
Chapter 11
Redundancy Elimination

Fred Chow

Redundancy elimination is an important category of optimizations performed
by modern optimizing compilers. In the course of program execution, certain
computations may be repeated multiple times and yield the same results. Such
redundant computations can be eliminated by saving and reusing the results of the
earlier computations instead of recomputing them later.

There are two types of redundancies: full redundancy and partial redundancy. A
computation is fully redundant if the computation has occurred earlier regardless
of the flow of control. The elimination of full redundancy is also called common
subexpression elimination. A computation is partially redundant if the computation
has occurred only along certain paths. Full redundancy can be regarded as a special
case of partial redundancy where the redundant computation occurs regardless of
the path taken.

There are two different views of a computation related to redundancy: how it
is computed and the computed value. The former relates to the operator and the
operands it operates on, which translates to how it is represented in the program
representation. The latter refers to the value generated by the computation in the
static sense.1 As a result, algorithms for finding and eliminating redundancies can
be classified into those that are syntax-driven and those that are value-driven.
In syntax-driven analyses, two computations are the same if they are the same
operation applied to the same operands that are program variables or constants.
In this case, redundancy can arise only if the variables’ values have not changed

1 All values referred to in this chapter are static values viewed with respect to the program code. A
static value can map to different dynamic values during program execution.

F. Chow (�)
Huawei, Fremont, CA, USA
e-mail: fchow99@comcast.net

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Rastello, F. Bouchez Tichadou (eds.), SSA-based Compiler Design,
https://doi.org/10.1007/978-3-030-80515-9_11

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80515-9_11&domain=pdf
mailto:fchow99@comcast.net
https://doi.org/10.1007/978-3-030-80515-9_11

136 F. Chow

between the occurrences of the computation. In value-based analyses, redundancy
arises whenever two computations yield the same value. For example, a + b and
a + c compute the same result if b and c can be determined to hold the same value.
In this chapter, we deal mostly with syntax-driven redundancy elimination. The last
section will extend our discussion to value-based redundancy elimination.

In our discussion on syntax-driven redundancy elimination, our algorithm will
focus on the optimization of a lexically identical expression, like a +b, that appears
in the program. During compilation, the compiler will repeat the redundancy elimi-
nation algorithm on all the other lexically identified expressions in the program.

The style of the program representation can impact the effectiveness of the
algorithm applied. We distinguish between statements and expressions. Expressions
compute to values without generating any side effect. Statements have side effects
as they potentially alter memory contents or control flow, and are not candidates
for redundancy elimination. In dealing with lexically identified expressions, we
advocate a maximal expression tree form of program representation. In this style,
a large expression tree such as a + b ∗ c − d is represented as is without having
to specify any assignments to temporaries for storing the intermediate values
of the computation.2 We also assume the Conventional SSA Form of program
representation, in which each φ-web (see Chap. 2) is interference-free and the live
ranges of the SSA versions of each variable do not overlap. We further assume the
HSSA (see Chap. 16) form that completely models the aliasing in the program.

11.1 Why Partial Redundancy Elimination and SSA Are
Related

Figure 11.1 shows the two most basic forms of partial redundancy. In Fig. 11.1a,
a + b is redundant when the right path is taken. In Fig. 11.1b, a + b is redundant
whenever the back edge (see Sect. 4.4.1) of the loop is taken. Both are examples
of strictly partial redundancies , in which insertions are required to eliminate the
redundancies. In contrast, a full redundancy can be deleted without requiring any
insertion. Partial redundancy elimination (PRE) is powerful because it subsumes
global common subexpressions and loop-invariant code motion.

We can visualize the impact on redundancies of a single computation, as shown
in Fig. 11.2. In the region of the control-flow graph dominated by the occurrence
of a + b, any further occurrence of a + b is fully redundant, assuming a and b

are not modified. Following the program flow, once we are past the dominance
frontiers, any further occurrence of a+b is partially redundant. In constructing SSA
form, dominance frontiers are where φs are inserted. Since partial redundancies start
at dominance frontiers, partial redundancy elimination should borrow techniques

2 The opposite of maximal expression tree form is the triplet form in which each arithmetic
operation always defines a temporary.

11 Redundancy Elimination 137

. . .� a + b

. . .� a + b

. . .� a + b

. . .� a + b

�����. . .� a + b

�����. . .� a + b

. . .� a + b . . .� a + b

Fig. 11.1 Two basic examples of partial redundancy elimination

Fig. 11.2 Dominance frontiers (dashed) are boundaries between fully (highlighted basic blocks)
and partially (normal basic blocks) redundant regions

from SSA φs insertion. In fact, the same sparse approach to modelling the use-def
relationships among the occurrences of a program variable can be used to model the
redundancy relationships among the different occurrences of a + b.

