
Chapter 13
Static Single Information Form

Fernando Magno Quintão Pereira and Fabrice Rastello

The objective of a data-flow analysis is to discover facts that are true about a
program. We call such facts information. Using the notation introduced in Chap. 8,
information is an element in the data-flow lattice. For example, the information
that concerns liveness analysis is the set of variables alive at a certain program
point. Similarly to liveness analysis, many other classical data-flow approaches
bind information to pairs formed by a variable and a program point. However, if
an invariant occurs for a variable v at any program point where v is alive, then we
can associate this invariant directly with v. If the intermediate representation of a
program guarantees this correspondence between information and variable for every
variable, then we say that the program representation provides the Static Single
Information (SSI) property.

In Chap. 8 we have shown how the SSA form allows us to solve sparse
forward data-flow problems such as constant propagation. In the particular case of
constant propagation, the SSA form lets us assign to each variable the invariant—or
information—of being constant or not. The SSA intermediate representation gives
us this invariant because it splits the live ranges of variables in such a way that each
variable name is defined only once. Now we will show that live range splitting can
also provide the SSI property not only to forward but also to backward data-flow
analyses.

Different data-flow analyses might extract information from different program
facts. Therefore, a program representation may provide the SSI property to some
data-flow analyses but not to all of them. For instance, the SSA form naturally

F. M. Q. Pereira (�)
Federal University of Minas Gerais, Belo Horizonte, Brazil
e-mail: fernando@dcc.ufmg.br

F. Rastello
Inria, Grenoble, France
e-mail: fabrice.rastello@inria.fr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Rastello, F. Bouchez Tichadou (eds.), SSA-based Compiler Design,
https://doi.org/10.1007/978-3-030-80515-9_13

165

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80515-9_13&domain=pdf
mailto:fernando@dcc.ufmg.br
mailto:fabrice.rastello@inria.fr
https://doi.org/10.1007/978-3-030-80515-9_13

166 F. M. Q. Pereira and F. Rastello

provides the SSI property to the reaching definition analysis. Indeed, the SSA form
provides the static single information property to any data-flow analysis that obtains
information at the definition sites of variables. These analyses and transformations
include copy and constant propagation, as illustrated in Chap. 8. However, for a
data-flow analysis that derives information from the use sites of variables, such as
the class inference analysis that we will describe in Sect. 13.1.6, the information
associated with a variable might not be unique along its entire live range even under
SSA: In that case the SSA form does not provide the SSI property.

There are extensions of the SSA form that provide the SSI property to more data-
flow analyses than the original SSA does. Two classic examples—detailed later—
are the Extended-SSA (e-SSA) form and the Static Single Information (SSI) form.
The e-SSA form provides the SSI property to analyses that take information from
the definition site of variables, and also from conditional tests where these variables
are used. The SSI form provides the static single information property to data-flow
analyses that extract information from the definition sites of variables and from the
last use sites (which we define later). These different intermediate representations
rely on a common strategy to achieve the SSI property: live range splitting. In this
chapter we show how to use live range splitting to build program representations
that provide the static single information property to different types of data-flow
analyses.

13.1 Static Single Information

The goal of this section is to define the notion of Static Single Information, and
to explain how it supports the sparse data-flow analyses discussed in Chap. 8.
With this aim in mind, we revisit the concept of sparse analysis in Sect. 13.1.1.
There is a special class of data-flow problems, which we call Partitioned Lattice
per Variable (PLV), which fits into the sparse data-flow framework of this chapter
very well. We will look more carefully into these problems in Sect. 13.1.2. The
intermediate program representations discussed in this chapter provide the static
single information property—formalized in Sect. 13.1.3—to any PLV problem.
In Sect. 13.1.5 we give algorithms to solve sparsely any data-flow problem that
contains the SSI property. This sparse framework is very broad: Many well-known
data-flow problems are partitioned lattice, as we will see in the examples in
Sect. 13.1.6.

13.1.1 Sparse Analysis

Traditionally, non-relational data-flow analyses bind information to pairs formed by
a variable and a program point. Consider for example the problem of range analysis,
i.e., estimating the interval of values that an integer variable may assume throughout

13 Static Single Information Form 167

(a) original code (b) CFG and program points (c) result of a dense

implementation of range analysis

Fig. 13.1 An example of a dense data-flow analysis that finds the range of possible values
associated with each variable at each program point

the execution of a program. A traditional implementation of this analysis would find,
for each pair (v, p) of a variable v and a program point p, the interval of possible
values that v might assume at p (see the example in Fig. 13.1). In this case, we
call a program point any region between two consecutive instructions and denote
as [v] the abstract information associated with variable v. Because this approach
keeps information at each program point, we call it dense, in contrast to the sparse
analyses seen in Chap. 8, Sect. 8.2.

