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Abstract. Cardiovascular magnetic resonance (CMR) is an established,
non-invasive technique to comprehensively assess cardiovascular struc-
ture and function in a variety of acquired and inherited cardiac con-
ditions. In addition to the heart, a typical CMR examination will also
image adjacent thoracic and abdominal structures. Consequently, find-
ings incidental to the cardiac examination may be encountered, some of
which may be clinically relevant. We compare two deep learning archi-
tectures to automatically detect extra cardiac findings (ECFs) in the
HASTE sequence of a CMR acquisition. The first one consists of a binary
classification network that detects the presence of ECFs and the second
one is a multi-label classification network that detects and classifies the
type of ECF. We validated the two models on a cohort of 236 subjects,
corresponding to 5610 slices, where 746 ECFs were found. Results show
that the proposed methods have promising balanced accuracy and sen-
sitivity and high specificity.

Keywords: Deep learning classification · Extra cardiac findings ·
Cardiovascular magnetic resonance

1 Introduction

Cardiovascular Magnetic Resonance (CMR) is a valuable, non-invasive, diagnos-
tic option for the evaluation of cardiovascular diseases as it allows the assess-
ment of both cardiac structure and function [21]. CMR is an advantageous image
modality due to its wide field of view, accuracy, reproducibility and ability to
scan in different planes. Also, due to its lack of exposure to ionizing radiation,
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CMR can be widely employed, except for patients with implanted electronic
devices such as pacemakers [9,15,16]. The importance of the CMR imaging
modality is evident from the fact that in the time period ranging from 2008
to 2018 CMR use increased by 573%, growing by the 14.7% in the year 2017–
2018 alone [10].

A typical CMR acquisition begins with a gradient echo ‘scout’ image of sev-
eral slices in the coronal, sagittal, and axial planes, followed by axial imaging
of the entire chest, conventionally using a Half-Fourier Acquisition Single-shot
Turbo spin Echo (HASTE) sequence [8]. The acquired images contain the heart,
as well as significant portions of the upper abdomen and thorax. These regions
may present extra-cardiac irregularities, which are defined as incidental Extra
Cardiac Findings (ECFs) [8].

The importance of investigating the presence of incidental ECFs in CMR
scans has been shown in previous studies [2,8,17,22], and acknowledged by the
European Association of Cardiovascular Imaging, which includes it as part of the
European CMR certification exam [14]. In particular, Dunet et al. [2] reported
a pooled prevalence of 35% of ECFs in patients undergoing CMR, 12% of which
could be classified as major findings, i.e. requiring further investigation. ECFs
are important for the early diagnosis of unknown diseases but can also be useful
to determine the primary cardiac pathology which is being examined, due to
the fact that some cardiac conditions have a multi-systemic environment [17]. In
addition, when an ECF is identified, the important clinical question is whether
the abnormality represents a benign or malignant lesion [17]. Two key examples
are breast and lung cancer, since mammary and pulmonary tissue can be visu-
alized on axial cross sectional imaging at the time of CMR. Previous works have
shown that incidental breast lesions are identified in 0.1–2.5% of CMR studies
and over 50% of these lesions are clinically significant [14–16, 52,]; similarly, the
incidence of significant pulmonary abnormalities found in CMR examinations
are up to 21.8% [2]. Another important factor to consider is that, depending on
the institution, CMR examinations may be reported by cardiologists, radiolo-
gists or a combination thereof. A recent study showed that the highest accuracy
to assess prevalence and significance of ECF in clinical routine CMR studies
was reported when cardiologist and radiologist were working together [3], but
this is not possible at all institutions. We believe that a computer-aided ECF
detection tool could be beneficial in a clinical setting, especially when reporting
is performed by only one specialist or by inexperienced operators.

The application of artificial intelligence (AI) in healthcare has great potential,
for example by automating labour-intensive activities or by supporting clinicians
in the decision-making process [19]. Liu et al. [12] compared the performance of
clinicians to deep learning models in disease detecting tasks. They showed that
AI algorithms performed equivalently to health-care professionals in classify-
ing diseases from medical imaging. Although there is room for improvement,
these results confirm the positive impact that AI could have in healthcare. Deep
learning models have been employed in the automated detection of incidental
findings in computed tomography (CT) and obtained promising results [1,18,23].
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An automated pipeline able to detect the presence of incidental ECFs in CMR
would not only be beneficial to the investigation of primary conditions and possi-
ble unknown diseases of the patient but could also reduce burden on overworked
clinicians. In this paper, we investigate the feasibility of using deep learning
techniques for the automatic detection of ECFs from the HASTE sequence.

