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Abstract

Object-based image analysis techniques give accurate
results when a good knowledge base is extracted from
remote sensing imagery. Data mining algorithms, espe-
cially the evolutionary process, can extract useful
knowledge that can be used in different fields. In this
paper, object-oriented classification was used, more
particularly, the object-based image analysis approach
(OBIA) is used to classify a large feature space composed
of a very high spatial resolution (VHR) satellite image.
The genetic programming (GP) concept was applied to
extract classification rules with an induction form. This
study aims to examine how data mining techniques based
on the GP method can help to discover knowledge and
extract classification rules automatically to illustrate well
this knowledge. These rules are expected to enrich an
anthology in the urban remote sensing domain. A com-
parison of the performance of three GP algorithms
(Bojarczuk_GP, Falco_GP, and Tan_GP) was made
using the JCLEC framework. Results showed two main
conclusions. The first showed that generated rules can
classify and extract useful knowledge from VHR satellite
data using GP algorithms. The second demonstrates that
the Bojarczuk model is efficient on accuracy classification
than the Falco and Tan models.
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1 Introduction

Knowledge-based systems (KBS) are becoming more and
more important in various domains, especially in
high-dimensional feature space where information is vari-
able, and knowledge in this context is still complex to pro-
duce [1]. Indeed, acquiring and representing knowledge is a
tedious process and the multiple steps involved in their
creation can be very different according to the studied
domain. This heterogeneity led to multiple questions and
propositions, and the expert is often lost when the time
comes to choose a solution. However, the advantages of
representing and storing domain knowledge are undeniable.
Indeed, it is then possible to produce intelligent systems
based on the use of the acquired knowledge and to better
explain and understand the domain under consideration.

In remote sensing, domain knowledge extraction is a
tedious task. This is due to the complexity of the feature
space, which is generally a satellite image with multiple
spectral bands. The 1980s saw the emergence of satellites
capable of producing high-resolution (HR) images between
30 and 10 m (Landsat-4, 1982; SPOT3, 1993). However, the
2000s appeared very high spatial resolution (VHR) satellite
images whose spatial resolution is less than 5 m (QuickBird,
2001; PLEADEES, 2011). VHR satellites currently make it
possible to obtain images with a resolution up to 0.5 m per
pixel on the panchromatic band. Therefore, these images
offer a much higher level of detail than HR images.

A new era has come to advance the semi-automatic
extraction of objects from digital images. In the remote
sensing field, multispectral imagery (MSI) captures reflected
radiation over a series of adjoining bands, covering a very
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large range of the electromagnetic spectrum for every pixel
in the image. In the last decade, a new series of high spatial
and spectral resolution imagery has become accessible and
used more in different fields. Such images with sub-metric
spatial resolution can provide features pertinent to the clas-
sification task, by enhancing accuracy and reducing spectral
confusion in some cases.

However, the classification methods used with high
spatial and spectral resolution data apply a new analysis
technique called object-oriented image analysis approach or
object-based image analysis approach (OBIA). These tech-
niques are usually based on the use of domain knowledge
[2]. The key issue in this approach is the obtainment of this
knowledge, which is usually implicit and not formalized.
Analysis methods must reduce the dimensionality of this
very high-dimensional feature space to make any classifi-
cation analysis more accurate [3, 4]. HR and VHR images
have been increasingly used for the classification of land use
land cover (LULC), but the spectral variation within the
same class, the spectral confusion between the different land
covers, and the shadow problem make per-pixel classifiers
less efficient. The object-oriented classification approach is
designed to deal with the problem of heterogeneity of the
environment; it no longer treats the pixel in isolation but a
group of pixels (objects) in their context [5].

The key parameter of the OBIA approach is the extraction
of primitive objects from raw images, where each object
corresponds to a group of homogeneous pixels. To recognize
objects (or using methods able to detect objects), several
techniques are generally based on the use of knowledge
related to spectral, spatial, and contextual properties (e.g.,
spectral and textural values of an object, shape, length, area,
form factor, etc.) [6].

About a decade ago, came the launch of the first software
package specializing in OBIA: a revolutionary development
in the remote sensing world that led to improvements within
a wide field of applications. Over the past few years more
packages have been developed, both specialized, and mod-
ules of existing image-analysis software.

A brief literature search reveals that publications in the
early period of OBIA (2000 to 2003/04) were dominated by
conference proceedings and “grey literature” but increasing
numbers of empirical studies published in peer-reviewed
journals have subsequently provided sufficient proof of the
improvements that OBIA offers over per-pixel analyses.
Figure 1 shows the increasing number of peer-reviewed
articles published, and the number was doubled between
2006–2008.