The dense approach might result in a large quantity of redundant information
during the data-flow analysis. For instance, if we denote [v]p the abstract state of
variable v at program point p, we have for instance in our example [i]1 = [i]2,
[s]5 = [s]6 and [i]6 = [i]7 (see Fig. 13.1). This redundancy happens because some
transfer functions are identities: In range analysis, an instruction that neither defines
nor uses any variable is associated with an identity transfer function. Similarly, the
transfer function that updates the abstract state of i at program point 2 is an identity,
because the instruction immediately before 2 does not add any new information to
the abstract state of i, [i]2 is updated with the information that flows directly from
the direct predecessor point 1.

The goal of sparse data-flow analysis is to shortcut the identity transfer
functions, a task that we accomplish by grouping contiguous program points bound
to identities into larger regions. Solving a data-flow analysis sparsely has many
advantages over doing it densely: Because we do not need to keep bitvectors
associated with each program point, the sparse solution tends to be more economical
in terms of space and time. Going back to our example, a given variable v may be
mapped to the same interval along many consecutive program points. Furthermore,
if the information associated with a variable is invariant along its entire live range,
then we can bind this information to the variable itself. In other words, we can

168 F. M. Q. Pereira and F. Rastello

replace all the constraint variables [v]p by a single constraint variable [v], for each
variable v and every p ∈ live(v).

Although not every data-flow problem can be easily solved sparsely, many of
them can as they fit into the family of PLV problems described in the next section.

13.1.2 Partitioned Lattice per Variable (PLV) Problems

The non-relational data-flow analysis problems we are interested in are the ones
that bind information to pairs of program variables and program points. We refer
to this class of problems as Partitioned Lattice per Variable problems and formally
describe them as follows.

Definition 13.1 (PLV) Let V = {v1, . . . , vn} be the set of program variables. Let
us consider, without loss of generality, a forward data-flow analysis that searches
for a maximum. This data-flow analysis can be written as an equation system that
associates each program point p, with n element of a lattice L , given by the
following equation:

xp =
∧

s∈directpreds(p)

F s→p(xs),

where xp denotes the abstract state associated with program point p, and F s→p is
the transfer function from direct predecessor s to p. The analysis can alternatively
be written as a constraint system that binds to each program point p and each s ∈
directpreds(p) the equation xp = xp ∧ F s→p(xs) or, equivalently, the in equation

xp � F s→p(xs).

The corresponding Maximum Fixed Point (MFP) problem is said to be a Partitioned
Lattice per Variable Problem iff L can be decomposed into the product of Lv1 ×
· · ·×Lvn where eachLvi

is the lattice associated with program variable vi . In other
words xs can be written as ([v1]s , . . . , [vn]s) where [v]s denotes the abstract state
associated with variable v and program point s. F s→p can thus be decomposed into
the product of F

s→p
v1 × · · · × F

s→p
vn and the constraint system decomposed into the

inequalities [vi]p � F
s→p
vi

([v1]s , . . . , [vn]s).
Going back to range analysis, if we denote as I the lattice of integer intervals,

then the overall lattice can be written as L = I n, where n is the number
of variables. Note that the class of PLV problems includes a smaller class of
problems called Partitioned Variable Problems (PVP). These analyses, which
include live variables reaching definitions and forward/backward printing, can be
decomposed into a set of sparse data-flow problems—usually one per variable—
each independent of the others.

13 Static Single Information Form 169

Note that not all data-flow analyses are PLV, for instance problems dealing with
relational information, such as “i < j?”, which needs to hold information on pairs
of variables.

13.1.3 The Static Single Information Property

If the information associated with a variable is invariant along its entire live range,
then we can bind this information to the variable itself. In other words, we can
replace all the constraint variables [v]p by a single constraint variable [v], for each
variable v and every p ∈ live(v). Consider the problem of range analysis again.
There are two types of control-flow points associated with non-identity transfer
functions: definitions and conditionals. (1) At the definition point of variable v, Fv

simplifies to a function that depends only on some [u] where each u is an argument
of the instruction defining v; (2) At the conditional tests that use a variable v,
Fv can be simplified to a function that uses [v] and possibly other variables that
appear in the test. The other program points are associated with an identity transfer
function and can thus be ignored: [v]p = [v]p ∧ F

s→p
v ([v1]s , . . . , [vn]s) simplifies

to [v]p = [v]p∧[v]p i.e., [v]p = [v]p. This gives the intuition on why a propagation
engine along the def-use chains of an SSA form program can be used to solve the
constant propagation problem in an equivalent, yet “sparser,” manner.

A program representation that fulfils the Static Single Information (SSI) property
allows us to attach the information to variables, instead of program points, and
needs to fulfil the following four properties: Split forces the information related to
a variable to be invariant along its entire live range; Info forces this information to
be irrelevant outside the live range of the variable; Link forces the def-use chains
to reach the points where information is available for a transfer function to be
evaluated; finally, Version provides a one-to-one mapping between variable names
and live ranges.

