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Abstract. The UK Biobank imaging sub-study enables large-scale mea-
surement of pancreas volume, an important biomarker in metabolic dis-
ease, including diabetes. Previous methods utilised a pancreas-specific
(PS) 3D MRI UK Biobank acquisition to automatically measure pan-
creas volume. This may lead to a clinically significant underestimation
of volume, due to partial coverage of the pancreas in these acquisitions.
To address this, we propose a pipeline for the accurate measurement of
pancreas volume using stitched whole-body (WB) 3D MRI UK Biobank
acquisitions and deep learning-based segmentation. We implement and
compare the performance of six different U-Net-like model architectures,
leveraging attention layers, recurrent layers, and residual blocks. Further-
more, we investigate pancreas volumetry in 42,313 subjects, separated
by sex, and present novel results concerning the change in pancreas vol-
ume throughout the course of a day (diurnal variation). To the best of
our knowledge, this is the largest pancreas volumetry study to date and
the first to propose a pipeline using the whole-body UK Biobank MRI
acquisitions to measure pancreas volume.
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1 Introduction

Pancreas volume has been shown to change with age and in diseases such
as pancreatitis, type 1 diabetes, and type 2 diabetes [1–5]. Pancreas volume
is typically measured following segmentation. Manual pancreas segmentation
is labour-intensive and the delineation of a three-dimensional shape, with ill-
defined boundaries extending across multiple views, is prone to substantial inter-
rater and intra-rater variability. Automating pancreas segmentation can alle-
viate these problems by increasing reproducibility and decreasing subjectivity.
Automation can also allow for large-scale model deployment, leading to practical
implementations for clinical decision-making and population health research.
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Deep learning-based pancreas segmentation methods have been proposed to
automate pancreas segmentation [6,7].

UK Biobank is one of the largest resources of imaging and non-imaging med-
ical data in the world. This resource opens up the possibility of exploratory
research into the realm of precision medicine [8]. The UK Biobank imaging sub-
study aims to scan a total of 100,000 volunteers at multiple timepoints [9]; part
of this sub-study includes numerous MRI imaging acquisitions. One such acqui-
sition is a dedicated pancreas volumetric interpolated breath-hold examination
(VIBE). Previous works have used this pancreas-specific scan for pancreas seg-
mentation, volumetry estimation, shape measurement and downstream pancre-
atic quantification [10,11]. The high resolution nature of the pancreas-specific
scan allows models to more easily learn useful representations of the pancreas and
to better quantify biomarkers like surface lobularity [5,12]. However, in many
cases, there is only partial coverage of the pancreas, often missing parts of the
pancreas head region (Fig. 1). The longitudinal nature of UK Biobank motivates
the need for accurate and precise pancreas volume measurement, in order to
detect small (clinically) meaningful changes caused by aging and pathological
processes. The partial coverage effect observed in pancreas-specific images could
lead to significant inaccuracies in volume measurements, hindering the ability to
detect such small changes. For reference, a study by Saisho et al. [2] reported a
74.9 cm3 total pancreas volume in type 2 diabetics and 70.0 cm3 volume in age-,
sex-, and BMI-matched controls.

The UK Biobank imaging protocol also contains a whole-body (neck-to-knee)
2-point Dixon acquisition, acquired sequentially in multiple breath-hold volumes.
Although they have been acquired at slightly lower resolution than the pancreas-
specific scan, they have the advantage that they contain full coverage of the pan-
creas. To the best of our knowledge, no study investigating pancreas volumetry
in UK Biobank has used these whole-body acquisitions to measure pancreas
volume. These whole-body scans can provide accurate and consistent volume
measurements across the UK Biobank population. In addition, they can provide
insight into interrelations with other imaging (e.g. quantitative MRI, volume-
try from other organs) and non-imaging (e.g. blood tests, diagnoses, genetics)
biomarkers, in order to better understand and improve treatment of disease.

In this work, we propose a novel pipeline to study pancreas volumetry in UK
Biobank. This pipeline can be easily extended to study other organs captured
in the whole-body acquisition. The pipeline includes stitching, registration to a
common coordinate space, cropping out the abdominal region, deep learning-
based segmentation model training, testing and prediction. We leverage a pre-
viously presented pancreas segmentation model [11] to build a large annotated
dataset of whole-body pancreas segmentations. We implement six different U-Net
[13] based models that have been proposed in the literature, some with exist-
ing pancreas segmentation applications [14], and compared their performance.
Finally, we estimate the pancreas volume under-estimation caused by the partial
coverage in the pancreas-specific acquisitions and investigate pancreas volume
population metrics, including diurnal variation of pancreas volume.
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Fig. 1. A coronal slice through the 3D pancreas-specific scan (left), overlayed on a coro-
nal slice through the 3D whole-body scan (right). The bottom of the pancreas has been
cropped out in the PS scan which has led to the underestimation of pancreas volume.
The measured pancreas volume from the PS scan was 78.6 cm3, whereas the measured
pancreas volume from the whole-body scan was 91.9 cm3 – a 14.4 % underestimation.