2 Materials

This is a retrospective multi-vendor study approved by the institutional ethics
committee and all patients gave written informed consent. A cohort of 236
patients (53.7 ± 15.7 years, 44% female) who underwent clinical CMR was man-
ually reviewed to specifically assess the prevalence and importance of incidental
ECFs. CMR image acquisitions were acquired with scanners of different mag-
netic field strengths and from different vendors with the following distributions:
70 subjects with 1.5T Siemens, 86 subjects with 1.5T Phillips and 80 subjects
with 3.0T Phillips. From the CMR acquisitions, the HASTE sequence was used
to detect any abnormal finding located outside the pericardial borders and the
great vessels (aortic and pulmonary). ECFs were classified by anatomical loca-
tion (i.e. neck, lung, mediastinum, liver, kidney, abdomen, soft tissue and bone)
and by severity (i.e. major for findings that warrant a further investigation, new
treatment, or a follow up e.g. lymphadenopathy or lung abnormalities; minor for
findings that are considered benign conditions and don’t require further investi-
gations, follow up or treatment) [2,13]. Of the 236 studies analysed, that corre-
spond to 5610 slices, 746 ECFs were found. The distribution of ECFs by location
and severity is shown in Fig. 1.

Fig. 1. Distribution of the ECFs split by location and severity.
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3 Methods

The proposed framework for automatic detection of ECFs from the CMR
HASTE images is summarized in Fig. 2, and each step is described below.

Fig. 2. Overview of the proposed framework for automatic ECF detection/
classification.

3.1 Data Pre-processing

To correct for variation in acquisition protocols between vendors, all images
were first resampled to an in-plane voxel size of 1.25 × 1.25 mm and cropped to
a standard size of 256× 256 pixels. The cropping was based on the centre of the
images and the standard size was selected as the median size of all the images
in the database All DICOM slices were converted to numpy arrays and the pixel
values were normalised between 0 and 1.

3.2 Binary ECF Classification

The first strategy aims to detect if any of the slices of the HASTE sequence has
an ECF and we frame the problem as a binary classification task. We trained
and evaluated seven state-of-the-art convolutional neural network (CNN) archi-
tectures: AlexNet [11], DenseNet [6], MobileNet [5], ResNet [4], ShuffleNet [24],
SqueezeNet [7] and VGG [20].

3.3 Multi-label ECF Classification

The second strategy aims to not only detect the presence of ECFs but also iden-
tify to which class the ECF belongs. The chosen classes represent eight different
areas of the body, namely neck, lung, mediastinum, liver, kidney, abdomen, soft
tissue and bone. In this paper, we focus on the identification of ECFs and their
subsequent classification based on the classes mentioned above, rather than their
major/minor classification. As each slice can contain more than one ECF, we
have framed the problem as a multi-label classification, which means that the
output of the deep learning classifier supports multiple mutually non-exclusive
classes. We extended the previous seven state-of-the-art CNN architectures to
multi-label classification by using the number of classes as the number of nodes
in the output layer and adding a sigmoid activation for each node in the output
layer.
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3.4 Training

The manually classified data were divided as follows: 80% were used for training
and validation of the classification networks and 20% were used for testing. Data
were split at patient level and bounded to a specific set, either training, validation
or testing, in order to maintain data independence. Each network was trained for
200 epochs with binary cross entropy with a logit loss function. During training,
data augmentation was performed on-the-fly using random translations (±30
pixels), rotations (±90◦), flips (50% probability) and scalings (up to 20%) to
each mini-batch of images before feeding them to the network. The probability
of augmentation for each of the parameters was 50%. Additionally, we imple-
mented an adaptive learning rate scheduler, which decreases the learning rate
by a constant factor of 0.1 after every 5 epochs, stopping at a plateau on the
validation set (commonly known as ReduceLRonPlateau). This step was added
as it improves training when presented with unbalanced datasets.

