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Abstract. This work employs a pre-trained, multi-view Convolutional
Neural Network (CNN) with a spatial attention block to optimise knee
injury detection. An open-source Magnetic Resonance Imaging (MRI)
data set with image-level labels was leveraged for this analysis. As MRI
data is acquired from three planes, we compare our technique using data
from a single-plane and multiple planes (multi-plane). For multi-plane,
we investigate various methods of fusing the planes in the network. This
analysis resulted in the novel ‘MPFuseNet’ network and state-of-the-art
Area Under the Curve (AUC) scores for detecting Anterior Cruciate Lig-
ament (ACL) tears and Abnormal MRIs, achieving AUC scores of 0.977
and 0.957 respectively. We then developed an objective metric, Penalised
Localisation Accuracy (PLA), to validate the model’s localisation ability.
This metric compares binary masks generated from Grad-Cam output
and the radiologist’s annotations on a sample of MRIs. We also extracted
explainability features in a model-agnostic approach that were then ver-
ified as clinically relevant by the radiologist.

Keywords: Deep learning · Musculoskeletal · Magnetic Resonance
Imaging · Medical imaging · Spatial attention · Explainability

1 Introduction

Knee injuries are one of the most prevalent injuries in sporting activities [13].
Musculoskeletal (MSK) knee injuries can be detrimental to athletes’ careers.
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Such injuries require early intervention and appropriate rehabilitation. Magnetic
Resonance Imaging (MRI) is the gold standard imaging modality for non-invasive
knee injury diagnosis [21]. MRI is a volumetric imaging technique that is acquired
from three planes, namely axial, coronal and sagittal. Machine Learning (ML)
can be used to develop Computer Aided Detection (CAD) systems that automate
tasks such as detecting injuries from MRIs. These systems have several benefits
including reduced diagnosis time for patients and alleviating the ever-growing
workload of radiologists by assisting diagnosis.

With the growing interest in CAD systems, there is a corresponding growing
requirement for the CAD systems to be explainable. Explainability increases clin-
icians’ confidence in the models and allows for smoother integration of these mod-
els into clinical workflows [6]. Validating the localisation ability and extracting
features of automated injury detection systems aids their explainability. There
has been significant research in the area of assessing the localisation ability of
various saliency techniques [1,7]. There is, however, a lesser focus on assessing a
model’s localisation ability. While object detection algorithms can be specifically
trained to locate the site of the target task, they have increased model complex-
ity and they require annotations of the complete data set. It is more often that
saliency maps are employed to assess the localisation ability of a classification
model. In this work, we validate the model’s localisation ability by comparing
the saliency map technique Grad-Cam [20] to annotations defined by the radiolo-
gist. This analysis found that existing segmentation metrics such as Intersection
over Union (IoU) and Dice Coefficient are not suitable for quantifying the local-
isation ability of a model. This highlights the need for an interpretable metric
that communicates an accurate representation of a model’s localisation ability.

In this work, we propose a CNN with a ResNet18 architecture and integrated
spatial attention block for MSK knee injury detection. The main aspects of this
work are as follows.

1. We investigate if an injury can be accurately detected using data from a single-
plane or if additional planes are required for optimal detection accuracy.

2. For cases where additional planes increase detection accuracy, we investigate
methods of fusing planes in a network and develop a new multi-plane net-
work, ‘MPFuseNet’, that achieves state-of-the-art performance for ACL tear
detection.

3. We develop an objective metric, Penalised Localisation Accuracy (PLA), to
validate the localisation ability of the model. This proposed metric communi-
cates a more accurate representation of the model’s localisation ability than
typical segmentation metrics such as IoU and Dice.

4. We extract explainability features using a post-hoc approach. These features
were then validated as clinically relevant.

2 Related Work

The research in the field of ML with MRI for MSK injury detection was acceler-
ated by the release of the open-source MRNet data set [3]. This is a rich data set
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of knee MRIs with image-level labels acquired from the Stanford Medical Cen-
tre. Bien [3] implemented a pre-trained AlexNet architecture for each plane and
trained separate models for detecting different types of injuries. Azcona [2] fol-
lowed a similar approach and employed a ResNet18 with advanced data augmen-
tation, while Irmakci [10] investigated other classic Deep Learning (DL) archi-
tectures. Tsai [25] employed the ELNet, a CNN trained end-to-end with addi-
tional techniques such as multi-slice normalisation and blurpool. This method
was shown to have superior performance than previous methods. Other research
studies have also demonstrated the effectiveness of using Deep Learning for
detecting ACL tears on additional data sets [12].