The dimensions of the features extracted from image
objects are much larger than pixels, which mainly contain
spectral-based information (e.g., mean, ratio, and standard
deviation). In object-based classification, hundreds of fea-
tures involving the spectral, geometry, and texture features

can be obtained from the image objects. However, large
amounts of features participating in classification always give
rise to the “complexity of dimensionality”, which decreases
the classification accuracy. As some features make contri-
butions to the classification and others have less influence on
the result, features are commonly divided into relevant fea-
tures, redundant features, and irrelevant features [2].

To yield better classification results, the irrelevant infor-
mation should be removed, as much as possible, and the
utilization of relevant information should be maximized.
Therefore, feature selection before the object-based classi-
fication of high-resolution remote sensing images is a pre-
requisite. After the redundant and irrelevant features are
removed, the training time is reduced, and the classification
efficiency can be improved [7].

In the literature, only a few works focus on the devel-
opment of a knowledge base to identify objects from remote
sensing data. However, building a knowledge base in this
context is not an easy task since the information required is
generally variant and not formalized. This paper is organized
into three sections as follows. In Sect. 2, the principles of
knowledge extraction from remote sensing data and its
relationship with GP were presented, as well as the algo-
rithms used to realize this study. The methodology and the
experiments were detailed in Sect. 3. Finally, Sect. 4 dis-
cussed the results and presented the concluding remarks.

2 Genetic Programming

Data mining technologies, e.g., fuzzy classifications [8],
object-oriented classification (based on multiresolution seg-
mented data) [7], per-pixel maximum likelihood [9], or
artificial neural networks [10], have been used in several
studies as a supervised or unsupervised remote sensing
classification technique [11, 12]. However, using data
characterized by huge volumes, high dimensionality, and
having spatial attributes will be a tedious task capable of
giving a result attended to be a suite. And of highly complex,
high-dimensional, diversified, and variant datasets that pre-
sent significant analysis challenges solving a problem auto-
matically has always been the main interest. It was an idea
that began in the late 1940s [13]. The domain of intelligent
systems has always aimed at producing systems with sup-
posedly intelligent behavior. GP is inspired by the design of
natural evolution and seeks to solve problems automatically.
An approach that requires intelligence if the same task is
accomplished by a human being, is none other than the
definition given by Arthur Samuel [13] on the purpose of
automatic learning and intelligent systems. GP is a method
inspired by the theory of evolution as it has been defined by
Darwin [14], in particular its biological mechanisms. It aims
to find programs that best meet a specified task. However,
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the GP concept allows the machine to learn, using an evo-
lutionary approach, to optimize the programs’ population.

Within the framework of GP from the first population of
stochastically generated programs and using operators
inspired by Darwinism, the GP evolves this population in a
stochastic way. By reiterating this process, it is hoped to make
the population converge toward solutions (programs) that
respond to the problem to be solved. The flowchart showed in
Fig.2 gives an idea of the general functioning of GP.

This diagram represents the operating cycle of a genetic
program. First, a base is implemented to be able to start
generating programs (initialization phase). Then, several
individuals that generate future generations are obtained. At
this time, a check is made to see if one of the solutions
offered by these individuals is satisfactory (Evaluation
Block). If no solution is suitable, a selection of the best must
be made to generate descendants using different techniques
like selection phase and crossover/mutation. Finally, these
descendants will come to replace the previous generation by
being, in turn, the parents, and the cycle then begins again
with the evaluation block. Roughly, in biology, the

information carried by a gene is called a genotype, and the
character expressed by this gene is called a phenotype [15].
By transposition in GP, a program can be seen from two
angles: genotypic, the form on which the genetic operators
apply, and phenotypic, the form in which the objective
function or fitness function will be evaluated. The most
common genotypic form in GP is the tree form, where each
program is encoded as a tree. Reference [16] used this form
to implement programs; it is the direct transposition of the
prefixed form, used for example by the Lisp language [16].

This paper is motivated by the works of [17, 18] in
analyzing and presenting the data structure of remote sensing
data as a knowledge base to extract useful classification
rules.

Finding a solid technique to extract knowledge from a
feature space (VHR images) has two advantages: (i) being
intuitively comprehensible to the user and (ii) being easily
interpretable by problem-domain experts.

The induction form is one of the powerful techniques
used in data mining techniques. Applying a rule-based sys-
tem using the statement IF (conditions) THEN (predicts
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Fig. 2 General flowchart of genetic programming concept
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class) is the challenge in this work. In the literature, there are
several rule induction algorithms to discover such classifi-
cation rules [19, 20]. A particularly famous strategy in
computer science consists of the sequential covering
approach, where in the essence the algorithm discovers one
rule at a time until (almost) all examples are covered by the
discovered rules (i.e., match the conditions of at least one
rule). In contrast, sequential covering rule induction algo-
rithms are mostly greedy, and they can perform a local
search in the rule space.

