1, with smooth
boundary Γ = ∂Ω. Assume T > 0 and put Q = (0,T ) × Ω, Σ = (0,T ) × Γ. The
differential system is as follows:∗

∗ It is interesting to see how the dynamical equations (25.1.2)1,2 emerge from (2.4.12) and a
linear approximation to constitutive equations (7.1.21), the latter with heat flux and cold-
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utt(t) − μΔu(t) − (μ + λ)∇div u(t) + α∇θ(t) = 0 in Q,

θt(t) − (k ∗ Δθ)(t) + βdiv ut(t) = 0 in Q,

u(t) = f (t), (k ∗ θ)(t) = g(t) on Σ,

u(0) = u0, ut(0) = v0, θ(0) = θ0 in Ω,

(25.1.2)

where u is the displacement vector, θ is the relative temperature, μ and λ are the
Lamé coefficients satisfying μ > 0 and λ + μ > 0, k ∈ L1(R+). The constants α, β > 0
are coupling parameters depending on the properties of the material. By k ∗ θ we are
denoting the convolution product, that is, (C.3.4) or

(k ∗ θ)(t) =
∫ t

0
k(t − τ)θ(τ)dτ.

Controllability of linear differential systems with memory is a subject that has
attracted considerable attention in the literature.

Some results are concerned with models that exhibit hyperbolic characteristics,
where the notion of exact controllability is a more natural property for study. In
this case, the control time T has to be sufficiently large due to the finite speed of
related propagation. For a more careful review of some known results on analogous
problems, we refer to [271] and the references therein.

With respect to control systems with memory we may recall the following results.
In [234] Leugering proved reachability for a plate equation with memory. Lasiecka
established exact controllability with boundary control for a Kirchhoff plate and a
viscoelastic Kirchhoff plate with a general memory kernel depending on time and
space variables (see [230]). In [220, 221] Kim studied controllability problems for
systems with large memory by a unique continuation property, which is proved by
adapting an idea of Bardos, Lebeau, and Rauch (see [34]). Barbu and Iannelli studied
control for the heat equation with memory (see [33]). In particular, they showed the
exact controllability of the one-dimensional linear equation for a sufficiently large
interval of time. In [282] Pandolfi considered the Gurtin–Pipkin equation with con-
trol under the Dirichlet boundary condition and he proved exact controllability as a
consequence of the known exact controllability of the wave equation, making use of
cosine operator theory. Recently, in [61], Cavaterra, Lorenzi, and Yamamoto found
a Carleman estimate for a hyperbolic integrodifferential equation appearing in the
viscoelastic case.

25.2 Exact Controllability Under an Assumption on the
Smallness of k

Let us denote by ν = (ν1, . . . , νn) the unit normal on Γ directed toward the exterior
of Ω. Let x0 ∈ Rn and

ness gradient interchanged, as discussed after (5.1.8). Equation (25.1.2)1 is a generalization
of (2.4.15). The second relation of (25.1.2) also relies on the linear version of (3.3.7) (or
(5.1.2)) but neglecting the mechanical work term.
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m(x) = x − x0 = (x1 − x0
1, . . . , xn − x0

n),

Γ0 = {x ∈ Γ;m(x) · ν(x) > 0}, Σ0 = (0,T ) × Γ0.

In [271] the authors studied the control problem for the system (25.1.2) by means of
boundary mechanical and thermal controls (f , g) ∈ [L2(Σ0)]n × L2(Σ0), which can be
applied also only in a portion Γ0 of the boundary Γ. In such a case, a “strong” as-
sumption on the memory kernel is required in order to prove the exact controllability
of the system. In particular, the size of the memory kernel k, in a suitable norm, has
to be sufficiently small.

Hence, we have the following theorem.

Theorem 25.2.1. Let Ω be an open, bounded, and connected subset in Rn with
boundary Γ of class C2. Suppose that k(t) ∈ H2(R+) is a positive function and β
is a positive constant. Then there exist ε > 0 and T0 > 0 such that for any initial
and final states (u0, v0, θ0), (uT , vT , θT ) ∈ [L2(Ω)]n× [H−1(Ω)]n×H−1(Ω), there exists
a boundary control (f, g) ∈ [L2(Σ0)]n × L2(Σ0) such that the solution of the system
(25.1.2) satisfies

u(0) = u0, ut(0) = v0, θ(0) = θ0,

u(T ) = uT , ut(T ) = vT , θ(T ) = θT ,

for any T > T0, provided that ‖k′‖H1(R+) + β < ε.

The procedure to prove this result follows a direct approach; it can be reduced,
in particular, to obtain an inverse inequality for the adjoint system of (25.1.2) (see,
e.g., [235]).

Thus, firstly, it is necessary to evaluate the adjoint system of (25.1.2). By apply-
ing the transposition method (see, e.g., [236]), we see that it is given by

ϕtt(t) − μΔϕ(t) − (μ + λ)∇ divϕ(t) + β∇ψt(t) = 0 in Q,

−ψt(t) −
∫ T

t
k(s − t)Δψ(s) ds − α divϕ(t) = 0 in Q,

ϕ(t) = 0, ψ(t) = 0 on Σ,

ϕ(T ) = ϕ0, ϕt(T ) = ϕ1, ψ(T ) = ψ0 in Ω,

(25.2.1)

where we assume

(ϕ0,ϕ1, ψ0) ∈ [H1
0(Ω)]n × [L2(Ω)]n × H1

0(Ω).

Introducing, for later convenience,

w(t) = ϕ(T − t), η(t) = ψ(T − t),

the system (25.2.1) becomes
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wtt(t) − μΔw(t) − (μ + λ)∇ divw(t) − β∇ηt(t) = 0 in Q,

ηt(t) −
∫ t

0
k(t − s)Δη(s)ds − α divw(t) = 0 in Q,

w(t) = 0, η(t) = 0 on Σ,

w(0) = w0, wt(0) = w1, η(0) = η0 in Ω.

(25.2.2)

The energy function is given by

E(t) =
1
2

∫
Ω

[
|wt(t)|2 + μ|∇w(t)|2 + (μ + λ)| divw(t)|2 + β

α
|ηt(t)|2 + k0

β

α
|∇η(t)|2

]
dx,

where k0=k(0). The following lemmas, relating to direct and inverse inequalities,
can be proved using energy estimates and multiplier techniques (for more details,
see [271]).

Lemma 25.2.2 (Direct Inequality). Let Ω be a bounded open set of Rn with bound-
ary Γ of class C2. Assume that k ∈ H2(R) with k0 > 0 and

(w0,w1, η0) ∈ [H1
0(Ω)]n × [L2(Ω)]n × H1

0(Ω).

Then there exists a positive constant C such that

∫
Σ

[
μ

∣∣∣∣∣∂w(t)
∂ν

∣∣∣∣∣
2

+ (μ + λ)|divw(t)|2 + k0
β

α

∣∣∣∣∣∂η(t)
∂ν

∣∣∣∣∣
2]
dΣ ≤ CE(0),

for all solutions of the system (25.2.2).

Lemma 25.2.3 (Inverse Inequality). LetΩ be a bounded open set of Rn with bound-
ary Γ of class C2. Assume that k ∈ H2(R) and k0 > 0. Then there exist T0, γ > 0 such
that for any T > T0, the solution of the system (25.2.2) satisfies

∫
Σ0

[
μ

∣∣∣∣∣∂w(t)
∂ν

∣∣∣∣∣
2

+ (μ + λ)|divw(t)|2 + k0
β

α

∣∣∣∣∣∂η(t)
∂ν

∣∣∣∣∣
2]
dΣ ≥ γE(0),

provided that ‖k′‖H1(R) + β < ε, for some ε small enough.

Using classical procedures (see, e.g., [235]), one can show that for any T > T0,
the system (25.1.2) is exactly boundary controllable (for more details, see [271]).

Remark 25.2.4. In Lemma 25.2.3 the integral term is evaluated on the boundary Σ0 ⊆
Σ. Then the boundary control functions can act also only in a portion Γ0 of the
boundary Γ.

Remark 25.2.5. The hypothesis on the size of the relaxation function k, required to
obtain the inverse inequality in Lemma 25.2.3, is not optimal, and it depends directly
on the estimates of the multiplier terms.
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25.3 Exact Controllability with No Restriction on the Size of k

We now summarize certain results presented in [272], where exact controllability for
the system (25.1.2) is proved, with mechanical and thermal controls on the whole
boundary Γ, but where no restriction on the size of the memory kernel k is required.
These conditions depend, in particular, on the different techniques applied to find
the inverse inequality for the problem. In fact, such an inequality is not obtained by
multiplier techniques, as in the previous Sect. 25.2 (see also [271]), but is shown by
contradiction, by means of the introduction of a resolvent kernel and the application
of a unique continuation property, which is an extension of that already considered
by Kim in [220].

Consequently, the following statement holds.

Theorem 25.3.1. Let Ω be an open, bounded, and connected subset in Rn with
boundary Γ of class C2. Assume that the memory kernel k satisfies the following
conditions:

k ∈ H2(R+) ∩C2(R+), k0 = k(0) > 0,
|k′(0)|
k0

<
1

1 +
√
αβ

. (25.3.1)

The coupling parameters α and β are chosen such that

αβ <
μ + λ

(n − 1)2
(25.3.2)

holds when n ≥ 2. Then there exists T0 > 0 such that for any T > T0 and for any
initial and final states (u0, v0, θ0), (uT , vT , θT ) ∈ [L2(Ω)]n×[H−1(Ω)]n×H−1(Ω), there
exists a boundary control (f, g) ∈ [L2(Σ)]n×L2(Σ) such that the solution of the system
(25.1.2) satisfies

u(0) = u0, ut(0) = v0, θ(0) = θ0,

u(T ) = uT , ut(T ) = vT , θ(T ) = θT .

The proof of this theorem will be given later on, after a few considerations and
some lemmas.

Before finding the direct and the inverse inequalities, we rewrite the adjoint sys-
tem (25.2.2) by introducing the resolvent kernel of k, denoted by r, and such that

k0r(t) + (k′ ∗ r)(t) = −k′(t)
k0

. (25.3.3)

Observe that

r0 = r(0) = −k′(0)

k2
0

, r′(0) =
[k′(0)]2

k3
0

− k′′(0)

k2
0

. (25.3.4)

Introducing
v(t) = k0η(t) + (k′ ∗ η)(t) (25.3.5)
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and taking the convolution product with r (see Remark C.3.1) yields

[η ∗ (k0r + k
′ ∗ r)](t) = (v ∗ r)(t).

Substituting (25.3.3) in this equation and using (25.3.5) gives

η(t) =
v(t)
k0
+ (r ∗ v)(t); (25.3.6)

hence, by differentiating with respect to t, we have

ηtt(t) =
vtt(t)
k0
+ r0vt(t) + r

′(0)v(t) + (r′′ ∗ v)(t). (25.3.7)

Differentiating (25.2.2)2 with respect to t, we obtain

ηtt(t) − k0Δη(t) − (k′ ∗ Δη)(t) − α divwt(t) = 0.

Using (25.3.6), this can be rewritten as

ηtt(t) − Δv(t) − α divwt(t) = 0. (25.3.8)

By virtue of (25.3.6) and (25.3.7), relations (25.2.2)1 and (25.3.8) become

wtt(t) − μΔw(t) − (μ + λ)∇ divw(t) − β

k0
∇vt(t) = R(t) in Q,

vtt(t) − k0Δv(t) − αk0 divwt(t) = S (t) in Q,
w(t) = 0, v(t) = 0 on Σ,

w(0) = w0, wt(0) = w1, v(0) = k0η0 in Ω,

(25.3.9)

where

R(t) = βr0∇v(t) + β(r′ ∗ ∇v)(t),

S (t) = −r0k0vt(t) − r′(0)k0v(t) − k0(r′′ ∗ v)(t).

The energy function, related to problem (25.3.9), is

E(t;w, v) =
1
2

∫
Ω

[
|wt(t)|2 + μ|∇w(t)|2 + (μ + λ)| divw(t)|2

+
β

αk2
0

|vt(t)|2 +
β

αk0
|∇v(t)|2

⎤⎥⎥⎥⎥⎦ dx.
(25.3.10)

Firstly, the direct inequality related to problem (25.3.9) can be proved, by means of
multiplier techniques (see, e.g., [271]).

Lemma 25.3.2 (Direct Inequality). Let Ω be a bounded open set of Rn with bound-
ary Γ of class C2. Assume that the kernel k satisfies conditions (25.3.1)1,2 and
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(w0,w1, v0) ∈ [H1
0(Ω)]n × [L2(Ω)]n × H1

0(Ω).

Then there exists a positive constant C such that

∫
Σ

[
μ

∣∣∣∣∣∂w(t)
∂ν

∣∣∣∣∣
2

+ (μ + λ)|divw(t)|2 + β

αk0

∣∣∣∣∣∂v(t)
∂ν

∣∣∣∣∣
2]
dΣ ≤ CE(0) (25.3.11)

for all solutions of the system (25.3.9).

Remark 25.3.3. From the inequality (25.3.11) and (25.3.5), we obtain the following
boundary regularity of the solution:

∂w(t)
∂ν

∈ [L2(Σ)]n,
∂η(t)
∂ν

∈ L2(Σ).

Let us now study the system (25.3.9) with R = 0 and S = 0; it can be written as

w̃tt(t) − μΔw̃(t) − (μ + λ)∇ div w̃(t) − β̃∇ṽt(t) = 0 in Q,

ṽtt(t) − k0Δṽ(t) − α̃ div w̃t(t) = 0 in Q,
(25.3.12)

where α̃ = αk0, β̃ =
β
k0

. Obviously, αβ = α̃β̃. Using the multipliers method (see,
e.g., [272]), we can obtain the inverse inequality for such a system, as shown by the
following lemma.

Lemma 25.3.4. Let Ω be a bounded open set of Rn with boundary Γ of class C2.
Assume that the memory kernel k satisfies conditions (25.3.1)1,2 and the coupling
parameters α and β satisfy condition (25.3.2); if n = 1, no assumption is needed on
α and β. Then there exists T0 > 0 such that for any T > T0, the solution of the system
(25.3.12) satisfies

∫
Σ

[
μ

∣∣∣∣∣∂w̃(t)
∂ν

∣∣∣∣∣
2

+ (μ + λ)|div w̃(t)|2 + k0
β̃

α̃

∣∣∣∣∣∂ṽ(t)
∂ν

∣∣∣∣∣
2]
dΣ ≥ γE(0),

where γ is a positive constant depending on T0.

Remark 25.3.5. The choice R = 0 and S = 0 removes temporarily the presence of
the relaxation function r and allows us to prove the inverse inequality for the system
(25.3.12) without assumptions on the size of the memory kernel.

Now we return to the system (25.3.9), and by setting

L1(w(t), v(t)) = wtt(t) − μΔw(t) − (μ + λ)∇ divw(t) − β

k0
∇vt(t),

L2(v(t),w(t)) = vtt(t) − k0Δv(t) − αk0 divwt(t),

relations (25.3.9)1,2 can be rewritten as

L1(w(t), v(t)) = βr0∇v(t) + β(r′ ∗ ∇v)(t),

L2(v(t),w(t)) = −r0k0vt(t) − r′(0)k0v(t) − k0(r′′ ∗ v)(t).
(25.3.13)
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Following a standard procedure, we write the solution z = (w, v) of (25.3.9) as z =
zL + zN , with zL = (wL, vL) and zN = (wN , vN), where zL solves the following system:

L1(wL(t), vL(t)) = 0 in Q,

L2(vL(t),wL(t)) = 0 in Q,

wL(t) = 0, vL(t) = 0 on Σ,

wL(0) = w0, wL
t (0) = w1 in Ω,

vL(0) = k0η0, vLt (0) = v1 in Ω,

(25.3.14)

and zN is the solution of

L1(wN(t), vN(t)) = βr0∇v(t) + β(r′ ∗ ∇v)(t) in Q,

L2(vN(t),wN(t)) = −r0k0vt(t) − r′(0)k0v(t) − k0(r′′ ∗ v)(t) in Q,

wN(t) = 0, vN(t) = 0 on Σ,

wN(0) = 0, wN
t (0) = 0 in Ω,

vN(0) = 0, vNt (0) = 0 in Ω.

(25.3.15)

Lemma 25.3.6. Let Ω0 be an open subset of Ω such that Ω0 ⊂ Ω. Assume that the
memory kernel satisfies conditions (25.3.1) and the coupling parameters α and β
satisfy the condition (25.3.2); if n = 1, no assumption is needed on α and β. Sup-
pose that w ∈ C(0,T ; [L2(Ω)]n) ∩ C1(0,T ; [H−1(Ω)]n) and v ∈ C(0,T ; L2(Ω)) ∩
C1(0,T ; H−1(Ω)) satisfy the system (25.3.13) in the sense of distributions in Ω ×
(0,T ). Suppose that if w(x, t) = 0 and v(x, t) = 0 in (Ω\Ω0) × (0,T ), then w ∈
C(0,T ; [H1

0(Ω)]n) ∩ C1(0,T ; [L2(Ω)]n) and v ∈ C(0,T ; H1
0(Ω)) ∩ C1(0,T ; L2(Ω)),

provided that T > T0, where T0 is given in Lemma 25.3.4.

Proof. Let us denote by % the convolution taken only in the space variables. We
introduce wL

ε = ρε % wL,wN
ε = ρε % wN , vLε = ρε % vL, vNε = ρε % vN , where ρε, ρε

are the Friedrichs mollifiers in Rn. We choose ε small enough that suppwε, supp vε ⊂
Ω × [0,T ], where wε = wL

ε + w
N
ε and vε = vLε + v

N
ε . Then (wε, vε) satisfies (25.3.13).

Multiplying (25.3.13)1 by wεt and (25.3.13)2 by β

α k2
0
vεt, we obtain

d
dt
E(t;wε, vε) =

βk′(0)

αk3
0

∫
Ω

|vεt |2dx −
β r′(0)
α k0

∫
Ω

vεvεt dx

− β

α k0

∫
Ω

(r′′ ∗ vε)vεt dx + β r0

∫
Ω

∇vε · wεt dx

+ β

∫
Ω

(r′ ∗ ∇vε) · wεt dx,

(25.3.16)

where the energy function E is defined as in (25.3.10). In particular, the last term in
(25.3.16) can be rewritten as
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∫
Ω

(r′ ∗ ∇vε)(t) · wεt(t) dx = −
∫
Ω

(r′ ∗ vε)(t) divwεt(t) dx

= − d
dt

∫
Ω

(r′ ∗ vε)(t) divwε(t) dx

+

∫
Ω

[r′(0)vε(t) + (r′′ ∗ vε)(t)] divwε(t) dx.

Recalling the systems (25.3.14) and (25.3.15), we have

L1(wL
ε (t), vLε (t)) = 0 in Q,

L2(vLε (t),wL
ε (t)) = 0 in Q,

wL
ε (t) = 0, vLε (t) = 0 on Σ,

wL
ε (0) = ρε % w0, wL

εt
(0) = ρε % w1 in Ω,

vLε (0) = k0ρε % η0, vLεt (0) = ρε % v1 in Ω

(25.3.17)

and
L1(wN

ε (t), vNε (t)) = β r0∇vε(t) + β(r′ ∗ ∇vε)(t) in Q,

L2(vNε (t),wN
ε (t)) = −r0k0vεt(t) − r′(0)k0vε(t) − k0(r′′ ∗ vε)(t) in Q,

wN
ε (t) = 0, vNε (t) = 0 on Σ,

wN
ε (0) = 0, wN

εt
(0) = 0 in Ω,

vNε (0) = 0, vNεt (0) = 0 in Ω.

We consider (25.3.16) for (wN
ε , v

N
ε ) and integrate on [0, t] to obtain

E(t;wN
ε , v

N
ε ) =

βk′(0)

αk3
0

∫ t

0

∫
Ω

vεt(t)v
N
εt

(t) dx dt

− β r′(0)
α k0

∫ t

0

∫
Ω

vε(t)v
N
εt

(t) dx dt

− β

α k0

∫ t

0

∫
Ω

(r′′ ∗ vε)(t)vNεt (t) dx dt

+ β r0

∫ t

0

∫
Ω

∇vε(t) · wN
εt

(t) dx dt

+ β

∫ t

0

∫
Ω

(r′ ∗ ∇vε)(t) · wN
εt

(t) dx dt
︸�����������������������������������︷︷�����������������������������������︸

=:I1(t)

.

(25.3.18)

The integral I1 can be rewritten as
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I1(t) =
∫ t

0

d
dt

[∫
Ω

(r′ ∗ ∇vε)(t) · wε
N(t) dx

]
dt+

−
∫ t

0

∫
Ω

[r′(0)∇vε(t) + (r′′ ∗ ∇vε)(t)] · wε
N(t) dx dt

=

∫
Ω

(r′ ∗ ∇vε)(t) · wε
N(t) dx

−
∫ t

0

∫
Ω

[r′(0)∇vε(t) + (r′′ ∗ ∇vε)(t)] · wε
N(t) dx dt.

Defining MN(T ) = sup
{
E(t;wN

ε , v
N
ε ); 0 ≤ t ≤ T

}
, we find that

|I1(t)| ≤ 1
√
μ + λ

⎡⎢⎢⎢⎢⎢⎣‖r′(t)‖L2

(∫ T

0
‖vε(t)‖2 dt

)1/2

+ |r′(0)|
(∫ T

0
‖vε(t)‖2 dt

)1/2

+

(∫ T

0

∫
Ω

|(r′′ ∗ vε)(t)|2dx dt
)1/2⎤⎥⎥⎥⎥⎥⎦

[
MN(T )

]1/2
.

From this inequality and considering (25.3.18), it follows that

MN(T ) ≤ |k′(0)|
k0

[∫ T

0
E(t;wε, vε)dt

]1/2 [
MN(T )

]1/2

+ |r′(0)|
√

β

α

[∫ T

0

∫
Ω

|vε(t)|2 dx dt
]1/2 [

MN(T )
]1/2

+

√
β

α

[∫ T

0

∫
Ω

|(r′′ ∗ vε)(t)|2 dx dt
]1/2 [

MN(T )
]1/2

+ |r0|
√
k0αβ

[∫ T

0
E(t;wε, vε) dt

]1/2 [
MN(T )

]1/2

+
β

√
μ + λ

⎡⎢⎢⎢⎢⎢⎣‖r′(t)‖L2

(∫ T

0
‖vε(t)‖2 dt

)1/2

+ |r′(0)|
(∫ T

0
‖vε(t)‖2 dt

)1/2

+

(∫ T

0

∫
Ω

|(r′′ ∗ vε)(t)|2 dx dt
)1/2⎤⎥⎥⎥⎥⎥⎦

[
MN(T )

]1/2
.

From the Young inequality and (25.3.4), we obtain
[
1 − |k′(0)|

2k0

(
1 +

√
αβ

)
− ε

]
MN(T )

≤
⎡⎢⎢⎢⎢⎣ |k

′(0)|
2k0

+
|k′(0)|
2k2

0

√
αβ

⎤⎥⎥⎥⎥⎦
∫ T

0
E(t;wε, vε) dt

+Cε

[∫ T

0

∫
Ω

|(r′′ ∗ vε)(t)|2 dx dt +
∫ T

0

∫
Ω

|vε(t)|2 dx dt
]
.



598 25 Controllability of Thermoelastic Systems with Memory

By choosing |k′(0)|
2k0

(
1 +

√
α β

)
small enough, namely, for instance,

|k′(0)|
k0

<
1(

1 +
√
α β

) ,

one finds that
∫
Σ

⎛⎜⎜⎜⎜⎜⎝
∣∣∣∣∣∣
∂wN

ε (t)
∂ν

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∂vNε (t)
∂ν

∣∣∣∣∣∣
2⎞⎟⎟⎟⎟⎟⎠ dΓ dt ≤ C TMN(T )

≤ C T

⎡⎢⎢⎢⎢⎣ |k
′(0)|
2k0

+
|k′(0)|
2k2

0

√
αβ

⎤⎥⎥⎥⎥⎦
∫ T

0
E(t;wε, vε) dt

+C T Cε

[∫ T

0

∫
Ω

|(r′′ ∗ vε)(t)|2 dx dt +
∫ T

0

∫
Ω

|vε(t)|2 dx dt
]

(25.3.19)

for any ε > 0. Since suppwε, supp vε ⊂ Ω × [0,T ], we obtain

∂wL
ε (t)
∂ν

= −
∂wN

ε (t)
∂ν

,
∂vLε (t)
∂ν

= −
∂vNε (t)
∂ν

on Σ. (25.3.20)

Applying Lemma 25.3.4 to the system (25.3.17) and using (25.3.19) and (25.3.20),
we obtain

E(0;wL
ε , v

L
ε ) ≤ γ1

∫
Σ

⎛⎜⎜⎜⎜⎜⎝
∣∣∣∣∣∣
∂wN

ε (t)
∂ν

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∂vNε (t)
∂ν

∣∣∣∣∣∣
2⎞⎟⎟⎟⎟⎟⎠ dΓ dt

≤ C0T

⎡⎢⎢⎢⎢⎣ |k
′(0)|
2k0

+
|k′(0)|
2k2

0

√
αβ

⎤⎥⎥⎥⎥⎦
∫ T

0
E(t;wε, vε) dt

+C0T Cε

[∫ T

0

∫
Ω

|(r′′ ∗ vε)(t)|2 dx dt +
∫ T

0

∫
Ω

|vε(t)|2 dx dt
]
,

(25.3.21)
where γ1, c0 are positive constants depending on T0. Since

E(0;wL
ε , v

L
ε ) = E(0;wε, vε), (25.3.22)

we conclude by virtue of (25.3.16) that

E(t;wε, vε) = E(0;wε, vε) +
βk′(0)

α k3
0

∫ t

0

∫
Ω

|vεt(t)|2 dx dt

− β r′(0)
α k0

∫ t

0

∫
Ω

vε(t)vεt(t) dx dt

− β

α k0

∫ t

0

∫
Ω

(r′′ ∗ vε)(t)vεt(t) dx dt

+ βr0

∫ t

0

∫
Ω

∇vε(t) · wεt(t) dx dt

+ β

∫ t

0

∫
Ω

(r′ ∗ ∇vε)(t) · wεt(t) dx dt.
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Application of the Gronwall inequality yields

E(t;wε, vε) ≤ E(0;wε, vε) c e
ct.

From (25.3.21) and (25.3.22), one obtains

E(t;wε, vε) ≤ C0T

⎡⎢⎢⎢⎢⎣ |k
′(0)|

2 k0
+
|k′(0)|
2 k2

0

√
αβ

⎤⎥⎥⎥⎥⎦
∫ T

0
E(t;wε, vε) dt

+C0T Cε

[∫ T

0

∫
Ω

|(r′′ ∗ vε)(t)|2 dx dt +
∫ T

0

∫
Ω

|vε(t)|2 dx dt
]
.

Defining M(T ) = sup{E(t;wε, vε); 0 ≤ t ≤ T } and taking k′(0)
k0

small enough, we have

M(T ) ≤ C0T Cε

[∫ T

0

∫
Ω

|(r′′ ∗ vε)(t)|2 dx dt +
∫ T

0

∫
Ω

|vε(t)|2 dx dt
]

for any ε > 0. This yields that for ε → 0,w ∈ C(0,T ; [H1
0(Ω)]n) ∩C1(0,T ; [L2(Ω)]n)

and v ∈ C(0,T ; H1
0(Ω)) ∩C1(0,T ; L2(Ω)). �

Lemma 25.3.7. Assume that the memory kernel satisfies conditions (25.3.1) and the
coupling parameters α, β satisfy (25.3.2); if n = 1, no assumption is needed on α and
β. Let T0 be a positive constant, as given in Lemma 25.3.6. For any T ≥ T0, let

w ∈ C(0,T ; [H1
0(Ω)]n) ∩C1(0,T ; [L2(Ω)]n),

v ∈ C(0,T ; H1
0(Ω)) ∩C1(0,T ; L2(Ω))

be the solution of the system (25.3.9) in Q such that

∂w(t)
∂ν
= 0,

∂v(t)
∂ν
= 0 on Σ.

Then
w(t) = 0, v(t) = 0 in Q.

Proof. Since

w(t) = 0,
∂w(t)
∂ν
= 0, v(t) = 0,

∂v(t)
∂ν
= 0 on Σ,

we have
∇w(t) = 0, ∇v(t) = 0 on Σ.

Let us consider a bounded open subset Ω1 of Rn with smooth boundary such that
Ω ⊂ Ω1 and T > diam Ω1 > diam Ω. The solution (w, v) can be extended to Ω1×[0,T ]
such that (w, v) ≡ (0, 0) in (Ω1\Ω)× [0,T ] and (w, v) satisfies the system (25.3.13) in
the sense of distributions in Ω1 × (0,T ).

We introduce the following sets:
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S0 = C(0,T ; [H1
0(Ω1)]n × H1

0(Ω1)) ∩C1(0,T ; [L2(Ω1)]n × L2(Ω1)),

S1 = {(w, v) ∈ S0; (w, v) is a solution of (25.3.13) in Ω1 × (0,T ),

(w, v) ≡ (0, 0) in (Ω1\Ω) × [0,T ]},
S2 = C(0,T ; [H1

0(Ω1) ∩ H2(Ω1)]n × [H1
0(Ω1) ∩ H2(Ω1)])

∩C1(0,T ; [H1
0(Ω1)]n × H1

0(Ω1)) ∩C2(0,T ; [L2(Ω1)]n × L2(Ω1)).

In particular, S1 is a Banach space equipped with the norm of S0, denoted by ‖ · ‖S1 .
In order to prove that S1 is of finite dimension, we show that

H = {(w, v) ∈ S1; ‖(w, v)‖S1 ≤ 1}

is compact. In fact, by the procedure used in [231], for any (w, v) ∈ H, we apply the
regularity result of Lemma 25.3.6 to each (∂hw, ∂hv), h = 1, . . . , n, where

∂hw =
∂w
∂xh

, ∂hv =
∂v
∂xh

, h = 1, . . . , n.

Then (∂hw, ∂hv) ∈ S1, h = 1, . . . , n, and there exists a positive constant C such that

‖(∂hw, ∂hv)‖S1 ≤ C, h = 1, . . . , n.

We find that H is bounded in C(0,T ; [H1
0(Ω1) ∩ H2(Ω1)]n × [H1

0(Ω1) ∩ H2(Ω1)]) ∩
C1(0,T ; [H1

0(Ω1)]n ×H1
0(Ω1)). It is also bounded in C2(0,T ; [L2(Ω1)]n × L2(Ω1)), by

virtue of (25.3.13). Moreover, we have

‖(wν, vν)‖S2 ≤ C

for any sequence (wν, vν) ∈ H. But S2 ↪→ S1, and so there exists a strongly con-
vergent subsequence of (wν, vν) in S1. Hence H is compact. This implies that S1 is
finite-dimensional. From Lemma 25.3.6, it follows that the operator ∂1 =

∂
∂x1

is a
linear operator from S1 into S1. Since S1 is finite-dimensional, there exists a basis
{z1, . . . , zm} of S1 such that

∂1 zh =
m∑
i=1

αhizi, h = 1, . . . ,m, in Ω1 × (0,T )

for some constants {αhi}, h, i = 1, . . . ,m, or equivalently, putting

Z = [z1, . . . , zm]�, A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
α11 · · · α1m
...

...
αm1 · · · αmm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

it can be written as
∂1Z = AZ in Ω1 × (0,T ),
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and its solution is Z = eA x1Z(0). As in [221], we consider any (x0, t0) ∈ Ω × (0,T ),
with x0 = (x0

1, . . . , x
0
n) ∈ Rn. Let ξ0 = (x0

2, . . . , x
0
n, t

0) ∈ Rn. There exists an x̂0
1 such

that (x̂0
1, ξ

0) ∈ (Ω1\Ω)× (0,T ) and the line segment connecting (x̂0
1, ξ

0) and (x0
1, ξ

0) is
contained in Ω1 × (0,T ). Let us introduce two positive constants δ1 and δ2 such that

Iδ1 × Bδ2 ⊂ Ω1 × (0,T ),

where Iδ1 = (x̂0
1 − δ1, x0

1 + δ1) and Bδ2 = {ξ ∈ Rn; |ξ − ξ0| < δ2}. Furthermore, we
can have that [x̂0

1 − δ1, x̂0
1] × Bδ2 ⊂ (Ω1\Ω) × (0,T ). Since Z = 0 in (Ω1\Ω) × (0,T ),

one finds that Z = 0 in (x̂0
1 − δ1, x̂0

1) × [0,T ]. From the regularity properties of Z in
Iδ1 , we obtain that Z = 0 in Iδ1 . This implies that Z = 0 in a neighborhood of (x0

1, ξ
0).

Finally, Z = 0 in Ω1 × (0,T ) and consequently

w(t) = 0 and v(t) = 0 in Ω × (0,T ).

�

In the next lemma we show the inverse inequality related to (25.3.13).

Lemma 25.3.8. Assume that the memory kernel satisfies conditions (25.3.1) and the
coupling parameters α and β satisfy (25.3.2); if n = 1, no assumption is needed on α
and β. Let T0 be a positive constant, as given in Lemma 25.3.6. Then, for any T > T0,
there exists a positive constant γ0 such that the solution (w, v) of the system (25.3.13)
satisfies ∫

Σ

[∣∣∣∣∣∂w(t)
∂ν

∣∣∣∣∣
2

+

∣∣∣∣∣∂v(t)
∂ν

∣∣∣∣∣
2]
dΣ ≥ γ0E(0). (25.3.23)

Proof. We suppose that (25.3.23) is false. Hence, there exists a sequence

(wm
0 ,w

m
1 , v

m
0 , v

m
1 ) ∈ [H1

0(Ω)]n × [L2(Ω)]n × H1
0(Ω) × L2(Ω)

such that

‖∇wm
0 ‖

2 + ‖wm
1 ‖

2 + ‖∇vm0 ‖
2 + ‖vm1 ‖

2 = 1, for all m ∈ R+,∫
Σ

[∣∣∣∣∣∂w
m(t)
∂ν

∣∣∣∣∣
2

+

∣∣∣∣∣∂v
m(t)
∂ν

∣∣∣∣∣
2]
dΣ < cE(0), for all c ∈ R+,

(25.3.24)

and as m → ∞,

(wm
0 ,w

m
1 ) ⇀ (w∞

0 ,w
∞
1 ) in [H1

0(Ω)]n × [L2(Ω)]n,

(vm0 , v
m
1 ) ⇀ (v∞0 , v

∞
1 ) in H1

0(Ω) × L2(Ω),

(wm,wm
t )

∗
⇀ (w∞,w∞

t ) in L∞(0,T ; [H1
0(Ω)]n) × L∞(0,T ; [L2(Ω)]n),

(vm, vmt )
∗
⇀ (v∞, v∞t ) in L∞(0,T ; H1

0(Ω)) × L∞(0,T ; L2(Ω)),

(25.3.25)

where each (wm, vm) is a solution of (25.3.13). The inequality (25.3.24)2 implies that
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∫
Σ

[∣∣∣∣∣∂w
m(t)
∂ν

∣∣∣∣∣
2

+

∣∣∣∣∣∂v
m(t)
∂ν

∣∣∣∣∣
2]
dΣ → 0, as m → ∞.

Then, as m → ∞,
∂wm

∂ν
→ ∂w∞

∂ν
= 0 in [L2(Σ)]n,

∂vm

∂ν
→ ∂v∞

∂ν
= 0 in L2(Σ).

(25.3.26)

By application of Lemma 25.3.7, we obtain that w∞ = 0, v∞ = 0, and from
(25.3.25)2, it follows that

vm → v∞ = 0 in L1(0,T ; L2(Ω)). (25.3.27)

Now let us write the solution zm = (wm, vm) to (25.3.9) as

zm = zmL + zmN , (25.3.28)

with zmL = (wmL, vmL) and zmN = (wmN , vmN), where zmL solves the system

L1(wmL(t), vmL(t)) = 0 in Q,

L2(vmL(t),wmL(t)) = 0 in Q,

wmL(t) = 0, vmL(t) = 0 on Σ,

wmL(0) = wmL
0 , wmL

t (0) = wmL
1 in Ω,

vmL(0) = vmL0 , vmLt (0) = vmL1 in Ω,

and zmN is the solution of

L1(wmN(t), vmN(t)) = βr0∇vm(t) + β(r′ ∗ ∇vm)(t) in Q,

L2(vmN(t),wmN(t)) = −r0k0v
m
t (t) − r′(0)k0v

m(t) − k0(r′′ ∗ vm)(t) in Q,

wmN(t) = 0, vmN(t) = 0 on Σ,

wmN(0) = 0, wmN
t (0) = 0, vmN(0) = 0, vmNt (0) = 0 in Ω.

(25.3.29)

Using (25.3.27) and (25.3.29), we have

wmN → w∞N = 0 in L∞(0,T ; H1
0(Ω)).

Hence, as m → ∞,

∂wmN

∂ν
→ ∂w∞N

∂ν
= 0 in [L2(Σ)]n,

∂vmN

∂ν
→ ∂v∞N

∂ν
= 0 in L2(Σ).

(25.3.30)

From (25.3.26), (25.3.28), and (25.3.30), we obtain
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∂wmL

∂ν
→ ∂w∞L

∂ν
= 0 in [L2(Σ)]n,

∂vmL

∂ν
→ ∂v∞L

∂ν
= 0 in L2(Σ).

By Lemma 25.3.6, as m → ∞,

‖∇wm
0 ‖

2 + ‖wm
1 ‖

2 + ‖∇vm0 ‖
2 + ‖vm1 ‖

2 → 0,

and this contradicts (25.3.24)1. �

Remark 25.3.9. From (25.3.5) it follows that

∫
Σ

∣∣∣∣∣∂v(t)
∂ν

∣∣∣∣∣
2

dΣ ≤ 2
∫
Σ

⎡⎢⎢⎢⎢⎢⎣k2
0

∣∣∣∣∣∂η(t)
∂ν

∣∣∣∣∣
2

+

∣∣∣∣∣∣
(
k′ ∗ ∂η

∂ν

)
(t)

∣∣∣∣∣∣
2⎤⎥⎥⎥⎥⎥⎦ dΣ

≤ 2
(
k2

0 + ‖k′2L1(0,T )

) ∫
Σ

∣∣∣∣∣∂η(t)
∂ν

∣∣∣∣∣
2

dΣ.

Then, there exists a positive constant γ1 such that the observability inequality

∫
Σ

[∣∣∣∣∣∂w(t)
∂ν

∣∣∣∣∣
2

+

∣∣∣∣∣∂η(t)
∂ν

∣∣∣∣∣
2]
dΣ ≥ γ1E(0)

holds.

Consider now the system (25.1.2). Taking initial data (u0,u1, θ0) ∈ [L2(Ω)]n ×
[H−1(Ω)]n × H−1(Ω) and assuming that (f , g) ∈ [L2(Σ)]n × L2(Σ), we observe that
u ∈ L∞(0,T ; [L2(Ω)]n), θ ∈ H−1(0,T ; L2(Ω)), with k ∗ θ ∈ L∞(0,T ; L2(Ω)) (see, e.g.,
[272]).

Then we are able to prove that the system (25.1.2) is exactly controllable.