The algorithm that we present, named SSAPRE, performs PRE efficiently by
taking advantage of the use-def information inherent in its input Conventional SSA
Form. If an occurrence aj + bj is redundant with respect to ai + bi , SSAPRE

138 F. Chow

DF of expression occurrences Expression alteration

Fig. 11.3 Examples of �-insertion

builds a redundancy edge that connects ai + bi to aj + bj . To expose potential
partial redundancies, we introduce the operator � at the dominance frontiers of the
occurrences, which has the effect of factoring the redundancy edges at merge points
in the control-flow graph.3 The resulting factored redundancy graph (FRG) can be
regarded as the SSA form for expressions.

To make the expression SSA form more intuitive, we introduce the hypothetical
temporary h, which can be thought of as the temporary that will be used to store the
value of the expression. The FRG can be viewed as the SSA graph for h. Observe
that we have not yet determined where h should be defined or used. In referring to
the FRG, a use node will refer to a node in the FRG that is not a definition.

The SSA form for h is constructed in two steps similar to ordinary SSA form:
the �-insertion step followed by the Renaming step. In the �-insertion step, we
insert �s at the dominance frontiers of all the expression occurrences, to ensure
that we do not miss any possible placement positions for the purpose of PRE, as in
Fig. 11.3a. We also insert �s caused by expression alteration. Such �s are triggered
by the occurrence of φs for any of the operands in the expression. In Fig. 11.3b, the
� at block 3 is caused by the φ for a in the same block, which in turns reflects the
assignment to a in block 2.

The Renaming step assigns SSA versions to h such that occurrences renamed
to identical h-versions will compute to the same values. We conduct a pre-order
traversal of the dominator tree similar to the Renaming step in SSA construction
for variables, but with the following modifications: (1) In addition to a renaming
stack for each variable, we maintain a renaming stack for the expression; (2) Entries
on the expression stack are popped as our dominator tree traversal backtracks past
the blocks where the expression originally received the version. Maintaining the
variable and expression stacks together allows us to decide efficiently whether two
occurrences of an expression should be given the same h-version.

3 Adhering to the SSAPRE convention, we use lower case φs in the SSA form of variables and
upper case �s in the SSA form for expressions.

11 Redundancy Elimination 139

Fig. 11.4 Examples of
expression renaming

There are three kinds of occurrences of the expression in the program: (real) the
occurrences in the original program, which we call real occurrences; (�-def) the
inserted �s; and (�-use) the use operands of the �s, which are regarded as
occurring at the ends of the direct predecessor blocks of their corresponding edges.
During the visitation in Renaming, a � is always given a new version. For a non-
�, i.e., cases (real) and (�-use), we check the current version of every variable in
the expression (the version on the top of each variable’s renaming stack) against the
version of the corresponding variable in the occurrence on the top of the expression’s
renaming stack. If all the variable versions match, we assign it the same version as
the top of the expression’s renaming stack. If one of the variable versions does not
match, for case (real), we assign it a new version, as in the example of Fig. 11.4a;
for case (�-use), we assign the special class ⊥ to the �-use to denote that the value
of the expression is unavailable at that point, as in the example of Fig. 11.4b. If a
new version is assigned, we push the version on the expression stack.

The FRG captures all the redundancies of a+b in the program. In fact, it contains
just the right amount of information for determining the optimal code placement.
Because strictly partial redundancies can only occur at the �-nodes, insertions for
PRE only need to be considered at the �s.

11.2 How SSAPREWorks

Referring to the expression being optimized as X, we use the term placement to
denote the set of points in the optimized program where X’s computation occurs. In
contrast, the original computation points refer to the points in the original program
where X’s computation took place. The original program will be transformed to the
optimized program by performing a set of insertions and deletions.

140 F. Chow

The objective of SSAPRE is to find a placement that satisfies the following four
criteria, in this order:

– Correctness : X is fully available at all the original computation points.
– Safety: There is no insertion of X on any path that did not originally contain X.
– Computational optimality : No other safe and correct placement can result in

fewer computations of X on any path from entry to exit in the program.
– Lifetime optimality : Subject to computational optimality, the life range of the

temporary introduced to store X is minimized.