An alternative approach to discover classification rules
consists of using an evolutionary algorithm (EA), which
performs a more global search in the rule space. Indeed,
there are many EAs for discovering a set of classification
rules from a given dataset [212223–24].

3 Methodology and Experiments

All data mining tasks involve at least three steps: (1) data
preparation, (2) data analysis, and (3) decision-making. This
work consists of the three fundamental steps listed as follows:
first, the input data were preprocessed and prepared to extract
knowledge from an imagery of WorldView-2 satellite sensor
taken in 2011 [25]. The new knowledge base was analyzed to
identify the relation between attributes and reduce spectral
confusion in the dataset, and finally, GP was integrated as an
optimization technique capable to find new and innovative
classification rules. Figure 3 shows the complete processing
chain for the proposed classification approach.

3.1 Study Area

The study area is Rabat city, the political capital of Morocco,
located in the north-west of Morocco. Administratively, its
territory has an area of 118.5 km2, composed of the urban
municipality of Rabat, divided into five districts. At the last
census conducted in 2014, its population was 5,77,827,
making Rabat the seventh-largest city in the kingdom. With
its suburbs, it forms the second-largest agglomeration of the
country after Casablanca. Since June 2012, a group of city
sites is inscribed on the UNESCO World Heritage List as
cultural property. The heart of Rabat city is made up of the
old city, to the west, and along the seafront, there is a suc-
cession of modern neighborhoods, and to the east, along the
Bouregreg river. Between these two axes, going from north
to south, there are three main neighborhoods: The first oneis
Agdal, which is a very lively neighborhood of buildings
mixing residential and commercial functions, mostly inten-
ded for the middle classes. The second is Hay Riad, the
neighborhood with high-class areas that have experienced a

surge of dynamism since the 2000s, tending to become the
new business center of Rabat. The last one is the Souissi
neighborhood, consisting mainly of residential areas.

Hay Riad neighborhood made up of high standing houses
with modern architecture was the study area of this work,
where the roads are very clear, and the streets are also well
visible. Rooftops have a unified geometry as well as their
density allows a good segmentation of an input image.

3.2 Preprocessing of Input Data

The input data is generated mainly through a WorldView-2
satellite image which has eight multispectral bands: four
(4) standard colors (red, green, blue, and near-infrared 1) and
four (4) new bands (coastal, yellow, red edge, and
near-infrared 2) [26]. WorldView-2 products are available as
part of the DigitalGlobe Standard Satellite Imagery products
from the QuickBird, WorldView-1/-2/-3, and GeoEye-1
satellites [27]. With the additional four spectral bands,
WorldView-2 offers unique opportunities for remote sensing
analysis of vegetation, coastal environments, agriculture,
geology, and many other fields. This satellite image is
characterized by high spatial resolution with 4 m for multi-
spectral (MS) bands, and 0.5 m for the panchromatic
(PAN) one. With its enhanced agility, WorldView-2 is
capable of acting like a paintbrush, sweeping back and forth
to collect very large areas of multispectral imagery in a
single pass. The sensor can collect nearly 1 million km2

every day; its high altitude allows it to typically revisit any
place on earth in 1.1 days.

Radiometric calibration

As a preprocessing step, a radiometric correction was used to
prepare the data for segmentation and extraction of the
knowledge base. Radiometric correction of MS and PAN
data was used to calibrate aberrations in data values due to
specific distortions from atmosphere effects (such as haze) or
instrumentation errors (such as striping) [21].

DigitalGlobe sensor products (image pixels) are radio-
metrically corrected image pixels. Their values are a func-
tion of how much spectral radiance enters the telescope
aperture and the instrument conversion of that radiation into
a digital signal [28]. Therefore, image pixel data are unique
to each sensor.

A calibration step has been performed (at provider level)
and these data are provided in the *.IMD metadata file that is
delivered with the imagery. Since its launch, DigitalGlobe
performs an extensive vicarious calibration campaign to
provide an adjustment to the prelaunch values. The top of
atmosphere radiance (L) in units of [Wµm−1 m−2 sr−1] is
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then calculated for each band by converting from digital
numbers (DN).

Equation (1) is used to convert the at-sensor radiance to
top of atmosphere reflectance where calculations are per-
formed independently for each band and pixel:

qkpixelBand ¼
LkpixelBand � dES2 � p
EsunkBand � cos Hð Þs

ð1Þ

• “L” is at-sensor radiance calculated from data provided in
.IMD file;

• “dES” is the Earth–Sun distance in astronomic unit;
• Esun is the band-averaged solar exoatmospheric

irradiance;
• H is the solar zenith angle (90-meanSunEl from IMD

file).