3.5 Statistics

The performance of the models was evaluated using a receiver operating charac-
teristic (ROC) curve analysis, and based on this the balanced accuracy (BACC),
sensitivity, specificity, positive predictive value (PPV) and negative predictive
value (NPV) were computed for the optimal classifier selected using the weighted
Youden index. Sensitivity, also known as the true positive rate, is defined as the
proportion of ground truth positively labelled examples that are identified as
positive by the model; specificity, also known as true negative rate, is defined as
the proportion of ground truth negatives that are identified as negative; PPV is
defined as the proportion of identified positives that have a ground truth positive
label; NPV is defined as the proportion of identified negatives with a ground
truth negative label. For the multi-label classification algorithm, we extended
this analysis to two conventional methods, namely micro-averaging and macro-
averaging. Micro-averaging calculates metrics globally by counting the total true
positives (TPs), true negatives (TNs), false positives (FPs) and false negatives
(FNs), while macro-averaging calculates metrics for each label and finds their
unweighted mean.

4 Results

4.1 Binary ECF Classification

Table 1 summarises the statistics computed from the results of the binary clas-
sification for each of the employed state-of-the-art networks.
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Table 1. Mean sensitivity, specificity, positive predictive value (PPV), negative pre-
dictive value (NPV) and balanced accuracy (BACC) for the different binary ECF
classifiers. Bold font highlights the best results.

ALEX

NET

DENSE

NET

MOBILE

NET

RES NET SHUFFLE

NET

SQUEEZE

NET

VGG

Sensitivity 0.34 0.36 0.17 0.44 0.45 0.00 0.55

Specificity 0.80 0.77 0.93 0.79 0.72 1.00 0.76

PPV 0.19 0.18 0.25 0.23 0.18 NaN 0.24

NPV 0.90 0.90 0.89 0.91 0.91 0.88 0.93

BACC 0.57 0.57 0.55 0.62 0.59 0.50 0.66

The computed sensitivity values range between 0.34 and 0.55, except for
MobileNet and SqueezeNet that obtained 0.17 and 0.00. Specificity and NPV,
which are respectively the proportion of the correctly identified negative labels
and the chance of the assigned label to be correct if identified as negative,
obtained results close to 1. PPV values range between 0.18 and 0.25, although
SqueezeNet, the only outlier, had NaN. BACC values fluctuate around 0.55.
SqueezeNet obtained the lowest value (0.50) and VGG obtained 0.66, which is
the highest computed BACC. It is noticeable that SqueezeNet performed poorly
compared to the other networks and achieved the lowest computed values. On
the other hand, the best performing network was VGG, which obtained the best
sensitivity and BACC values.

4.2 Multi-label ECF Classification

Table 2 summarises the statistics computed from the results of the multi-label
classification for each of the employed state-of-the-art networks.

As stated before, micro-averaging computes the metrics by calculating the
total numbers of TPs, TNs, FPs and FNs. The best sensitivity value of 0.62
was obtained with AlexNet. Specificity and NPV, similarly to the binary classi-
fication task, have high values, often close to 1. The only outliers are AlexNet
and ShuffleNet, which had specificity respectively 0.85 and 0.83. PPV had low
results for all the networks and obtained the lowest values for AlexNet and Shuf-
fleNet, which got respectively 0.21 and 0.20. It is noteworthy that although these
networks obtained high values for the other metrics, they obtained the lowest
values for PPV. The computed BACC values, in parallel to the ones computed
in the binary case, oscillate between 0.50 and 0.74. The best BACC values were
computed from AlexNet and ShuffleNet.

Macro-averaging calculates metrics per label and then finds their unweighted
mean. In this case, sensitivity values are lower than the ones mentioned above.
For macro averaging they range between 0.28 and 0.51, except for MobileNet and
SqueezeNet that obtained the lowest sensitivities, respectively 0.09 and 0.00. As
before, specificity and NPV values are close to the maximum. PPV obtained
low results, between 0.13 and 0.34, except for SqueezeNet that obtained NaN.
The NaN values are caused when the network predicts all the cases as negatives
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Table 2. Mean sensitivity, specificity, positive predictive value (PPV), negative pre-
dictive value (NPV) and balanced accuracy (BACC) for the different multi-label ECF
classifiers. Micro-averaging calculates metrics globally by counting the total true pos-
itives, true negatives, false positives and false negatives, while macro-averaging calcu-
lates metrics for each label and finds their unweighted mean. Bold font highlights the
best results.