Proof of Theorem 25.3.1. In order to simplify notation, let us consider the reverse
thermoelastic system

utt(t) − μΔu(t) − (μ + λ)∇ divu(t) + α∇θ(t) = 0 in Q,

θt(t) − k ∗ Δθ(t) + β div ut(t) = 0 in Q,
(25.3.31)

with final conditions

u(T ) = z0, ut(T ) = z1, θ(T ) = θ0 in Ω (25.3.32)

and boundary conditions

u(t) =
∂ϕ(t)
∂ν

on Σ0, (k ∗ θ)(t) = k0
β

α

∂ψ(t)
∂ν

on Σ. (25.3.33)

The system (25.3.9) is reversible. That is, considering

w(T ) = w0, wt(T ) = w1, η(T ) = η0 in Ω,
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instead of the last line of (25.3.9), we obtain again standard estimates for the solution.
Then there exists only one solution to the system (25.2.1) when

ϕ(0) = ϕ0, ϕt(0) = ϕ1, ψ(0) = ψ0 in Ω

are assumed instead of the last line of (25.2.1), with

(ϕ0,ϕ1, ψ0) ∈ [H1
0(Ω)]n × [L2(Ω)]n × L2(Ω).

Applying the transposition method to the system (25.3.31) and using (25.2.1), we
obtain

0 =
∫
Ω

ut(0) · ϕ0dx −
∫
Ω

u(0) · [ϕ1 + β∇ψ0] dx +
∫
Ω

θ(0)ψ0 dx

+ (2μ + λ)
∫
Σ

f (t) · ∂ϕ(t)
∂ν

dΣ +
∫
Σ

g(t)
∂ψ(t)
∂ν

dΣ.

Let us denote by Λ the operator

Λ(ϕ0,ϕ1, ψ0) = (−ut(0),u(0),−θ(0) − β div u(0)).

From the above identity we have

〈Λ(ϕ0,ϕ1, ψ0), (ϕ0,ϕ1, ψ0)〉 = (2μ + λ)
∫
Σ

f (t) · ∂ϕ(t)
∂ν

dΣ +
∫
Σ

g(t)
∂ψ(t)
∂ν

dΣ

= (2μ + λ)
∫
Σ

∣∣∣∣∣∂ϕ(t)
∂ν

∣∣∣∣∣
2

dΣ + k0
β

α

∫
Σ

∣∣∣∣∣∂ψ(t)
∂ν

∣∣∣∣∣
2

dΣ.

By virtue of Lemma 25.3.8 and Remark 25.3.9, this implies that Λ is an isomorphism
from [H1

0(Ω)]n × [L2(Ω)]n × H1
0(Ω) onto [H−1(Ω)]n × [L2(Ω)]n × H−1(Ω). Therefore,

applying the Lax–Milgram lemma, it follows that there exists

(ϕ1,ϕ0, ψ0) ∈ [H1
0(Ω)]n × [L2(Ω)]n × H1

0(Ω)

such that

〈Λ(ϕ0,ϕ1, ψ0), (ϕ̃0, ϕ̃1, ψ̃0)〉 =
∫
Ω

u1 · ϕ̃0 dx −
∫
Ω

u0 · [ϕ̃1 + β∇ψ̃0] dx +
∫
Ω

θ0ψ̃0 dx.

This means that for f and g given as in (25.3.33), the solution of (25.3.31) and
(25.3.32) also satisfies

u(0) = u0, ut(0) = u1, θ(0) = θ0.

Hence, the theorem follows. �



26

The Saint-Venant Problem for Viscoelastic Materials

The Saint-Venant problem was analyzed in Sect. 2.4.2 for linear elastic materials.
The same problem has been studied also for viscoelastic materials (see, for example,
[64, 93]). The theory is developed here in a similar general and systematic manner.

26.1 Problem Description

Let us consider a prismatic cylinder Bwith plane ends and select a rectangular system
of coordinates such that one end lies in the (x1, x2)-plane and contains the origin O.
Let ∂B be the boundary of B and denote by L the length of the cylinder, so that the
lateral boundary surface of the cylinder is π = ∂Dx3×[0, L], where Dx3 is the bounded
uniform cross-section at distance x3 from the plane end containing the origin and
∂Dx3 is the boundary of this cross-section. We assume that the boundaries of such
cross-sections are sufficiently smooth to admit application of the divergence theorem
in the plane of the cross-section.

Let the cylinder B consist of a linearly viscoelastic material that is at rest at all
times t < 0. Thus, the stress–strain relation becomes

S(u) = G(0)E +
∫ t

0
G′(t − s)E(s) ds, (26.1.1)

where

E(u) =
1
2

(
∇u + ∇uT

)
, G′(u) =

∂

∂u
G(u). (26.1.2)

In the above relations, S(u) is the stress tensor∗ associated with the displacement
vector u,E(u) is the strain tensor, and G(·) denotes the relaxation tensor. We assume
that G(·) is a symmetric tensor, as given by (8.1.27), and moreover,

G = G(x1, x2, t) (26.1.3)

∗ This is the same as the tensor T, given by (24.2.1), for example; we refer to the observation
after (2.4.5) and to the usage in Sect. 2.4.
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is a smooth function on D × [0,∞). We also assume that G(0) is positive definite in
D × [0,∞) (Corollory 8.1.8).

Let s(u) be the surface traction at regular points of ∂B corresponding to the stress
field S(u), defined by (see (1.3.24))

s(u) = S(u)n, (26.1.4)

where n is the outward unit normal vector to ∂B.
We say that a vector field u is a quasistatic equilibrium displacement field for B

if the mapping u : [0,∞) → C1
(
B̄
)
∩C2(B) is continuous and, moreover, we have

div S(u) = 0 (26.1.5)

on B.
The Saint-Venant problem for B amounts to the determination of a quasistatic

equilibrium displacement field u on B, subject to the boundary conditions

s(u) = 0 on π,

s(u) = s(1) on D0, s(u) = s(2) on DL,
(26.1.6)

for each time t ∈ [0,∞). Here s(1) and s(2) are functions preassigned on D0 and DL,
respectively, for each time t ∈ [0,∞).

The following are necessary and sufficient conditions for the existence of a solu-
tion to this problem.∫

D0

s(1)da +
∫
DL

s(2)da = 0,
∫
D0

r × s(1)da +
∫
DL

r × s(2)da = 0,

where r is the position vector of a point with respect to the origin O. Under suitable
smoothness hypotheses on π and on the prescribed tractions, a solution of the Saint-
Venant problem exists and is continuous with respect to t on [0,∞) [134].

By introducing relations (26.1.1) and (26.1.2) into (26.1.4) and (26.1.5), we de-
duce that the solution u of the Saint-Venant problem satisfies the boundary value
problem (S) defined by the following equations written in terms of components:†

Si(u) ≡
[
Gi jmn(0)um,n +

∫ t

0
G′

i jmn(t − s)um,n(s)ds

]
, j

= 0, (26.1.7)

in B ≡ D × (0, L), with the lateral boundary conditions

Bi(u) ≡
[
Giαmn(0)um,n +

∫ t

0
G′

iαmn(t − s)um,n(s)ds

]
nα = 0, (26.1.8)

on π ≡ ∂D × (0, L) and the end boundary conditions

S 3i(u) = −s(1)
i on D0, S 3i(u) = s(2)

i on DL (26.1.9)

for each t ∈ [0,∞).
† Italic indices take values 1, 2, 3 while Greek indices range over 1, 2.
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In what follows we shall denote by S the set of all solutions of the Saint-Venant
problem. Our main aim is to obtain such solutions. This is a three-dimensional prob-
lem, so that it is very difficult to obtain explicit expressions for u. But using the Saint-
Venant principle (Remark 2.4.11), we can replace the local end conditions (26.1.9)
by equivalent equilibrated global conditions. This leads to the relaxed Saint-Venant
problem (Definition 2.4.10), the solutions of which can be expressed in terms of
plane strain states in the plane of the cross-section. We can approximate the solu-
tion of the local Saint-Venant problem by a solution of the relaxed problem. So our
first task is to present a method for generating solutions of the relaxed Saint-Venant
problem [63].

26.2 A Generalized Plane Strain State

By a generalized plane strain state in the planar region D ⊂ R2 we mean the following
form of displacements:

v = v(x1, x2, t) ∀(x1, x2) ∈ D, ∀t ∈ [0,∞),

which are denoted in this plane by v instead of u. Such a state, in conjunction with
the stress–strain-displacement relations, implies that the stress tensor is a function of
x1, x2, and t, i. e., T = T(x1, x2, t). (We use T in the plane strain context rather than
S for later convenience.) In terms of components,

Ti j(v) = Gi jkβ(0)vk,β +
∫ t

0
G′

i jkβ(t − s)vk,β(s) ds. (26.2.1)

A vector field v is an admissible displacement field if v is continuous with respect to
the time variable on [0,∞) and moreover,

1. v is independent of x3,
2. v ∈ C1

(
D̄
)
∩C2(D).

The generalized plane strain problem for D∪∂D consists in finding an admissible
displacement v satisfying the equations of equilibrium

Tαi,α(v) + fi = 0 in D × [0,∞) (26.2.2)

and the boundary conditions

Tαi(v)nα = pi on ∂D × [0,∞), (26.2.3)

when the body force f(x1, x2, t) and the boundary traction p(x1, x2, t) are prescribed.
Body forces were neglected in the last section but will be required in the plane prob-
lem (see (26.3.6) below). By substituting (26.2.1) into (26.2.2) and (26.2.3), we ob-
tain the displacement plane boundary value problem (P) for D ∪ ∂D, defined by



608 26 The Saint-Venant Problem for Viscoelastic Materials

Pi(v) ≡
[
Giαkβ(0)vk,β

]
,α
+

∫ t

0

[
G′

iαkβ(t − s)vk,β(s)
]
,α
ds = − fi in D,

Ti(v) ≡
[
Giαkβ(0)vk,β +

∫ t

0
G′

iαkβ(t − s)vk,β(s) ds

]
nα = pi on ∂D,

for each t ∈ [0,∞).
Necessary and sufficient conditions for the existence of a solution v of the bound-

ary value problem (P) for D ∪ ∂D are
∫
D
fida +

∫
∂D

pids = 0,
∫
D
ε3αβxα fβda +

∫
∂D

ε3αβxαpβds = 0.
(26.2.4)

Under suitable regularity hypotheses on ∂D and the given data, a solution of the
generalized plane strain problem (P) exists for each t ∈ [0,∞) [134].

In what follows we shall denote by P the set of all plane displacement solutions
on the cross-section of the cylinder.

26.3 Analysis of the Saint-Venant Problem by Plane
Cross-Section Solutions

The problem (S) defined by relations (26.1.7)–(26.1.9) is less tractable. It is therefore
important to study the possibility of reducing the system (26.1.7) and the lateral
boundary conditions (26.1.8) to a generalized plane strain problem, which is easier
to manage.

Thus, we consider this system with lateral boundary conditions on the cross-
section D ∪ ∂D, which is in effect the plane boundary value problem

Si(u) = 0 in D, (26.3.1)

and
Bi(u) = 0 on ∂D, (26.3.2)

treating x3 ∈ (0, L) and t ∈ [0,∞) as parameters. Our task is to understand when
the solution u ∈ S of the Saint-Venant problem resides in the set P of plane dis-
placements associated with the cross-section D of the cylinder. To this end, let us
introduce the vector-valued linear functionals R and M, the components of which
are given by

Ri(u) =
∫
D
S 3i(u) da, Mi(u) =

∫
D
εi jk x jS 3k(u) da, (26.3.3)

which represent the resultant force and resultant moment about O of the tractions
acting on the cross-section D of the cylinder. We can further write
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Mα(u) =
∫
D
ε3αβxβS 33(u)da − x3ε3αβRβ(u),

M3(u) =
∫
D
ε3αβxαS 3β(u) da.

(26.3.4)

Let us rewrite the plane boundary value problem (26.3.1) and (26.3.2) in the follow-
ing form:

Pi(u) +

[
Giαk3(0)uk,3 +

∫ t

0
G′

iαk3(t − s)uk,3(s)ds

]
,α

+ S 3i,3(u) = 0 in D,

Ti(u) = −
[
Giαk3(0)uk,3 +

∫ t

0
G′

iαk3(t − s)uk,3(s)ds

]
nα on ∂D.

(26.3.5)
Therefore, the boundary value problem (26.3.1) and (26.3.2) can be viewed as a
generalized plane strain boundary value problem with the following given data:

fi =

[
Giαk3(0)uk,3 +

∫ t

0
G′

iαk3(t − s)uk,3(s) ds

]
,α

+ S 3i,3(u),

pi = −
[
Giαk3(0)uk,3 +

∫ t

0
G′

iαk3(t − s)uk,3(s) ds

]
nα.

(26.3.6)

To satisfy the necessary and sufficient conditions (26.2.4) for a solution u ∈ P,
we must have ∫

D
S 3i,3(u) da = 0,

∫
D
ε3αβxαS 3β,3(u) da = 0. (26.3.7)

Using the hypothesis (26.1.3) it is easy to see that

S 3i,3(u) = S 3i(u,3),

so that relations (26.3.7) take the form
∫
D
S 3i(u,3)da = 0,

∫
D
ε3αβxαS 3β(u,3) da = 0. (26.3.8)

On the other hand, relations (26.3.7) prove that Ri(u) and M3(u), given by
(26.3.3), are independent of x3. Moreover, using the equilibrium equations (26.1.5)
and the boundary condition (26.1.6)1, we obtain

∫
D
xαS 33(u,3)da =

∫
D
xαS 33,3(u)da = −

∫
D
xαS ρ3,ρ(u) da

= −
∫
D

[
xαS ρ3(u)

]
,ρ
da +

∫
D
S 3α(u) da

= −
∫
∂D

xαs3(u) ds + Rα(u) = Rα(u),

(26.3.9)

and hence it follows from (26.3.4) that the Mα(u) are independent of x3. By direct
differentiation with respect to x3, we deduce from (26.3.9) that
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∫
D
xαS 33u,33) da = 0. (26.3.10)

Relations (26.3.8) and (26.3.10) allow us to distinguish two classes of semi-inverse
solutions to the Saint-Venant problem, which can be expressed in terms of a plane
displacement.

26.4 Primary Solution Class

Let us denote by CI the class of solutions of the Saint-Venant problem for which
v = u,3 is a rigid displacement, in other words, the strain tensor generated by v is
zero. From the above analysis it follows that for any u0 ∈ CI we have Rα

(
u0

)
= 0,

and moreover, R3

(
u0

)
and Mi

(
u0

)
are independent of x3. On the other hand, since

u0 ∈ CI , it follows that its components can be expressed as

u0
α = −1

2
aα(t)x2

3 − ε3αβa4(t)xβx3 + wα(x1, x2, t),

u0
3 = [a1(t)x1 + a2(t)x2 + a3(t)]x3 + w3(x1, x2, t),

(26.4.1)

combined with an arbitrary rigid displacement field. Here, as(t)(s = 1, 2, 3, 4) are ar-
bitrary functions of t, continuous on [0,∞), and wi are the components of an arbitrary
plane displacement vector w. The corresponding stress field is

S i j

(
u0

)
= Gi j33(0)

[
aρ(t)xρ + a3(t)

]
− a4(t)Gi jα3(0)ε3αβxβ

+

∫ t

0

{
G′

i j33(t − s)
[
aρ(s)xρ + a3(s)

]
− a4(s)G′

i jα3(t − s)ε3αβxβ
}
ds + Ti j(w),

(26.4.2)
where

Ti j(w) = Gi jkβ(0)wk,β +

∫ t

0
G′

i jkβ(t − s)wk,β(s) ds.

The boundary value problem described by relations (26.3.5) becomes

Si
(
u0

)
= Pi(w) +

[
Giα33(0)aρ(t)xρ +

∫ t

0
G′

iα33(t − s)aρ(s)xρds

]
,α

+

[
Giα33(0)a3(t) +

∫ t

0
G′

iα33(t − s)a3(s) ds

]
,α

−
[
ε3αβGiαρ3(0)a4(t)xβ +

∫ t

0
ε3αβG

′
iαρ3(t − s)a4(s)xβds

]
,α

= 0 in D,
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Bi

(
u0

)
= Ti(w) +

[
Giα33(0)aρ(t)xρ +

∫ t

0
G′

iα33(t − s)aρ(s)xρds

]
nα

+

[
Giα33(0)a3(t) +

∫ t

0
G′

iα33(t − s)a3(s) ds

]
nα

−
[
ε3αβGiαρ3(0)a4(t)xβ +

∫ t

0
ε3αβG

′
iαρ3(t − s)a4(s)xβds

]
nα

= 0 on ∂D,

(26.4.3)

and hence w is the solution of a plane boundary value problem. The necessary and
sufficient conditions for the existence of the solution w are satisfied for any functions
as(t)(s = 1, 2, 3, 4).

Let us denote by w( j) the solution of the boundary value problem (26.4.3) when
ai = δi j, a4 = 0 and by w(4) the solution of the same problem when ai = 0, a4 = 1.
Clearly,

w =
4∑
s=1

as ⊗ w(s),

on introducing the notation

( f ⊗ g)(t) = f (0)g(t) +
∫ t

0
ḟ (t − s)g(s) ds.

Thus, it follows that w(s) is the solution of the boundary value problem P(s)(s =
1, 2, 3, 4) characterized by the equations

Pi

(
w(β)

)
+

(
Giα33(t)xβ

)
,α
= 0 (β = 1, 2),

Pi

(
w(3)

)
+Giα33,α(t) = 0,

Pi

(
w(4)

)
− ε3ρβ

(
Giαρ3(t)xβ

)
,α
= 0 in D,

(26.4.4)

and the boundary conditions

Ti

(
w(β)

)
+Giα33(t)xβnα = 0 (β = 1, 2),

Ti

(
w(3)

)
+Giα33(t)nα = 0,

Ti

(
w(4)

)
− ε3ρβGiαρ3(t)xβnα = 0 on ∂D.

(26.4.5)

In what follows we shall assume that the displacement fields w(s) are determined by
one of the characteristic methods of the plane deformation problem. Then we can
write (26.4.1) in the form
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u0 =

4∑
s=1

as ⊗ u(s), (26.4.6)

where

u(β)
α = −1

2
x2

3δαβ + w
(β)
α , u(β)

3 = xβx3 + w
(β)
3 (β = 1, 2),

u(3)
α = w(3)

α , u(3)
3 = x3 + w

(3)
3 ,

u(4)
α = ε3βαxβx3 + w

(4)
α , u(4)

3 = w(4)
3 .

(26.4.7)

Moreover, by virtue of (26.4.2) and (26.4.6), we can write

S
(
u0

)
=

4∑
s=1

as ⊗ S
(
u(s)

)
,

where
S i j

(
u(α)

)
= Ti j

(
w(α)

)
+Gi j33(t)xα,

S i j

(
u(3)

)
= Ti j

(
w(3)

)
+Gi j33(t),

S i j

(
u(4)

)
= Ti j

(
w(4)

)
− ε3ρβGi jρ3(t)xβ.

(26.4.8)

Relations (26.4.4), (26.4.5), and (26.4.8) give

S αi,α

(
u(s)

)
= 0 in D,

S αi

(
u(s)

)
nα = 0 on ∂D,

and moreover, we have
∫
D
S 3α

(
u(s)

)
da =

∫
D

[
S 3α

(
u(s)

)
+ xαS ρ3,ρ

(
u(s)

)]
da

=

∫
∂D

xαS ρ3

(
u(s)

)
nρds = 0 (s = 1, 2, 3, 4).

(26.4.9)

Thus we conclude that for any u0 ∈ CI ,

Rα

(
u0

)
= 0, R3

(
u0

)
=

4∑
s=1

D3s ⊗ as,

Mα

(
u0

)
=

4∑
s=1

ε3αβDβs ⊗ as, M3

(
u0

)
=

4∑
s=1

D4s ⊗ as,

(26.4.10)

where
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Dβs =

∫
D
xβS 33

(
u(s)

)
da, D3s =

∫
D
S 33

(
u(s)

)
da,

D4s =

∫
D
ε3αβxαS 3β

(
u(s)

)
da (s = 1, 2, 3, 4).

(26.4.11)

Note that the solutions of the Saint-Venant problem in the class CI correspond to the
end loads

s(1)
i = −

4∑
s=1

S 3i

(
u(s)

)
⊗ as, s(2)

i =

4∑
s=1

S 3i

(
u(s)

)
⊗ as.

26.5 Secondary Solution Class

In order to define the secondary solution class, we observe that the relation (26.3.10)
is identically satisfied if u,33 is a rigid displacement. Let us denote by â the four-
dimensional vector field (a1(t), a2(t), a3(t), a4(t)) and write u0{â} for the displacement
vector u0 defined by (26.4.6), indicating its dependence on the functions as(t)(s =
1, 2, 3, 4).

We introduce the set CII as the class of all solutions u∗ of the Saint-Venant prob-
lem for which Ri(u∗) and M3(u∗) are independent of x3 and where u∗,33 is a rigid
displacement. Then it follows that u∗,3 ∈ CI , and hence we can write

u∗,3 = u0
{
b̂
}
.

This yields the following expression for the displacement u∗:

u∗ =
∫ x3

0
u0

{
b̂
}
dx3 + u0{ĉ} + w∗(x1, x2, t), (26.5.1)

where w∗ is a vector field in P while b̂ and ĉ are arbitrary four-dimensional vector
fields, depending only on the time variable t ∈ [0,∞).

The stress state corresponding to the displacement described by (26.5.1) is

S(u∗) =
4∑
s=1

(cs + x3bs) ⊗ S
(
u(s)

)
+ k + T(w∗), (26.5.2)

where the components of the tensor k are given by

ki j =
4∑
s=1

Gi jk3 ⊗ bs ⊗ w(s)
k . (26.5.3)

Since Ri(u∗) and M3(u∗) are independent of x3, relations (26.4.9), (26.4.11), (26.5.2),
and (26.5.3) furnish

4∑
s=1

D3s ⊗ bs = 0,
4∑
s=1

D4s ⊗ bs = 0. (26.5.4)
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The plane boundary value problem defined by (26.3.5) reduces to the following plane
boundary value problem for w∗:

Pi(w∗) + kαi,α +
4∑
s=1

bs ⊗ S 3i

(
u(s)

)
= 0 in D,

Ti(w∗) + kαinα = 0 on ∂D.

(26.5.5)

The necessary and sufficient conditions for the existence of the solution w∗ are satis-
fied by virtue of (26.4.11) and (26.5.4).

Thus, we can conclude that any u∗ ∈ CII has the form (26.5.1), where b̂ satisfies
the conditions (26.5.4) and w∗ can be obtained from the generalized plane strain
problem described by (26.5.5). Moreover, we have

Rα(u∗) =
4∑
s=1

Dαs ⊗ bs,R3(u∗) =
4∑
s=1

D3s ⊗ cs +
∫
D

[k33 + T33(w∗)] da,

Mα(u∗) = ε3αβ

⎧⎪⎪⎨⎪⎪⎩
4∑
s=1

Dβs ⊗ cs +
∫
D
xβ[k33 + T33(w∗)]da

⎫⎪⎪⎬⎪⎪⎭ ,

M3(u∗) =
4∑
s=1

D4s ⊗ cs +
∫
D
ε3αβxα

[
k3β + T3β(w∗)

]
da.

(26.5.6)

For such a solution in CII the corresponding end loads are

s(1)
i = −

4∑
s=1

S 3i

(
u(s)

)
⊗ cs − k3i − T3i(w∗),

s(2)
i =

4∑
s=1

S 3i

(
u(s)

)
⊗ (cs + Lbs) + k3i + T3i(w∗).

26.6 Solution of the Relaxed Saint-Venant Problem

The relaxed Saint-Venant problem for the viscoelastic cylinder B consists in the de-
termination of a quasistatic equilibrium displacement field u that satisfies the lateral
boundary condition

s(u) = 0 on π

and the global end conditions

Ri(u) = −Ri(t), Mi(u) = −Mi(t) on x3 = 0, (26.6.1)

where Ri and Mi are continuous functions preassigned on [0,∞). Similar conditions
have to be assigned on the end located at x3 = L in such a way that the global
equilibrium conditions for the cylinder are satisfied.
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Now we proceed to determine a solution of the relaxed Saint-Venant problem.
The above analysis is used in order to decompose the relaxed problem into two prob-
lems as follows:

(P1) the extension-bending-torsion problem when Rα = 0,
(P2) the flexure, when F3 = 0 and Mi = 0.

Due to the linearity of the theory, it follows that the sum of the solutions of the
above problems (P1) and (P2) gives a solution of the general Saint-Venant problem,
so that

u = uI + uII .

Let us first determine a solution uI of the extension-bending-torsion problem
(P1). In view of the previous analyses we see that a solution has the form

uI = u0 =

4∑
s=1

as ⊗ u(s). (26.6.2)

Then (26.4.10) and (26.6.1) give the integral system

4∑
s=1

Dαs ⊗ as = ε3αβMβ,

4∑
s=1

D3s ⊗ as = −R3,

4∑
s=1

D4s ⊗ as = −M3 (26.6.3)

for the determination of the unknown functions as(t)(s = 1, 2, 3, 4).
Let us denote by D(t) the 4 × 4 matrix whose components are Drs(t)(r, s =

1, 2, 3, 4). We set KI(R3,M1,M2,M3) = (−M2,M1,−R3,−M3)T and â = âT , so that
the integral system (26.6.3) can be written in the matrix form

D(0)â(t) +
∫ t

0
Ḋ(t − s)â(s) ds = KI(t). (26.6.4)

Observe that S
(
u(s)

)
at t = 0 coincides with the stress in the auxiliary problems

for an elastic material, characterized by the positive definite elasticity tensor G(0).
Therefore, we see that D(0) coincides with the corresponding matrix for an elastic
material with the elastic tensor G(0) and hence is invertible [206]. Thus, we can write
(26.6.4) in the form

â(t) +
∫ t

0
[D(0)]−1Ḋ(t − s)â(s) ds = [D(0)]−1KI(t). (26.6.5)

Since R3(t) and Mi(t) are continuous functions on [0,∞), the Volterra integral equa-
tion (26.6.5) has one and only one solution â(t), continuous on [0,∞), which can be
obtained by the method of successive approximations [77].

Therefore, the solution of the problem (P1) is given by (26.6.2), where u(s) is de-
fined by (26.4.7) and the unknown functions as(t) are determined by solving (26.6.5).

Let us now proceed to determine a solution of the problem (P2). In view of the
above discussion, we seek a solution in the class CII , that is, we assume that
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uII = u∗,

where

u∗α = −1
6
bα(t)x3

3 −
1
2
cα(t)x2

3 −
1
2
b4(t)ε3αβxβx

2
3

− c4(t)ε3αβxβx3 +

4∑
s=1

(cs + x3bs) ⊗ w(s)
α + w

∗
α,

u∗3 =
1
2

[
bρ(t)xρ + b3(t)

]
x2

3 +
[
cρ(t)xρ + c3(t)

]
x3 +

4∑
s=1

(cs + x3bs) ⊗ w(s)
3 + w

∗
3,

(26.6.6)
and the unknown functions bs(t) satisfy the conditions (26.5.4).

From (26.5.6) and (26.6.1), we obtain

4∑
s=1

Dαs ⊗ bs = −Rα, (26.6.7)

so that the integral systems (26.5.4) and (26.6.7) furnish the functions bs(t)(s =
1, 2, 3, 4). Therefore, we can assume that the functions bs(t) are known. Then the
vector w∗ can be determined from the generalized plane strain problem described by
(26.5.5). Further, from (26.5.6) and (26.6.1), we obtain the following integral system
for the determination of the unknown functions cs(t)(s = 1, 2, 3, 4):

4∑
s=1

Dαs ⊗ cs = −
∫
D
xα[k33 + T33(w∗)]da,

4∑
s=1

D3s ⊗ cs = −
∫
D

[k33 + T33(w∗)]da,

4∑
s=1

D4s ⊗ cs = −
∫
D
ε3αβxα

[
k3β + T3β(w∗)

]
da.

(26.6.8)

Thus, a solution of the flexure problem is given by (26.6.6), where the unknown
functions bs(t) and cs(t) are determined by means of the Volterra integral equations
defined by (26.5.4), (26.6.7), and (26.6.8), respectively, while the vector field w∗ is
determined as a solution of the generalized plane strain problem described by the
relations (26.5.5).

26.7 The Saint-Venant Problem for an Isotropic and
Homogeneous Cylinder

We now consider an isotropic and homogeneous cylinder characterized by the relax-
ation tensor (see (2.4.13) and (13.1.30))
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Gi jkl(t) = λ(t)δi jδkl + μ(t)
(
δikδ jl + δilδ jk

)
,

where λ(t) and μ(t) are the relaxation functions, assumed to be continuously differ-
entiable on [0,∞).

It is a simple matter to verify that the solutions w(s)(s = 1, 2, 3, 4) of the boundary
value problems P(s)(s = 1, 2, 3, 4) are

w(1)
1 = −1

4
λ ⊗ (λ + μ)−1

(
x2

1 − x2
2

)
,

w(1)
2 = −1

2
λ ⊗ (λ + μ)−1x1x2, w(1)

3 = 0,

w(2)
1 = −1

2
λ ⊗ (λ + μ)−1x1x2,

w(2)
2 =

1
4
λ ⊗ (λ + μ)−1

(
x2

1 − x2
2

)
, w(2)

3 = 0,

w(3)
1 = −1

2
λ ⊗ (λ + μ)−1x1, w(3)

2 = −1
2
λ ⊗ (λ + μ)−1x2,

w(3)
3 = 0, w(4)

1 = 0, w(4)
2 = 0, w(4)

3 = ϕ(x1, x2, t),

(26.7.1)

where ϕ(x1, x2, x3) is the solution of the following boundary value problem:

(μ ⊗ ϕ,α),α = ε3αβ

(
μxβ

)
,α

in D,

μ ⊗ ϕ,αnα = με3αβxβnα on ∂D.
(26.7.2)

If we choose the origin of the coordinate system to be at the mass center of the
cross-section D0, then the components Drs of the matrix D(t) are

Dαβ =
[
(λ + 2μ) − λ ⊗ (λ + μ)−1 ⊗ λ

]
Iαβ, Dα3 = D3α = 0,

D33 =
[
(λ + 2μ) − λ ⊗ (λ + μ)−1 ⊗ λ

]
A, D4α = Dα4 = 0,

D34 = D43 = 0, D44 =

∫
D
μ ⊗

(
ε3αβxαϕ,β + x2

1 + x2
2

)
da,

(26.7.3)

where

Iαβ =
∫
D
xαxβda, A =

∫
D
da.

Moreover, if we choose the axes Ox1 and Ox2 of the coordinate system such that
they coincide with the principal axes of inertia of the cross-section D0, then we see
that the matrix D(t) is diagonal, and hence the extension-bending-torsion problem
decomposes into four problems, which can be treated separately. In fact, the solution
of the extension-bending-torsion problem is

u1 = −1
2
a1x

2
3 − a4x2x3 +

3∑
i=1

ai ⊗ w(i)
1 ,

u2 = −1
2
a2x

2
3 + a4x1x3 +

3∑
i=1

ai ⊗ w(i)
2 ,

u3 = (a1x1 + a2x2 + a3)x3 + a4ϕ(x1, x2, t),

(26.7.4)
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where the w(i)
α are given by (26.7.1), ϕ is the solution of the boundary value problem

(26.7.2), and as(t)(s = 1, 2, 3, 4) are the solutions of the following Volterra integral
equations:

D11 ⊗ a1 = −M2(t), D22 ⊗ a2 = M1(t),

D33 ⊗ a3 = −R3(t), D44 ⊗ a4 = −M3(t).

The stress components corresponding to the displacements (26.7.4) are

S αβ(u) = λ ⊗ (a1x1 + a2x2 + a3)δαβ +
3∑
i=1

ai ⊗ Tαβ
(
w(i)

)
,

S α3(u) = S 3α(u) = μ ⊗
(
a4 ⊗ ϕ,α − ε3αβxβa4

)
,

S 33(u) = (λ + 2μ) ⊗ (a1x1 + a2x2 + a3) +
3∑
i=1

ai ⊗ T33

(
w(i)

)
.

Let us now consider the flexure problem. In view of (26.5.4) and (26.7.3) we
deduce that b3 = b4 = 0, while (26.6.7) gives

D11 ⊗ b1 = −R1, D22 ⊗ b2 = −R2.

Furthermore, we obtain that kαβ = 0, S 3α

(
u(β)

)
= 0, and hence the plane boundary

value problem described by (26.5.5) implies that w∗
1 = w∗

2 = 0. This further implies
that k33 = 0 and T33(w∗) = 0; hence, (26.6.8) yields that c1(t) = c2(t) = c3(t) = 0.
Therefore, the solution of the flexure problem takes the form

uα = −1
6
bα(t)x3

3 − c4(t)ε3αβxβx3 + x3

[
b1 ⊗ w(1)

α + b2 ⊗ w(2)
α

]
,

u3 =
1
2

[b1(t)x1 + b2(t)x2]x2
3 + c4 ⊗ ϕ + ψ(x1, x2, t),

where ψ(x1, x2, t) is the solution of the boundary value problem

(μ ⊗ ψ,α),α +
2∑

α=1

bα ⊗
[(
μ ⊗ w(α)

ρ

)
,ρ
+ T33

(
w(α)

)]
+ (λ + 2μ) ⊗ bαxα = 0 in D,

μ ⊗ ψ,αnα = −nα
2∑

ρ=1

bρ ⊗ w(ρ)
α ⊗ μ on ∂D.

Moreover, the integral system (26.6.8) gives that the function c4(t) is the solution of
the following Volterra integral equation:

D44 ⊗ c4 = −
∫
D
ε3αβxα

[
k3β + T3β(w∗)

]
da.
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26.8 The Saint-Venant Principle

We now establish a spatial decay estimate that demonstrates that the solution of
the Saint-Venant problem, with prescribed pointwise tractions on the ends, can be
approximated by any solution of the relaxed Saint-Venant problem with equivalent
global loads on the ends.

We assume that G(t) is positive definite and −G′(t) is positive semidefinite in
D × [0,∞). More precisely, it is assumed that there exist two constants μm > 0 and
μM > 0 such that

μm|ξ|2 ≤ ξ ·G(t)ξ ≤ μM |ξ|2 (26.8.1)

and
ξ ·G′(t)ξ ≤ 0, (26.8.2)

for every symmetric tensor ξ.
From these assumptions, we can prove for the stress tensor S, corresponding to

the strain tensor E, the following estimate:
∫ t

0
|S(τ)|2dτ ≤ 4μM

∫ t

0
|E(τ)|2dτ for all t ≥ 0. (26.8.3)

In fact, it follows from the constitutive relation (26.1.1) that
∫ t

0
|S(τ)|2dτ =

∫ t

0
S(τ) ·G(0)E(τ)dτ +

∫ t

0

∫ s

0
S(s) ·G′(s − τ)E(τ) dτds (26.8.4)

and
∫ t

0
S(τ) ·G(0)E(τ)dτ

=
1

2ε2

∫ t

0
S(τ) ·G(0)S(τ)dτ

+
ε2

2

∫ t

0
E(τ) ·G(0)E(τ)dτ

− 1
2

∫ t

0

[
1
ε
S(τ) − εE(τ)

]
·G(0)

[
1
ε
S(τ) − εE(τ)

]
dτ,

∫ t

0

∫ s

0
S(s)G′(s − τ)E(τ) dτds

= − 1
2ε2

∫ t

0

∫ s

0
S(s) ·G′(s − τ)S(s) dτds

− ε2

2

∫ t

0

∫ s

0
E(τ) ·G′(s − τ)E(τ) dτds

+
1
2

∫ t

0

∫ s

0

[
1
ε
S(s) + εE(τ)

]
·G′(s − τ)

[
1
ε
S(s) + εE(τ)

]
dτds,

(26.8.5)

with ε a positive parameter at our disposal. Furthermore,
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−
∫ t

0

∫ s

0
S(s) ·G′(s − τ)S(s) dτds =

∫ t

0
S(τ) · [G(0) −G(τ)]S(τ)dτ. (26.8.6)

Interchanging the order of integration yields
∫ t

0

∫ s

0
E(τ) ·G′(s − τ)E(τ) dτds =

∫ t

0

∫ t

τ

E(τ) ·G′(s − τ)E(τ) dsdτ

=

∫ t

0
E(τ) · [G(t − τ) −G(0)]E(τ) dτ.

(26.8.7)

Finally, we substitute (26.8.5)–(26.8.7) into (26.8.4) to obtain
∫ t

0
|S(τ)|2dτ = 1

2ε2

∫ t

0
S(τ) · [2G(0) −G(τ)]S(τ) dτ

+
ε2

2

∫ t

0
E(τ) · [2G(0) −G(t − τ)]E(τ) dτ

− 1
2

∫ t

0

[
1
ε
S(τ) − εE(τ)

]
·G(0)

[
1
ε
S(τ) − εE(τ)

]
dτ

+
1
2

∫ t

0

∫ s

0

[
1
ε
S(s) + εE(τ)

]
·G′(s − τ)

[
1
ε
S(s) + εE(τ)

]
dτds.

Using the hypotheses described by (26.8.1) and (26.8.2) and taking ε =
√

2μM , we
deduce the estimate (26.8.3).

The estimate
∫ t

0
S(τ) · E(τ)dτ ≥ μm

∫ t

0
|E(τ)|2dτ ∀t ≥ 0 (26.8.8)

also needs to be established. Relation (26.1.1) gives
∫ t

0
S(τ) · E(τ) dτ =

∫ t

0
E(τ) ·G(0)E(τ)dτ

− 1
2

∫ t

0

∫ τ

0
[E(τ) − E(s)] ·G′(τ − s)[E(τ) − E(s)] dτds

+
1
2

∫ t

0

∫ τ

0
[E(τ) ·G′(τ − s)E(τ) + E(s) ·G′(τ − s)E(s)] dτds,

so that by means of assumption (26.8.2), followed by some integrations by parts, we
obtain

∫ t

0
S(τ) · E(τ) dτ ≥ 1

2

∫ t

0
E(s) · [G(s) +G(t − s)]E(s) ds. (26.8.9)

Thus, (26.8.8) follows from (26.8.9) and (26.8.1).
In what follows, we consider a global-static equilibrium displacement vector field

u ∈ S for B as a solution of the Saint-Venant problem corresponding to the pointwise
tractions s(1) and s(2) preassigned on D0 and DL, respectively.
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Let ũ be a solution of the relaxed Saint-Venant problem corresponding to the
global loads equivalent to

R =
∫
D0

s(1)da, M =
∫
D0

r × s(1)da.

It is a simple matter to see that the difference

v = u − ũ

is a quasistatic equilibrium displacement on B̄, by which we mean that it satisfies the
quasistatic equilibrium equations

div S(v) = 0 in B × [0,∞). (26.8.10)

Moreover, it also satisfies the lateral boundary condition

s(v) = 0 on π × [0,∞) (26.8.11)

and the end global boundary conditions
∫
D0

s(v) da = 0,
∫
D0

r × s(v) da = 0,
∫
DL

s(v) da = 0,
∫
DL

r × s(v) da = 0.
(26.8.12)

The quasistatic equilibrium equations (26.8.10) and the boundary conditions
(26.8.11) with (26.8.12)1 imply that

∫
Dz

s(v) da = 0,
∫
Dz

r × s(v) da = 0 ∀z ∈ [0, L]. (26.8.13)

Let us fix 0 < T < ∞. Then, with the quasistatic equilibrium displacement v
satisfying the boundary conditions (26.8.11) and (26.8.12) we associate the following
measure

Uv(z) =
∫ T

0

∫
Bz

S(v(τ)) · E(v(τ)) dVdτ, (26.8.14)

where Bz ≡ D × (z, L − z), with z ∈ [0, L2 ). Using the divergence theorem and the
quasistatic equilibrium equations (26.8.10) together with the boundary conditions
(26.8.11) and (26.8.12)1, we can write

Uv(z) =
∫ T

0

∫
DL−z

s(v(τ)) · v(τ) dadτ −
∫ T

0

∫
Dz

s(v(τ)) · v(τ) dadτ. (26.8.15)

Furthermore, let us add to v the rigid displacements v̌(1) and v̌(2) and set

v̂(α) ≡ v + v̌(α) (α = 1, 2),
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so that by virtue of (26.8.13), Eq. (26.8.15) yields

Uv(z) =
∫ T

0

∫
DL−z

s(v(τ)) · v̂(1)(τ) dadτ −
∫ T

0

∫
Dz

s(v(τ)) · v̂(2)(τ) dadτ.

