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Abstract. Current evidence points towards perivascular spaces playing a key role
in cerebral haemodynamics and waste clearance. Hence, their precise quantifica-
tionmay become a powerful tool for assessing brain health and further establishing
their relationshipwith neurological diseases. Large strides havebeenmade towards
developing automatic tools to computationally assess the burden of perivascular
spaces inMRI in recent years.However, their applicability depends to a large extent
on the quality of the images. In this paper,wepropose a pipeline to improveperivas-
cular space quantification by means of radiomics-based image quality control and
selective motion artefacts reduction. We demonstrate our method on a sample of
patients with mild stroke (n = 60) with different extents of small vessel disease
features and image quality. We show our proposal can differentiate high- and
low-quality scans (AUROC = 0.98) and reduce imaging artefacts, which leads to
greater correlations between visual and computational measurements, especially
in the centrum semiovale (polyserial correlation: 0.86 [95% CI 0.85, 0.88] and
0.17 [95% CI 0.14, 0.21] with and without our proposal, respectively). Our pre-
liminary results demonstrate the potential of our proposal for retaining clinically
relevant information while reducing imaging artefacts.

Keywords: Perivascular spaces · Cerebral small vessel disease · Image
enhancement · Imaging artefact reduction · Brain magnetic resonance imaging

1 Introduction

Perivascular spaces (PVS) in the brain are the cavities surrounding perforating cerebral
microvessels, serving as drainage conduits through which interstitial fluid clearance is
facilitated [1]. If enlarged or dilated, they appear hyperintense on T2-weighted MRI
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sequences [2]. Although first described in the mid-1800s, their potential significance as
indicator of brain health has only emerged recently following advancements in imaging
technology [3]. Nonetheless, their association and involvement alone with neurological
risk factors and disease is still currently debated [3], hence the importance of assessing
PVS quantitatively to validate their use as a neuroimaging feature.

The majority of studies on PVS rely solely on clinical visual ratings [1, 4]. Although
qualitative PVS assessments are quick, easily interpreted, and replicable, they are limited
by their discrete nature, as with many qualitative scoring methods. Attempts to automate
the quantification of PVS, while partly successful, are limited by imaging artefacts [5].
The incidence of imaging artefacts impeding automatic PVS segmentation has peaked at
20% in large-scale studies [5]. Thus, reductionof imaging artefacts duringpre-processing
prior to PVS quantification is necessary to reduce research waste and increase reliability
of study results. Nonetheless, the application of image enhancement techniques requires
distinguishing between high- and low-quality input scans as filtering high-quality scans
is detrimental to PVS sensitivity [6].

The assessment of image quality is a long standing and challenging problem. Even
though image analysts could potentially visually inspect all acquisitions, the task is
tedious, time-consuming and error-prone due to inter- and intra-observer variability,
especially in large-scale studies [7]. In the field of PVS segmentation, automatic quality
control has been successfully conducted via texture analysis [6]. However, the presence
of brain pathologies may limit the effectiveness of such approaches as textures vary with
the burden of neuroimaging features and imaging artefacts [8, 9].

In this work, we propose a framework that identifies and enhances scans distorted
by motion artefacts via radiomics and k-space analyses prior to PVS quantification, thus
reducing imaging artefacts compromising computational assessments while retaining
clinically relevant patterns on high-quality acquisitions. We tested our proposal on a
well-phenotyped cohort of patients with a history of mild stroke presenting various
neuroimaging features of small vessel disease.

2 Materials and Methods

As illustrated in Fig. 1, we determine the quality of the input image automatically and,
if it is distorted by motion, we enhance its quality before PVS segmentation.

2.1 Subjects, Magnetic Resonance Imaging and Clinical Visual Scores

T2-w scans were obtained from a sample of an ongoing prospective study (The Mild
Stroke Study 3: ISCTRN 12113543) of patients with a recent mild stroke (n = 60; 24
women; median age 69 years [IQR 58–75]; age range 40 to 85 years) with a varied
burden of neuroimaging features of small vessel disease. We used data from the first
and second visit (60 and 35 scans, respectively, were available at the time). Approval
for this study was obtained from South East Scotland Research Ethics Committee (Ref
18/SS/0044) and NHS Lothian Research & Development (Ref 2018/0084).



