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Abstract

Accurate and reliable lithological mapping through
satellite-borne remote sensing data and image classifica-
tion approaches has a critical role since it can automat-
ically and promptly identify lithological units over large
areas. Most available Pixel-Object Based comparative
classification studies have been applied to land use land
cover (LULC) studies; however, this research aims to
evaluate and compare the performance of these digital
classification methods in the field of geological mapping
in semi-arid areas, by integrating spectral bands and
neo-bands, particularly the Minimum noise fraction
(MNF) and the principal component analysis (PCA), of
Sentinel-2A satellite imagery, to map the southern of
Skhour Rehamna which is located at the western
Moroccan Meseta. The analysis results from two different
methods, namely, pixel-based image analysis (PBIA)
with k-nearest neighbour (K-NN) and Random Forest
(RF) machine learning algorithms (MLAs), and Geo-
graphic Object-Based Image Analysis (GEOBIA) were
assessed and compared. PBIA method involved selection
of training areas whether it was k-NN or RF MLAs, and
produced lithological maps that exhibit “salt and pepper”
effects as well as problems associated to delineating
accurate lithological boundaries, while GEOBIA
approach involved multi-resolution segmentation step
where scale, shape and compactness parameters should be
adjusted as accurate as possible, in order to segment the
image into homogeneous and meaningful regions so that
the resulted samples were classified using Standard
Nearest Neighbour algorithm. Therefore, the resulting
lithological maps were assessed by comparing both
techniques using confusion matrix, overall accuracy
(OA) and Kappa coefficient (K). The results show that

the GEOBIA approach had higher overall agreement
(83.46% OA and 0.76 K) than RF (81.92% OA and
0.72 K) and k-NN (80.79% OA and 0.70 K) PBIA
approaches. Overall, the results clearly indicate the
potential of GEOBIA technique for lithological mapping
applications to produce more realistic maps.
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1 Introduction

Nowadays, the use of remotely sensed spectral data has
become a very powerful and popular technique for geolog-
ical mapping, specifically in arid and semi-arid areas [1–4],
due to its advantages in terms of cost efficiency, accuracy
and time consuming in discriminating lithological units
automatically over vast regions.

In the data side, the development of multi-spectral remote
sensing technology has revolutionized the techniques to
extract information about earth’s surface [5]. Optical remote
sensing imagery, including both spaceborne and airborne
sensors, differs in spectral, spatial and temporal resolutions.
Since the selection of suitable earth observation (EO) datasets
is considered as the first essential step for a successful image
classification [6–8], the Sentinel-2 multispectral imager
(MSI) developed by the European Space Agency (ESA) have
shown a great potential for lithological mapping and mineral
exploration in last decades, due to its high spatial and spectral
resolutions compared to Landsat and SPOT sensors datasets
especially in the VNIR region [9, 10].

Previous studies evaluate the impact of remotely sensed
data and the fusion of SAR and optical datasets on litho-
logical mapping [11], otherwise the selection of a suitable
digital image classification is also a fundamental process to
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produce and update geological maps by relating pixel values
to lithological units present on earth surface. Most of the
approaches used to produce lithological map of a region use
either pixel-based image analysis (PBIA) [12, 13] or Geo-
graphic Object-Based image analysis (GEOBIA), also ter-
med as Object-Based image analysis (OBIA) [14].

The most common approach utilized for this target is
PBIA approach, and it consists on analysing and distin-
guishing the closest match between spectral information of
each pixel and the single ground class apart from [15]
without examining the contextual, textural and spatial
properties associated to the pixel of interest [16]. A wide
range of classification methods has been applied for this
purpose; it can be categorized by its statistical underly-
ing assumptions (e.g., parametric vs. non-parametric), the
way in which elements are classified (i.e., per-pixel, and
subpixel), or the requirement of collecting representative
endmember samples (e.g., supervised vs. unsupervised) [17].
The use of machine learning algorithms (MLAs) is influ-
enced by many factors, including the selection of the right
training samples, the choice of the ideal features and opti-
mization of training parameters [18], which leads per-pixels
classification algorithms more challenging [19, 20].

