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CH3CN Acetonitrile
CH4 Methane
CO Carbon monoxide
CO2 Carbon dioxide
CTAB Cetyltrimethylammonium bromide
Cu(NO3)2 Copper (II) nitrate
DMF N,N-Dimethylformamide
DMSO Dimethyl sulfoxide
Eu(NO3)2 Europium (III) nitrate
Luperox 101 2,5-Bis(tert-butylperoxy)-2,5-dimethylhexane
Lupersol TAEC 2-Ethylhexyl 2-methylbutan-2-yloxy carbonate
Mg (NO3)2 Magnesium (II) nitrate
MIL-101 Chromium terephthalate metal organic framework
NH3 Ammonia solution
NO Nitrogen (II) oxide
NPs Nanoparticles
PEG 400 Polyethylene glycol 400
Pluronic 17R4 Poly(propylene glycol)-block-poly(ethylene glycol)-block- 

poly(propylene glycol)
Pluronic P123 Poly(ethylene glycol)-block-poly(propylene glycol)-block- 

poly(ethylene glycol)
PVA Polyvinyl alcohol
PVP Polyvinylpyrrolidone
Zr(NO3)2 Zirconium (II) nitrate

25.1  Introduction

Heterocycle is an important class of compounds in organic chemistry, which can be 
found in wide applications from natural to man-made products. In nature, numerous 
heterocyclic skeletons can be found in plant/marine metabolites, chlorophyll, 
genetic building blocks, vitamins, essential oils, enzymes and so on (Walsh 2015). 
Alternatively, novel synthetic compounds containing various heteroatoms and/or 
fused ring systems have been successfully constructed over the years (Taylor et al. 
2016). For the assembly of complex molecules, these privileged structures turned 
out to be versatile and valuable building blocks in the synthesis of natural products 
(Carson and Kerr 2009; Majumdar and Chattopadhyay 2011), organic semiconduc-
tors (Zhao et al. 2017), high-density energy materials (Yin and Shreeve 2017), agro-
chemicals (Lamberth 2013), polymers (Lu 1998), etc. Due to the diverseness in 
architectural complexity, molecular functionality and bioactivity, the exploration of 
heterocycles is considered of great significance in medicinal chemistry (Fig. 25.1) 
(Gomtsyan 2012). For instance, the US FDA databases show that 59% of small- 
molecule drugs are composed of N-heterocyclic fragments (Vitaku et al. 2014). In 
addition, other top-selling heterocyclic pharmaceuticals are currently exploited as 
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anticancer, antibiotic, antiviral, antibacterial, diuretic and antineoplastic agents 
(Baumann et al. 2011; Baumann and Baxendale 2013; Ali et al. 2015; Feng et al. 
2016; Delost et  al. 2018). From these reasons, seeking simple but effective pro-
cesses for the eco-friendly production of heterocycles has been considered as formi-
dable challenges in both academia and industry throughout the years.

Recently, nanocatalysts have been widely acknowledged as powerful tools in the 
domain of heterogeneous catalysis, where nanostructured metal oxides and their 
hybrid materials attracted significant attention due to their superb catalytic effi-
ciency in many chemical transformations (Wang et  al. 2009; Guo et  al. 2014; 
Gadipelly and Mannepalli 2019). In this manner, simple preparation, excellent ther-
mal/chemical stability, high surface area, tunable control of acidity/basicity, low 
cost and recyclability are conducive to their versatility. Among the rare earth metal- 
based nanoparticles, most of the researches focused on the application of cerium- 
based materials as both catalyst and support due to the abundant, unique and tunable 
features of cerium (Sun et al. 2012; Zhang et al. 2012; Paier et al. 2013; Huang and 
Gao 2014). For example, the oxygen vacancies and reversible valence change (Ce4+ 
and Ce3+) in CeO2 allowed this nanostructure to participate in copious reactions 
such as oxidation, hydrogenation, methane reforming, water-gas shift, CO2 conver-
sion and others (Chang et al. 2019; Rodriguez et al. 2017). Moreover, the outstand-
ing catalytic performance of ceria-supported transitional metals (e.g., Pd, Pt, Rh and 
Au), cerium mixed oxides, or cerium-doped solid materials in CH4/CO/NO oxida-
tion (Cargnello et  al. 2012; Colussi et  al. 2009; Spezzati et  al. 2017; Qi and Li 
2015), ozonation (Orge et al. 2012; Xu et al. 2016), hydrogenation (Akbayrak 2018; 
Hu et al. 2018) and photochemical reactions (Channei et al. 2014; Fiorenza et al. 
2016; Shi et al. 2011) was also realized. Prompted by aforementioned reasons, sev-
eral research groups have recently turned their keen eyes on the utility of cerium- 
based solids in organic chemistry (Vivier and Duprez 2010; Naaz et al. 2019), where 

