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Abbreviations

BCS Biopharmaceutical Classification System
CNTs  Carbon nanotubes
CS Chitosan
DOX Doxorubicin
DTX Docetaxel
EPR Enhanced permeation and retention effect
FA Folic acid
FDA Food and Drug Administration
GEM Gemcitabine
GNPs Gold nanoparticles
HA Hyaluronic acid
MNPs Magnetic nanoparticles
MPS Mononuclear phagocytic system
MRI  Magnetic resonance imaging
MSNs  Mesoporous silica nanoparticles
Nano DDS Nano drug delivery system
PAMAM Polyamidoamine
PCL Poly (ε-caprolactone)
PDCs Polymer-drug conjugates
PET Positron emission tomography
PEG  Polyethylene (glycol)
PLA Polylactic acid
PLGA Poly (D, L-lactide-co-glycolide)
PLL Poly-l-lysine
PPI Poly (propylamine)
PTT Photothermal therapy
PTX Paclitaxel
QDs Quantum dots
RES Reticuloendothelial system
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SLNs  Solid lipid nanoparticles
TPGS D-Tocopherol polyethylene glycol1000 succinate
WHO World Health Organization

3.1  Introduction

Cancer is the second most severe lethal disease in the current world and spreading 
further with continuance and growing incidence in the twenty-first century. 
According to the estimates from the GLOBOCAN cancer statistics 2018 
(International Agency for Research on Cancer, WHO), there are 9.6 million cancer 
cases deaths in 2018. More than 18.1 million cancer cases are diagnosed, and this 
rate has been estimated to rise to 29.5 million by the year 2040 (Faisca Phillips 
2019; Bray et al. 2018). The condition is so alarming that every fourth person is 
having a lifetime cancer risk. Is cancer treatable? The short reply to this question is 
“yes.” Cancer mortality rates can be decreased if cancer cases are detected and 
treated early with better treatment strategies (Siegel et al. 2019; Wild 2019). Cancer 
begins from transforming healthy normal tissues into tumor tissues in a multistage 
development that usually progresses from a precancerous to a malignant tumor. 
Many types of cancers affect the people, and the cancer cells show no symptoms at 
an initial stage of development (Papaccio et al. 2017; Kulikov et al. 2017). Cancer 
cells proliferate and continue to increase unless one of three things occur: (i) The 
tumor tissues are removed surgically, (ii) using radiation therapy, or (iii) using 
chemotherapy.

There are different methods of cancer treatment. Current cancer treatment 
options can be surgical intervention, radiation therapy, chemotherapy, immunother-
apy and hormone therapy, or a combination of these options (Miller et al. 2019; 
Chowdhury et al. 2016). The types of cancer treatment that patients receive depend 
on the type of cancer patients have and what stage advanced it is. The treatment of 
cancer by surgery works best for small size solid tumors that are localized in one 
area (Tyson II et  al. 2018; Derks et  al. 2017). The surgery to remove the entire 
tumorous mass should not harm the surrounding normal healthy cells or tissues. 
Nonsurgical cancer treatment commonly followed is radiation therapy or chemo-
therapy medication. Radiation therapy practices with high ionizing radiation dose to 
eradicate cancer cells and slow tumor growth by damaging the DNA (Liu et  al. 
2016a; Baskar and Itahana 2017). The radiation therapy is commonly used in com-
bination with the surgery to reduce the tumor size, so the tumor can be easily 
removed by surgical treatment (Bishop et al. 2018a, b). The body can safely receive 
a limited amount of radiation over the course of the treatment. The radiation dose to 
be delivered to the cancer site depends upon various factors such as the cancer type, 
tumor size and location in the body, age of the person, general health and medical 
history, and possible side effects on the nearby normal tissues (Ghahremani et al. 
2018; Cabrera et al. 2016). Immunotherapy is a biological cancer therapy that sup-
ports the immune system battle against cancer, and it is not yet as extensively used 
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as surgery, radiation therapy, and chemotherapy (Zaidi and Jaffee 2019; Ishihara 
et al. 2017). Hormone therapy uses hormones to stop the growth of cancers (Axelrad 
et al. 2020; Eeles et al. 2016).

Chemotherapy or combined chemotherapy, a very common cancer treatment, 
uses anticancer drugs to kill or destroy the uncontrolled proliferation of cancerous 
cells. Conventional chemotherapy works principally by interfering with the synthe-
sis of DNA and mitosis, leading to the death of rapidly proliferating and dividing 
cancer cells (Senapati et al. 2018; Wang et al. 2016). Unfortunately, due to nonspe-
cific drug targeting by anticancer medicines, conventional chemotherapy fails to 
target the tumor specifically without interacting with the normal healthy cells 
(Kumari et al. 2016; Wakaskar 2017; Raza et al. 2019).

This chapter aims to present the limitations of conventional cancer treatment and 
principal concepts of nanomaterials for cancer treatment, to emphasize the distin-
guished advantage of nanomaterials-based drug delivery systems (nano DDS) and 
the mechanism of action underlying their selective targeted drug delivery effects, 
and to introduce successful recent nano drug delivery system for cancer treatment 
and diagnosis.

3.2  Limitations of Conventional Cancer Treatment

The conventional cancer treatments effectively destroy the cancer cells, but they are 
also harmful to the normal healthy cells and tissues (Johnson et  al. 2018; 
Kalyanaraman 2017). Cancer cells cannot be entirely removed by the surgery, and 
even the existence of a single cancer cell that is unseen can redevelop into a new 
tumor and metastasize to other parts of the body. The cancer treatment by the surgi-
cal procedure is not used for hematological cancers or cancers that have metasta-
sized to other tissues or parts of the body. The radiation therapy administered both 
internally or externally can also destroy the normal healthy cells and induce the side 
effects due to the ionizing radiation. The radiation therapy is not used if the tumor 
is located at extremely vulnerable locations or if the cancer is at the advanced stages. 
Immunotherapy and hormone therapy cause side effects in the body, and hormone 
therapy blocks the ability to produce hormones in the body system.