We now give a formal definition of the SSI and the four properties.

Property 1 (SSI) STATIC SINGLE INFORMATION: Consider a forward (resp. back-
ward) monotone PLV problem Edense stated as a set of constraints

[v]p � F s→p
v ([v1]s , . . . , [vn]s)

for every variable v, each program point p, and each s ∈ directpreds(p) (resp.
s ∈ directsuccs(p)). A program representation fulfils the Static Single Information
property if and only if it fulfils the following four properties:

Split Let s be the unique direct predecessor (resp. direct successor) of a program
point where a variable v is live and such that F s→p

v �= λx.⊥ is non-trivial, i.e., is
not the simple projection onLv , then s should contain a definition (resp. last use)
of v; for (v, p) ∈ variables × progPoints, let (Y

p
v) be a maximum solution to

Edense. Each node p that has several direct predecessors (resp. direct successors),

170 F. M. Q. Pereira and F. Rastello

and for which F
s→p
v (Y s

v1
, . . . , Y s

vn
) has different values on its incoming edges

(s → p) (resp. outgoing edges (p → s)), should have a φ-function at the entry
of p (resp. σ -function at the exit of p) for v as defined in the next section.

Info Each program point p such that v �∈ live-out(p) (resp. v �∈ live-in(p)))
should be bound to an undefined transfer function, i.e., Fp

v = λx.⊥.
Link Each instruction inst for which F inst

v depends on some [u]s should contain
a use (resp. definition) of u live-in (resp. live-out) at inst.

Version For each variable v, live(v) is a connected component of the CFG.

We must split live ranges using special instructions to provide the SSI properties.
A naive way would be to split them between each pair of consecutive instructions,
then we would automatically provide these properties, as the newly created variables
would be live at only one program point. However, this strategy would lead to the
creation of many trivial program regions, and we would lose sparsity. We provide
a sparser way to split live ranges that fit Property 1 in Sect. 13.2. We may also
have to extend the live range of a variable to cover every program point where the
information is relevant; we accomplish this last task by inserting pseudo-uses and
pseudo-definitions of this variable.

13.1.4 Special Instructions Used to Split Live Ranges

We perform live range splitting via special instructions: the σ -functions and parallel
copies that, together with φ-functions, create new definitions of variables. These
notations are important elements of the propagation engine described in the section
that follows. In short, a σ -function (for a branch point) is the dual of a φ-function
(for a join point), and a parallel copy is a copy that must be done in parallel with
another instruction. Each of these special instructions, φ-function, σ -functions, and
parallel copies, split live ranges at different kinds of program points: interior nodes,
branches, and joins.

Interior nodes are program points that have a unique direct predecessor and a
unique direct successor. At these points we perform live range splitting via copies.
If the program point already contains another instruction, then this copy must be
done in parallel with the existing instruction. The notation,

inst ‖ v′
1 = v1 ‖ . . . ‖ v′

m = vm

denotes m copies v′
i = vi performed in parallel with instruction inst. This means

that all the uses of inst plus all right-hand variables vi are read simultaneously,
then inst is computed, then all definitions of inst plus all left-hand variables v′

i are
written simultaneously. For a usage example of parallel copies, we will see later in
this chapter an example of null-pointer analysis: Fig. 13.4.

We call joins the program points that have one direct successor and multiple
direct predecessors. For instance, two different definitions of the same variable v

13 Static Single Information Form 171

might be associated with two different constants, hence providing two different
pieces of information about v. To avoid these definitions reaching the same use
of v, we merge them at the earliest program point where they meet. We do it via our
well-known φ-functions.

In backward analyses the information that emerges from different uses of a
variable may reach the same branch point, which is a program point with a unique
direct predecessor and multiple direct successors. To ensure Property 1, the use
that reaches the definition of a variable must be unique, in the same way that in
an SSA form program the definition that reaches a use is unique. We ensure this
property via special instructions called σ -functions. The σ -functions are the dual
of φ-functions, performing a parallel assignment depending on the execution path
taken. The assignment

(l1 : v11, . . . , l
q : v

q

1) = σ(v1) ‖ . . . ‖ (l1 : v1m, . . . , lq : v
q
m) = σ(vm)

represents m σ -functions that assign to each variable v
j
i the value in vi if control

flows into block lj . As with φ-functions, these assignments happen in parallel, i.e.,
the m σ -functions encapsulate m parallel copies. Also, note that variables live in
different branch targets are given different names by the σ -function.