Each occurrence of X at its original computation point can be qualified with
exactly one of the following attributes: (1) fully redundant; (2) strictly partially
redundant; (3) non-redundant.

As a code placement problem, SSAPRE follows the same two-step process used
in all PRE algorithms. The first step determines the best set of insertion points that
render fully redundant as many strictly partially redundant occurrences as possible.
The second step deletes fully redundant computations, taking into account the
effects of the inserted computations. As we consider this second step to be well
understood, the challenge lies in the first step for coming up with the best set of
insertion points. The first step will tackle the safety, computational optimality, and
lifetime optimality criteria, while the correctness criterion is delegated to the second
step. For the rest of this section, we only focus on the first step for finding the best
insertion points, which is driven by the strictly partially redundant occurrences.

We assume that all critical edges in the control-flow graph have been removed
by inserting empty basic blocks at such edges (see Algorithm 3.5). In the SSAPRE
approach, insertions are only performed at �-uses. When we say a � is a candidate
for insertion, it means we will consider insertions at its use operands to render X

available at the entry to the basic block containing that �. An insertion at a �-use
means inserting X at the incoming edge corresponding to that � operand. In reality,
the actual insertion is done at the end of the direct predecessor block.

11.2.1 The Safety Criterion

As we have pointed out at the end of Sect. 11.1, insertions only need to be considered
at the �s. The safety criterion implies that we should only insert at �s where X

is downsafe (fully anticipated). Thus, we perform data-flow analysis on the FRG
to determine the downsafe attribute for �s. Data-flow analysis can be performed
with linear complexity on SSA graphs, which we illustrate with the Downsafety
computation.

A � is not downsafe if there is a control-flow path from that � along which
the expression is not computed before program exit or before being altered by the
redefinition of one of its variables. Except for loops with no exit, this can only
happen in one of the following cases: (dead) there is a path to exit or an alteration
of the expression along which the � result version is not used; or (transitive) the

11 Redundancy Elimination 141

� result version appears as the operand of another � that is not downsafe. Case
(dead) represents the initialization for our backward propagation of ¬downsafe;
all other �s are initially marked downsafe. The Downsafety propagation is based
on case (transitive). Since a real occurrence of the expression blocks the case
(transitive) propagation, we define a has_real_use flag attached to each � operand
and set this flag to true when the � operand is defined by another � and the path
from its defining � to its appearance as a � operand crosses a real occurrence.
The propagation of ¬downsafe is blocked whenever the has_real_use flag is true.
Figure 11.1 gives the Downsafety propagation algorithm. The initialization of the
has_real_use flags is performed in the earlier Renaming phase.

Algorithm 11.1: Downsafety propagation

1 foreach f ∈ {�s in the program} do
2 if ∃ path P to program exit or alteration of expression along which f is not used then

downsafe(f) ← false
3

4 foreach f ∈ {�s in the program} do
5 if not downsafe(f) then
6 foreach operand ω of f do
7 if not has_real_use (ω) then Reset_downsafe(ω)

8 Function Reset_downsafe(X)
9 if def(X) is not a � then return
10 f ← def(X)

11 if not downsafe(f) then return
12 downsafe(f) ← false
13 foreach operand ω of f do
14 if not has_real_use (ω) then Reset_downsafe(ω)

11.2.2 The Computational Optimality Criterion

At this point, we have eliminated the unsafe �s based on the safety criterion.
Next, we want to identify all the �s that are possible candidates for insertion, by
disqualifying �s that cannot be insertion candidates in any computationally optimal
placement. An unsafe � can still be an insertion candidate if the expression is fully
available there, though the inserted computation will itself be fully redundant. We
define the can_be_avail attribute for the current step, whose purpose is to identify
the region where, after appropriate insertions, the computation can become fully
available. A� is¬can_be_avail if and only if inserting there violates computational
optimality. The can_be_avail attribute can be viewed as

can_be_avail(�) = downsafe(�) ∪ avail(�).

142 F. Chow

We could compute the avail attribute separately using the full availability
analysis, which involves propagation in the forward direction with respect to the
control-flow graph. But this would have performed some useless computation
because we do not need to know its values within the region where the �s are
downsafe. Thus, we choose to compute can_be_avail directly by initializing a �

to be ¬can_be_avail if the � is not downsafe and one of its operands is ⊥. In the
propagation phase, we propagate ¬can_be_avail forward when a ¬downsafe � has
an operand that is defined by a ¬can_be_avail � and that operand is not marked
has_real_use.