Fig. 25.1 Heterocyclic pharmaceuticals
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the acid/base, redox or dual (acid/base-redox) sites on these heterogeneous catalysts 
served the crucial roles in determining the activity. To the best of our knowledge, a 
holistic overview on the practicality of cerium-based nanocatalysts in the construc-
tion and functionalization of heterocycles has not been reported. In this book chap-
ter, numerous examples on the green and sustainable assembly of heterocyclic 
frameworks over well-defined cerium oxide/mixed oxides, cerium composites, 
cerium-doped solids and ceria-supported metals are introduced. In particular, the 
deployment of nanoceria in the chemical fixation of CO2 towards valuable cyclic 
products is also explored. Furthermore, mechanistic description on each transfor-
mation is discussed in detail to give further insight on the activity of cerium-based 
nanocatalyst.

25.2  Applications of Cerium-Based Catalysts 
in the Synthesis and Functionalization of Heterocycles

25.2.1  Commercial CeO2

In 2014, Edayadulla and Lee (2014) explored the catalysis of commercial CeO2 NPs 
in the divergent synthesis of quinoxalin-2-amines and 3,4-dihydroquinoxalin- 2-
amines. By using 5 mol% of CeO2, the one-pot condensation of 1,2-diamines, iso-
cyanides with aldehydes or ketones could undergo smoothly in water to render a 
multiple of quinoxalin-2-amine and 3,4-dihydroquinoxalin-2-amine derivatives, 
respectively. Furthermore, the utility of CeO2 NPs was also successfully attempted 
in the construction of indophenazine derivatives from the coupling of 
1,2- phenylenediamine, isatins with tert-butyl isocyanide. The model mechanistic 
concourse towards quinoxalin-2-amine starting from 1,2-phenylenediamine, alde-
hyde and isocyanide is described to follow a cascade of imine formation/addition of 
isocyanide/annulation/isomerization/oxidation (Scheme 25.1), where CeO2 NPs are 
demonstrated to facilitate the generation of imine and the insertion of isocyanide 
into imine.

Later, Shrestha et al. (2016) expanded the utility of CeO2 NPs for the eco-friendly 
assembly of spiro[indoline-3,4-pyrano[2,3-c]pyrazole] derivatives. Under assis-
tance of 30 mol% of CeO2, a plenty of fused spirooxindoles could be afforded in the 
range yields of 75–93% from the aqueous-phase condensation of β-ketoesters with 
phenylhydrazines, malononitrile and isatins (Scheme 25.2). Particularly, a number 
of designed spirooxindole derivatives showed promising results on the potent anti-
oxidant and antibacterial activities.

In another case, Sharma et al. (2018) established a novel synthetic strategy for 
fused tetrahydroisoquinolines and pyrrolo[3,4-c]quinoline-1,3-diones by coupling 
N,N-dimethylanilines 1 with N-substituted maleimides 2 over CeO2 NPs. As shown 
in Scheme 25.3, tetrahydroisoquinoline derivatives with a high tolerance of func-
tionality were obtainable upon performing the oxidative annulation of 1 and 2 with 
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20% mol of CeO2 in air under optimal conditions. Afterwards, these resulting tetra-
hydroisoquinolines were efficiently transformed into quinoline-1,3-diones through 
the dehydrogenative/N-demethylative cascade in the presence of 2,3-dichloro- 5,6-
dicyano- 1,4-benzoquinone (DDQ). Unluckily, the activity of recovered CeO2 NPs 
was found to gradually drop after four recycles. In the mechanistic proposal, the 
model assembly of pyrrolo[3,4-c]quinoline-1,3-diones is proposed to follow the 
sequential stage of oxidative annulation/dehydrogenation/N-demethylation.

