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Abstract. Multiparametric MRI of the pancreas can potentially ben-
efit from the fusion of multiple acquisitions. However, its small, irregu-
lar structure often results in poor organ alignment between acquisitions,
potentially leading to inaccurate quantification. Recent studies using UK
Biobank data have proposed using pancreas segmentation from a 3D vol-
umetric scan to extract a region of interest in 2D quantitative maps. A
limitation of these studies is that potential misalignment between the
volumetric and single-slice scans has not been considered. In this paper,
we report a slice-to-volume registration (SVR) method with multimodal
similarity that aligns the UK Biobank pancreatic 3D acquisitions with
the 2D acquisitions, leading to more accurate downstream quantification
of an individual’s pancreas T1. We validate the SVR method on a chal-
lenging UK Biobank subset of N = 50, using both direct and indirect
performance metrics.

Keywords: Pancreas · Multiparametric · Magnetic resonance
imaging · Volume · T1 · Slice-to-volume registration · UK biobank

1 Introduction

The incidence of chronic pancreas disease, particularly non-alcoholic fatty pan-
creas disease (NAFPD), is rising rapidly, reflecting the increasing worldwide
prevalence of metabolic disease and obesity [1,2]. Fat infiltration due to obesity
in the pancreas triggers an inflammatory response that can lead to chronic pan-
creatitis and ultimately to pancreatic cancer. While multiparametric magnetic
resonance imaging (MRI) of the liver has become the gold standard tool for early
detection, diagnosis and monitoring of chronic disease, this technique has been
understudied in the pancreas. Multiparametric MRI provides the advantages of
soft tissue contrast, lack of radiation, high accuracy and high precision, even
in the most obese patients. This has resulted in the development of liver imag-
ing biomarkers such as corrected T1 (cT1) [3] and proton density fat fraction
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(PDFF) [4]. This motivates the development of quantitative imaging biomarkers
for assessing the pancreas, which is increasingly important as it is fundamentally
implicated in obesity-related conditions such as type 2 diabetes (T2D).

Volume [5], morphology [6], T1 [7] or PDFF [8] have been proposed as multi-
parametric MRI biomarkers for the pancreas. The UK Biobank is a rich resource,
currently acquiring dedicated pancreas volumetric and quantitative images from
100,000+ volunteers, alongside other non-imaging data [9], which enables the
assessment of the aforementioned biomarkers. UK Biobank imaging data has
been used in the past for establishing inter alia reference ranges [10], validation
of novel processing methods [11], as well as automated processing and quality
control [12].

Since quantitative parametric maps are primarily 2D, recent methods for
analysing UK Biobank pancreas MRI data [13,14] have proposed using the 3D
segmentation from a volumetric acquisition to extract a region of interest (ROI)
from the 2D quantitative parametric maps. The method proposed in these stud-
ies uses the pancreas-specific volumetric scan and the 2D quantitative map
derived from the multiecho gradient-recalled echo scan. The DICOM header
coordinates are used to intersect the 3D segmentation from the volumetric scan
with the 2D quantitative map in the same coordinate space. This approach is
appealing over the alternative of segmenting the pancreas on the 2D quantita-
tive maps directly, for several reasons: (1) only one segmentation method may
be used for all quantitative map types, as opposed to training (and validating)
map-specific methods; (2) fewer annotated subjects are needed in order to obtain
a robust segmentation method: a model trained on 2D maps needs to have been
exposed to many possible orientations and positions of slices through the pan-
creas observed in practice, and (3) the segmentation on the volumetric scan may
be used for pancreas volumetry and morphometry, which provide insight into
the pathophysiology of T2D.