Numerous geoscientific studies have used PBIA MLAs
especially in lithological mapping and mineral exploration
[17, 21].

In contrast to PBIA classification methods that assign a
class directly to individual pixels and cause problems asso-
ciated with heterogeneity of earth surface and solar illumi-
nation angle that occur some drawbacks such as “salt and
pepper” noise and topographic unfavourable effects [22]
especially with high resolution images such as Sentinel-2
image with 10 m spatial resolution, GEOBIA approach has
been developed to improve the deficiency of PBIA by
introducing in addition to spectral characteristics, the spatial
textural properties such as texture, shape, colour, size and
association between the neighbouring objects [23], and these
by using an additional critical stage in the classification
process of this approach which is the multiresolution seg-
mentation technique that aggregate like-pixels into homo-
geneous meaningful objects with similar spectral, textural
and spatial information, and then assign the category of each
feature by using classifiers, in this study the standard nearest
neighbour classifier (SNN) was applied.

Several researches have applied GEOBIA approach for a
variety of applications, including land use land cover map-
ping (LULC) [24, 25], lithological mapping [26], change
detection [27], landform mapping [28], urban mapping [29],
crop and vegetation classification [30, 31], with many
studies demonstrated that GEOBIA approach produced a

higher thematic classification accuracies than the traditional
PBIA approaches [32, 33].

This study has been structured into two parts, the first
consist on evaluating the performance of the supervised
non-parametric PBIA machine learning algorithms, includ-
ing Random Forest (RF) and k-Nearest Neighbour (k-NN),
while the second part provides a more complete evaluation
of GEOBIA and PBIA classification approaches for litho-
logical mapping in the southern part of Skhour Rehamna,
situated in the western Moroccan Meseta, using Sentinel-2
imagery.

2 Location and Geological Settings
of the Study Area

Skhour Rehamna is an inlier of the Paleozoic and Paleo-
proterozoic basement that forms the Hercynian Rehamna
massif (Central Morocco) to the north and the Jebilet to the
south. In the division of the Hercynian chain of Morocco,
this region belongs to the western Moroccan Meseta, where
erosion dissects the sub-tabular Cretaceous-Eocene cover of
the Gantour Plateau, more precisely located on approxi-
mately 100 km from Marrakech, crossed from north to south
by the A7 highway and the No. 9 principle road linking
Casablanca to Marrakech [34].

The focus of this research is a region along the southern
of the Paleozoic massif of Skhour Rehamna that lies between
the meridians 7°54′55″ and 7°43′50″ west and the parallels
32°22′30″ and 32°14′39″ north, as highlighted in Fig. 1
below, in order to analyse more precisely the results
obtained.

The study area (Fig. 2) is made up of stacked mica schist
formations attributed to the Devonian (the Unit of Ouled
Hassine) [35] that correspond to a pelitic series with six
intercalations of quartzites and Metabasite and to the Pale-
oproterozoic (Lalla Tittaf Formation) [36], which contain
metapelites and semipelites with intercalations of metaba-
sites, orthogneiss, calcschists and marbles between the two
lies the unit of Dalaat el Kahlat, which the age remains
unknown [34]. The small granitic intrusions of Ras el Abiod
are arenized from Pliovi lafranchien and expressed at the
surface as a large area of thermal metamorphism. The
Maastrichtian is directly transgressive on the mica schists
and the Permian in the southern part of the map region,
creating a cuesta clearly dominating the Paleozoic inlier.
This is the plateau where the phosphates of Benguerir are
mined [34].
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Fig. 1 Location of the southern of Skhour Rehamna (Google Earth, resolution 0.5 m) on the map of the geological domains of Morocco
(modified by Michard et al. 2010)

Fig. 2 Geological map of the study area (realized by the group BRGM-CID) published in 2004
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3 Materials and Methods

3.1 EO Datasets Properties and Pre-processing

The satellite imagery source used in this study is Sentinel-2A
product carry on board multispectral imaging instruments
(MSI) with 13 wide-swaths spectral bands in the visible near
infrared (VNIR) and short-wave infrared (SWIR) [37] and
high to moderate spatial resolution ranging from 10 to 60 m
[38, 39]. The VNIR spectral bands have a spatial resolution
of 10 m which makes this product involve the potential for
detailed exploration of earth surface, the infra-red bands
have 20 m, and the three atmospheric corrections have 60 m
spatial resolution [40].