Besides, CeO2 was also exploited as a robust catalyst in functionalizing the het-
erocyclic skeletons. For example, CeO2 NPs was effective in promoting the aerobic 
cross-dehydrogenative coupling (CDC) of N-aryl tetrahydroisoquinolines with 
either nitroalkanes or acetone, which delivered a collection of corresponding 1- sub
stituted- 2-aryl-1,2,3,4-tetrahydroisoquinoline derivatives (Sharma et  al. 2016a). 
Through a set of control experiments, the model mechanism for the oxidative CDC 
of N-phenyl tetrahydroisoquinoline and nitromethane via radical pathway is 

Scheme 25.1 Divergent synthesis of quinoxalin-2-amines, 3,4-dihydroquinoxalin-2-amines and 
indophenazines over CeO2 NPs
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Scheme 25.2 CeO2-mediated assembly of spiro[indoline-3,4-pyrano[2,3-c]pyrazole] derivatives 
in water
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established in Scheme 25.4. In this context, Ce4+ would be transformed into Ce3+ 
and vice versa in the presence of O2 during the single-electron transfer (SET) to 
facilitate the formation of iminium intermediate. Significantly, only a minor dimi-
nution in the yields of N-aryl tetrahydroisoquinoline was observed after four circu-
lations of spent CeO2.

In addition, Rashed et al. (2020) demonstrated that the commercial CeO2 (JRC- 
CEO- 1, 185.3 m2/g) could stimulate the solvent-free alkenylation of oxindole with 
aldehydes (Scheme 25.5). Specifically, this synthetic protocol was applicable to 

Scheme 25.3 Synthesis of tetrahydroisoquinolines and pyrrolo[3,4-c]quinoline-1,3-diones from 
the CeO2/DDQ-mediated coupling of N,N-dimethylanilines and N-substituted maleimides
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both aliphatic and aromatic aldehydes, furnishing 87–99% yields of C3-alkenylated 
oxindole products with high selectivity in E isomers. In this study, a close relation-
ship between catalytic activity and morphology of CeO2 calcined at different tem-
peratures (i.e. 300, 500, 600, 800 and 1000 °C) was described. Surprisingly, the 
ceria with increasing calcination temperature would display higher catalytic activity 
despite their lower specific area, which might be attributed to the presence of non-
defect (111) surface as active sites for the alkenylation reaction. Another reason 
came from the assumption that elevating the calcination temperature in the 

Scheme 25.4 Functionalization of N-aryltetrahydroisoquinolines with nitroalkanes and acetone 
over nanostructured CeO2
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pretreatment stage led to a higher density of Lewis active sites. Indeed, the outstand-
ing catalytic activity of nanostructured CeO2 in this alkenylation was accredited to 
the bifunctional Lewis acid-base property, in which the basic sites (oxygen atom) 
would deprotonate the Cα-H bond of oxindole to trigger the corresponding enolate 
ion. Meanwhile, the acidic sites (cerium atom) would activate the carbonyl group of 
aldehyde, thereby enhancing the reactivity of C=O bond towards the nucleophilic 
attack of enolate.

25.2.2  Synthetic Nano-CeO2

In nanotechnology, a plethora of techniques have been developed to fabricate the 
metal oxide nanoparticles (Table 25.1) (Rane et al. 2018). With each type of syn-
thetic mode, the nanostructured oxides with different physical-chemical properties 
(e.g. particle size, porosity, defect, crystal structure, polarity and acidity/basicity) 
can be selectively controlled. In this regard, the reaction conditions such as starting 
precursors, capping agents, pH, ageing time/temperature and calcination tempera-
ture are key factors governing the outcome of final nanostructures. For instance, 
copious exemplars showing the impact of synthetic procedures on the specific mor-
phology of CeO2 NPs are illustrated in Table 25.2.

In this chapter, all of the reported nanostructured CeO2 could be prepared from 
four main synthetic categories of co-precipitation, template, biological and sol-gel 
pattern.