13.1.5 Propagating Information Forward and Backward

Let us consider a unidirectional forward (resp. backward) PLV problem Essi
dense

stated as a set of equations [v]p � F
s→p
v ([v1]s , . . . , [vn]s) (or equivalently [v]p =

[v]p ∧F
s→p
v ([v1]s , . . . , [vn]s) for every variable v, each program point p, and each

s ∈ directpreds(p) (resp. s ∈ directsuccs(p)). To simplify the discussion, any φ-
function (resp. σ -function) is seen as a set of copies, one per direct predecessor
(resp. direct successor), which leads to many constraints. In other words, a φ-
function such as p : a = φ(a1 : l1, . . . , am : lm) gives us n constraints such
as

[a]p � F
lj →p
a ([a1]lj , . . . , [an]lj)

which usually simplifies into [a]p � [aj]lj . This last can be written equivalently
into the classical meet

[a]p �
∧

lj ∈ directpreds(p)

[aj]lj

172 F. M. Q. Pereira and F. Rastello

Algorithm 13.1: Backward propagation engine under SSI

1 worklist ← ∅
2 foreach v ∈ vars do [v] ← �
3 foreach i ∈ insts do push(worklist, i)
4 while worklist �= ∅ do
5 i ← pop(worklist)
6 foreach v ∈ i.uses do
7 [v]new ← [v] ∧ Gi

v([i.defs])
8 if [v] �= [v]new then
9 worklist ← worklist ∪ v.defs

10 [v] ← [v]new

used in Chap. 8. Similarly, a σ -function (l1 : a1, . . . , l
m : am) = σ(p : a) after

program point p yields n constraints such as

[aj]lj � Fp→lj

v ([a1]p, . . . , [an]p)

which usually simplifies into [aj]lj � [a]p. Given a program that fulfils the SSI
property for Essi

dense and the set of transfer functions F s
v , we show here how to build

an equivalent sparse constrained system.

Definition 13.2 (SSI Constrained System) Consider that a program in SSI form
gives us a constraint system that associates with each variable v the constraints
[v]p � F

s→p
v ([v1]s , . . . , [vn]s). We define a system of sparse equations Essi

sparse as
follows:

• For each instruction i that defines (resp. uses) a variable v, let a . . . z be the set
of used (resp. defined) variables. Because of the Link property, F

s→p
v (that we

will denote F i
v from now) depends only on some [a]s . . . [z]s . Thus, there exists

a function Gi
v defined as the restriction of F i

v onLa × · · · ×Lz, i.e., informally,
“Gi

v([a], . . . , [z]) = F i
v([v1], . . . , [vn]).”

• The sparse constrained system associates the constraint [v] � Gi
v([a], . . . , [z])

with each variable v, for each definition (resp. use) point i of v, where a, . . . , z

are used (resp. defined) at i.

The propagation engine discussed in Chap. 8 sends information forwards along
the def-use chains naturally formed by the SSA form program. If a given program
fulfils the SSI property for a backward analysis, we can use a very similar
propagation algorithm to communicate information backwards, such as the worklist
Algorithm 13.1. A slightly modified version, presented in Algorithm 13.2, propa-
gates information forwards. If necessary, these algorithms can be made control-flow
sensitive, like Algorithm 8.1 in Chap. 8.

Still, we should highlight a quite important subtlety that appears in line 7 of
Algorithms 13.1 and 13.2: [v] appears on the right-hand side of the assignment for

13 Static Single Information Form 173

Algorithm 13.2: Forward propagation engine under SSI

1 worklist ← ∅
2 foreach v ∈ vars do [v] ← �
3 foreach i ∈ insts do push(worklist, i)
4 while worklist �= ∅ do
5 i ← pop(worklist)
6 foreach v ∈ i.defs do
7 [v]new ← Gi

v([i.uses])
8 if [v] �= [v]new then
9 worklist ← worklist ∪ v.uses

10 [v] ← [v]new

Algorithm 13.1 while it does not for Algorithm 13.2. This stems from the asymmetry
of our SSI form that ensures (for practical purposes only, as we will explain soon)
the Static Single Assignment property but not the Static Single Use (SSU) property.
If we have several uses of the same variable, then the sparse backward constraint
system will have several inequations—one per variable use—with the same left-
hand side. Technically this is the reason why we manipulate a constraint system
(system with inequations) and not an equation system as in Chap. 8. Both systems
can be solved1 using a scheme known as chaotic iteration such as the worklist
algorithm we provide here. The slight and important difference for a constraint
system as opposed to an equation system is that one needs to meet Gi

v(. . .) with the
old value of [v] to ensure the monotonicity of the consecutive values taken by [v]. It
would still be possible to enforce the SSU property, in addition to the SSA property,
of our intermediate representation, at the expense of adding more φ-functions and
σ -functions. However, this guarantee is not necessary to every sparse analysis. The
dead-code elimination problem illustrates this point well: For a program under SSA
form, replacing Gi

v in Algorithm 13.1 by the property “i is a useful instruction
or one of the variables it defines is marked as useful” leads to the standard SSA-
based dead-code elimination algorithm. The sparse constraint system does have
several equations (one per variable use) for the same left-hand side (one for each
variable). It is not necessary to enforce the SSU property in this instance of dead-
code elimination, and doing so would lead to a less efficient solution in terms of
compilation time and memory consumption. In other words, a code under SSA form
fulfils the SSI property for dead-code elimination.

