
Exploiting Transitivity for Entity
Matching

Jurian Baas(B), Mehdi M. Dastani, and Ad J. Feelders

Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, Netherlands
{j.baas,m.m.dastani,a.j.feelders}@uu.nl

Abstract. The goal of entity matching in knowledge graphs is to iden-
tify sets of entities that refer to the same real-world object. Methods
for entity matching in knowledge graphs, however, produce a collection
of pairs of entities claimed to be duplicates. This collection that rep-
resents the sameAs relation may fail to satisfy some of its structural
properties such as transitivity. We show that an ad-hoc enforcement of
transitivity on the set of identified entity pairs may decrease precision.
We therefore propose a methodology that starts with a given similarity
measure, generates a set of entity pairs, and applies cluster editing to
enforce transitivity, leading to overall improved performance.

1 Introduction

Many datasets use different identifies to refer to the same real life entities, or may
contain duplicates themselves. Automated methods for identifying and linking
duplicate entities, also known as entity matching, in the knowledge graphs are
necessary. A considerable difficulty with entity matching is that the total number
of possible entity pairs is much larger than the number of actual (duplicate)
entity pairs, also known as the problem of skewness [1,10]. This extreme skewness
can cause false positive results to overwhelm the true positives, even for highly
accurate classifiers. This has caused many other works to use ranking techniques,
and their associated metrics, to sort the possible entity pairs with some similarity
measure, where duplicate entity pairs are expected to appear on top of the
ranking [4,8,9,11]. Other works, such as Saeedi et al. [7], perform blocking in the
first stages to reduce the number of pairs that are evaluated. Furthermore, Raad
et al. [5] start with a set of sameAs relations, and use a community detection
algorithm to associate an error degree for each sameAs relation. They show that
when only taking sameAs relations with an error degree ≤ 0.4, they achieve
100% accuracy within their random sample.

The identified set of pairs are generally required to satisfy some structural
properties, in particular transitivity. However, taking the transitive closure of
the entity pairs identified by entity matching techniques may not work as this
may possibly conclude many spurious entity pairs.

We propose the application of cluster editing for entity matching and set
up a number of experiments to evaluate our proposal. We show that compared
c© Springer Nature Switzerland AG 2021
R. Verborgh et al. (Eds.): ESWC 2021 Satellite Events, LNCS 12739, pp. 109–114, 2021.
https://doi.org/10.1007/978-3-030-80418-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80418-3_20&domain=pdf
https://doi.org/10.1007/978-3-030-80418-3_20

110 J. Baas et al.

to an ad-hoc enforcement of transitive closure on identified pairs, our approach
always results fewer distinct entity pairs (i.e. they have a higher precision) while
retaining duplicate entity pairs (i.e. recall is not lowered).

The experiments are performed on semi-synthetic datasets that are generated
by introducing duplicates in an existing dataset in a controlled manner. This
results in a range of different cluster distributions, where we measure the effects
of the number of clusters and different cluster sizes.

2 Applying Cluster Editing on Matched Entities

An overview of our overall method is given in Fig. 1. We start with an embedding
of a set of entities E, some of which may be duplicates, and use Euclidean
distance to measure their proximity (panel A of Fig. 1). For each entity ei ∈ E,
we make k candidate pairs (ei, ej), where ej is the k-nearest neighbor of ei,
thereby addressing skewness by ruling out the vast majority of pairs.

The dotted lines in panel B illustrate the candidate pairs for k = 1. Moreover,
we assume that a (small) subset of these candidate pairs is labeled by a domain
expert (blue lines in panel B). The labeled pairs are used to train a probabilistic
classifier. This classifier is used to determine, for each candidate pair (ei, ej), the
fitted probability pij that ei and ej are duplicates. Depending on the features
used by the classifier, and its complexity, the fitted probabilities need not be
proportional to the distance between entities. We do however assume that the
features used by the classifier are symmetric so that pij = pji, and therefore
we can indeed regard a pair of entities as unordered. We then use a cut-off
value θ so that if pij > θ, then ei and ej are predicted to be duplicates (panel
C). This “raw outcome” of the pairwise classifier, which represents te sameAs
relation, may however violate the expected transitivity constraint. Obviously, an
ad-hoc application of transitive closure to the links predicted by the classifier
never removes any links, but can only add new links (panel G). This may result
many spurious entity pairs. A more principled method to restore transitivity is
to use the cluster editing technique [3]. Here, we compute a weight w(i, j) =
log(pij

1−pij
) − log(θ

1−θ) for each pair of entities (ei, ej) within the same connected
component (regardless of whether it is a candidate pair or not), such that w(i, j)
is positive if pij > θ, and negative otherwise (panel D). If w(i, j) is positive
(negative), a link between i and j is provisionally assumed to be present (absent).
The resulting set of links may however again violate the transitivity constraint.
Cluster editing is used to restore transitivity by adding and/or removing links
in such a way that the total score

∑
(i,j) w(i, j)xij is maximized, where xij = 1

if a link between i and j is present in the solution, and xij = 0 otherwise (panels
E and F). Finally, more information about our method is available at [2].