Scheme 25.5 C3-alkenylation of oxindole with aldehydes towards 3-alkyledene oxindoles over 
CeO2 NPs
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Co-precipitation (Guo et al. 2015) This is the most facile and convenient strategy 
to fabricate metal oxide nanoparticles by adding a precipitating agent (organic or 
inorganic bases) into the aqueous solution of metal salts at room or elevated tem-
perature. As soon as the concentration of species present in the solution reaches the 
critical point, a cascade of nucleation/growth/agglomeration reaction will take 
place. In some cases, employing the surfactants and capping agents is necessary to 
selectively manipulate the physiochemical and catalytic features of the final metal 
oxides. Undoubtedly, multiple factors such as precursors, nature of bases, pH of the 
reaction medium, temperature, and stirring rates strongly influence the property of 
designed metal nanoparticles. For instance, Chen and Chang (2005) disclosed that 
increasing the temperature in the co-precipitation of Ce(NO3)3.6H2O with NH3 led 
to a morphological change of CeO2 particles from cubic to hexagonal, whilst lower-

Table 25.1 Synthetic techniques of nanoparticles

Synthetic modes of nanoparticles

Co-precipitation synthesis Sol-gel synthesis Ultrasound synthesis
Laser ablation 
synthesis

Hydrothermal synthesis Template synthesis Microwave-assisted 
synthesis

Sputtering 
synthesis

Inert gas condensation 
synthesis

Microemulsion 
synthesis

Spark discharge 
synthesis

Biological 
synthesis

Table 25.2 Impact of synthetic methods on the morphology of CeO2

Method
Cerium 
precursor Capping agent

Particle 
size 
(nm) Morphology References

Precipitation Cerium (III) 
nitrate

– 9–18 Cubic 
hexagonal

Chen and 
Chen 
(1993)PVP 27 Spherical

Microemulsion Cerium (III) 
nitrate

Hexamethylenetetramine 7–10 Spherical Arya et al. 
(2014)

Cerium (III) 
nitrate- 
Cerium (III) 
chloride

Brij35 6–13 Cubic Bumajdad 
et al. (2004)

Hydrothermal Cerium (III) 
nitrate

– 8–16 Cubes, rods Arya et al. 
(2014)

Cerium (III) 
chloride

Citric acid <5 Spherical López et al. 
(2015)

Biological Cerium (III) 
nitrate

Hibiscus sabdariffa 3.9 Amorphous Thovhogi 
et al. (2015)

Cerium (IV) 
ammonium 
nitrate

Fructose/glucose/lactose 2–6 Spherical/ 
agglomerate

Kargar 
et al. (2015)

Sol-gel Cerium (III) 
nitrate

Oleylamine 1.2–35 Spherical, 
tadpole, wire

Yu et al. 
(2005)

C. C. Truong et al.
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ing the temperature induced the smaller size of ceria particles. On the other hand, 
the elevation of pH towards 12  in the reaction medium helped to decrease the 
 crystallite size of CeO2 (Ramachandran et al. 2019). Other influential factors in the 
co- precipitation for CeO2 such as cerium precursors and precipitating agents are 
illustrated in the Table 25.3 as well. In fact, rapid, safe, low-cost, facile and organic 
solvent-free aspects are acknowledged as remarkable merits of this synthetic 
strategy.

Sol-gel synthesis (Parashar et al. 2020; Laberty-Robert et al. 2006) This model 
is associated with the rapid hydrolysis of metal-organic precursors in water and/or 
organic solvents to generate the corresponding metal oxo-hydroxides, which subse-
quently undergo the condensation to form an extended matrix of metal hydroxides. 
Next, the polymerization of these hydroxides will lead to the establishment of a 
dense network porous gel. Afterwards, the ultrafine porous metal oxides can be 
obtained upon drying and heating the gel at high temperatures. In this situation, the 
nature of both metal precursors and solvents considerably determines the morphol-
ogy and particle size of final metal oxides. As an example, Yu et al. (2005) revealed 
that spherical CeO2 could be triggered from the sol-gel treatment of Ce(NO3)3.6H2O, 
diphenyl ether with oleylamine. On the other hand, the addition of oleic acid in this 
mixture resulted in wired or tadpole-like CeO2 regarding to the amount of oleic 
acid. More examples on the sol-gel approach towards different CeO2 NPs are 
depicted in Table 25.4.

Template-assisted synthesis (Yu et  al. 2013) This technique mainly concerns 
with the deployment of hard/soft materials (e.g. carbon nanotube, alumina, zeolites, 
silica and polymers) as a host, where the nanoparticles will be fabricated and con-
fined within the pores or channels of the template after calcination. By applying a 
proper choice of starting precursors, loading amounts and type of templates, it is 
able to render controlled-sized nanostructures with various morphologies 
(Table 25.5).