After can_be_avail has been computed, computational optimality could be
fulfiled simply by performing insertions at all the can_be_avail �s. In this case, full
redundancies would be created among the insertions themselves, but the subsequent
full redundancy elimination step would remove any fully redundant inserted or non-
inserted computation. This would leave the earliest computations as the optimal
code placement.

11.2.3 The Lifetime Optimality Criterion

To fulfil lifetime optimality, we perform a second forward propagation called Later
that is derived from the well-understood partial availability analysis. The purpose is
to disqualify can_be_avail �s where the computation is partially available based
on the original occurrences of X. A � is marked later if it is not necessary to
insert there because a later insertion is possible. In other words, there exists a
computationally optimal placement under which X is not available immediately
after the �. We optimistically consider all the can_be_avail �s to be later, except
in the following cases: (real) the � has an operand defined by a real computation;
or (transitive) the � has an operand that is can_be_avail � marked not later.
Case (real) represents the initialization for our forward propagation of not later;
all other can_be_avail �s are marked later. The Later propagation is based on case
(transitive).

The final criterion for performing insertion is to insert at the �s where
can_be_avail and¬later hold. We call such�swill_be_avail. At these�s, insertion
is performed at each operand that satisfies either of the following conditions:

�
�
�
�

it is ⊥; or
has_real_use is false and it is defined by a ¬will_be_avail �

We illustrate our discussion in this section with the example of Fig. 11.5, where
the program exhibits partial redundancy that cannot be removed by safe code
motion. The two �s with their computed data-flow attributes are as shown. If
insertions were based on can_be_avail, a + b would have been inserted at the
exits of blocks 4 and 5 due to the � in block 6, which would have resulted in

11 Redundancy Elimination 143

Fig. 11.5 Example to show the need for the later attribute

unnecessary code motion increasing register pressure. By considering later, no
insertion is performed, which is optimal under safe PRE for this example.

11.3 Speculative PRE

If we ignore the safety requirement of PRE discussed in Sect. 11.2, the resulting
code motion will involve speculation. Speculative code motion suppresses redun-
dancy in some paths at the expense of another path where the computation is added
but result is unused. As long as the paths that are burdened with more computations
are executed less frequently than the paths where the redundant computations are
avoided, a net gain in program performance can be achieved. Thus, speculative code
motion should only be performed when there are clues about the relative execution
frequencies of the paths involved.

Without profile data, speculative PRE can be conservatively performed by
restricting it to loop-invariant computations. Figure 11.6 shows a loop-invariant
computation a + b that occurs in a branch inside the loop. This loop-invariant
code motion is speculative because, depending on the branch condition inside the
loop, it may be executed zero times, while moving it to the loop header causes it
to execute once. This speculative loop-invariant code motion is profitable unless the
path inside the loop containing the expression is never taken, which is usually not
the case. When performing SSAPRE, marking �s located at the start of loop bodies
as downsafe will effect speculative loop-invariant code motion.

144 F. Chow

Fig. 11.6 Speculative
loop-invariant code motion

. . .� a + b

. . .� a + b

Computations such as indirect loads and divides are called dangerous computa-
tions because they may generate a fault. Dangerous computations in general should
not be speculated. As an example, if we replace the expression a + b in Fig. 11.6 by
a/b and the speculative code motion is performed, it may cause a runtime divide-
by-zero fault after the speculation because b can be 0 at the loop header, while it is
never 0 in the branch that contains a/b inside the loop body.

Dangerous computations are sometimes protected by tests (or guards) placed
in the code by the programmers or automatically generated by language compilers
such as those for Java. When such a test occurs in the program, we say the dangerous
computation is safety-dependent on the control-flow point that establishes its safety.
At the points in the program where its safety dependence is satisfied, the dangerous
instruction is fault-safe and can still be speculated.

We can represent safety dependencies as value dependencies in the form of
abstract τ variables. Each successful runtime test defines a τ variable on its fall-
through path. During SSAPRE, we attach these τ variables as additional operands
to the dangerous computations related to the test. The τ variables are also put
into SSA form, so their definitions can be found by following the use-def chains.
The definitions of the τ variables have abstract right-hand-side values that are not
allowed to be involved in any optimization. Because they are abstract, they are also
omitted in the generated code after the SSAPRE phase. A dangerous computation
can be defined to have more than one τ operand, depending on its semantics.
When all its τ operands have definitions, it means the computation is fault-safe;
otherwise, it is unsafe to speculate. By taking the τ operands into consideration,
speculative PRE automatically honors the fault-safety of dangerous computations
when it performs speculative code motion.