However, the volumetric and slice acquisitions are acquired in separate
breath-holds (usually 4 to 5 min apart in the case of T1), which may lead to
misalignment between the scans due to breathing motion or scan re-positioning.
Larger, more regular structures than the pancreas, such as the liver, may not be
affected by misalignment to the same extent, and using the DICOM header posi-
tion may be a reasonable approach. However, the pancreas is a small, irregularly-
shaped organ that can vary significantly in appearance with changes in the
viewing slice. Even slight motions cause the pancreas to move outside reference
planes. In this context, using only the DICOM header information for alignment
may be insufficient (Fig. 1, top); we will refer to this method as No Registration
in this paper.

No considerations of inter-scan misalignment have previously been made for
pancreas MRI analysis in the UK Biobank. We conjecture that accurate align-
ment of the volumetric and the slice acquisitions may improve quantitative pan-
creas analysis downstream, for example T1 and PDFF quantification. In this
study, we propose using Slice-to-Volume Registration prior to ROI extraction
and quantitative reporting. Slice-to-Volume Registration (SVR) aims to align
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data from more than one scan, one consisting of a planar acquisition (slice), and
the other consisting of a 3D volume. SVR has been used in multiple applications,
from real-time surgical navigation to volume reconstruction, with rigid registra-
tion and iconic matching criteria being the most commonly used SVR strategy
[15]. Recent advances have shown the potential of deep learning within SVR,
for instance used as feature extraction mechanisms towards robust matching
criteria, or to drive SVR optimisation as a whole [16].

In this paper, we show an example implementation of automated SVR with
a multimodal similarity criterion. We apply the method to pancreatic T1 scans,
and demonstrate more accurate T1 quantification in the UK Biobank imaging
substudy.
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Fig. 1. An example of the need for alignment. (Top) Using No Registration (i.e. only
using the DICOM header position). The segmentation resampled from the pancreas-
specific volume (PSV) to the T1 slice is not aligned with the pancreas boundary, so
T1 quantification is inaccurate. (Bottom) Using SVR-SSC. The output segmentation
is aligned with the pancreas on the T1 slice. The method’s optimal z translation was
+10 mm from the DICOM header position. The cost evaluation mask used to evaluate
image similarity for all PSV slices is shown as the red contour. The pancreas subcom-
ponents head (blue), body (green), and tail (yellow), are shown on the PSV candidates.
(Color figure online)

2 Materials and Methods

2.1 UK Biobank Data

In this work, we present an exemplary implementation of SVR for UK Biobank
where the 3D volume used was the pancreas-specific volumetric scan (named
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“Pancreas fat - DICOM”, Data-Field 20202 on the UK Biobank Showcase1), that
we refer to in this work as PSV. As the 2D image, we used the T1 map derived
from the Shortened Modified Look-Locker Inversion recovery (ShMoLLI) scan
(named “Pancreas Images - ShMoLLI”, Data-Field 20259 on the UK Biobank
Showcase). The T1 map was computed using a proprietary algorithm from Per-
spectum Ltd, previously used to compute T1 maps for UK Biobank ShMoLLI
images of the liver [3].

Both scans were acquired using a Siemens Aera 1.5T (Siemens Healthi-
neers AG, Erlangen, Germany). The PSV imaging data was acquired using the
FLASH-3D acquisition, echo time (TE)/repetition time (TR) = 1.15/3.11 ms,
voxel size = 1.1875 × 1.1875 × 1.6 mm, with 10◦ flip angle and fat suppression.
The PSV scans were resampled to 2 mm isotropic using linear interpolation. The
ShMoLLI imaging data was collected using the same parameters than for the
liver ShMoLLI, with voxel size = 1.146 × 1.146 × 8 mm, TE/TR = 1.93/480.6
ms, 35◦ flip angle [9], and often had oblique orientation to better capture the
pancreas. Only data from the first imaging visit (Instance 2) were used.

3D pancreas segmentations were predicted on the PSVs using the implemen-
tation of U-Net described in [17]. 14,439 subjects with both T1 and PSV scans
were processed using (1) No Registration and (2) the proposed SVR method.