13.1.6 Examples of Sparse Data-Flow Analyses

As we have mentioned before, many data-flow analyses can be classified as PLV
problems. In this section we present some meaningful examples.

1 In an ideal world, with monotone framework and lattice of finite height.

174 F. M. Q. Pereira and F. Rastello

(a) Live range splitting used by a

sparse implementation of range analysis

(b) sparse constraint system & solution

Fig. 13.2 Live range splitting on Fig. 13.1 and a solution to this instance of the range analysis
problem

Range Analysis Revisited
We start this section by revisiting the initial example of data-flow analysis of this
chapter, given in Fig. 13.1. A range analysis acquires information from either the
points where variables are defined, or from the points where variables are tested. In
the original figure we know that i must be bound to the interval [0, 0] immediately
after instruction l1. Similarly, we know that this variable is upper bounded by 100
when arriving at l4, due to the conditional test that happens before. Therefore, in
order to achieve the SSI property, we should split the live ranges of variables at their
definition points, or at the conditionals where they are used. Figure 13.2 shows on
the left the original example after live range splitting. In order to ensure the SSI
property in this example, the live range of variable i must be split at its definition,
and at the conditional test. The live range of s, on the other hand, must be split only
at its definition point, as it is not used in the conditional. Splitting at conditionals
is done via σ -functions. The representation that we obtain by splitting live ranges
at definitions and conditionals is called the Extended Static Single Assignment (e-
SSA) form. Figure 13.2 also shows on the right the result of the range analysis
on this intermediate representation. This solution assigns to each variable a unique
range interval.

Class Inference
Some dynamically typed languages, such as Python, JavaScript, Ruby, or Lua,
represent objects as tables containing methods and fields. It is possible to improve
the execution of programs written in these languages if we can replace these simple
tables by actual classes with virtual tables. A class inference engine tries to assign
a class to a variable v based on the ways that v is defined and used. Figure 13.3
illustrates this optimization on a Python program (a). Our objective is to infer the
correct suite of methods for each object bound to variable v. Figure 13.3b shows
the results of a dense implementation of this analysis. Because type inference is

13 Static Single Information Form 175

(a) Example of a program

written in a dynamically

typed language

(b) Result of a dense

implementation

of class inference

(d) Constraints that determine a

solution for the sparse version

of class inference

(c) Live range splitting used by

a sparse implementation of

class inference

Fig. 13.3 Class inference analysis as an example of backward data-flow analysis that takes
information from the uses of variables

a backward analysis that extracts information from use sites, we split live ranges
using parallel copies at these program points and rely on σ -functions to merge
them back, as shown in Fig. 13.3c. The use-def chains that we derive from the
program representation lead naturally to a constraint system, shown in Fig. 13.3d,
where [vj] denotes the set of methods associated with variable vj . A fixed point
to this constraint system is a solution to our data-flow problem. This instance of
class inference is a Partitioned Variable Problem (PVP),2 because the data-flow
information associated with a variable v can be computed independently from the
other variables.

Null-Pointer Analysis
The objective of null-pointer analysis is to determine which references may hold
null values. This analysis allows compilers to remove redundant null-exception

2 Actually, class inference is no longer a PVP as soon as we want to propagate the information
through copies.

176 F. M. Q. Pereira and F. Rastello

(a) Object oriented program

that might invoke methods

of null objects

(b) Live range splitting

strategy used by a

sparse implementation

of null-pointer analysis

(c) Constraints that

determine a solution for

the sparse version

of null-pointer analysis

Fig. 13.4 Null-pointer analysis as an example of forward data-flow analysis that takes information
from the definitions and uses of variables (0 represents the fact that the pointer is possibly null, ��0
if it cannot be) (a) Object oriented program that might invoke methods of null objects (b) Live
range splitting strategy used by a sparse implementation of null-pointer analysis (c) Constraints
that determine a solution for the sparse version of null-pointer analysis

tests and helps developers find null-pointer dereferences. Figure 13.4 illustrates this
analysis. Because information is produced not only at definition but also at use sites,
we split live ranges after each variable is used, as shown in Fig. 13.4b. For instance,
we know that v2 cannot be null, otherwise an exception would have been thrown
during the invocation v1.m(); hence the call v2.m() cannot result in a null-pointer
dereference exception. On the other hand, we notice in Fig. 13.4a that the state of
v4 is the meet of the state of v3, definitely not-null, and the state of v1, possibly null,
and we must conservatively assume that v4 may be null.

13.2 Construction and Destruction of the Intermediate
Program Representation

In the previous section we have seen how the static single information property
gives the compiler the opportunity to solve a data-flow problem sparsely. However,
we have not yet seen how to convert a program to a format that provides the SSI
property. This is a task that we address in this section, via the three-step algorithm
from Sect. 13.2.2.