Pan-sharpening

The second preprocessing step is the pan-sharpening of the
data, where this technique was used to enhance spatial res-
olution. Recently, several applications, such as land-cover
classification, feature extraction, image segmentation, and
change detection, require both spatial and spectral images for
fine features detection in suburban or urban scenes. The
literature shows a large collection of pan-sharpening

methods developed and used to enhance spatial resolution
and preserve spectral information. In this study, NNDeffuse
algorithm developed by [29] was used to fusion MSI and
PAN data.

Segmentation

Segmentation is a main preprocessing step that allows the
user to identify the object that has similar spectral charac-
teristics pixels. It is the process of completely portioning a
scene (in this case remote sensing image) into
non-overlapping regions (segments) in scene space. In the
segmentation process, all objects are outlined without any
class label. Usually, the outlined objects should have one
specific object, to generate appropriate segments capable to
distinguish semantic objects (Fig. 4).

Many powerful algorithms have been developed within
pattern recognition and computer vision since the 1980s,
where research led to successful applications in disciplines
like medicines or telecommunication engineering. However,
their application in the fields of remote sensing and pho-
togrammetry was limited to special purpose implementations
only. Nevertheless, this limitation is due to the complexity of
the underlying object models and the heterogeneity of sensor
data in use. With the appearance of high spatial resolution

Fig. 3 Processing chain from data preparation to rule-based classification
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satellite data as well as multisource data sources, the seg-
mentation methods have become evident again, and signif-
icant progress has been made with the introduction of the
first commercial and operational software product (eCogni-
tion by Definiens-Imaging) in 2000 [30].

Segmentation methods follow two strongly correlated
principles of neighborhood and value similarity. A water-
shed algorithm (WA) for segmentation is used. This method
integrates duplicate neighboring areas based on a combina-
tion of spectral and spatial information. The WA transform is
based on the concept of hydrologic watersheds, where basins
fill up with water starting at the lowest points, and dams are
built and water coming from different basins would meet.
The process stops when the water level has reached the
highest peak in the landscape [31]. A similar process is
applied in digital imagery using the luminosity of the pixel;
the darker the pixel, the lower the elevation. A watershed
algorithm sorts pixels by increasing the grayscale value and
then begins with the minimum pixels and “floods” the
image, partitioning the image into regions with similar pixel
intensities based on the computed watersheds. The result is a
segmented image, where each region is assigned to the mean
spectral values of all the pixels that belong to that region.

In this study, the Full Lambda-Schedule algorithm
developed by [32] is used to merge segments. The algorithm
iteratively merges adjacent segments based on a combination
of spectral and spatial information as mentioned above.
Figure 4 shows results after segmentation over Hay Riad
district where individual buildings are surrounded as well as
the green spaces (of grass and trees) and road networks.

3.3 Feature Extraction

All segmented objects from VHR images have spectral,
spatial, and textural features, to have an accurate classifica-
tion process. More than one attribute characterizing an object
must be found to explain this accurate classification; for
instance, shadow class has a high spectral value in
near-infrared bands, and grass has a high rectangularity index
in urban areas with a coarse texture and mean NDVI values.
Combining several distinctive attributes for each class will
facilitate the extraction of useful classification rules.

After the segmentation process, attributes of each segment
were calculated and extracted using a feature extractionmodule
implemented in ENVI 5.0 software [33]. Attributes were

Fig. 4 Example of Hay Ryad district (in Rabat city—Morocco) showing WorldView-2 image before and after segmentation process
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categorized as spatial, spectral, and textural attributes. Addi-
tional data was calculated using a normalized band ratio (in-
frared and red) and calculation of hue, saturation, and intensity
(HSI) attributes. The database extracted from ENVI’s module
was a *dbase file composed of 111 attributes. Details about
calculated attributes can be found in [34]. A number of 590
segments as a training set was used, where the proposed classes
are shown as follows (Shadow, Built up_Roofs, Built
Up_Roads, Vegetation_Grass, Vegetation_Trees, Bare soil,
and Water).

In Fig. 4, there are three levels of object classes. The first
level contains the main component of the urban ecosystem
(Built up, Water, and vegetation). In the case of VHR image,
the shadow class was added due to the high buildings and
trees. The second level of image object contains derived
information from the three components of the first-class
object. In the last level (3), there are more details about one
specific class or sub-classes (Fig. 5).

Table 1 resumes all calculated and extracted attributes
from a segmented image. All attributes that were in the
rule-based system are implemented in ENVI software to
classify the input image. Attributes were divided into two
types of bands (spectral and derived bands), respectively,
spectral indices and calculated attributes such as spectral,
geometric, and textural attributes.