2.2 Slice-to-Volume Registration Method

We have observed that in practice translations in Z are the most prominent
source of misalignment in the data. The SVR method we used is based on initial
affine alignment in the XY plane, and posterior exhaustive search along the
Z direction, above and below the DICOM header reference position (z = 0). At
each z, the method evaluates image similarity between the resampled 3D volume
(moving image) at z and the quantitative 2D slice (fixed image). The method
then chooses the z that gives the highest image similarity between images, as
illustrated in Fig. 2.

Resample Volume into ‘Candidate’ Slices. We evaluated similarity over a
Z range that was computed from the volume total height (mm) as follows: (voxel
Z resolution in mm × number of voxels in Z )/4. The Z range used was the same
for all subjects. We incremented Z in steps of 1 mm. In this work, using the PSV
as our volume rendered the SVR method’s search range over Z = (2 mm × 42
)/4 = [−21, 21] mm.

At each z, the 3D PSV was resampled by considering the slice acquisition
profile, since the T1 slice thickness is greater than the PSV slice thickness (8 mm
and 2 mm, respectively). Resampled PSV slices across the T1 8 mm slice profile
were weighted by a gaussian function (standard deviation of 1.4 mm) before
being merged together. The corresponding 3D segmentation was resampled using
nearest neighbour interpolation.

1 https://biobank.ndph.ox.ac.uk/showcase/browse.cgi.

https://biobank.ndph.ox.ac.uk/showcase/browse.cgi
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Fig. 2. (Top) Illustration of the Slice-to-Volume Registration procedure. The resampled
pancreas-specific volume (PSV) candidates generated using resampling along Z are
shown. In yellow is the chosen PSV candidate slice that gives highest image similarity
with the quantitative slice (lowest registration cost). The corresponding resampled
segmentation is chosen as the output segmentation for the quantitative slice. (Bottom)
Alignment of the 3D PSV with the T1 slice and intersection of the segmentation from
the 3D volume scan. The oblique T1 slice may extend beyond the PSV bounding box,
which may cause missing data in the resampled candidates. (Color figure online)

Initial Within-Plane Alignment. An initial within plane registration step
was carried out to align the the body contour in the T1 slice and PSV data.
This allows to better compare candidate slices in the subsequent Z alignment
step. The initial affine registration in XY was performed using the ‘multimodal’
configuration in Matlab R2019b imregister function, which uses Mattes Mutual
Information as similarity metric. For this initial XY alignment, we used the
resampled PSV at z = 0 mm and the T1 slice as the moving and fixed images,
respectively. The resulting affine transformation in XY was subsequently applied
to each resampled PSV ‘candidate’ along Z.

Evaluate Similarity over Z Range. For the exhaustive search along Z,
image similarity at each z was evaluated only within a predefined cost evaluation
mask, common to all ‘candidates’ (resampled PSV images). The cost evaluation
mask was computed as the intersection of the body masks from all candidates,
which were computed using a simple thresholding operation (>10). We evaluated
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similarity over the computed Z range, and the inverse of similarity was used as
the cost function for alignment (see Fig. 2).

We explored 2 different similarity metrics: normalised mutual information
(NMI) and Self-Similarity Context descriptors (SSC) based similarity from Hein-
rich et al. [18]. The SSC-based similarity computes the inverse of the squared
differences between the SSC descriptors of image 1 and image 2 within the cost
evaluation mask. This rendered two methods that we will refer to as SVR-NMI
and SVR-SSC in the text.

Following the above steps, the z position for which the resampled 3D PSV
gave the highest similarity (i.e., lowest cost) was selected, and the corresponding
resampled 3D segmentation on the 2D slice was calculated. This output seg-
mentation may be used for subsequent pancreas quantification on the 2D slice,
for instance extracting global descriptive statistics (such as mean or median) or
local measurements.

Figure 1 shows an example case after our method has been applied, including
comparisons between using No Registration and using the SVR-SSC approach.
Note the entire body of the pancreas (green) is missing from the No Registration
candidate alignment, while it is present on the T1 map.