Entity Matching in Knowledge Graphs 111

Fig. 1. An overview of the entity matching process.

3 Results

The data source we use is an RDF version of Ecartico1, a comprehensive col-
lection of biographical data about, among others, painters, engravers and book
sellers. These people worked in the Low Countries at the time of the 16th and
17th century. This data source is actively curated so we can be sure there are no
duplicate records of persons. From the Ecartico graph, we have constructed a new
graph containing all schema:Person entities that have values for the properties –
schema:name, – schema:workLocation, and – schema:hasOccupation. For each
of these entities, we also copy the property-value pairs for – schema:birthDate,
– schema:deathDate, – schema:birthPlace, and – schema:deathPlace when
they are present. This resulted in a graph with, including rdf:type for the class
schema:Person, eight properties, all centered around that one RDF class.

Then we introduce duplicates by uniformly sampling a percentage of
entities and altering their respective URI’s. For example, when sampling
entities, an entity with URI www.data.uu.nl/1234 will be modified to
www.data.uu.nl/1234/3. We create three cluster distributions D10, D25 and
D50, which are determined by the percentage of entities that is sampled, which
can be either 10, 25 or 50%. Figure 2 shows the resulting distributions of clus-
ters, where, for instance with 10%, we expect most entities to be in a cluster
of size 1, meaning they were not duplicated. When modifying 50%, of entities,
however, this results in most entities being duplicated at least once, and the
largest proportion being duplicated twice. In this case non-duplicate entities are
in the minority, making the entity matching problem considerably harder.

Table 1 shows the results of our experiments. We denote the application of
transitive closure with the subscript TC and the application of cluster editing
with the subscript CE. For every value of θ ∈ (0, 1) (in steps of 0.01) we generate
an associated F 1

2 -score, as it is our experience that a low precision has a larger

1 http://www.vondel.humanities.uva.nl/ecartico.

http://www.vondel.humanities.uva.nl/ecartico

112 J. Baas et al.

negative impact (than low recall) on the performance of downstream systems
such as SPARQL engines. The F 1

2 -score weights precision twice as heavy as
recall. We average the F 1

2 -score for all values of θ (100 values between 0 and
1) to denote the performance of a given combination of cluster distribution,
classifier and features. We experimented with a logistic regression (LR) and
support vector machine (SVM) classifier. All were trained using cosine similarity
as the sole feature. Furthermore, we used just 100 pairs to train each classifier,
limiting the burden on the domain expert as much as possible.

0.00

0.25

0.50

0.75

1.00

1 2 3 4
Cluster Size

Pr
ob

ab
ilit

y Sample Size
10%

25%

50%

Fig. 2. Generated probability distributions of entity clusters of size 1 to 4 in the syn-
thetic data. The values of a color sum to one.

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00
θ

lin
ks

et
 s

iz
e

(a) D50, LR - Cosine Similarity

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
θ

pr
ec

is
io

n

(b) D50, LR - Cosine Similarity

Fig. 3. Left: relative number of pairs predicted vs actual number (red dotted line).
Right: precision for transitive closure (red lines) and edited closure (blue lines). (Color
figure online)

In all cases we observe that the application of cluster editing improves the
resulting set of duplicates over the application of transitive closure. Furthermore,
the optimal value for θ is in most cases reduced when cluster editing is applied,
suggesting that a more lenient cutoff can be used, while at the same time improv-
ing performance. Furthermore, Fig. 3a shows how closure of the entity pair set
tend to overestimate the number of duplicate pairs for low values of θ, where
the number of predicted pairs is more than 4 times the number of actual pairs.
Finally, Fig. 3b shows that the cluster editing method consistently outperforms
transitive closure in precision.