By the Schwarz inequality and the arithmetic–geometric mean inequality, we obtain

Uv(z) ≤ α

2

∫ T

0

∫
DL−z

|S(v(τ))|2 dadτ + 1
2α

∫ T

0

∫
DL−z

∣∣∣∣v̂(1)(τ)
∣∣∣∣2dadτ

+
α

2

∫ T

0

∫
Dz

|S(v(τ))|2 dadτ + 1
2α

∫ T

0

∫
Dz

∣∣∣∣v̂(2)(τ)
∣∣∣∣2dadτ,

(26.8.16)

with α a positive constant at our disposal. Furthermore, the use of the estimates
(26.8.3) and (26.8.8) in (26.8.16) gives

Uv(z) ≤ 2αμM

μm

[∫ T

0

∫
DL−z

S(v(τ)) · E(v(τ)) dadτ

+

∫ T

0

∫
Dz

S(v(τ)) · E(v(τ)) dadτ

]
+

1
2α

∫ T

0

∫
DL−z

∣∣∣∣v̂(1)(τ)
∣∣∣∣2dadτ

+
1

2α

∫ T

0

∫
Dz

∣∣∣∣v̂(2)(τ)
∣∣∣∣2dadτ.

(26.8.17)

At this instant we determine the rigid displacement v̌(1) and v̌(2) in such a way
that

∫
B1

v̂(1)dv = 0,
∫
B1

r × v̂(1)dv = 0,
∫
B2

v̂(2)dv = 0,
∫
B2

r × v̂(2)dv = 0,

where B1 ≡ D× (L− z− l, L− z), B2 = D× (z, z+ l) and 0 < l < L
2 . Then, as in [187],

it follows that
∫
B1

∣∣∣∣v̂(1)
∣∣∣∣2dv ≤ 1

λ0(l)

∫
B1

∣∣∣∣E(
v̂(1)

)∣∣∣∣2dv = 1
λ0(l)

∫
B1

|E(v)|2 dv,
∫
B2

∣∣∣∣v̂(2)
∣∣∣∣2dv ≤ 1

λ0(l)

∫
B2

∣∣∣∣E(
v̂(2)

)∣∣∣∣2dv = 1
λ0(l)

∫
B2

|E(v)|2 dv,
(26.8.18)

where λ0(l) is the lowest nonzero characteristic value corresponding to the free vi-
brations of the cylindrical disk D × [0, l], made of a hypothetical elastic material
having the elasticity tensor C = 1 ⊗ 1, with 1 the unit tensor in Sym. Furthermore,
we integrate (26.8.17) between the limits z and z + l, z ∈

(
0, L2 − l

)
, and then use the

estimates (26.8.8) and (26.8.18) to obtain
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lQ(z, l) ≤ 2αμM

μm

∫ T

0

∫
B∗

S(v(τ)) · E(v(τ)) dvdτ

+
1

2αλ0(l)μm

∫ T

0

∫
B∗

S(v(τ)) · E(v(τ)) dvdτ

=

[
2αμM

μm
+

1
2αλ0(l)μm

] ∫ T

0

∫
B∗

S(v(τ)) · E(v(τ)) dvdτ

≤ κ(l)
∫ T

0

∫
B∗

S(v(τ)) · E(v(τ)) dvdτ,

(26.8.19)

where

lQ(z, l) =
∫ z+l

z
Uv(η) dη, B∗ = B1 ∪ B2,

κ(l) =
2
μm

√
μM

λ0(l)
.

(26.8.20)

It follows from (26.8.20)1 that

l
∂

∂z
Q(z, l) = Uv(z + l) − Uv(z) = −

∫ T

0

∫
B∗

S(v(τ)) · E(v(τ)) dvdτ,

so that from (26.8.19), we deduce

κ(l)
∂

∂z
Q(z, l) + Q(z, l) ≤ 0,

or
∂

∂z

[
Q(z, l)eκ(l)z

]
≤ 0.

The solution of this differential inequality is

Q(z2, l) ≤ Q(z1, l)e
− z2−z1
κ(l) for z2 ≥ z1.

Since Uv(z) is a nonincreasing function on z and Q(z, l) is the mean value of Uv(z) in
the interval [z, z + l], we have

Uv(z + l) ≤ Q(z, l) ≤ Uv(z)

and hence
Uv(z2 + l) ≤ Uv(z1)e−

z2−z1
κ(l) for z2 ≥ z1.

This inequality yields the following spatial decay estimate:

Uv(z) ≤ Uv(0)e−
z−l
κ(l) for z ≥ l. (26.8.21)

The estimate (26.8.21) proves that the displacement vector v can be approximated
by a null displacement vector (modulo a rigid displacement) at appropriately large
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distances of the loaded ends. Therefore, we can approximate the exact solution of
the Saint-Venant problem with a solution of the relaxed Saint-Venant problem. Thus,
the estimate (26.8.21) can be interpreted as representing the Saint-Venant principle
in linear viscoelasticity, giving quantitative expression to the assertion that it is suf-
ficient to give a method for finding solutions of the relaxed Saint-Venant problem in
order to approximate the solution of the Saint-Venant problem.

A result similar to (26.8.21) is given in [93] in which an alternative measure to
(26.8.14) is used, based on a free energy density in the integrand, which is of course
manifestly nonnegative. This measure can be shown not to exceed Uv. Also, a re-
sult of the same type is given for sinusoidal histories, where the energy measure and
the spatial decay constant are frequency-dependent. This is of course a manifesta-
tion of an important property of viscoelastic materials, namely that their response is
influenced by the rate of application of loads.



27

Exponential Decay

27.1 Differential Problem with Nonconvex Kernels

The differential problem of the dynamics of viscoelastic solids, defined, for example,
by the system (24.2.31), can be represented in an abstract form by means of the
following integrodifferential equation:

ü(t) + Au +
∫ t

−∞
k(t − s)Au(s)ds = 0 ∀t > 0, (27.1.1)

with which the initial conditions

u(t) = φ(t) ∀t ≤ 0, u̇(0) = u1 (27.1.2)

are associated.
In [24], to which we shall refer for the study of the stability of solutions, the

operator A : D(A) → H is supposed to be self-adjoint, positive definite, closed,
and linear; its domain D(A) is a dense subset of the real Hilbert space with an inner
product denoted by (·, ·) and the corresponding norm ‖ · ‖H. The resolvent operator
will be denoted by R(μ; A) = (A−μI)−1, which, if it exists, is assumed to be compact.
Moreover, we suppose that Aφ : (−∞, 0] → H is bounded and continuous, u1 ∈ H,
the scalar kernel k : [0,∞) → R is such that k ∈ C1, and both k and k′ belong
to L1(0,∞). In particular, in viscoelasticity such an operator A coincides with the
Laplacian Δ.

A function

u ∈ C(R,D(A)) ∩C2([0,∞),H) (27.1.3)

that satisfies (27.1.1) for all t > 0 and (27.1.2) is said to be a strong solution of this
problem. Any solution satisfies the Volterra integrodifferential equation

ü(t) + Au(t) +
∫ t

0
k(t − s)Au(s)ds = f(t) ∀t > 0, (27.1.4)

© Springer Nature Switzerland AG 2021
G. Amendola et al., Thermodynamics of Materials with Memory,
https://doi.org/10.1007/978-3-030-80534-0 27

625

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80534-0_27&domain=pdf
https://doi.org/10.1007/978-3-030-80534-0_27


626 27 Exponential Decay

with initial conditions given by

u(0) = u0 := φ(0), u̇(0) = u1, (27.1.5)

where the function f is expressed in terms of the given initial history as follows:

f(t) = −
∫ 0

−∞
k(t − s)Aφ(s)ds ∀t ≥ 0. (27.1.6)

Observe that a forcing function could be added to (27.1.1), to allow for the pres-
ence of body forces.

Our concern here is with the stability of solutions. It will be recalled that with
respect to their existence and uniqueness, Theorem 3.1 of [263] ensures that the
problem (27.1.4) and (27.1.5) has a unique strong solution on [0,∞) if u1 is in an
intermediate space between D(A) and H.

The fact that the abstract formulation expressed by (27.1.4) is related to the prob-
lems of linear viscoelasticity is shown, for example, in [79, 80, 113, 276]. The kernel
G : [0,∞) → R is expressed in terms of k by means of

G(t) = 1 +
∫ t

0
k(s)ds,

which is the relaxation function, with the instantaneous elastic modulus incorporated
into A. Also, linear viscoelastic materials that are inhomogeneous are allowed in this
formulation. Since we are concerned with viscoelastic solids, it will be supposed that

G∞ = 1 +
∫ ∞

0
k(s)ds > 0. (27.1.7)

Moreover, some other conditions on the kernel must be added. We assume that

1
η

ImkL(iη) > 0 ∀η � 0, k(0) < 0, (27.1.8)

where

kL(λ) :=
∫ ∞

0
k(t)e−λtdt, Reλ ≥ 0,

is the Laplace transform of k. Relations (27.1.8) are special cases of (8.1.18) and
(8.1.23). Condition (27.1.8)2 is more restrictive in one sense than (27.1.8)1, since if k
satisfies (27.1.8)1 and the function t �−→ tk(t) belongs to L1(0,∞), then it follows that
k(0) ≤ 0 (a special case of (8.1.21)). The loss modulus (see after (8.1.24)) in linear
viscoelasticity corresponds to the function η �−→ ImkL(iη) and the dynamic viscosity
to η �−→ ImkL(iη)/η [133]. We note that alternatively, the monotonicity conditions

k(t) < 0, k′(t) ≥ 0 ∀t ≥ 0 (27.1.9)

can be employed. These are a special case of (10.2.2), for example. One can show
that they imply (27.1.8), though the converse is not true. An example is given by the
oscillatory kernel
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k(t) = −(1 −G∞)
d
dt

(
e−αt cosωt

)
∀t ≥ 0,

which satisfies (27.1.7) and (27.1.8) if 0 < G∞ < 1 and α > 0; indeed,

1
η

ImkL(iη) =
(1 −G∞)α

(
α2 + ω2 + η2

)
[α2 + (η + ω)2][α2 + (η − ω)2]

> 0 ∀η � 0. (27.1.10)

Following [24], we now choose the conditions (27.1.8), instead of (27.1.9), be-
cause of their connection with the restrictions imposed by the Second Law of Ther-
modynamics. Finally, observe that in (27.1.1) and (27.1.4) we have only the weak
damping engendered by the memory term without any damping term that depends
on the current value of u̇.

It is useful to consider frequency-domain methods because of the particular forms
of (27.1.4) and (27.1.8)1. For the use of these methods to study the asymptotic be-
havior of solutions of both parabolic and hyperbolic infinite-dimensional integrodif-
ferential equations, see [284], while for positivity conditions such as (27.1.8)1, see
[81, 255–258, 304].

27.1.1 Transformed Problem and Some Useful Preliminaries

In order to use the frequency domain, we consider the transformed problem by apply-
ing the Laplace transform to (27.1.4). Thus, let us denote by HΩ the complexification
of the Hilbert space H. Consider any element v ∈ HΩ expressed by

v = v1 + iv2,

where v1, v2 ∈ H. Then one can define

(v,w)HΩ
= (v1,w1) + (v2,w2) + i[(v2,w1) − (v1,w2)],

which is a sesquilinear form induced by the inner product (·, ·) of H on HΩ. The
space HΩ is therefore a complex Hilbert space with norm given by ‖v‖2

HΩ
= ‖v1‖2

H
+

‖v2‖2
H

. Furthermore, the closed operator A is extended by means of an operator AΩ :
D(AΩ) → HΩ defined by

v ∈ D(AΩ) ⇐⇒ v1, v2 ∈ D(A),

AΩv = Av1 + iAv2.

Obviously, AΩ inherits its properties from A. We denote by L(H) the Banach space of
bounded linear operators on H. The integrals of vector-valued functions are Bochner
integrals. The convolution of two functions v and w, defined on [0,∞), is denoted by
(see (C.3.4))
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(v ∗ w)(t) =
∫ t

0
v(t − s)w(s)ds ∀t ≥ 0.

If v ∈ L1((0,∞),R) and w ∈ Lp((0,∞),H), then

‖v ∗ w‖Lp((0,∞),H) ≤ ‖v‖L1((0,∞),R)‖w‖Lp((0,∞),H). (27.1.11)

If t �−→ eσtw(t) is an integrable function from (0,∞) into a Banach space [201], the
Laplace transform of w, which exists for any λ such that Reλ ≥ −σ, is continuous
on the complex half-plane {λ ∈ Ω; Reλ ≥ −σ} and analytic on {λ ∈ Ω; Reλ >
−σ}, where Ω denotes the set of complex numbers (cf. Sect. C.2.1). We recall that
functions defined on the closure of the complex half-space Π = {z ∈ Ω; Rez > 0}
with values in a Hilbert space are shown to be the Laplace transforms of functions
by establishing that they are in a Hardy space [263].

Definition 27.1.1. The Hardy space H2(Π,HΩ) is the class of all analytic functions
χ : Π→ HΩ such that

sup

{∫ ∞

−∞
‖χ(ξ + iη)‖2

HΩ
dη, ξ > 0

}
< ∞,

χ(iη) := limξ→0+ χ(ξ + iη) exists almost everywhere and the function η �−→ χ(iη)
belongs to L2(R,HΩ).

We recall a generalization of a well-known Paley–Wiener result, expressed by
the following theorem.

Theorem 27.1.2. A function χ : Π → HΩ is the Laplace transform of a function in
L2((0,∞),H) if and only if χ ∈ H2(Π,HΩ).

From the assumptions on A it follows that there exist a family {μn} of eigenvalues
such that 0 < μ1 ≤ μ2 ≤ · · · with limn→∞ μn = ∞, and a complete orthonormal set
{ψn} of corresponding eingenvectors of A. Moreover, the complex μ is in the spectrum
σ(A) of A if and only if μ = μn, in which case Aψn = μnψn. The resolvent set of A is
denoted by ρ(A).

From Lemmas 4.1 and 4.2 of [263] we have the following useful result.

Lemma 27.1.3. Let p, q ∈ L1(0,∞), ϑ ∈ R and κ > 0. Suppose that for each n =
1, 2, . . .,

mn(λ) := λ2 + κλ + λpL(λ) + qL(λ) + ϑ + μn � 0, Reλ ≥ 0. (27.1.12)

Then the linear operators TL(λ) and RL(λ) in L(HΩ), defined by

TL(λ) =
{[
λ2 + κλ + λpL(λ) + qL(λ) + ϑ

]
I + AΩ

}−1
,

RL(λ) = λTL(λ), (27.1.13)
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exist for all λ such that Reλ ≥ 0, and

sup

{∫ ∞

−∞
‖TL(ξ + iη)‖2

L(HΩ)dη, ξ ≥ 0

}
< ∞,

sup

{∫ ∞

−∞
‖RL(ξ + iη)v‖2

HΩ
dη, ξ ≥ 0

}
< ∞, ∀v ∈ HΩ.

Regarding the notation used in (27.1.13), we observe that even if for each fixed
v ∈ HΩ the functions λ �−→ TL(λ)v and λ �−→ RL(λ)v are not defined as Laplace
transforms, they are indeed so, by virtue of Theorem 27.1.2.

27.1.2 The Resolvent of the Kernel

Consider the resolvent r : [0,∞) → R of k defined as the solution of

r(t) + (k ∗ r)(t) = −k(t) ∀t ≥ 0. (27.1.14)

Let us put kβ(t) := eβtk(t), rβ(t) := eβtr(t) and denote their time derivatives by
k′β(t) and r′β(t); we have, in particular, kβL (λ) = kL(λ − β). From (27.1.14) it follows
that rβ is the resolvent of kβ; moreover, r(0) = −k(0) > 0 if (27.1.8) holds.

We now prove some results related to k, already shown for symmetric bounded
linear operators on H in Proposition 5.1 of [256], the relevance of which to linear
viscoelasticity can be found in [112, 113].

Proposition 27.1.4. Suppose that k satisfies (27.1.8). Then

1
η

ImkL(ξ + iη) > 0, ξ ≥ 0, η � 0,

1 + RekL(ξ) > 0, ξ ≥ 0; (27.1.15)

furthermore, r ∈ C1[0,∞), r ∈ L1(0,∞) ∩ L2(0,∞), r′ ∈ L1(0,∞) and also

1
η

ImrL(λ) < 0, ξ ≥ 0, η � 0,

1 + RerL(ξ) > 0, ξ ≥ 0. (27.1.16)

Moreover, if there exists a constant α > 0 such that
∫ ∞

0
eαt |k(t)|dt < ∞,

∫ ∞

0
eαt |k′(t)|dt < ∞ (27.1.17)

hold, then there is a β ∈ (0, α] such that rβ, r′β ∈ L1(0,∞).
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Proof. The resolvent r, which is continuous, belongs to L1(0,∞) if and only if 1 +
kL(λ) � 0 for all λ with Reλ ≥ 0 (see Theorem 2.4.1 of [185]). From the analyticity of
the function λ �−→ 1+ kL(λ) it follows that its imaginary part is a harmonic function,
the minimum of which is achieved on the boundary of a closed bounded region. Let

{λ ∈ Ω; Reλ ≥ 0, Imλ ≥ 0, |λ| ≤ ρ}

be a region defined by the parameter ρ > 0, which is assumed to be large; then by
virtue of the Riemann–Lebesgue lemma (C.2.13) and (27.1.8)1, we have ImkL(λ) ≥ 0
for all λ such that Reλ ≥ 0 and Imλ ≥ 0. The open mapping theorem, since kL is not
constant, yields ImkL(λ) > 0 for all λ with Reλ ≥ 0 and Imλ > 0. From

kL(λ) = kL(λ),

where the bar denotes the complex conjugate, we get (27.1.15)1. Using the Hilbert
integral representation for the Laplace transform we have

RekL(ξ) = −2
π

∫ ∞

0

ω

ξ2 + ω2
ImkL(iω)dω, ξ > 0.

Observe that the function ξ �−→
(
ξ2 + ω2

)−1
is strictly decreasing on (0,∞), while

ξ �−→ RekL(ξ) is strictly increasing on (0,∞); thus, (27.1.15)2 follows, since kL(0) >
−1, by virtue of (27.1.7), and limξ→∞ kL(ξ) = 0. Both the inequalities (27.1.15) imply
that 1 + kL(λ) � 0 for any λ with Reλ ≥ 0, and consequently, r ∈ L1(0,∞). The
assertions related to r′ follow easily from the relation r′ = k(0)r − k′ ∗ r − k′, derived
from (27.1.14).

To see that r ∈ L2(0,∞), note that limt→∞ r(t) = 0, since r, r′ ∈ L1(0,∞); thus,
there exists T > 0 such that r2(t) ≤ |r(t)|∀t ≥ T .

Let us add the hypotheses expressed by (27.1.17). To show that rβ ∈ L1(0,∞), we
prove that there exists a constant β ∈ (0, α] such that 1 + kβL (λ) = 1 + kL(λ − β) � 0
for all λ with Reλ ≥ 0. It is only necessary to see that 1 + kL(λ) � 0 for all λ such
that −β ≤ Reλ ≤ 0. From the Riemann–Lebesgue lemma it follows that there exists
M1 > 0 such that 1 + kL(ξ + iη) � 0 ∀ξ ∈ [−α, 0] and |η| ≥ M1. Since kL(0) > −1,
there exist β1 ∈ (0, α] and M2 ∈ (0,M1) such that RekL(ξ + iη) > −1 ∀ξ ∈ [−β1, 0]
and |η| ≤ M2. Finally, there exists β2 ∈ (0, α] such that ImkL(ξ+ iη) > 0 ∀ξ ∈ [−β2, 0]
and for any η such that |η| ∈ [M2,M1]. It is enough to take β = min{β1, β2} to obtain
the result.

It follows from (27.1.14) that

rL(λ) = − kL(λ)
1 + kL(λ)

, Reλ ≥ 0,

whence we have

Re[1 + rL(λ)] =
1 + RekL(λ)
|1 + kL(λ)|2

, ImrL(λ) = − ImkL(λ)
|1 + kL(λ)|2

.

Thus, using (27.1.15), the relations (27.1.16) follow. �
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27.1.3 Stability Results

Some results related to the exponential decay of strong solutions of (27.1.4)–(27.1.5),
derived in [24], are established by means of three theorems.

Before giving their proofs, we firstly consider the properties of the forcing func-
tion f, defined by (27.1.6), and show its characterization by means of the inequality
(27.1.10). We observe that the assumption on the initial history, expressed by the
boundedness of Aφ, can be relaxed by constructing a suitable influence function from
k and k′, as done in Lemma 2.1 of [79] by Dafermos, and requiring that φ lie in an
appropriate weighted space. On this subject we also recall that Coleman and Noll in
[73, 74] introduced influence functions as part of a theory of functionals with fading
memory.

Proposition 27.1.5. The function f defined in (27.1.6) belongs to C1([0,∞),H). If
∫ ∞

0
t|k(t)|dt < ∞,

∫ ∞

0
t|k′(t)|dt < ∞ (27.1.18)

also hold, then f, f′ ∈ L1((0,∞),H).

Proof. The function f is continuous, because

‖f(t + τ) − f(t)‖H ≤
∫ 0

−∞
|k(t + τ − s) − k(t − s)|‖Aφ(s)‖Hds

≤ sup
s≤0

‖Aφ(s)‖H
∫ 0

−∞
|k(t + τ − s) − k(t − s)|ds

= sup
s≤0

‖Aφ(s)‖H
∫ ∞

t
|k(τ + σ) − k(σ)|dσ → 0

as τ → 0, since k ∈ L1(0,∞).
In order to show that f is continuously differentiable, we firstly observe that

∫ t2

t1

∥∥∥∥∥∥
∫ 0

−∞
k′(t − s)Aφ(s)ds

∥∥∥∥∥∥
H

dt ≤ sup
s≤0

‖Aφ(s)‖H
∫ t2

t1

∫ 0

−∞
|k′(t − s)|dsdt

≤ sup
s≤0

‖Aφ(s)‖H
∫ t2

t1

∫ ∞

t
|k′(σ)|dσdt < ∞,

because k′ ∈ L1(0,∞). Then, using the Tonelli–Fubini theorem, we obtain

∫ t2

t1

∫ 0

−∞
k′(t − s)Aφ(s)dsdt =

∫ 0

−∞
[k(t2 − s) − k(t1 − s)]Aφ(s)ds = f(t1) − f(t2).

From this result and
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∥∥∥∥∥∥
∫ 0

−∞
[k′(t + τ − s) − k′(t − s)]Aφ(s)ds

∥∥∥∥∥∥
H

≤ sup
s≤0

‖Aφ(s)‖H
∫ ∞

t
|k′(τ + σ) − k′(σ)|dσ → 0

as τ → 0, we have f ∈ C1([0,∞),H) and

f′(t) = −
∫ 0

−∞
k′(t − s)Aφ(s)ds ∀t ≥ 0.

The function f is integrable, since by virtue of (27.1.18),

∥∥∥∥∥∥
∫ ∞

0

∫ 0

−∞
k(t − s)Aφ(s)dsdt

∥∥∥∥∥∥
H

≤ sup
s≤0

‖Aφ(s)‖H
∫ ∞

0

∫ 0

−∞
|k(t − s)|dsdt

≤ sup
s≤0

‖Aφ(s)‖H
∫ ∞

0
σ|k(σ)|dσ < ∞.

An analogous proof shows that f′ ∈ L1(0,∞). �

Another result, useful later on to show the stability properties, is now given by
the following lemma. It is related to a particular form of mn(λ), already defined by
(27.1.12) in Lemma 27.1.3, now expressed in terms of rL(λ).

Lemma 27.1.6. Suppose that k obeys (27.1.8). Then for each n ∈ N,

mn(λ) := λ2[1 + rL(λ)] + μn � 0, Reλ ≥ 0. (27.1.19)

Proof. Now mn(λ) has this new form (27.1.19), instead of (27.1.12). Putting λ =
ξ + iη, with ξ ≥ 0 and η � 0, the real and imaginary parts of this mn(λ) are

Remn(λ) =
(
ξ2 − η2

)
[1 + RerL(λ)] − 2ξηImrL(λ) + μn,

Immn(λ) = 2ξη[1 + RerL(λ)] +
(
ξ2 − η2

)
ImrL(λ).

Hence, if Immn(λ) = 0, then for any ξ > 0 and η � 0, we obtain

2ξRemn(λ) = − ImrL(λ)
η

(
ξ2 + η2

)2
+ 2ξμn > 0,

by virtue of (27.1.16)1. If η = 0 we obtain, using (27.1.16),

Remn(ξ) = ξ2Re[1 + rL(ξ)] + μn > 0 ∀ξ ≥ 0. (27.1.20)

Moreover, if ξ = 0, then

Immn(iη) = −η2ImrL(iη) � 0 ∀η � 0, (27.1.21)

whence it follows that mn(iη) � 0 ∀η � 0. �
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Remark 27.1.7. This result shows that

−λ2[1 + rL(λ)] = − λ2

1 + kL(λ)
∈ ρ(AΩ)

for all λ such that Reλ ≥ 0.

A first result on the L2-stability of the solutions of (27.1.4) and (27.1.5) is given
by the following theorem.

Theorem 27.1.8. Suppose that k obeys (27.1.8) and that (27.1.18) also hold. Then
the strong solution u of (27.1.1)–(27.1.2) satisfies

∫ ∞

0

[
‖u(t)‖2

H + ‖u̇(t)‖2
H

]
dt < ∞,

‖u(t)‖H → 0 as t → ∞. (27.1.22)

Proof. This theorem is a consequence of Theorem 4.2 of [263].
Firstly, using MacCamy’s trick, the problem (27.1.4) is transformed into one in

which the history of Au is absent, as in [263]. The convolution of (27.1.4) with r
gives

(r ∗ ü)(t) − (k ∗ Au)(t) = (r ∗ f)(t).

Hence, we can derive and substitute the expression for k ∗ Au into (27.1.4); then an
integration by parts gives

ü(t) + r(0)u̇(t) + (ṙ ∗ u̇)(t) + Au(t) = g(t) + r(t)u1 ∀t ≥ 0, (27.1.23)

where

g(t) = f(t) + (r ∗ f)(t).

Propositions 27.1.4 and 27.1.5 yield g, ġ ∈ L1((0,∞),H). Therefore, by applying
the Laplace transform to (27.1.23), we have

[
λ2 + r(0)λ + λṙL(λ)

]
uL(λ) + AΩuL(λ)

= λu(0) + [1 + rL(λ)]u1 + [ṙL(λ) + r(0)]u0 + gL(λ), Reλ ≥ σ,

with a suitable σ ≥ 0. If we introduce in L(HΩ) and for all λ with Reλ ≥ 0 the linear
operators

TL(λ) =
{
λ2[1 + rL(λ)]I + AΩ

}−1
, RL(λ) = λTL(λ), (27.1.24)

then
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uL(λ) = TL(λ){[1 + rL(λ)]u1 + ṙL(λ)u0 + r(0)u0 + gL(λ)} + RL(λ)u0. (27.1.25)

From Lemma 27.1.3 and Theorem 27.1.2 it follows that u ∈ L2((0,∞),H) and
that (27.1.25) holds for all λ with Reλ ≥ 0, by virtue of (27.1.19).

We now show that u̇ is bounded.
From (27.1.25) and the definition (27.1.13)2 for RL we have

u̇L(λ) = λuL(λ) − u0

= TL(λ)[λrL(λ)u1 + λgL(λ)] + TL(λ)
[
λ2 + r(0)λ + λṙL(λ)

]
u0 + RL(λ)u1 − u0,

whence, taking into account that

λrL(λ) = ṙL(λ) + r(0), λgL(λ) = ġL(λ) + g(0)

and that from (27.1.24),

TL(λ)
{
λ2[1 + rL(λ)]I

}
= I − TL(λ)AΩ,

we obtain

u̇L(λ) = TL(λ)[ṙL(λ)u1 + ġL(λ)] + TL(λ)[r(0)u1 + g(0) − AΩu0] + RL(λ)u1.

Hence, by virtue of the properties of TL(λ) and RL(λ), it follows that u̇L ∈ H2(Π,HΩ),
whence u̇ ∈ L2((0,∞),H).

From (27.1.22) and since u ∈ L2((0,∞),H), u is uniformly continuous, because

‖u(t2) − u(t1)‖H ≤
∣∣∣∣∣∣
∫ t2

t1

‖u̇(t)‖Hdt

∣∣∣∣∣∣ ≤ |t2 − t1|1/2

[∫ ∞

0
‖u̇(t)‖2

Hdt

]1/2

.

Thus, the proof is complete. �

We now give another result related to the forcing function f, namely the exponen-
tial decays of f and ḟ, as shown in the following proposition by virtue of conditions
(27.1.17).

Proposition 27.1.9. If the two inequalities (27.1.17) hold, then
∫ ∞

0
eαt‖f(t)‖Hdt < ∞,

∫ ∞

0
eαt‖ḟ(t)‖Hdt < ∞.

Proof. Using (27.1.17), we have
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∫ ∞

0
eαt‖f(t)‖Hdt =

∫ ∞

0
eαt

∥∥∥∥∥∥
∫ 0

−∞
k(t − s)Aφ(s)ds

∥∥∥∥∥∥
H

dt

≤ sup
s≤0

‖Aφ(s)‖H
∫ ∞

0
|k(τ)|

∫ τ

0
eαtdtdτ

=
1
α

sup
s≤0

‖Aφ(s)ds‖H
∫ ∞

0
|k(τ)|(eατ − 1)dτ < ∞

and
∫ ∞

0
eαt‖ḟ(t)‖Hdt ≤ 1

α
sup
s≤0

‖Aφ(s)ds‖H
∫ ∞

0
|k′(τ)|(eατ − 1)dτ < ∞.

�

Before stating the second theorem on exponential stability, we prove the follow-
ing lemma, which is analogous to Lemma 27.1.6 and similar to Theorem 6 of [255].

Lemma 27.1.10. Suppose that (27.1.8) and (27.1.17) hold. Let β > 0 be the param-
eter introduced in Proposition 27.1.4, while mn(λ) is given by (27.1.19). Then there
exists β1 ∈ (0, β], with 2β1 < r(0) such that mn(λ) � 0 for all λ with Reλ ≥ −β1.

Proof. From Proposition 27.1.4 it follows that mn(λ) can be defined for all λ such
that Reλ ≥ −β. Using (27.1.19), we must prove that mn(λ) � 0 for all λ with Reλ ∈
[−β1, 0] for some β1 ∈ (0, β). Since

mn(λ) = λ2 + [r(0) + ṙL(λ)]λ + μn, λ � 0,

it is easy to derive

lim
n→∞

1
η

Immn(λ) = 2ξ + r(0), (27.1.26)

where we have put λ = ξ + iη. Let β2 ∈ (0, β] be such that r(0) > 2β2. Thus,
(27.1.26) yields that there exists a constant M1 > 0 such that Immn(λ) � 0 for
all ξ ∈ [−β2, 0] and |η| ≥ M1. Moreover, from (27.1.20) it follows that there are
constants β3 ∈ (0, β] and M2 > 0 such that Remn(ξ + iη) > 0 ∀ξ ∈ [−β3, 0] and
|η| ≤ M2. Finally, from (27.1.21) we see that there is a constant β4 ∈ (0, β] such that
Immn(ξ + iη) > 0 ∀ξ ∈ [−β4, 0] and M2 ≤ |η| ≤ M1. Choosing β1 = min{β2, β3, β4},
we obtain the result. �

Remark 27.1.11. The hypothesis r(0) = −k(0) > 0 is essential to obtain a posi-
tive limit in (27.1.26) for small ξ. It prevents there being a sequence {λ j} satisfying
mj(λ j) = 0, with Reλ j < 0 ∀ j ∈ N, lim j→∞ Reλ j = 0 and lim j→∞ Imλ j = ∞. Also
Lemma 27.1.10 requires the condition r(0) > 0.

We can now state the second theorem, which generalizes to our class of linear
hyperbolic integrodifferential equations in a Hilbert space, a theorem in [255], related
to a second-order scalar functional differential equation, by requiring the exponential
integrability of k and k′ only.
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Theorem 27.1.12. Suppose that k obeys (27.1.8) and that there exists a constant α >
0 such that (27.1.17) holds, i.e., the relations

∫ ∞

0
|k(t)|eαtdt < ∞,

∫ ∞

0
|k′(t)|eαtdt < ∞,

are satisfied. Then there exists γ > 0, depending only on k, such that the strong
solution of (27.1.1) and (27.1.2) obeys

∫ ∞

0
e2γt

[
‖u(t)‖2

H + ‖u̇(t)‖2
H

]
dt < ∞.

Furthermore, there exists a constant M > 0 such that

‖u(t)‖H ≤ Me−γt ∀t ≥ 0. (27.1.27)

Proof. We consider γ = min{α, β1} and the value β1 introduced in Lemma 27.1.10.
If we put

uγ(t) := eγtu(t),

the first and second derivatives u̇γ(t) and üγ(t) can be evaluated, which yield the
following relations:

eγtu̇(t) = u̇γ(t) − γuγ(t),

eγtü(t) = üγ(t) − 2γu̇γ(t) + γ2uγ(t). (27.1.28)

In a similar way rγ(t) := eγtr(t) is introduced, and its first derivative ṙγ(t) yields an
expression analogous to (27.1.28)1.

Moreover, the product of the convolution of ṙ and u̇ by eγt can be expressed as

eγt(ṙ ∗ u̇)(t) =
∫ t

0
eγ(t−s)ṙ(t − s)eγsu̇(s)ds

=
(
ṙγ ∗ u̇γ

)
(t) − γ

(
rγ ∗ u̇γ

)
(t) − γ

(
ṙγ ∗ uγ

)
(t) + γ2

(
rγ ∗ uγ

)
(t),

by virtue of (27.1.28)1. Multiplying (27.1.23) by eγt and using the last three results,
we have

uγ + κγu̇γ + pγ ∗ u̇γ + qγ ∗ uγ +
(
A + ϑγI

)
uγ = gγ + rγu1, (27.1.29)

where

pγ(t) := ṙγ(t) − γrγ(t), qγ(t) := γ
[
γrγ(t) − ṙγ(t)

]
,

gγ(t) := eγtg(t), κγ := r(0) − 2γ > 0, ϑγ := γ[γ − r(0)]. (27.1.30)
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By virtue of Propositions 27.1.4 and 27.1.9 the functions pγ, qγ, and gγ belong
to L1(0, ∞). From (27.1.19), taking into account that

rL(λ − γ) = rγL(λ), λrL(λ) = ṙγL(λ) + r(0)

and using (27.1.30), we have

mn(λ − γ) = (λ − γ)2
[
1 + rγL(λ)

]
= λ2 + κγλ + λpγL(λ) + qγL(λ) + ϑγ + μn, Reλ ≥ 0. (27.1.31)

From Lemma 27.1.10 and the definition of the constant γ it follows that (27.1.12) is
satisfied together with κγ > 0. Therefore, using Lemma 27.1.3, we can state that the
linear operators

TγL(λ) =
{[
λ2 + κγλ + λpγL(λ) + qγL(λ) + ϑγ

]
I + AΩ

}−1
,

RγL(λ) = λTγL(λ), (27.1.32)

corresponding to (27.1.31), are well defined for all λ with Reλ ≥ 0; moreover, we
have

sup

{∫ ∞

−∞
‖TγL(ξ + iη)‖2

L(HΩ)dη, ξ ≥ 0

}
< ∞,

sup

{∫ ∞

−∞
‖RγL(ξ + iη)v‖2

HΩ
dη, ξ ≥ 0

}
< ∞, ∀v ∈ HΩ. (27.1.33)

From (27.1.29), by applying the Laplace transform, one can derive

uγL(λ) = TγL(λ)
{[

1 + rγL(λ)
]
u1 +

[
pγL(λ) + κγ + γ

]
u0 + gγL(λ)

}
+ RγL(λ)u0,

(27.1.34)
for Reλ > γ, where TγL(λ) and RγL(λ) are given by (27.1.32), and in particular,
κγ + γ = r(0) − γ > 0, by virtue of (27.1.30)4.

Hence, it follows that the function

zL(λ) = TγL(λ)
{[

1 + rγL(λ)
]
u1 +

[
pγL(λ) + κγ + γ

]
u0 + gγL(λ)

}
+ RγL(λ)u0,

for Reλ ≥ 0, is continuous in Π̄ and analytic in Π. Moreover, since |pγL(λ)| ≤ ‖pγ‖L1

and ‖gγL(λ)‖HΩ
≤ ‖gγ‖L1 , we obtain

‖zL(λ)‖HΩ
≤ ‖TγL(λ)‖L(HΩ)

[(
1 + ‖rγ‖L1

)
‖u1‖H

+
(
‖pγ‖L1 + κγ + γ

)
‖u0‖H + ‖gγ‖L1

]
+ ‖RγL(λ)u0‖HΩ

.
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Thus, relations (27.1.33) yield

sup

{∫ ∞

−∞
‖zL(ξ + iη)‖2

HΩ
dη, ξ ≥ 0

}
< ∞,

whence the function λ �−→ zL(λ) belongs the Hardy space H2(Π,HΩ). From Theo-
rem 27.1.2 it follows that there exists z ∈ L2((0,∞),H) with its Laplace transform
zL(λ) for all λ with Reλ ≥ 0. The uniqueness of the Laplace transform yields that
z(t) = uγ(t) for almost every t > 0 and

∫ ∞

0
e2γt‖u(t)‖2

Hdt =
∫ ∞

0
‖uγ(t)‖2

Hdt < ∞.

It must be shown that u̇γ is bounded.
First observe that from the definition (27.1.32)1 of TγL, we have

TγL(λ)
{[
λ2 + κγλ + λpγL(λ)

]
I
}
= I − TγL(λ)

{[
qγL(λ) + ϑγ

]
I + AΩ

}
.

Using this relation, as before, to derive the form of u̇L(λ), we obtain the following
expression for u̇γL:

uγL(λ) = λuγL(λ) − uγ(0) = TγL(λ)
{
ṙγ(λ)(u1 + γu0) + ġγL(λ) + r(0)(u1 + γu0)

+gγ(0) − γ2
[
1 + rγL(λ)

]
u0 − AΩu0

}
+ RγL(λ)(u1 + γu0).

Let us consider the function yL : Π̄→ HΩ defined by

yL(λ) = TγL(λ)
{
ṙγ(λ)(u1 + γu0) + ġγL(λ) + r(0)(u1 + γu0)

+gγ(0) − γ2
[
1 + rγL(λ)

]
u0 − AΩu0

}
+ RγL(λ)(u1 + γu0).

From the properties of TγL and RγL, it follows that yL ∈ H2(Π,HΩ). Consequently,
there exists a function y ∈ L2((0,∞),H) such that yL is its Laplace transform. We
have u̇γ = y and

∫ ∞

0
e2γt‖u̇(t)‖2

Hdt < ∞.