Chemotherapy is considered as an effective type of cancer treatment for all types 
of cancers, but it damages either normal healthy tissues or cells that divide rapidly, 
such as cells in the macrophages, digestive tract, bone marrow, and hair follicles. 
The notable drawback of conventional chemotherapy is that it cannot provide spe-
cific target action only to the cancer cells. The nonspecific delivery of chemothera-
peutic drugs causes severe side effects such as mucositis, myelosuppression, organ 
dysfunction, alopecia, and thrombocytopenia, and these side effects impose treat-
ment delay, dose reduction, and therapy discontinuation. Furthermore, most of the 
available chemotherapeutic drugs often cannot penetrate the outer membranes of 
solid tumors and reach the inside core of solid tumors, failing to destroy the cancer 
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cells. Also, the repeated administration of nonselective chemotherapeutic drugs can 
influence drug resistance.

Chemotherapeutic drugs are often eliminated from the plasma circulation 
engulfed by macrophages and P-glycoprotein, acting as the efflux pump, which is 
overexpressed on the cancer cells surface and prevents the accumulation of drugs 
inside the tumor. Thus, chemotherapeutic drugs stay in the plasma circulation for a 
very short and limited time and cannot interact with the cancer cells resulting in the 
chemotherapy entirely unsuccessful. The low drug solubility, large particle size, low 
specificity, and high toxicity of chemotherapeutic drugs are also important issues in 
conventional chemotherapy, making them unable to improve the bioavailability and 
reach the chemotherapeutic drugs at the tumor sites.

To circumvent the pitfalls as mentioned above and the limitations of conven-
tional cancer treatments, chemotherapeutic drugs need to reformulate with various 
types of nanomaterials and drug delivery systems.

3.3  Nanomaterials as Drug Delivery System 
for Cancer Treatment

Since innovative researches and understanding of biological mechanisms of cancer 
tissues are emerging regularly, novel cancer treatment procedures are being devel-
oped to have improved effectiveness of the treatment, thereby enabling the patient’s 
survivability and improving their quality of life. With the recent technological 
advances in medical sciences, different types of cancer treatment have been prac-
ticed in the past, and many new therapies, such as targeted therapy, are currently 
being practiced. There have been significant successes in the nanotechnology medi-
cal applications (nanomedicine) in recent years, particularly in the drug delivery 
system (Wolfram and Ferrari 2019; Salvioni et al. 2019; van der Meel et al. 2019; 
Tran et al. 2017; Prasad et al. 2017).

Treating cancer cells using a nanoparticulate drug delivery system (nano DDS) 
approach plays a pivotal role in circumventing the limitations of conventional can-
cer treatment methods by providing simultaneous diagnosis and treatment. The 
application of nano DDS to cancer treatment could extend beyond the drug delivery 
system into the making of new therapeutics capable of killing the cancer cells with 
negligible damage to normal healthy cells and tissues. Various types of organic and 
inorganic nanomaterials are used to formulate chemotherapeutic drug-loaded nano 
DDS for cancer diagnosis and treatment. Most of the organic nanomaterials (lipo-
somes, solid lipid nanoparticles, dendrimers, polymeric micelles, polymeric (natu-
ral or synthetic) nanoparticles, and polymer-drug conjugates) and inorganic 
nanomaterials (mesoporous silica nanoparticles, gold nanoparticles, magnetic 
nanoparticles, carbon nanotubes, and quantum dots) were developed as a vehicle in 
nano DDS for cancer treatment.
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3.4  Unique Advantages of Nano DDS

3.4.1  Particle Size (Kumar et al. 2017; Arms et al. 2018; 
Ghasemiyeh and Mohammadi-Samani 2018; Tiruwa 
2016; Ghasemiyeh and Mohammadi-Samani 2020; 
Sarcan et al. 2018)

Particle size distribution and small size with high surface area characteristics of 
nanoparticles are the most important key factors for drug delivery applications. The 
great advantage of nano DDS is that the particle size and size distributions are tun-
able. Several types of research have reported that nanoparticulate systems have 
plenty of advantages over other microparticulate systems. Nanoparticles can 
improve drug loading, stability, controlled drug release, high cellular uptake, in vivo 
pharmacokinetics, plasma circulation half-life, biodistribution, targeted drug deliv-
ery, tumor accumulation, and ability to cross the blood-brain barrier and transport 
the drugs to the brain due to their smaller size and flexibility (Prasad et al. 2019). 
Nanoparticles can also be coated with different types of polymers or surface-func-
tionalized with targeting moieties, peptides, and nucleic acids that bind to specific 
cancer target sites. The nanoparticles used in a nano DDS should be small size 
enough to escape or avoid capture by macrophages in the circulation system. 
Systemically administered nano DDS should have a particle size ranging from 10 to 
200 nm, particle size less than 200 nm to avoid sequestration by the liver and spleen, 
and particle size larger than 10 nm to avoid first-pass metabolism or elimination 
through the kidneys, benefiting accumulation/clearance and biodistribution behav-
ior. The particle size of nano DDS has been shown to influence the surface function-
alization and targeted drug delivery applications for cancer treatment.

3.4.2  High Drug Payload (Ghasemiyeh 
and Mohammadi- Samani 2018; Meunier et al. 2017; Liu 
et al. 2020; Qu et al. 2016; Huang et al. 2016)

An effective nanoparticulate system should load and hold a higher amount of drugs, 
thereby decreasing the frequent dose of uptake and increasing drug plasma concen-
tration after administration in the body. Drug loading in the nano DDS can be done 
by adsorption/absorption and incorporation techniques. A high drug loading capac-
ity and encapsulation efficiency mainly depend on the classification of drugs (e.g., 
biopharmaceutical classification systems (BCS) Class I–IV) and drug solubility in 
the nano DDS, which is related to the drug-polymer interactions, compositions of 
excipients, and the presence of active functional groups from drug and excipients. 
For instance, the solid lipid core of solid lipid nanoparticles can accommodate a 
higher amount of hydrophobic chemotherapeutic drugs, and liposomes can load and 
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hold both hydrophobic and hydrophilic chemotherapeutic drugs due to their unique 
characteristics.

