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Abstract. Brain-connectivity refers to a pattern of functional or effec-
tive connectivity of distinct modules of human brain due to interactions
between them. In this paper, the authors have attempted to conduct a
brain connectivity based analysis to study the brain circuitry in subjects
from their electroencephalographic (EEG) data, while they are engaged
in playing a horror video game. The main motive of our work is to under-
stand the differences in the effective connectivity among phasmophobic
and non-phasmophobic subjects. In the present analysis, we propose a
modified version of the causality test, named as Convergent Cross Map-
ping (CCM) to perform the analysis. The proposed CCM improves the
performance of the standard CCM with an added feature of finding the
possible direction of causation in terms of conditional entropy or maxi-
mum information transfer among the brain signal-sources. Experimental
results and statistical analysis show that the proposed method shows
superior efficacy in estimating the directed brain-connectivity as com-
pared to the very well-known classical Granger Causality, classical CCM
and other off-the-shelf brain-connectivity algorithms.

Keywords: Brain connectivity -+ Phasmophobia - Convergent cross
mapping - EEG - Entropy

1 Introduction

Phasmophobia is a psychological condition where people experience irrational
fear of supernatural things. Many people undergo fear of supernatural things
from a young age. The onset age of any specific phobia depends on the type
of phobia, any traumatic situation in the past or genetic tendency of the per-
son [8]. For some people, mild development of phobia at their young age might
disappear as they move into adolescence, but for others the fears and the anxi-
eties persist and the severity of phobia increases gradually. It may even worsen
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into a chronic and potentially lead to several other forms of severe psycholog-
ical disorders like trauma, intense anxiety, panic attacks, debilitating enough
for a diagnosis. In [26], the authors demonstrate overall clinical and psychologi-
cal case study of six patients having phobia of supernaturals. According to the
study, the patients were diagnosed with persistent fear of supernatural things,
intense anxiety, panic attacks, developing other types of phobia like nyctopho-
bia (fear of darkness) or autophobia (fear of being alone), insomnia, dementia,
and mild epilepsy. Although there exist plenty of literature [12,14,27,36], which
involve research outcomes of psychologists, who investigated different types of
phobia and attempted to provide solutions for the diagnosis and prognosis of
such phobias, knowledge based on the analysis of brain connectivity measures
in specific phobia is still limited. The present paper fills the void by aiming at
investigating the brain dynamics of phasmophobic and non-phasmophobic sub-
jects with respect to the functional connectivity of the brain activation region
while playing a horror video game.

In the past few years, a considerable amount of works [9,19,22] have
been done focusing on functional neuro-imaging in specific phobia, which has
revealed new perspectives into the neuro-biological mechanism underlying the
fear response when exposed to a phobic stimulus. According to the existing lit-
erature [2,3], neural analysis underpinning specific phobia are mostly based on
animal subtype, particularly snake or spider phobia subjects. These studies show
evidence of hyper-activation in the brain region involved in fear evaluation struc-
tures, including the amygdala, dorsal anterior cingulate cortex (ACC), thalamus
and insula. The comparative study [15,20] based on neural response analysis
reveals that there exist two subtypes of specific phobia, named as animal sub-
type and blood-injection-injury (BII) sub-type. Elevated BOLD responses are
observed in insula, thalamus, cingulate gyrus, supplementary motor area, supe-
rior frontal gyrus, parietal cortex, superior temporal gyrus and the cerebellum
in case of snake phobia (animal subtype) whereas in dental phobia (BII sub-
type) only prefrontal and orbitofrontal cortex activates. The literature, [6,10]
enhances the understanding of neural connectivity mechanisms of social pho-
bia and panic disorder by analysing brain activation regions through emotional
face perception. Functional connectivity analysis of patients suffering from ago-
raphobia (fear of situation/places) [18] shows decrease in inferior frontal gyrus
activity at advanced stage with depression and panic disorder: altered prefrontal
cortex connectivity and intensifying connectivity in fear producing regions, low
connectivity in two brain networks in patients with sub-clinical agoraphobia [16].