Therefore, uγ(t) → 0 in H as t → ∞, since

‖uγ(t2) − uγ(t1)‖H ≤
∣∣∣∣∣∣
∫ t2

t1

‖u̇γ(t)‖Hdt

∣∣∣∣∣∣ ≤ |t2 − t1|1/2

[∫ ∞

0
‖u̇γ(t)‖2

Hdt

]1/2

;

moreover, uγ is uniformly continuous. Thus, (27.1.27) follows and the proof of the
theorem is complete. �
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The dependence of f on the kernel k, expressed by (27.1.5), allows us to consider,
instead of (27.1.4), a problem that provides the fundamental solution or resolvent
associated with (27.1.4).

Thus, consider the Volterra homogeneous equation

ü(t) + Au(t) +
∫ t

0
k(t − s)Au(s)ds = 0 ∀t > 0, (27.1.35)

for which the initial conditions

u(t) = 0 ∀t < 0,

u(0) = u0, (27.1.36)

u̇(0) = u1,

where u0 ∈ D(A) and u1 ∈ H, are assumed, instead of (27.1.2). Moreover, the
solution u, the domain of which is R, is discontinuous at t = 0, and the restriction of
u to [0,∞) is in the space C([0,∞),D(A)) ∩ C2([0,∞),H), instead of that specified
by (27.1.3). Because of the assumed new space, the definition of strong solution is
changed.

Before giving the third theorem, we recall a useful result, derived in the proof of
Theorem 2 of [273], expressed by the following lemma.

Lemma 27.1.13. Let h : (0,∞) → R be an integrable function with a single sign
almost everywhere. Suppose that there is an analytic function a : U → Ω, defined
on a neighborhood U of 0 in Ω such that hL(λ) = a(λ)∀λ ∈ U with Reλ ≥ 0. Then
there is an α > 0 such that

∫ ∞

0
eαs|h(s)|ds < ∞.

Actually, α can be any positive number less than the radius of convergence of the
power series of a about 0.

We can now consider the following third theorem.

Theorem 27.1.14. Let u be the strong solution of (27.1.35) and (27.1.36). Suppose
that k obeys (27.1.9) and u1 ∈ D(A).

(i) Suppose that there is an α > 0 such that the inequalities (27.1.17) hold. Then
there exists γ > 0 such that

∫ ∞

0
e2γt

[
‖u(t)‖2

H + ‖Au(t)‖2
H + ‖u̇(t)‖2

H

]
dt < ∞. (27.1.37)

Moreover, there is a constant M > 0such that

‖u(t)‖H ≤ Me−γt, ‖u̇(t)‖H ≤ Me−γt (27.1.38)

for any t ≥ 0.
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(ii) Suppose that for some u1 � 0, there is a γ > 0 such that (27.1.37) holds. Then
there exists α > 0 for which the inequalities (27.1.17) hold and there exists K > 0
such that

|k(t)| < Ke−αt

for any t ≥ 0.

Proof. Instead of assuming (27.1.9), we initially consider the weaker conditions ex-
pressed by (27.1.8).

The proof of (i) follows from the same arguments already used.
We easily see that AΩTγL = TγLAΩ on D(AΩ); hence, AΩRγL = RγLAΩ on D(AΩ).

Thus, since we are considering the homogeneous equation (27.1.35) and (27.1.34)
yields

AΩuγL(λ) = TγL(λ)
{[

1 + rγL(λ)
]
AΩu1 +

[
pγL(λ) + κγ + γ

]
AΩu0

}
+ RγL(λ)AΩu0,

for Reλ > γ. An argument similar to those used previously gives
∫ ∞

0
e2γt‖Au(t)‖2

Hdt < ∞.

From (27.1.11) and (27.1.29) we obtain üγ ∈ L2((0,∞),H). This yields the uniform
continuity of u̇γ; moreover, the pointwise estimate on ‖u̇(t)‖H in (27.1.38)2 follows.

To prove (ii) we observe that from (i) it follows that (27.1.37) holds for some
γ > 0; therefore, the Laplace transforms of u, u̇, and Au are (weakly) holomorphic
in {λ ∈ Ω; Reλ > −γ}.

From (27.1.11) and (27.1.35) it follows that üγ ∈ L2((0,∞),H) and that the
Laplace transform of ü is also (weakly) holomorphic in {λ ∈ Ω; Reλ > −γ}. Apply-
ing the Laplace transform to (27.1.35), we have

λ2uL(λ) − λu0 − u1 + [1 + kL(λ)]AΩuL(λ) = 0, Reλ ≥ 0.

Observe that A is positive definite; thus, (AΩuL(0),uL(0))HΩ
= 0 if and only if

uL(0) = 0. The condition uL(0) = 0 yields u1 = 0, but this possibility is excluded
by hypothesis. Therefore, the function λ �−→ (AΩuL(λ),uL(0))HΩ

is analytic and
nonzero on a neighborhood U of 0 and

kL(λ) = −

(
λ2uL(λ) − λu0 − u1 + AΩuL(λ),uL(0)

)
HΩ

(AΩuL(λ),uL(0))HΩ

, Reλ ≥ 0.

From Lemma 27.1.13 it follows that
∫ ∞

0
eα1 s|k(s)|ds < ∞ ∀α1 ∈ (0, γ).

Since if k′ is integrable and k′(s) ≥ 0 ∀s ≥ 0 (see (27.1.9)), we can apply Lemma
27.1.13 to k′L(λ) = λkL(λ) − k(0) and obtain
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∫ ∞

0
eαs|k′(s)|ds < ∞ ∀α ∈ (0, α1).

From

k(t)eαt =
∫ t

0
eαs[k′(s) + αk(s)]ds − k(0),

it follows that k(t)eαt tends to a limit as t → ∞, and this limit must be zero.
�



28

Semigroup Theory for Abstract Equations with
Memory

We consider in this chapter, in a mathematically abstract way, the evolution equa-
tions of the kind discussed in Chaps. 24 and 27, comparing the new state formulation
with the traditional history approach. Relevant background to this discussion is the
concept of a minimal state discussed in Part III from Sect. 7.4 onward, in particular,
certain conclusions of Sect. 16.5.

28.1 Introduction

Roughly speaking, an evolution equation with memory has the formal structure

∂tw(t) = F(w(t),wt(·)), t > 0, (28.1.1)

where wt(s) = w(t − s), for s > 0, and F is an operator acting on both w(t) and the
past values of w up to the actual time t. The function w is assumed to be known for all
t ≤ 0. Accordingly, the initial condition takes the form w(t)|t≤0 = w0(t), for a given
w0(·). The main difficulty in the analysis of these equations comes from their nonlocal
character, due to the presence of the memory term (typically, a convolution integral).
A way to circumvent the obstacle is to rephrase (28.1.1) as an ODE in some abstract
space, by introducing an auxiliary variable accounting for the past history of w. This
is the strategy devised by Dafermos [79], who viewed wt as an additional variable
ruled by its own differential equation, and so translated (28.1.1) into a differential
system on an extended space accounting for memory. However, what one can actu-
ally measure, when dealing with (28.1.1), is the function w(t) for t ≥ 0. The practical
consequences are of some relevance, since in concrete situations, the problem of as-
signing the initial conditions is not only of a theoretical nature. In particular, it might
happen that two different initial past histories w0 lead to the same w(t) for t ≥ 0.
From the viewpoint of the dynamics, such two different initial past histories are in a
fact indistinguishable (see Sect. 24.1). This observation suggests that rather than wt,
one should employ an alternative variable to describe the initial state of the system,
which we call a (minimal) state, satisfying the natural minimality property that two
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different values of this initial state produce different evolutions w(t), for t ≥ 0. The
main task is then to determine, if possible, what is a minimal state associated with
(28.1.1). Unfortunately, a universal strategy is out of reach, and the correct choice
depends on the particular concrete realization of (28.1.1). Nonetheless, for a large
class of equations with memory, where the memory contribution enters in the form
of a convolution integral with a nonincreasing positive kernel, a general approach
seems available. In what follows, we discuss an abstract sample equation with mem-
ory arising from linear viscoelasticity, presenting a theoretical scheme that can be
easily extended and adapted to many other differential models containing memory
terms.

Let H be a separable real Hilbert space and let A be a self-adjoint strictly pos-
itive linear operator on H with dense domain D(A) ⊂ H and compact inverse. We
consider, for t > 0, the abstract linear differential equation with memory

∂ttu(t) + A

[
αu(t) −

∫ ∞

0
μ(s)u(t − s)ds

]
= 0, (28.1.2)

supplemented with the initial conditions

u(0) = u0, ∂tu(0) = v0, u(−s)|s∈(0,∞) = φ0(s), (28.1.3)

where u0, v0, φ0(·) are prescribed data. Here, α > 0 and the memory kernel μ :
(0,∞) → R

+ is a strictly positive nonincreasing summable function, locally abso-
lutely continuous, satisfying lims→∞ μ(s) = 0. Setting

M(s) =
∫ ∞

s
μ(σ)dσ =

∫ ∞

0
μ(s + σ)dσ,

we require that M(0) < α. Without loss of generality, we may assume that α −
M(0) = 1. The dissipativity of the system is entirely contained in the convolution
term, accounting for infinite delay. Defining

F0(t) =
∫ ∞

0
μ(t + s)φ0(s)ds, (28.1.4)

Eq. (28.1.2) takes the form

∂ttu(t) + A

[
αu(t) −

∫ t

0
μ(s)u(t − s)ds − F0(t)

]
= 0. (28.1.5)

Introducing the Hilbert space V = D(A1/2), with 〈·, ·〉V = 〈A1/2·, A1/2·〉H , we stipulate
the following definition of a (weak) solution.

Definition 28.1.1. Let u0 ∈ V, v0 ∈ H and φ0 : (0,∞) → V such that the corre-
sponding F0 given by (28.1.4) belongs to L1

loc([0,∞);V). A function

u ∈ C([0,∞),V) ∩C1([0,∞),H)

is a solution of (28.1.2)–(28.1.3) if u(0) = u0, ∂tu(0) = v0 and for every w ∈ V and
a.e. t > 0,



28.2 The History Formulation 645

〈∂ttu(t),w〉 + α〈u(t),w〉V −
∫ t

0
μ(s)〈u(t − s),w〉Vds − 〈F0(t),w〉V = 0.

A concrete realization of (28.1.2) is obtained by setting H = [L2(Ω)]3, where
Ω ⊂ R3 is a smooth bounded domain and A = −Δ with the Dirichlet boundary
conditions. In this case, putting u(t) = u(x, t) and M(s) = G(s) − 1, the equation
becomes

∂ttu(x, t) − Δ

[
G(0)u(x, t) +

∫ ∞

0
G′(s)x(x, t − s)ds

]
= 0, u(x, t)|x∈∂Ω = 0,

which governs the evolution of the relative displacement field u in a homogeneous
isotropic linearly viscoelastic solid occupying a volume Ω at rest [292].

28.1.0.1 Notation

The symbols 〈·, ·〉X and ‖ · ‖X stand for the inner product and the norm, respectively,
on a generic Hilbert space X. In addition to the spaces H and V , we consider the
dual space V∗ = D(A−1/2) of V , denoting by 〈·, ·〉 the duality product. For a nonneg-
ative measurable function ρ on (0,∞), we define the weighted Lp-space of X-valued
functions

Lp
ρ(0,∞; X) =

{
ψ : (0,∞) → X;

∫ ∞

0
ρ(s)‖ψ(s)‖pXds < ∞

}
,

endowed with the standard norm; it is a Hilbert space if p = 2. Finally, given a
generic function ψ : (0,∞) → X, we denote by Dψ its distributional derivative.

28.2 The History Formulation

An alternative way of looking at the evolution equation is to work in the so-called
Dafermos’s history space framework [79], by considering the history variable

ηt(s) = u(t) − u(t − s), t ≥ 0, s ∈ (0,∞),

which formally obeys the relations
⎧⎪⎪⎨⎪⎪⎩
∂tη

t(s) = −∂sηt(s) + ∂tu(t),

ηt(0) = 0, η0(s) = u0 − φ0(s).

To place our ideas in a precise context (cf. [183, 283]), we introduce the history
spaceM = L2

μ(0,∞;V), along with the infinitesimal generator of the right-translation
semigroup on M, i.e., the operator Tη = −Dη with domain D(T ) = {η ∈ M; Dη ∈
M, η(0) = 0}. Then Eq. (28.1.1) translates into the differential system
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⎧⎪⎪⎨⎪⎪⎩
∂ttu(t) + A

[
u(t) +

∫ ∞
0

μ(s)ηt(s)ds
]
= 0,

∂tη
t = Tηt + ∂tu(t).

(28.2.1)

Accordingly, the initial conditions (28.1.3) become

u(0) = u0, ∂tu(0) = v0, η0(0) = η0, (28.2.2)

where η0(s) = u0 − φ0(s). Defining the extended history space

M = V × H ×M,

the problem (28.2.1)–(28.2.2) generates a contraction semigroup Σ(t) onM such that

Σ(t)(u0, v0, η0) = (u(t), ∂tu(t), ηt) ∀(u0, v0, η0) ∈ M.

Concerning the relation between (28.2.1) and (28.2.2)and the original problem
(28.1.2) and (28.1.3), the following result holds [183].

Proposition 28.2.1. Let (u0, v0, η0) ∈ M. Then the first component u(t) of Σ(t)(u0, v0, η0)
solves (28.1.2)–(28.1.3) with

F0(t) =
∫ ∞

0
μ(t + s)[u0 − η0(s)]ds.

28.3 The State Formulation

An essential drawback of the history approach is that for given initial data u0 and v0,
two different initial histories may lead to the same solution u(t), for t ≥ 0. This is
not surprising, since what really enters into the definition of a solution of (28.1.2)–
(28.1.3) is the function F0, defined in (28.1.4) and appearing in (28.1.5), rather than
φ0 (related to the initial history η0). Thus, from the dynamical viewpoint, two initial
data φ01 and φ02 should be considered fully equivalent when the corresponding func-
tion F01 and F02 coincide, due to the impossibility of distinguishing their effects in
the future. On this basis, it seems natural to devise a scheme whereby the function
F0 appears as an initial datum accounting for the past history of u, rather than φ0. In
order to translate this insight into a consistent mathematical theory, it is quite helpful
to see in the first instance what happens at a formal level. To this end, for t ≥ 0 and
τ ∈ (0,∞), we introduce the state variable

ζ t(τ) =
∫ ∞

0
μ(τ + s)[u(t) − u(t − s)]ds,

which obeys
⎧⎪⎪⎨⎪⎪⎩
∂tζ

t(τ) = ∂τζ
t(τ) + M(τ)∂tu(t),

ζ t(∞) = 0, ζ0(τ) = ζ0(τ),
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where ζ0(τ) = M(τ)u0 − F0(τ). Accordingly, Eq. (28.2.1) takes the form

∂ttu(t) + A
[
u(t) + ζ t(0)

]
= 0,

where

ζ t(0) = lim
τ→0

ζ t(τ) =
∫ ∞

0
μ(s)[u(t) − u(t − s)]ds.

Rather than ζ t, it seems more convenient to consider as a state the new variable

ξt(τ) = −∂τζ t(τ) = −
∫ ∞

0
μ′(τ + s)[u(t) − u(t − s)]ds,

which, in turn, obeys
⎧⎪⎪⎨⎪⎪⎩
∂tξ

t(τ) = ∂τξ
t(τ) + μ(τ)∂tu(t),

ξ0(τ) = ξ0(τ),

where the initial datum ξ0 reads

ξ0(τ) = −
∫ ∞

0
μ′(τ + s)[u0 − φ0(s)]ds = μ(τ)u0 +

∫ ∞

0
μ′(τ + s)φ0(s)ds.

Since ζ t(∞) = 0, we see that
∫ ∞

τ0

ξt(τ)dτ = ζ t(τ0), ∀τ0 ∈ (0,∞), (28.3.1)

and in the limit τ0 → 0,
∫ ∞

0
ξt(τ)dτ = ζ t(0).

Therefore, (28.1.2)–(28.1.3) is (formally) translated into the system
⎧⎪⎪⎨⎪⎪⎩
∂ttu(t) + A[u(t) +

∫ ∞
0

ξt(τ)dτ] = 0,

∂tξ
t(τ) = ∂τξ

t(τ) + μ(τ)∂tu(t),
(28.3.2)

with initial conditions

u(0) = u0, ∂tu(0) = v0, ξ0(τ) = ξ0(τ). (28.3.3)

At this point, two major issues need to be addressed: firstly, writing (28.3.2) and
(28.3.3) as a differential equation in a suitable functional space, providing an exis-
tence and uniqueness result; secondly, establishing a correspondence (not only for-
mal) between the solutions of (28.3.2) and (28.3.3) and those of the original problem
(28.1.2) and (28.1.3).
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28.4 The Semigroup in the Extended State Space

The preliminary step toward setting (28.3.2) and (28.3.3) in a proper functional
framework is to interpret in a correct way the derivative ∂τ appearing in the sec-
ond equation of (28.3.2). We introduce the new memory kernel ν(τ) = 1/μ(τ) :
(0,∞) → [0,∞) and put ν(0) = limτ→0 ν(τ). In view of the assumptions on μ,
the function ν is continuous and nondecreasing on (0,∞), with nonnegative deriva-
tive ν′(τ) = −μ′(τ)/[μ(τ)]2. Also, limτ→∞ ν(τ) = ∞. Defining the state space
V = L2

ν(0,∞;V), the norm of which is related to the free energy functional ψF (see
Sect. 10.2), we consider the left-translation semigroup L(t) on V, given by

(L(t)ξ)(τ) = ξ(t + τ).

It is a standard matter to verify that the infinitesimal generator of L(t) is the linear
operator Pξ = Dξ with domain D(P) = {ξ ∈ V : Dξ ∈ V, ξ(∞) = 0}. Note that if
ξ ∈ D(P), then ‖ξ‖V ∈ C(0,∞); moreover, the condition ξ(∞) = 0 is automatically
satisfied whenever ξ,Dξ ∈ V.

We are now in a position to formulate (28.3.2) and (28.3.3) as an abstract evolu-
tion equation on a suitable Hilbert space. To this end, let us define the extended state
space

U = V × H × V

and a linear operator A on U, with domain

D(A) =

{
(u, v, ξ) ∈ U; v ∈ V, u +

∫ ∞

0
ξt(τ)dτ ∈ D(A), ξ ∈ D(P)

}
,

acting as

A(u, v, ξ) =

(
v,−A

[
u +

∫ ∞

0
ξt(τ)dτ

]
, Pξ + μv

)
.

Introducing the 3-component vectors Z(t) = (u(t), v(t), ξt) and z = (u0, v0, ξ0) ∈ U,
we view (28.3.2) and (28.3.3) as the following Cauchy problem in U:

⎧⎪⎪⎨⎪⎪⎩
d
dt Z(t) = AZ(t),

Z(0) = z.
(28.4.1)

The next result establishes existence and uniqueness of a solution Z ∈ C([0,∞),U).

Theorem 28.4.1. The problem (28.4.1) generates a strongly continuous semigroup
S (t) = etA of linear contractions on U.

Moreover, for every z = (u0, v0, ξ0) ∈ U, the third component ξt of the solution
S (t)z (i.e., the state) has the explicit representation formula
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ξt(τ) = ξ0(t + τ) + μ(τ)u(t) − μ(t + τ)u0 +

∫ t

0
μ(τ + s)u(t − s)ds. (28.4.2)

If μ satisfies the further condition (cf. [149, 239, 270])

μ′(s) + δμ(s) ≤ 0, (28.4.3)

for some δ > 0 and a.e. s ∈ (0,∞), the semigroup S (t) turns out to be exponentially
stable.

Theorem 28.4.2. Let (28.4.3) hold. Then there exist K > 1 and ω > 0 such that

‖S (t)z‖U ≤ K‖z‖Ue−ωt ∀z ∈ U.

The reader is referred to [106] for the proofs of Theorems 28.4.1 and 28.4.2.
Here, we limit ourselves to mentioning that the exponential stability of S (t) is ob-
tained only via energy estimates, without appealing to linear semigroup techniques.
Thus, the method can be exported to the analysis of semilinear versions of the prob-
lem (for instance, to prove the existence of absorbing sets and global attractors).

Remark 28.4.3. The state variable ξt is minimal in the following sense: if (u(t),
∂tu(t), ξt) is a solution to (28.4.1) with u(t) = 0 for every t ≥ 0, then ξt is identi-
cally zero. Indeed, on account of (28.4.1) and (28.4.2),

ξt(τ) = ξ0(t + τ) ∀t ≥ 0

and

0 =
∫ ∞

0
ξt(τ)dτ =

∫ ∞

0
ξ0(t + τ)dτ =

∫ ∞

t
ξ0(τ)dτ ∀t ≥ 0,

which implies that ξ0 = 0 and, in turn, ξt = 0.

28.5 The Original Equation Revisited

Somehow, this new state approach urges us to consider the original problem from
a different perspective. Indeed, the solutions of (28.1.2)–(28.1.3) are determined,
by knowledge of the function F0 (as well as u0 and v0, of course) and not by the
particular form of the initial past history φ0.Therefore, with reference to Definition
28.1.1, let us introduce the class of admissible past history functions

A =

{
φ : (0,∞) → V; t �→

∫ ∞

0
μ(t + s)φ(s)ds ∈ L1

loc([0,∞);V)

}
,

and define the linear map Λ : A → L1
loc([0,∞);V) as

φ �→ Λφ(t) =
∫ ∞

0
μ(t + s)φ(s)ds.
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Accordingly, we define the class of state functions S = ΛA. Clearly (and this is really
the point), the map Λ may not be injective, meaning that different φ ∈ A may lead to
the same element of S. Coming back to Definition 28.1.1, the assumption on F0 can
now be rephrased as F0 = Λφ0 with φ0 ∈ A. Hence, we reformulate the definition of
a solution of (28.1.2) in a more convenient (and certainly more physical) way.

Definition 28.5.1. Let (u0, v0, F0) ∈ V × H × S be given. A function

u ∈ C([0,∞),V) ∩C1([0,∞),H)

is a solution of (28.1.2) with initial state (u0, v0, F0) if u(0) = u0, ∂tu(0) = v0, and for
every w ∈ V and a.e. t > 0,

〈∂ttu(t),w〉 + α〈u(t),w〉V −
∫ t

0
μ(s)〈u(t − s),w〉Vds − 〈F0(t),w〉V = 0.

In this definition, the initial datum φ0 has completely disappeared, since the state
function F0 contains all necessary information to capture the future dynamics. Thus,
the unphysical ambiguity caused by two different initial histories leading to the same
state function has been removed.

We now investigate the properties of the space S. Let us begin with a lemma,
which provides a precise formulation of the formal equality (28.3.1).

Lemma 28.5.2. Whenever φ ∈ A, the map τ �→
∫ ∞

0
μ′(τ + s)‖φ(s)‖Vds belongs to

L1(t,∞) for every t > 0 and

Λφ(t) = −
∫ ∞

t

[∫ ∞

0
μ′(τ + s)φ(s)ds

]
dτ ∀t > 0. (28.5.1)

Moreover, if φ ∈ L1
μ(0,∞;V), then φ ∈ A and (28.5.1) holds for every t ≥ 0.

Proof. Let φ ∈ A be given. For every fixed t > 0, we have that Λφ(t0) ∈ V , for some
t0 ≤ t. Since μ is nonincreasing and Λφ(t0) is a Bochner integral, this means that

∫ ∞

0
μ(t + s)‖φ(s)‖Vds ≤

∫ ∞

0
μ(t0 + s)‖φ(s)‖Vds < ∞.

Exploiting the equality

μ(t + s) = −
∫ ∞

t
μ′(τ + s)dτ

and exchanging the order of integration, we conclude that

∫ ∞

0
μ(t + s)‖φ(s)‖Vds = −

∫ ∞

t

[∫ ∞

0
μ′(τ + s)‖φ(s)‖Vds

]
dτ < ∞.

Hence, τ �→
∫ ∞

0
μ′(τ + s)‖φ(s)‖Vds ∈ L1(t,∞) and (28.5.1) follows from Fubini’s

theorem. Concerning the last assertion, note that φ ∈ L1
μ(0,∞;V) if and only if

Λφ(0) ∈ V . �
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A straightforward consequence is that S ⊂ C0([t,∞),V), for every t > 0, where
C0 is the space of continuous functions vanishing at infinity.

Given F ∈ S, it is then interesting to see what happens to F(t) in the limit t → 0.
Three mutually disjoint situations may occur:

(i) limt→0 F(t) exists in V;
(ii) F ∈ L∞(R+;V) but limt→0 F(t) does not exist in V;
(iii) ‖F(t)‖V is unbounded in a neighborhood of t = 0.

As will emerge, (i) is the most interesting case in the current context. For this
reason, we introduce the further space

S0 =

{
F ∈ S; ∃ lim

t→0
F(t) in V

}
⊂ C0([0,∞),V).

Observe that if F = Λφ with φ ∈ L1
μ(0,∞;V), then Lemma 28.5.2 ensures that

limt→0 F(t) = Λφ(0) in V , so that F ∈ S0. However, the picture can be more compli-
cated. Indeed, it may happen that F ∈ S0 but Λφ(0) is not defined for any φ ∈ Λ−1F.

28.6 Proper States

The next goal is establishing the link between (28.4.1) and the original equation
(28.1.2), up to now only formal. To this end, it is worth keeping in mind the particular
form of the initial datum ξ0, obtained in a somewhat heuristic way in Sect. 28.3. This
suggests that not all states are appropriate for describing the behavior of the original
equation, but only certain particular states having a well-defined structure.

Definition 28.6.1. A vector ξ ∈ V is said to be a proper state if ξ(τ) = DF(τ) for
some F ∈ S. We denote by P the normed subspace of V of proper states.

Given a kernel μ, an immediate example of a proper state is ξ(τ) = μ(τ)u, for any
u ∈ V. Indeed, ξ = DF with F(t) = −M(t)u.

Lemma 28.6.2. Let ξ ∈ P. Then there exists a unique F ∈ S such that ξ = DF. Also,
F belongs to S0. Moreover, for every φ ∈ A such that F = Λφ, it follows that

ξ(τ) =
∫ ∞

0
μ′(τ + s)φ(s)ds.

Conversely, if ξ ∈ V has the above representation, then ξ ∈ P and ξ(τ) = DΛφ(τ).

Proof. We first recall a general fact: if ξ ∈ V, then ξ ∈ L1(0,∞;V). Indeed, using the
Hölder inequality,

∫ ∞

0
‖ξ(τ)‖Vdτ =

∫ ∞

0

√
μ(τ)

√
ν(τ)‖ξ(τ)‖Vdτ ≤

√
M(0)‖ξ‖V.

Let F ∈ S be such that ξ = DF. Due to the relation DF ∈ L1(0,∞;V), we infer that
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t �→ −
∫ ∞

t
DF(τ)dτ = F(t) ∈ C0([0,∞),V).

Hence, F ∈ S0, and it is clearly uniquely determined by DF. The remaining asser-
tions follow from (28.5.1). �

In particular, Lemma 28.6.2 implies that the map Γ : P → S defined as

Γξ(t) = −
∫ ∞

t
ξ(τ)dτ

is injective. Since ΓP ⊂ S0 and the inclusion S0 ⊂ S can be strict, the map Γ is not,
in general, onto. In fact, the inclusion ΓP ⊂ S0 can also be strict.

We have now all the ingredients to state the main theorem.

Theorem 28.6.3. Let (u0, v0, F0) ∈ V × H × S. Assume in addition that F0 ∈ ΓP.
Then a function u is a solution to (28.1.2) with initial state (u0, v0, F0) (according to
Definition 28.5.1) if and only if

(u(t), ∂tu(t), ξt) = S (t)(u0, v0, ξ0),

with ξt as in (28.4.2) with ξ0(τ) = μ(τ)u0 + DF0(τ). Conversely, if u is a solution to
(28.1.2) with initial state (u0, v0, F0) and F0 � ΓP, then there is no corresponding
solution in the extended state space.

Proof. Since u ∈ C([0,∞),V), arguing as in the proof of Lemma 28.5.2, the equality

∫ ∞

0

[∫ t

0
μ′(τ + s)u(t − s)ds

]
dτ = −

∫ t

0
μ(s)u(t − s)ds

holds for every t > 0. Thus, using (28.4.2), keeping in mind the particular form of ξ0

and the fact that F0 ∈ S0, we readily obtain

∫ ∞

0
ξt(τ)dτ = M(0)u(t) −

∫ t

0
μ(s)u(t − s)ds − F0(t). (28.6.1)

This equality, in light of (28.1.5) and (28.4.1), yields the first part of the theorem. To
prove the converse, assume that u(t) is at the same time a solution to (28.1.2) with
initial state (u0, v0, F0), and equal to the first component of S (t)(u0, v0, ξ0), for some
ξ0 ∈ V. We reach the desired result by showing that F0 ∈ ΓP. Indeed, now referring
to ξt as the third component of S (t)(u0, v0, ξ0), one obtains (28.6.1) from (28.1.5) and
(28.4.1). Since by (28.4.2),

∫ ∞

0
ξt(τ)dτ =

∫ ∞

t
ξ0(τ)dτ + M(0)u(t) − M(t)u0 −

∫ t

0
μ(s)u(t − s)ds,

we conclude that
∫ ∞

t
[μ(τ)u0 − ξ0(τ)]dτ = M(t)u0 −

∫ ∞

t
ξ0(τ)dτ = F0(t).
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Hence, −μ(τ)u0 + ξ0(τ) = DF0(τ), meaning that ξ0 − μu0 ∈ P and F0 = Γ(ξ0 − μu0).
�

Since we have an existence and uniqueness result in the extended state space,
Theorem 28.6.3 provides an existence and uniqueness result for (28.1.2), according
to Definition 28.5.1, whenever we restrict the initial states so that F0 ∈ ΓP. How-
ever, there are situations in which the equality S = ΓP holds, as in the case of an
exponential kernel.

Example 28.6.4. For a, κ > 0, let μ(s) = ae−κs. Since μ(t+ s) = e−κtμ(s), it is apparent
that

S = S0 = {F(t) = e−κtu; u ∈ V} ⇒ P = {ξ(τ) = e−κτu; u ∈ V} ⇒ S = ΓP.

Incidentally, the above example sheds light on another important issue: there
exist states that are not proper states; in other words, the inclusion P ⊂ V is strict
(and not even dense). In summary, there might be state functions of the original
approach that have no corresponding (proper) states. Conversely, only the proper
states describe the original problem. In this respect, the state approach is a more
general model, which is able to describe within the formalism of semigroups also a
certain class of Volterra’s equations with nonautonomous forcing terms. Nonetheless,
if we start from a proper state, it is reasonable to expect that the evolution remains
confined in the space of proper states. To this end, let us define the extended proper
state space

Up = V × H × P,

which is a normed subspace of U.

Proposition 28.6.5. If z ∈ Up, it follows that S (t)z ∈ Up.

Proof. Let z = (u0, v0, ξ0) ∈ Up. Then, ξ0 = DF for some F ∈ S. In turn, F = Λφ for
some φ ∈ A. Denoting as usual S (t)z = (u(t), v(t), ξt) and setting

ψt(s) = u(t − s)χ(0,t)(s) + u0χ(t,∞)(s) − u(t), φt(s) = φ(s − t)χ(t,∞)(s),

the representation formula (28.4.2) can be equivalently written as

ξt(τ) =
∫ ∞

0
μ′(τ + s)

[
ψt(s) + φt(s)

]
ds.

By Lemma 28.6.2, we need to show that ψt + φt ∈ A in order to prove that ξt ∈ P.
Indeed, since ‖S (t)z‖U ≤ ‖z‖U,

∫ ∞

0
μ(s)‖ψt(s)‖Vds ≤ 3M(0)‖z‖U.
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Therefore, ψt ∈ L1
μ(0,∞;V) ⊂ A. Concerning ψt, we have

∫ ∞

0
μ(s)φt(s)ds = Λφ(t) ∈ V,

which yields φt ∈ L1
μ(0,∞;V) ⊂ A. �

In particular, from Theorems 28.4.1 and 28.4.2, we have the following corollary.

Corollary 28.6.6. The restriction S p(t) of S (t) on the space Up is a strongly con-
tinuous semigroup of linear contractions. Assuming also the condition (28.4.3), the
semigroup S p(t) is exponentially stable.

28.7 State Versus History

Let us finally turn to the main issue that has motivated our analysis: the comparison
between the past history and the state approaches. We first show that each element
of M gives rise to a proper state, defining the linear map Π : M → P as

Πη(τ) = −
∫ ∞

0
μ′(τ + s)η(s)ds.

Lemma 28.7.1. Let η ∈ M. Then Πη ∈ P and ‖Πη‖V ≤ ‖η‖M.

Proof. If η ∈ M, we have

‖Πη(τ)‖2
V ≤

[∫ ∞

0
−μ′(τ + s)‖η(s)‖Vds

]2

≤
∫ ∞

0
−μ′(τ + s)ds

∫ ∞

0
−μ′(τ + s)‖η(s)‖2

Vds

= μ(τ)
∫ ∞

0
−μ′(τ + s)‖η(s)‖2

Vds.

Accordingly,

‖Πη‖2
V ≤

∫ ∞

0
dτ

∫ ∞

0
−μ′(τ + s)‖η(s)‖2

Vds

=

∫ ∞

0

[∫ ∞

0
−μ′(τ + s)dτ

]
‖η(s)‖2

Vds = ‖η‖2
M.

Thus, Πη ∈ V, and the norm inequality stated above holds (in fact, equality for
η(s) = u, with u ∈ V). Since M ⊂ L1

μ(0,∞;V), because of the straightforward
estimate

∫ ∞

0
μ(s)‖η(s)‖Vds ≤

√
M(0)‖η‖M,

and L1
μ(0,∞;V) ⊂ A, it follows from Lemma 28.6.2 that Πη is a proper state. �
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We now clarify the correspondence between η ∈ M and its related proper state
Πη. Letting z̄ = (u0, v0, η0) ∈ M, z = (u0, v0, Πη0) ∈ Up and setting

Σ(t)z̄ = (ū(t), ∂tū(t), η̄t), S p(t)z = (u(t), ∂tu(t), ξt),

we have the following result.

Proposition 28.7.2. The equalities u(t) = ū(t) and ξt = Πη̄t hold for every t ≥ 0.

Proof. Introduce the function (cf. [183, 283])

ηt(s) =

⎧⎪⎪⎨⎪⎪⎩
u(t) − u(t − s), 0 < s ≤ t,

η0(s − t) + u(t) − u0, s > t,

which solves the Cauchy problem in M,
⎧⎪⎪⎨⎪⎪⎩

d
dtη

t = Tηt + ∂tu(t),

η0 = η0.
(28.7.1)

The representation formula (28.4.2) for ξt furnishes

ξt(τ) = Πη0(t + τ) + μ(τ)u(t) − μ(t + τ)u0 +

∫ t

0
μ′(τ + s)u(t − s)ds = Πηt(τ).

Thus, exploiting (28.5.1),
∫ ∞

0
ξt(τ)dτ =

∫ ∞

0
Πηt(τ)dτ = Ληt(0) =

∫ ∞

0
μ(s)ηt(s)ds,

and consequently,

∂ttu + A

[
u +

∫ ∞

0
μ(s)ηt(s)ds

]
= ∂ttu + A

[
u +

∫ ∞

0
ξt(τ)dτ

]
= 0. (28.7.2)

Since u(0) = u0, ∂tu(0) = v0, we conclude from (28.7.1)–(28.7.2) that

(u(t), ∂tu(t), ηt) = Σ(t)z̄.

�

Nonetheless, in general, the map Π : M → P is not injective.

Example 28.7.3. Let N ∈ N. Given an > 0 and κN > · · · > κ1 > 0, consider the kernel
μ(s) =

∑N
n=1 ane−κn s. For xm ∈ R to be determined later, define

η0(s) = u, ηN(s) =

⎡⎢⎢⎢⎢⎢⎣
N∑

m=1

xms
m

⎤⎥⎥⎥⎥⎥⎦ u,
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where u ∈ V is a fixed nonzero vector. Clearly, η0, ηN ∈ M and η0 � ηN . Also,

Πη0(τ) =

⎡⎢⎢⎢⎢⎢⎣
N∑
n=1

ane
−κnτ

⎤⎥⎥⎥⎥⎥⎦ u, ΠηN(τ) =

⎡⎢⎢⎢⎢⎢⎣
N∑
n=1

anJne
−κnτ

⎤⎥⎥⎥⎥⎥⎦ u,
having set

Jn = κn

N∑
m=1

xm

∫ ∞

0
sme−κn sds =

N∑
m=1

bnmxm,

with bnm = m!/κmn . The matrix B = {bnm} is easily seen to be invertible. Hence,
we choose x = [x1, . . . , xN]� to be the (unique) solution of the linear system Bx =
[1, . . . , 1]�, in which case Jn = 1 for all n, so that the equality Πη0 = ΠηN holds.

However, in Example 28.7.3, one can verify that Π maps M onto P. Thus, every
proper state is realized by a history from M. On the other hand, the next example
describes a situation in which the map Π is injective on M, but ΠM is strictly con-
tained in P, meaning that all different histories in M lead to different proper states,
but there are proper states that do not come from histories. We need first a definition
and some preliminary results.

Definition 28.7.4. A positive sequence {κn}, n ∈ N, is called a Müntz sequence if
κn ↑ ∞ and

∑∞
n=1 1/κn = ∞.

Given a function g ∈ L1
loc([0,∞)) such that s �→ e−λsg(s) ∈ L1(R+), for some

λ > 0, we denote its (real) Laplace transform by

Lg(x) =
∫ ∞

0
e−xsg(s)ds.

A celebrated result due to C. Müntz says that if {κn} is a Müntz sequence belonging
to the domain of Lg and Lg(κn) = 0 for all n ∈ N, then g is identically zero (see
[320]).

The following lemma is standard.

Lemma 28.7.5. Let κn > 0 be strictly increasing and let βn ∈ R be the general term
of an absolutely convergent series. Then the function

∑∞
n=1 βne

−κnt : [0,∞) → R is
identically zero if and only if βn = 0 for every n.

Example 28.7.6. Consider the kernel μ(s) =
∑∞

n=1 ane
−κn s, with κn > 0 strictly in-

creasing and an > 0 such that
∑∞

n=1 an < ∞. Such a μ is summable on R+. We first
observe that if g ∈ L1

μ(R+), then g ∈ L1
loc([0,∞)) and {κn} belongs to the domain of

Lg. Let us extend in the obvious way the map Π to the domain

M% =

{
η ∈ L1

μ(0,∞; V); τ �→ −
∫ ∞

0
μ′(τ + s)η(s)ds ∈ V

}

(we continue to call this extended map Π). Note that M ⊂ M% ⊂ A, and from
Lemma 28.6.2 we find that ΠM% ⊂ P. Given η ∈ M% and w ∈ V∗, consider the
duality product
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gw(s) = 〈η(s),w〉 ∈ L1
μ(R+).

In view of (28.5.1), the relations Πη = 0 and Λη = 0 imply each other. But Λη = 0 if
and only if

∞∑
n=1

βn(w)e−κnt = 0, ∀t ≥ 0, ∀w ∈ V∗,

having set βn(w) = anLgw(κn). Moreover,

∞∑
n=1

|βn(w)| ≤
∞∑
n=1

an

∫ ∞

0
e−κn s|gw(s)|ds = ‖gw‖L1

μ(R+) < ∞.

Hence, from Lemma 28.7.5, the above equality is true if and only if

Lgw(κn) = 0, ∀n ∈ N, ∀w ∈ V∗.