3.4 Feature Selection

In modern machine learning algorithms, there are methods
used to reduce dimensionality [35, 36]. In general, these
tasks are rarely performed in isolation. Instead, they are
often preprocessing steps to support other tasks. In literature,

there are two main strategies of dimension reduction:
(i) Feature selection techniques that are typically grouped
into three approaches, namely filter, embedded, and wrapper
methods that extract subsets from existing features, and
(ii) feature extraction (e.g., principal component analysis—
PCA) [37]. The key difference between feature selection and
extraction is that feature selection keeps a subset of the
original features while feature extraction creates brand new
ones.

In this paper, the selection of attributes was made for the
supervised classification. In this context, the objective of
selection is finding an optimal subset of attributes that can be
composed of relevant attributes and must seek to avoid
redundant ones. In addition, this set must make it possible to
best meet the objective set, namely the accuracy of learning,
the speed of learning, or even the applicability of the pro-
posed classifier.

ReliefF-based feature selection method was used in this
paper, where it takes a filter method approach [38]. The
proposed method was used to calculate a feature score for
each feature. This score can be applied to rank and select
top-scoring features. Many researchers adopted the ReliefF
algorithm to preliminary filter high-dimensional features in
the feature database [38, 39].

By applying the ReliefF method on the input dataset,
results made it possible to select the 20 best attributes of
which it proposed bands 6, 7, and 8, which are, respectively,
red edge, near-infrared—NIR-1, and near-infrared—NIR-2.
Also, the hue, saturation, and intensity (HSI) transformation
from RGB bands were highly ranked and used in the new
filtered dataset.

Fig. 5 Object classes hierarchy used in this study
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3.5 Generating Classification Rules

In this paper, knowledge is presented as multiple IF–THEN
rules in the decision rules list. Such rules state that the
presence of one or more conditions (antecedents) implies or
predicts the presence of other conditions (consequents).
A typical rule has the form of: If X1 and X2 and … Xn as
conditions THEN Y, where Xi 2 (1, 2,..,n) is the antecedent
that leads to the prediction of consequent Y. The reason why
classification rules were used instead of the decision tree is
because each rule can be seen as an independent piece of
knowledge. Thus, newly generated rules can be added to an
existing ruleset without disturbing existing ones. Multiple
rules can be concatenated to form a set of decision rules.
This last is usually listed according to their accuracy, where
the best rule was listed first.

The Java Class Library for Evolutionary Computation—
JCLEC Framework developed in Java Environment was
used. JCLEC is a representative example of an evolutionary
optimization framework designed for one main objective, to
maximize its reusability and adaptability to new paradigms
with a minimum of programming effort [40, 41]. The
implemented classification module is an intuitive, usable,
and extensible open-source module for GP classification
algorithms [42]. This module is a part of open-source soft-
ware for researchers and end-users to develop and use
classification algorithms based on GP and grammar-guided
genetic programming (3GP) models [43], an extension of GP
which makes the knowledge extracted more expressive and
flexible using a context-free grammar.

JCLEC classification module houses three 3GP classifi-
cation algorithms listed as follows: (Bojarczuk_GP [44],
Falco_GP [21] and Tan_GP [45]). JCLEC extends a class
called PopulationAlgorithm. This parent class defines the
main steps of the evolutionary process. To initialize the
population, a component is triggered with the number of
solutions to be created as a parameter; in this case the
number of solutions is equal to the n class in the dataset.
Each solution individual should contain a fitness object
representing its quality.

Bojarczuc Model

The author used GP standard operators to evolve decision
trees using a defined syntax. Bojarczuk used a GP-based
approach, where a set of functions applicable to different
types of attributes is defined to represent the rules as a
disjunctive normal form. Several constraints are placed on
the tree structure to express a valid rule. This type of GP is
also referred to as constrained syntax GP [44, 46]. The
fitness function used in the Bojarczuk model evaluates the
quality of each individual (a rule set where all rules predict
the same class) according to two basic criteria, namely its
predictive accuracy and its simplicity [47]. Implementation
of this fitness function in the JCLEC module is a subclass
called BojarczukEvaluator. The fitness function in this case
evaluates the confusion matrix for each of the data classes
[44].

Falco Model

The author used GP to evolve comprehensible simple rules
by combining the parallel searching ability of genetic pro-
gramming. Falco used a classifier tree that is constructed
using logical functions and attribute values. A grammar has
been designed that can represent such rules. The author has
shown that the evolved rules are comprehensible, emphasize
discriminating variables, and achieve compatible perfor-
mance as compared to other classification algorithms on
benchmark datasets [21]. The fitness function used in this
case evaluates the number of prediction errors for the class
of the current algorithm’s execution [21].