Spatial attention is another area that has sparked interest in the ML and
medical imaging community. Spatial attention is a technique that focuses on
the most influential structures in the medical image. This technique has been
shown to improve the performance of various medical imaging tasks such as
image segmentation [19] and object detection [24]. Tao [24] implemented 3D
spatial and contextual attention for deep lesion detection. We base our spatial
attention block on this work.

The rapid growth of ML techniques for medical tasks has highlighted the
requirement for DL models to be explainable. Several saliency map techniques
have been proposed in recent years [4,20,22]. These techniques highlight regions
of an image that are influential in the output of the model. There has also
been extensive work in the area of using ML to extract features from models.
Recently, Janik [11] used Testing with Concept Activation Vectors (TCAV),
originally proposed by Kim [14], to extract underlying features for cardiac MRI
segmentation. These features not only aid the explainability of the model but
they can also discover previously unknown aspects of the pathology.

3 Materials

The MRNet data set first published by Bien [3] consists of 1,250 MRIs of the
knee. Each MRI is labelled as having an Anterior Cruciate Ligament (ACL) tear,
meniscus tear and/or being abnormal. The MRIs were acquired using varying
MRI protocols as outlined in Table S1 in the original paper [3]. Each plane was
made available in a different MRI sequence. The sequences for the sagittal, coro-
nal and axial planes are T2-weighted, T1-weighted and Proton Density-weighted
respectively [3]. The MRI data was previously pre-processed to standardise the
pixel intensity scale. This was conducted using a histogram intensity technique
[3,18] to correct inhomogeneous pixel intensities across MRIs.

4 Method

4.1 Model Backbone

The backbone model is a 2D multi-view ResNet18. Azcona [2] demonstrated
that a ResNet18 [8], pre-trained on the ImageNet data set [5] outperforms other
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classic architectures such as AlexNet for detecting knee injuries from MRI data.
For this reason, we employ a ResNet18 architecture. The weights were initialised
with the pre-trained model weights and all weights were subsequently fine-tuned.

MRI data is volumetric and therefore, each plane of an MRI is made up
of several images known as ‘slices’. A multi-view technique was employed to
combine slices of the same MRI in the network. ‘Views’ in the multi-view network
are equivalent to slices. The batch dimension of the multi-view CNN is equal to
the number of slices in one MRI. The slices are input into the multi-view CNN
and the output has dimensions (b, f) where b is the batch dimension, equal to
the number of slices of an MRI and f is a one-dimensional (1D) vector that is
representative of each slice. Su [23] demonstrated that an element-wise maximum
operation was optimal for combining views. For this reason, we implemented an
element-wise maximum operation across the batch dimension to obtain a final
1D vector of combined views (slices) of size (1, f) that is representative of a stack
of slices from one plane of an MRI. This vector is then passed through a fully
connected layer to produce the final output.

4.2 Spatial Attention

A soft spatial attention mechanism is integrated into our base model. This fol-
lows the spatial attention method proposed by Tao [24] who integrated spatial
attention into a VGG16 for deep lesion detection. We opt for a ResNet18 as
its performance for this task has been demonstrated and it has approximately
127 million less parameters than the VGG16. The attention block is designed as
follows.

We define our output volume Dl from a convolutional layer l of size (b, c, h, w)
where b is number of slices, c is the number of channels (feature maps), and h and
w are the height and width of the feature maps. In the attention block, volume
Dl is input into a 1×1 convolution. This produces an output volume Al of shape
(b, c, h, w), where the dimensions are of identical size to Dl. A softmax is applied
to each feature map of Al so that each of the c feature maps of dimensions (h,w)
sum to one. Small values are sensitive to the learning rate [24] and therefore,
each feature map is normalised by dividing the values of the feature map by the
maximum value in the feature map. The resulting attention mask Al′ is then
multiplied by the original convolutional volume Dl.