Therefore, if {κn} is a Müntz sequence,

Πη = 0 ⇔ gw = 0, ∀w ∈ V∗ ⇔ η = 0,

in which case the map Π is injective on M%. Accordingly, to conclude that ΠM is
a proper subset of P, we have to show that the inclusion M ⊂ M% is strict. This is
obtained, for instance, by looking at the elements η(s) = eσκ1 su, where σ ∈ [ 1

2 , 1) and
u ∈ V is any nonzero vector. The details are left to the reader.
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Identification Problems for Integrodifferential
Equations

This chapter is devoted to outlining some ideas involving that part of the theory of
inverse problems that is usually referred to as the identification of parameters (num-
bers, vectors, matrices, functions) appearing in integrodifferential equations describ-
ing the evolution of fading memory materials.

We recall the celebrated definition by Hadamard of a well-posed problem: it re-
quires the existence and uniqueness of the solution to the problem and its continuous
dependence on data.

Yet, from certain areas of applied sciences and technology, we are increasingly
aware that many important questions are modeled by mathematical problems that
turn out to be ill-posed in Hadamard’s sense. Consequently, inverse problems have
become a new and fascinating field in today’s mathematical research.

From a more practical point of view, we can affirm that identification problems
are, usually, far more difficult than the corresponding direct ones.

This chapter will deal with some explicit identification problems involving the
recovery of unknown kernels in integrodifferential evolution equations. Problems of
this kind occur in applications, e.g., in describing intrinsic properties of materials
with memory, and have been intensively studied during the last two decades.

Up to now, satisfactory methods have been developed for the identification
of time dependent kernels in hyperbolic equations (see [178]–[182], [209]–[213],
[241]–[244], [322]) both when the data are exactly known and when they are affected
by some (known) error.

This chapter will be devoted to a detailed discussion, with a few generalizations,
of the problem studied in [244]. We will deal with a special problem related to a
viscoelastic material that is, however, sufficiently complex to exhibit the basic ideas
and techniques related to the general case. For this purpose, let Ω = ω × (0, () be a
bounded open cylinder in R3, where ω ⊂ R2 is a general smooth bounded domain in
R

2, say at least of class C2.
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29.1 Problem Specification

We consider a viscoelastic body B with a constant density (for the sake of simplic-
ity), related to the reference cylinder Ω, that is governed by the integrodifferential
equation

D2
t ui(t, y) =

3∑
j=1

Dyj[σi, j(u) + h ∗ σi, j(u)](t, y) + fi(t, y),

(t, y) ∈ [0,T ] × Ω, i = 1, 2, 3, (29.1.1)

where ∗ denotes convolution with respect to time (see (C.3.4)), i.e.,

g1 ∗ g2(t, y) =
∫ t

0
g1(t − s, y)g2(s, y)ds, (t, y) ∈ [0,T ] × Ω. (29.1.2)

It is assumed that the scalar memory kernel h depends on t only and the stress tensor
components, denoted in this context by σi, j, are defined by

σi, j(v)(y) = μ(y′)[Dyjvi(y) + Dyiv j(y)] + λ(y′)δi, j∇ · v(y), i, j = 1, 2, 3,

where y′ = (y1, y2), δi, j denotes the Kronecker tensor and

λ, μ ∈ C1+σ(ω), μ(x) > 0, x ∈ ω, (29.1.3)

for some constant σ ∈ [0,+∞).
We now prescribe the initial conditions

ui(0, y) = u0
i (y), Dtui(0, y) = u1

i (y), y ∈ Ω, i = 1, 2, 3,

and, e.g., either of the boundary conditions

ui(t, y) = 0, (t, y) ∈ [0,T ] × ∂Ω, i = 1, 2, 3,
3∑
j=1

ν j[σi, j(u) + h ∗ σi, j(u)](t, y) = 0, (29.1.4)

(t, y) ∈ [0,T ] × ∂Ω, i = 1, 2, 3,

where ν j denotes the jth component of the outward unit vector ν normal to the bound-
ary ∂Ω.

In this section we will assume that the memory function h is itself unknown. Con-
sequently, in order to determine h, we prescribe, in correspondence with (29.1.4)1 or
(29.1.4)2, the following additional information:
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∫
Ω

[ϕ0(y′)Dνu3(t, y) + ϕ1(y′)u3(t, y)]dψ(y)

+

∫ t

0
h(t − s)ds

∫
Ω

[ϕ̃0(y′)Dνu3(t, y) + ϕ̃1(y)u3(s, y)]dψ(y) (29.1.5)

= g(t), t ∈ [0,T ],

or
∫
Ω

ϕ0(y)u3(t, y)dψ(y) = g(t), t ∈ [0,T ], (29.1.6)

where ψ is a positive Borel measure on Ω, ϕ0, ϕ1, ϕ̃0, ϕ̃1 ∈ L1(Ω;ψ) and g : [0,T ] →
R is a (smooth) function.

Finally, it is assumed that the data fi, u0
i , u

1
i (i = 1, 2, 3) are independent of y3.

We can now state our identification problem: determine a pair of functions u :
[0,T ]×Ω → R3, h : [0,T ] → R, u being independent of y3, satisfying Eqs. (29.1.1),
(29.1.2) and (29.1.4)1, (29.1.5) or (29.1.4)2, (29.1.6).

Since Dy3u = 0 in (0,T ) × Ω, simple computations show that problem (29.1.1),
(29.1.2) and (29.1.4)1, (29.1.5) or (29.1.4)2, (29.1.6) splits up into a scalar identifi-
cation problem involving the third component u3 of u and a direct problem involving
the pair (u1, u2) (once we have determined the unknown kernel h). Such problems
can be explicitly stated in the following way, where ν(x) denotes now the normal
outward unit vector at x ∈ ∂ω, while Dν stands for the normal derivative on ∂ω.
The Identification Problem (I.P.):Determine a pair of functions u3 : [0,T ]×ω → R
and h : [0,T ] → R such that

D2
t u3(t, x) =

2∑
j=1

Dxj[μDxju3 + h ∗ μDxju3(t, x)] + f3(t, x), (t, x) ∈ [0,T ] × ω,

u3(0, x) = u0
3(x), Dtu3(0, x) = u1

3(x), x ∈ ω, (29.1.7)

where x = (x1, x2), and satisfying

Dνu3(t, x) + h ∗ Dνu3(t, x) = 0, (t, x) ∈ [0,T ] × ∂ω,∫
ω

ϕ0(x)u3(t, x)dψ(x) = g(t), t ∈ [0,T ], (29.1.8)

or

ũ3(t, x) = 0, (t, x) ∈ [0,T ] × ∂ω,∫
ω

[ϕ0(x)Dνu3(t, x) + ϕ1(x)u3(t, x)]dψ(x)

+

∫ t

0
h(t − s)ds

∫
ω

[ϕ̃0(x)Dνu3(s, x) + ϕ̃1(x)u3(s, x)]dψ(x) = g(t), t ∈ [0,T ].

(29.1.9)
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The Direct Problem (D.P.): Determine a pair of functions u1, u2 : [0,T ] × ω → R
such that

D2
t ui(t, x) =

2∑
j=1

Dxj[σ̃i, j(u1, u2) + h ∗ σ̃i, j(u1, u2)](t, x) + fi(t, x),

(t, x) ∈ [0,T ] × ω, i = 1, 2,

ui(0, x) = u0
i (x), Dtui(0, x) = u1

i (x) x ∈ ω, i = 1, 2,

ui(t, x) = 0, (t, x) ∈ [0,T ] × ∂ω, i = 1, 2,

where

σ̃i, j(v)(x) = μ(x)[Dxjvi(x) + Dxiv j(x)] + λ(x)δi, j[Dx1v1(x) + Dx2v2(x)], i, j = 1, 2.

Remark 29.1.1. Note that the additional condition (29.1.9)2 covers different cases:

(i) The additional condition u(x0), where x0 ∈ ∂ω, corresponding to a measurement
at a single (boundary) point of ∂ω, is a particular case of (29.1.8)2 corresponding
to the case ϕ0 = 1 and ψ = δ(x0), δ(x0) denoting the Dirac measure concentrated
at x0.

(ii) The additional condition
∫
Γ

ϕ0(x)u3(t, x)dσ(x) = g(t), t ∈ [0,T ],

where Γ and σ denote, respectively, an open set in ∂ω and the Lebesgue measure
on ∂ω, corresponds to the case ψ = σ if supp ϕ0 � Γ.

(iii) The additional condition
∫
ω

ϕ0(x)u3(t, x)dx = g(t), t ∈ [0,T ],

where ϕ0 ∈ L1(ω) is a function with a possibly small support in ω, to be inter-
preted as a sensor inserted into ω, has the meaning of a mean measurement of the
(vertical) displacement of the viscoelastic body. Such a condition corresponds to
the case ψ = m2, the two-dimensional Lebesgue measure.

(iv) Condition (29.1.8)1 corresponds to the case that the third component of the trac-
tion vanishes on the boundary, while condition (29.1.9)2, with ϕ̃i = ϕi, i = 1, 2,
stands for a measurement of some mean of the third component of the traction.

Remark 29.1.2. Assume now that Ω is a general smooth domain in R3 and the initial
data and source satisfy the initial conditions

fi(t, y) = 0, (t, y) ∈ [0,T ] × Ω, u0
i (y) = 0, u1

i (y) = 0, y ∈ Ω, i = 1, 2.
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Then we can assume—via a uniqueness theorem for the direct problem—that the
first two components of the displacement u vanish everywhere for all times, so that
the third component u3 solves the identification problem I.P., where ω is replaced
with Ω. Let us conclude this section by listing some consistency conditions (C.C.)
related to problem I.P. depending on whether (29.1.8) or (29.1.9) hold:
C.C.I.P.1

Dνu
j
3(x) = 0, x ∈ ∂ω, j = 0, 1,∫

ω

ϕ0(x)u j
3(x)dψ(x) = g( j)(0), j = 0, 1;

or
C.C.I.P.2

uj
3(x) = 0, x ∈ ∂ω,∫

ω

[ϕ0(x)Dνu
j
3(x) + ϕ1(x)u j

3(x)]dψ(x)

+ jh(0)
∫
ω

[ϕ̃0Dνu
0
3(x) + ϕ̃1(x)u0

3(x)]dψ(x) = 0, j = 0, 1.

Remark 29.1.3. Setting t = 0 in condition (29.1.8)1, one can immediately deduce
the first boundary consistency condition Dνu0

3(x) = 0, x ∈ ∂ω, in C.C.I.P.1. Differ-
entiating condition (29.1.8)1 with respect to t and taking the previous consistency
condition into account, we see that Dtu3 satisfies the same integral boundary condi-
tion as u3, i.e.,

DνDtu3(t, x) + h ∗ DνDtu3(t, x) = 0, (t, x) ∈ [0,T ] × ∂ω.

Setting here t = 0, one deduces the consistency condition Dνu1
3(x) = 0, x ∈ ∂ω.

Remark 29.1.4. Setting t = 0 in condition (29.1.9)2, we deduce the integral condition
in C.C.I.P.2 corresponding to j = 0. Differentiating condition (29.1.9)2 with respect
to t and setting t = 0, we deduce the integral condition in C.C.I.P.2 corresponding to
j = 1.

Finally, consistency conditions related to problem D.P. are
C.C.D.P.

u j
i (x) = 0, x ∈ ∂ω, i = 1, 2, j = 0, 1.

Remark 29.1.5. For lack of space, the existence of the solution to problem D.P. will
not be shown. We limit ourselves to indicating that the same techniques used to solve
our identification problems can be applied to prove the well-posedness of problem
D.P., once the kernel h has been recovered.
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29.2 Solving the First Identification Problem

We can now translate our identification problem (29.1.7), (29.1.9) into an abstract
framework that is more suitable for solving it. Let H be a Hilbert space and let
A : D(A) ⊂ H → H be an invertible linear closed operator with A−1 ∈ L(H),
L(H) denoting the Banach space consisting of all linear bounded operators from H
to itself. Further, let Φ be a linear continuous functional, i.e., Φ ∈ H∗, H∗ denoting
the Banach space dual to H.

Our identification problem consists in determining two functions u ∈ W2,∞((0,T );
H) ∩ L∞((0,T );D(A)) and h ∈ W1,p((0,T );R) such that

u′′(t) + Au(t) + h ∗ Au(t) = f (t), t ∈ [0,T ],

u(0) = u0, u(0) = u1, (29.2.1)

Φ[u(t)] = g(t), t ∈ [0,T ].

Two obvious consistency conditions for a solution (u, h) to exist are the following:

Φ[u j] = g( j)(0), j = 0, 1. (29.2.2)

Our strategy for solving problem (29.2.1) is to derive a fixed-point equation for the
unknown kernel h.

First let us apply the functional Φ to both sides of (29.2.1)1 to obtain

Φ[Au(t)] + h ∗Φ[Au(t)] = Φ[ f (t)] − g′′(t), t ∈ [0,T ].

Differentiating this equation yields the relation

Φ[Au′(t)] + h ∗Φ[Au′(t)] + h(t)Φ[Au0] = Φ[ f ′(t)] − g′′′(t), t ∈ [0,T ].

Now introduce the auxiliary function

v(t) = Au′(t), t ∈ [0,T ] ⇐⇒ u(t) = u0 +

∫ t

0
A−1v(s)ds, t ∈ [0,T ]

and assume

χ−1 := Φ[Au0] � 1.

Then apply the operator DtA to both sides of (29.2.1)1 and take advantage of the
relation

DtA{h ∗ Au(t)} = Dt{h ∗ A2u(t)} = h ∗ DtA
2u(t) + h(t)A2u0, t ∈ [0,T ].
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Relation (29.2.1)1 at t = 0 has the form u′′(0) = −Au0 + f (0), implying v′(0) =
Au′′(0) = −A2u0 + A f (0). Then one concludes that the pair (v, h) solves the identifi-
cation problem

v′′(t) + Av(t) = −h ∗ Av(t) − h(t)A2u0 + A f ′(t), t ∈ [0,T ],

v(0) = Au1 =: v0, v′(0) = −A2u0 + A f (0) =: v1, (29.2.3)

h(t) = −Φ[v(t)] − h ∗Φ[v(t)] +Φ[ f ′(t)] − g′′′(t), t ∈ [0,T ].

Observe that from (29.2.3)3, setting t = 0, we can easily compute h0 = h(0) in terms
of the data:

h0 = −Φ[v0] +Φ[ f ′(0)] − g′′′(0).

Assume now that V ↪→ H ≡ H∗ ↪→ V∗ is a Gelfand triplet, V being a Hilbert space
such that D(A) ↪→ V . Further, assume that the linear operator A is generated by a
bilinear form a : V × V → R such that (v, Au) = a(v, u) for all u, v ∈ V . Finally,
assume that the quadratic form related to a satisfies

c1‖v‖2
V ≤ a(v, v) ≤ c2‖v‖2

V , ∀v ∈ V, (29.2.4)

for some constants c1, c2 ∈ R+, c1 ≤ c2.
Unfortunately, also in this case, the direct problem is not weakly solvable if we

assume that h is not differentiable in [0,T ], since we need that the right-hand side
in (29.2.3)1 should belong to H, while it actually belongs to the wider space V∗.
However, it suffices to assume that h ∈ W1,p((0,T );R) for some p ∈ (1,+∞] and
look for v in the space W1,p((0,T ); H)∩ Lp((0,T );V). To deal with our identification
problem, we need the following results relating to the direct problem

v′′(t) + Av(t) = f (t), t ∈ [0,T ],

v(0) = v0, v′(0) = v1. (29.2.5)

Lemma 29.2.1. Assume that v0 ∈ V, v1 ∈ H, and f ∈ L1((0,T ); H). Then prob-
lem (29.2.5) admits a unique (weak) solution v ∈ W1,∞((0,T ); H) ∩ L∞((0,T );V)
satisfying the estimate

‖v′(t)‖2
H + ‖v(t)‖2

V ≤ C1(‖v1‖2
H + ‖v0‖2

V )+C1

( ∫ t

0
‖ f (s)‖Hds

)2
, t ∈ [0,T ], (29.2.6)

for some positive constant C1 depending only on (c1, c2).

Proof. We limit ourselves to sketching the proof.∗ Taking the scalar product of 2v′(t)
with (29.2.5)1, one (formally) deduces the following estimate for all t ∈ [0,T ]:

∗ The reader interested in the details is referred to [237, Chapter 9].
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Dt[‖v′(t)‖2
H + a(v(t), v(t))] = 2( f (t), v′(t))H ≤ ‖ f (t)‖H‖v′(t)‖H .

Integrating over [0, τ], τ ∈ (0,T ] and taking advantage of (29.2.3)3, we easily obtain
the following integral inequality, holding for all τ ∈ [0,T ]:

‖v′(τ)‖2
H + c1‖v(τ)‖2

V ≤ ‖v1‖2
H + c2‖v0‖2

V + 2
∫ τ

0
‖ f (t)‖H‖v′(t)‖Hdt

≤ ‖v1‖2
H + c2‖v0‖2

V + 2
∫ τ

0
‖ f (t)‖H‖v′(t)‖Hdt

≤ ‖v1‖2
H + c2‖v0‖2

V ]dt

+ 2
∫ τ

0
‖ f (t)‖H[‖v′(t)‖2

H + c1‖v(t)‖2
V ]1/2dt.

Taking advantage of the following Lemma 29.2.2, which is a simple generalization
of Theorem 4.9 in [27], one deduces the estimate (29.2.6).

Lemma 29.2.2. Let z be an a.e. nonnegative L∞((0,T )) function and let b, k be a.e.
nonnegative L1((0,T )) functions satisfying

z(τ) ≤ a +
∫ τ

0
b(s)z(s)ds +

∫ τ

0
k(s)z(s)pds, τ ∈ (0,T ),

where p ∈ (0, 1) and a ≥ 0 are given constants. Then for all τ ∈ (0,T ),

z(τ) ≤ exp

(∫ τ

0
b(s)ds

) [
a1−p + (1 − p)

∫ τ

0
k(s) exp

(
(p − 1)

∫ s

0
b(σ)dσ

)
ds

]1/(1−p)

.

We conclude by observing that the existence and uniqueness of the weak solution
to problem (29.2.5) can be deduced from estimate (29.2.6) by a Faedo–Galerkin
procedure. �

Lemma 29.2.3. Assume that v0 ∈ D(A), v1 ∈ V, and f ∈ W1,1((0,T ) : H). Then
problem (29.2.5) admits a unique (strong) solution

v ∈ W2,∞((0,T ); H) ∩W1,∞((0,T );V) ∩ L∞((0,T );D(A))

satisfying the following estimate for all t ∈ [0,T ]:

‖v′′(t)‖2
H + ‖v′(t)‖2

V ≤ C1(‖ f (0) − Av1‖2
H + ‖v1‖2

V ) +C1

(∫ t

0
‖ f ′(s)‖Hds

)2

,

‖Av(t)‖ ≤ C1/2
1 (‖ f (0) − Av1‖2

H + ‖v1‖2
V )1/2 + ‖ f (0)‖ + (C1/2

1 + 1)
∫ t

0
‖ f ′(s)‖Hds.

(29.2.7)



29.2 Solving the First Identification Problem 667

Proof. Also in this case we limit ourselves to sketching the proof. Observe that the
function w = v′ is a solution of the direct problem

w′′(t) + Aw(t) = f ′(t), t ∈ [0,T ],

w(0) = v1, w′(0) = f (0) − Av1.

Reasoning as above, we deduce that v′ satisfies the following integral inequality for
all t ∈ [0,T ]:

‖v′′(t)‖2
H + ‖v′(t)‖2

V ≤ C1(‖ f (0) − Av1‖2
H + ‖v1‖2

V ) +C1

(∫ t

0
‖ f ′(s)‖Hds

)2

. (29.2.8)

Moreover, from Eq. (29.2.5)1,

‖Av(t)‖H ≤ ‖v′′(t)‖H + ‖ f (t)‖H ≤ ‖v′′(t)‖H + ‖ f (0)‖H +
∫ t

0
‖ f ′(s)‖Hds, t ∈ [0,T ],

implying (29.2.7)2 via (29.2.8). �

We can choose our data in the right functional spaces, i.e.,

u0 ∈ D(A2), u1 ∈ D(A2), f (0) − A2u0 ∈ V, f ∈ W2,1((0,T );D(A)). (29.2.9)

Note that assumptions (29.2.9) imply (cf. (29.2.3)2) that

v0 ∈ D(A), v1 ∈ V.

Observe now that the solution v to the direct problem (29.2.5) admits the following
representation:

v = L0(v0, v1, f (0)) + L1( f ).

According to Lemma 29.2.3, the linear operators L0 and L1 belong, respectively, to
L(D(A) × V;U2,∞

T ) and L(W1,1((0,T ); H);U2,∞
T ), with

U2,∞
T = W2,∞((0,T ); H) ∩W1,∞((0,T );V) ∩ L∞((0,T );D(A)).

Moreover, L0 and L1 satisfy the estimates

‖L0(v0, v1)(t)‖U2,∞
t

≤ C2

[
(‖v1‖2

H + ‖v0‖2
V )1/2 + ‖ f (0) − Av0‖V + ‖ f (0)‖H

]
, t ∈ [0,T ],

‖L1( f )(t)‖U2,∞
t

≤ C2

∫ 1

0
‖ f ′(s)‖Hds, t ∈ [0,T ],

C2 being a positive constant depending only on (c1, c2).
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Observe that the identification problem (29.2.3) can be rewritten in the operator
form

v = L0(v0, v1, f (0)) + L1(A f ′) − L1(h ∗ Av + hA2u0),

h = −Φ[v] − h ∗Φ[v] +Φ[ f ′] − g′′′.

Such a problem is equivalent to the following fixed-point operator system:

v = v − L1(h ∗ Av + hA2u0),

h = h +Φ[L1(h ∗ Av + hA2u0)] − h ∗Φ[v],

where

v = L0(v0, v1, f (0)) + L1(A f ′),

h = −Φ[L0(v0, v1, f (0)) + L1(A f ′) − f ′] − g′′′. (29.2.10)

We now introduce the new unknown

w = Av ⇐⇒ v = A−1w

and rewrite system (29.2.10) in the following equivalent form:

w = Av − AL1(h ∗ w + hA2u0),

h = h +Φ[L1(h ∗ w + hA2u0)] − h ∗Φ[A−1w].

The solution of such a system must be sought in L∞((0,T ); H) × W1,p((0,T );R),
p ∈ (1,= ∞].

The following result can be proved:

Theorem 29.2.4. Let Φ ∈ X∗, u0 ∈ D(A2), Φ[Au0] � 0, u1 ∈ D(A), Au1 ∈ V,
f ∈ W1,p((0,T );D(A)), g ∈ W4,p((0,T );R), p ∈ (1,+∞]. Furthermore, let the con-
sistency conditions (29.2.2) hold. Then the identification problem (29.2.1) admits a
unique solution (u, h) ∈ U2,∞

T ×W1,p((0,T );R) such that u′ ∈ W1,∞((0,T );D(A2)).

We can now apply our general result to problem (29.1.7) and (29.1.9) with ψ =
δx0 , x0 ∈ ∂ω and ϕ1 = ϕ̃0 = ϕ̃1 = 0, so that Φ[w] = w(x0). Moreover, we choose
H = L2(ω), V = H1(ω), D(A) = H2(ω) ∩ H1

0(ω), A = −∑2
j=1 Dxj[μDxj]. Indeed,

in this case we use the embedding H2(ω) ↪→ C(ω). The bilinear form a associated
with A, taking into account the boundary conditions (29.1.9)1, can be expressed in
the form

a(v, u) =
∫
ω

μ(x)∇v(x) · ∇u(x)ds, ∀u, v ∈ H1
0(ω), (29.2.11)
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after a formal integration by parts. In particular, for all v ∈ H1
0(ω) we obtain

a(v, v) =
∫
ω

μ(x)|∇v(x)|2dx.

So it can be immediately concluded that a satisfies conditions (29.2.4).
We obtain the following result.

Theorem 29.2.5. Let ∂Ω be of class C4 and let μ satisfy properties (29.1.3) with
σ = 2. Let u0

3, Au
0
3, u

1
3 ∈ H2(ω) ∩ H1

0(ω), Au1
3 ∈ H1(ω), Au0

3(x0) � 0, f3 ∈
W1, p̃((0,T ); H2(ω) ∩ H1

0(ω)), g ∈ W4, p̃((0,T );R), p̃ ∈ (p,+∞], p ∈ (1,+∞]. Fur-
thermore, let the consistency conditions u j(x0) = g( j)(0), j = 0, 1, hold. Then the
identification problem (29.1.7), (29.1.9) admits a unique solution (u3, h) such that
u3, Au3 ∈ W2,∞((0,T ); H2(ω) ∩ H1

0(ω)) and h ∈ W1,p((0,T );R).

29.3 Solving the Second Identification Problem

We now seek to solve the identification problem related to the additional information
(29.2.1)3 of integral type. This allows us to relax the assumptions on the “space”
regularity concerning functional Φ in our Hilbert space treatment. For this purpose,
it is assumed that A is the generator of a cosine function (cf. [130]), and the auxiliary
function

v(t) = u′′(t) ⇐⇒ u(t) = u0 + tu1 +

∫ t

0
(t − s)v(s)ds

is introduced. To find an integral equation for v we start from the following well-
known representation for the solution u to the direct problem (29.3.1):

u(t) = u(t) −
∫ t

0
S (t − s)h ∗ Av(s)ds, t ∈ [0,T ],

where

u(t) = C(t)u0 + S (t)u1 +

∫ t

0
S (s) f (t − s)ds, t ∈ [0,T ],

the sine operator S being defined by S ′(t) = C(t), t ∈ [0,T ], and S (0) = O. Then,
assuming h ∈ W1,p((0,T );R), p ∈ (1,+∞], we obtain the following formulas, which
hold for all t ∈ [0,T ]:
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D2
t (h ∗ u)(t) = h ∗ u′′(t) + h′(t)u(0) + h(t)u′(0),

D2
t

∫ t

0
S (s)h ∗ Au(t − s)ds

= Dt

∫ t

0
S (s)[h(t − s)Au0 + h ∗ Au′(t − s)]ds = h(0)S (t)u0 (29.3.1)

+

∫ t

0
S (s)[h′(t − s)Au0 + h(t − s)Au1 + h ∗ Au′′(t − s)]ds.

Consequently, the function v solves the integral equation

v(t) = v(t) −
∫ t

0
S (t − s)[h′(s)Au0 + h(s)Au1]ds

= −
∫ t

0
S (t − s)h ∗ Av(s)ds, t ∈ [0,T ], (29.3.2)

where

v(t) = C(t)v0 + S (t)v1 +

∫ t

0
S (t − s) f ′′(s)ds, t ∈ [0,T ], (29.3.3)

and

v0 = f (0) − Au0, v1 = f ′(0) − Au1 − h(0)Au0. (29.3.4)

In the present case our strategy for solving problem (29.3.2) and (29.3.4) is to assume
a higher regularity of the functional Φ, i.e.,

Φ[Aw] = Ψ [w], ∀w ∈ D(A), Ψ ∈ L(H). (29.3.5)

To derive a fixed-point equation for the unknown kernel h, we apply the functional
Φ to both sides of Eq. (29.2.1)1, obtaining

g′′(t) +Φ[Au(t)] + h ∗Φ[Au(t)] = Φ[ f (t)], t ∈ [0,T ].

Differentiating this equation twice and taking advantage of (29.3.5) yields

g(4)(t) + Ψ [v(t)] + h ∗ Ψ [v(t)] + h′(t)Φ[Au0] + h(t)Φ[Au1] = Φ[ f ′′(t)], t ∈ [0,T ].
(29.3.6)

Assume now

χ−1 := Φ[Au0] � 0. (29.3.7)

Then (29.3.6) can be rewritten in the fixed-point form

h′(t) = h(t) − χh(t)Φ[Au1] − χΨ [v(t)] − χh ∗ Ψ [v(t)], t ∈ [0,T ], (29.3.8)
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where

h(t) = χΦ[ f ′′(t)] − χg(4)(t), t ∈ [0,T ]. (29.3.9)

Recall that the functions C and S satisfy the following relations for some ρ ∈ R:

C ∈ C([0,+∞);L(H)) ∩C2([0,+∞);L(D(A); H)),

C(0) = I, C′′(t) = −AC(t), ‖C(t)‖L(H) ≤ Metρ, t ∈ [0,T ],

S ∈ C1([0,+∞);L(H)) ∩C2([0,+∞);L(D(A); H)),

S (0) = O, S ′′(t) = −AS (t), ‖S (t)‖L(H) ≤ Metρ, t ∈ [0,T ],

C′(t) = −AS (t), S ′(t) = C(t), t ∈ [0,T ].

To solve the system (29.3.2) and (29.3.8), the relations

∫ t

0
S (t − s)h ∗ Av(s)ds =

∫ t

0
AS (t − s)h ∗ v(s)ds

=

∫ t

0
Ds[C(t − s)]h ∗ v(s)ds

= h ∗ v(t) −
∫ t

0
C(t − s)[h′ ∗ v(s) + h(0)v(s)]ds, t ∈ [0,T ],

(29.3.10)

which hold for all v ∈ C1([0,T ]; H) ∩ C1([0,T ];D(A)), are required. Consequently,
the fixed-point system for (v, h) can be rewritten in the form

v(t) = v(t) −
∫ t

0
S (t − s)[h′(s)Au0 + h(s)Au1]ds − h ∗ v(t)

+

∫ t

0
C(t − s)[h′ ∗ v(s) + h(0)v(s)]ds

= v(t) + L(v, h)(t), t ∈ [0,T ], (29.3.11)

h′(t) = h(t) − χh(t)Φ[Au1] − χΨ [v(t)] − χh ∗ Ψ [v(t)]

= {h(t) − χΨ [v(t)]} − χh(t)Φ[Au1]

− χΨ [L(v, h)(t)] − χh ∗ Ψ [v(t)]

=: h1(t) − χh(t)Φ[Au1] + M(v, h)(t), t ∈ [0,T ].

It remains to determine the initial value h(0). For this purpose let us differentiate
equation (29.2.1)1 and then set t = 0 to obtain

u′′′(0) + Au(0) + h(0)Au(0) = f (0).

Applying the functional Φ to both sides of (29.3.1)2 and solving for h(0), we obtain
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h(0) = χΦ[ f (0) − Au0] − g′′′(0) =: h0.

Observe that Eq. (29.3.11)2 can be rewritten in the equivalent form, where t ∈ [0,T ],

h(t) =

[
h0 exp{−tχΦ[Au1]} +

∫ t

0
exp{−(t − s)χΦ[Au1]}h1(s)ds

]

+

∫ t

0
exp{−(t − s)χΦ[Au1]}M(v, h)(s)ds (29.3.12)

=: h0(t) + M0(v, h)(t),

whence one deduces that

h′(t) = h1(t) − χΦ[Au1]h0(t) + M1(v, h)(t), t ∈ [0,T ],

where

M1(v, h)(t) = −χΦ[Au1]M0(v, h)(t) + M(v, h)(t), t ∈ [0,T ].

To solve the fixed-point system (29.3.11)1 and (29.3.12) we introduce the following
weighted complete metric spaces depending on the parameters λ ≥ 0 and r > 0:

U0,∞
T (λ, r) = {v ∈ L∞((0,T ); H) : ‖e−λ·(v − v0)‖0,∞,H ≤ r},

H1,p
T (λ, r) = {h ∈ W1,p((0,T );R) : ‖e−λ·(h − h0)‖0,p,R + ‖e−λ·h′‖0,p,R ≤ r},

where we have set

‖e−λ·w‖0,∞,H = ‖e−λ·w‖L∞((0,T );H), ‖e−λ·h‖0,p,R = ‖e−λ·h‖Lp((0,T );R).

It can be checked immediately that all the metrics of the previous spaces are equiva-
lent for all λ ≥ 0.

Let us now introduce the notation fλ(t) = e−λt f (t) and observe that the convolu-
tion commutes with the exponentials e−λt for all λ > 0, so that

(h ∗ f )λ = hλ ∗ fλ.

Consequently, multiplying by e−λt both sides in (29.3.11), we obtain the following
new (equivalent) fixed-point system, where t ∈ [0,T ]:

vλ(t) = v(t)λ −
∫ t

0
S λ(t − s)[(h′)λ(s)Au0 + h(s)Au1]ds − hλ ∗ vλ(t)

∫ t

0
Cλ(t − s)[(h′)λ ∗ vλ(s) + h(0)vλ(s)]ds

=: vλ(t) + Lλ(vλ, hλ)(t),

(h′)λ(t) = hλ(t) − χΨ [vλ(t)] − χhλ(t)Φ[Au1] − χΨ [Lλ(vλ, hλ)(t)] − χhλ ∗ Ψ [vλ(t)].
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First note the estimates

‖Cλ‖0,p,L(H) ≤ M[p(λ − ω)]−1, ‖S λ‖0,p,L(H) ≤ M[p(λ − ω)]−1, λ > ω.

Indeed, e.g., we have

(∫ t

0
e−pλt‖C(t)‖p

L(H)dt

)1/p

≤ M

(∫ t

0
e−p(λ−ω)tdt

)1/p

≤ M[p(λ − ω)]−1/p.

Consequently, the estimates

e−λt‖C(t)v0 − v0‖ ≤ e−λt
∫ t

0
‖C′(s)v0‖ds ≤

∫ t

0
e−λt‖S (s)Av0‖L(H)ds

≤
∫ t

0
e−λt‖S (s)‖L(H)‖Av0‖ds ≤ M(λ − ω)−1‖Av0‖,

e−λt‖S (t)v1‖ ≤ e−λt
∫ t

0
‖C(s)v0‖ds ≤ M(λ − ω)−1‖v0‖,

are obtained. Therefore, via Hölder’s inequality, it follows that

‖e−λt(v − v0)‖0,∞,H ≤ M(λ − ω)−1‖v0‖D(A) + M[p′(λ − ω)]−1/p′ ‖ f ′′λ ‖0,p.

Then, from Young’s inequality for convolutions with Y ∈ {L(H),R}, we have

‖(h ∗ f )λ‖0,p,Y ≤ ‖hλ‖0,1,R‖ fλ‖0,p,H , p ∈ [1,+∞],

‖(h ∗ f )λ‖0,p,Y ≤ ‖hλ‖0,p,R‖ fλ‖0,1,H , p ∈ [1,+∞].

In particular, when h(t) ≡ h0 or f (t) ≡ v0,

‖(h0 ∗ f )λ‖0,p,Y ≤ ‖eλ·h0‖0,1,R‖ fλ‖0,p,H ≤ λ−1|h0|‖ fλ‖0,p,H ,

‖(h ∗ v0)λ‖0,p,Y ≤ ‖hλ‖0,p,R‖e−λ·v0‖0,1,H ≤ λ−1‖hλ‖0,p,R‖v0‖,

This implies

‖(h ∗ v)λ‖0,∞,H = ‖([h − h0 + h0] ∗ [v − v0 + v0])λ‖0,∞,H

≤ ‖(h − h0)λ‖0,p,R‖(v, v0)λ‖0,∞,H + ‖(h − h0)λ ∗ (v0)λ‖0,p,H

+ ‖(h0)λ ∗ (v − v0)λ‖0,∞,H + ‖(h0)λ ∗ (v0)λ‖0,∞,H

≤ r2 + rλ−1‖v0‖ + rλ−1|h0| + λ−1|h0|‖v0‖.
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Therefore, we obtain the estimate

‖e−λ·L(v, h)‖0,∞,H = ‖Lλ(vλ, hλ)‖0,∞,H

≤ M[p′(λ − ω)]−1/p′[r‖Au0‖ + (r + λ−1|h0|)‖Au1‖] + r2 + rλ−1‖v0‖
+ rλ−1|h0| + λ−1|h0|‖v0‖ + M(λ − ω)−1[r2 + rλ−1‖v0‖ + |h0|r].

Summing up, the operator (v, h) → v + L(v, h) maps U0,∞
T (λ, r) × H1,p

T (λ, r) into
U0,∞

T (λ, r) if the pair (λ, r) is a solution to the inequality

J0(λ, r) := M(λ − ω)−1‖v0‖D(A) + M[p′(λ − ω)]−1/p′ ‖ f ′′λ ‖0,p

+ M[p′(λ − ω)]−1/p′[r‖Au0‖ + (r + λ−1|h0|)‖Au1‖] + r2 + rλ−1‖v0‖
+ rλ−1|h0| + λ−1|h0|‖v0‖ + M(λ − ω)−1[r2 + rλ−1‖v0‖ + |h0|r] ≤ r.

(29.3.13)

It now remains to estimate h0 + M0(v, h). For this purpose we begin by estimating in
U0,p

T (λ, r) the function defined by h1 (cf. (29.3.9) and (29.3.11)2):

h1(t) = χΦ[ f ′′(t)] − χg(4)(t) − χΨ [(v − v0)(t)] − χΨ [v0].

Assume f ′′ ∈ Lp̃((0,T ); H), g ∈ W4, p̃((0,T );R) for some p̃ ∈ (p,+∞], p ∈ (1,+∞]
and set q−1 = p−1 + p̃−1. Then, using the inequality

‖e−λ·l‖0,p ≤ ‖e−λ·‖0,q‖l‖0, p̃ ≤ q−1/qλ−1/q‖l‖0, p̃,

it follows that

‖(h1)λ‖0,p,R ≤ |χ|‖Φ‖X∗ ‖e−λ· f ′′‖0,p,H + |χ|‖e−λ·g(4)‖0,p,R

+ |χ|‖Ψ‖X∗ {M[(λ − ω)]−1‖v0‖D(A) + M[p′(λ − ω)]−1/p′ ‖ f ′′λ ‖0,p,H}
+ (pλ)−1/p|χ|‖Ψ‖X∗ ‖v0‖

≤ |χ|q−1/qλ−1/q[‖Φ‖X∗ ‖ f ′′‖0, p̃,H + ‖g(4)‖0, p̃,R] (29.3.14)

+ |χ|‖Ψ‖X∗ {M[(λ − ω)]−1‖v0‖D(A) + M[p′(λ − ω)]−1/p′ ‖ f ′′λ ‖0,p,H}
+ (pλ)−1/p|χ|‖Ψ‖X∗ ‖v0‖ := J1(λ, r), λ > max{0, ω}.

From (29.3.12) and (29.3.14) we easily obtain the inequalities

‖(h0)λ‖0,p,R ≤ |h0|[p(λ − χΦ[Au1])]−1/p + (λ − χΦ[Au1])−1‖(h1)λ‖0,p,R

:= J2(λ, r), λ > max{0, ω, χΦ[Au1]}.

Consider now the identities
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[M0(v, h)]λ = [exp{−χΦ[Au1]·} ∗ M(v, h)]λ,

[M1(v, h)]λ = −χΦ[Au1][exp{−χΦ[Au1]·} ∗ M(v, h)]λ + [M(v, h)]λ, (29.3.15)

implying, for all λ > max{0, ω, χΦ[Au1]}, the chain of estimates

‖[M(v, h)]λ‖0,p,R ≤ ‖Ψ‖X∗ [|χ|‖Lλ(vλ, hλ)‖0,p,H + T
1/p′ ‖hλ ∗ vλ‖0,∞,H]

≤ ‖Ψ‖X∗ [|χ|J0(λ, r) + T 1/p′ [r2 + rλ−1‖v0‖ + rλ−1|h0| + λ−1|h0|‖v0‖]
:= J3(λ, r),

‖[M0(v, h)]λ‖0,p,R ≤ (λ − χΦ[Au1])−1J3(λ, r),

‖[M1(v, h)]λ‖0,p,|r ≤ [|χ|‖Φ‖X∗ ‖Au1‖(λ − χΦ[Au1])−1 + 1]J3(λ, r). (29.3.16)

Summing up, the operator (v, h) → h0 + M0(v, h) maps U0,∞
T (λ, r) × H1,p

T (λ, r) into
H1,p

T (λ, r) if the pair (λ, r) is a solution to the inequalities

λ > max{0, ω, χΦ[Au1]},
J1(λ, r) + J2(λ, r) + [(1 + |χ|‖Φ‖X∗ ‖Au1‖)(λ − χΦ[Au1])−1 + 1]J3(λ, r) ≤ r.