2 Materials and Methods

2.1 Data Acquisition

Imaging data was acquired with a Siemens Aera 1.5 T (Siemens Healthineers
AG, Erlangen, Germany). “Pancreas fat - DICOM” (Data-Field ID 20202 in the
UK Biobank Showcase1) volumetric acquisition, which we are referring to here as
the pancreas-specific (PS) scan, targets the abdominal location of the pancreas.
The PS scan used the FLASH-3D acquisition (echo time (TE)/repetition time
(TR) = 1.15/3.11 ms, voxel size = 1.1875 × 1.1875 × 1.6 mm), with 10◦ flip
angle and fat suppression.

“Dixon technique for internal fat - DICOM” (Data-Field ID 20201) volumet-
ric acquisition, which we are referring to here as the whole-body (WB) scan,
involved multiple dual echo Dixon VIBE volumes, acquired over the course of
6 min to provide water/fat separated overlapping volumes from the neck to the
knees. Further details about the acquisition can in found in [15].

1 https://biobank.ndph.ox.ac.uk/showcase/browse.cgi.

https://biobank.ndph.ox.ac.uk/showcase/browse.cgi
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2.2 Data Labelling and Preprocessing

First, overlapping volumes from the WB acquisition were automatically stitched
together, following a round of N4 bias field correction [16] on each volume block.
To deal with an MRI wrapping artefact present in the data, the top two and
the bottom two slices from each block were removed prior to stitching. Lin-
ear normalisation was then applied across blocks, to correct for any cross-block
intensity inhomogeneity. This resulted in a relatively ‘clean’ stitched image, with
a homogeneous intensity throughout.

Second, in order to build an annotated dataset for model training, we lever-
aged a model previously trained on PS acquisition images that were labelled by
an expert [11]. Labels, obtained from the PS model were propagated across to
the WB images using DICOM header geometry information. 200 WB images,
along with their propagated label counterpart, were selected by visual inspection.
Subjects that had minimal movement between the two types of acquisitions and
thus, whose propagated labels best aligned with the WB image were selected.
Corrections, including the addition of the missing pancreas information, were
made after the alignment. Corrections were performed using the 3D brush tool
in ITK-SNAP [17]. This labelling process allowed us to quickly build an anno-
tated dataset.

Third, a representative WB image was selected to provide a dedicated ‘refer-
ence’ coordinate space to which all other WB images were aligned via affine image
registration. Here, we used the affine registration implementation from ANTS
[18]. This enabled us to heuristically crop out the abdominal region from the
WB image, resulting in a consistent image size and similar coverage of abdomi-
nal organs across all subjects. As we are only interested in the pancreas region,
training a model using the full WB image would have been inefficient in terms
of GPU memory useage, in addition to potentially degrading the performance of
the model. The same registration and cropping was applied to the WB pancreas
label. Segmentations were transformed back to their original coordinate space,
via the inverse affine transformation, when calculating a final measurement of
pancreas volume.

Lastly, we clipped image intensities at the 99th percentile value, normalised
voxel values between 0 and 1, and randomly split the dataset as follows: 70%
training, 20% testing, and 10% validation.

2.3 Model Architectures

We compared the performance of six different semantic segmentation networks
based on previously reported architectures. The first of these was a conventional
3D U-Net with an encoder path, decoder path and skip connections [19]. The
details of this network can be found in Figs. 2a and 3a.
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Fig. 2. Different variants of convolutional blocks. (a) Conventional convolutional block,
(b) Residual convolutional block, (c) Recurrent residual convolutional block.