Tan Model

Tan model is based upon a modified version of steady-state
GP in [48]. The fitness function evaluates the quality of each
rule or individual, which is based on the evaluation function
defined in Eq. (2). In other words, the fitness function
evaluates the confusion matrix for the data class of the
current algorithm’s execution.

Table 1 Extracted parameters
from preprocessed satellite image

Attributes Class attribute

Spectral bands Spectral information was calculated using the 8 input bands where (Min, Max,
Mean, and Standard Deviation was calculated)

Derived bands Hue—Saturation—Intensity

Spectral Indices Band ratio using Red and NIR bands

Geometric
calculation

12 variables are calculated

Textural
calculation

4 variables are calculated
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Fitness ¼ Tp
TpþW1 � Fn �

Tn

TnþW2 � Fp ð2Þ

where Tp, Fp, Tn, and Fn stand for true positive, false
positive, true negative, and false negative, respectively. W1
and W2 are the weights; they enable the dependency of fit-
ness function on different concepts.

Nevertheless, the performance of three modules has been
tested and validated in the following section with statistical
tests like R-squared, p-value, and ROC area.

4 Results and Discussion

GP models interpretation

The models used in this study generated explicit rules to
simplify knowledge from high-dimensional feature space.
Rule induction technique that creates the “If—Then—Else”
type was used; it generates rules from a set of input vari-
ables, and it can work with both numerical and categorical
values. In this case, an inductive prediction that concludes a
future instance from a past sample is as follows:

IF (antecedents)1 THEN class1

ELSE IF (antecedents)2 THEN class2

ELSE default class

All the models proposed the same inductive structure
with a variety of attributes that were candidates to generate
an optimal solution and help the user in the choice of the
most representative attributes in the search space. The
interpretation of these choices is based on three main classes:
shadow, roofs, and trees.

The rules below show an example for the result of
Bojarczuk’s model, presented in the inductive form. For
shadow class, the algorithm proposed 2 bands, respectively,
the blue and near-infrared band 2—(NIR-2). Dark objects,
which confound many shadow detection algorithms, often
have much higher reflectance in the NIR band. The blue
band is also considered to be an excellent choice because
several studies have shown that shadow pixels are illumi-
nated by the predominantly blue, diffuse sky radiation.
Bojarczuk model suggested a combination between NIR-2
and blue band where the real interpretation of the rule is IF
average value of blue band < = 19,188 AND the average
value of NIR-2 band < = 37,71,600 THEN objects belong to
shadow class. On the other hand, Falco’s model proposed
the texture of band 6 (red-edge band) to represent the sha-
dow class. The red-edge band is a division of the red
spectrum between 700 and 750 µm. However, the red band

reflects a small part of the dark pixels which is considered a
poor choice for this class. The Tan model suggested a
complicated rule composed of four conditions and two log-
ical operators (“AND” & “AND NOT”); the NIR-1 and
NIR2 bands, the ratio between the red band and NIR (which
is the ratio of the Normalized Difference Vegetation Index—
NDVI). NDVI band should not be taken into account
according to the Tan model using the logical operator (AND
NOT), and finally the minimum value and the NIR-1 band.
This complexity can cause interference between conditions.

IF (AND < = AVG_B2 191,880,007 < = AVG_B8 377,160,068)

THEN (Class = Shadow.

ELSE IF (AND < = AVG_B9 -0,608,389 > TXAVG_B7

430,725,437)

THEN (Class = vegetation_2)

ELSE IF (AND > AVG_B2 191,880,007 < = AVG_B8

377,160,068)

THEN (Class = water)

ELSE IF (AND < = MAX_B9 -0,317,148 AND < = TXAVG_B7

430,725,437 > MIN_B10 107,685,121)

THEN (Class = Vegetation_1)

ELSE IF (AND < = TXRAN_B11 0,083,049 AND < = TXAVG_B7

430,725,437 > MAX_B9 -0,317,148)

THEN (Class = Built_up_1)

ELSE IF (AND > AVG_B9 -0,608,389 > AVG_B8 377,160,068)

THEN (Class = Built_up)

ELSE IF (AND < = TXRAN_B11 0,083,049 AND < = MIN_B10

107,685,121 < = TXAVG_B7 430,725,437)

THEN (Class = Bare_Soil)

ELSE (Class = Built_up)

For buildings and rooftops, Bojarczuk’s model proposed
the average value of NDVI band and NIR-2 band. Buildings
and rooftops have particular characteristics relative to other
features. For example, the shape of rooftops approximates a
rectangle, the area of rooftops of residential buildings is
within a certain range, compared to industrial or other types
of buildings. In our case, rooftops of interest are relatively
dark, so they should have a low average pixel value ð\0.4).
However, NDVI would be a good criterion to start with in
this example, where the buildings have smaller NDVI values
than vegetation.