3.4.3  Controlled Drug Release (Li et al. 2016a; Kamaly et al. 
2016; Deodhar et al. 2017; Liu et al. 2019a; Paris 
et al. 2018)

It is crucial to take consideration of both polymer biodegradation and drug release 
kinetics in simulated body conditions when formulating a nano DDS.  The drug 
release behavior from nano DDS mainly depends on (i) solubility of active pharma-
ceutical ingredient, (ii) nano DDS degradation or erosion, (iii) desorption from the 
surface-attached drug or incorporated drug from the inside polymer core, (iv) drug 
diffusion through the nano DDS, and (v) the combination of diffusion and erosion 
processes. For example, the drug release of uniformly drug distributed nanospheres 
occurs by diffusion or matric erosion. If the active drug diffusion is more rapid than 
matrix erosion, then the drug release mechanism is mostly maintained by diffusion. 
The burst drug release from nanoparticles at the early stage is primarily attributed to 
surface-attached drug molecules to the large surface of nano DDS. It is indicated 
that the method of drug loading has a pivotal role in the drug release profile from 
nanoparticles. If the active pharmaceutical ingredient is entrapped in the nano DDS 
by the incorporation technique, then the nano DDS has a negligible amount of burst 
drug release and controlled drug release profile. If the nano DDS is surface- modified 
or coated by other synthetic or natural polymers, the drug release profile is then 
controlled by drug diffusion from the surface polymeric membrane.

3.4.4  Surface Modification (Ahmad et al. 2018a; Choi 
and Meghani 2016; Ahmad et al. 2018b; Ganesan et al. 
2018; Ramalingam and Ko 2016; Ramalingam and Ko 
2015; Ramalingam et al. 2016)

Surface modification or coating on the nano DDS can improve drug biodistribution, 
pharmacokinetics, and oral and brain drug delivery. To enhance drug targeting, it is 
crucial to prolong the nanoparticle circulation and minimize the opsonization 
in vivo, and it can be accomplished by coating or surface modification of nano DDS 
with biodegradable hydrophilic polymers, e.g., natural polymers such as chitosan 
and their derivatives, PEG, polysorbate 80, poloxamer, and polyethylene oxide. 
Several researches publish that PEG surface modification on nano DDS avoids 
opsonization and reduces phagocytosis.
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3.5  Physiology of Tumor and Tumor Targeting Using 
Nano DDS

3.5.1  Angiogenesis and Tumor Vasculatures

A well understanding and knowledge of the angiogenesis and tumor vasculature 
characteristics have facilitated effective cancer treatment against various types of 
cancers. To develop the nano DDS, it is essential to find the biomarkers of the tumor 
microenvironment and the important differences in normal healthy cells (Liu et al. 
2021). The process of angiogenesis in tumor sites promotes new blood vessels with 
discontinuous epithelium from preexisting vascular systems. The irregular blood 
vessels present in tumor regions have unusual morphological and physiological 
conditions dissimilar from normal vasculatures. The discontinuities between epithe-
lial cells or vascular gap openings of tumors are remarkably 10 and 100 times larger 
in tumor models than in normal tissues. Lack of lymphatic drainage with leakiness 
favors the passive accumulation of long-circulating macromolecules and into the 
tumor (Li et al. 2016b; Park et al. 2016; Yang and Gao 2017; Wong et al. 2016). 
These findings suggest that the nano DDS of certain sizes can penetrate leaky tumor 
vasculatures and selectively carry the chemotherapeutic drugs to the tumor regions.

3.5.2  Mechanisms of Tumor Targeting by Nano DDS

Tumor-targeted drug delivery can be attained by inherent passive targeting and 
adopted active targeting strategies. Active drug targeting of chemotherapeutic drugs 
can be accomplished by conjugating the targeting moiety on the nano DDS. Passive 
drug targeting is achieved by loading chemotherapeutic drugs into a nano DDS that 
passively reaches the cancer target site or tissue through the EPR effect. For exam-
ple, several studies reported that liposomes surface-modified with targeting moiety 
influenced the drug targeting and it can work as a drug reservoir exhibiting con-
trolled drug release profile and drug accumulation at the tumor site (Kanamala et al. 
2016; Masood 2016; Anarjan 2019; Derakhshandeh and Azandaryani 2016; Dai 
et al. 2016).

3.5.2.1  Passive Tumor Targeting

The EPR effect-mediated chemotherapeutic drug deliveries of nano DDS have been 
considered one of the strategies to accumulate the drug at the tumor sites. Compared 
to blood vessels in normal tissues, angiogenic blood vessels at the tumor sites have 
bigger size openings between nearby vascular endothelial cells. This can help the 
nano DDS to accumulate at the tumor tissues and then release a higher concentra-
tion of the drugs specifically into the tumor cells, thus permitting effective cancer 
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treatment with least systemic side effects. Various studies have demonstrated that 
EPR plays a pivotal part in passive drug targeting. The EPR effect mainly depends 
on many factors, such as the nano DDS surface properties, tumor types, and immu-
nogenicity. Passive drug targeting is due to the faulty leaky tumor vasculature with 
irregular epithelium, reduced level of lymphatic drainage, and lowered uptake of the 
interstitial fluid, supporting passive targeting of nano DDS in tumors (Kumari et al. 
2016; Wakaskar 2017; Masood 2016; Mahato 2017).

3.5.2.2  Active Tumor Targeting

Passive tumor targeting can help the localization of nano DDS at the tumor sites, but 
it is not able to encourage cellular uptake by tumor cells. This can be accomplished 
by active tumor targeting. Compared to passive tumor targeting, active tumor target-
ing strategy relies on a biological communication between targeting ligand on the 
surface of nano DDS and the receptor on the target tumor cell surface. Active tumor 
targeting strategy can easily differentiate the normal healthy cells and tumor cells. 
A large number of targeting ligands and targets have been identified and evaluated 
for facilitating active drug targeting of nano DDS for various types of cancers 
(Table 3.1). Such ligands on the surface of nano DDS often actively attach to spe-
cific receptors on the tumor cell surface, increasing the drug-containing nano DDS 
internalization by receptor-mediated endocytosis, improving the therapeutic effi-
cacy, controlling the delivery of chemotherapeutic drugs to healthy tissues, and also 
decreasing the systemic adverse effects. Hence, active tumor targeting has displayed 
promising outcomes in circumventing different pitfalls, such as multidrug resis-
tance in tumors and bypassing the blood-brain barrier (Anarjan 2019; He et  al. 
2020; Lin et al. 2016; Nag and Delehanty 2019).