In Fig. 11.7, the program contains a non-zero test for b. We define an additional
τ operand for the divide operation in a/b in SSAPRE to provide the information
about whether a non-zero test for b is available. At the start of the region guarded
by the non-zero test for b, the compiler inserts the definition of τ1 with the abstract

11 Redundancy Elimination 145

Fig. 11.7 Speculative and fault-safe loop-invariant code motion

right-hand-side value τ -edge. Any appearance of a/b in the region guarded by the
non-zero test for b will have τ1 as its τ operand. Having a defined τ operand allows
a/b to be freely speculated in the region guarded by the non-zero test, while the
definition of τ1 prevents any hoisting of a/b past the non-zero test.

11.4 Register Promotion via PRE

Variables and most data in programs normally start out residing in memory. It is the
compiler’s job to promote those memory contents to registers as much as possible
to speed up program execution. Load and store instructions have to be generated to
transfer contents between memory locations and registers. The compiler also has to
deal with the limited number of physical registers and find an allocation that makes
the best use of them. Instead of solving these problems all at once, we can tackle
them as two smaller problems separately:

1. Register promotion—We assume there is an unlimited number of registers, called
pseudo-registers (also called symbolic registers, virtual registers, or tempo-
raries). Register promotion will allocate variables to pseudo-registers whenever
possible and optimize the placement of the loads and stores that transfer their
values between memory and registers.

2. Register allocation (see Chap. 22)—This phase will fit the unlimited number of
pseudo-registers to the limited number of real or physical registers.

146 F. Chow

In this chapter, we only address the register promotion problem because it can be
cast as a redundancy elimination problem.

11.4.1 Register Promotion as Placement Optimization

Variables with no aliases are trivial register promotion candidates. They include the
temporaries generated during PRE to hold the values of redundant computations.
Variables in the program can also be determined via compiler analysis or by
language rules to be alias-free. For these trivial candidates, one can rename them
to unique pseudo-registers, and no load or store needs to be generated.

Our register promotion is mainly concerned with scalar variables that have
aliases, indirectly accessed memory locations and constants. A scalar variable can
have aliases whenever its address is taken, or if it is a global variable, since it can
be accessed by function calls. A constant value is a register promotion candidate
whenever some operations using it have to refer to it through register operands.

Since the goal of register promotion is to obtain the most efficient placement for
loads and stores, register promotion can be modelled as two separate problems: PRE
of loads, followed by PRE of stores. In the case of constant values, our use of the
term load will extend to referring to the operation performed to put the constant
value in a register. The PRE of stores does not apply to constants.

From the point of view of redundancy, loads behave like expressions: the later
occurrences are the ones to be deleted. For stores, the reverse is true: as illustrated
in the examples of Fig. 11.8, the earlier stores are the ones to be deleted. The PRE
of stores, also called partial dead code elimination, can thus be treated as the dual
of the PRE of loads. Thus, performing PRE of stores has the effects of moving
stores forward while inserting them as early as possible. Combining the effects of
the PRE of loads and stores results in optimal placements of loads and stores while
minimizing the live ranges of the pseudo-registers, by virtue of the computational
and lifetime optimality of our PRE algorithm.

Fig. 11.8 Duality between load and store redundancies

11 Redundancy Elimination 147

11.4.2 Load Placement Optimization

PRE applies to any computation, including loads from memory locations or creation
of constants. In program representations, loads can be either indirect through a
pointer or direct. Indirect loads are automatically covered by the PRE of expressions.
Direct loads correspond to scalar variables in the program, and since our input
program representation is in HSSA form, the aliasing that affects the scalar variables
is completely modelled by the χ and μ functions. In our representation, both direct
loads and constants are leaves of the expression trees. When we apply SSAPRE to
direct loads, since the hypothetical temporary h can be regarded as the candidate
variable itself, the FRG corresponds somewhat to the variable’s SSA graph, so the
�-insertion step and Rename step can be streamlined.

When working on the PRE of memory loads, it is important to also take into
account the stores, which we call l-value occurrences. A store of the form X ←
< expr > can be regarded as being made up of the sequence:

r ← < expr >

X ← r

Because the pseudo-register r contains the current value of X, any subsequent
occurrences of the load of X can reuse the value from r and thus can be regarded as
redundant. Figure 11.9 gives examples of loads made redundant by stores.