2.3 SVR Implementation and Inference at Scale

The implementation of the SVR method is available on GitHub2. The Matlab
R2019b Compiler tool was used to package our SVR implementation into a
Matlab application. The application was moved into a Docker image containing
the compatible version of Matlab Runtime3. This enabled us to run the SVR
method using Docker containers, in parallel and at scale on Amazon Web Services
(AWS) EC2 instances, in order to process the large UK Biobank data set.

2.4 Automated Quality Control

For T1 quantification results in this paper, we opted for the SVR-SSC method
due to its higher robustness in validation (see Sect. 3.2). The 14,439 subjects
were processed by a quality control (QC) pipeline prior to T1 quantification. We
first excluded those subjects where the resulting 2D pancreas mask was empty in
either of the 2 methods. This was mostly due to the initial automated segmen-
tation prediction being empty, for instance in the presence of imaging artefacts.
For the remaining N= 13,845 subjects, we quality controlled the data by exclud-
ing those that met the following QC exclusion criteria: output 2D mask size
<1000 pixels using the No Registration method (N = 3,014 excluded), percent
overlap between the PSV at z = 0 and the T1 slice <50% (N = 2,150 excluded),
or non-axial T1 acquisitions (see examples in Fig. 3) (N = 106 excluded). We also

2 https://github.com/alexbagur/slice2vol.
3 https://hub.docker.com/r/flywheel/matlab-mcr.

https://github.com/alexbagur/slice2vol
https://hub.docker.com/r/flywheel/matlab-mcr
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excluded those subjects where the SVR-SSC method gave an output z >10 mm
(N = 317), in order to ensure there was enough overlap between the volume and
the slice scans to compute image similarity. Figure 4 shows the histogram of out-
put optimum z displacements for all subjects prior to this QC step. N = 8,829
subjects remained for analysis. Note that a given subject may be excluded using
more than 1 of these QC exclusion criteria.

Fig. 3. Example of T1 slices from 2 different subjects where the primary view was
coronal. These subjects were excluded from analysis.

2.5 SVR Validation

We performed direct validation of SVR using the alignment error from manually
annotated reference positions. We also performed indirect validation by assess-
ing quality of the output 2D segmentation, compared to manual delineations
performed on the 2D slice directly.

Direct Validation Using Alignment Error. For alignment error, we selected
the N = 50 most outlying cases from our T1 quantification experiment (see Sect.
3.1). We then manually annotated the reference z position that corresponded to
the best alignment between the resampled PSV and T1 slice. Note the reference
z is expressed relative to the DICOM header position. We then computed the
alignment error of each method compared to the manually annotated z position.
We did not consider translations in X or Y for this experiment.

Indirect Validation Using Segmentations. We had an available dataset
of N= 157 from UK Biobank of healthy and diabetic subjects where man-
ual delineations of pancreas had been performed on the T1 maps directly.
These data had been quality-checked also (see Sect. 2.4). We evaluated output
segmentation quality via overlap and surface distance measures, namely Dice
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Fig. 4. Histogram of output optimum z-displacement by the SVR-SSC algorithm, show-
ing a median displacement of +1 mm.

Similarity Coefficient (DSC) overlap and 95th percentile Hausdorff Distance
(HD), respectively. The output 2D pancreas masks of all methods (No Registra-
tion, SVR-NMI, SVR-SSC) were compared to the reference manual delineations.

3 Results

3.1 T1 Quantification: No Registration vs SVR-SSC

We compared the T1 quantification results of the SVR-SSC method vs No Reg-
istration. Figure 5 shows the Bland-Altman density plot for N = 8,829 subjects,
where T1 was quantified for each method using the median of the output seg-
mentation. While the bias was small at 1.4 ms, the observed variability between
No Registration T1 and SVR-SSC T1 of 53.3 ms renders the two approaches
not equivalent for pancreatic T1 quantification at the subject level. We further
explored these differences in our validation experiments (see Sect. 3.2), in order
to determine which method had performed best.
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Fig. 5. Bland-Altman density plot showing T1 quantification using No Registration
and the proposed SVR-SSC method. T1 is reported as the median of the output 2D
pancreas segmentation for each method.