(29.3.17)

Our next task is to estimate the increments of Lλ with respect to the pair (v, h). For
this purpose, the identity

Lλ((v2)λ, (h2)λ)(t) − Lλ((v1)λ, (h1)λ)(t)

= −
∫ t

0
S λ(t − s)[(h′2 − h′1)λ(s)Au0 + h(s)Au1]ds

− (h2 − h1)λ ∗ (v2)λ(t) − (h1)λ ∗ (v2 − v1)λ(t) (29.3.18)

+

∫ t

0
Cλ(t − s)(h′2 − h′1)λ ∗ (v2)λ(s)ds

+

∫ t

0
Cλ(t − s)[(h′1)λ ∗ (v2 − v1)λ(s) + h0(v2 − v1)λ(s)]ds

is needed. Consider now the chain of inequalities
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‖(h2)λ ∗ (v2)λ − (h1)λ ∗ (v1)λ‖0,∞,H

≤ ‖(h2 − h1)λ ∗ [(v2 − v0)λ + (v0)λ‖0,∞,H

+ ‖[(h1 − h0)λ + (h0)λ] ∗ (v2 − v1)λ‖0,∞,H

≤ r‖(h2 − h1)λ‖0,1,R + λ
−1‖v0‖‖(h2 − h1)λ‖0,p,R

+ (r + λ−1|h0|)‖(v2 − v1)λ‖0,∞,H ,

‖(h′2)λ ∗ (v2)λ − (h′1)λ ∗ (v1)λ‖0,∞,H (29.3.19)

≤ ‖(h2 − h1)′λ ∗ [(v2 − v0)λ + (v0)λ‖0,∞,H

+ ‖(h1)′λ ∗ (v2 − v1)λ‖0,∞,H

≤ rT 1/p′ ‖(h2 − h1)′λ‖0,p,R + λ
−1‖v0‖‖(h2 − h1)′λ‖0,p,R

+ rT 1/p′ ‖(v2 − v1)λ‖0,∞,H .

From (29.3.18) and (29.3.19)1 we deduce the estimates

‖Lλ((v2)λ, (h2)λ)(t) − Lλ((v1)λ, (h1)λ)(t)‖
≤ M[p′(λ − ω)]−1/p′ {‖(h′2 − h′1)λ‖0,p,R‖Au0‖ + ‖(h2 − h1)λ‖0,p,R‖Au1‖}
+ r‖(h2 − h1)λ‖0,1,R + λ

−1‖v0‖‖(h2 − h1)λ‖0,p,R

+ (r + λ−1|h0|)‖(v2 − v1)λ‖0,∞,H

+ M(λ − ω)−1{rT 1/p′ ‖(h2 − h1)′λ‖0,p,R + λ
−1‖v0‖‖(h2 − h1)′λ‖0,p,R}

+ rT 1/p′ ‖(v2 − v1)λ‖0,∞,H + |h0|‖(v2 − v1)λ‖0,∞

≤ J4(λ, r){‖(h2 − h1)λ‖1,p,R + ‖(v2 − v1)λ‖0,∞,H},

where for all λ > max{0, ω}, we have

J4(λ, r) :=M[p′(λ − ω)]−1/p′ max(‖Au0‖, ‖Au1‖)
+max(T 1/p′r + λ−1‖v0‖, r + |h0|)
+ M(λ − ω)−1 max{rT 1/p′ + λ−1‖v0‖), r + λ−1|h0|}.

Consider now the identity

M(v2, h2)λ − M(v1, h1)λ = − χΨ [Lλ((v2)λ, (h2)λ) − Lλ((v1)λ, (h1)λ)]

− χΨ [(h2)λ ∗ (v2)λ − (h1)λ ∗ (v1)λ],

implying, for all λ > max{0, ω}, the estimates

‖M(v2, h2)λ − M(v1, h1)λ‖0,p,R

≤ |χ|‖Ψ‖X∗ ‖Lλ((v2)λ, (h2)λ) − Lλ((v1)λ, (h1)λ)‖0,p,R

+ |χ|‖Ψ‖X∗ ‖(h2)λ ∗ (v2)λ − (h1)λ ∗ (v1)λ‖0,p,R (29.3.20)

≤ |χ|‖Ψ‖X∗ [T 1/p′ J4(λ, r) +max{r + λ−1‖v0‖, r + λ−1|h0|}]
=: J5(λ, r){‖(h2 − h1)λ‖1,p,R + ‖(v2 − v1)λ‖0,∞,H}.
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From (29.3.15)1, (29.3.16)1, and (29.3.20), for all λ > max{0, ω, χΦ[Au1]}, we easily
deduce the estimates

‖M0(v2, h2)λ − M0(v1, h1)λ‖0,p,R

≤ (λ − χΦ[Au1])−1J5(λ, r){‖(h2 − h1)λ‖1,p,R + ‖(v2 − v1)λ‖0,∞,H},
‖M1(v2, h2)λ − M1(v1, h1)λ‖0,p,R

≤ |χ|‖Ψ‖X∗ [‖Φ‖X∗ ‖Au1‖(λ − χΦ[Au1])−1 + 1]

× J5(λ, r){‖(h2 − h1)λ‖1,p,R + ‖(v2 − v1)λ‖0,∞,H}.

Summing up, the vector operator (v, h) → (v + L(v, h), h0 + M0(v, h)) turns out to
be a contracting mapping from U0,∞

T (λ, r) × H1,p
T (λ, r) into itself if the pair (λ, r) is a

solution of the system of inequalities (29.3.13) and

{(λ − χΦ[Au1])−1 + |χ|‖Ψ‖X∗ [‖Φ‖X∗ ‖Au1‖(λ − χΦ[Au1])−1 + 1]}J5(λ, r)

+ J4(λ, r) < 1, λ > max{0, ω, χΦ[Au1]}. (29.3.21)

Consequently, whenever the pair (λ, r) solves system (29.3.17), (29.3.21), we
conclude that the fixed-point system (29.3.11) admits a unique solution (v, h) ∈
U0,∞

T (λ, r) × H1,p
T (λ, r). Therefore, the next task is to show that the system (29.3.17)

and (29.3.21) is solvable for large λ and small r. For this purpose, it suffices to ob-
serve that as λ → +∞, we have

J0(λ, r) → r2, J1(λ, r) → 0, J2(λ, r) → 0,

J3(λ, r) → ‖Ψ‖X∗ (|χ| + T 1/p′ )r2,

J4(λ, r) → r max(T 1/p′ , 1),

J5(λ, r) → r|χ|‖Ψ‖X∗ [T 1/p′ max(T 1/p′ , 1) + 1].

Choose now γ0r2 < r and γ1r < 1, i.e., r < min{γ−1
0 , γ−1

1 }, where γ0 = max{‖Ψ‖X∗

(|χ| + T 1/p′ ), 1} and γ1 = max{T 1/p′ , 1, |χ|‖Ψ‖X∗ [T 1/p′ max(T 1/p′ , 1) + 1]}. Then for
any large enough λ, the system (29.3.17) and (29.3.21) is solvable.

Assume then that (v, h) ∈ L∞((0,T ); H) ∩ W1,1((0,T );R) solves problem
(29.3.11). Let u ∈ U2,∞

T := W2,∞((0,T ); H) ∩W1,∞((0,T );V) ∩ L∞((0,T );D(A)) be
the solution to the Cauchy problem (29.2.1)1 and (29.2.1)2 with the previous fixed h.
Then u is represented by

u(t) = u(t) −
∫ t

0
AS (t − s)h ∗ u(s)ds, t ∈ [0,T ],

where

u(t) = C(t)u0 + S (t)u1 +

∫ t

0
S (s) f (t − s)ds.
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Let us differentiate u twice to show that u′′ = v. In this way it will be shown that
u = u0 + tu1 +

∫ t

0
(t − s)v(s)ds solves the Cauchy problem (29.2.1)1 and (29.2.1)2, as

required. For this purpose we use the following formulas (cf. (29.3.10)):

u′′(t) = C′′(t)u0 + S
′′(t)u1 +C(t) f (0) + S (t) f ′(0) +

∫ t

0
S (s) f ′′(t − s)ds

= −C(t)Au0 − S (t)Au1 +C(t) f (0) + S (t) f ′(0) +
∫ t

0
S (s) f ′′(t − s)ds,

D2
t

∫ t

0
AS (s)h ∗ u(t − s)ds = S (t)ADt(h ∗ u)(0) +

∫ t

0
AS (s)D2

t (h ∗ u)(t − s)ds

= S (t)h(0)Au0 +

∫ t

0
S (s)[h′(t − s)Au0 + h(t − s)Au1]ds

+

∫ t

0
AS (s)(h ∗ u′′)(t − s)ds

=

∫ t

0
S (s)[h′(t − s)Au0 + h(t − s)Au1]ds + S (t)h(0)Au0 + (h ∗ u′′)(t)

−
∫ t

0
C(s)(h ∗ u′′)(t − s)ds, t ∈ [0,T ].

Observe that the difference v − u′′ solves the following homogeneous convolution
equation in [0,T ]:

v(t) − u′′(t) = −h ∗ (v − u′′)(t) +
∫ t

0
C(t − s)[h′ ∗ (v − u′′)(s) + h(0)(v − u′′)(s)]ds,

whence it is easily deduced that the equality v − u′′ = 0 holds. Therefore, the pair
(u, h) solves the identification problem (29.2.1).

The result proved in this section is summarized in the following theorem.

Theorem 29.3.1. Let u0, u1 ∈ D(A), f ∈ W2, p̃((0,T ); H), g ∈ W4, p̃((0,T );R),
p̃ ∈ (p,+∞], p ∈ (1,+∞]. Let the linear functional Φ satisfy (29.3.5) and (29.3.7).
Then the identification problem (29.2.1) admits a unique solution (u, h) ∈ U2,∞

T ×
W1,p((0,T );R).

We can now apply our general result to problem (29.1.7)–(29.1.8), with ϕ0 ∈
H2(ω) ∩ H1

0(ω) and Dν(ϕ0μ) = 0 on ∂ω. Moreover, let us choose H = L2(ω),
V = H1(ω), D(A) = H2(ω) ∩ H1

0(ω), A = −∑2
j=1 Dxj[μDxj]. Then the bilin-

ear form a associated with A is given by (29.2.11) and satisfies (29.2.4). Finally,
the Borel measure ψ coincides with the two-dimensional Lebesgue measure, while
the functionals Φ and Ψ are defined, respectively, by Φ[w] =

∫
ω
ϕ0(x)w(x)ds and

Ψ [w] =
∫
ω
Δ(ϕ0μ)(x)w(x)dx.

Note that the link (29.3.5) between the functionals Φ and Ψ can be easily shown
by a twofold integration by parts.

We obtain the following result.
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Theorem 29.3.2. Let ∂Ω be of class C2 and let μ satisfy properties (29.1.3) with
σ = 0. Let u0

3, u
1
3 ∈ H2(ω) ∩ H1

0(ω), f3 ∈ W2. p̃((0,T ); L2(ω)), g ∈ W4, p̃((0,T );R),
p̃ ∈ (p,+∞], p ∈ (1,+∞]. Furthermore, let the consistency conditions

∫
ω

ϕ0(x)u j(x)dψ(x) = g( j)(0), j = 0, 1,

hold. Then the identification problem (29.1.7)–(29.1.8) admits a unique solution
(u3, h) such that u3 ∈ W2,∞((0,T ); L2(ω))∩W1,∞((0,T ); H1(ω))∩L∞((0,T ); H2(ω)∩
H1

0(ω)) and h ∈ W1,p((0,T );R).

29.4 Solving the Third Identification Problem

Assume that the additional information (29.2.1)3 is of integral type, i.e.,

Φ[u(t, ·)] :=
∫
∂ω

ϕ0(x)Dνu(t, x)dσ(x)

+

∫ t

0
h(t − s)ds

∫
∂ω

ϕ0(x)Dνu(s, x)dσ(x) = g(t), t ∈ [0,T ], (29.4.1)

σ denoting the Lebesgue measure on ∂ω. We now rewrite condition (29.4.1) in the
form

Φ0[u(t)] + h ∗Φ0[u(t)] = g(t), t ∈ [0,T ], (29.4.2)

where

Φ0[z] =
∫
∂ω

ϕ0(x)Dνz(x)dx.

Thus, our identification problem can be rewritten in the following form, in a gen-
eral Hilbert space H, with a general linear operator A: determine two functions
u : [0,T ] → H and h : [0,T ] → R such that

u′′(t) + Au(t) + h ∗ Au(t) = f (t), t ∈ [0,T ],

u(0) = u0, u′(0) = u1, (29.4.3)

Φ0[u(t)] + h ∗Φ0[u(t)] = g(t), t ∈ [0,T ].

To solve this identification problem, let us introduce the auxiliary function

v(t) = u′′(t) ⇐⇒ u(t) = u0 + tu1 +

∫ t

0
(t − s)v(s)ds.

Then, assuming h ∈ W1,p((0,T );R), p ∈ (1,+∞], and differentiating equations
(29.4.3)1 and (29.4.3)3 twice, we obtain that the pair (v, h) solves the system
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v′′(t) + Av(t) + h ∗ Av(t) + h′(t)Au0 + h(t)Au1 = f ′′(t), t ∈ [0,T ],

v(0) = f (0) − Au0 =: v0, v′(0) = f ′(0) − Au1 − h(0)Au0 =: v1, (29.4.4)

Φ0[v(t)] + h ∗Φ0[v(t)] + h′(t)Φ0[Au0] + h(t)Φ0[u1] = g′′(t), t ∈ [0,T ].

Assume now

χ−1 := Φ0[Au0] � 0.

Then we observe that the solution (v, h) ∈ [W1,∞((0,T ); H) ∩ L∞((0,T );V)] ×
W1,p((0,T );R), p ∈ (1,+∞], to problem (29.4.4) is equivalent to solving—in the
same function space—the fixed-point system

v(t) =v(t) −
∫ t

0
S (t − s)[h′(s)Av0 + h(s)Av1]ds

−
∫ t

0
S (t − s)h ∗ Av(s)ds, t ∈ [0,T ],

h′(t) = − χΦ0[Av(t)] − χh ∗ Ψ0[Av(t)] − χh(t)Φ0[Au1] + g′′(t), t ∈ [0,T ], (29.4.5)

where the function v is defined by (29.3.3). Moreover, we can compute the initial
value h(0) = h0 by differentiating both sides of Eq. (29.4.2) once and then setting
t = 0 to obtain

h0 = −χ{g′(0) −Φ[Au1] +Φ1[u1]}.

For this purpose, further regularity properties involving cosine and sine functions are
needed:

C ∈ C([0,+∞);L(V)), ‖C(t)‖L(V) ≤ Metρ, t ∈ [0,+∞),

S ∈ C([0,+∞);L(H;V)), ‖S (t)‖L(H;V) ≤ Metρ, t ∈ [0,+∞).

Reasoning as in Sect. 29.3, we can show that the pair (w, h), where w = Av, solves
the fixed-point system

w(t) =Av(t) −
∫ t

0
S (t − s)[h′(s)Av0 + h(s)Av1]ds − h ∗ w(t)

+

∫ t

0
C(t − s)[h′ ∗ w(s) + h(0)w(s)]ds

=:Av(t) + L(w, h)(t), t ∈ [0,T ],

h′(t) = − χΦ0[A−1w(t)] − χh ∗Φ0[A−1w(t)]

− χh(t)Φ0[Au1] + g′′(t), t ∈ [0,T ].
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Observe that this fixed-point system is equivalent to the following:

w(t) =Av(t) −
∫ t

0
S (t − s)[h′(s)Av0 + h(s)Av1]ds − h ∗ w(t)

+

∫ t

0
C(t − s)[h′ ∗ w(s) + h(0)w(s)]ds

=:Av(t) + L(w, h)(t), t ∈ [0,T ],

h′(t) = − χΦ0[v(t)] − χΦ0[A−1L(w, h)(t)] − χh ∗Φ0[A−1w(t)]

− χh(t)Φ0[Au1] + g′′(t), t ∈ [0,T ].

It is now assumed that

|Φ0[A−1z]| ≤ C‖z‖H , ∀z ∈ H. (29.4.6)

Using the same fixed-point procedure as in Sect. 29.3, we can show that the sys-
tem (29.4.5) admits a unique solution (w, h) ∈ L∞((0,T );V) ×W1,p((0,T );R).

Let us define the function v by the formula

v(t) = v(t)−
∫ t

0
S (t− s)[h′(s)Au0 + h(s)Au1]ds−

∫ t

0
S (t− s)h ∗w(s)ds, t ∈ [0,T ].

Reasoning as in the previous section, one can show that

u(t) = u0 + tu1 +

∫ t

0
(t − s)v(s)ds, t ∈ [0,T ],

so that u ∈ U2,∞
T .

We summarize the result proved in this section in the following theorem.

Theorem 29.4.1. Let u0, u1, v0 ∈ D(A), v1 ∈ V, f ∈ W2, p̃

((0,T ); H), g ∈ W2, p̃((0,T );R), p̃ ∈ (p,+∞], p ∈ (1,+∞]. Let the linear functional
Φ satisfy (29.4.6). Then the identification problem (29.2.1) admits a unique solution
(u, h) ∈ U2,∞

T ×W1,p((0,T );R) such that u′′ ∈ U2,∞
T .

Using the same definitions for the spaces H and D(A) and for the operator A as
at the end of Sect. 29.3, we obtain the following result.

Theorem 29.4.2. Let ∂Ω be of class C4 and let μ satisfy properties (29.1.3) with
σ = 2. Let u0

3, u
1
3 ∈ H2(ω) ∩ H1

0(ω), f3 ∈ W2, p̃((0,T ); L2(ω)), g ∈ W4, p̃((0,T );R),
p̃ ∈ (p,+∞], p ∈ (1,+∞]. Furthermore, let the consistency conditions

∫
ω

ϕ0(x)Dνu
j
3(x)dσ(x) + jh0

∫
ω

ϕ0(x)Dνu
0
3(x)dσ = 0, j = 0, 1,
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hold. Then the identification problem (29.1.7)–(29.1.8) admits a unique solution
(u3, h) such that

u3,D
2
t u3 ∈ W2,∞((0,T ); L2(ω)) ∩W1,∞((0,T ); H1(ω)) ∩ L∞((0,T ); H2(ω) ∩ H1

0(ω))

and h ∈ W1,p((0,T );R).
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Dynamics of Viscoelastic Fluids

30.1 Introduction

An evolution problem in a bounded domain for viscoelastic fluids of the kind consid-
ered in Chaps. 8, 10, and 13 is now presented. Our attention is confined to infinites-
imal viscoelasticity for isotropic, homogeneous, and incompressible fluids. There-
fore, the constitutive equation for the stress tensor T is expressed by the hereditary
law (8.10.1), which, with an integration by parts, can be rewritten as follows:

T(x, t) = −p(x, t)I +
∫ ∞

0
μ(s)Ėt(x, s)ds. (30.1.1)

The stability problem for such fluids was examined under a variety of conditions in
many articles (see [215, 216, 300, 301]). We recall, in particular, that Slemrod in
[300] showed that if μ(s) ∈ C2(R+), μ(s) → 0 as s → ∞, μ(s) > 0, μ′(s) < 0, and
μ′′(s) ≥ 0, the rest state of these fluids is stable in a suitable “fading memory” norm,
and the solution of the linearized boundary initial history value problem converges
to the rest state weakly in this norm as t → ∞. The same author proved asymptotic
stability by means of the additional assumption that

∫ ∞
0

s2μ′(s)ds < ∞.
In [113], it was shown that there exists a strict connection between the ther-

modynamic restrictions on the relaxation function μ and the existence, uniqueness,
and stability theorems relating to the boundary initial history value problem for vis-
coelastic fluids characterized by the constitutive equation (8.10.1). For this purpose,
the strict inequality in condition (8.10.12) of Theorem 8.10.3, μc(ω) > 0 ∀ω ∈ R, is
important, since the asymptotic stability of the rest state fails when the weaker con-
dition μc(ω) ≥ 0 ∀ω ∈ R is assumed, as occurs for a particular family of relaxation
functions examined also in [113].
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30.2 An Initial Boundary Value Problem for an Incompressible
Viscoelastic Fluid

Let Ω ⊂ R3 be a smooth bounded domain occupied by a linear viscoelastic incom-
pressible fluid, for which the constitutive equation is given by (30.1.1). The linear
approximation of the equations of motion on the domain Q = Ω × R++ for the initial
boundary value problem, characterized by Dirichlet’s boundary conditions, yields
the following system:

∂

∂t
v(x, t) = ∇ ·

[
−p(x, t)I +

∫ ∞

0
μ(s)∇vt(x, s)ds

]
+ f(x, t),

∇ · v(x, t) = 0, (30.2.1)

v(x, t) = 0 ∀x ∈ ∂Ω, ∀t ∈ R++,
v(x, τ) = v0(x, τ) ∀x ∈ Ω, ∀τ ∈ R−,

where the constant mass density ρ is understood and not written, v and p are the
velocity and the pressure fields, f gives the body forces, and v0 denotes the history
of the velocity up to time t = 0. Note that we have used the relation ∇ · Ėt(x, t) =
1
2∇ · [∇v(x, t)], which follows from the constraint of incompressibility ∇ · v(x, t) = 0.

The relaxation function μ is assumed to be such that μ ∈ L1(R+) and such that it
satisfies the following thermodynamic restriction:

μc(ω) =
∫ ∞

0
μ(s) cosωsds > 0 ∀ω ∈ R. (30.2.2)

We denote by L2
s(Ω) and H2

s0(Ω) the Hilbert spaces obtained by means of the
completion of solenoidal vector fields v ∈ C∞

0 (Ω) in the L2(Ω) and in the H1
0(Ω)

norms, respectively. Moreover, L2
π(Ω) is the Hilbert space obtained by virtue of the

completion of irrotational vector fields v ∈ C∞
0 (Ω) in the L2(Ω) norm. Thus, we have

L2(Ω) = L2
s(Ω) ⊕ L2

π(Ω).

Theorem 30.2.1. If the relaxation function μ belongs to L1(R+) and satisfies (30.2.2),
the supply f ∈ L2(R+; L2(Ω)), the initial history v0(·, s) ∈ H1

s0(Ω) for all s ∈ R−, and
the function V0(x, t) = ∇ ·

∫ ∞
t

μ(s)∇v0(x, t − s)ds ∈ L2(R+; L2
s(Ω)), then the problem

(30.2.1) has one and only one solution v ∈ L2(R++; H1
s0(Ω)).

Before giving a proof of this theorem, we consider the Laplace-transformed ver-
sion of the problem and then prove some relevant and useful lemmas.

30.2.1 Transformed Problem

Firstly, recall that the Laplace transform of any smooth function ϕ : R+ → R is
defined by ϕL(z) =

∫ ∞
0

e−zsϕ(s)ds, where z ∈ C is the Laplace parameter belonging
to the complex plane, here denoted by C. This generalizes the quantity given by
(C.2.4), where z ∈ R+.
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Applying a Laplace transform to the dynamical problem (30.2.1) gives

zvL(x, z) = −∇pL(x, z) + ∇ · [μL(z)∇vL(x, z)] + F(x, z) ∀x ∈ Ω,

∇ · vL(x, z) = 0 ∀x ∈ Ω, (30.2.3)

vL(x, z) = 0 ∀x ∈ ∂Ω,

where we have put

F(x, z) = fL(x, z) + v0(x, 0) +
∫ ∞

0
e−zs∇ ·

[∫ ∞

s
μ(τ)∇v0(x, s − τ)dτ

]
ds

= fL(x, z) + v0(x, 0) + V0L (x, z).

From the hypotheses f ∈ L2(R+; L2(Ω)) and V0 ∈ L2(R+; L2
s(Ω)), it follows that F is

well defined for any complex z ∈ C+ := {z ∈ C; Rez ≥ 0}.
Now we give the definition of a weak solution to our problem and consider the

variational formulation of the linear differential system (30.2.3).

Definition 30.2.2. A function vL ∈ H1
s0(Ω) is said to be a weak solution of (30.2.3) if

∫
Ω

[μL(z)∇vL(x, z) · ∇u(x) + zvL(x, ω) · u(x)]dx =
∫
Ω

F(x, z) · u(x)dx (30.2.4)

for every complex vector u ∈ H1
s0(Ω).

Here, as previously, the bar over a quantity indicates complex conjugate.
If vL is a weak solution, then following Teman ([307], Lemma 2.1), we can prove

that there exists a scalar field pL ∈ L2(Ω) such that

zvL(x, z) = −∇pL(x, z) + ∇ · [μL(z)∇vL(x, z)] + F(x, z) ∀x ∈ Ω,

∇ · vL(x, z)ds = 0 ∀x ∈ Ω,

in the sense of distributions, and moreover, vL(x, z) = 0 on ∂Ω.

Lemma 30.2.3. Under the hypotheses of Theorem 30.2.1, the problem (30.2.3) has
one and only one weak solution.

We now observe that the bilinear form

a(v,u; z) =
∫
Ω

[μL(z)∇v(x) · ∇u(x) + zv(x) · u(x)]dx (30.2.5)

is coercive in H1
s0(Ω). Thus, by general theorems on elliptic systems (see [134, 307,

310]), the existence and uniqueness of a weak solution to (30.2.4) for every F ∈
L2(Ω) follow.
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To prove Lemma 30.2.3, it must be shown that there exists an α > 0, possibly
dependent on z, such that

|a(v, v; z)| ≥ α(z)‖v‖2
H1

s0(Ω)
.

We now want to demonstrate that the coerciveness of a can be proved by means
of the thermodynamic restriction (30.2.2).

To prove this, recall a property of Fourier integrals.

Proposition 30.2.4. Let ϕ1, ϕ2 ∈ L1(R) with ϕ1ϕ2 ∈ L1(R), and let ϕF denote the
Fourier transform of ϕ. If

Φ(ω) =
∫ ∞

−∞
ϕ1F(τ)ϕ2F(ω − τ)dτ

is continuous in ω, then

∫ ∞

−∞
e−iωsϕ1(s)ϕ2(s)ds =

1
2π

∫ ∞

−∞
ϕ1F(τ)ϕ2F(ω − τ)dτ ∀ω ∈ R. (30.2.6)

This is an inverted form of the convolution theorem (C.3.2). It follows immedi-
ately from Parseval’s formula ([37] and Sect. C.3).

Lemma 30.2.5. If the relaxation function μ belongs to L1(R+) and satisfies (30.2.2),
then

∫ ∞

0
e−σs cosωsμ(s)ds > 0 ∀ω ∈ R, ∀σ ∈ R+. (30.2.7)

Proof. If σ = 0, then (30.2.7) holds, since it coincides with (30.2.2). Let σ > 0, and
consider the function [146]

ϕ1(s) = μ(|s|), ϕ2(s) =

⎧⎪⎪⎨⎪⎪⎩
0 ∀s < 0,

e−σs ∀s ≥ 0.

Thus, ϕ1, ϕ2, ϕ1ϕ2 ∈ L1(R), and we have

ϕ1F (τ) = 2
∫ ∞

0
cos τsμ(s)ds, ϕ2F (τ) =

1
σ + iτ

,

whence it follows that

Φ(ω) =
∫ ∞

−∞

2
σ + i(ω − τ)

∫ ∞

0
cos τsμ(s)dsdτ

is continuous. From (30.2.6), applied to the functions ϕ1 and ϕ2, we have
∫ ∞

0
e−(σ+iω)sμ(s)ds =

1
π

∫ ∞

−∞

1
σ + i(ω − τ)

∫ ∞

0
cos τsμ(s)dsdτ,
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which has a real part given by

∫ ∞

0
e−σs cosωsμ(s)ds =

1
π

∫ ∞

−∞

σ

σ2 + (ω − τ)2

∫ ∞

0
cos τsμ(s)dsdτ,

whence (30.2.7) follows by virtue of the conditions σ > 0 and (30.2.2). �

We can now establish the coerciveness of a(v,u, z).

Lemma 30.2.6. If the relaxation function μ belongs to L1(R+) and satisfies (30.2.2),
then the bilinear form a is coercive for every complex number z ∈ C+.

Proof. Since |a(v, v, z)| ≥ Rea(v, v, z), it is enough to show that

Rea(v, v; z) ≥ α(z)‖v‖2
H1

s0(Ω)

for every z ∈ C+.
The Laplace transform μL, putting z = σ+iω, where ω ∈ R and σ ∈ R+, becomes

μL(z) =
∫ ∞

0
e−σs cosωsμ(s)ds − i

∫ ∞

0
e−σs sinωsμ(s)ds,

which, substituted into (30.2.5), yields

Rea(v, v; z) =
∫ ∞

0
e−σs cosωsμ(s)ds

∫
Ω

|∇v(x)|2dx + σ
∫
Ω

|v(x)|2dx.

Hence, by Korn’s inequality and the arbitrariness of σ > 0, we have

Rea(v, v; z) ≥ C(Ω)
∫ ∞

−∞
e−σs cosωsμ(s)ds‖v(x)‖2

H1
s0(Ω)

,

where C(Ω) is a strictly positive constant that depends on the domain Ω and the
integral satisfies (30.2.7). Thus, the proof is complete. �

Since Lemma 30.2.3 yields the existence and uniqueness of the solution of
(30.2.4), we can study the properties of this solution vL.

Consider the Green tensor function Γ ∈ H1
s0(Ω), defined as a solution of the

problem

∫
Ω

[μL(z)∇x′Γ(x, x′; z)∇x′u(x′) + zΓ(x, x′; z)u(x′)]dx′ =
∫
Ω

δ(x − x′)u(x′)dx′

(30.2.8)
for every u ∈ H1

s0(Ω), where δ is the Dirac delta function.
The solution of (30.2.4) can be written in terms of Γ as follows:

vL(x, z) =
∫
Ω

Γ(x, x′; z)F(x′, z)dx′. (30.2.9)

We now prove existence, uniqueness, and asymptotic behavior with respect to the
parameter z of solutions Γ of Eq. (30.2.8).
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Lemma 30.2.7. Under the hypotheses of Theorem 30.2.1, there exists a unique solu-
tion Γ of (30.2.8) such that

(i) Γ(x, ·; z) ∈ H1
s0(Ω) for every z ∈ C+,

(ii) Γ(x, x′; ·) is continuous in C+, and
(iii) for z ∈ C+,

lim
z→∞

z1−αΓ(x, x′; z) = 0, α > 0,

lim
z→∞

∫
Ω

zΓ(x, x′; z)u(x′)dx′ = u(x), (30.2.10)

in the sense of distributions.

Proof. The first property holds by virtue of the coerciveness of the bilinear form
a(v, v; z), since δ is in the dual space H−1(Ω). The second property follows from the
continuity of the bilinear form a(v,u; ·) with respect to the third argument (see [310],
Lemma 44.1). Finally, note that from (30.2.8), we have

∫
Ω

z1−αΓ(x, x′; z)
[
u(x′) − z−1μL(z)∇x′ · ∇x′u(x′)

]
dx′ = z−αu(x)

for every α > 0 and u ∈ C∞
0 (Ω). Hence, since μL is a bounded function of z, the limit

as z → ∞ yields (30.2.10). �

A representation for ∇xvL can be given in terms of the Green function. We denote
by ∇xΓ the third-order tensor function such that

∫
Ω

{μL(z)∇x′[∇xΓ(x, x′; z)]∇x′u(x′) + z[∇xΓ(x, x′; z)]u(x′)}dx′

=

∫
Ω

[δ(x − x′)I]xu(x′)dx′ (30.2.11)

for every u ∈ H1
s0(Ω). In terms of ∇xΓ,

∇xvL(x, z) =
∫
Ω

∇xΓ(x, x′; z)F(x′, z)dx′.

Using the proof of Lemma 30.2.7 and replacing Γ with ∇xΓ, we obtain the following
result.

Lemma 30.2.8. Under the hypotheses of Theorem 30.2.1, there exists a unique solu-
tion ∇xΓ of (30.2.11) such that

(i) ∇xΓ(x, ·; z) ∈ L2
s(Ω) for every z ∈ C+ (see [310], Lemma 23.2),

(ii) ∇xΓ(x, x′; ·) is continuous on C+,



30.2 An Initial Boundary Value Problem for an Incompressible Viscoelastic Fluid 689

(iii) for α > 0, z ∈ C+,

lim
z→∞

z1−α∇xΓ(x, x′; z) = 0

in the sense of distributions.

These results allow us to prove existence, uniqueness, and stability of the solution
to (30.2.1).

A proof of Theorem 30.2.1 is now outlined.

Proof. By hypothesis, f ∈ L2(R+; L2(Ω)) and

V0(x, t) = ∇ ·
∫ ∞

t
μ(s)∇v0(x, t − s)ds

belongs to L2(R+; L2
s(Ω)); therefore, we obtain

lim
z→∞

F(x, z) = lim
z→∞

[
fL(x, z) + v0(x, 0) +

∫ ∞

0
e−zs∇ ·

∫ ∞

s
μ(τ)∇v0(x, s − τ)dτds

]

= v(x, 0).

Moreover, (30.2.9) and property (iii) of Γ, for α > 0, give

lim
z→∞

z1−αvL(x, z) = lim
z→∞

∫
Ω

z1−αΓ(x, x′; z)F(x′, z)dx′

= lim
z→∞

∫
Ω

z1−αΓ(x, x′; z)v(x′, 0)dx′ = 0. (30.2.12)

Let z = iω and 0 < α < 1
2 ; from (30.2.12), it follows that vL(x, iω) is in L2 with

respect to ω; we can view it as the Fourier transform of the function

v̆(x, t) =

⎧⎪⎪⎨⎪⎪⎩
0, t < 0,

v(x, t), t ≥ 0.

Using Parseval’s formula, we have

1
2π

∫ ∞

−∞

∫
Ω

|vL(x, iω)|2dxdω =
∫ ∞

−∞

∫
Ω

|v̆(x, t)|2dxdt =
∫ ∞

0

∫
Ω

|v(x, t)|2dxdt
(30.2.13)

and

1
2π

∫ ∞

−∞

∫
Ω

|∇xvL(x, iω)|2dxω =
∫ ∞

−∞

∫
Ω

|∇xv̆(x, t)|2dxdt

=

∫ ∞

0

∫
Ω

|∇xv(x, t)|2dxdt. (30.2.14)
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From (30.2.13) and (30.2.14), it follows that
∫ ∞

0

∫
Ω

[
|∇v(x, t)|2 + |v(x, t)|2

]
dxdt < ∞.

Hence, we obtain the required result v ∈ L2(R++; H1
s0(Ω)). �

30.2.2 Counterexamples to Asymptotic Stability

We consider, for the sake of simplicity, one-dimensional evolution problems.
Suppose that an incompressible viscoelastic fluid occupies the strip 0 < x <

l, (x, y) ∈ R2, between two fixed plates. Let the supply f and the initial history v0

have the form f = f (x, t)k, v0 = v0(x, τ)k ∀τ ∈ R−; then, v = v(x, t)k must be a
solution of the scalar boundary initial history value problem

vt(x, t) =
∫ ∞

0
μ(s)vxx(x, t − s)ds + f (x, t) ∀x ∈ (0, l), ∀t ∈ R++,

v(0, t) = v(l, t) = 0 ∀t ∈ R++, (30.2.15)

v(x, τ) = v0(x, τ) ∀x ∈ (0, l), ∀τ ∈ R−.

Since Theorem 30.2.1 can be applied to domains that are bounded in some di-
rection (see, for example, [307], Theorem 2.1), if the relaxation function μ sat-
isfies (30.2.2), then the problem (30.2.15) has one and only one solution v ∈
L2(R++; H1

s0(0, l)), for any f ∈ L2(R+; L2(0, l)) and v0 such that
∫ ∞
t

μ(s)v0xx (x, t −
s)ds ∈ L2(R+; L2

s(0, l)).
We want to show that there exist relaxation functions that comply with weaker

thermodynamic requirements but do not allow asymptotic stability of the solution of
the problem (30.2.15) under the hypotheses of Theorem 30.2.1.

For this purpose, let us assume a nonnegative relaxation function μ with proper-
ties

(P1) μ is a positive decreasing function belonging to H1(R+,R+) such that

μ(s) <
k

(1 + s)2+ε
, k, ε > 0;

(P2) μ satisfies the “weak formulation” of the second law of thermodynamics for
isothermal processes; that is,

∫ ∞

0
μ(s) cosωsds ≥ 0 ∀ω ∈ R,

and there exists at least one frequency ω∗ � 0 such that

μc(ω
∗) =

∫ ∞

0
μ(s) cosω∗sds = 0. (30.2.16)
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Theorem 30.2.9. Let μ be a relaxation function that has properties (P1) and (P2).
Then there exists a critical length l∗ for the strip such that for l = l∗, f = 0, and the
initial history v0(x, τ) = sin π

l∗ (c1 cosω∗τ + c2 sinω∗τ), the problem (30.2.15) has a
unique periodic solution (not belonging to L2(R++; H1

s0(0, l∗)),

v(x, t) = sin
πx
l∗

(c1 cosω∗t + c2 sinω∗t).

Before giving the proof of this theorem, we make an observation and prove an
auxiliary lemma.

Remark 30.2.10. Observe that if (P1) holds, then (see [148]) it is possible to prove
that the function

V0(x, t) =
∫ ∞

t
μ(s)v0xx (x, t − s)ds

belongs to L2(R+; L2
s(0, l)) for any v0 ∈ L∞(R−; H1

s0(0, l)).

Lemma 30.2.11. Let μ be a relaxation function that has properties (P1) and (P2),
let ω∗ � 0 be a frequency satisfying (30.2.16), and let μ+ be the half-range Fourier
transform of μ (see (C.1.3)). Then there exists a critical length l∗ such that the prob-
lem

iω∗vF(x, ω∗) − μ+(ω∗)vxxF(x, ω∗) = 0 ∀x ∈ (0, l),

vF(0, ω∗) = vF(l, ω∗) = 0 (30.2.17)

has infinitely many complex-valued solutions for l = l∗.

Proof. Substituting (30.2.16) into (30.2.17), we see that both the real and the imagi-
nary parts of the solution v of (30.2.17) must satisfy the following:

ω∗u(x, ω∗) + μs(ω
∗)uxx(x, ω

∗) = 0 ∀x ∈ (0, l),

u(0, ω∗) = u(l, ω∗) = 0. (30.2.18)

Integrating by parts, we obtain

1
ω∗ μs(ω

∗) =
1

(ω∗)2

[
μ(0) +

∫ ∞

0
μ′(s) cosω∗sds

]

=
1

(ω∗)2

∫ ∞

0
μ′(s)(cosω∗s − 1)ds > 0,

because the hypothesis (P1) yields μ′(s)(cosω∗s − 1) ≥ 0 ∀s ∈ R+. Note that if
μ′(s)(cosω∗s − 1) = 0 ∀s ∈ R+, then μ(s) = 0 ∀s ∈ R+. Putting
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l = l∗ =

√
μs(ω∗)
ω∗ π, (30.2.19)

then the function u∗(x) = c sin πx
l∗ , c ∈ R, is a solution of (30.2.18), since ω∗

μs(ω∗) is an
eigenvalue of −Δ. The connection between the two problems (30.2.17) and (30.2.18)
allows us to conclude that any function vF(x, ω∗) = (a1 + ia2)sin πx

l∗ , a1, a2 ∈ R, is a
solution of (30.2.17). �

We can now give the proof of Theorem 30.2.9.