The second network was an attention U-Net (AU-Net) as reported by Oktay
et al. [14]. The idea behind AU-Nets is to include a mechanism such that the
network learns to focus only on the features of an image that are relevant to
the task. Given that the pancreas encompasses only a small part of the cropped
whole-body image, AU-Nets have potential to be suitable for our application.
We implemented the AU-Net by, prior to the concatenation step in each skip
connection, ‘gating’ the incoming feature maps from the encoder layer as shown
in Fig. 3b. This gating step is as follows: the nx feature maps from the encoder
layer are denoted by x, and the corresponding ng feature maps from the decoder
layer that are typically concatenated with x in a skip connection are denoted
by g. First, x is downsampled to the same spatial resolution as g. A set of
attention weights, α, is then obtained through the following operation: α =
σ2(ψT (σ1(WT

x x + WT
g g + b1)) + b2). Here, Wx and Wg represent 1 × 1 × 1

convolution operations that output nx features, σ1 is a ReLu activation function,
ψ is a 1 × 1 × 1 convolution that outputs 1 feature map, σ2 is a sigmoid activation
function and the b vectors are bias terms. Finally, α is resampled to the same
spatial resolution as x, and x is multiplied by α to give the attention gated
features x̂.

The third architecture we investigated was a residual U-Net (RU-Net) as
reported by Alom et al. [20]. Figure 2a shows that our conventional U-Net archi-
tecture consists of blocks that have two convolutional + instance-normalisation
+ ReLu (Conv + IN + ReLu) layers. In the RU-Net, these blocks are altered so
that output of the second Conv + IN + ReLu layer is summed with a feature
set based on the input to the first Conv + IN + ReLu layer, as shown in Fig. 2b.
Note that the ‘Conv’ layer in Fig. 2b is a 1 × 1 × 1 convolutional layer in the
residual path to ensure that the dimensions of the two feature sets to be summed
match. The motivation behind RU-Nets is that the residual paths can improve
optimisation during training.

The fourth architecture that we investigated, also reported by Alom
et al. [20], was a recurrent residual U-Net (R2U-Net). It builds on top of
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Fig. 3. The base U-Net model architectures for (a) a conventional U-Net and (b) an
attention U-Net. Note that the blue arrows represent a block of operations, where
the details of the block depend on the specific U-Net variant being implemented. The
details for each type of block are shown in Fig. 2.

RU-Net by using recurrent convolutional layers (RCL), as opposed to conven-
tional convolutional layers. R2U-Net has been shown to improve performance
when compared to a conventional U-Net. In an RCL, features are ‘accumulated’
in a layer by forward propagating through the layer multiple times, and taking
into account the feature maps from the previous propagations. For example, if x
is the original input to the RCL, then the output of the RCL can be calculated
by ot = WT

f zt + b, where Wf represents a convolution, z1 = x for t = 1 and
zt = ot−1 + zt−1 for t > 1. The output at each time-step is fed through a ReLu
activation. We implemented the R2U-Net with two time-steps. The details of the
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R2U-Net block is shown in Fig. 2c. As before, a ‘Conv’ layer is used to ensure
that the dimensions match for any summation of features.

The U-Net variants above are modular, meaning they can be further com-
bined with one another to utilise each of their potential benefits. Consequently,
we investigated two further variants. The first was a residual U-Net with
attention-gating (RAU-Net), the second was a recurrent residual U-Net with
attention-gating (R2AU-Net).

2.4 Model Training and Testing

Before training, weights in each network were initialised using Glorot uniform
initialisation [21]. Data augmentation and random shuffling were performed ‘on-
the-fly’. Augmentation included random rotations, within a range of -10◦ to
+10◦ about the inferior-superior axis. We also randomly scaled the image size
to between 95% and 105% of the original image dimensions. Zero-padding was
used to keep to a consistent input dimension. Each network was trained for 100
epochs, with a batch size of 1 and a learning rate of 0.0005. Model weights were
saved each time there was a decrease in validation loss. ADAM [22] optimisation
was used, with a combined cross-entropy and soft dice loss function as shown in
the following equation:

L =
1
N

1
K

N∑

i

K∑

c

⎛

⎝1 − 2
∑M

j picjyicj + δ
∑M

j (picj + yicj) + δ
− 1

M

M∑

j

yicj log picj

⎞

⎠ (1)

where i = [1..N ] is the subject index, c = [1..K] is the class index, j = [1..M ] is
the voxel index, picj is the predicted probability of voxel j for subject i belonging
to class c, yicj is a binary variable equal to 1 if the ground truth class for voxel
j in subject i is c and 0 otherwise, and δ = 0.01.

The models, training pipeline, and testing pipeline were all implemented
using PyTorch2. Each model took approximately 5 h to train on an NVIDIA
Tesla V100 GPU.

During inference, final pancreas segmentations were obtained by threshold-
ing the label probabilities at 0.5, a threshold that selects the class label with
the largest posterior probability under the assumption of equal misclassification
costs. These segmentation labels were then resampled back to the original image
size, using nearest-neighbour interpolation. Pancreatic volumes were calculated
from the final segmentation labels.