In the following study we opted Sentinel-2A (Level 1C)
imagery acquired on 29 October 2017. In order to achieve
the level desired by the user, Sentinel-2 MSI products
undergo multiple stages of processing; for this purpose the
ESA Sen2Cor plugin available on the Sentinel Application
Platform (SNAP) [37] was used to process reflectance image
bands from Level 1C Top of Atmosphere (TOA) product, to
Level 2A Bottom of Atmosphere (BOA) Sentinel-2 imagery,
by applying Terrain and atmospheric corrections. Due to the
low spatial resolution (60 m) and the sensitivity to the
clouds and aerosol, spectral bands 1, 9 and 10 were omitted
in this research. The remained bands with spatial resolution
of 20 m (5, 6, 7, 8a, 11, 12) were cubically resampled to
10*10m2 spatial resolution to reach the same resolution as
VNIR bands (2, 3, 4 and 8). Finally, all the bands were
re-projected to the UTM (Universal Transverse Mercator
projection) WGS84 in zone 29 N coordinate system.

3.2 Methodology

At a time when many innovative classification approaches
were already produced, the Sentinel-2 satellite was launched.
These approaches are based on pixels [41, 42] and objects
[14, 43, 44]. To find the optimal method for the classification
assessment of lithological units in the selected region using
Sentinel-2 imagery, two typical machine learning algo-
rithms, particularly RF and k-NN, were commonly applied
and compared to GEOBIA approach. For the purpose of
ensuring more diagnostic spectral features of the exposed
rock units, numerous neo-bands extracted from
Eigen-space-based algorithms in particular, the Minimum
noise fraction (MNF) and the principal component analysis
(PCA) were layer-stacked to Sentinel-2 spectral bands.

An outline of the methodology used in this study is
demonstrated in the flow diagram (Fig. 3). However, the
following sections described the data processing details,
classification techniques applied in this study and subse-
quent statistical evaluations.

Spectral Features Analysis. In general, multispectral
limited channels provide a collection of mixed-pixels rep-
resenting undistinguishable ground features [45–47].
Therefore, this challenge is overcome through dimension-
ality reduction of MSI bands using principal component
analysis (PCA) and Minimum noise fraction (MNF) [48].

Principal Component Analysis (PCA). This transforma-
tion is a multivariate statistical and data reduction procedure,
commonly employed for geological mapping [49–53]. In
order to highlight and enhance spectral information related
to specific rock unit [54], PCA can be applied to MSI

Fig. 3 Workflow of the methodology applied in this study
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datasets by transforming the original and high dimensional
set of features to an uncorrelated lower dimension output
bands through the calculation of covariance matrix, eigen-
vector and eigenvalue pairs as well as data orthogonal pro-
jection [55]. The dimensionality of the datasets is reduced by
eliminating redundant data by extracting maximum infor-
mation, and the first and the second PCs include the majority
percentage of the scene variance in the data and succeeding
component bands with a decreasing percentage of the vari-
ance [22]. Hence, we have selected three PCs in this research
(PC1, PC2 and PC6) to generate a colour composite map
(Fig. 4) that enable to better discriminate the lithological
units and trace training polygons for the classification
approaches used in this study.

Minimum Noise Fraction (MNF). In order to reduce the
residual noise of reflectance images and showcase homo-
geneous surfaces, Minimum Noise Fraction (MNF) tech-
nique [56, 57] was carried out. It is a wildly known
Eigenvector procedure for multispectral and hyperspectral
image, based on covariance structure of imagery noise. This
algorithm consists of two successive PCA rotation which
transforms data containing spectral distortion into new
components sorted by image quality, with regularly
increasing noise levels. The first one accounts for the

covariance matrix to estimate the noise in the data in order to
decorrelate and resize the noise, and the second rotation is
based on a standard PCA transform to create several com-
ponents that contain noise-whitened data. This results in
denoising and identifying the components to keep those with
useful information [58].