When we perform the PRE of loads, we thus take the store occurrences into
consideration. The�-insertion step will insert�s at the iterated dominance frontiers
of store occurrences. In the Rename step, a store occurrence is always given a new
h-version, because a store is a definition. Any subsequent load renamed to the same
h-version is redundant with respect to the store.

We apply the PRE of loads (LPRE) first, followed by the PRE of stores (STRE).
This ordering is based on the fact that LPRE is not affected by the result of STRE,
but LPRE creates more opportunities for the SPRE by deleting loads that would
otherwise have blocked the movement of stores. In addition, speculation is required
for the PRE of loads and stores in order for register promotion to do a decent job in
loops.

The example in Fig. 11.10 illustrates what is discussed in this section. During
LPRE, A ← . . . is regarded as a store occurrence. The hoisting of the load of A to

Fig. 11.9 Redundant loads after stores

148 F. Chow

Fig. 11.10 Register promotion via load PRE followed by store PRE

the loop header does not involve speculation. The occurrence of A ← . . . causes r

to be updated by splitting the store into the two statements r ← . . . ; A ← r . In the
PRE of stores (SPRE), speculation is needed to sink A ← . . . to outside the loop
because the store occurs in a branch inside the loop. Without performing LPRE first,
the load of A inside the loop would have blocked the sinking of A ←

11.4.3 Store Placement Optimization

Asmentioned earlier, SPRE is the dual of LPRE. Code motion in SPREwill have the
effect of moving stores forward with respect to the control-flow graph. Any presence
of (aliased) loads has the effect of blocking the movement of stores or rendering the
earlier stores non-redundant.

To apply the dual of the SSAPRE algorithm, it is necessary to compute a program
representation that is the dual of the SSA form, the static single use (SSU) form
(see Chap. 13—SSU is a special case of SSI). In SSU, use-def edges are factored
at divergence points in the control-flow graph using σ -functions (see Sect. 13.1.4).
Each use of a variable establishes a new version (we say the load uses the version),
and every store reaches exactly one load.

We call our store PRE algorithm SSUPRE, which is made up of the corre-
sponding steps in SSAPRE. The insertion of σ -functions and renaming phases
constructs the SSU form for the variable whose store is being optimized. The
data-flow analyses consist of UpSafety to compute the upsafe (fully available)

11 Redundancy Elimination 149

original SSU form after SPRE

Fig. 11.11 Example of program in SSU form and the result of applying SSUPRE

attribute, CanBeAnt to compute the can_be_ant attribute, and Earlier to compute
the earlier attribute. Though store elimination itself does not require the introduction
of temporaries, lifetime optimality still needs to be considered for the temporaries
introduced in the LPRE phase, which hold the values to the point where the stores
are placed. It is desirable not to sink the stores too far down.

Figure 11.11 gives the SSU form and the result of SSUPRE on an example
program. The sinking of the store to outside the loop is traded for the insertion
of a store in the branch inside the loop. The optimized code no longer exhibits any
store redundancy.

11.5 Value-Based Redundancy Elimination

The PRE algorithm we have described so far is not capable of recognizing redundant
computations among lexically different expressions that yield the same value. In this
section, we discuss redundancy elimination based on value analysis.

11.5.1 Value Numbering

The term value number originates from a hash-based method for recognizing when
two expressions evaluate to the same value within a basic block. The value number
of an expression tree can be regarded as the index of its hashed entry in the hash
table. An expression tree is hashed recursively bottom-up, starting with the leaf

150 F. Chow

straight-line code value numbers

Fig. 11.12 Value numbering in a local scope

processed statements value numbers

Fig. 11.13 Global value numbering on SSA form

nodes. Each internal node is hashed based on its operator and the value numbers
of its operands. The local algorithm for value numbering will conduct a scan down
the instructions in a basic block, assigning value numbers to the expressions. At
an assignment, the assigned variable will be assigned the value number of the right-
hand side expression. The assignment will also cause any value number that refers to
that variable to be killed. For example, the program code in Fig. 11.12a will result
in the value numbers v1, v2, and v3 shown in Fig. 11.12b. Note that variable c is
involved with both value numbers v2 and v3 because it has been redefined.