The Falco model suggested the average value of the blue
band and the minimum of the NIR-2 band. The near-infrared
bands may contain low reflectance for dark pixels, which
may meet our needs but not with great certainty. Dark pixels
can also exist in the roads and bare ground classes. The Tan
model once again proposed a rule with three conditions, but
very interesting attributes. He suggested the minimum val-
ues for the NDVI band (which is a very good choice), the
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average texture values for NIR-1 band, and texture range for
band 11 (the HSI transformation of RGB bands).

In the case of trees class, the Bojarczuk model proposed
the maximum value of the NDVI, which was predicted, and
the mean texture of the NIR-1 band and the minimum value
of the band 10 (which is the derived HIS transformation
from RGB bands). In the literature, it is known that trees are
more textured than grass, so the choice of the mean texture
within the infrared band is well done for the Bojarczuk
model.

In the case of the Falco model, the algorithm proposed
NDVI combined with the coastal blue band (band 1). This
combination can lead to inaccuracy of the generated rule due
to the coastal blue band reflectance values. Thus, the Tan
model has proposed the minimum value of band 10.

4.1 Validation Metrics

As a validation method, the confusion matrix was used to
evaluate classification accuracy, which is a common way of
presenting true positive (TP), true negative (TN), false
positive (FP), and false-negative (FN) predictions. Those
values are presented in the form of a matrix where the Y-axis
shows the true classes while the X-axis shows the predicted
classes.

Table 2 shows that the Bojarczuk model’s classification
gives a diagonal matrix, except for the confusion between
(roads and roofs) classes, a large part of the roofs has been
classified as roads. This is generally due to the spectral
properties of the infrared band where both classes contain
dark pixels. Also, a spectral confusion between roofs and
water areas has been provoked. This is due generally to the
low reflectance of water pixels in some areas. A second
confusion has been shown in Table 3 with the trees and grass
classes. This confusion is due to the spectral rapprochement
between trees and grass classes in the NDVI index.

The Falco and Tan models show the same confusion
(roads and roofs) with a slight difference between the
number of misclassified lines.

4.2 Statistical Metrics

The confusion matrix was presented in Table 3 to evaluate
the behavior of the three models in terms of classification
accuracy. On the other hand, it can be more flexible to
predict the probabilities of an observation belonging to each
class in a classification problem rather than predicting clas-
ses directly. This flexibility comes from the way that prob-
abilities may be interpreted using different thresholds that
allow the model to trade off concerns in the errors made by
the model, such as the number of false positives compared to

the number of false negatives. This is required using models
where the cost of one error outweighs the cost of other types
of errors.

ROC areas and precision-recall curves (PRC) were used to
explain the probabilistic forecast for binary (two-class) clas-
sification predictive modeling problems [42]. The metrics are
used to evaluate the performance of the three models. Preci-
sion can be understood as a measure of accuracy or quality,
while recall is a measure of completeness or quantity [49].

A measure that combines precision and recall in their
harmonic mean, called F-measure or F-score, is used to
estimate model performance. However, one rule is used: the
higher the score, the better the model. This parame-
ter combines precision and recall into one metric. Table 3
shows that Bojarczuk has the best F-score for all classes,
followed by Falco and Tan. Another measurement parameter
that distinguishes the performance of several models is the
ROC area. In general, ROC curves are based on the rate of
true positives (TP Rates) and the rate of false positives (FP
Rates). These are relationships that do not depend on the
distribution of classes. This robust method eliminates the
need to know the costs of classification and the distribution
of classes. To calculate the points of a ROC curve, several
evaluations of a logistic regression model are performed by
varying the classification thresholds, but this would be
ineffective. In other words, the AUC provides an aggregated
measure of performance for all possible classification
thresholds. AUC can be interpreted as a measure of proba-
bility for the model to classify a random positive example
above a random negative example. Table 3 shows the AUC
values for the three models for all classes. Bojarczuk’s
model showed again a great score compared to other models.

In general, a value of ROC-AUC greater than 0.7 is a
good representative value for a model. However, Table 3
shows that the three models were able to classify the seven
classes with a score beyond 0.7, except for the road and trees
classes in the Falco model. It seemed, however, that the
Falco model is unable to distinguish between these two
classes precisely. A second anomaly is noticed between
(bare soil) and (roads), where the Tan model found difficulty
in classifying these two instances correctly.

It is highly recommended to use precision-recall curves as
a supplement to the routinely used ROC curves to get the full
picture when evaluating and comparing tests. It is used less
frequently than ROC curves but as we shall see PRC may be
a better choice since the current dataset contains imbalanced
data. Since precision-recall curves do not consider true
negatives, they should only be used when specificity is of no
concern for the classifier. In other words, the PRC area
represents a different trade-off which is between the true
positive rate and the positive predictive value.