13.2.1 Splitting Strategy

A live range splitting strategy Pv = I↑ ∪ I↓ over a variable v consists of a set of
“oriented” program points. We let I↓ denote a set of points i with forward direction.

13 Static Single Information Form 177

Fig. 13.5 Live range splitting strategies for different data-flow analyses. Defs (resp. Uses) denotes
the set of instructions that define (resp. use) the variable; Conds denotes the set of instructions that
apply a conditional test on a variable; Out(Conds) denotes the exits of the corresponding basic
blocks; LastUses denotes the set of instructions where a variable is used, and after which it is no
longer live

Similarly, we let I↑ denote a set of points i with backward direction. The live range
of v must be split at least at every point in Pv . Going back to the examples from
Sect. 13.1.6, we have the live range splitting strategies enumerated below. The list
in Fig. 13.5 gives further examples of live range splitting strategies. Corresponding
references are given in the last section of this chapter.

• Range analysis is a forward analysis that takes information from points where
variables are defined and conditional tests that use these variables. For instance,
in Fig. 13.1, we have Pi = {l1,Out(l3), l4}↓ where Out(li) is the exit of li (i.e.,
the program point immediately after li), and Ps = {l2, l5}↓.

• Class inference is a backward analysis that takes information from the uses of
variables; thus, for each variable, the live range splitting strategy is characterized
by the set Uses↑ where Uses is the set of use points. For instance, in Fig. 13.3,
we have Pv = {l4, l6, l7}↑.

• Null-pointer analysis takes information from definitions and uses and propa-
gates this information forwardly. For instance, in Fig. 13.4, we have Pv =
{l1, l2, l3, l4}↓.
The algorithm SSIfy in Fig. 13.6 implements a live range splitting strategy

in three steps. Firstly, it splits live ranges, inserting new definitions of variables
into the program code. Secondly, it renames these newly created definitions; hence,
ensuring that the live ranges of two different re-definitions of the same variable
do not overlap. Finally, it removes dead and non-initialized definitions from the
program code. We describe each of these phases in the rest of this section.

178 F. M. Q. Pereira and F. Rastello

Fig. 13.6 Split the live ranges of v to convert it to SSI form

13.2.2 Splitting Live Ranges

In order to implement Pv we must split the live ranges of v at each program
point listed by Pv . However, these points are not the only ones where splitting
might be necessary. As we have pointed out in Sect. 13.1.4, we might have, for the
same original variable, many different sources of information reaching a common
program point. For instance, in Fig. 13.1, there exist two definitions of variable i, l1
and l4, which reach the use of i at l3. The information that flows forward from l1 and
l4 collides at l3, the loop entry. Hence the live range of i has to be split immediately
before l3—at In(l3)—leading, in our example, to a new definition, i1. In general,
the set of program points where information collides can be easily characterized
by the notion of join sets and iterated dominance frontier (DF+) seen in Chap. 4.
Similarly, split sets created by the backward propagation of information can be over-
approximated by the notion of iterated post-dominance frontier (pDF+) , which is
the dual of DF+. That is, the post-dominance frontier is the dominance frontier
in a CFG where the directions of edges have been reversed. Note that, just as the
notion of dominance requires the existence of a unique entry node that can reach
every CFG node, the notion of post-dominance requires the existence of a unique
exit node reachable by any CFG node. For control-flow graphs that contain several
exit nodes or loops with no exit, we can ensure the single-exit property by creating
a dummy common exit node and inserting some never-taken exit edges into the
program.

Figure 13.7 shows the algorithm that we use to create new definitions of
variables. This algorithm has three main phases. First, in lines 2–7 we create
new definitions to split the live ranges of variables due to backward collisions
of information. These new definitions are created at the iterated post-dominance
frontier of points at which information originates. If a program point is a join
node, then each of its direct predecessors will contain the live range of a different
definition of v, as we ensure in lines 5–6 of our algorithm. Note that these new
definitions are not placed parallel to an instruction, but in the region immediately
after it, which we denote as “Out(. . .).” In lines 8–13 we perform the inverse
operation: We create new definitions of variables due to the forward collision of
information. Our starting points S↓, in this case, also include the original definitions
of v, as we see in line 9, because we want to stay in SSA form in order to have
access to a fast liveness check as described in Chap. 9. Finally, in lines 14–20 we

13 Static Single Information Form 179

Fig. 13.7 Live range splitting. In(l) denotes a program point immediately before l, and Out(l) a
program point immediately after l

actually insert the new definitions of v. These new definitions might be created by
σ functions (due to Pv or to the splitting in lines 2–7); by φ-functions (due to Pv

or to the splitting in lines 8–13); or by parallel copies.