Additionally, there exists literature [2,3,6,41], which includes fMRI and
PET studies investigating functional connectivity of the whole brain for phobic
patients. The fMRI studies reveal that there is a significant increase in cortical
thickness in the insula region, and increase or decrease in cortical thickness in
ACC region of phobic patients. It is also found that the volume depletion in the
amygdala may occur for the patients with animal phobia, which can in turn cause
severe vomiting, diarrhea, kidney failure, etc. The PET study in [1] presents the
neural correlates of phobic patients which shows that para-hippocampal memory
processes are influenced by amygdala-related arousal.
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However, there exist only a handful of studies assessing functional connec-
tivity of specific phobia using functional Near Infrared Spectroscopy (fNIRS)
and electroencephalography (EEG). The study [11] using fNIRS shows that the
activation of left inferior frontal gyrus (IFG) decreases over time in response
to the semantic stimuli during phobia-relevant emotional Stroop paradigm. The
analysis [33] of in-situ cortical blood oxygenation using fNIRS of arachnophobic
(extreme fear of spiders) patient shows promising results for the application of
the technique in the field of psychotherapy. In [33], the authors identified the
severity of acrophobia using EEG. The literature [32] utilizes both the {NIRS and
EEG devices to study the neural correlates for arachnophobic patients. Although
there exist numerous research works based on various types of phobia but under-
standing the brain functional connectivity changes in phasmophobic patient is
a new research era.

The novelty of the present study lies in understanding the difference in brain
functional connectivity of phasmophobic and non-phasmophobic subjects from
their EEG signals by applying a modified version of Convergent cross mapping
(CCM) technique [35]. CCM technique has the ability to overcome the limitations
provided by Granger Causality [13,17]. CCM is a statistical test of detecting the
causal relationships among the time-series data (here, brain signals) of a uni-
directionally connected chaotic system (here, brain) and thus provides a new era
of research in brain-connectivity analysis.

Our approach is to experimentally determine the information transfer among
brain regions, participating in a specific cognitive task (here, playing horror
game) and to detect the causal dependence of the time-varying signals collected
from multiple brain lobes. The source signals can be acquired by means of a
brain-rhythm capturing device. EEG consists of several number of metal elec-
trodes which can be mounted over the scalp of the subject to capture the source
signals. Determining functional brain connectivity from the EEG data is a chal-
lenging problem as they have wide variations within and across experimental
sessions. Although there exist a few interesting approaches like transfer entropy
[39], Probabilistic Relative Correlation Adjacency Matrix (PRCAM) [17], several
forms of Granger Causality analysis [13,17,25,31], none of these shows promising
results in determining the causal relationships between the pairs of active EEG
electrodes [4].

CCM can fortunately provide the solutions to the drawbacks experienced by
the existing techniques and thus successfully has been utilized to understand
the causal dependence of the time-series data [5,21,24]. Thereby, we undertake
an extended version of classical CCM to test inter-connectivity between pairs
of brain modules. In this paper, the possible causal connectivity from brain
region X to Y is checked by the following 2 steps. First, the acquired EEG
time-series signals, acquired from the brain regions X and Y are checked for
the causality by employing the classical CCM technique and then the direction
of causation between the observation variables (here, EEG signals) has been
inferred by calculating the amount of information transfer among them using
conditional entropy of probability distributions of the residuals of CCM output.
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The paper is divided into 4 sections. In Sect. 2, the principle of classical CCM
and its extension in brain-connectivity analysis is introduced. Section 3 provides
a framework for the experimental protocol design along with results and inter-
pretations. Performance analysis and statistical validation are also undertaken
in this section. Conclusions are listed in Sect. 4.

2 Principles and Methodologies

This section provides a brief outline about the existing classical CCM algo-
rithm and the proposed extension to determine the brain-connectivity from the
acquired EEG signals for a given cognitive task.

2.1 Classical CCM

CCM [35] is a causality-detection algorithm, which can be effectively utilized
to obtain the causal relationship between two time-series variables, say X and
Y. The principle, that CCM uses, includes reconstruction of system states from
X and Y using specific values of a few pre-determined parameters and then to
quantify the relationship values between them using a nearest neighbor algo-
rithm.

The mathematical basis of CCM algorithm are constituted using the con-
cept of Takens’ Theorem [37], which is one of the very well-known time-delay
embedding theorems. In [37], Taken states that “an attractor manifold can be
reconstructed from a set of observation variables of a dynamical system”. Let,
X(t) and Y(t) be the two discrete time-varying signals of a dynamical system
(here, brain as shown in Fig. 1), that are sharing a common attractor manifold,
denoted by M. Following the Taken’s principle, one can easily reconstruct the
D-dimensional shadow manifolds, denoted by Mx and My for the temporal sig-
nals X(t) and Y(t) respectively, with the time delay 7 between the successive
steps. Numerically, one can represent the time-points on the shadow manifold
Mx as: z(t) =< X(t),X(t —7),X({t —27),...,X({t — (D —1)7) >, where D is
the embedding dimension. The optimal values of the parameters D and 7 can be
obtained using Simplex Projection technique [36]. It is followed from the Taken’s
theorem that, the time-points on the shadow manifold Mx have one-to-one cor-
respondence to that of the original manifold M [35]. In an alternate way, it can
be said that My is diffeomorphic reconstruction of M, as shown in Fig.2. The
other shadow manifold My, which is also diffeomorphic to M can also be easily
constructed in similar manner.