Entity Matching in Knowledge Graphs 113

Table 1. A comparison of the mean and maximum F 1
2
-scores, and associated value

for θ for transitive closure (TC) and cluster editing (CE), per classifier and cluster
distributions (D10,D25,D50)

Classifier Dataset θTC θCE MeanTC MeanCE MaxTC MaxCE

LR D10 0.43 0.51 0.46 0.50 0.69 0.70

D25 0.40 0.35 0.37 0.41 0.62 0.64

D50 0.51 0.41 0.38 0.44 0.62 0.64

SVM D10 0.72 0.83 0.61 0.64 0.68 0.70

D25 0.70 0.66 0.43 0.51 0.62 0.64

D50 0.78 0.67 0.45 0.54 0.62 0.64

4 Conclusion and Future Work

In practice, entity matching methods are applied and the resulting entity pairs
are used by, e.g., a reasoner in a SPARQL engine, which applies the transitive
closure. This may introduce many spurious links, potentially creating large clus-
ters of unrelated entities. We propose to apply cluster editing to create a set of
links that is closed under transitivity and show that the application of cluster
editing, compared to the transitive closure, always results in a set of duplicates
that contains fewer distinct entity pairs (i.e. they have a higher precision) while
retaining duplicate entity pairs (i.e. recall is not lowered). The NP-Hardness of
cluster editing limits us to solving only relatively small connected components.
There are, however, heuristic methods which enables larger components to be
solved. These heuristic methods can effectively reduce the instance size of the
problem and are fast in case a small number of edits is allowed [6]. Addition-
ally, the Louvain community detection technique proposed by Raad et al. [5] for
detecting erroneous links can be applied to the connected components formed
by the candidate pairs. It would be interesting to see how it compares to other
(heuristic) clustering techniques.

References

1. Al Hasan, M., Zaki, M.J.: A survey of link prediction in social networks. In: Aggar-
wal, C. (ed.) Social Network Data Analytics, pp. 243–275. Springer, Boston (2011).
https://doi.org/10.1007/978-1-4419-8462-3 9

2. Baas, J., Dastani, M., Feelders, A.: Exploiting transitivity constraints for entity
matching in knowledge graphs. arXiv:2104.12589 (2021)

3. Böcker, S., Baumbach, J.: Cluster editing. In: Bonizzoni, P., Brattka, V., Löwe, B.
(eds.) CiE 2013. LNCS, vol. 7921, pp. 33–44. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39053-1 5

4. Chen, M., Tian, Y., Chang, K.W., Skiena, S., Zaniolo, C.: Co-training embeddings
of knowledge graphs and entity descriptions for cross-lingual entity alignment.
arXiv preprint arXiv:1806.06478 (2018)

https://doi.org/10.1007/978-1-4419-8462-3_9
http://arxiv.org/abs/2104.12589
https://doi.org/10.1007/978-3-642-39053-1_5
https://doi.org/10.1007/978-3-642-39053-1_5
http://arxiv.org/abs/1806.06478

114 J. Baas et al.

5. Raad, J., Beek, W., van Harmelen, F., Pernelle, N., Säıs, F.: Detecting erroneous
identity links on the web using network metrics. In: Vrandečić, D. (ed.) ISWC
2018. LNCS, vol. 11136, pp. 391–407. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00671-6 23

6. Rahmann, S., Wittkop, T., Baumbach, J., Martin, M., Truss, A., Böcker, S.: Exact
and heuristic algorithms for weighted cluster editing. In: Computational Systems
Bioinformatics, vol. 6, pp. 391–401. World Scientific (2007)

7. Saeedi, A., Nentwig, M., Peukert, E., Rahm, E.: Scalable matching and clustering
of entities with famer. Complex Syst. Inform. Model. Q. 16, 61–83 (2018)

8. Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving
embedding. In: d’Amato, C., Fernandez, M., Tamma, V., Lecue, F., Cudré-
Mauroux, P., Sequeda, J., Lange, C., Heflin, J. (eds.) ISWC 2017. LNCS, vol.
10587, pp. 628–644. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68288-4 37

9. Trisedya, B.D., Qi, J., Zhang, R.: Entity alignment between knowledge graphs
using attribute embeddings. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, pp. 297–304 (2019)

10. Weiss, G.M.: Mining with rarity: a unifying framework. ACM Sigkdd Explorations
Newsletter 6(1), 7–19 (2004)

11. Zhu, H., Xie, R., Liu, Z., Sun, M.: Iterative entity alignment via joint knowledge
embeddings. IJCAI 17, 4258–4264 (2017)

https://doi.org/10.1007/978-3-030-00671-6_23
https://doi.org/10.1007/978-3-030-00671-6_23
https://doi.org/10.1007/978-3-319-68288-4_37
https://doi.org/10.1007/978-3-319-68288-4_37

	Exploiting Transitivity for Entity Matching
	1 Introduction
	2 Applying Cluster Editing on Matched Entities
	3 Results
	4 Conclusion and Future Work
	References