Table 3.1 Targeting moiety and targets for active targeting of nano DDS

Targets
Targeting 
moiety Type of cancer treatment

CD44 receptor Hyaluronic 
acid

Human hepatocellular carcinoma, human lung 
adenocarcinoma, breast cancer (Yang et al. 2018a; Liu 
et al. 2016b; Song et al. 2017)

CD13 NGR motif 
peptide

Liver cancer, non-small cell lung cancer (Zheng et al. 
2017; Schmidt et al. 2017; Corti et al. 2017)

FA receptor Folic acid Breast cancer, liver cancer (Vinothini et al. 2019; Zhang 
et al. 2018a)

Integrin αvβ3 RGD peptide Prostate tumor, breast cancer (Kim et al. 2017; Wu et al. 
2017a)

Prostate-specific 
membrane antigen

Aptamer Prostate cancer (Ptacek et al. 2020; Pan et al. 2017)

Transferrin receptor Transferrin Breast cancer, lung cancer (Li et al. 2019a; Zhang et al. 
2017; Xu et al. 2018)
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3.6  Nano DDS for Cancer Treatment

3.6.1  Organic Nanomaterials for Cancer Treatment

Most of the organic nanomaterials (liposomes, solid lipid nanoparticles, polymeric 
micelles, dendrimers, polymeric nanoparticles, and polymer-drug conjugates) are 
used as a carrier and targeting system for cancer treatment (Fig. 3.1).

3.6.1.1  Liposomes

Liposomes are described as phospholipid vesicles comprising of one or more con-
centric bilayer vesicles surrounding the discrete aqueous phase. Because liposome 
composition is identical to that of cellular membranes, liposomes are safer and bio-
compatible than other synthetic polymers. Because of the unique structure of lipo-
somes, both hydrophobic and hydrophilic drugs can be incorporated in liposomes. 
Liposomes can load and hold hydrophobic drugs in the lipid bilayers and hydro-
philic drugs in the aqueous core. Liposomes have several advantages than other 
drug delivery systems, and it is administrated as a potential nanocarrier for drug 
delivery of chemotherapeutic drugs (Mishra et  al. 2018; Ahmed et  al. 2019). 
Currently, there are many liposomal products in the market (Table 3.2) and clinical 
development (Table 3.3) for cancer treatment.

The types of phospholipids, targeting ligand, PEGylation, and stimuli-sensitive 
materials determined the charge of the surface of the liposomes. In addition, lipo-
somes with surface modification protect the incorporated drug from degradation, 
increase the targeting, improve the pharmacokinetic and pharmacodynamics prop-
erties, and reduce the toxic side effect of the chemotherapeutic drugs (Patel 2020; 
Mohamed et al. 2019). PEG conjugation has been identified as a unique strategy for 
the evasion of RES uptake. The targeting ligands, peptides, and nucleic acid- 
functionalized liposomes can specifically deliver the chemotherapeutic drugs to the 
tumor sites. The use of liposome targeted delivery systems in combination therapies 
of chemotherapy and phototherapy to transport anticancer drugs and photosensitizer 
can reduce the side effects, significantly enhance the drug accumulation at the target 
site, and improve the effectiveness of chemotherapy and photodynamic therapy 
(Cao et al. 2018). Different types of liposomes for targeted anticancer drug delivery 
are summarized in Table 3.4.

3.6.1.2  Solid Lipid Nanoparticles

Solid lipid nanoparticles (SLNs) are made from biological and safe grade lipids, and 
it is biocompatible and less toxic compared to polymeric or inorganic nanomateri-
als. SLNs promote the high drug upload of multiple hydrophobic and hydrophilic 
drugs. SLNs are a versatile drug delivery system that has been applied to enhance 
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the therapeutic effect of chemotherapeutic drugs. Targeted delivery of chemothera-
peutic drugs from SLNs reduces the systemic side effects and improves the thera-
peutic action. SLNs can enhance the chemotherapeutic drug delivery applications 
for cancer treatment by tumor targeting mechanisms of actions such as passive, 
active, and codelivery mechanisms (Ganesan et al. 2018; Ramalingam and Ko 2016; 
Lingayat et al. 2017; Patel et al. 2018). Several studies have reported that SLNs are 
used as a targeted drug delivery vehicle for different types of tumors. The outcomes 
of SLNs as carriers of chemotherapeutic drugs are summarized in Table 3.5.

Organic Nanomaterials

Liposomes Solid Lipid Nanoparticles

Polymeric Micelles Dendrimers

Polymeric Nanoparticles Polymer-Drug Conjugates

Fig. 3.1 Different types of organic nanomaterials for cancer treatment
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3.6.1.3  Polymeric Micelles

Polymeric micelles composed of amphiphilic block copolymers with a hydrophilic 
corona and hydrophobic core are colloidal nanoparticulate drug delivery systems 
for chemotherapeutic drugs. Polymeric micelles form a self-assembled structure 
spontaneously in an aqueous environment. The hydrophobic core of the polymeric 
micelles possesses a high drug loading of water insoluble chemotherapeutic drugs, 
and hydrophilic corona provides steric stability to avoid rapid uptake by the RES, 
resulting in extended drug circulation in the body. In addition to passive drug target-
ing, polymeric micelles can be surface-modified with targeting ligands for active 
tumor targeting to enhance the selectivity for cancer cells and improve intracellular 
delivery of anticancer drugs by receptor-mediated endocytosis while reducing sys-
temic toxicity and severe side effects compared to systemic chemotherapy (Marzbali 

Table 3.2 Approved and marketed liposome-based drugs for cancer treatment

Product name Drug name Type of cancer treatment

Abraxane PTX
PTX + 
gemcitabine

Various cancers (Bobo et al. 2016)
Metastatic pancreatic cancer (Saif 2013)

DaunoXome® Daunorubicin AIDS-related Kaposi’s sarcoma (Dawidczyk et al. 2014)
Doxil®/
Caelyx®

DOX Ovarian cancer, AIDS-related Kaposi’s sarcoma and 
multiple myeloma (Barenholz 2012, 2016)

DepoCyt Cytarabine Lymphomatous meningitis (Bobo et al. 2016)
Lipusu® PTX Solid tumors (Barkat et al. 2019)
Lipo-dox® DOX Kaposi’s sarcoma, breast and ovarian cancer (Chou et al. 