The volume Al′ is equivalent to a 3D spatial weight matrix where each 2D
feature map in volume Al′ is an attention mask for each feature map in volume
Dl. Attention masks are known to switch pixels in the original volume ‘on’ if
they are important and ‘off’ if they are not important to the target task [17].
Standard attention mechanisms develop a single 2D attention map, while our
method implements a 3D attention mechanism that creates a tailored attention
mask for each feature map. Figure 1 uses Grad-Cam to illustrate three example
cases where the addition of the spatial attention block correctly redirects the
model to more precisely locate a knee injury and associated abnormalities. The
examples shown are MRI slices from the sagittal plane that were annotated by
a radiologist on our team (I.W.).
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4.3 Single-Plane and Multi-plane Analysis

For the single-plane analysis, a separate model was trained for each plane and
each task. Figure 2 shows the architecture of the single-plane model. All slices
from one plane of one MRI are input into a 2D multi-view ResNet18 with a
spatial attention block of output size (splane, 512, 8, 8), where splane is the num-
ber of slices of an MRI from one plane. The model then has a Global Average
Pooling layer of output size (splane, 512), a fully connected layer of output size
(splane, 1000), an element-wise maximum operation of output size (1, 1000), a
final fully connected layer and a sigmoid function to get the final output.

Fig. 1. The examples shown were generated from the same model before and after
the spatial attention block was applied. (a) Spatial attention redirects the attention of
the model to an abnormality (posterior joint effusion). Note that Grad-Cam overlaps
with the annotations on the anterior knee in other slices. (b) A threshold is applied to
Grad-Cam on both images to only colour-code the most influential regions. This then
highlights how the spatial attention fine-tunes the localisation ability of the model. (c)
Spatial attention removes focus from the healthy femur to focus on abnormalities.

Fig. 2. Output dimensions of each layer and architecture of the Single-Plane model.

A multi-plane analysis was then conducted in order to investigate if using
data from multiple planes increases injury detection ability. Figure 3 visualises
the multi-plane networks. These networks follow the same general architecture as
the single-plane models. Three methods of fusing planes along this architecture
were investigated. All of the multi-plane networks start with the Base Model
(BM). The BM is the 2D multi-view ResNet18 with spatial attention block. The
methods of fusing planes are described as follows.

1. The first multi-plane join is named MPFuseNet. This network fuses the output
from the BM of each plane. The output volumes from each plane are of
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dimensions (saxial, 512, 8, 8), (scoronal, 512, 8, 8) and (ssagittal, 512, 8, 8). These
volumes are fused along the batch dimension, resulting in a fused volume of
dimensions ((saxial + scoronal + ssagittal), 512, 8, 8).

2. ‘Multi-plane Join 2’ (MP2) fuses planes after the first fully connected layer
and element-wise maximum operation. This converts the volume of each plane
from dimensions (1, 1000) to a combined volume of dimensions (1, 3000).

3. ‘Multi-Plane Logistic Regression’ (MPLR) trains each CNN separately and
combines the predictions with a logistic regression model. This is the most
common method in the literature [2,3].

Fig. 3. The BM for each plane is a 2D multi-view CNN with ResNet18 architecture
and integrated spatial attention. MPFuseNet fuses the planes after the BM. MP2
fuses planes after the first fully connected layer and element-wise maximum opera-
tion. MPLR fuses the final prediction from each plane.

4.4 Training Pipeline

The models were trained on the official MRNet training set using eight-fold
cross-validation and the official MRNet validation set was used as an unseen
test set. Affine data augmentation techniques such as flipping, translating and
rotating were applied to slices to improve model robustness. We employed the
Adam optimiser [15], with an initial learning rate of 1e−5 and a weighted cross
entropy loss function. As the element-wise maximum operation for the multi-
view technique is implemented over the batch dimension, the batch size is set to
one to avoid combining slices of different MRIs.

5 Evaluation

5.1 Quantitative

Table 1 reports the Area Under the Curve (AUC) of all multi-plane models and
the best performing single-plane models for each task on the validation data. The



Knee Injury Detection and Validating Localisation Ability 77

results demonstrate that although single-plane methods can accurately detect
knee injuries, including data from additional planes further improves perfor-
mance. However, the training time is three times longer for multi-plane models
with the number of trainable parameters tripling in comparison to single-plane
models. The trade-off between performance and model complexity should be
considered.