13.2.3 Variable Renaming

The rename algorithm in Fig. 13.8 builds def-use and use-def chains for a program
after live range splitting. This algorithm is similar to the classical algorithm used to
rename variables during the SSA construction that we saw in Chap. 3. To rename a
variable v we traverse the program’s dominance tree, from top to bottom, stacking
each new definition of v that we find. The definition currently on the top of the
stack is used to replace all the uses of v that we find during the traversal. If
the stack is empty, this means that the variable is not defined at this point. The
renaming process replaces the uses of undefined variables by ⊥ (see comment
of function stack.set_use). We have two methods, stack.set_use and

180 F. M. Q. Pereira and F. Rastello

Fig. 13.8 Versioning

stack.set_def, that build the chains of relations between variables. Note that
sometimes we must rename a single use inside a φ-function, as in lines 16–17 of the
algorithm. For simplicity we consider this single use as a simple assignment when
calling stack.set_use, as can be seen in line 17. Similarly, if we must rename
a single definition inside a σ -function, then we treat it as a simple assignment, like
we do in lines 12–14 of the algorithm.

13 Static Single Information Form 181

Fig. 13.9 Dead and undefined code elimination. Original instructions not inserted by split are
called actual instructions. inst.defs denotes the (set) of variable(s) defined by inst, and inst.uses
denotes the set of variables used by inst

13.2.4 Dead and Undefined Code Elimination

Just like Algorithm 3.7, the algorithm in Fig. 13.9 eliminates φ-functions and
parallel copies that define variables not actually used in the code. By way of
symmetry, it also eliminates σ -functions and parallel copies that use variables not
actually defined in the code. We mean by “actual” instructions those that already
existed in the program before we transformed it with split. In line 2, “web” is
fixed to the set of versions of v, so as to restrict the cleaning process to variable v,
as we see in the first two loops. The “active” set is initialized to actual instructions,
line 4. Then, during the first loop in lines 5–8, we augment it with φ-functions,
σ -functions, and copies that can reach actual definitions through use-def chains.
The corresponding version of v is hence marked as defined (line 8). The next loop,
lines 11–14, performs a similar process, this time to add to the active set instructions
that can reach actual uses through def-use chains. The corresponding version of v is
then marked as used (line 14). Each non-live variable, i.e., either undefined or dead
(non-used), hence not in the “live” set (line 15) is replaced by ⊥ in all φ, σ , or copy
functions where it appears by the loop, lines 15–18. Finally, all useless φ, σ , or copy
functions are removed by lines 19–20.

182 F. M. Q. Pereira and F. Rastello

Fig. 13.10 (a) Implementing σ -functions via single arity φ-functions; (b) getting rid of copies and
σ -functions

13.2.5 Implementation Details

Implementing σ -Functions
The most straightforward way to implement σ -functions, in a compiler that already
supports the SSA form, is to represent them by φ-functions. In this case, the
σ -functions can be implemented as single arity φ-functions. As an example,
Fig. 13.10a shows how we would represent the σ -functions of Fig. 13.3d. If l

is a branch point with n direct successors that would contain a σ -function (l1 :
v1, . . . , l

n : vn) ← σ(v), then, for each direct successor lj of l, we insert at the
beginning of lj an instruction vj ← φ(lj : v). Note that lj may already contain
a φ-function for v. This happens when the control-flow edge l → lj is critical: A
critical edge links a basic block with several direct successors to a basic block with
several direct predecessors. If lj already contains a φ-function v′ ← φ(. . . , vj , . . .),
then we rename vj to v.

SSI Destruction
Traditional instruction sets do not provide φ-functions or σ -functions. Thus, before
producing an executable program, the compiler must implement these instructions.
We have already seen in Chap. 3 how to replace φ-functions with actual assembly
instructions; however, now we must also replace σ -functions and parallel copies.
A simple way to eliminate all the σ -functions and parallel copies is via copy-
propagation. In this case, we copy-propagate the variables that these special
instructions define. As an example, Fig. 13.10b shows the result of copy folding
applied on Fig. 13.10a.

13 Static Single Information Form 183

13.3 Further Reading

The monotone data-flow framework is an old ally of compiler writers. Since the
work of pioneers like Prosser [234], Allen [3, 4], Kildall [166], Kam [158], and
Hecht [143], data-flow analyses such as reaching definitions, available expressions,
and liveness analysis have made their way into the implementation of virtually
every important compiler. Many compiler textbooks describe the theoretical basis
of the notions of lattice, monotone data-flow framework, and fixed points. For a
comprehensive overview of these concepts, including algorithms and formal proofs,
we refer the interested reader to Nielson et al.’s book [208] on static program
analysis.