Selective Motion Artefact Reduction via Radiomics and k-space Reconstruction 153

T2-w MRI was performed on a 3T MRI scanner (MAGNETOM Prisma, Siemens
Healthcare, Erlangen, Germany) and a 3D axial SPACET2-w imaging sequence (TR/TE
= 3200/408 ms, 0.94 × 0.94 × 0.90 mm acquired resolution, 24.0 × 24.0 cm field of
view)1. An experienced neuroradiologist provided visual clinical ratings for PVS in the
basal ganglia and centrum semiovale for the entire sample following the Potter scale [1].
The distribution of scores in the sample can be found in Table 1.

Fig. 1. Proposed pipeline for quantifying perivascular spaces in T2-w scans. We evaluate the
quality of the scans, selectively correct frequencies that appear corrupted by motion, and segment
perivascular spaces (detected perivascular spaces in green). (Color figure online)

Table 1. Distribution of clinical visual ratings for PVS in the basal ganglia and centrum semiovale
in the MSS3 subsample. We report both frequencies and relative frequencies.

Rating Basal ganglia Centrum semiovale

0 0 (0%) 0 (0%)

1 16 (27%) 9 (15%)

2 26 (43%) 16 (27%)

3 18 (30%) 27 (45%)

4 0 (0%) 8 (13%)

1 Full details of the study protocol and image acquisition are provided in [24].
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2.2 Image Quality Assessment

Image quality metrics specifically designed for quantifying distortion due to noise and
motion based on the analysis of background signal are suitable for image quality control
as ghosting artefacts may be prevalent in this region and their values are unlikely to
be indicative of the status of the brain. We tested four metrics accounting for noise and
motion artefacts: the entropy-focus criterion, foreground-background energy ratio, mean
background intensity, and signal-to-noise ratio (Table 2).

Table 2. Considered metrics for quantifying motion and noise in T2-w scans.

Image quality metric Description

Entropy-focus criterion [10] Entropy of voxel intensities as a measure of ghosting
and blurring artefacts caused by motion. Lower
entropy values may reflect lower motion artefacts

Foreground-background energy ratio [7] Variance of voxel intensities in the intracranial
region divided by that in background. The lower the
ratio, the lower the image quality

Mean background intensity Mean intensity in background. Higher values may
be indicative of motion artefacts

Signal-to-noise ratio Mean intensity in brain tissue divided by the
standard deviation of intensities in background. The
higher the ratio, the higher the image quality

The classification steps are as follows. Firstly, we extracted the aforementioned
descriptors from each input image using the automatic MRI Quality Control tool2 [7].
Secondly, we entered the resulting values in a logistic regression model to predict image
quality (high-quality vs motion-corrupted). This model was trained using data from the
second visit as described in Sect. 2.1 (9 motion-corrupted and 29 high-quality scans).

We validated our image quality control step against the classification of a trained
analyst blind to our automatic assessment.

2.3 Motion Artefact Reduction

Once we separate high-quality and motion-corrupted images, we aim to reduce imaging
artefacts on low-quality images, especially motion distortion.

Motion correction has been widely investigated [11, 12] and remains an unresolved
challenge, although many partial solutions exist [11]. The applicability of motion reduc-
tion methods is dependant to a large extent on the availability of motion-tracking
devices, prior information on the patient’s movement, and the stage at which signal
post-processing is applied (i.e., prospective or retrospective motion correction). In this
particular case, we operate on the ‘k-space’ data obtained via Fourier transformation
given the lack of the original k-space data or patient movement information.

2 The MRIQC documentation can be found in mriqc.readthedocs.io.
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Considering this, we decided to identify and compensate for inconsistencies in the
‘k-space’ data obtained via Fourier transformation of the T2-w images- sawtooth-like
patterns depicted in Fig. 2. Assuming we can identify them appropriately (e.g., Fig. 2C,
but not Fig. 2D), we can formulate motion reduction as a regression problem in which
we estimate missing Fourier coefficients that increase image quality. In this work, we
manually inspected k-spaces to select segments affected by sawtooth patterns.