SSA form enables value numbering to be easily extended to the global scope,
called global value numbering (GVN), because each SSA version of a variable
corresponds to at most one static value for the variable. In the example of Fig. 11.13,
a traversal along any topological ordering of the SSA graph can be used to assign
value numbers to variables. One subtlety is regarding the φ-functions. When we
value number a φ-function, we would like the value numbers for its use operands
to have been determined already. One strategy is to perform the global value
numbering by visiting the nodes in the control-flow graph in a reverse post-order
traversal of the dominator tree. This traversal strategy can minimize the instances
when a φ-use has an unknown value number, which arises only in the case of back
edges from loops. When this arises, we have no choice but to assign a new value
number to the variable defined by the φ-function. For example, in the following
loop:

1 i1 ← 0
2 j1 ← 0
3 while <cond> do
4 i2 ← φ(i3, i1)

5 j2 ← φ(j3, j1)

6 i3 ← i2 + 4
7 j3 ← j2 + 4

11 Redundancy Elimination 151

When we try to hash a value number for either of the two φs, the value numbers for
i3 and j3 are not yet determined. As a result, we create different value numbers for
i2 and j2. This makes the above algorithm unable to recognize that i2 and j2 can be
given the same value number, or that i3 and j3 can be given the same value number.

The above hash-based value numbering algorithm can be regarded as pessimistic,
because it will not assign the same value number to two different expressions unless
it can prove they compute the same value. There exists a different approach (see
Sect. 11.6 for references) to performing value numbering that is not hash-based
and is optimistic. It does not depend on any traversal over the program’s flow
of control and so is not affected by the presence of back edges. The algorithm
partitions all the expressions in the program into congruence classes. Expressions
in the same congruence class are considered equivalent because they evaluate to the
same static value. The algorithm is optimistic because when it starts, it assumes all
expressions that have the same operator to be in the same congruence class. Given
two expressions within the same congruence class, if their operands at the same
operand position belong to different congruence classes, the two expressions may
compute to different values and thus should not be in the same congruence class.
This is the subdivision criterion. As the algorithm iterates, the congruence classes
are subdivided into smaller ones, while the total number of congruence classes
increases. The algorithm terminates when no more subdivisions can occur. At this
point, the set of congruence classes in this final partition will represent all the values
in the program that we care about, and each congruence class is assigned a unique
value number.

While such a partition-based algorithm is not obstructed by the presence of back
edges, it does have its own deficiencies. Because it has to consider one operand
position at a time, it is not able to apply commutativity to detect more equivalences.
Since it is not applied bottom-up with respect to the expression tree, it is not able
to apply algebraic simplifications while value numbering. To get the best of both
the hash-based and the partition-based algorithms, it is possible to apply the two
algorithms independently and then combine their results together to shrink the final
set of value numbers.

11.5.2 Redundancy Elimination Under Value Numbering

So far, we have discussed finding computations that compute to the same values but
have not addressed eliminating the redundancies among them. Two computations
that compute to the same value exhibit redundancy only if there is a control-flow
path that leads from one to the other.

An obvious approach is to consider PRE for each value number separately. This
can be done by introducing, for each value number, a temporary that stores the
redundant computations. But value-number-based PRE has to deal with the issue of
how to generate an insertion. Because the same value can come from different forms
of expressions at different points in the program, it is necessary to determine which

152 F. Chow

form to use at each insertion point. If the insertion point is outside the live range
of any variable version that can compute that value, then the insertion point has
to be disqualified. Due to this complexity, and the expectation that strictly partial
redundancy is rare among computations that yield the same value, it seems to be
sufficient to perform only full redundancy elimination among computations that
have the same value number.

However, it is possible to broaden the scope and consider PRE among lexically
identical expressions and value numbers at the same time. In this hybrid approach,
it is best to relax our restriction on the style of program representation described
in Sect. 11. By not requiring Conventional SSA Form, we can more effectively
represent the flow of values among the program variables. By considering the live
range of each SSA version to extend from its definition to program exit, we allow its
value to be used whenever convenient. The program representation can even be in
the form of triplets, in which the result of every operation is immediately stored in a
temporary. It will just assign the value number of the right-hand side to the left-hand-
side variables. This hybrid approach (GVN-PRE—see below) can be implemented
based on an adaptation of the SSAPRE framework. Since each φ-function in the
input can be viewed as merging different value numbers from the direct predecessor
blocks to form a new value number, the �-function insertion step will be driven by
the presence of φs for the program variables. Several FRGs can be formed, each
being regarded as a representation of the flow and merging of computed values.
Using each individual FRG, PRE can be performed by applying the remaining steps
of the SSAPRE algorithm.