In the case of the multi-plane methods, MPLR resulted in optimal perfor-
mance for detecting abnormal MRIs. However, MPLR was detrimental to per-
formance for detecting ACL and meniscus tears. This is because single-plane
models that had a lower validation AUC had a higher training AUC than other
models. This resulted in the logistic regression weighting the sub-optimal per-
forming single-plane models higher than the best performing single-plane models,
resulting in a performance degradation.

MPFuseNet performed optimally for detecting ACL and meniscus tears. This
network reduces the risk of overfitting by performing the element-wise maximum
operation over all planes. It does not perform optimally for abnormality detec-
tion. However, the nature of this task is substantially different to the other tasks.
The models for ACL and meniscus tear detection determine whether a tear is
present or not, while the abnormality detection model determines if there is a
major abnormality or several minor abnormalities. Particularly in cases where
the model has detected several minor abnormalities, it is possible that perform-
ing the maximum operation over all planes in MPFuseNet causes significant
information loss and therefore, degrades the model’s performance.

This analysis has demonstrated that MPFuseNet outperforms MPLR for
ACL and meniscus tear detection and that MPLR can be detrimental to the
model’s performance. This is a significant finding given that MPLR is the most
common method in the literature.

From the validation results in Table 1, we select the novel MPFuseNet for
ACL and meniscus tear detection and MPLR for abnormality detection as our
final models.

Table 1. Comparison of single-plane and multi-plane on validation data (AUC)

Model ACL Abnormal Meniscus

Single-Plane (SP) 0.953Axial 0.923Coronal 0.862Coronal

Multi-Plane Logistic Regression (MPLR) 0.923 0.952 0.862

MPFuseNet 0.972 0.916 0.867

Multi-Plane Join 2 (MP2) 0.948 0.903 0.853

Tsai [25] trained the ELNet using four fold cross-validation. Table 2 compares
the performance of our selected ResNet18 + Spatial Attention models and the
performance of ELNet and MRNet on unseen test data, as reported by Tsai [25].
The ELNet improved on the MRNet performance by 0.004 and 0.005 AUC for
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ACL and abnormality detection respectively, while our proposed models for ACL
and abnormality detection result in a substantial performance improvement.
Although our proposed model for meniscus detection does not outperform the
ELNet, it shows an improvement on the MRNet performance.

Table 2. Comparison with known methods on unseen test data (AUC)

Model ACL Abnormal Meniscus

Proposed Models 0.977MPFuseNet 0.957MPLR 0.831MPFuseNet

ELNet [25] 0.960 0.941 0.904

MRNet [3,25] 0.956 0.936 0.826

5.2 Ablation Study

An ablation study was conducted to demonstrate the effects of adding the spatial
attention block. A multi-view ResNet18 with no spatial attention was trained for
this study. Figure 4 shows the Receiver Operator Curves (ROC) and the AUC
for single-plane models with and without spatial attention on the test set. The
addition of the spatial attention block results in increased performance, most
notably for meniscus tear and abnormality detection.

Fig. 4. ROC curves for ResNet18 with and without spatial attention.

6 Explainability

This section aims to validate the model by assessing the localisation ability and
extracting features. This will aid the explainability of the model.

For this study, the radiologist annotated MRIs from 50 randomly sampled
healthy and unhealthy MRIs. The radiologist used bounding boxes to annotate
meniscus tears, ACL tears and significant abnormalities that can be associa-
tive or non-associative of the aforementioned tears. Examples of the annotated
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abnormalities include joint effusion and bone bruising. Out of the sample of
annotated MRIs, MRIs where the radiologist annotated an ACL tear and the
single-plane model correctly detected the ACL tear were used for this analysis,
resulting in a sample of twelve MRIs. There were additional cases where an ACL
tear was found by the radiologist on another plane but they were not visible to
the radiologist on the plane in question due to the thickness of the slices. In some
of these cases, the models confidently detected a tear on the plane where it was
not visible. This indicates that there are other features that the model relies on
or the model has found evidence of a tear that is not visible to the human eye.