Table 25.3 Different types of nano-CeO2 obtained from the co-precipitation

Cerium precursor Precipitating agents

Particle 
size
(nm) Morphology References

Cerium (III) 
nitrate

Ammoniac-ammonium 
bicarbonate

120–460 Spherical Zhang et al. 
(2009)

Sodium hydroxide 5 Rod Du et al. 
(2007)

Ammonia-hydrogen 
peroxide-hexamethylenetetramine

6 Cubic Kamruddin 
et al. (2004)

Cerium (IV) 
ammonium 
nitrate

Urea ~8 Cubic Tsai (2004)
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Biological synthesis (Malik et al. 2017) This synthetic mode involves the applica-
tion of biological materials such as microorganisms (e.g. bacteria, fungi, yeast and 
algae), plant parts (e.g. leaves, fruit, flower, bark and seed) or sugars as natural 
reducing agents to assist the fabrication of nanoparticles. In the presence of these 
biochemical reductants, the metal ions from precursor salts are initially reduced to 
atoms which subsequently nucleate into small clusters. Originating from these 
metal clusters, the nanoparticles will grow in different manners depending on the 
concentration of metal ions, pH, reaction time, temperatures, and types of reducing 
agents. For example, the plate-like CeO2 could be fabricated by employing fresh 
egg white (Kargar et al. 2015; Maensiri et al. 2007), in which ovalbumin/lysozyme 
(egg proteins) were demonstrated to serve the function of bio-capping/stabilizing 
agent. Alternatively, several investigations on the plant-mediated synthesis of CeO2 
NPs using the extract of Hibiscus sabdariffa flower, Petroselinum crispum leaf and 
Olea europaea leaf as phyto-chelating/capping agents were also reported (Thovhogi 
et  al. 2015; Korotkova et  al. 2019; Maqbool 2017). Additionally, Thakur et  al. 
(2019) were able to produce spherical CeO2 (5–20 nm) by using the culture filtrate 
of Curvularia lunata. As depicted in Table  25.6, various exemplars on the bio- 
directed fabrication of CeO2 NPs are also introduced.

Table 25.4 Different types of nano-CeO2 obtained from the sol-gel strategy

Cerium Precursor Medium
Particle 
size (nm) Morphology References

Cerium (IV) 
nitrate

Oleylamine- 
trioctylamine- diphenyl 
ether

1.2–3.5 Spherical, 
tadpole, wire

Yu et al. (2005)

Cerium (III) salts PVA-sucrose 6–9 Cubic Soni and Biswas 
(2013)

Cerium (IV) 
ammonium nitrate

CTAB-methanol-aniline 3.4–10.4 Sponge-like Tillirou and 
Theocharis (2008)

Table 25.5 Different types of nano-CeO2 from the template-directed synthetic pattern

Cerium precursor Template
Particle size 
(nm) Morphology References

Cerium (III) nitrate Carbon spheres 300 Hollow 
spherical

Xu et al. (2014)

Ammonium cerium 
(IV) nitrate

Polymethyl 
methacrylate

5 Tubular Schneider et al. 
(2011)

Cerium (III) nitrate Chitosan ~4 Cubic Sifontes et al. 
(2011)

C. C. Truong et al.



721

25.2.2.1  Nanostructured CeO2 from the Co-precipitation Method

In 2015, Safaei-Ghomi et al. (2015a) reported the application of CeO2 derived from 
the co-precipitation of Ce(NO3)3.6H2O with NH3 as an effective nanocatalyst for the 
assembly of 2-aminocyclohex-1-ene-1-carboxylic esters (Scheme 25.6).

Later, the co-precipitated CeO2 NPs was also deployed to facilitate the room- 
temperature synthesis of polysubstituted dihydropyridines from the four- component 
coupling of aromatic aldehydes, ethyl cyanoacetate, arylamines and dimethyl acety-
lenedicarboxylate (Safaei-Ghomi et al. 2015b). In this study, the CeO2 with particles 
size of 11 nm showed the superior activity over other nanosized catalysts such as 
CaO (35 nm), ZnO (24 nm), CuO (40 nm), MgO (18 nm) and SnO (28 nm), there-
fore enabling for high yields of polysubstituted dihydropyridines. As shown in the 
Scheme 25.7, the CeO2-mediated coupling followed a set of sequential reactions of 
Knoevenagel condensation/Michael addition/annulation/tautomerization.