11.6 Further Reading

The concept of partial redundancy was first introduced by Morel and Renvoise.
In their seminal work [201], Morel and Renvoise showed that global common
subexpressions and loop-invariant computations are special cases of partial redun-
dancy, and they formulated PRE as a code placement problem. The PRE algorithm
developed by Morel and Renvoise involves bidirectional data-flow analysis, which
incurs more overhead than unidirectional data-flow analysis. In addition, their
algorithm does not yield optimal results in certain situations. A better placement
strategy, called lazy code motion (LCM), was later developed by Knoop et
al. [170, 172]. It improved on Morel and Renvoise’s results by avoiding unnecessary
code movements, by removing the bidirectional nature of the original PRE data-
flow analysis and by proving the optimality of their algorithm. Since lazy code
motion was introduced, there have been alternative formulations of PRE algorithms
that achieve the same optimal results but differ in the formulation approach and
implementation details [98, 106, 217, 313].

The above approaches to PRE are all based on encoding program properties in
bit-vector forms and the iterative solution of data-flow equations. Since the bit-
vector representation uses basic blocks as its granularity, a separate algorithm is

11 Redundancy Elimination 153

needed to detect and suppress local common subexpressions. Chow et al. [73, 164]
came up with the first SSA-based approach to perform PRE. Their SSAPRE
algorithm is an adaptation of LCM that takes advantage of the use-def information
inherent in SSA. It avoids having to encode data-flow information in bit-vector
form and eliminates the need for a separate algorithm to suppress local common
subexpressions. Their algorithm was the first to make use of SSA to solve data-
flow problems for expressions in the program, taking advantage of SSA’s sparse
representation so that fewer steps are needed to propagate data-flow information.
The SSAPRE algorithm thus brings the many desirable characteristics of SSA-based
solution techniques to PRE.

In the area of speculative PRE, Murphy et al. [206] introduced the concept of
fault-safety and used it in the SSAPRE framework for the speculation of dangerous
computations. When execution profile data are available, it is possible to tailor the
use of speculation to maximize runtime performance for the execution that matches
the profile. Xue and Cai [312] presented a computationally and lifetime optimal
algorithm for speculative PRE based on profile data. Their algorithm uses data-
flow analysis based on bit-vector and applies minimum cut to flow networks formed
out of the control-flow graph to find the optimal code placement. Zhou et al. [317]
applied the minimum cut approach to flow networks formed out of the FRG in the
SSAPRE framework to achieve the same computational and lifetime optimal code
motion. They showed their sparse approach based on SSA results in smaller flow
networks, enabling the optimal code placements to be computed more efficiently.

Lo et al. [187] showed that register promotion can be achieved by load placement
optimization followed by store placement optimization. Other optimizations can
potentially be implemented using the SSAPRE framework, for instance code
hoisting, register shrink-wrapping [70], and live range shrinking. Moreover, PRE
has traditionally provided the context for integrating additional optimizations into
its framework. They include operator strength reduction [171] and linear function
test replacement [163].

Hashed-based value numbering originated from Cocke and Schwartz [77], and
Rosen et al. [249] extended it to global value numbering based on SSA. The
partition-based algorithm was developed by Alpern et al. [6]. Briggs et al. [49] pre-
sented refinements to both the hash-based and partition-based algorithms, including
applying the hash-based method in a post-order traversal of the dominator tree.

VanDrunen and Hosking proposed A-SSAPRE (anticipation-based SSAPRE)
which removes the requirement of Conventional SSA Form and is best for pro-
gram representations in the form of triplets [296]. Their algorithm determines
optimization candidates and constructs FRGs via a depth-first, pre-order traversal
over the basic blocks of the program. Within each FRG, non-lexically identical
expressions are allowed, as long as there are potential redundancies among them.
VanDrunen and Hosking [297] subsequently presented GVN-PRE (Value-based
Partial Redundancy Elimination), which is claimed to subsume both PRE and GVN.

	11 Redundancy Elimination
	11.1 Why Partial Redundancy Elimination and SSA Are Related
	11.2 How SSAPRE Works
	11.2.1 The Safety Criterion
	11.2.2 The Computational Optimality Criterion
	11.2.3 The Lifetime Optimality Criterion

	11.3 Speculative PRE
	11.4 Register Promotion via PRE
	11.4.1 Register Promotion as Placement Optimization
	11.4.2 Load Placement Optimization
	11.4.3 Store Placement Optimization

	11.5 Value-Based Redundancy Elimination
	11.5.1 Value Numbering
	11.5.2 Redundancy Elimination Under Value Numbering

	11.6 Further Reading