A visual study of the first three components from the
MNF (containing more than 99% of the total information)
allows discrimination between different surfaces in the study
area (Fig. 5).

PBIA Lithological Mapping. One of the most traditional
classification methods used for Sentinel-2 imagery is the
pixel-based MLAs, which allocate any pixel to a specific
category, taking into account the spectral characteristics of
the training samples that group a set of pixels representing
the same class [59], the thing that makes selecting suitable
training sample as the one of the most crucial step of PBIA
classification approaches. The literature shows that among
the MLAs used for classifying the lithological units using
multispectral datasets, RF and k-NN are the most common
MLAs applied for this purpose [60, 61].

Random Forest (RF). The first MLA implemented in this
study is the Random Forest classifier (RF) developed by
Breiman [62] and applied for remote sensing image

Fig. 4 Colour composite of the
PCs 1, 2, and 6 of the Sentinel2
imagery
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classification by Pal [63]. It is a supervised non-parametric
classification algorithm, which provides a group of tree
classifiers that choose the majority vote class to assign a
label for each pixel to be classified based on the partition of
the results from multiple decision trees (DT). Randomness is
introduced by randomly requiring a predefined number of
characteristic parameters (mtry) and the input variables for
each decision tree (ntree), by setting the input variables for
splitting at each node in the DT and bagging; the latter
technique, also known as bootstrap aggregation, is used to
select training samples available for every tree [62]. Thus,
each tree in the forest votes for the final classes produced by
the forest.

RF performs greater than the other MLAs using numer-
ous techniques such as bagging and boosting [64]. As RF is
sensitive to the training samples, their spatial dispersion
must be increased to improve classification results.

Furthermore, several studies have even proven to achieve
optimal accuracies and vital lithological maps using RF
algorithm compared to other MLAs like, Naive Bayes,
k-Nearest Neighbours and Artificial Neural Networks [60],
support vector machine [65, 66].

k-Nearest Neighbour (k-NN). The second algorithm
applied in this research is k-NN classifier, and it is one of the

most simple, popular, and instance-based non-parametric
machine learning algorithms [67]. During classification,
individual test instance that is nearest to k neighbouring
training sets is in a feature space, based on a Euclidian
distance metric function:

dEðx; yÞ ¼
XN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi2 þ yi2

p
ð1Þ

where x and y are histograms in X = Rm (and m is dimen-
sionality of the image). Figure 6 shows the process of KNN
classification [68]. Predictions are assigned by the majority
vote among its k nearest neighbour samples [69–71]. If
k = 1, then the object is simply assigned to the same class of
the object nearest to it. k must be generally an odd integer if
the number of classes is two. As a very low value of K lead
to noisy and cause effects of misfits in the model, as well as
high k can lead to smoother decision boundaries and insta-
bility in the model, appropriate values must be selected by
trial and error [72].

GEOBIA Lithological Mapping. In contrast to the
PBIA approach, GEOBIA [73] is based on information
extracted from a group of similar pixels, according to their
spatial spectral and textural information, that is called image
objects, which plays an important role in the classification by

Fig. 5 Colour composite of the
MNF bands 1, 2 and 3 of the
Sentinel2 image
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taking into consideration spectral content, size as well as the
shape [74]. In this approach the image must be segmented
into homogeneous and meaningful objects (step1) before the
classification process (step2).

Multi-Resolution Segmentation (MRS). The Multiresolution
segmentation (MRS) algorithm is recognized as the first and the
most crucial step in GEOBIA approach because its outcomes
influence directly all the following process [75]. MRS succes-
sively implements a bottom-up region merging technique that
begins at random points with single pixels objects and then
merges them into larger and real-world segments depending on
the homogeneity criterion [76]. The purpose of this stage is to
create real-world objects that would be classified according to
their contextual, textural, spatial as well as spectral homogeneity.
The MRS method's outcome is based on four parameters,
namely, layer weight, compactness, shape and scale parameter
(SP). Compactness is known as the weight of smoothness cri-
terion, likewise the shape-colour criteria refers to spectral
information of an object, whereas SP defines the maximum

heterogeneity of the image objects [77]. The result of the MRS is
illustrated in Fig. 6.