Subsequently, a high-yielding process of C-tethered bispyrazol-5-ols from the 
CeO2-mediated multicomponent condensation of dimethyl acetylenedicarboxylate, 
phenylhydrazine and aromatic aldehydes in water was described by Safaei-Ghomi 
et al. (2015c). In this setting, the excellent activity of lab-prepared CeO2 NPs was 
attributed to the high surface area (33.2 m2/g) with respect to that of bulk CeO2 
(5.2 m2/g), CaO (1.2 m2/g) and ZrO2 (4.9 m2/g). Another reason came from the high 
distribution of oxygen vacancies as Lewis acidic sites on the surface of lab-designed 
CeO2 NPs. On account of these factors, the CeO2 NPs was able to produce deriva-
tives of C-tethered bispyrazol-5-ol in high isolated yields (Scheme 25.8).

Likewise, Safaei-Ghomi et al. (2016) also introduced CeO2 as a recyclable nano-
catalyst for the mechanochemical synthesis of 2-amino-4,6-diarylbenzene-1,3- 
dicarbonitriles. As depicted in Scheme 25.9, the CeO2-mediated reaction is 
suggested to undergo a mechanistic sequence of Knoevenagel condensation/
Michael addition/annulation/aromatization at room temperature.

Later, D’Alessandro et al. (2015) described the usefulness of CeO2 in triggering 
the solvent-free multicomponent Hantzsch reaction. Remarkably, it is revealed that 
a switchable construction of 1,4-dihydropyridine and 2-phenylpyridine could be 

Table 25.6 Different types of CeO2 NPs obtained from the biological synthetic pattern

Capping agent
Cerium 
precursor

Particle size 
(nm)

Morphology of 
NPs References

Egg white Cerium(III) 
acetate

6–30 Plate-like Maensiri et al. 
(2007)

Gloriosa superba Cerium(III) 
chloride

5 Spherical Arumugam et al. 
(2015)

Ricinus communis leaf 
extract

Cerium(III) 
chloride

34 Irregular Suvetha Rani 
(2020)

Honey Cerium(III) 
nitrate

23 Cubic Darroudi et al. 
(2014)

Aspergillus niger 
culture filtrate

Cerium (III) 
chloride

5–20 Cubic-spherical Gopinath et al. 
(2015)
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accomplished from the coupling of benzaldehyde, methyl acetoacetate and ammo-
nium acetate under different temperatures. Remarkably, it is found that 97% yield 
of phenylpyridine was generated at 25 °C, while elevating the reaction temperature 
to 80  °C offered 75% yield of 1,4-dihydropyridine. In both cases, the recovered 
CeO2 NPs could maintain the original activity after four consecutive trials. Similarly, 
Suresh et al. (2016) disclosed that a novel scaffold of fused triazolo/tetrazolo[1,5-
 a]pyrimidine could be assembled under the catalysis of CeO2 NPs. In this manner, 
the CeO2-mediated condensation of substituted aromatic aldehydes, benzoylaceto-
nitrile with 5-aminotriazole/5-aminotetrazole, took place smoothly in water to gen-
erate two types of fused pyrimidine products. The catalytic role of CeO2 NPs in this 
tandem Knoevenagel/Michael addition/intermolecular cyclization/intermolecular 
dehydrogenation reaction is clearly clarified in Scheme 25.10.

In another example, Gharib et al. (2013) fabricated the nanostructured CeO2 by 
precipitating the aqueous solution of (NH4)2Ce(NO3)6 with NH3. Thanks to the high 
surface area, the lab-designed CeO2 was capable of promoting the aqueous-phase 

Scheme 25.6 Room-temperature synthesis of 2-aminocyclohex-1-ene-1-carboxylic esters over 
CeO2 NPs

C. C. Truong et al.
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coupling of Lawsone reagent with 3-methyl-1-phenyl-1H-pyrazol-5-amine and 
substituted benzaldehydes under reflux condition. Accordingly, seven derivatives of 
3-methyl-1-phenyl-1H-benzo[g]pyrazolo[3,4-b]quinoline-5,10-diones could be 
furnished in good to excellent yields (66–94.5%).