To evaluate each model we used the commonly reported Dice Similarity Coef-
ficient (DSC) and the 95th percentile of the Hausdorff Distance metric (HD95).
Results from this evaluation can be seen in Sect. 3.1.

2 https://pytorch.org/.

https://pytorch.org/
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2.5 Model Inference at Scale

After evaluating the performance of each model variant, we used AU-Net to
automatically segment 42,313 pancreas volumes in UK Biobank. The stitching,
cropping, and pre-processing of each WB image was the same as described in
Sect. 2.2. By utilising Terraform3 to orchestrate multiple Amazon Web Services
EC2 instances, we were able to obtain all 42,313 pancreas segmentations, and
their corresponding volumes, in less than 4 h.

Pancreas Volume Within the UK Biobank Population. Using these auto-
matically obtained pancreas segmentations, we compared volume measurements
from the proposed WB segmentation method with volume measurements derived
from the previously proposed PS segmentation model [11]. We used this com-
parison to estimate the extent of pancreas volume under-estimation in the PS
scans. We also calculated the average pancreas volume for males, females, and
combined males and females. These results are presented in Sect. 3.2 and 3.3,
respectively.

Pancreas Volume Diurnal Variation. As an applied use-case of automated
pancreas volumetry, and to demonstrate the versatility of large-scale research
resources such as UK Biobank, we further investigated the natural change in
pancreas volume (if any) throughout the course of the day. In UK Biobank, each
subject is scanned just once, at an imaging session typically between the times of
9 am and 7 pm. Here, we rounded the timepoint at which a subject was scanned
to the nearest hour; subjects scanned after 7:30 pm and before 8:30am were
excluded to keep the number of subjects in each sub-group to greater than 1000.
This resulted in 11 unique groups of pancreas volumes (mean n = 3791, range n =
2796–4194). We then calculated the median pancreas volume at each timepoint
and observed the change in median volume between those timepoints. The sheer
scale of UK Biobank allows us to investigate average changes in the human body,
with the noise present from individual measurements largely mitigated. Using
the whole-body images to measure pancreas volume also mitigates added noise
from partial coverage in the PS acquisitions. One could measure the volume of
the pancreas for the same individual at multiple timepoints throughout the day;
however, it can be argued that observing the same average phenomena in tens
of thousands of people provides greater validity to the result. Pancreas volume
diurnal variation results are presented in Sect. 3.4.

3 Results

3.1 Model Evaluation

Qualitative Results. Figure 4 shows a qualitative comparison of the different
models. Although it is difficult to draw any firm conclusions from a qualitative
3 https://www.terraform.io/.

https://www.terraform.io/
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evaluation of predicted segmentations, one noticeable observation is that each
of the automated models in Fig. 4 struggle to segment the pancreas towards the
lowest extent of the organ. See Sect. 4 for further discussion.

Fig. 4. Axial slice through a cropped WB image, showing automated pancreas seg-
mentations and their respective performance metrics, for each type of model being
compared.

Quantitative Results. Table 1 shows the DSC and HD95 metrics for the var-
ious models we investigated. Figures 5a and 5b also show boxplots for the these
metrics. The conventional U-Net and R2U-Net models both resulted in the high-
est mean DSC, while the conventional U-Net resulted in the highest median
DSC. When considering the standard deviation of DSC, it was R2U-Net that
appeared to be least susceptible to outliers, with AU-Net in close second. In
terms of HD95, AU-Net resulted in the lowest mean score and tightest standard
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Fig. 5. Boxplots of the (a) DSC and (b) HD95 metrics for each type of model we
investigated.

deviation. In general, no one model appeared to be clearly superior. The per-
formances were similar across the board. Based on the fact that it was one of
the models least susceptible to outliers, we decided to use AU-Net to derive the
volumes presented in future sections.

Table 1. Model evaluation results. DSC - dice score; HD 95 - 95 percentile Hausdorff
distance; SD - standard deviation.

Model DSC HD95

Median Mean SD Median Mean SD

U-Net 0.712 0.681 0.114 5.66 13.7 23.2

AU-Net 0.696 0.675 0.078 6.00 7.54 4.94

RU-Net 0.658 0.652 0.112 7.07 10.1 14.4

RAU-Net 0.685 0.668 0.090 5.83 10.2 13.9

R2U-Net 0.689 0.681 0.070 5.83 7.87 8.04

R2AU-Net 0.689 0.670 0.088 6.00 11.29 16.51

3.2 Comparison with Volumetry from Pancreas-Specific Scan

Figure 6 shows the histogram of differences between volumes derived from the
PS and the WB scans. We observed a mean difference of 11.7 cm3, or 14.25%,
(p = 1.4 × 10−288) between the two approaches.
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Fig. 6. Comparison of measured pancreas volume from the pancreas-specific scan seg-
mentation model and the proposed whole-body scan segmentation model. A mean
volume difference of 11.7 cm3 (14.25%) was observed. n = 3672.