3.2 SVR Validation

Direct Validation Using Alignment Error. Figure 6 shows the alignment
error in mm of each method in the selected N= 50 subset of the most outlying
cases from our T1 quantification experiment (see Sect. 3.1). The median ± std
for each method were: No Registration (8 ± 4.0) mm, SVR-NMI (3 ± 5.5) mm,
SVR-SSC (3 ± 4.2) mm. The alignment error was substantially reduced using
any of the two SVR implementations compared to No Registration. The differ-
ences between any of the two implementations vs No Registration were statisti-
cally significant (paired t-test, p<1e−3 for SVR-NMI, p<1e−3 for SVR-SSC).
The differences between the two SVR methods, using 2 different similarity met-
rics, were not statistically significant (p = 0.73), though the SVR-SSC method
appeared more robust to challenging examples.

Indirect Validation Using Segmentations. Figure 7 shows the segmenta-
tion quality of the three methods for the selected N = 50 subset of the most
outlying cases from our T1 quantification experiment (see Sect. 3.1). We used
DSC overlap and 95% HD metrics. The DSC median ± std for each method
were: No Registration 0.799 ± 0.114, SVR-NMI 0.819 ± 0.118, SVR-SSC
0.822 ± 0.098. The differences between any of the two implementations vs No
Registration were statistically significant (paired t-test, p = 0.0069 for SVR-NMI,
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Fig. 6. Validation of SVR using alignment error in mm relative to the manually
obtained reference positions. The alignment error was substantially reduced using any
of the two SVR implementations compared to No Registration.
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Fig. 7. Indirect validation of SVR was performed by assessing the quality of the out-
put segmentations, in terms of Dice Similarity Coefficient (DSC) overlap (left) and
95th percentile Hausdorff surface distance (HD, right). The boxplots show summarised
metrics for all three methods considered: No Registration, SVR-NMI and SVR-SSC.

p<1e-3 for SVR-SSC). The differences between the two SVR methods, using 2
different similarity metrics, were not statistically significant (p = 0.1614), though
the SVR-SSC method appeared more robust to challenging examples, based on
Fig. 8.
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Fig. 8. Output segmentation quality compared to a manual annotation: a challenging
example. The manual annotation is shown in yellow, while the predicted segmentation
for each method is shown in red. Measured DSC for No Registration, SVR-NMI and
SVR-SSC were 0.506, 0.689 and 0.739, respectively. Upon closer inspection, arguably
the disconnected component is part of the pancreas, but the annotator might have
excluded it from the quantifiable mask. T1 colormap was set to gray to increase visi-
bility of the segmentation contours. (Color figure online)

The 95% HD median ± std for each method were: No Registration (4.123 ±
11.875) mm, SVR-NMI (3.606 ± 12.026) mm, SVR-SSC (3.606 ± 11.154) mm.
The differences between any of the two implementations vs No Registration
were statistically significant (paired t-test, p = 0.0122 for SVR-NMI, p = 0.0054
for SVR-SSC). The differences between the two SVR methods, using 2 different
similarity metrics, were not statistically significant (p = 0.83).

4 Discussion and Conclusions

In this work, we report a method for Slice-to-Volume Registration (SVR) that
enables automated pancreas segmentation and accurate downstream quantifica-
tion in multiparametric MRI protocols like UK Biobank. We showed that SVR
improved T1 segmentation quality (evaluated using overlap with manual annota-
tions (Sect. 3.2)) as well as improved pancreas T1 quantification for an individual
in UK Biobank. To our knowledge, this study is the first to report on utilising
SVR for deriving pancreas MRI biomarkers from the UK Biobank. As discussed
previously in [13], such a pipeline means that a segmentation model has to be
built only for the 3D volumetric scan, which removes the need for generating
new annotated data sets in order to segment each quantitative slice type.