To construct the multiple heterocyclic scaffold of imino-pyrrolidine-thione, 
Wang et al. (2016) applied the porous CeO2 nanorods obtained from the hydrother-
mal treatment of Ce(NO3)3.6H2O with (NH4)2CO3 to mediate the coupling of 
2-mercaptobenzoxazole/2-mercaptobenzothiazole with a mixture of substituted 
benzaldehydes, malononitrile and isocyanide. As illustrated in Scheme 25.11, the 
Ugi four-component condensation could run smoothly in a binary mixture of 
CH3CN-H2O (3:1, v/v) with 5 mol% of nanoporous CeO2 to deliver a broad library 
of imino-pyrrolidine-thiones. Under identical condition, commercial and other syn-
thetic CeO2 NPs with different morphologies (i.e. linear, granular and fusiform) 
were found to give lower yield of coupling product with respect to the titled 

Scheme 25.7 Construction of polysubstituted dihydropyridines over CeO2 NPs
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nanoporous CeO2. Unfortunately, the loss of oxygen storage in the spent CeO2 was 
assumed to take place, thereby leading to a significant drop in the catalytic perfor-
mance after the third recycle.

To address intrinsic drawbacks in the current manufacture of azole compounds 
(benzimidazoles, benzothiazoles and benzoxazoles), Shelkar et  al. (2013) estab-
lished a facile and eco-friendly strategy to construct these privileged skeletons upon 
employing CeO2 nanocatalyst prepared from the surfactant-assisted co-precipitation 
under ultrasonic irradiation (Terribile et al. 1998). In comparison with other tested 
metal oxides (i.e. ZnO, TiO2, MnO2, SiO2, Al2O3, La2O3 and Cu2O NPs), the robust 
CeO2 NPs displayed the preeminence in fostering high yields of benzimidazoles, 

Scheme 25.8 Construction of C-tethered bispyrazol-5-ols over CeO2 NPs
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benzothiazoles and benzoxazoles from the aqueous-phase coupling of 
1,2-phenylenediamine/2-aminothiophenol/2-aminophenol with aldehydes, respec-
tively (Scheme 25.12).

25.2.2.2  Nanostructured CeO2 from the Polymer-Directed Method

In 2011, Girija et al. (2011) fabricated the polymer-directed CeO2 nanoparticles by 
treating the mixture of (NH4)2Ce(NO3)6, hexylamine and polyethylene glycol 6000 
(PEG-6000) under microwave irradiation, which was then examined for the cata-
lytic assembly of polyhydroquinolines. In this context, the solvent-free multicom-
ponent condensation of aldehydes, ethyl acetoacetate, dimedone and ammonium 
acetate was carried out under the assistance of both microwave radiation and CeO2 
NPs, finally providing 88–97% yields of target polyhydroquinolines. However, a 

Scheme 25.9 Solvent-free access of 2-amino-4,6-diarylbenzene-1,3-dicarbonitriles over 
CeO2 NPs
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gradual loss in the catalytic activity of recovered CeO2 was observed due to the slow 
oxidation of Ce NPs during the recycling trials.

By combining the reverse microemulsion system of bis(2-ethylhexyl) 
sulfosuccinate- lecithin-isooctane-water with different polymers of polyvinylpyrrol-
idone (PVP), block copolymer P123 or reverse block copolymer 17R4 as structural 
controller during the preparative procedure, Samai et al. (2016) were able to prepare 
a set of CeO2 (i.e. CeO2-PVP; CeO2-P123; and CeO2-17R4) with controlled nanopar-
ticle sizes. Noticeably, it is uncovered that the relationship between the morphology 
and the catalytic performance of these titled nano-CeO2 was intimately correlated 
with the directing polymeric agents. In this aspect, CeO2-PVP with the largest sur-
face area (58.0  m2/g) displayed superior results in comparison with CeO2-P123 
(45 m2/g) and CeO2-17R4 (40.96 m2/g) upon coupling nitrostyrene, 1,3-dicarbonyl 
compounds and aromatic primary amines. Accordingly, a collection of N-aryl pyr-
roles in the range yields of 59–77% was successfully produced over recyclable 
CeO2-PVP nanocatalyst.