6.1 Localisation Ability

As previously outlined, object detection models can be trained specifically to
localise the tear. However, these models require localised annotations. The
MRNet data set provides only image-level labels. Therefore, we use the output
of Grad-Cam and the sample of MRIs that were annotated by the radiologist to
quantify the model’s localisation ability. This task requires a metric that meets
the following two criteria.

Does Not Over-Penalise False Positive Regions: Grad-Cam can highlight
excess area around the region of interest. This excess area outside the bounds
of an annotation is a false positive region. This results in low IoU and Dice
scores that over-penalise the model’s localisation abilities. Furthermore, heavy
penalisation of false positive regions is not ideal for assessing localisation ability
for medical imaging tasks as it is likely that the area outside the bounds of
the annotation may also be abnormal. For example, there could be visible joint
effusion or tissue damage in the region around an ACL tear annotation.

Stand-Alone: Although IoU and Dice over-penalise the model’s localisation
abilities, they are still informative when comparing localisation abilities across
models. However, a stand-alone metric can communicate an accurate represen-
tation of the localisation capabilities in the absence of any comparative informa-
tion.

A metric that meets the two criteria will accurately reflect a model’s locali-
sation ability. Our proposed metric, PLA, meets the aforementioned criteria.

Localisation Accuracy and Penalised Localisation Accuracy. In order to
calculate Localisation Accuracy (LA) and PLA, we compare the output of Grad-
Cam to the annotations defined by the radiologist. Grad-Cam generates a matrix
that assigns a feature importance score between zero and one to each pixel. This
matrix is normally shown as a heat-map overlaid on the MRI slice in question
(Fig. 5(a)). A Grad-Cam mask was generated based the pixel importance values.
The masks had pixel values of one when the pixel importance value was above the
threshold of 0.6 and had pixel values of zero when the pixel importance value was
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below the threshold of 0.6 (Fig. 5(b)). The threshold of 0.6 was chosen as pixel
importance values above 0.5 have above average importance. However, 0.5 was
found to generate large Grad-Cam masks and higher threshold values created
Grad-Cam masks that were sometimes smaller than the annotation. Therefore,
the optimal threshold value is 0.6 for this study. Similarly, an annotation mask
was created for each annotated MRI slice where pixels within the bounds of the
annotation have a value of one and pixels outside the bounds of the annotation
have a value of zero (Fig. 5(d)). The Grad-Cam and annotation mask can then
be used to calculate metrics such as LA to quantify the localisation ability.
Figure 5 outlines this process for assessing ACL tear localisation. The metric LA
is calculated as the percentage of the annotation that is covered by the Grad-
Cam mask. The formula for LA is shown in Eq. 1. One of the limitations of
this metric is that if the Grad-Cam mask covers a significantly large area, the
annotation is likely to overlap with the Grad-Cam mask due to random chance.
We therefore introduce an adjusted version of LA, PLA. This metric is equal to
LA with a penalty for false positive regions. However, unlike IoU and Dice, it
does not over-penalise false positive regions. It is calculated using the formulae
shown in Eq. 2 and 3.

LAx =
overlapx

ann
(1)

FPPx =
gcx − overlapx

total
(2)

PLAx = MAX(LAx − FPPx, 0) (3)

overlapx is the number of pixels that are both, within the bounds of the
annotation and have a pixel value of one in the Grad-Cam mask. The subscript
x means that the metric was calculated based on a Grad-Cam mask generated
at pixel importance threshold x. As outlined earlier, we set x to equal the pixel
importance threshold 0.6. ann is the number of pixels within the bounds of the
radiologist’s annotation. FPPx is the False Positive Penalty (FPP). gcx is the
number of pixels that have a value of one in the Grad-Cam mask and total
is the total number of pixels in the image. Equation 3 also shows a maximum
operation. This is to avoid negative PLA values. Without a maximum operation,
PLA would have a negative value when there is no overlap between the Grad-
Cam mask and the annotation mask.