CCM actually aims at discovering the degree of correspondence between the
local neighbors of Mx and My [35], i.e., how well the local neighbors of Mx
correspond to My, as shown in Fig. 2. Therefore, the next step is to find D + 1
nearest neighbors by a suitable nearest-neighbor algorithm. Now let, ¢1,...,tp41
be the time-indices of the D+1 nearest neighbors of z(t) on Mx. These time-
indices can be utilized to construct the cross mapping of Y (¢) using Eq. (1).

Y ()| Mx = Zwiy(ti) ; (1)
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Fig. 1. Shadow manifold of two brain signals

where, i belongs to 1 to D+1 and w;s are the weights corresponding to the
distance between z(t) and each of the D+1 nearest neighbors.
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Fig. 2. Nearest Neighbors of Mx and My

The weights can be estimated by

u;
duy
where, 7 = 1, ..., D+1 and wu; is given by

_ - Blz(),z(t:)
U= R, 2t) ®)

w; =
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In (3), R(z(t),z(t;)) denotes the Euclidean distance between z(t) and z(t;).
Similarly, X (¢)| My can be obtained. Next, Pearson’s Correlation Coefficient [29],
p (rho), between the estimated (Y (t)|M X) and observed values of Y(t) can be
computed using the following transformation.

_ NY XY — (CXY)
N - NS - (o vd

(4)

2.2 Estimating the Direction of Causation Using Conditional
Entropy

In the classical CCM algorithm, the causation is unidirectional, i.e., either X —
Y or Y — X. The implication relation X — Y denotes that textitX can be
estimated from Y, but the converse is not hold. To find the direction of causation
one can compare the correlation coefficient values p,. ,, obtained between X and
X|My, and p, o, obtained between Y and Y|MX If p,, is greater than py ,,
then one may conclude that X — Y. However, this is a contradiction of Granger’s
Intuitive Scheme [35].

One approach to find the direction of causation is to compare the probabil-
ity distribution of the euclidean distance between manifold Mx and manifold
. Let, R,
be the euclidean distance between My and M X|My, and Ry be the euclidean
distance between My and My |Mx. It is observed from Fig.3 that the prob-
ability distributions of R, and R, has negligible difference. A suitable way to
enhance the inference of the direction of causality is to determine the amount of
information transfer among the probability distributions of R, and R, [30] by
computing Conditional Entropy of and combine them with the corresponding
correlation coeflicients p; , and py .

Let P(R;) and P(Ry) be the probability distribution function of R, and R,,.
The Conditional entropy of R, for given R, is determined as

H(Ry|R:) = =) P(R:) )Y P(R,|R;)log(P(Ry|Ry)). (5)

The entropy of R, conditioned on R, actually measures the uncertainty in R,
given R,. Similarly, H(R;|R,) is computed. Then the mutual dependence mea-
sures between the two variables, denoted by Cx|y and Cy |x are derived by

pl‘,y py,z
Cxly = —258__ 4nd Gy x = —105 6
XY= R Ry Y T (R, IR (6)
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These are the measures of Information Quality Ratio (IQR), which quantifies
the amount of information transferred from one variable to the other against
the total uncertainty. The direction of the causality is then determined based on
the higher IQR values. Thus, for all possible combinations of m number of EEG
electrode-pairs, we obtain m? IQR values, which are represented in a matrix
form. We name the matrix as W gcays which has the dimension m x m. The
entire experimental workflow is illustrated in Fig. 4.

2.3 Classification Using Kernelized Support Vector Machine

To understand the performance of the proposed brain-connectivity algorithm,
the outputs obtained from the proposed CCM are treated as features and fed to
a classifier. To classify the two classes: phasmophobic and non-phasmophobics
from the EEG responses of the subjects, Wgcas are first reshaped to form (1 x
m?) vector and then used as features to train and test a kernelized Support
Vector Machine (KSVM) [7] classifier with polynomial kernel function.