The original description of the intermediate program representation known as
Static Single Information form was given by Ananian in his Master’s thesis [8]. The
notation for σ -functions that we use in this chapter was borrowed from Ananian’s
work. The SSI program representation was subsequently revisited by Jeremy Singer
in his PhD thesis [261]. Singer proposed new algorithms to convert programs to
SSI form, and also showed how this program representation could be used to handle
truly bidirectional data-flow analyses. We have not discussed bidirectional data-flow
problems, but the interested reader can find examples of such analyses in Khedker
et al.’s work [165]. Working on top of Ananian’s and Singer’s work, Boissinot et
al. [37] have proposed a new algorithm to convert a program to SSI form. Boissinot
et al. have also separated the SSI program representation into two flavours, which
they call weak and strong. Tavares et al. [282] have extended the literature on SSI
representations, defining building algorithms and giving formal proofs that these
algorithms are correct. The presentation that we use in this chapter is mostly based
on Tavares et al.’s work.

There exist other intermediate program representations that, like the SSI form,
make it possible to solve some data-flow problems sparsely. Well-known among
these representations is the Extended Static Single Assignment form, introduced by
Bodik et al. to provide a fast algorithm to eliminate array bound checks in the
context of a JIT compiler [32]. Another important representation, which supports
data-flow analyses that acquire information at use sites, is the Static Single Use form
(SSU). As uses and definitions are not fully symmetric (the live range can “traverse”
a use while it cannot traverse a definition), there are different variants of SSU [125,
187, 228]. For instance, the “strict” SSU form enforces that each definition reaches
a single use, whereas SSI and other variations of SSU allow two consecutive uses
of a variable on the same path. All these program representations are very effective,
having seen use in a number of implementations of flow analyses; however, they
only fit specific data-flow problems.

The notion of Partitioned Variable Problem (PVP) was introduced by Zadeck,
in his PhD dissertation [316]. Zadeck proposed fast ways to build data structures
that allow one to solve these problems efficiently. He also discussed a number
of data-flow analyses that are partitioned variable problems. There are data-flow
analyses that do not meet the Partitioned Lattice per Variable property. Notable

184 F. M. Q. Pereira and F. Rastello

examples include abstract interpretation problems on relational domains, such as
Polyhedrons [86], Octagons [199], and Pentagons [188].

In terms of data structures, the first, and best known method proposed to support
sparse data-flow analyses is Choi et al.’s Sparse Evaluation Graph (SEG) [67]. The
nodes of this graph represent program regions where information produced by the
data-flow analysis might change. Choi et al.’s ideas have been further expanded, for
example by Johnson et al.’s Quick Propagation Graphs [153], or Ramalingam’s
Compact Evaluation Graphs [237]. Nowadays we have efficient algorithms that
build such data structures [154, 224, 225]. These data structures work best when
applied on partitioned variable problems.

As opposed to those approaches, the solution promoted by this chapter consists
in an intermediate representation (IR) based evaluation graph, and has advantages
and disadvantages when compared to the data structure approach. The intermediate
representation based approach has two disadvantages, which we have already
discussed in the context of the standard SSA form. First it has to be maintained
and at some point destructed. Second, because it increases the number of variables,
it might add some overhead to analyses and transformations that do not require
it. On the other hand, IR based solutions to sparse data-flow analyses have many
advantages over data structure based approaches. For instance, an IR allows concrete
or abstract interpretation. Solving any coupled data-flow analysis problem along
with a SEG was mentioned by Choi et al. [67] as an open problem. However, as
illustrated by the conditional constant propagation problem described in Chap. 8,
coupled data-flow analysis can be solved naturally in IR based evaluation graphs.
Last, SSI is compatible with SSA extensions such as gated SSA described in
Chap. 14, which allows demand-driven interpretation.

The data-flow analyses discussed in this chapter are well-known in the literature.
Class inference was used by Chambers et al. in order to compile Self programs
more efficiently [63]. Nanda and Sinha have used a variant of null-pointer analysis
to find which call sites may cause errors due to the dereference of null objects [207].
Ananian [8], and later Singer [261], have shown how to use the SSI representation
to do partial redundancy elimination sparsely. In addition to being used to eliminate
redundant array bound checks [32], the e-SSA form has been used to solve Taint
Analysis [248], and range analysis [123, 277]. Stephenson et al. [273] described
a bitwidth analysis that is both forward and backward, taking information from
definitions, uses, and conditional tests. For another example of bidirectional bitwidth
analysis, see Mahlke et al.’s algorithm [194]. The type inference analysis that we
mentioned in Fig. 13.5 was taken from Hochstadt et al.’s work [284].

	13 Static Single Information Form
	13.1 Static Single Information
	13.1.1 Sparse Analysis
	13.1.2 Partitioned Lattice per Variable (PLV) Problems
	13.1.3 The Static Single Information Property
	13.1.4 Special Instructions Used to Split Live Ranges
	13.1.5 Propagating Information Forward and Backward
	13.1.6 Examples of Sparse Data-Flow Analyses

	13.2 Construction and Destruction of the Intermediate Program Representation
	13.2.1 Splitting Strategy
	13.2.2 Splitting Live Ranges
	13.2.3 Variable Renaming
	13.2.4 Dead and Undefined Code Elimination
	13.2.5 Implementation Details

	13.3 Further Reading