PLA returns a value between zero and one where a score of one is perfect
localisation. A score of one is achieved when the area of the Grad-Cam mask
is equal to the area of the annotation mask and they have a perfect overlap. A
score of zero is achieved if there is no overlap between the Grad-Cam mask and
the annotation mask. PLA also effectively penalises false positive regions. For
example, if the Grad-Cam mask covers 100% of the image and the annotation
takes up 1% of the area, the value of LA would be one, while the value of PLA
would be 0.01. Although PLA penalises false positive regions, it does not over-
penalise them as is the case with IoU and Dice. This is demonstrated in a later
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Fig. 5. Pipeline for calculating LA and PLA based on an ACL tear detection model.

paragraph. PLA is also a stand-alone metric, meaning it is interpretable and
informative of the localisation ability without any comparative information.

Area Under the Curve for Localisation. The Area Under the Curve is
another metric that can be used to assess a model’s localisation ability that meets
the previously outlined criteria. To calculate the AUC, the Grad-Cam output
and annotation masks are flattened into 1D vectors. The Grad-Cam 1D vector is
interpreted as the probability of the pixel showing the tear and the annotation
1D vector is the ground truth. The AUC is then calculated. This metric takes into
account false positive regions and is advantageous over IoU and PLA as it does
not require a Grad-Cam mask to be generated at a specific threshold. Instead,
the direct Grad-Cam output can be used for the AUC calculation. However, it
is not as easily interpreted as our proposed metric, PLA.

Metric Comparison. Figure 6(a) shows the value of each metric on a sample
of MRIs. These scores are based on the ACL detection model that was trained
on axial data. For each MRI, the metrics shown in the figure are based on the
slice with the highest metric values as we interpret this to be the MRI’s key slice.
The metrics are shown on the same graph as all metrics have a range of possible
values from zero to one. All metrics, with the exception of AUC, were calculated
using a Grad-Cam mask generated at the 0.6 pixel importance threshold. AUC
uses the direct Grad-Cam output. Figure 6(b) shows the Grad-Cam heatmap
overlaid on the MRI slice and the corresponding radiologist annotations. As we
are assessing the model’s ability to localise an ACL tear, it is only the ACL
tear annotations shown in blue that are of interest. Figure 6(b) also shows the
values of the metrics for each example. The radiologist was satisfied with the
model’s localisation of the ACL tear in the examples shown. However, the IoU
and Dice metrics have near zero values, indicating poor localisation ability. It
can be seen from Fig. 6(a) that all samples have low IoU and Dice scores. The
disagreement between these metrics and the radiologist’s opinion demonstrates
the ineffectiveness of IoU and Dice as stand-alone, interpretable metrics that can
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be used to assess localisation ability. This is due to their over-penalisation of false
positive regions. A further cause for concern is that neither IoU or Dice show
a dis-improvement in their scores for the problematic MRI Case 4. In this MRI
case, the Grad-Cam mask overlaps with only 40% of the ACL tear annotation.

Fig. 6. (a) The LA0.6, PLA0.6, AUC, IoU0.6 and Dice0.6 scores for sample MRIs.
(b) Grad-Cam overlaid on axial plane MRI slices and the corresponding radiologist
annotations for MRI Case nine (top) and eleven (bottom). These metrics are based on
the model’s ability to locate the ACL tear (ACL tear annotations are shown in blue).
(Color figure online)

Figure 6(b) shows that LA achieves a perfect score for almost all samples.
However, LA will not accurately communicate the localisation ability of a model
in cases where there are significantly large false positive regions. It can be con-
cluded from the figure that our proposed PLA and AUC give the most accurate
representation of the model’s localisation ability. They both give high scores
when the model has effectively localised the tear but still penalise false positive
regions. An advantage of AUC is that it does not require a Grad-Cam mask to be
generated based on a pixel importance threshold. It uses the direct Grad-Cam
output. However, it appears to under-penalise the model in cases. MRI Case
four, as previously outlined, only overlaps with 40% of the annotation. However,
this case achieves a high AUC score of 0.9. Therefore, PLA can be considered
to be advantageous over AUC. Moreover, our proposed metric, PLA is akin
to a straight-forward accuracy calculation with an adjustment for false positive
regions and therefore, it is more interpretable than AUC.