2015)
Marqibo® Vincristine Acute lymphoblastic leukemia (Silverman and Deitcher 

2013)
Myocet® DOX Metastatic breast cancer (Anselmo and Mitragotri 2016)
Oncaspar PEGasparaginase Acute lymphocytic leukemia (Alconcel et al. 2011)

Table 3.3 Liposome-based drugs in clinical development for cancer treatment

Product name Drug name Type of cancer treatment

Atragen™ Tretinoin Acute promyelocytic leukemia, prostate cancer (Nayak et al. 
2019)

CPX-1 Irinotecan 
HCI

Colorectal cancer (Pandey et al. 2016)

EndoTAG®-1 Paclitaxel Breast cancer, pancreatic cancer (Sofias et al. 2017)
INX-0125 Vinorelbine Advanced solid tumors (Rahman et al. 2017)
Lipoplatin™ Cisplatin Pancreatic cancer, lung cancer, breast cancer (Serinan et al. 

2018)
L-Annamycin Annamycin Acute lymphocytic leukemia (Eryılmaz and Canpolat 2017)
SPI-077 Cisplatin Head and neck cancer, lung cancer (Zahednezhad et al. 2020)
ThermoDox® Doxorubicin Primary hepatocellular carcinoma, breast cancer (Lyon et al. 

2017)
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and Khosroushahi 2017; Gothwal et al. 2016; Biswas et al. 2016). Currently, many 
chemotherapeutic drug-loaded polymeric micelles are evaluated for effective cancer 
treatment (Table 3.6).

3.6.1.4  Dendrimers

Dendrimers are highly branched globular macromolecules with their 3D nonpoly-
meric architectures: a central core, a corona with functional groups, and a hyper-
branched mantle. Dendrimers’ unique properties like polyvalency, well-defined 
molecular weight, nanosize, the high degree of branching, water solubility, and 
simple synthesis procedure make them promising drug carrier systems for antican-
cer drugs. The dendrimers’ biological effect is initiated by terminal moieties, and 
the dendrimers seem to be excellent candidates for carriers of anticancer drugs. A 
variety of dendrimers, including PAMAM, PEG, PPI, and PLL, have been success-
fully developed for drug delivery applications, and the PAMAM is most widely 
employed for targeted cancer therapy. Surface modification or conjugation of 

Table 3.4 Liposome-based targeted drug delivery systems for cancer treatment

Liposome type Drug Ligand
Type of cancer 
treatment

Plain liposomes PTX Aspartic acid Bone metastasis (Zhao 
et al. 2020)

Resveratrol Transferrin Glioblastoma (Jhaveri 
et al. 2018)

5-Fluorouracil Transferrin Colon cancer 
(Moghimipour et al. 
2018)

Cationic liposomes Daunorubicin and 
Honokiol

Hyaluronic acid Breast cancer (Ju et al. 
2018)

Sorafenib Hyaluronic acid Cancer (Mo et al. 2018)
DOX Asparagine glycine 

Arginine (NGR) 
peptide

Breast adenocarcinoma 
(Yang et al. 2015)

pH-sensitive liposomes Losartan TH peptides Cancer (Jain and Jain 
2018)

DTX Eph A10 Cancer (Zhang et al. 
2018b)

Photothermal therapy Rapamycin and 
polypyrrole

Trastuzumab Breast cancer (Nguyen 
et al. 2017)

Thermosensitive 
liposomes

DOX iRGD Cancer (Deng et al. 
2016)

Thermoresponsive 
magnetic liposomes

DOX Magnetic targeting Cancer (Dai et al. 2017)

Magnetic liposomes Curcumin Magnetic targeting Cancer (Hardiansyah 
et al. 2017)
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dendrimers with PEG and other ligands can help reduce the cytotoxicity of den-
drimers and enhance plasma circulation time and accumulation of tumor through 
the EPR effect (Kaur et al. 2016; Augustus et al. 2017; Munir et al. 2016; Parajapati 
et al. 2016; Abedi-Gaballu et al. 2018; Sherje et al. 2018). Numerous researches that 
have been conducted to study the application of dendrimers in cancer treatment are 
presented in Table 3.7.

3.6.1.5  Polymeric Nanoparticles

The polymeric nanoparticulate system from natural and synthetic biodegradable 
polymers has earned more attention due to their biodegradability, biocompatibility, 
tailorability and stability, ease of coating or surface modification, and low cost. 
Polymeric nanoparticles, in general, can be used to improve solubility, controlled 

Table 3.5 Application of SLNs against different types of cancers

Drug/formulations Ligand Type of cancer treatment

PTX/SLNs Tyr-3-octreotide Antiangiogenic and anti-glioma (Banerjee et al. 
2016)

Folate-grafted chitosan Lung cancer (Rosiere et al. 2018)
TAT Cervical cancer (Liu et al. 2017a)

Methotrexate/SLNs Protein 
functionalization

Brain cancer (Muntoni et al. 2019)

Fucose Brain cancer (Garg et al. 2016)
Curcumin/SLNs Breast cancer (Wang et al. 2018a)
Resveratrol/SLNs Breast cancer (Wang et al. 2017a)
Erlotinib/SLNs Non-small lung cancer (Bakhtiary et al. 2017)
Omega-3 PUFA/
SLNs

Colorectal cancer (Serini et al. 2018)

Linalool/SLNs Liver cancer (Rodenak-Kladniew et al. 2017)
DOX/SLNs cRGD Breast cancer (Zheng et al. 2019)
IR-780 dye/SLNs cRGD Photothermal therapy (Kuang et al. 2017)

Table 3.6 Application of polymeric micelles against different types of cancers

Drug Polymeric micelles Ligand Type of cancer treatment

DOX Poloxamer 407 and vitamin 
TPGS

pH-responsive 
FA

Ovarian carcinoma  (Butt et al. 
2015)

PLA-PEG Aptamer Prostate cancer (Xu et al. 2013)
Cholic acid – PE – Colorectal cancer (Amjad et al. 

2012)
Succinylated gelatin micelles Folic acid Breast cancer (Wang et al. 2018b)
PLGA-PEG – Cancer (Ma et al. 2016)

PTX Redox-responsive micelles Albumin Breast cancer (Zhang et al. 2018c)
Pluronic F87-PLA/TPGS Folate Cancer (Xiong et al. 2017)
Pluronic F127-PEG – Ovarian cancer (Zhai et al. 2018)
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release, and bioavailability for systemic delivery of anticancer drugs. Drug-loaded 
polymeric nanoparticles can be developed to actively or passively accumulate in 
sites of the tumor by controlling their particle size or surface functionalizing with 
targeting moieties. Polymers like hyaluronic acid and pullulan are used to activate 
nanoparticles for active targeted drug delivery. These polymers degrade in physio-
logical body conditions, and by-products of the polymers are not harmful to the 
body. Various natural and synthetic polymers-based nanoparticles were developed 
and reported for cancer treatment and diagnosis (Masood 2016; Prasad et al. 2017; 
Conte et al. 2016; Wong et al. 2020; Espinosa-Cano et al. 2018; Taghipour-Sabzevar 
et al. 2019). Natural and synthetic polymers-based nano DDS for cancer treatment 
are summarized in Tables 3.8 and 3.9.