ALEX

NET

DENSE

NET

MOBILE

NET

RES NET SHUFFLE

NET

SQUEEZE

NET

VGG

Micro sensitivity 0.62 0.44 0.12 0.40 0.57 0.00 0.32

Micro specificity 0.85 0.94 0.99 0.91 0.83 1.00 0.94

Micro PPV 0.21 0.32 0.41 0.23 0.20 NaN 0.28

Micro NPV 0.97 0.96 0.94 0.96 0.96 0.94 0.95

Micro BACC 0.74 0.69 0.56 0.65 0.70 0.50 0.63

Macro sensitivity 0.41 0.28 0.09 0.31 0.51 0.00 0.32

Macro specificity 0.84 0.93 0.99 0.91 0.83 1.00 0.94

Macro PPV 0.13 0.21 0.34 0.18 0.19 NaN 0.14

Macro NPV 0.97 0.96 0.94 0.95 0.96 0.96 0.95

Macro BACC 0.62 0.60 0.54 0.61 0.67 0.50 0.63

and therefore there are no true positives or false positives. This reflects the
poor performance of the SqueezeNet network. The highest computed BACC was
computed for ShuffleNet, while the other networks obtained values around 0.60.
Again, MobileNet and SqueezeNet obtained the lowest values (0.54 and 0.50).

Visual results from the multi-label ECF classifier are shown in Fig. 3. The
top row shows five images containing different ECFs (i.e. location and severity)
which were correctly classified and the bottom row shows five images that have
been misclassified by the network. Overall, it is apparent that the size and shape
of the ECF can significantly vary. The performance of the network seems to be
strongly influenced by the size of the ECF as well as the number of cases of that
class of ECF in the training database.

Fig. 3. Example results for proposed multi-label ECF classifier: top row shows correct
cases and bottom row shows cases that have been misclassified.
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5 Discussion and Conclusion

In a CMR examination, a careful assessment of non-cardiac structures may also
detect relevant non-cardiac diseases. During a CMR acquisition, the inferior
neck, entire thorax and upper abdomen are routinely imaged, particularly in the
initial multi-slice axial and coronal images. Correctly identifying and reporting
ECFs is beneficial to the patient and can prevent unnecessary over-investigation
whilst ensuring that indeterminate or potentially important lesions are inves-
tigated appropriately. Cardiovascular diseases also often have systemic effects
and the identification of ECFs can help with the interpretation of the primary
cardiac pathology. In this paper, we have proposed for the first time a deep
learning-based framework for the detection of ECFs from the HASTE sequence.

We approached the problem following two strategies: the first one consisted
of a binary classification task that aimed to identify the presence of ECFs in
each slice of the HASTE sequence; the second one consisted of a multi-label
classification task which, in addition to the identification of ECFs, aimed to
classify the ECFs based on their location.

For the first approach results showed that the best performing network was
VGG, with BACC, sensitivity and specificity respectively equal to 66%, 55%
and 76%. For the second approach the best performing networks were AlexNet
and ShuffleNet, with a micro BACC higher than 70%, micro specificity above
83% and micro sensitivity values respectively of 62% and 57%. Macro metrics
show that when computing the unweighted mean obtained from each label, per-
formance decreases.

Our vision is that deep learning models could be used in clinical workflows
to automate the identification of ECFs from CMR exams, thus reducing clinical
workloads. This would require a high sensitivity to ensure that potential ECFs
are not missed (i.e. minimise false negatives). False positives are less important
as they can be eliminated by a subsequent cardiologist review. Therefore, per-
formance is not currently sufficient for clinical needs. We believe that the main
reasons for the low sensitivity are the limited amount of training data, the vari-
ation in image appearance due to the multi-vendor nature of the study and the
large variation in the size, appearance and position of ECFs, as shown in Fig. 3.
Obtaining more data, with less class imbalance would likely improve performance
in future work. However, this work represents the first AI-based framework for
automated detection and localization of ECFs in CMR images and therefore
serves as a proof-of-principle. In future work, we will aim to gather more train-
ing data and develop novel techniques to improve the sensitivity of our models.

A limitation of the current framework is that we do not differentiate between
major and minor ECFs and this is important in clinical practice to decide which
ECF should be treated and which could be considered benign. We plan to address
this in future work. We will also aim to combine a classification network with
a segmentation network to allow localisation and differentiation of the different
ECFs.

In conclusion, we have demonstrated the feasibility of using deep learning
for the automatic screening of HASTE images for identifying potential ECFs.
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Further work is required to improve the sensitivity of the technique and fully
evaluate its role and utility in clinical workflows.
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