PRC is simply a graph with precision values on the y-axis
and recall values on the x-axis. In other words, the PRC
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contains TP/(TP + FN) on the y-axis and TP/(TP + FP) on
the x-axis. Both precision and recall are important metrics to
evaluate the performance of the binary classification model.
The corresponding PRC values in Table 3 show the loss of
precision, even the ROC-AUC area of bare soil class that
was 0.80 in the Bojarczuk model, barely touches on 0.45
precision. This deficit allows concluding that even higher
ROC-AUC can hide a lot of imprecision in some cases.
Falco and Tan models show much lower values in the PRC
area.

Finally, a weighted average value of all metrics shows
that the Bojarczuk model had high accuracy followed by
Tan and Falco. The performance evaluation of the three
models with the application of the AUC-ROC curve
(specificity vs sensitivity) and PRC demonstrates that the
Bojarczuk model is efficient than the Falco and Tan models.

There is a correlation between statistical metrics and
attributes generated in the proposed rules. The model that
performed well in terms of statistical attributes is the same
model that proposed good rules. Based on developed

Table 2 Confusion matrix for
the Bojarczuk, Falco, and Tan
models

Confusion
matrix

Bare
soil

Grass Road Roofs Shadow Trees Water

Bojaczuk
model

Bare soil 42 2 9 10 0 3 0

Grass 0 110 0 0 0 4 0

Road 1 0 30 2 1 0 0

Roofs 8 1 27 72 6 0 15

Shadow 3 0 2 1 51 5 0

Trees 11 18 3 4 8 61 0

Water 0 1 0 1 0 0 70

Falco model Bare soil 57 0 0 8 0 1 0

Grass 16 98 0 0 0 0 0

Road 25 0 1 4 0 0 4

Roofs 46 4 0 76 1 0 2

Shadow 32 0 0 0 26 4 0

Trees 65 7 0 1 0 32 0

Water 8 0 0 1 1 0 62

Tan model Bare soil 19 1 15 17 7 6 1

Grass 3 105 1 3 0 2 0

Road 1 0 11 11 10 0 1

Roofs 2 3 11 102 3 1 7

Shadow 0 0 2 4 40 12 4

Trees 4 13 1 1 14 72 0

Water 1 1 1 0 0 0 69

Table 3 Evaluation parameters
of the three models

– Bojarczuk Faclo Tan

ROC
Area

PRC
Area

F-Score ROC
Area

PRC
Area

F-Score ROC
Area

PRC
Area

F-Score

Bare
soil

0.80 0.45 0.64 0.75 0.21 0.36 0.64 0.24 0.40

Grass 0.95 0.81 0.90 0.91 0.80 0.88 0.95 0.80 0.88

Roads 0.90 0.38 0.57 0.52 0.08 0.057 0.64 0.12 0.28

Roofs 0.75 0.54 0.65 0.77 0.59 0.70 0.85 0.63 0.76

Shadow 0.90 0.65 0.80 0.70 0.45 0.57 0.80 0.39 0.58

Trees 0.78 0.56 0.68 0.64 0.39 0.45 0.82 0.59 0.72

Water 0.97 0.80 0.90 0.93 0.80 0.88 0.96 0.81 0.90
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expertise in choosing the right attributes (spatial, spectral,
textural, or even derived products such as NDVI), the
interpretation of the rules generated by Bojarczuk’s model
shows a good choice of these attributes (Fig. 6).

In this paper, the evaluation of the models was limited at
the level of their statistical metrics. Execution of the rule
classification has shown that the models can extract each
class separately from the other classes; in other words, the
classification rules generated by the three models can make a
good extraction of one class at a time. Tests performed in the
ENVI software, using its feature extraction module, have
shown that applying the rule to a single class is capable to
improve accurately extracting the class.

5 Conclusion

The performance of the evolutionary approach was tested;
particularly, genetic programming is used to extract explicit
knowledge from VHR satellite images. Genetic program-
ming algorithms have shown their performance in explicit
knowledge extraction, especially in a complex feature space.

Genetic programming has shown its ability to simulate
human expertise in the choice of the most representative
variables to apply a rule-based supervised classification.
Despite advances in the development of various proposed
algorithmic models, the evolutionary approach is still unable
to detect a precise threshold value for a given class.

However, a perspective can be retained from this work,
focusing on strengthening the algorithmic model so that it
can detect more accurate threshold values. This is feasible if
a large amount of training data is given, as well as elimi-
nating the preprocessing part that allows filtering of vari-
ables that have more influence on the feature space.
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