3.6.1.6  Polymer-Drug Conjugates

Polymer-drug conjugates (PDCs) can be prepared as nano DDS by covalently con-
jugating one or more drugs to a polymer backbone before the synthesis of nanopar-
ticles. PDCs are identified as the most examined type of nano DDS, and currently, 
many PDs in clinical trials and several polymer-drug conjugates are successfully 
transformed into clinical practice. For example, N-(2-hydroxypropyl) 
methacrylamide- DOX was the first chemotherapeutic PDC to reach clinical trial 
studies about 22 years ago. The conjugation of therapeutic drugs to polymers pro-
vides many benefits, including improved drug solubilization, stability, controlled 
drug delivery, enhanced efficacy and improved pharmacokinetics, biodistribution, 
as well as reduced toxicity and immunogenicity. The main advantage of using PDCs 
is that the physical and chemical characteristics of polymers can be modified to 
reduce the toxicity and improve the therapeutic efficacy of the loaded chemothera-
peutics. In addition, PDCs have displayed increased accumulation of tumors, 
improved therapeutic index, prolonged circulation, controlled release of the anti-
cancer drugs, and active tumor uptake by active targeting (Ekladious et al. 2019; 
Thanou and Duncan 2003; Vicent and Duncan 2006; Li and Wallace 2008) 
(Table 3.10).

Table 3.7 Dendrimer-based nano DDS for cancer treatment

Polymer Drug Modification Type of cancer treatment

PAMAM DOX – Breast cancer (Khodadust et al. 2014)
DTX Trastuzumab Breast cancer (Kulhari et al. 2016)
Camptothecin N-acetyl-D-glucosamine Lung cancer (Pooja et al. 2020)
pDNA/siRNA – Cancer (Li et al. 2018a)

PLL DOX PEG Cancer (Mehta et al. 2018)
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3.6.2  Inorganic Nanomaterials for Cancer Treatment

Inorganic nanomaterials have been intensively studied for cancer therapy and diag-
nostic imaging due to their great advantages, such as high drug loading, large sur-
face area, improved bioavailability, reduced toxic side effects and controlled release 
of anticancer drugs, and their tolerance to most organic solvents. Mesoporous silica 
nanoparticles, gold nanoparticles, magnetic nanoparticles, carbon nanotubes, and 

Table 3.9 Synthetic polymers-based nano DDS for cancer treatment

Polymer Conjugation Drug Type of cancer treatment

PLGA Folate-PEG GEM and DTX Ovarian (Li et al. 2019b)
Transferrin PTX Breast and brain (Cui et al. 2017)
Chondroitin sulfate DOX Glioma (Liu et al. 2019b)

PLA Hydroxyethyl starch DOX Liver (Yu et al. 2017)
PEG DTX Ovarian (Qi et al. 2017)
FA-PEG PTX Ovarian (Yao et al. 2018)

PCL PEG Curcumin Liver (Guo et al. 2017)
PEG Artemisinin Breast (Manjili et al. 2018)
TPGS Sorafenib Liver (Tang et al. 2018b)

PEG Glycyrrhetinic acid-PCL Curcumin Liver (Feng et al. 2017)
Lactoferrin-PLGA Shikonin Glioma (Li et al. 2018b)

Table 3.8 Natural polymers-based nano DDS for cancer treatment

Polymer Conjugation Drug Type of cancer treatment

Chitosan N-acetyl histidine and 
arginine

DOX Breast (Raja et al. 2017)

Trimethyl and folic acid PTX Hepatoma and colon (He and Yin 
2017)

TPGS and transferrin DTX Brain (Agrawal et al. 2017)
Alginate PEI and FA Curcumin Cervical (Anirudhan et al. 2017)

Glycyrrhetinic acid Tetravalent 
platinum

Liver and lung (Wang et al. 2019)

Chitosan DOX Breast (Katuwavila et al. 2016)
Pullulan Arabinogalactan DOX Liver (Pranatharthiharan et al. 

2017)
PEI and MSA DOX Glioma (Priya and Rekha 2017)
Folic acid PTX Liver (Huang et al. 2018)

Dextran Folic acid DOX Breast and lymphoma (Tang et al. 
2018a)

Albumin PTX Colorectal (Zhang et al. 2019)
Folic acid Resveratrol Lung (Zhao et al. 2017)

HA Chitosan 5-Fluorouracil Lung and liver (Wang et al. 2017b)
PLGA PTX Breast (Cerqueira et al. 2017)
PLGA DTX Lung (Wu et al. 2017b)
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quantum dots are commonly used in cancer treatment and diagnosis in various ways 
(Fig. 3.2) (Khafaji et al. 2019; Veeranarayanan and Maekawa 2019; Liu et al. 2017b).

3.6.2.1  Mesoporous Silica Nanoparticles (Senapati et al. 2018; Ahmadi 
Nasab et al. 2018; Moreira et al. 2016; de Oliveira Freitas et al. 
2017; Yang and Yu 2016; Saini and Bandyopadhyaya 2019)

Silica nanoparticles are extensively used nanoparticle systems in cancer treatment 
due to its various benefits such as easy synthesis, well-controlled diameter, adjust-
able pore volume, and potential surface modification. There are two types of silica 
nanoparticles (core or shell silica nanoparticles and mesoporous silica nanoparticles 
(MSNs)) established for cancer treatment. Of the two types, MSNs are mostly used 
as a nano DDS in cancer treatment. One study demonstrated that gemcitabine- 
loaded MSNs are used to treat pancreatic cancer. One research group developed the 
rod-shaped magnetic MSNs for suicide gene therapy. The shapes of the MSNs also 

Table 3.10 Polymer-drug conjugates for cancer treatment

Drug Polymer Conjugates
Type of cancer 
treatment

Dihydroartemisinin HA HA-dihydroartemisinin Lung cancer 
(Kumar et al. 
2019)