Classification Algorithm. The second and last stage in
GEOBIA approach is selecting a set of feature vector to
differentiate between the target classes and create connec-
tivity between real-world classes and the image objects to
apply a suitable classification rule. In this study, the classi-
fication of image objects was carried out by standard Nearest
Neighbour (NN) classifier. It consists of searching for the
appropriate training sample in the feature space for each
object [76].

Accuracy assessment. In order to evaluate the classifi-
cation accuracy of for all the classification methods in this
research, the resultant lithological maps were assessed by
comparing them the digitalized geological map of the study
region using the confusion matrix [78]. Several measure-
ments, including overall accuracy (OA), commission and
omission errors, and a kappa coefficient (K), were calculated
to identify the potential of each classification approach.

Fig. 6 The MRS result on the
background colour composite
image of the first three MNF
bands
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3.3 Results and Discussion

The lithological map obtained from PBIA, namely RF and
K-NNMLAs as well as GEOBIA approach, was illustrated
and assessed in the sub-sections below.

PBIA Results. The resultant lithological maps developed
using Sentinel-2 imagery for both pixel-based MLAs are
described in Fig. 7.

In addition, a general comparison between the two
Pixel-based MLAs (Fig. 7) reveals that the k-NN method
(Fig. 7b) showed many facies that are poorly classified, for
instance, the circles with orange and magenta colours that
show the apparition of some misclassified classes that
appears in k-NN approach, in addition to the leucogranite,
marked by a red arrow, that has been assigned as Limestone,
marls, phosphate in k-NN approach, and the continental
terrigeneous series with conglomeratic dominance (CC), that
are indistinguishable in k-NN approach as demonstrated by
the blue circle, finally, as illustrated by the green circle some
of the intrusive bodies of amphibolitized gabbro (AG), have
been clearly manifested in RF MLA (Fig. 7a).

About the classification accuracy, RF performs much
better for lithological mapping (OA = 81.92% and Kappa
coefficient = 0.72) compared to k-NN algorithm.

GEOBIA Results. Unlike the PBIA approaches, GEO-
BIA shows homogeneous classes and reduces all the prob-
lems related to the misclassified pixels as well as salt and
pepper artifacts since it performs by not only taking into
account spectral properties, but also the shape, texture, and
geometry of objects during the process of classification.
Furthermore, as shown in Fig. 8, the GEOBIA technique has
greater potential to generate lithological maps in which the
overall accuracy of the classification results (OA = 83.46%,
Kappa coefficient = 0.76) outperformed PBIA machine
learning algorithms.

Overall Comparison. The confusion matrix has been
used in this study to evaluate the efficiency of the classifi-
cation accuracy for the geological maps obtained using both
MLAs of the PBIA approach (RF and k-NN) and GEOBIA
technique. Therefore, the known pixels from the digitalized
lithological map of the study area were used as reference
data. Besides, the digitalized geological map (Fig. 9) of the
study area is depicted into eight general classes: Continental
terrigeneous series with conglomeratic dominance (CC),
Leucogranite (LG), Limestones, marls, phosphates (LMP),
Limit of the phosphates mining area (LPMA), Low and
medium terraces and colluvium (LC), Schists and micas-
chists (SM), Set of homogeneous light-gray schists

(a) (b)

Fig. 7 The resultant lithological maps using PBIA MLAs: a RF; b k-NN
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containing one or more sandstones quartzites bars very
tectonized (SQ) and intrusive bodies of amphibolitized
gabbro (AG).

Tables 1, 2, and 3 display the confusion matrix of PBIA
(RF, K-NN) and GEOBIA approaches that is derived by
comparing the corresponding classes to the reference
samples.

General comparison of all classes shows that many
lithological units are misclassified especially for intrusive
bodies of amphibolitized gabbro (AG) and Low and medium
terraces and colluvium (LC) for both PBIA MLAs (Tables 1
and 2), and these could be demonstrated by omission and
commission errors that are greater than those of GEOBIA
approach (Table 3). However, the overall accuracy and
kappa coefficient for each method are shown in Fig. 10.