Aggregated Localisation Results. To quantify the localisation ability over
the entire sample, we can calculate the percentage of cases where the model
accurately located the tear based on the PLA scores. Value asx is the PLA value
of slice s of an MRI that overlaps with the Grad-Cam mask segmented at feature
importance threshold x where x is equal to 0.6 for this study. The slice with the
best asx score is selected from each MRI as we interpret this slice to be the MRI’s
key slice. For each MRI, asx is subsequently transformed to a binary outcome of
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[0, 1] using a threshold value k. The value k can be varied in the range (0.5, 1).
For each value of k, asx is assigned a value of one if k is less than asx and zero
otherwise. Once a binary outcome has been obtained for each MRI, the accuracy
can be calculated over the sample for each threshold value k. We report that
91.7% of the sample accurately localised the tear at k values ranging from 0.5
to 0.85. It is evident that our proposed model is correctly localising ACL tears
and the output of the model is based on the site of the ACL tear. Moreover, all
MRI cases have an AUC greater than 0.9. This further demonstrates the model’s
localisation ability.

6.2 Features

The radiologist’s annotated abnormalities were used to extract features. The pur-
pose of annotating abnormalities in addition to the ligament tears is to determine
if there are additional structures present in the MRI that influence whether a
model detects a ligament tear or not. Such ‘structures’ can be thought of as
features. Figure 7 visualises the most common abnormalities that the ACL tear
model detected. The table shows the number of MRIs where the feature was
present and the detection rate. The detection rate is calculated based on num-
ber of times the Grad-Cam mask generated at the 0.6 pixel importance threshold
covered over 60% of the annotation. The results show that joint effusion and bone
bruising are the most common features of an ACL tear. The radiologist verified
that these features are frequently seen in the setting of acute ACL tears.

It was also found from an analysis of the ACL detection model trained on
sagittal data that there was a correlation between abnormal cases and cases
where growth plates were visible on the MRI. Growth plates are found in chil-
dren and adolescents. Grad-Cam highlighted these normal regions to indicate
that they are influential in the model’s output. Therefore, the model learned
an incorrect relationship. This is an example of the model falling victim to the
correlation versus causation fallacy. This further justifies the requirement of
extracting features and clinically verifying them.

6.3 Limitations

Although the experiment quantified the localisation ability of the model and
extracted features, there were a number of limitations. The annotations were
limited to bounding boxes. This could result in excess area being included in the
annotation if the abnormality is not rectangular. The radiologist minimised the
effects of this by using multiple annotations for irregularly shaped abnormalities.
An example of this is the joint effusion annotation in Fig. 7. The radiologist also
noted that the slice thickness of some MR protocols made it difficult to detect
and annotate tears. Grad-Cam has some known limitations such as not capturing
the entire region of interest [4]. A variation of visualisation techniques could be
employed in future to overcome this limitation.
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Fig. 7. Table demonstrating the number of MRIs where the feature is present and the
feature detection rate.

7 Conclusion

We have demonstrated how spatial attention corrects the model’s focus to salient
regions. In our analysis of single and multi-plane, it was found that including data
from additional planes increases the detection ability. However, the training time
for multi-plane methods and the number of parameters is tripled and thus, the
trade-off between model complexity and performance should be considered. We
developed the multi-plane network, MPFuseNet, that outperforms the common
MPLR method for ACL and meniscus tear detection. Furthermore, our proposed
methods achieve state-of-the-art results for ACL tear and abnormality detection.

We developed an objective metric, PLA for quantifying and validating the
localisation ability of our model. Using this metric, we verified that the ACL
detection model accurately located the ACL tear in 91.7% of a sample of MRIs.
We then extracted features from the model that were then verified by the radiol-
ogist. Validating the localisation ability and extracting features for explainability
will improve clinical trust in ML systems and allow for smoother integration into
clinical workflows. This work will be extended to consider the opinion of several
radiologists and a larger data set of MRIs. Future work will also elaborate on the
single-plane and multi-plane analysis by considering additional planes. Oblique
MRI planes have previously been shown to improve ACL tear detection [16].
The quality of the extracted explainability features will also be assessed using
the System Causability Scale [9] and by means of a user evaluation study with
clinicians.

Code for this work will be made publicly available at https://git.io/J3pA5.
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