3 Experiments and Results

This section describes the experimental results obtained using the principles
introduced in Sect. 2 for analysing functional connectivity in phasmophobic and
non-phasmophobic subjects.
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Fig. 4. Block diagram of the proposed framework

3.1 Experimental Setup

The experiment has been performed in the Artificial Intelligence Laboratory
of Jadavpur University, Kolkata, India. A 14-channel EMOTIV EPOC+ EEG
device is used to capture the electrical response of the brain. 24 subjects: 13
phasmophobics and 11 non-phasmophobics, in the age group 15-27 years partic-
ipated in the said experiment. Subjects are asked to play a horror video game,
namely Amnesia: The Dark Descent and during that time, EEG signals were
extracted from them. To obtain data with minimum possible noise, the subjects
had to relax and concentrate on the screen before the experiment could begin
and the experiment was conducted in a dark and quiet room. The game was
played on a computer. The 14 electrodes used to acquire EEG data are AF3, F7,
F3, FC5, T7, P7, O1, 02, P8, T8, FC6, F4, F8, AF4. Additionally, P3 and P4
electrodes are used as reference electrodes to collect the signals properly. The
electrode placement diagram is shown in Fig. 5.

The EMOTIV EPOC+ EEG device has built-in characteristics, which assists
us in properly fitting the headset by directing that which EEG channel reflects
bad quality signal (indicated by red light) and which one reflects good quality
signal (indicated by green light). Here, the term ‘good quality’ emphasizes the
signal with less noise and the term ‘bad’ indicates the channel with more noise.
To obtain the good quality signal to the maximum extent, subjects are asked to
close their eyes for 20 s in a rest position and then to open it, and then again to
close their eyes for 10s. In this manner, we were able to locate and fix the faulty
electrodes by tracking the EEG channels. We didn’t start the experiment until
every EEG channel was properly fit to the scalp of the subjects and was in good
working order. To capture a wide range of variations in the brain responses, the
experiment was conducted over 3 days for each subject. Each day, the subjects
were asked to play the horror computer game for 10 min. After each trial session,
the subjects were asked to rate their level of scariness in a scale of 1-10. Based
on this rating we further divided the dataset into 2 clusters to create 2 different
categories:

1. rating 0-5 — Non-Phasmophobic
2. rating 6-10 — Phasmophobic
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Fig. 5. EEG electrode placement on the scalp

3.2 Data Preprocessing

The EEG signals, thus obtained, are then passed through various signal pre-
processing steps to remove the noise or artifacts. The sampling frequency of
the recording was set 128 Hz. Sample length of each EEG data is 76,800. The
built-in filter is present in the EMOTIV EEG headset device, which is the 5th
order sinc filter. The frequency bandwidth of 0.1-40Hz is set to record the
EEG signals in a particular window and this is the first step of preprocessing
of the raw signal. EEG signals are contaminated with various forms of artifacts.
Three most common forms of artifacts that need special mention include 1) step
artifacts, 2) spike artifacts, and 3) physiological artifacts [23]. The step artifacts
come into play, when there is a change in the surrounding environment. The step
artifact can be removed by minimizing the variation of the external light and
instrumental noise. The spike/motion artifacts are related to decoupling between
the electrodes and their assigned positions due to head or muscle movement.
They result in abrupt changes in the amplitude of the received signals. For
example, a sudden change in the ambient light intensity results in a spike-like
noise. Another important artifact is physiological artifact, which may include
the artifacts due to eye-blinking [34], respiration, heart-beat, blood pressure
fluctuations and Mayer wave [40]. To remove most of the EEG artifacts, the raw
EEG signal is passed through an Elliptical type bandpass filter of order 10 and
frequency band of 0.1-40 Hz.

3.3 Active Brain Region Selection Usings LORETA

In our study, the selection of activated brain regions of the subjects playing
horror video games is done using SLORETA [28] software. The experiment is
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carried out by analyzing and estimating the electrical activity of the intra-cortical
distribution from the EEG signal acquired during gameplay using sLORETA
software. From the SLORETA solutions, it is found that the prefrontal, frontal,
temporal and occipital regions have the greater activation for the phasmophobics
as compared to the non-phasmophobics, as indicated in Fig. 6.