Proof. Let l∗ be given by (30.2.19); then using Lemma 30.2.11, the unique solution
of the problem

vt(x, t) =
∫ ∞

0
μ(s)vxx(x, t − s)ds ∀x ∈ (0, l∗), ∀t ∈ R++,

v(0, t) = v(l∗, t) = 0 ∀t ∈ R++,

v(x, τ) = sin
πx
l∗

(c1 cosω∗τ + c2 sinω∗τ) ∀x ∈ (0, l∗), ∀τ ∈ R−,

which agrees with the prescribed initial history value, is

v(x, t) = sin
πx
l∗

(c1 cosω∗t + c2 sinω∗t).

In fact, it is easy to show that the two quantities

vt(x, t) = ω∗ sin
πx
l∗

(−c1 sinω∗t + c2 cosω∗t)

and

∫ ∞

0
μ(s)vxx(x, t − s)ds =

(
π

l∗

)2
sin

πx
l∗
μs(ω

∗)(−c1 sinω∗t + c2 cosω∗t)

coincide by virtue of (30.2.19). �

Finally, we exhibit a family of nonnegative relaxation functions that comply with
requirements (P1) and (P2). Consider the function

μ(s) =

(
s2

β
− α − 3

β2
s +

α2 − 8α + 24
8β3

)
e−βs

with two parameters α and β, which are assumed to be such that α ∈
(
0, 2 +

√
2
)
,

β > 0. This satisfies (P1); furthermore, taking into account that

∫ ∞

0
e−βs cosωsds =

β

β2 + ω2
,

∫ ∞

0
e−βss cosωsds =

β2 − ω2

(β2 + ω2)2
,

and
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∫ ∞

0
e−βss2 cosωsds = 2β

β2 − 3ω2

(β2 + ω2)3
,

its Fourier cosine transform is given by

μc(ω) =
∫ ∞

0
μ(s) cosωsds =

α2

8β3(β2 + ω2)3

(
ω2 − 8 − α

α
β2

)
≥ 0.

Hence, for ω∗ = β
√

8−α
α

, we have μc(ω∗) = 0, so that (P2) also holds.
An analogous family was first introduced by Fabrizio and Morro in [119] to show

that there exist relaxation functions for linear viscoelastic solids that do not allow the
quasistatic problem to have a unique solution in the space of sinusoidal (in time)
strain histories. Moreover, the same family was used later on by Giorgi and Lazzari
[148], though with a different choice of parameters, to give counterexamples to the
asymptotic stability of the rest state for initial boundary value problems relating to
linear viscoelastic solid materials.
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Conventions and Some Properties of Vector Spaces

A.1 Notation

A group of relations with a single equation number (∗∗∗) will be numbered by count-
ing “=” signs. Thus, (∗∗∗)5 refers to the relation with the fifth “=” sign. Minor excep-
tions will be clear from context.

Vectors and tensors are denoted by boldface characters, respectively, and scalars
by ordinary script. The real line is denoted by R, the nonnegative reals by R+, and
the strictly positive reals by R++. Also, R− denotes the nonpositive reals and R−− the
strictly negative reals. We will be dealing with spaces of scalar quantities with values
in R or R+, vector quantities in R3, second-order tensors and symmetric second-
order tensors, the latter space being denoted by Sym. Let one of these spaces, or a
composite of more than one, be denoted by V. The space of linear transformations
V �→ V is denoted by Lin(V). If V is omitted, it is understood to be R3; also Lin+

denotes the set of linear transformations with positive determinant from R3 to R3.
The space of linear transformations V1 �→ V2 is Lin(V1,V2).

We will be considering frequency-space quantities, defined by analytic continu-
ation from integral definitions, as functions on the complex plane Ω, where

Ω+ = {ω ∈ Ω | Imω ∈ R+},
Ω(+) = {ω ∈ Ω | Imω ∈ R++}.

Similarly, Ω− and Ω(−) are the lower half-planes including and excluding the real
axis, respectively.

In certain contexts, for example, where the complex plane is not necessarily re-
lated to frequency, we use the above convention but with C replacing Ω. The latter
symbol is in some chapters used to denote the spatial region occupied by the body
under discussion, for consistency with usage in the literature.
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A.2 Finite-Dimensional Vector Spaces

We deal extensively with quadratic forms in the main text, so that it is worthwhile
describing certain notation and concepts relating to finite vector spaces. More in-
depth discussion can be found in, for example, [194]. Consider first the case that V,
of dimension m, is a vector space over the reals. For any two vectors L, M in V, we
denote their inner (scalar or dot) product by L · M. Let Ci, i = 1, 2, . . . ,m, be an
orthonormal basis of V, so that

Ci · C j = δi j, i, j = 1, 2, . . . ,m.

We have

L =
m∑
i=1

LiCi, M =
m∑
i=1

MiCi. (A.2.1)

Also

L ·M = L�M =
m∑
i=1

LiMi =M · L =M�L, (A.2.2)

and |M|2 =M ·M is the squared norm of M. A linear transformation K ∈ Lin(V) has
the representation (we keep the same notation)

K =

m∑
i, j=1

Ki jCi ⊗ C j,

where Ki j, i, j = 1, 2, . . . ,m, are its components in this basis. We will generally refer
to linear transformations (with well-defined behavior under a change of reference
frame ) as tensors and their representations as matrices. The tensor K� is the trans-
pose of K. Now

(Ci ⊗ C j)Ck = C j · CkCi = δ jkCi,

giving

(KM)i = KM · Ci =

m∑
j=1

Ki jMj.

We have the quadratic form

L ·KM =
m∑

i, j=1

LiKi jMj =

m∑
i, j=1

(K�) jiLiMj = K�L ·M =M ·K�L. (A.2.3)

A commonly used scalar product on the vector space Lin(V) is
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K ·N = tr(KN�) =
m∑

i, j=1

Ki jNi j, (A.2.4)

and the associated squared norm |K|2 of K ∈ Lin(V) is

|K|2 = tr
(
KK�

)
=

m∑
i, j=1

Ki jK ji. (A.2.5)

It is frequently the case in the present work that K is symmetric, so that K = K�.
If V is over the complex numbers—which is the case in this work when we are

dealing with quantities in the frequency domain—we define the complex conjugate
of L by

L =
m∑
i=1

LiCi, (A.2.6)

where Li is the ordinary complex conjugate of Li. The dot product is still defined by
(A.2.2). Thus, for example,

L ·M = L
�
M =

m∑
i=1

LiMi,

giving a real, positive squared norm

|L|2 = L · L =
m∑
i=1

|Li|2.

If K ∈ Lin(V), now with complex components, we have

L ·KM = K∗L ·M, (A.2.7)

where K∗ is the Hermitian conjugate of K, defined by

K∗ = K
�
, (A.2.8)

where the overhead bar indicates taking the complex conjugate of each element. A
Hermitian tensor is one with the property

K∗ = K. (A.2.9)

Note that

L ·KL = L ·K∗L,

so that L ·KL is real if K is Hermitian. We deal largely with symmetric tensors. A
Hermitian symmetric tensor is defined by K∗ = K.

A natural choice of orthonormal basis is the eigenvectors of a Hermitian tensor
K = K∗. Denoting these as above by Ci, i = 1, 2, . . . ,m,the quantities Ci ⊗ Ci,
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i = 1, 2, . . . ,m, are the projectors on the eigenspaces of this tensor. The spectral form
of K is the representation

K =

m∑
i=1

λiCi ⊗ Ci, (A.2.10)

where λi, i = 1, 2, . . . ,m, are the real eigenvalues of K. Any tensor N that can be
given by

N =

m∑
i=1

μiCi ⊗ Ci, (A.2.11)

where μi, i = 1, 2, . . . ,m, are arbitrary complex numbers, commutes with K.
The tensor N is, in general, a normal transformation, in the sense that it com-

mutes with its Hermitian conjugate N∗.
Note that for any N given by (A.2.11) and L, M given by (A.2.1),

L ·NM =
m∑
i=1

μiLiMi.

A.2.1 Positive Definite Tensors

A Hermitian tensor K is positive definite if for every L ∈ V (the relation for vec-
tor spaces over the reals is given in parentheses; the tensor K can be taken to be
symmetric, since any antisymmetric portion does not contribute),

L ·KL ≥ 0 (L ·KL ≥ 0), (A.2.12)

where equality is true only if L = 0, where 0 is the zero in V or Lin(V). If equality
occurs for L � 0, then K is positive semidefinite. The relation K > 0 indicates
that K is positive definite, while K ≥ 0 implies that it is positive semidefinite. The
description nonnegative for a tensor is equivalent to positive semidefinite. Negative
definiteness and semidefiniteness can be defined analogously. We have an ordering
on Lin(V) in that, for example,

K1 > K2 ⇐⇒ K1 −K2 > 0.

A tensor is positive definite if and only if its eigenvalues are all positive. It is
positive semidefinite if all eigenvalues are nonnegative.

Remark A.2.1. An example of a positive semidefinite tensor that occurs in the main
text is the following. Let L ∈ V be of the form (A.2.1)1, but with complex compo-
nents, L being given by (A.2.6). Then consider

K = L ⊗ L =
m∑

i, j=1

LiL jCi ⊗ C j.
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Clearly, N ·KN ≥ 0 for any N ∈ V, as required by (A.2.12). However, any vector M
perpendicular to L in V will obey the relation KM = 0, so that it is an eigenvector of
K with eigenvalue zero. Thus, K is positive semidefinite.

A.2.2 Differentiation with Respect to Vector Fields

Let φ be a scalar depending on L. The quantity

∂φ

∂L
∈ V

is a vector with components ∂φ/∂Li, i = 1, 2, . . . ,m, in a given basis. We take it to be
a column vector, the transpose of which is a row vector. The quantity

∂L
∂L

∈ Lin(V)

is a tensor with components

∂Li
∂Lj
= δi j, i, j = 1, 2 . . . ,m,

so that ∂L/∂L is the unit tensor. We have

∂

∂L
(L ·KM) = KM

and

∂

∂M
(L ·KM) =

∂

∂M
(K�L ·M) = K�L

for a vector space over R. In the complex case, we have

∂

∂L
(L ·KM) = KM

and

∂

∂M
(L ·KM) =

∂

∂M
(K∗L ·M) = K∗L.

A.2.3 The Vector Space Sym

The space of symmetric second-order tensors acting on R3 is denoted by Sym :=
{E ∈ Lin(R3) : E = E�}. Operating on Sym is the space of fourth-order tensors
Lin(Sym).

The vector space Sym is isomorphic to R6. In particular, for every E,F ∈ Sym, if
Ci, i = 1, 2, . . . , 6, is an orthonormal basis of Sym with respect to the inner product
(A.2.4) in Lin(R3), namely tr(EF�), it is clear that the representation
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E =
6∑
i=1

EiCi, F =
6∑
i=1

FiCi, (A.2.13)

yields that tr(EF�) =
∑6

i=1 EiFi. Therefore, we can treat each tensor of Sym as a
vector in R6 and denote by E · F the inner product between elements of Sym:

E · F = tr(EF�) = tr(EF) =
6∑
i=1

EiFi (A.2.14)

and |F|2 = F · F. Consequently, any fourth-order tensor G ∈ Lin(Sym) will be iden-
tified with an element of Lin(R6) by the representation

G =

6∑
i,i=1

Ki jCi ⊗ C j, (A.2.15)

and G� is the transpose of G as an element of Lin(R6). The scalar product and norm
in Lin(R3) are given by (A.2.4) and (A.2.5) for m = 6.

For complex-valued tensors, let Sym(Ω) and Lin(Sym(Ω)) be, respectively, the
sets of tensors represented by the forms (A.2.13) and (A.2.15) with Li,Mi,Ki j ∈ Ω.
Then for E,F ∈ Sym(Ω), we have, instead of (A.2.14),

E · F = tr(EF∗) = tr
(
EF

)
=

6∑
i=1

EiFi. (A.2.16)

In the present work, we deal with V = Γ+ defined by (5.1.10), which has di-
mension m = 10, or vector spaces contained in Γ+. The scalar product between two
elements of Γ+ is understood to mean the sum of (A.2.14) or (A.2.16) on Sym, the
standard scalar product on R3 and the product of quantities in R.
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Some Properties of Functions on the Complex Plane

B.1 Introduction

We describe briefly, for the sake of convenient reference, some properties of ana-
lytic functions that are required in various contexts, mainly in Part III. For a more
complete treatment of these topics, we refer to the numerous available standard ref-
erences, for example [306]. A useful now classical reference is [267].

Of all functions defined on the xy plane, there is a very special class, termed ana-
lytic functions, that have the property that they are functions only of the combination
z = x + iy and have a uniquely defined derivative with respect to z at each point in
the region of analyticity. This latter requirement is very restrictive in that it means
that the derivative is independent of the infinite number of directions from which the
limit may be taken. If we write such a function F(z) in the form

F(z) = F(x, y) = u(x, y) + iv(x, y),

then the uniqueness of the limit gives the Cauchy–Riemann conditions

∂u
∂x
=

∂v
∂y

,
∂u
∂y
= −∂v

∂x
.

These conditions are necessary consequences of the analyticity assumption. If the
derivatives are continuous at (x, y), it may also be shown that they are sufficient to
ensure analyticity.

Note that the Cauchy–Riemann equations imply that if the real part of a complex
function is known, its imaginary part is determined to within a constant and vice
versa.

B.1.1 Cauchy’s Theorem and Integral Formula

If F(z) is analytic on an open set O, then for any contour C in O, we have
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∮
C
F(z)dz = 0. (B.1.1)

This is a simple statement of Cauchy’s theorem. The term contour is taken to mean
a closed contour. Cauchy’s integral formula states that if F(z) is analytic within and
on a contour C, then

F(z) =
1

2πi

∮
C

F(z′)
z′ − z

dz′ (B.1.2)

if the contour is taken counterclockwise, which is the conventional positive direction,
and is a manifestation of a more basic convention, namely that angles are presumed
to increase in a counterclockwise direction. If C is clockwise, then the integral in
(B.1.2) is equal to −F(z). Unless otherwise stated, a contour C may be taken to
be counterclockwise. If z is outside of the contour C, this integral gives zero. An
immediate consequence of (B.1.2) is

F(n)(z) =
n!
2πi

∮
C

F(z′)
(z′ − z)n+1

dz′, (B.1.3)

where F(n) is the nth derivative of F.
Now let z approach the contour from the inside toward a point z0 on C. The inte-

gral can be assigned a particular finite value as a result of a limiting process that will
now be described. We distort the contour into a small semicircle around z0 outside of
C. In the limit, as this semicircle gets smaller, it can be shown that it yields a finite
contribution of F(z0)/2. We define the Cauchy principal value of the integral as the
value obtained by means of this limiting process minus the contribution F(z0)/2 of
the semicircle. Therefore, for z on the contour,

1
πi
P

∮
C

F(z′)
z′ − z

dz′ = F(z), (B.1.4)

where the integral is interpreted as a Cauchy principal value.
We are mainly interested in cases in which C encloses the upper or lower half-

plane Ω(±). Let F(z) be analytic in the upper half-plane and let it go to zero at infinity
more strongly than z−1, at least in this half-plane. We take C in (B.1.4) to be the
real axis and the infinite semicircle enclosing the upper half-plane. This contour is
counterclockwise, so we obtain from (B.1.4), for x on the real axis,

1
πi
P

∫ ∞

−∞

F(x′)
x′ − x

dx′ = F(x), (B.1.5)

where the integral is a Cauchy principal value.
If F were analytic in the lower half-plane, the sign on the right-hand side would

be negative, since the contour is clockwise.
A basic property of analytic functions is that they can be expressed as infinite

(or finite in the case of polynomials) power series about any point z0 in their region
of analyticity. This power series has a radius of convergence equal to the distance
between z0 and the nearest singular point.
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B.1.2 Analytic Continuation

In different parts of the complex plane, an analytic function may have different repre-
sentations, as power series about different points, for example. A region of analyticity
defined by a circle of convergence of one power series can be extended by consider-
ing a power series about another point. Given two representations, the question arises
whether they are the same complex function or distinct functions. If they represent
the same function, they are said to constitute analytic continuations of each other.

A fundamental result states that if a function is analytic in a region R and zero
along any continuous arc in R, then it is zero everywhere in R. It follows trivially that
if two functions, analytic in a region R, are equal on a continuous arc contained in
this region, they are equal over all of R.

More generally, let two functions be analytic on R and let O ⊂ R be a nonempty
open set. If the two representations are equal on O, then they are the same analytic
function defined on R.

It can be shown that if two different analytic continuations are constructed from
a set R into R1, and R2, where R3 = R1 ∩R2 is nonempty, then the functions are equal
on R3. Note that R ∩ R1, R ∩ R2 are nonempty.

The most widespread use of this concept in the present work is a simple applica-
tion of these kinds of results. If we have a formula for a function on a certain part of
the complex plane, for definiteness, let us say a part or all of the real axis, given by
G(x), then the analytic continuation of this function into the complex plane is given
by G(z), for whatever values of z this quantity is meaningful. If G(x) is some com-
bination of elementary functions, for example, then G(z) will exist at all values of z
that are not singular points. So, for example, if

G(x) =
1

1 + x2
, x ∈ R,

its analytic continuation to the complex plane is

G(z) =
1

1 + z2
, (B.1.6)

which is valid everywhere except at the singular points z = ±i. Its uniqueness every-
where except at these points is guaranteed by the above results.

B.1.3 Liouville’s Theorem

A result that is fundamental to the developments of Part III is Liouville’s theorem,
which we state in a somewhat generalized form.

Let a function F(z) be analytic at every finite point in the complex plane and let
it behave like zn as z tends to infinity. Then it must be a polynomial of degree n. In
particular, if its limit at infinity is a constant, it is equal to this constant everywhere.
The most important case for our purposes is where the constant is zero, and F(z) is
zero everywhere.
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B.1.4 Singularities

What makes analytic functions interesting are their singularities, or points where
they are not analytic. In fact, the content of Liouville’s theorem is that if they have
no singularities, they are trivial.

The simplest singularities are poles, that is to say, behaving at z0 like (z − z0)−n,
where n is a positive integer called the order of the pole. These are isolated singu-
larities. A function whose only singularities are poles is known as a meromorphic
function. A function behaving like zn for large |z|, where n is a positive integer, is
regarded as having a pole of order n at infinity.

Remark B.1.1. If a real function has simple poles on the real axis, then it must have
at least one zero between each two poles, because in passing through each pole
(x − ai)−1, moving in a positive direction, the function switches from being a large
negative number to being a large positive number. Therefore, it must pass through
zero on the passage to the next pole.

Poles of infinite order are referred to as essential singularities. For example, the
function exp(1/z) has an essential singularity at the origin, and exp(iz) has an essen-
tial singularity at infinity. Note that on the lower half-plane exp(iz) diverges exponen-
tially and on the upper half-plane decays exponentially. It can be treated as analytic
at infinity on the latter half-plane in the sense that it is analytic at finite points and we
can take infinite contours over Ω(+) for integrands with exp(iz) as a factor. For sim-
plicity, though with some imprecision, we shall refer to its behavior in this half-plane
as analytic.

Functions that are analytic over the whole complex plane are said to be entire
or integral functions. They must be constant everywhere or singular at infinity. If
the singularity is of finite order, then they are polynomials. This is a restatement of
Liouville’s theorem, as given above. Nonpolynomial entire functions must have an
essential singularity at infinity. Examples are ez, sin z, and cos z.

We assume, except in Chap. 15, that the functions we deal with are analytic at
infinity, that is to say, behave as a constant or go to zero at large |z|. It is further
assumed that essential singularities do not occur at finite points on Ω.

B.1.5 Branch Points

If one follows an analytic function around a contour to the initial point and it does not
return to the same value, then the function is multivalued. This is associated with a
branch point within the contour. A branch point is a type of singularity, distinct from
a pole or an essential singularity. It is not isolated because, as we shall see below,
its effects are not localized at any one point. The function (z − a)γ is, for noninteger
values of γ, a multivalued function that is of interest in Chap. 14. In the standard
polar representation, it becomes

(z − a)γ = |z − a|γeiγθ, (B.1.7)
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where θ is the argument of (z−a). Let γ be a real quantity. If it is rational, let us write
it as p/q, where p, q have no common factors. Then if we circle the point a, say r
times, where r < q, the function returns to different values each time. When r = q,
the function returns to its original value. We say that (z − a)γ has a branch point
at z = a and has q distinct branches. If γ is irrational, the function has an infinite
number of branches.

Branch points always occur in pairs. The function (z−a)γ also has a branch point
at infinity, where it behaves like zγ. We join the point a to infinity by some convenient
line and agree that the function undergoes a discontinuous jump in crossing this line.
If a is real, this line is conventionally chosen to be the x-axis from the point a to −∞.
This is, however, an arbitrary choice. It is perfectly possible to choose another line
of discontinuity. It would not be the same function, however.

The complex plane, excluding the line of discontinuity, is sometimes referred to
as the cut plane and the line itself as a branch cut or simply a cut. A multivalued
function with say q distinct branches can be completely characterized by taking q
cut complex planes and defining a single-valued branch on each of them.

A process of unique analytic continuation cannot go around a branch point. The
branch cut represents a barrier. Thus, if we continue R into R1 and R2 around a branch
point, then we cannot form a nonempty overlapping set R3 = R1 ∩ R2. However, it
can go around an isolated singularity.

Returning to the function F(z) = (z − a)γ (where a is real) with a cut along
(−∞, a], let F±(x) be the limiting values of F(z) from above and below the real axis,
respectively. Using (B.1.7), one can show that

F−(x) = e−2πiγF+(x).

Note that this applies also if γ is complex, in which case there is a real as well as an
imaginary exponential factor.

Another example is

F(z) = (z − a)γ(z − b)1−γ, (B.1.8)

where a and b are real with b > a. The cut for F(z) given by (B.1.8) must join a and
b. The simplest choice is to take the portion of the real axis [a, b] as the branch cut.
The function will in general have many branches, which we can represent as follows.
Let arg(z − a) = θa and arg(z − b) = θb. Then

F(z) = |z − a|γ|z − b|1−γexp{i[θaγ + θb(1 − γ) + 2πmγ + 2πn(1 − γ)]},
m, n integers.

One can show that

F−(x) = ΓF+(x),

where
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Γ =

{
1, x � [a, b],
e2πiγ, x ∈ [a, b].

Therefore this function is analytic except in the interval [a, b]. It will be different for
different choices of m and n, though these contribute only a constant factor. Unique
analytic continuation is possible around [a, b], avoiding the branch cut.

Another multivalued function that has a role in our considerations is

F(z) = log(z − a) = log |z − a| + i arg(z − a), (B.1.9)

which has a branch point at a. We take the choice arg(z − a) = 0 if z − a is real as
the standard branch of the logarithm. This vanishes if |z − a| is unity. The function
arg(z − a) has range [−π, π]. If a ∈ R, the branch cut is conventionally taken along
(−∞, a]. The function

F(z) = log

(
z − b
z − a

)
(B.1.10)

has a branch cut on a line joining a and b, the simplest being the straight line segment
[a, b].

B.1.6 Evaluation of Contour Integrals

Let F be analytic on a contour C but with singularities within C. Then (B.1.1) gen-
eralizes to

∫
C
F(z)dz = 2πi

∑
residues withinC.

The contour C can be deformed at will without changing the value of the integral,
provided it does not cross any singularities. If F has a pole of order n at z0, that is to
say,

F(z)−→z→z0

G(z)
(z − z0)n

,

where G is analytic at z0, then the residue of that pole can be determined to be
G(n−1)(z0)/(n − 1)!, using (B.1.3).

If F has a branch cut B within C joining branch points a, b, then the residue is
obtained by shrinking C tightly around the branch cut, giving

1
2πi

∫ b

a
d(u)du, d(u) = F−(u) − F+(u), F±(u) = lim

z→u±
F(z), u ∈ B, (B.1.11)

the positive side of B being that along which the shrunken contour is going from b
to a and the negative side being that along which it is going from a to b.

We deal in the main text with integrals of the form
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∫ ∞

−∞
F(u)du,

where F(z) is analytic on an open region, including the real axis, with the behavior

F(z) ∼ A
zp
, p ≥ 1,

at large |z|, where A is a constant. Consider a contour C in Ω+ consisting of a semi-
circle of radius R on a segment [−R,R] or R that encloses all the singularities of F in
Ω(+). Let

IR =
∮
C
F(z)dz.

Now on the circumference of the semicircle,

z = Reiθ, dz = izdθ. (B.1.12)

If p = 1, then

lim
R→∞

IR = 2πi
∑

residues of singularities in Ω(+) =

∫ ∞

−∞
F(u)du + iπA, (B.1.13)

the rightmost term being the contribution of the circumference of the semicircle,
obtained using (B.1.12). If p > 1, we have

lim
R→∞

IR = 2πi
∑

residues of singularities in Ω(+) =

∫ ∞

−∞
F(u)du. (B.1.14)

Closing the contour in Ω(−) gives

lim
R→∞

IR = −2πi
∑

residues of singularities in Ω(−)

=

⎧⎪⎪⎨⎪⎪⎩
∫ ∞
−∞ F(u)du − iπA, p = 1,∫ ∞
−∞ F(u)du, p > 1,

(B.1.15)

where the sign changes are a result of the fact that the contour direction is now
clockwise.

Remark B.1.2. Let F(z) be a function analytic on Ω except at a variety of singulari-
ties. The notation F(z) indicates the complex conjugate function, leaving the variable
z untouched. Then F(z) is analytic except at singularities that are a mirror image in
the real axis of those of F(z).

In particular, if F is analytic in Ω(+)(Ω(−)), then F will be analytic in Ω(−)(Ω(+)).
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Proposition B.1.3. Let F(z) be analytic in Ω(+) and G(z) in Ω(−). Let both go to zero
as |z|−p, p > 1/2 at large |z|. Then

∫ ∞

−∞
F(s)G(s)ds =

∫ ∞

−∞
F(s)G(s)ds = 0,

so that they are orthogonal in an L2 scalar product.

Proof. This follows from Cauchy’s theorem by closing the first integral on Ω(−) and
the second on Ω(+). �

B.2 Cauchy Integrals

We consider integrals of the following type [274]:

F(z) =
1

2πi

∫
L

f (u)
u − z

du, (B.2.1)

where L is a sectionally smooth curve in the complex plane. By this, we mean a
finite number of nonintersecting smooth arcs and contours. The term contour is used
to indicate a closed curve, as before, while arc refers to a curve that is not closed and
therefore has endpoints. Smoothness indicates that a tangent exists at each point of L
and its slope varies continuously. In other words, each arc or contour, if represented
parametrically, has continuous first derivatives with respect to its parameter.

The more interesting developments around Cauchy integrals deal largely with the
case in which L is finite in length. However, we are mainly interested in the cases
in which L is infinite in length, given by R, discussed below, or R+ for example, or
infinite segments of the imaginary axis. Provided convergence issues are taken into
account, there is no difficulty in dealing with L infinite in length.

We need to choose a positive direction along L. For contours, this is generally
taken to be the counterclockwise direction, but for arcs, there is no set convention.
For an integral along a line segment [a, b] anywhere in the complex plane, written

as
∫ b

a
, the positive direction is taken to be from a to b. Thus, if [a, b] is on the real

axis and a < b, the positive direction is the positive x direction. The region of the
complex plane to the left, as one moves along L in the positive direction, is denoted
by S + and the region to the right by S −. These are the upper and lower half-planes,
respectively, for L in a positive direction along the real axis.

The function f , referred to as the density function, is assumed to be bounded
everywhere, except possibly at endpoints of arcs, denoted by ck, k = 1, 2, . . ., where
it may have integrable singular points with

f (u) ∼ f0
|u − ck |α

, 0 ≤ α < 1, (B.2.2)

where f0 is a constant. Furthermore, it is assumed that f is Hölder continuous at each
point of L where it is not singular. This property is defined as follows: for any two
points u1, u2, there exist positive real constants A, μ such that
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| f (u1) − f (u2)| ≤ A|u1 − u2|μ. (B.2.3)

It is easy to show that if μ > 1, the derivative of f (u) is zero, so that it is a constant.
This case is not of great interest, so it is always assumed that μ ≤ 1. For μ = 1,
the Hölder condition is termed the Lipschitz condition and is obeyed by any dif-
ferentiable function and others not in this class. For μ < 1, the condition implies
continuity in the ordinary sense. The case μ = 0, which is excluded, is consistent
with discontinuity. A function obeying this condition at a point, or on a line, will be
described as obeying the H(μ) condition on that set if μ is specified, or otherwise just
the H condition.

At large |z|, the function F behaves like

F(z) ∼ −A
z
, 2πiA = −

∫
L
f (u)du,

if the integral is nonzero. If it is zero, F falls off as some higher power of z. Consider
the limiting value as z approaches a point u on L at which f is nonsingular and that
is not an endpoint of an arc. We write

F(z) =
1

2πi

∫
L

f (t) − f (u)
t − z

dt +
f (u)
2πi

∫
L

1
t − z

dt. (B.2.4)

The Hölder condition (B.2.3) implies that the first term approaches a well-defined
integral

1
2πi

∫
L

f (t) − f (u)
t − u

dt

as z → u because the behavior at the singularity is integrable. This step illustrates the
importance of the Hölder property. The second term can be assigned a finite value
but one that depends on the direction in which the limit is taken. Let

ψ̃(z) =
1

2πi

∫
L

dt
t − z

and denote by ψ̃+(u), ψ̃−(u) the limiting values of ψ̃(z) as z approaches u from S +

and S −, respectively. In each of these cases, we deform the contour into a small
semicircle around u and consider the limit as this semicircle shrinks to zero. It is
easy to show that

ψ̃+(u) =
1
2
+

1
2πi

P
∫
L

dt
t − u

, ψ̃−(u) = −1
2
+

1
2πi

P
∫
L

dt
t − u

, (B.2.5)

where the integrals are Cauchy principal values. The more general formulas
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F+(u) =
1
2
f (u) +

1
2πi

P
∫
L

f (t)
t − u

dt,

F−(u) = −1
2
f (u) +

1
2πi

P
∫
L

f (t)
t − u

dt (B.2.6)

follow from (B.2.4) and (B.2.5), since we can write the first, well-defined, integral in
(B.2.4) as its Cauchy principal value, and the two integrals can then be recombined.
These are the well-known Plemelj formulas which are of great importance in Part III
of the present work. Another form of these relations is given by

F+(u) − F−(u) = f (u),

F+(u) + F−(u) =
1
πi
P

∫
L

f (t)
t − u

dt,

which show clearly that F, defined by (B.2.1), is discontinuous across L at all points
where f is nonzero. This implies the existence of branch points on L, resulting in
branch cuts along L.

For z � L, f (z), given by (B.2.1), is analytic since it is differentiable. It should be
noted that this property requires no assumption on f other than Hölder continuity. In
particular, no analyticity requirements need be imposed.

Consider the Cauchy integral over a single arc [a, b] of finite length:

F(z) =
1

2πi

∫ b

a

f (u)
u − z

du.

This is a function analytic everywhere on Ω except on [a, b]. If f is nonzero on
this segment, F has a branch cut between a and b. It is of interest to determine the
behavior of F(z) as z approaches the endpoints. Consider z close to a. Let f (a) be
finite. Then, using the same trick as in (B.2.4), we obtain

F(z) =
f (a)
2πi

log

(
b − z
a − z

)
+

1
2πi

∫ b

a

f (t) − f (a)
t − z

dt =
f (a)
2πi

log

(
1

a − z

)
+F1(z), (B.2.7)

where F1(z) has a definite, nonsingular, limit as z → a. Similarly, near z = b,

F(z) =
f (b)
2πi

log(b − z) + F2(z), (B.2.8)

where F2(b) is nonsingular. Therefore, if f (a) or f (b) is finite, there is a logarithmic
singularity in F(z) at that endpoint. If the limit is taken along the branch cut, similar
formulas may be given by applying the Plemelj formulas to the singular term. Let us
write

a − z = |a − z|eiθ,

where θ = θ0 gives the limit to the cut from the positive side and θ = θ0 + 2π is the
limit from the negative side. Then we see that the dominant term has the form
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1
2

(F+(u) + F−(u))

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∼
u→a

f (a)
2πi

log
1

|a − u| ,

∼
u→b

f (b)
2πi

log |b − u|.
(B.2.9)

If the end value of f (u) is zero, then F(z) approaches a definite, finite, limit at that
point. If f (u) has a singularity at an endpoint of the type given by (B.2.2), then F(z)
has a singularity of the same type. This may be seen intuitively by considering the
dominant term of the integral. Therefore, if we have the behavior (B.2.2) at a, then

F(z) ∼
z→a

A
(z − a)α

(B.2.10)

off the cut and

1
2

[F+(u) + F−(u)] ∼
u→a

A1

(u − a)α
, (B.2.11)

where rigorous arguments and detailed expressions for the constants A, A1 are given
by Muskhelishvili [274] and Gakhov [143], for example. Similar formulas apply for
such behavior at b.

B.2.1 Cauchy Integrals on the Real Line

A most important special case of the Cauchy integral in the present context is that in
which the curve L is the real axis R, so that

F(z) =
1

2πi

∫ ∞

−∞

f (u)
u − z

du. (B.2.12)

If

I =
1

2πi

∫ ∞

−∞
f (u)du

exists, at least in the sense of a principal value infinite integral where f (u) ∼ u−1 at
large values of |u| and

I =
1

2πi
lim
L→∞

∫ L

−L
f (u)du,

then

F(z) = − I
z
+ O

(
1
z2

)
(B.2.13)

at large z. For most examples in the present work, we have f (u) ∼ u−2 for large u, so
that I exists as an ordinary integral.
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In this case, the complex plane is segmented into the upper half-plane Ω(+) and
the lower half-plane Ω(−). For z ∈ Ω(+), F(z) is analytic in Ω(+), while for z ∈ Ω(−), it
is analytic in Ω(−).

We write out the Plemelj formulas in this case, for reference purposes:

F+(x) =
1
2
f (x) +

1
2πi

P
∫ ∞

−∞

f (u)
u − x

du,

F−(x) = −1
2
f (x) +

1
2πi

P
∫ ∞

−∞

f (u)
u − x

du, (B.2.14)

or

F+(x) + F(x−) =
1
iπ
P

∫ ∞

−∞

f (u)
u − x

du,

F+(x) − F−(x) = f (x), (B.2.15)

where F±(x) are the limits of F(z) as z → x from Ω(±). Note that F± correspond to
F∓ in the notation used in the main text and referred to after (C.2.2).

Remark B.2.1. Thus, any Hölder continuous function defined on R can be written as
the difference between the limits of two functions, one analytic in Ω(+) and the other
in Ω(−).

As noted earlier, there is no requirement that f be analytic. However, if f is
analytic on an open set containing Ω+, we see by comparing (B.1.5) and (B.2.14),
that f (x) = F+(x) and indeed f (z) = F(z), z ∈ Ω+. Similarly, if f is analytic on Ω−,
we have f (z) = −F(z), z ∈ Ω−. Let us introduce the notation

Fl(z) = F(z), z ∈ Ω(−), Fu(z) = F(z), z ∈ Ω(+),

where F is defined by (B.2.12) and Fl, Fu are analytic in Ω(−) and Ω(+), respectively.
Let f be analytic on an open set containing R but have singularities in Ω(±), away
from the real axis. Also, let f (z) behave like z−p, p > 0, at large |z|. We take z ∈ Ω(−)

and close the contour in (B.1.15) on Ω(−). Then by (B.1.14),

Fl(z) =
∑
u

residues of
f (u)
u − z

,

where the sum is over isolated singularities and integrals on branch cuts. Thus, Fl(z)
is analytic in a band in Ω(+), 0 ≤ Imz < α, where α is the position of the singularity
nearest to the real axis, which can be the position of an isolated singularity or a point
on a branch cut. Therefore, Fl can be analytically continued into a band parallel
to the real axis in Ω(+) and indeed into larger regions of this half-plane, avoiding
singularities. Note, however, that branch points can cause difficulties, as discussed in
Sect. B.1.5.
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Similarly, Fu can be analytically continued into regions of Ω(−). Note, however,
that the analytical continuation of Fl into Ω(+) is not equal to Fu in Ω(+), and vice
versa.

The following observation follows from (B.2.15).

Remark B.2.2. Let f be analytic on an open set containing R but have singularities
in Ω(±), away from the real axis. Then it can be expressed on R as the difference
between two functions, one analytic in an open set containing Ω+ and the other in an
open set containing Ω−.



C

Fourier Transforms

We summarize in this appendix various properties of Fourier transforms required in
the main text. References include the now classical works [302, 308] and the many
modern texts on the topic.

C.1 Definitions

For any function f : R → V, where V is a finite-dimensional vector space, its
Fourier transform fF : R �→ V is defined by

fF(ω) =
∫ ∞

−∞
f (s)e−iωsds. (C.1.1)

This formula and each of the properties noted below apply to each component of f
and fF . If f ∈ L1(R), then fF exists on R. The inverse transform is defined by

g(s) =
1

2π

∫ ∞

−∞
fF(ω)eiωsdω. (C.1.2)

If f ∈ L1(R) and its first derivatives are piecewise continuous on R, then

g(s) =
1
2

[ f (s+) + f (s−)], s ∈ R.

This is one version of Fourier’s integral theorem. Another is the following. Let
f ∈ L2(R). Then fF ∈ L2(R) and g = f almost everywhere on R. The existence
of the transform and inverse transform for functions in L2(R) is at first sight unclear.
However [308], convergent forms can be given as follows:

fF(ω) = − d
dω

∫ ∞

−∞
f (s)

e−iωs − 1
is

ds,

f (s) =
1

2π
d
ds

∫ ∞

−∞
f (ω)

eiωs − 1
iω

dω.
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Let us define

f+(ω) =
∫ ∞

0
f (s)e−iωsds, f−(ω) =

∫ 0

−∞
f (s)e−iωsds,

fs(ω) =
∫ ∞

0
f (s) sinωs ds, fc(ω) =

∫ ∞

0
f (s) cosωs ds. (C.1.3)

We have

fF(ω) = f+(ω) + f−(ω). (C.1.4)

Assuming that f is even, we obtain from (C.1.1) and (C.1.2) the form of fF and the
inverse cosine transform, given by (taking f = g)

fF(ω) = 2 fc(ω), f (s) =
2
π

∫ ∞

0
fc(ω) cos(ωs)dω, s ∈ R+. (C.1.5)

Also, if f is odd, we have the form of fF and the inverse sine transform,

fF(ω) = −2i fs(ω), f (s) =
2
π

∫ ∞

0
fs(ω) sin(ωs)dω, s ∈ R+. (C.1.6)

For these, the statements of Fourier’s integral theorem also apply but modified by
replacing R with R+. For functions nonzero only on R+ or R−, the properties of f
may be stated on R± as appropriate.