Let y : R3 → R be a motion-corrupted image. If we just nullify segments of the k-
space displaying sawtooth patterns using an ideal low-pass filterM , the resulting image
will be of greater visual quality in-plane, but of a poorer resolution in the superior-inferior
direction compared to the original one. Instead, regress a new k-space x∗ : R3 → R that
minimises the following expression

(1)

where � denotes the convolution operator, ω, γ ∈ R weighting parameters and ‖·‖TV
the total variation semi-norm. Each term in the expression ensures that (i) the resulting
image x* appears similar to the original, (ii) frequencies that are not visually affected
by motion artefacts are retained, and (iii) potential “ringing” artefacts are reduced, in
that order. Following qualitative analysis, we found ω = 0.5 and γ = 0.01 balanced
improving image quality and minimising blurring. We used the package developed by
Lustig et al. [13] for finding an x∗ by means of conjugate gradient and line-search.

Fig. 2. Sawtooth-like patterns observed in the k-space of a motion-corrupted image. These pat-
terns are visible in the slice direction kz in A and B (indicated by the white arrows) and in plane
in C. Image D shows a slice visually free of artefacts.
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2.4 PVS Segmentation

Most techniques segmenting PVS are based on eigenanalysis of the Hessian matrix
as it encapsulates geometric properties used for distinguishing tubular structures (e.g.,
local curvature and eccentricity) [14]. The Hessian matrix H of a continuous and twice
differentiable function f : R

3 → R is expressed as (Hf )ij = ∂2f /∂xi∂xj. Digital
images are typically convolved with multiple Gaussian kernels to ensure continuity and
differentiability, and to enable multi-scale detection.

The eigenvalues of the Hessian matrix λ1, λ2, λ3, with |λ1| ≤ |λ2| ≤ |λ3|, charac-
terises PVS in T2-w sequences since regions fulfilling |λ1| ≈ 0 and λ2 ≈ λ3 � 0 are
hyperintense tubular structures [14]. Moreover, complementary analysis permits target-
ing tubular objects with specific properties. For instance, the Frangi filter examines three

additional properties Rb = |λ1|/√|λ2λ3|, Ra = |λ2|/|λ3|, and S =
√

λ21 + λ22 + λ23 to
filter blobs, lines, and low contrast structures, respectively [14, 15]. These three aspects
are jointly evaluated in the vessel likelihood response as follows:

V =
{
0 if λ2 > 0 or λ3 > 0,(
1 − e−R2a/2α

2
)(

e−R2b/2β
2
)(

1 − e−S2/2c2
)
otherwise,

whereα,β, and c control the sensitivity of the filter to the aforementioned properties.
Parameter optimisation experiments have shown that default parameters (α = 0.5, β =
0.5, and c = 500) work well for PVS segmentation [16].

2.5 Comparison Against a Relevant Framework

We compared each step of our proposal against that of a similar framework that attempts
to evaluate image quality and correct imaging artefacts prior to PVS segmentation [6].
In that work, image quality was assessed via Haralick-based texture analysis; imag-
ing artefacts corrected by means of the total variation denoising framework; and PVS
segmentation using the Frangi filter.

2.6 Validation Against Clinical Parameters

We computed polyserial correlations to determine the strength of the relationship
between visual and computational measurements of PVS.

3 Results

3.1 Image Quality Classification Results

To understand whether the considered image quality metrics could indeed help distin-
guish between high-quality andmotion-corrupted image scans, we plotted quality scores
for each group (Fig. 3). High-quality scans displayed significantly higher foreground-
to-background energy ratios, higher signal-to-noise-ratios, and lower mean background
intensities compared tomotion-corrupted scans. Even though the entropy-focus criterion
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specifically targets motion artefacts, we found no significant differences between the two
groups of images in this regard (high-quality: 0.48 [IQR 0.46, 0.50] vsmotion-corrupted:
0.47 [IQR 0.46, 0.49]; p = 0.52).

We then used a logistic regression model trained on similar images to predict image
quality, calculating an AUROC of approximately 0.98. Although entropy-focus criterion
values were not significantly different for high-quality and motion-corrupted images,
omitting it did not lead to a better model (AUCROC = 0.96). Only two scans out of the
total 60 (one image of each quality group) were misclassified. Further visual inspection
of these two cases revealed increased signal in the background region of the high-quality
appearing scan compared to that in the apparently motion-corrupted scan (foreground-
to-background energy ratio: 4403.45 vs 4779.42). This finding agrees with what can be
perceived via visual inspection (Fig. 4), suggesting that the image labelled as high-quality
was corrupted by motion artefacts.