3.4 Effective Connectivity Estimation by CCM Algorithm

To get the effective functional connectivity between the active brain lobes, first of
all we have checked for the causality between the electrodes by CCM method. To
do so, the shadow manifold of each electrode is reconstructed by computing the
optimum embedding dimension (D) and time delay (7) by simplex projection.
For each electrode the computed value of D and 7 are 2 and 1 respectively.
Hence from the reconstructed manifold we check for the cross map skill for every
possible combination of electrode pair. Next to find the direction of causation, we
have employed the conditional entropy based CCM approach described in Sect. 2.
The directed brain-connectivity obtained by the proposed algorithm is depicted
in Fig.7 (a)-(f) for phasmophobic and non-phasmophobic subjects. Among 11
non-phasmophobics (denoted as NP1, NP2,. . . NP11) and 13 phasmophobics
(denoted as P1, P2, ..., P13), the brain-connectivity of only 3 subjects from each
group is given in Fig. 7. It is observed from the figure that the phasmophobics
have strong connectivity between left frontal and right temporal region, whereas
the connections become weaker for non-phasmophobics.
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Fig. 7. The directed brain connectivity obtained by the proposed CCM for 3 non-
phasmophobic (NP) and 3 phasmophobic (P) subjects.

3.5 Statistical Analysis Using One-Way ANOVA Test

We performed ANOVA tests to i) evaluate and determine the effect of stimuli
in different brain regions and ii) to test the efficacy of the proposed connectivity
algorithm. For the former case, we performed one way ANOVA test for each
electrode individually which shows difference in impact of fear stimulus in the
brain activation region between phasmophobic and non-phasmophobic subjects.
As mentioned above, 13 subjects are phasmophobic and 11 are non- phasmopho-
bic. We compared mean value of all the subjects from two groups (phasmophobic
and non-phasmophobic) for each electrode of EEG data using F-distribution, ini-
tially considering null hypothesis i.e., two means are equal. The one-way ANOVA
test shows statistically significant results, i.e., the probability (p-value) is less
than the specific significant level (p < 0.05), which rejects the null hypothesis.
The box-plot of the one-way ANOVA test is depicted in Fig.8a for each of the
occipital, frontal and temporal regions. Here, means of the high activation region
are unequal between two groups: phasmophobic and non-phasmophobic. Brain
Regions: (Occipital Lobe: O2 (p = 0.0009), Frontal region: F4 (p = 0.02), F7
(p =0.007), F8 (p = 0.006), FC5 (p = 0.007), FC6 (p = 0.004), AF3(p = 0.002))
and Temporal region: T7 (p = 0.005), T8 (p = 0.04).

Next, to test the differences in effective connectivity among phasmophobic
and non-phasmophobic, obtained by the proposed CCM, again we utilize oneway
ANOVA test. The significance level is set at p < 0.05. The result is depicted in
Fig. 8b, which emphasizes that there is increased connectivity for phasmophobic
as compared to non-phasmophobic.
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3.6 Relative Performance Analysis of the Proposed CCM

The proposed CCM algorithm for brain-connectivity analysis is compared here
with 5 well-known techniques of functional connectivity analysis. They are Cross-
correlation technique [38], probabilistic relative correlation adjacency matrix
(PRCAM) [17], Granger Causality [13], standard CCM [4] and Transfer entropy
based analysis [39]. The relative performance of the proposed algorithm with
the existing algorithms, has been evaluated on the basis of three performance
metrics of classifier: classifier accuracy, sensitivity and specificity. The results of
the study are given in Table 1. It is apparent from the table that the proposed
technique outperforms the existing techniques in all the cases.

Table 1. Relative performance analysis of the proposed CCM

Brain-connectivity algorithms | Classifier accuracy (%) | Sensitivity | Specificity
Cross Correlation technique | 80.18 0.89 0.84
PRCAM 80.35 0.90 0.87
Granger Causality 87.80 0.82 0.90
Standard CCM 86.03 0.85 0.86
Transfer entropy 85.35 0.89 0.87
Proposed CCM 88.91 0.96 0.92

4 Conclusion

The paper introduces a novel approach for brain-connectivity analysis for phas-
mophobic and non-phasmophobic subjects using conditional entropy based CCM
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technique in EEG-based Brain Computer Interfacing paradigm. The method is
advantageous for its inherent potential to detect directional causality in brain-
connectivity, which can not be carried out by traditional CCM or Granger
causality techniques. The proposed approach has successfully been employed to
determine brain-connectivity of phasmophobics and non-phasmophobics. Exper-
iments undertaken reveal that phasmophobics possess brain-connectivity with
weaker strength between left frontal and right temporal regions as compared to
the non-phasmophobics. Thus the proposed method can easily segregate phas-
mophobics from their non-phasmophobic counterparts. This technique is useful
for diagnosis of the subjects with phobia of supernatural at its early stage, which
can in turn, will suggest an early treatment to reduce associated disorders like
sleeplessness, anxiety, etc.
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