The misclassified classes, as well as salt and pepper
artifacts caused by the effect of mixing pixel problem in
PBIA algorithms, led to the lowest overall and kappa values;
however, GEOBIA approach improved the results by
achieving the highest accuracy statistics.

4 Conclusions

Finding the optimal classification method is the most crit-
ical step for geological mapping; for this purpose, this
study is devoted to evaluate different approaches including
pixel and object-based image analysis, in order to select the
most accurate approach for mapping lithological units in
semi-arid areas, where Skhour Rehamna was chosen as a
case study.

The lithological mapping was successfully achieved by
evaluating the performance of GEOBIA and PBIA approa-
ches using spectral channels and neo-bands of Sentinel-2A
imagery. However, the overall statistics of this research
obviously indicate that the GEOBIA approach has consid-
erable potential and advantages for generating more realistic
and detailed lithological maps also acquiring lithological
information and properly classifying all lithological units by
reducing all the problems encountered while using PBIA
MLAs.

Fig. 8 The resultant lithological
maps using GEOBIA approach
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Fig. 9 Digitalized geological
map of study area

Table 1 Confusion Matrix of PBIA RF Classification

Pixel-based classification PBIA-RF

Reference data

LC CC AG LG SQ LMP SM LPMA Total Commission error
(%)

Classified
data

LC 6602 213 69 0 646 0 0 3376 10,906 39.46

CC 1487 15,587 75 0 3339 8 0 2998 23,494 33.66

AG 158 0 6313 318 0 1360 0 15,488 23,637 73.29

LG 0 63 0 28,377 128 338 0 7109 36,015 21.21

SQ 1595 3279 0 0 17,967 81 50 144 23,116 22.27

LMP 4262 691 395 705 2689 471,323 20,470 63,262 563,797 16.40

SM 977 0 0 383 25 134,885 209,522 7050 352,842 40.62

LPMA 25,683 3012 17,342 7718 4534 11,117 549 822,372 892,327 7.84

Total 40,764 22,845 24,194 37,501 29,328 619,112 230,591 921,799 1,926,134

Omission error
(%)

83.80 31.77 73.91 24.33 38.74 23.87 9.14 10.79
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Table 2 Confusion matrix of PBIA K-NN classification

Pixel-based classification PBIA-KNN

Reference data

LC CC AG LG SQ LMP SM LPMA Total Commission error
(%)

Classified
data

LC 5835 213 0 0 61 0 0 608 6717 13.13

CC 1492 15,276 75 0 2926 8 0 3227 23,004 33.59

AG 158 0 5362 318 0 1360 0 14,286 21,484 75.04

LG 0 62 0 27,237 122 338 0 5444 33,203 17.97

SQ 1595 2526 0 0 17,498 81 63 144 21,907 20.13

LMP 5070 691 464 1683 2756 464,421 24,674 78,063 577,822 19.63

SM 1034 0 0 700 25 141,835 205,301 4773 353,668 41.95

LPMA 25,580 4077 18,293 7563 5940 11,069 553 815,252 888,327 8.23

Total 40,764 22,845 24,194 37,501 29,328 619,112 230,591 921,797 1,926,132

Omission error
(%)

85.69 33.13 77.84 27.37 40.34 24.99 10.97 11.56

Table 3 Confusion matrix for GEOBIA approach

Object-based classification GEOBIA

Reference data

LC CC AG LG SQ LMP SM LPMA Total Commission
error (%)

Classified
data

LC 580 33 0 0 42 7 360 0 1022 43.25

CC 70 810 0 0 384 0 0 0 1264 35.92

AG 1 0 391 2 0 22 717 0 1133 65.49

LG 0 0 1 1164 0 0 210 0 1375 15.35

SQ 76 132 0 0 710 19 0 0 937 24.23

LMP 208 17 11 0 63 20,682 2710 769 24,460 15.45

SM 914 0 991 390 0 548 30,992 0 33,835 8.40

LPMA 16 0 8 0 0 3563 338 8365 12,290 31.94

Total 1865 992 1402 1556 1199 24,841 35,327 9134 76,316

Omission
error (%)

68.90 18.35 72.11 25.19 40.78 16.74 12.27 8.42
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