We also compared our approach with one considering texture analysis of brain tis-
sues, described in [6]. The use of motion and noise descriptors led to improved quality
control performance when compared to that obtained using Haralick-based textures
(AUROC = 0.98 with our proposal vs 0.94 with texture analysis). Hence, we used our
logistic regression model using motion and noise descriptors to predict image quality.

Fig. 3. Image quality scores for high-quality and motion-corrupted T2-w scans. We tested for
differences in quality scores using the unpaired two-sample Wilcoxon test.

3.2 Motion Artefact Reduction

We applied the proposed motion artefact reduction method on motion-corrupted scans.
The algorithm improves the visual quality of the T2-w images while retaining detail
(Fig. 5); in some cases, these features become evident as noise is also reduced.
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Fig. 4. Images that were misclassified using our logistic regression model. We thresholded
intensities above 50 to show the background signal more clearly (thresholded images).

Fig. 5. Original and enhanced scans. Yellow arrows point to regions displaying enlarged perivas-
cular spaces and red ones to evident motion artefacts corrected after image enhancement. (Color
figure online)
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3.3 Relationship Between Computational Measures and Clinical Visual Scores

We calculated polyserial correlations to assess the relationship between visual and com-
putational PVS measures. We compared correlations obtained when assessing PVS on
original scans, those enhanced using the total variation denoising framework [6], and
those using our proposed motion artefact reduction (Table 3). Overall, correlation scores
increased consistently after selective filtering. The effect was particularly evident in the
centrum semiovale where the correlation between visual scores and volume increased
from ρ = 0.17 (95% CI 0.14, 0.21) to ρ = 0.29 (95% CI 0.26, 0.32) and ρ = 0.86 (95%
CI 0.85, 0.88) using the total variation framework and proposed method, respectively.
Furthermore, the relationship between quantitative and qualitative scores was positive
once we filtered motion-corrupted images.

Table 3. Polyserial correlations between quantitative and visual measures of perivascular spaces
before and after filtering. The higher the correlation, the stronger the relationship between
computational and visual scores. We consider the count and volume as quantitative measurements
of the presence and enlargement of perivascular spaces. CI: confidence interval. BG: basal ganglia.
CSO: centrum semiovale.

Variable Original Total variation in image
space [6]

Our proposal

ρ 95% CI ρ 95% CI ρ 95% CI

BG Count 0.38 0.35 0.41 0.43 0.40 0.46 0.50 0.48 0.53

Volume 0.63 0.61 0.65 0.69 0.67 0.71 0.72 0.71 0.74

CSO Count − 0.10 − 0.13 − 0.06 − 0.08 − 0.05 − 0.01 0.34 0.31 0.37

Volume 0.17 0.14 0.21 0.29 0.26 0.32 0.86 0.85 0.88

Further examination of the computational PVS measurements stratified by clinical
visual score and image quality (Fig. 6) suggested the application of the k-space analysis
led to more similar estimates between high-quality and image-enhanced scans compared
to when no filtering was considered or when filtering in the image space.

4 Discussion

Imaging artefacts limit the applicability of computational solutions, especially those
quantifying PVS. This is primarily due to their small size (less than 3 mm) [1] and
limitations in imaging technology. We present a computational pipeline for assessing
image quality via radiomics analysis and reducing motion artefacts selectively, thus
improving PVS segmentation and quantification.

Motion artefacts are a common problem in clinical studies using MRI [11]. Whilst
motionmay happen occasionally,medical conditions – e.g., strokes [17] –may also cause
movement disorders. Alarmingly, the prevalence of motion artefacts limiting computa-
tional PVS segmentation has been reported to be as high as 20% [5], a similar proportion
to that in our sample. Recovering this data that would otherwise be unusable is therefore
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crucial in the assessment of PVS and further validate their use as biomarker of brain
health.