In this study, we chose to use the 3D PSV scan for initial segmentation,
and the 2D T1 map as our target quantitative slice to segment. However, the
method is compatible with other 3D and 2D image types in UK Biobank, for
instance the stitched 3D Whole-Body scans (named “Dixon technique for inter-
nal fat - DICOM”, Data-Field 20201 on the UK Biobank Showcase) or the 2D
quantitative PDFF maps derived from the multiecho gradient-recalled echo scan
(Data-Field 20260). The choice of a feature-based similarity metric originally
proposed in the context of multimodal image registration, the Self-Similarity
Context descriptors (SSC) [18], was shown to work robustly on non-quantitative
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(3D PSV data) and quantitative (2D T1 data) scans, and may transfer well to
other data types.

The limitation of choosing the dedicated pancreas volume scan as our moving
image was its limited total Z coverage of 84 mm. In practice, inter-scan motion
may exceed this range. Furthermore, obliquely placed T1 slices (acquired to
traverse the pancreas longitudinally) extended beyond the PSV bounding box
at the Z range extrema (see Fig. 2, bottom), causing the PSV candidates at
those extrema to have missing data (see Fig. 2, top), which in turn raised a set
of challenges we have sought to address.

First, the cost evaluation mask, computed as the intersection of the body
masks from all slices, was small (see Fig. 1, red contour). In those cases, the
cost evaluation mask does not optimally include all the potentially useful image
features for registration. This could have led to more noisy image similarity
measurements and have introduced spurious local minima into the cost func-
tion. The alternative of considering a different cost evaluation mask for each
z independently could have led to unfair comparisons of cost when selecting
the global minimum. Second, we initially had considered an independent affine
XY transformation for each z. However, candidates with missing data at the Z
range extrema misled the registration procedure by producing a more noisy cost
function. Using the same affine XY transformation on all candidates, obtained
from the resampled candidate at z = 0 (avoiding missing data), addressed this
problem, but could have introduced error.

Future work will use the Whole-Body scans from UK Biobank as our moving
images for SVR. This will extend the SVR Z range and could lead to more robust
estimates of similarity, as well as improved alignment in XY. However, obtaining
robust 3D pancreas segmentations from the Whole-Body scans is challenging,
as discussed in [14], since they are lower resolution compared to the dedicated
pancreas volumes used in this work.

The proposed SVR methodology did not consider local deformations or defor-
mations through the image plane, which can be expected in the abdominal region
when the images are taken during different breath-holds. Our method’s perfor-
mance using axial affine registration and rigid alignment in Z encourages more
advanced deformable image registration approaches, for instance those focusing
on the organ surroundings rather than a global whole-body cost mask.

The exclusion criteria that we used during QC caused that nearly 39% of
cases were excluded from reporting, which could have biased the comparison
between the methods. This was due in part by upstream method failure, for
instance where the segmentation model produced empty predictions or masks
with a low number of voxels. We observed this effect mainly on images that
contained image artefacts, such as wrap-around. Furthermore, we expect that
the future work described above will increase our method’s throughput, notably
when using volumes with higher coverage since they will lead to full pancreas
segmentations as well as to an extended Z range for SVR optimisation.

The small bias at 1.4 ms when comparing T1 quantification differences
between No Registration and SVR-SSC indicates that we may be able to use
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No Registration for T1 quantification at the population level, for instance for
median pancreatic T1 in the UK Biobank. However, for individual subjects, or
even for comparisons between relatively small groups (such as type 2 diabetics
in UK Biobank), the clinically significant variability between methods renders
the No Registration approach insufficient.