3.3 UK Biobank Population Volumetry

Table 2 shows median pancreas volume in UK Biobank for both males, females,
and combined males and females. Figure 7 shows histograms of pancreas volumes
for males and females. These results show a 13% difference between the average
volume of the pancreas in males when compared with females.

Table 2. Average pancreas volumes in UK Biobank for males, females, and combined
males and females.

Number Quantified Median (cm3) SD (cm3)

Male 20395 70.0 19.8

Female 21918 62.0 17.1

Combined 42313 65.5 18.9

3.4 Pancreas Volume Diurnal Variation.

Fig. 8 shows that there is a marked variation in the volume of the pancreas
throughout the course of a day. The largest change in total pancreatic volume
of a 5.73% reduction (p = 6.80× 10−20) was observed between the hours of 9am
and 3pm. The largest change over the course of an hour, observed between 10
am and 11 am, was a reduction of 2.57% (p=1.01×10−5).
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Fig. 7. Histograms of pancreas volume in UK Biobank for males and females. n =
42313.

Fig. 8. Pancreas volume diurnal variation in UK Biobank (combined male and female).
n = 41704.

4 Discussion and Conclusion

Pancreas volumetry in UK Biobank measured using the proposed pipeline,
notably segmenting the pancreas on the WB acquisitions, agrees with reported
values for nominally healthy populations [2] (N = 1,721). On the other hand,
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pancreas volumetry performed using the PS acquisitions [10,11], underestimated
volume by an average of 11.7 cm3 compared to our method. To the best of our
knowledge, this work is the largest attempt at accurate pancreas volume mea-
surement in a nominally healthy population, which may be used for reference in
future studies of age and disease.

Using the PS segmentation model allowed us to exploit the prior expert
knowledge distilled in the annotations used for training the original model. It
also enabled cheap, fast generation of good-quality starting estimates of pancreas
labels for the WB images. One limitation of this approach is that, while these
starting estimates were manually corrected when necessary, the selection of a
subset of ‘good’ starting candidates from a larger dataset could have biased our
dataset for WB model training. For instance, if we consider the extreme case of
selecting a subset where no annotations are needed, the dataset might become
limited towards those small pancreata that already fit in the PS scan volume,
though that could be partly addressed using data augmentation.

We chose AU-Net to run at scale as it was less susceptible to outliers in
both DSC and HD95. The differences in performance between the segmentation
models were not found to be significant (when using a paired t-test); however,
the test set was a relatively small sample. The ‘effect size’ of differences, in which
it is difficult to gain insight to with a paired t-test alone, could be investigated
further with more sophisticated Bayesian testing [23].

Although the performance of all the models presented here are on-par with
other state-of-the-art pancreas segmentation methods [24], there is scope for
improvement. Due to all of the cropped UK Biobank whole-body images being
the same resolution, a patch-based segmentation approach could improve seg-
mentation performance. This would mean that neither the input image or the
output label would require any resampling, thereby avoiding resampling errors
at object boundaries. This type of resampling error can be particularly detri-
mental in smaller organs, such as the pancreas, when using methods like nearest
neighbour interpolation. This resampling error could also lead to inaccuracies in
pancreas surface lobularity measures.

In terms of the diurnal variation of pancreas volume, we are not aware of
the biological mechanism that causes this change; however, a similar pattern
has been observed in other organs in the body [25]. It is important to note that
there is a marked change in pancreas volume throughout the day, which should
be considered when making clinical decisions based on volume assessments. This
change could be corrected for via normalisation, although more experimentation
is needed to tease out any unforeseen biases in the data before presenting any
correction methods.

In conclusion, we have highlighted clinically significant underestimation of
pancreas volume in UK Biobank, caused by partial coverage in the pancreas-
specific acquisition. We presented a comparison of 6 different variants of U-
Net models for pancreas segmentation in whole-body MRI. We also proposed
a pipeline for efficient data labelling, using a previously trained PS model, and
deployment of a trained model on a large scale. We believe the culmination of
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large data sources, such as UK Biobank, with deep learning methods, and cloud
computing has exciting potential to provide a better insight into population
health, allow for the exploration of novel biomarkers, and improve patient care.
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