A key step in the proposed pipeline involves separating low- and high-quality scans
to avoid blurring the latter unnecessarily as it would otherwise lead to reduced PVS
sensitivity [6]. Previous work has shown that this step can be carried out via texture
analysis. However, textures extracted from brain tissues reflect both the quality of the
scans but also the presence of brain pathologies [9]. Instead, we opted for image quality
metrics usingbackground informationonlyor ratios betweenbackgroundand foreground
signal to avoid this problem. We tested whether the entropy-focus criterion, foreground-
background energy ratio, mean background intensity, and signal-to-noise ratio were
appropriate for characterising imaging artefacts in the considered sample.

Our experimental results suggest that the use of image quality metrics permit distin-
guishing high-quality scans from low-quality ones (AUROC= 0.98) better than texture-
based proposals (AUROC = 0.94). Moreover, we observed an image that was originally
classified as high-quality was actually corrupted by motion artefacts, supporting the
claim that some artefacts evade human detection due to their subtlety or visual fatigue
[7]. Automatic image quality control can therefore allow the timely detection of imaging
issues that may compromise subsequent processes.

Once we automatically segregated motion-corrupted scans, we proceeded with arte-
fact reduction. Previous work showed filtering in the image space can help to reduce
imaging artefacts [6], however, these approximations do not necessarily tackle the pri-
mary problem:missing or corrupted k-spacemeasurements.Wehypothesise that analysis
of the k-space measurements is essential to improve the quality of the images without
dispensing with clinically relevant information. In this particular case, T2-w scans were
acquired using an elliptical k-space filling trajectory, a technique which oversamples
the centre of the k-space [11]. Thus, motion reduction can be achieved by nullifying
segments of the k-space displaying, for example, pie-slice [12] or sawtooth patterns.
However, these segments need to be re-estimated to prevent a loss in resolution. As
a proof of concept, we manually nullified segments of the k-space evidencing these
patterns and regressed them using the total variation optimisation framework. We con-
firmed these segments were indeed linked with motion artefacts since their correction
led to increased image quality. Future work should consider automatic detection of these
motion-corrupted k-space regions.

Our work has some limitations. First, while nullifying segments of the k-space may
work for scans acquired using elliptical trajectories, the same strategymay not be suitable
for other types of acquisitions. Approximations using artificial intelligence – e.g., deep
learning –may be explored in the future to compensate for these problems in amore gen-
eralised way. Moreover, a digital reference object containing PVS and a computational
model mimicking image acquisition – similar to the work in [18] – may help to train a
model with heterogeneous yet realistic cases, thus preventing potential generalisability
issues [19]. Second, we also evaluated our proposal on a relatively small sample of an
ongoing prospective study of mild stroke patients. While our results seem encourag-
ing, further validation on a larger dataset containing T1w and T2w imaging sequences
acquired with multiple imaging protocols is necessary to determine the suitability of the
proposed pipeline for improving PVS quantification. We expect relevant image quality
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metrics to differ from those considered in this work, especially if scans are acquired with
different k-space trajectories. The outcomes of this experiment could later be compared
to descriptors that were found relevant for general automatic quality control [7, 20–23].
Third, statistical analysis of the relationship between computational estimates of PVS
burden with demographics and risk factors could complement current analysis, helping
to further validate PVS as a biomarker of brain health. Fourth, our proposal offers a par-
tial solution to PVS quantification in motion-corrupted images: reduced false positive
rates due to imaging artefact reduction but also reduced true positive rates as k-space
extrapolation inevitably blurs some small PVS (e.g., those located in the medial part of
the basal ganglia in Fig. 5). Although sharpening filters may improve visual appearance,
they do not address the underlying problem: data loss. Motion correction leveraging
Fourier transform properties may help to tackle this problem [11], but adjustments may
be needed to ensure optimal results in scans acquired using non-Cartesian trajectories.

In conclusion, we have developed a pipeline for evaluating image quality automat-
ically and correct motion artefacts, if needed, to improve PVS quantification. Experi-
mental results suggests our proposal reduces imaging artefacts successfully and leads to
a higher correlation between computational and visual measurements of PVS burden.
Our development is practical since it helps to recover data otherwise useless and timely
given the growing interest in PVS as a potential biomarker of brain dysfunction.
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