DOX N-(2-hydroxypropyl) 
methacrylamide

N-(2-hydroxypropyl) 
methacrylamide-DOX

Breast cancer 
(Bobde et al. 
2020)

PEG PEG-DOX Breast cancer 
(Gu et al. 2018)

Poly-l-glutamic acid Poly-l-glutamic acid-DOX Non-small cell 
lung cancer (Li 
et al. 2013)

DOX and GEM HA HA-DOX-GEM Breast and lung 
cancer (Alven 
et al. 2020)

FA and 
trastuzumab

PEG PEG-FA-trastuzumab Breast and lung 
cancer (Alven 
et al. 2020)

PTX N-(2-hydroxypropyl 
methyl) acrylamide

N-(2-hydroxypropyl methyl) 
acrylamide 
copolymer-gadolinium-PTX

Breast and lung 
cancer (Alven 
et al. 2020)

HA HA-PTX Cancer (Wang 
et al. 2017c)

PEG PEG-PTX Lung cancer 
(Luo et al. 2016)

GEM Poly (l-glutamic 
acid)-g-methoxy 
PEG

Poly (l-glutamic acid)-g-methoxy 
PEG-GEM

Cancer (Yang 
et al. 2018b)
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play a vital role in drug delivery applications. Compared to spherical MSNs, rod 
shape-like MSNs displayed higher drug loading, better drug release, and gene 
delivery.

The research carried out by Lee et  al. showed how MSNs decorated with 
doxorubicin- loaded multiple magnetite nanocrystals promoted effective cell death 
in a melanoma model, confirming passive targeting and nanoparticle accumulation 
in the tumor site. Huan et al. used MSNs modified with polyethyleneimine/PEG to 
deliver doxorubicin jointly with P-glycoprotein siRNA.  This research explained 
that nanoparticles were efficiently biodistributed, resulting in 8% of the EPR effect 
at the tumor site. MSNs can also be surface-functionalized with various types of 
ligand molecules such as aptamers, growth factors, peptides, and vitamins to 
actively target tumors via receptor-mediated endocytosis. In the study carried out by 
Kayuan et al., DOX-loaded HB5 aptamer-functionalized MSNs were used for com-
bined chemo-photothermal therapies. This study verified that combination therapies 
promote cancer cell killing compared to chemo-photothermal therapy alone. MSNs 
achieve a satisfactory level of active targeting and reduce toxic side effects in the 
healthy normal cells.

Fig. 3.2 Different types of inorganic nanomaterials for cancer treatment
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3.6.2.2  Gold Nanoparticles (Sztandera et al. 2018; Peng and Liang 2019; 
Kumar et al. 2012; Singh et al. 2018)

Gold nanoparticles (GNPs) have been investigated for its potential application in 
cancer treatment, diagnostics, and targeted drug delivery. Current researches con-
firm numerous advantages of GNPs for cancer treatment, primarily due to enabling 
the control of preparation of GNPs with multiple sizes and shapes and the possibil-
ity of surface functionalization on GNPs with various functional and targeting 
agents. Many features of GNPs are related to their shape and size. The size of spher-
ical GNPs influenced plasma concentration, circulation time, and cellular uptake. It 
was also reported that the smaller particles of GNPs permeated into the blood-brain 
barrier, deep layers of skin, and placental barrier. Surface functionalization of GNPs 
provides significant effects on plasma half-life, protection against aggregation, bio-
compatibility, preventing the removal by the MPS and RES, targeted transport and 
drug accumulation at the desired site. For the GNP-based drug delivery system, 
passive targeting, active targeting, or a combination of both strategies can improve 
tumor accumulation. A remarkable approach confirming the intracellular delivery 
of chemotherapeutic drugs involves their conjugation to the surface of GNPs 
through thiol functional groups. The examples of chemotherapeutic drugs conju-
gated with GNPs are listed in Table 3.11.

Due to their exceptional properties of absorption and scattering of electromag-
netic radiation, GNPs are of specific interest for the PTT in cancer treatment. This 
PTT treatment procedure involves the utilization of electromagnetic radiation or 
laser radiation to generate local heating and hyperthermia for the thermal destruc-
tion of cancerous cells. The PTT efficacy may be additionally improved by the 
application of photothermal compounds such as transition metal oxide/sulfide nano-
materials and nanocarbons, enabling an improved transformation of light into heat.

Table 3.11 Gold nanoparticles for cancer treatment

Nanomaterials Targeting agents Drug

Gold nanoparticles PEG Tamoxifen
PEG, tumor necrosis alpha PTX
3-Mercaptopropionic acid Daunorubicin
PEG, folate DOX
Poly(L-aspartate), PEG, folate DOX
– Methotrexate
– Gemcitabine
Photocleavable and zwitterionic thiol 
ligands

5-Fluorouracil
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3.6.2.3  Magnetic Nanoparticles (Zhang et al. 2018d; Kolosnjaj-Tabi 
and Wilhelm 2017; Fathi Karkan et al. 2017; Fathi et al. 2020; 
Lungu et al. 2016)

Magnetic nanoparticles (MNPs) have been discovered as a potential carrier system 
to modify the pharmacokinetics of loaded drugs, decrease the cytotoxicity, improve 
the controlled release, and increase the half-life. Due to the unique properties of 
higher magnetic moments and surface to volume ratios, it can be used for hyperther-
mia therapy of cancer treatment and targeted delivery. MNPs are in magnetic reso-
nance imaging to enhance the image contrast of targeted tumor tissues. MNPs can 
be functionalized with high affinity ligands such as peptides and antibodies to 
enhance the selectivity further and localize MNPs at the tumor sites. Recently, the 
MNP application in biosensors has been extensively studied for rapid cancer diag-
nosis and prevention of cancer metastasis. Various types of MNPs employed in can-
cer treatment and diagnosis are summarized in Table 3.12.

3.6.2.4  Carbon Nanotubes (Chen et al. 2017; Son et al. 2016; Pardo 
et al. 2018)

Carbon nanotubes (CNTs) are very popular systems for cancer treatment and diag-
nosis due to their many unique properties such as structure and high specific surface 
area to volume. CNTs are classified into single-walled carbon nanotubes and multi- 
walled carbon nanotubes based on the number of graphene sheets used for the prep-
aration. CNTs have been investigated in all the cancer treatment modalities, 
including thermal, photodynamic, and gene therapy, drug delivery, lymphatic tar-
geted chemotherapy, and diagnostic techniques. Recently developed single-walled 
carbon nanotube-based drug delivery systems for cancer treatment are summarized 
in Table 3.13. CNTs may help the attached chemotherapeutic drugs to penetrate 
through the target cell to treat cancer.