We shall generally assume that f ∈ L1(R) ∩ L2(R) (or f ∈ L1(R±) ∩ L2(R±)) as
appropriate), ensuring the existence of the transform and the property that fF ∈ L2(R)
(or fF ∈ L2(R±)), though in certain cases discussed below, we need to consider
certain functions not in this category. Membership of these function spaces imposes
restrictions on the behavior at infinity of f . For example, if a piecewise continuous
function f : R+ �→ R belongs to L1(R+) ∩ L2(R+), then at large positive s, we must
have

| f (s)| ≤ As−p, p > 1,

where A is a constant and, since f+ ∈ L2(R+),

| f+(ω)| ≤ B|ω|−q, q >
1
2
,

where B is a constant, for large real ω.
It is easily shown that

f ′F(ω) = iω fF(ω),

where f ′ is the derivative of f .
If f is real, which is almost always the case, then
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f F(ω) = fF(−ω), (C.1.7)

where the bar denotes the complex conjugate. If h(s) = f (s+u), where u is a constant,
then we have

hF(ω) = eiωu fF(ω). (C.1.8)

C.2 Fourier Transforms on the Complex Plane

It is central to the considerations of the present work, most particularly Part III, that
we consider various quantities defined on the frequency domain over the complex
plane Ω. This is effectively an analytic continuation from their definition on R. Con-
sider the quantity f+ extended to the complex plane. Its integral definition allows us
to carry out this extension to Ω(−) without difficulty in that the quantity

f+(ω) =
∫ ∞

0
f (s)e−iωsds, ω = ωr − iωi, ωr ∈ R, ωi ∈ R++, (C.2.1)

exists everywhere on Ω(−) if it exists on R. It is also uniquely differentiable every-
where on the open set Ω(−) with respect to ω = ωr − iωi and therefore analytic on
this set. It goes to zero as Imω → −∞.

Also, if f+ is free of singularities in Ω(−), then

f (s) =
1

2π

∫ ∞

−∞
f+(ω)eiωsdω = 0, s ∈ R−−,

by (B.1.2). Thus, we have the following result.

Proposition C.2.1. The function f is zero on R−− if and only if f+ is analytic on Ω(−).

A similar result holds for f zero on R++, where the analyticity of f− is on Ω(+).
As noted in Sect. B.1.4, we exclude the possibility of essential singularities in the

extension of fF to the complex plane, at finite points, and except in the context of
Chap. 15, assume analytic behavior at infinity, given in fact by (C.2.16) below.

Proposition C.2.2. The function f+(ω) is analytic on a band in Ω+, 0 ≤ Imω < α
(but not in a band Imω < β, β > α), if and only if f (s) decays like exp(−αs) for large
s.

Proof. If f (s) decays like exp(−αs) for large s, then putting ω = ωr + iωi, where ωr,
ωi are real, we have that

f+(ωr + iωi) =
∫ ∞

0
f (s)e−i(ωr+iωi)sds

exists and is analytic for ωi < α.
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Let fF(ω) be analytic for Imω < α but not in a band Imω < β, β > α. We can
evaluate

f (s) =
1

2π

∫ ∞

−∞
f+(ω)eiωsdω,

where f+ is analytic at infinity, as a contour integral over Ω+ with no contribution
from the infinite semicircle. Then, using (B.1.14), we have

f (s) = 2πi
∑
ωi

residues of fF(ω)eiωs at singular points ωi in Ω(+).

The position ωn of the singularity (or more than one) nearest the real axis, whether
this is an isolated singularity or a point on a branch cut, must be such that Imωn = α.
All other singular points will yield more strongly decaying exponentials. �

Thus, the integral definition of f+ will typically not exist on Ω(+) except perhaps
on a band of finite thickness parallel to the real axis. Outside of Ω(−) and this region,
we must define f+(ω) by analytic continuation from the region of analyticity, though
not using the integral definition. If we can obtain an explicit formula for the trans-
form, then the analytic continuation is very easy, as can be seen from (B.1.6). It will
certainly have singularities in the region Imω ≥ α unless it is a constant.

Similarly, f− is analytic in Ω(+) and perhaps in certain regions of Ω−.

Hypothesis C.2.3. For crucial manipulations in Part III, we will always assume that
the regions of analyticity of f± (this quantity being an independent field variable or
a relaxation function derivative) is extended to include an open region containing R.

This assumption is, for brevity, sometimes stated in the main text as that f± is
analytic on Ω(∓) and R, or on Ω∓. It is a restrictive assumption in that it means, by
virtue of Proposition C.2.2, that f (s) decays exponentially at large s. For relaxation
functions determined by branch-cut singularities, this is particularly important in that
if the cuts are allowed to touch the real axis, interesting nonexponential behaviors are
possible. This raises the issue whether one can take the limit of the cut approaching
the real axis after final results have been obtained, which is discussed in Chap. 14.
Isolated singularities off the real axis are always associated with exponential decay,
though by taking poles sufficiently close to the real axis, slow decay can be simulated.

For f : R+ → V we can always extend the domain of f to R, by considering its
causal extension

f (s) =

⎧⎪⎪⎨⎪⎪⎩
f (s) for s ≥ 0,

0 for s < 0,

in which case

fF(ω) = f+(ω) = fc(ω) − i fs(ω). (C.2.2)

The quantities f± provide an example of the notation used in Part III whereby the
subscript ± indicates that the function is analytic in Ω(∓).
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Let f be zero on R−− and let it diverge like exp(λ1s) at large s. Then we consider
the function

g(s) = f (s)e−λs, λ > λ1, s ∈ R+.

Its transform is given by

g+(ω) =
∫ ∞

0
g(s)e−iωsds =

∫ ∞

0
f (s)e−i(ωs−iλ)ds = f+(ω − iλ),

so that f+ exists and is analytic below the line z = −iλ. Taking the inverse transform
of g+, we obtain

g(s) =
1

2π

∫ ∞

−∞
g+(ω)eiωsdω =

1
2π

∫ ∞

−∞
f+(ω − iλ)eiωsdω,

so that

f (s) =
1

2π

∫ ∞

−∞
f+(ω − iλ)ei(ω−iλ)sdω =

1
2π

∫ ∞−iλ

−∞−iλ
f+(ξ)eiξsdξ. (C.2.3)

C.2.1 Laplace Transforms

Let f be zero on R−−. Then

fL(α) =
∫ ∞

0
f (s)e−αsds = f+(−iα), α ∈ Ω, (C.2.4)

is the Laplace transform of f . It is analytic for Reα > 0. The imaginary axis is
included if Hypothesis C.2.3 is introduced. If f diverges like exp(α0s) for large s,
then fL exists and is analytic for Reα > α0. Allowing for this possibility, we use
(C.2.3) to determine the (unique) inverse Laplace transform. Making a change of
variable α = iξ, we obtain

f (s) =
1

2πi

∫ i∞+λ

−i∞+λ
fL(α)eαsdα, λ > α0. (C.2.5)

This gives zero if Res < 0, allowing the contour to be closed in the right-hand half-
plane.

C.2.2 The Fourier Transform of Functions with Compact Support

Proposition C.2.4. Consider the case that f (s) = 0, s � [0, d], and f is continuous
for s ∈ [0, d], d > 0, with f (0) and f (d) nonzero. Then

f+(ω) =
∫ d

0
f (s)e−iωsds. (C.2.6)
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The quantity fF is an entire function with an essential singularity at infinity and
dominant behavior given by

f+(ω) −−−−−−−→
Imω→+∞

− f (d)
iω

e−iωd. (C.2.7)

Also, for |Reω| large and Imω fixed,

f+(ω) ∼ f (0)
iω

(
1 − e−iωd

)
. (C.2.8)

For Imω → −∞,

f+(ω) ∼ f (0)
iω

. (C.2.9)

Conversely, if f+ is an entire function that has an essential singularity of the form
(C.2.7), then f (s) = 0, s > d.

Proof. The analyticity of f+ at all finite points in the complex plane follows from the
fact that the integral exists and is uniquely differentiable everywhere. The analyticity
of f+ on Ω(−) follows from the observation after (C.2.1). By taking |ω| → ∞ along
the real axis and changing integration variables, we obtain (C.2.8). This formula can
be analytically continued onto Ω(−), so that (C.2.9) follows. Relation (C.2.8) cannot
be analytically continued into Ω(+) because of the presence of a divergence at infinity.
By changing the integration variable in (C.2.6), we obtain

f+(ω) = e−iωdg(ω), g(ω) =
∫ 0

−d
f (s + d)e−iωsds.

It follows from its definition that g(ω) is analytic on Ω(+). As before, we find that

g(ω) ∼ − f (d)
iω

(
1 − eiωd

)

for |Reω| large and Imω fixed, giving

g(ω) −−−−−−−→
Imω→+∞

− f (d)
iω

,

and (C.2.7) follows.

Remark C.2.5. If f (d) vanishes and f ′(d) � 0, a slightly different version of (C.2.7)
emerges.

Conversely, we assume that f+ is analytic at all finite points of Ω and diverges as
indicated by (C.2.7) on Ω(+). Then g is an entire function that goes to zero as Imω →
+∞. We write

f (s) =
1

2π

∫ ∞

−∞
g(ω)eiω(s−d)dω.
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If s > d, the contour can be closed in Ω(+) with the contribution from the infinite
portion exponentially attenuated. The analyticity of g(ω) in Ω(+) ensures that the
result is zero. �

Proposition C.2.4 is closely related to the Paley–Wiener theorem [291].

C.2.3 Functions that Do Not Belong to L1 ∩ L2

It is necessary to include cases of functions that do not belong to L1 ∩ L2. Consider
the case that f (∞) � 0 but with f0 ∈ L1(R+) ∩ L2(R+) defined by

f0(s) = f (s) − f (∞).

In this case, we write

f+(ω) =
∫ ∞

0
e−iωs f (s)ds

=

∫ ∞

0
e−iωs f0+(s)ds + f (∞)

∫ ∞

0
e−iωsds (C.2.10)

= f0+(ω) +
f (∞)
iω− ; ω− = lim

α→0+
(ω − iα),

where we have moved ω in the rightmost integral of the second relation into Ω(−)

to give a finite result. The limit in the definition of ω− is taken after any integra-
tions in frequency space are carried out. This is a well-known device for handling
such functions—effectively as a limit of L1 ∩ L2 functions—which avoids the use of
distribution theory. It is, in the present context, largely redundant, since f+(ω) will
generally multiply functions that vanish at ω = 0 in such a way as to cancel the pole.

Similarly, if f (−∞) � 0 but if f0 ∈ L1(R−) ∩ L2(R−), where

f0(s) = f (s) − f (−∞),

then

f−(ω) =
∫ 0

−∞
e−iωs f (s)ds = f0(ω) − f (−∞)

iω+
, ω+ = lim

α→0+
(ω + iα). (C.2.11)

Finally, we note the formal relation, referred to on occasion in the main text,
∫ ∞

−∞
e±iωsds = 2πδ(ω), (C.2.12)

where δ is the singular delta function.
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C.2.4 The Form of f± at Large Frequencies

The Riemann–Lebesgue lemma states that if f ∈ L1(R), then

lim
ω→∞

∫ ∞

−∞
f (s)e±iωsds = 0. (C.2.13)

Similar statements apply to f defined on R±. It is of interest to determine in more
detail, however, the behavior of Fourier transforms at large ω. The results apply to
inverse transforms with minor changes of sign. Consider the relations

∫ ∞

0
e−iωsds =

1
iω− ,

∫ 0

−∞
e−iωsds = − 1

iω+
, (C.2.14)

obtained by the device introduced in (C.2.10) and (C.2.11). Differentiating n times
yields

∫ ∞

0
sne−iωsds =

n!
(iω−)n+1

,

∫ 0

−∞
sne−iωsds = − n!

(iω+)n+1
. (C.2.15)

If f±(ω) is analytic at infinity and if the first N right and left derivatives of f
exist at the origin, then we obtain, by Taylor expansion and (C.2.15), the asymptotic
behavior

f±(ω) →
ω→∞ ±

N∑
n=0

f (n)(0±)
(iω)n+1

+ O

(
1

ωN+2

)
, (C.2.16)

where f (n)(0+)( f (n)(0−)) is the nth right (left) derivative of f at the origin. Thus

fc(ω) →
ω→∞

N∑
n odd

f (n)(0±)
(iω)n+1

+ O

(
1

ωN+2

)
,

fs(ω) →
ω→∞i

N∑
n even

f (n)(0±)
(iω)n+1

+ O

(
1

ωN+2

)
. (C.2.17)

If

f (n)(0+) = f (n)(0−), n = 0, 1, 2, . . . ,m,

in other words, if f is differentiable n times at the origin, then it follows from (C.2.16)
that

fF(ω) ∼ ω−(m+2) (C.2.18)

at large ω.
Note that combining (C.2.12) and (C.2.14) yields

1
ω− − 1

ω+
= 2πiδ(ω). (C.2.19)
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C.2.5 Expressions for f± in Terms of fF

Using the inverse transform to express f in terms of fF , together with (C.1.3), we
obtain

f+(ω) = − 1
2πi

∫ ∞

−∞

fF(ω′)
ω′ − ω− dω

′,

f−(ω) =
1

2πi

∫ ∞

−∞

fF(ω′)
ω′ − ω+

dω′, (C.2.20)

ω± = lim
α→0+

(ω ± iα).

Thus, we move ω slightly into the half-plane of analyticity of f± to achieve con-
vergence in the time integration, as in (C.2.10) and (C.2.11). This also ensures that
the integrals on the right-hand side of (C.2.20) have a well-defined meaning. The
limit is taken after the integration is carried out. The forms of the analytic functions
f±, ω ∈ Ω(∓), are given by

f±(ω) = ∓ 1
2πi

∫ ∞

−∞

fF(ω′)
ω′ − ω

dω′. (C.2.21)

Note that (C.1.4) follows from (C.2.20) and the Plemelj formula (B.2.15)2. Using
(C.1.4) in (C.2.21) and (C.2.16), we see that in the formula for f+, the contribution
from f− in the integral vanishes by Cauchy’s theorem (closing the contour on Ω(+)).
Thus, we obtain

f+(ω) = − 1
2πi

∫ ∞

−∞

f+(ω′)
ω′ − ω

dω′, ω ∈ Ω(−), (C.2.22)

with a similar relation for f− (no minus sign on the integral). These relations and
their limit as ω approaches the real axis provide an example of the properties noted
after Remark B.2.1, where F± corresponds to f∓.

C.3 Parseval’s Formula and the Convolution Theorem

Parseval’s formula states that
∫ ∞

−∞
f (u)g(u)du =

1
2π

∫ ∞

−∞
f F(ω)gF(ω)dω, (C.3.1)

so that the L2 scalar products in the time and frequency domains are proportional. We
have allowed the possibility of complex functions in the time domain, which occurs
only rarely in the main text. The convolution, or Faltung, theorem gives that if h is
the convolution product f ∗ g, namely

h(s) =
∫ ∞

−∞
f (s − u)g(u)du =

∫ ∞

−∞
f (u)g(s − u)du, (C.3.2)
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then

hF(ω) = fF(ω)gF(ω). (C.3.3)

The converse also holds. Note that if f and g are causal, then h also has this property
and is given by

h(s) =
∫ s

0
f (s − u)g(u)du, s ∈ R+. (C.3.4)

Remark C.3.1. From (C.3.2), we see that the convolution product is commutative if
f and g commute. It can also be shown to be associative.
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Annali Università di Ferrara Sez. VII, Scienze Matematiche 41 (1995), 73–83.
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tribués, Tome 1, Masson, Paris, 1988. Contrôlabilité exacte. [Exact controlla-
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A
Absorption coefficient, 126
Acceleration, 6, 39, 41
Ampere-Maxwell law, 117, 119
Analytic

at infinity: definition, 704
continuation: definition, 703
function: definition, 701
on entire plane, see Entire function, see

Liouville’s theorem
on real axis: definition, 702

Analyticity of kernels, 399
Anisotropic material, 50
Antiferromagnetic material, 128
Area element, 17
Area vector, 16, 69
Assumption of solvability, 135

B
Balance law, 104

angular momentum, 22, 26
energy, see also Conservation of energy,

see also First law of thermodynamics
hyperelastic materials, 54
viscous fluid, 43

entropy power, 88
linear momentum, 22, 26
mass, 19, 29, 31, 50, 203, see also

Conservation of mass
momentum, 21, 24–27, 29, 31, 69
power, 83, 473

Balance of forces, 63
Banach space, 581, 584, 585, 600, 627, 628,

664
Bernoulli’s theorem, 28, 40–42

for elastic fluids, 41
for ideal fluids, 39

Betti’s reciprocal theorem, 61
Binding frequency, 127
Boundary conditions, 119, 157, 177, 395,

560, 564, 567
Dirichlet, 562, 589, 645, 684
finite elasticity, 51
global, 607, 614, 621
homogeneous, 572
ideal fluid, 40
lateral, 63–65, 605, 606, 608, 614, 621
linear elastic, 61, 64, 65
radiation, 574

Boundary value problem, 46, 574, 606,
608–610, 614

finite elasticity, 51
Newtonian fluid, 45
plane, 607–609, 611

Bounded operator, 306, 335, 627, 629
Branch cut, 521, 539, 541

C
Cahn–Hilliard equation, 86, 87
Calculus of Variations, 490
Cattaneo–Maxwell law of heat conduction,
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Cauchy
integral, 335, 708, 710, 711
integral formula, 327, 331, 701, 702
principal value, 171, 325, 332, 709

definition, 702
problem, 648, 655, 677, 678
theorem

complex analysis, 166, 168, 268, 270,
271, 273, 353, 404, 702, 708, 723

existence of stress, 24, 69
Cauchy’s Integral Formula, 521
Cauchy–Riemann conditions, 701
Causal

extension, 718
function, 161, 198
relationship, 189

Causality, 125
frequency domain, 404
principle of, 391

Cayley–Hamilton theorem, 10
Chemical potential, 87
Clausius–Duhem inequality, 77, 88,

134, 221, see also Second law of
thermodynamics

Lagrangian form, 78
Coercivity, 298, 306, 565, 685, 687
Coldness, 101, 149

gradient, 159
Collision frequency, 132
Compatibility conditions

Saint-Venant, 14, 59, 62
Complex conductivity, 131, 132
Complex modulus, 421, 538
Compression, 27

modulus of, 58, 303
Conduction electrons, 130
Conductor domain, 133
Conductor with memory, 142
Configuration

current, 10, 18, 29, 31, 51
reference, 5, 6, 29–31, 38, 50, 51, 69, 103,

201
Conservation of energy, 55, 72
Conservation of magnetic flux, 116
Conservation of mass, 20, 41, 202

local version of principle, 19
principle of, 19

Constitutive relation, XXI, 31, 33, 50, 55,
101, 137, 202, 210, 385, 389, 390, 406,
533, 534, 537, 539

dielectric material, 498
linear, 508
linear equilibrium term, 499

electromagnetism, 117
fading memory, XX
heat flow, 223
linear, 388
linear elastic, 37
linear memory, 31, 109, 112, 149, 350,

485
linearized, 55–57, 219
mechanics, 37, 149
nonlinear, 469, 470
nonlocal, 485, 486

visco-ferromagnetic, 555
of a dielectric, 140
scalar, 255
simple, 71
thermodynamic constraints on, 72
thermoelastic, 85
types of, 37
visco-ferromagnetic, 554
viscoelastic fluid, 178, 474, 683
viscoelastic solid, XXI, 567

Continuation, 222, 225, 229, 260, 284, 479
optimal, 261, 265, 266, 274, 280, 281,

303, 309, 323, 332, 334, 372, 517
dielectric, 504, 506

static, 140, 222, 229
strain, 354

Continuity equation, 20, see also Conserva-
tion of mass

electromagnetic, 116
Control function, 588
Control problem, 590
Control system

with memory, 589
Controllability, 587–590, 592–594
Convex set, 78, 359, 364, 375, 386, 495
Convolution product, 569, 589, 593, 723,

724
Convolution theorem, 175, 188, 214, 260,

265, 291, 293, 302, 312, 313, 367, 502,
686, 723

Coordinates
dimensionless, 44
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Eulerian, 5
Lagrangian, 5
material, 5, see Lagrangian
reference, 29
spatial, 5, 32

Creep function, 189, 190, 196, 319, 496
Curie constant, 128
Curie point temperature, 129
Curie’s law, 128
Curie-Weiss law, 129

D
Damping constant, 127
Damping force, 126
Damping rate, 513
Deformation, 4–6, 9, 55, 611

area change, 17
constraints on, 37
definition, 7
Eulerian, 9, 37
gradient, 6, 8, 9, 49

history of, 35
history of, XIX
incompressible material, 38
infinitesimal theory of, 14, 55
isochoric, 14, 37, 38
Lagrangian, 9
linear theory, 14
optimal, 284
shear, 276
volume change, 13
volume-preserving, see isochoric

Delta function, 156, 167, 175, 211, 289, 309,
392, 399, 407, 430, 687

Description
Eulerian, 5, 37, 104, 158
Lagrangian, 5, 70, 71
material, 55, 77, see also Lagrangian
spatial, see Eulerian

Diamagnetic material, 128
Dielectric

constant, 118
imperfect, 125
with quadruples, 123

Dielectric constant, 120
Dielectric domain, 133
Dipole moment, 127
Direct problem, 661–663, 665, 667, 669
Dispersion relations, 166

Displacement problem, 61
Displacement: definition, 7
Dissipatiion of energy

rate of
global, 556

Dissipation of energy, 385
heat flow, 452
minimum free energy, 455, 456
physical, 386
rate of, 154, 161, 197, 235, 354, 385, 388,

469, 493, 537, 555
dielectric, 506–508
isolated singularities, 363, 370
minimum free energy, 255, 263, 264,

276, 278
nonlocal, 476, 482, 483

total, 346, 354, 364, 463, 468, 469
isolated singularities, 362
minimum free energy, 263, 269, 505
non-magnetic dielectric, 512

zero rate of, 176
Dissipation principle, 93, 94, 133–135, 179

strong, 94, 96–98
Divergence theorem, 19, 25, 26, 28, 31, 48,

60–62, 116, 120, 134, 605, 621
Domain-of-dependence inequality, 580–582,

584
Drift velocity, 131
Drude conductivity, 132
Dynamic viscosity, 626

E
Eigensolution, 563
Eigenspace, 276, 282, 349, 355

time-independent, 158, 274
Eigenvalue, 26, 48, 160, 350, 355, 518, 628,

692
Eigenvector, 27, 158
Elastic material, XXI, 36, 50, 52, 53, 59, 78,

605
homogeneous, 50
inhomogeneous, 50
linear, 55, 57, 60

Hooke’s law, 37
solid, 49, 59

elastic material, XIX
Elastic modulus, 182, 567
Elastic problem, 339
Elasticity tensor, 55, 56, 60, 61, 162, 615
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Elastostatics
linear, 59, 60
mixed boundary problem of, 60

Electric
charge, 115
charge density, 115
current density, 115
displacement, 115, 495
field, 115, 118, 495
polarization, 118
potential, 124
susceptibility, 119

Electrical conductor, 118
Electromagnetic field, 103, 115–118, 495

energy density of, 120
external power, 123
internal power, 121, 123
jump condition, 119

Electromagnetic induction, 496
Electromagnetic isotropy, 508
Electromagnetic media

homogeneous, 118
Electromagnetic vector, 496
Electron charge, 129
Electron mass, 126, 129
Elongation, 9, 10, 31
Energy

balance, 143
extra flux, 89
kinetic, 27, 32, 44, 83
potential, 39, 41, 42

Energy dissipated, 406, 407, 410, 411, 414
Energy equation, 44, 54, 55, 74, 82, 452,

463, 485, 496
Energy function, 591
Energy stored, 406, 407, 410, 411, 414
Energy transformation, 74
Entire function, 339, 340, 704, 720
Entropy, 75, 122, 137

action, 76, 486
extra flux, 89, 90
flux, 88
rate of production of, 133
source, 75

Equations of motion, 31, 38, 40, 58, 177, 684
equilibrium, 61

Equivalence class, 427, 561
Euler’s equations, 40
Eulerian descriptions, 220

Evanescent domain, 133
Evolution function, 71, 91, 138
Evolution problem, 220, 574, 579, 683
Existence of solution, 51, 62
Extra flux, 85, 86, 88, 89, 123, 483, 485, 486

F
Factorization

scalar, 259
continuous-spectrum, 327
finite memory, 341, 342
isolated singularities, 361, 362, 514, 515

tensor, 503
commutative, 258, 264, 274
left, 256, 257
right, 256, 258

Fading memory, XIX, XX, 35, 94, 134, 139,
140, 497

norm, 104, 683
principle, 104, 489

Faltung theorem, see Convolution theorem
Faraday’s equation, 124
Faraday’s law, 116, 119
Ferromagnetic material, 128
Finite work, 214
First law of thermodynamics, 83, 102, 119,

121–123, 144, 452, 485, 496
nonsimple, 83

First principle of thermodynamics, 72
Flow, 28, 38, 39

compressible, 45
irrotational, 40
Poiseuille, 46
potential, 29
region, 28
shear, 151
sonic, 42
steady, 28, 40, 42, 45
Stokes, 45
subsonic, 42
supersonic, 42
unsteady, 40
viscous, 47

Fluid
elastic, 40
ideal, 38, 43, 72
incompressible, 161
Newtonian, 45, 80, 82
viscoelastic, 177, 201, 534, 537
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compressible, 181, 203
incompressible, 161, 202, 210, 212, 217
second-order, 473

viscosity, 43, 45
coefficient, 45
kinematic, 47

viscous, 71, 72
compressible, 80, 82

Force
body, 21, 22, 27, 41, 42, 45, 52, 58, 474,

562
conservative, 28, 29, 38
contact, 21
equipollent, 63
external, 83
normal, 26
resultant, 63, 608
shearing, 26
surface, 22, 26, 27

Fourier series, 164, 209
Fourier transform, 434, 510, 522, 529, 530

analytic continuation of, 717
at large frequency, 722
compact support, 719
cosine, 165, 180, 198, 199, 201, 209, 482

definition, 693, 716
definition, 715
distributional sense, 183
existence of, 715
inverse, 189, 191, 213, 241, 292, 313, 715
inverse cosine

definition, 716
inverse sine

definition, 716
notation convention, 258
of causal function, 575
of dielectric relaxation function, 500
of relaxation function derivative, 162
of Wiener–Hopf equation, 261
sine, 162, 181, 201
space of, 575

Fourier’s integral theorem, 715, 716
Fourier’s law of heat conduction, 445
Fréchet

derivative, 109
differential, 105, 110, 135, 464, 489

Fréchet differentiable, 110, 150, 489
Fractional derivative, 519

Caputo, 519, 520, 523, 524, 554

non-singular, 522
nonlocal, 523, 528

Fractional divergence, 529, 530
Fractional gradient, 528–530
Fractional laplacian, 530
Frame of reference, 32, 34

laboratory, 22
Fredholm’s theorems, 576
Free energy, 137, 221

abstract, 91, 95, 98, 99
Breuer–Onat, 571, 572
Day, 249, 376, 385, 386, 421, 554
definition, 95
dielectric material, 499
Dill, 239, 396, 416, 430, 439

discrete-spectrum, 360
frequency-domain, 246
heat conductor, 252
viscoelastic fluid, 250
viscoelastic solid, 246

equilibrium, 106, 107, 109, 237, 246, 360,
387

functional ψF , 439
functional of minimal state, 427, 428, 433,

434
functional of state, 174
general, 410
Gibbs, 496
global, 556
Graffi conditions for, 107, 267, 388, 390,

399, 402, 463, 470
nonlocal, 491, 492

Graffi–Volterra, 237, 238, 241, 430, 433,
483

heat conductor, 252
in fractional derivative theory, 536, 537
nonlocal, 476, 477
viscoelastic fluid, 250
viscoelastic solid, 245

heat conductor, 252
nonlocal, 483

Helmholtz, 77, 80, 102, 122, 159
nonlocal, 486

history-dependent part, 106
in terms of stress, 196
intermediate

heat conductor, 456
isolated singularities, 512
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maximum, 99, 170, 391, 406, 428, 434,
437, 440, 445, 580

heat conductor, 461
isolated singularities, 349, 362, 364, 365
viscoelastic fluid, 217, 218
viscoelastic solid, 581, 585

minimum, 170, 255, 261, see also
maximum recoverable work, 406, 434,
437, 452, 540

abstract, 95
averaged, 279
continuous-spectrum material, 323
dielectric, 495, 503, 505, 506
discrete-spectrum material, 255
finite memory material, 339
fractional model, 540
heat conductor, 316, 454
in terms of stress, 304
isolated singularities, 349, 364
non-magnetic dielectric, 511
nonlinear, 470
nonlocal, 478
scalar material, 259
sinusoidal history, 271, 277
standard linear solid, 255
time domain, 287
viscoelastic fluid, 206, 307
viscoelastic solid, 300

multiple-integral quadratic form, 243
non-magnetic dielectric, 509
non-singular integral, 403, 405
nonlinear, 469
nonlocal, 475

single-integral quadratic form, 478
nonuniqueness, 101, 108, 239, 255
physical, 154, 155, 377, 386, 387, 424,

549
properties, XX, 101, 106, 108, 354, 385,

435
quadratic functional, 152, 207, 492

heat conductor, 234, 454
short-term memory, 397
single-integral quadratic form, XX, 238,

241
heat conductor, 252

viscoelastic solid, 250
work function, 170

Free energy density, 580

Free enthalpy, 134, 137, 496, 507, 508
constitutive assumption, 496
equilibrium, 497, 508
Graffi conditions for, 497, 507
Quadratic functional, 497

Future stress, XX

G
Gagliardo space, 533
Gamma function, 538
Gauge transformation, 124
Gauss’s law, 116, 119
Gradient of a potential, 28, 39, 41
Graffi conditions, 370, 389
Graffi’s inequality, 182
Green function, 688
Group

full unimodular, 201
rotation, 276
symmetry, 201

gyromagnetic ratio, 129

H
Hölder condition, 709
Hölder continuity, 325, 326, 708, 710, 712
Hardy space, 628, 638
Harmonic oscillator, 126
Heat

conduction, 445
conduction coefficient, 480
equation, 69, 70

with memory, 589
flow, 151

Cattaneo–Maxwell theory, 219, 446, 552
cumulative, 103, 172
Fourier, 161, 552
Gurtin–Pipkin theory, 219, 446, 480
isotropic, 159

flow density, 69
flux, 69, 89, 221, 223, 224, 446, 485, 552

Piola–Kirchhoff, 101
relaxation function, 220

power, 72, 78, 121
specific, 70

rigid conductor, 448, 473, 479, 481, 552
homogeneous, 229, 481
isotropic, 229, 481
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nonsimple, 483
with memory, 219

supply, 69, 88, 121, 220
Hilbert problem, 335, 337
Hilbert space, 104, 110, 216, 232, 298, 306,

464, 489, 565, 573, 574, 587, 625, 627,
628, 635, 644, 645, 648, 664, 665, 669,
679, 684

History, 452, 490
admissible, 580
arbitrary, 106
dependent part, 155, 174
displacement, 567
equivalent, 428, 561

heat conductor, 225
nonisothermal, 171
viscoelastic, 211
viscoelastic solid, 185

exponential, 545
functional of, 90
initial, 215, 295, 560, 562, 567
integrated, 143, 495
integrated temperature gradient, 229
optimal, 372, 517
partly static, 36, 184, 203, 211
periodic, 93, 101, 107, 108, 209, 427
recent, XIX
relative, 150, 172, 192, 195, 202, 205, 506,

512, 554
strain, 178
zero, 153

remote, XIX
sinusoidal, 162, 277, 381, 408, 410, 411,

507, 545
sinusoidal/exponential, 406
sinusoidal/exponential for t ≥ 0, 437
space, 486
static, 106, 107, 109, 267, 463–465, 491,

497
step function, 406
strain, 177, 196, 202, 205
stress, 196
temperature, 224

zero, 224
temperature gradient, 226, 228
zero, 104, 106, 173, 272, 363, 364, 428,

430, 432
History and state, 94, 559
Homogeneous equation, 639, 640

Hyperbolicity, 219, 585, 586, 588, 589, 627
Hyperelastic material, 52, 54–56

I
Identification problem, 659, 661, 663–665,

668, 669, 678, 679, 681
scalar, 661

Incompressibility, 37
constraint, 38, 213, 218, 250

Incompressible
material, 38, 43

Index of refraction, 126, 133
Inductive capacity, 127
Initial boundary value problem, 561, 571,

574, 575, 582, 684
finite elasticity, 51
viscous fluid, 47

Initial condition, 104, 559, 562, 564, 567,
582, 626, 639, 643, 644, 646, 647, 660

finite elasticity, 51
viscous fluid, 47

Internal energy, 73, 75, 78, 80, 83, 101, 109,
122, 143, 159, 220, 221, 225, 226, 228,
231, 235, 252, 474, 485

Internal mechanical power, 485
Invariant set, 93, 99, 206
Inverse problem, 659
Ionosphere, 132
Irrotational, 12, 28, 29, 39, 40, 684
Isothermal case, 496
Isothermal theory, 279, 486, 508

J
Jacobian, 13

K
Kernel

free energy, 387, 389
rate of dissipation, 387, 390, 406

Korn’s inequality, 577
Kramers-Kronig relation, 125

L
Lamé moduli, 57, 303
Laplace transform, 240, 337, 522, 527, 531,

626, 627
Laplacian, 44, 46
Liouville’s theorem, 262, 266, 272, 309, 703,

704
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Lorentz condition, 124
Lorenz oscillator, 512
Loss angle, 539
Loss modulus, 182, 626

M
Mach number, 42
Magnetic

dipole, 115
field, 115, 496
induction, 115, 496
material, 128
permeability, 118, 120
potential, 124
susceptibility, 119, 128

Magnetization, 118
Mass

definition, 4
flow, 42

Mass center, 617
Mass density, 19, 31, 40, 41, 83, 102, 143,

201, 202, 206, 485
Mass flux, 86
Material

aging, 34
completely linear, 149, 171, 177, 276, 351,

355, 356, 387
continuous-spectrum, 323, 435, 436, 440
dielectric

non-magnetic, 507
discrete-spectrum, 187, 255, 323, 334,

349, 380, 386, 395, 403, 421, 435, 436,
440

ferromagnetic, 554
finite linear viscoelastic, 177, 471
homogeneous, 58, 62, 492
inhomogeneous, 34, 489, 626
isotropic, 50, 57, 58, 62, 182
linear memory, 149
Maxwell, 524
nonlocal, 115, 122, see nonsimple, 144
nonsimple, 82, 83, 88, 90, 91, 122, 138
simple, 72, 83, 122, 138, 145
viscoelastic solid, 159, 185, 535, 536
with dissipation, 75
with memory, 37, 380

Material derivative, 6
Material element, 92, 93, 103, 263

Material frame indifference, see Mterial
objectivity33

Material gradient, 6
Material objectivity, 31, 32, 53

principle of, 33, 34
Mathematical model, 387
Maximum recoverable work, 101, 503

discrete-spectrum material, 255
heat conductor, 255
nonlinear theory, 109–111
viscoelastic fluid, 207, 304
viscoelastic solid, 295

Maxwell’s equations, 117, 119, 123, 125,
137

Mean collision time, 131
Mechanical action, 475
Mechanical energy, 72, 77

maximum, 581
Memory kernel, 202, 210, 214, 349, 470,

589, 590
Memory operator, 531

distributed order fractional, 531
Meromorphic function, 704
Moment

resultant, 63, 608
Moment of inertia, 64
Momentum

angular, 21
linear, 21

Motion, 4, 5, 11, 21, 22, 24
Brownian, 169
irrotational, 12
isochoric, 18
perpetual, 72
rigid, 12, 37
steady, 40

N
Navier–Stokes equations, 43–45, 47
Neumann problem, 65
Newton

law of action and reaction, 23, 25
second law, 22

No-slip condition, 45
Nonisothermal theory, 69, 91, 101, 237
Nonlinear model of order two, 466, 467
Nonlocal material, 473, 485



Index 751

O
Objective

scalar, 32–34, 50, 53, 69, 102, 104, 105
thermodynamic quantities, 32

tensor, 32–34
vector, 34

Ohm’s law, 118
Optics, 495
Orthogonal tensor, 34, 35, 49, 50
Orthonormal

basis, 276, 628, 696, 697, 699
projector, 158, 275

Oscillator strength, 513

P
Paley–Wiener theorem, 628, 721
Parabolicity, 588, 627
Paramagnetic material, 128
Parseval’s formula, 168, 175, 183, 198, 214,

232, 260, 287, 290, 293, 302, 313, 346,
353, 431, 434, 502, 566, 575, 580, 686,
689, 723, 724

Periodicity, 434
Permittivity, 127, 133

vacuum, 509
Phase, 87

transformation, 361
transition, 86, 87

Phase speed, 126
Phase velocity, 133
Plasma frequency, 133, 513
Plemelj formulas, 166, 170, 259, 261, 291,

292, 302, 308, 317, 325, 330, 370, 400,
405, 418, 432, 452, 504, 710, 712, 723

Poincaré theorem, 567
Poisson’s ratio, 58
Polar decomposition, 7, 34, 49
Polarization, 126, 132, 509
Positive definite

functional, 173
operator, 492

Positive semidefinite
functional, 173
operator, 150

Power, 56
external, 83, 84, 86, 475
internal, 83, 84, 86, 87, 473, 475, 556
mechanical, 83
recoverable, 136

thermal, 83, 86, 228, 474
virtual, 573

Power expended, 27, 44
theorem of, 30, 44, 54

Poynting’s theorem, 120, 123
Poynting’s vector, 120
Pre-Hilbert space, 200
Pressure, 27, 28, 37, 38, 40, 43, 44, 47, 75,

202, 204, 210, 474, 684
uniform, 38

Principal
direction, 26
invariants, 10, 50
stress, 26

Principal axes of inertia, 62, 617
Principle of virtual power, 571
Process, 70, 71, 73, 91, 121, 138

closed, 79, 93
cyclic, 83, 89, 92, 93, 108, 155
dynamical, 38, 54, 55

closed, 52
Eulerian, 40
isochoric, 38

electromagnetic, 137
finite work, 215, 231
heat conductor, 221

nonlocal, 482
optimal, 315

isothermal, 77, 89
kinetic, 221
nonlinear, 110
nonsimple material, 82
optimal, 98, 111
restriction of, 230
space, 273
viscoelastic fluid, 202
viscoelastic solid, 179
zero, 96, 97, 185, 186, 224

Pseudoenergy, 221
Pure pressure, 59
Pure shear, 27, 58
Pure tension, 27, 58, 59

Q
Quadrature, 435

trapezoidal rule, 435
Quasistatic problem, 177, 559, 562–565, 693
Quotient space, 92, 142, 205, 211, 226, 307
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R
Relaxation function, XIX, XXI, 155, 159,

162, 169, 173, 178, 179, 187, 237, 255,
323, 342, 386, 387, 406, 467, 519, 532,
554, 568, 580, 594

branch-cut singularities, 718
continuous-spectrum, 324
decomposition of, 417
derivative, 192

continuous-spectrum, 323, 324
finite-memory, 339

discrete-spectrum, 255
exponential, XX, 186
generalized, 168
monotonic, XIX, 154, 169, 239
one-exponential, 245
oscillatory, 171
scalar, 584, 585

derivative, 303
shear, 210
symmetric, 310
thermoelastic, 591
viscoelastic fluid, 210
viscoelastic solid, 201, 323, 579

Repeated subscript convention, 13
Resonant frequency, 513
Response, XXI, 33, 49, 58, 624

continuous-spectrum, 323
discrete-spectrum, 323
equilibrium, 158
function, 40, 49, 91, 138, 282

Reynold’s transport theorem, 18, 20
Reynolds number, 45
Riemann–Lebesgue lemma, 165, 180, 568,

630
Rotation, 12, 50

matrix, 159
rigid, 7
tensor, 7
time-dependent, 32

S
Saint-Venant

elastic
problem of bending, 64
problem of extension, 63
torsion problem, 65

viscoelastic
extension-bending-torsion problem,

615, 617
flexure problem, 615, 616, 618

Saint-Venant’s principle, 63, 607, 619, 620
Saint-Venant’s problem

elastic, 62, 605
relaxed formulation, 62, 63

viscoelastic, 605, 606
relaxed formulation of, 606, 607,

614–616
Scalar product: finite dimensional, 103, 708
Schwarz inequality, 566, 622
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