Moreover, note we quantified T1 for each method as the median of the
output 2D segmentation, a relatively robust metric to outlier values. However,
researchers often make distinctions in quantification between pancreatic head,
body and tail [19,20]. When comparing medians of pancreas subsegments, we
expect that small misalignments will amplify quantification differences between
methods. This will further increase the need for registration in order to obtain
accurate pancreas quantification in UK Biobank for given individuals. We have
recently developed the first fully automated method for pancreas subsegmenta-
tion into head, body and tail [21] that, combined with SVR, will enable accurate
MRI biomarker quantification regionally.
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8. Kühn, J.P., et al.: Pancreatic steatosis demonstrated at mr imaging in the general
population: clinical relevance. Radiology 276(1), 129–136 (2015). http://pubs.rsna.
org/doi/10.1148/radiol.15140446

9. Littlejohns, T.J., et al.: The UK Biobank imaging enhancement of 100,000 par-
ticipants: rationale, data collection, management and future directions. Nat.
Commun. 11(1), 2624 (2020). https://doi.org/10.1038/s41467-020-15948-9, www.
nature.com/articles/s41467-020-15948-9

https://doi.org/10.1080/13651820701504157
http://www.gastrores.org/index.php/Gastrores/article/view/731
http://springerlink.bibliotecabuap.elogim.com/10.1007/s00261-018-1701-2
http://springerlink.bibliotecabuap.elogim.com/10.1007/s00261-018-1701-2
https://doi.org/10.1002/jmri.23741
https://onlinelibrary.wiley.com/doi/10.1002/ca.20543
https://doi.org/10.1007/s00125-016-3984-6
https://doi.org/10.1007/s00125-016-3984-6
https://doi.org/10.1002/jmri.25428
http://pubs.rsna.org/doi/10.1148/radiol.15140446
http://pubs.rsna.org/doi/10.1148/radiol.15140446
https://doi.org/10.1038/s41467-020-15948-9
www.nature.com/articles/s41467-020-15948-9
www.nature.com/articles/s41467-020-15948-9


Registration for Pancreas MRI Quantification in UK Biobank 223

10. Wilman, H.R., et al.: Characterisation of liver fat in the UK Biobank cohort. PLoS
ONE 12(2), 1–14 (2017). http://dx.doi.org/10.1371/journal.pone.0172921

11. Hutton, C., Gyngell, M.L., Milanesi, M., Bagur, A., Brady, M.: Validation of a
standardized MRI method for liver fat and T2* quantification. PLOS ONE 13(9),
e0204175 (2018). https://dx.plos.org/10.1371/journal.pone.0204175

12. Tarroni, G., et al.: Large-scale quality control of cardiac imaging in population
studies: application to UK Biobank. Sci. Rep. 10(1), 2408 (2020). http://www.
nature.com/articles/s41598-020-58212-2

13. Basty, N., Liu, Y., Cule, M., Thomas, E.L., Bell, J.D., Whitcher, B.: Automated
measurement of pancreatic fat and iron concentration using multi-echo and T1-
Weighted MRI data. In: 2020 IEEE 17th International Symposium on Biomedical
Imaging (ISBI), vol. 2020-April, pp. 345–348. IEEE (2020). https://ieeexplore.ieee.
org/document/9098650/

14. Liu, Y., et al.: Genetic architecture of 11 abdominal organ traits derived from
abdominal MRI using deep learning, pp. 1–66 (2020)

15. Ferrante, E., Paragios, N.: Slice-to-volume medical image registration: a survey.
Med. Image Anal. 39, 101–123 (2017). https://linkinghub.elsevier.com/retrieve/
pii/S1361841517300701

16. Hou, B., et al.: Predicting slice-to-volume transformation in presence of arbitrary
subject motion. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10434.
LNCS, pp. 296–304 (2017)

17. Bagur, A.T., Ridgway, G., McGonigle, J., Brady, S.M., Bulte, D.: Pancreas
segmentation-derived biomarkers: volume and shape metrics in the UK Biobank
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