The CNTs are used as a photosensitizer for photodynamic therapy. CNTs are 
used as a contrast medium for diagnostic imaging techniques, and it can be used in 

Table 3.12 Magnetic nanoparticles for cancer treatment

Drug Magnetic nanoparticles Type of cancer treatment

Methotrexate Chitosan grafted pH and 
thermoresponsive

Ovarian cancer (Fathi et al. 2020)

Doxorubicin FA conjugated Fe3O4 Cancer (Rana et al. 2016)
PEG coated Hyperthermia therapy (Dabbagh et al. 

2019)
Dual stimuli responsive polymer 
modified

MR imaging (Bhattacharya et al. 2016)

pH-sensitive polymer coating Cancer, pH-sensitive release (Lungu et al. 
2016)
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ultrasonography, photoacoustic imaging, PET, and MRM for cancer diagnostic 
applications.

3.6.2.5  Quantum Dots (Zhao et al. 2016; Fang et al. 2017; Lee et al. 2017)

Quantum dots (QDs) are nanosized crystals comprised of a semiconductor core 
within a shell composed of second semiconductor material. QDs have outstanding 
optical properties, such as high brightness, tunable emission spectra, and resistance 
to photo-bleaching. Quantum dots have been used in targeting and localizing tumors 
and sentinel lymph node mapping in vivo. New imaging techniques like quantum 
dots resolve the limitations of sensitivity and specificity from current imaging tech-
niques like X-ray, ultrasound, radionuclide imaging, computed tomography, and 
MRI. Recent studies in surface functionalization of QDs improve their potential 
application in imaging of cancer. Bioconjugation of QDs with peptides and antibod-
ies can be used for tumor-targeted drug delivery, nanodiagnostics, imaging, and 
photodynamic therapy. The application of quantum dot conjugates is listed in 
Table 3.14.

3.7  Challenges and Future Perspectives

Despite numerous advanced technologies in the production of safe biopolymers and 
nanomaterials, there remain controversies regarding the safety of nanoformulations. 
Although the benefits of some biopolymers, dendrimers, and metal-based inorganic 
nanomaterials are remarkable, toxicity remains a serious problem. It has been 
proven, for example, that PEI and excessive positive charges of dendrimers destabi-
lize the cell membrane. Thus, advancements in biopolymer synthesis and purifica-
tion techniques promise to reduce side effects and enhance treatment efficacy. The 
instability, immune response, potential toxicity, and chronic inflammation 

Table 3.13 Carbon nanotube-based systems for cancer treatment

Drug
Surface 
functionalization Type of cancer treatment

DOX FA Chemo-photothermal (Wang et al. 2017d)
PTX Riboflavin and thiamine Cancer (Singh et al. 2016a)
DOX Polyphosphazene coated Redox responsive and photothermal (Wang et al. 

2017e)
DOX Polyampholyte Cervical cancer (Phan et al. 2020)
Temozolomide Vitamin B6 and PEG Cancer (Saberinasab et al. 2019)
DOX Hyaluronic acid coated Breast cancer (Liu et al. 2019c)
DOX pH-sensitive nanogels Glioblastoma (Seyfoori et al. 2019)
DTX Vitamin E TPGS Lung cancer (Singh et al. 2016b)
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challenges for micelles and inorganic nanomaterials need to be focused so that more 
effective cancer treatment strategies can be developed. Combination therapy with 
nanomaterials for different types of cancers remains a challenge because of the 
distinct cancer development mechanisms. For targeted drug therapy, inorganic 
nanomaterials and micelles can be surface-functionalized with target agents such as 
magnetic, light, and pH imaging contrast agents; the major limitation of these clini-
cal treatment methods is the poor tissue penetration. All the nanomaterials are not 
biodegradable so that it can be retained and circulated in the body system for a more 
extended period after administration. Various research and strategies aimed at over-
coming all these challenges will facilitate nanomaterial usage as a drug delivery 
system and eventually enhance patient survival.

The future perspective of stimuli-responsive nanomaterials can be obtained by 
various strategies, including enzymatic activation, pH variants, magnetic fields, 
ultrasound, light, redox potential, and thermal gradients for efficient cancer treat-
ment and diagnosis. Further advancements in the nanomaterials system can improve 
their application in  localizing metastasis, quantitative measurement of molecular 
targets, and monitoring the efficacy and tracking of drug delivery.

3.8  Conclusion

This chapter has summarized a variety of nanomaterials that are either being used 
or have the potential to be used as nano drug delivery systems for cancer treatment. 
Nanomaterials-based cancer treatment has shown significant advantages and new 
strategies over conventional cancer treatment. Passive or active targeting can signifi-
cantly remove the systemic side effects of conventional chemotherapies. Targeted 
drug delivery has made a considerable impact on selective recognizing of the tumor 
tissues, controlled drug delivery, and overcoming limitations of the conventional 

Table 3.14 Quantum dots for cancer treatment and diagnosis

Conjugates Application

DOX-D-glucosamine-folate-QD 
conjugates

Cancer cell imaging and treatment (Ranjbar-Navazi et al. 
2018)

Antibody-QD conjugates In vitro and in vivo molecular imaging (Tsuboi et al. 
2017)

Titanium nitride MXene QDs Phototheranostics in both NIR-I/II bio windows  (Shao 
et al. 2020)

Polydopamine-black phosphorus 
QDs

Cancer theranostics (Li et al. 2019c)

pH-responsive fluorescent graphene 
QDs

Fluorescence-guided cancer surgery and diagnosis (Fan 
et al. 2017)

Aptamer conjugated graphene QDs Photothermal therapy and photodynamic therapy (Cao 
et al. 2017)

Graphitic-C3N4 QDs Photodynamic therapy (Chu et al. 2017)
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chemotherapies. Numerous nanomedicines have been approved by the FDA and 
indicated satisfactory performance in clinical practice. Although some nanomateri-
als have not been approved upon their clinical translation, new strategies and prom-
ising nanomaterials that are under progress show great assurance, thus providing 
hope for innovative cancer treatment choices in the near future.
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