Scheme 25.10 Construction of fused triazolo/tetrazolo[1,5-a]pyrimidines over CeO2 nanocatalyst
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Scheme 25.11 Multicomponent synthesis of imino-pyrrolidine-thiones over CeO2 nanoparticles
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25.2.2.3  Nanostructured CeO2 from the Biology-Directed Method

Recently, plant extracts or bio-based materials have been deployed as greener alter-
natives to chemical reductants/oxidants/precipitating agents (e.g. cetyltrimethylam-
monium bromide, polyethylene glycols, monoethanolamine, ammonium hydroxide 

Scheme 25.12 Nano-CeO2-mediated synthesis of benzimidazoles, benzothiazoles and 
benzoxazoles
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and polyvinylpyrrolidone) in the fabrication of ceria nanoparticles (Arumugam 
et al. 2015; Ferreira et al. 2016). With these nature-derived compounds, the prepara-
tive procedure can circumvent a complicated and tedious purification process 
(washing, calcination, Soxhlet extraction, etc.) to deliver organic-free CeO2 NPs. 
Prompted by these examples, Zamani et al. (2018) explored the walnut shell powder 
to assist the fabrication of nano-CeO2 in the absence of any surfactants or precipitat-
ing agents, in which the particle size could be tuned by controlling the ratio of Ce 
source/biomass. In this case, it is found that the presence of walnut shell as a cheap 
and green template is necessary to trigger smaller size of ceria, where the optimal 
ratio of Ce source/biomass was established at the ratio of 6.9:10. Hence, the result-
ing CeO2 with a particle size of 9 nm was able to stimulate the aqueous-phase cou-
pling of o-phenylenediamine and acetone with tert-butyl isocyanide at 80 °C to give 
93% yield of 3,4-dihydroquinoxalin-2-amine.

25.2.3  Cerium Mixed Oxides

There are several documented methods for fabricating mixed metal oxides such as 
co-precipitation, wet impregnation, sol-gel, hydrothermal treatment, etc. (Courty 
and Marcilly 1976; Cousin and Ross 1990). In such cases, various true mixed oxides 
or solid solutions with the deposition of different metals can be readily composed to 
render a set of binary, ternary, quaternary or multiple-component mixed metal 
oxides, respectively. Undoubtedly, the mixed metal oxides display distinctive prop-
erties of acidity-basicity, oxidation-reduction, morphology (e.g. particle size, pore 
volume, surface area and defect) and thermal/chemical stability in comparison to 
pure metal oxides (Grzybowska-S̈wierkosz 1987; Wang et al. 2017). In addition, the 
bonding network between metals in mixed oxides allows the reagents to approach 
the active sites in an effective and selective manner, therefore increasing the yield 
and selectivity of the target products (Gawande et al. 2012; Burange and Gawande 
2016). Thanks to these prominent features, the cerium-based mixed oxides have 
been widely deployed in the production of chemicals, organic synthesis, combus-
tion of pollutants and energy applications (Orge et al. 2012; Shen et al. 2009; Zhang 
et al. 2018; Liu et al. 2019; Melchionna and Fornasiero 2014). For example, the 
nanocomposite of CeO2-ZrO2 obtained by the co-precipitation gave 90% yield of 
acetophenone from the deprotection of acetophenone oxime, whilst the pure CeO2 
only delivered 60% yield under identical condition (Deshpande et  al. 2008). In 
another case, the catalytic activity of Mn3Gd7–xCex(SiO4)6O1.5 in the degradation of 
tetracycline was improved by the introduction of cerium in the structure, ascribable 
to the generation of active sites, the redox potential and an increase in the oxygen 
storage capacity (Fu et al. 2019). Likewise, Albadi et al. reported the practicality of 
CuO@CeO2 nanocomposite for the construction of various heterocyclic structures 
through the multicomponent patterns (Scheme 25.13). Towards this end, the CuO@
CeO2 catalyst was composed from the co-precipitation of KOH with an aqueous 
mixture of Ce(NO3)3 and Cu(NO3)2. In the presence of CuO@CeO2 nanocatalyst, 
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the solvent-free assembly of aryl-14H-dibenzo[a-j]xanthenes (Albadi et al. 2013a), 
1,8-dioxooctahydroxanthenes (Albadi et  al. 2013b), 4H-benzo[b]pyrans (Albadi 
et al. 2013c) and aminochromenes (Albadi et al. 2013d) was achievable with no 
difficulty.

Scheme 25.13 Solvent-free synthesis of various heterocycles over CuO@CeO2 nanocomposite
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Besides, Albadi et al. (2014a) also applied the nanostructured CuO@CeO2 as a 
heterogeneous Lewis acid to induce the assembly of biscoumarins from benzalde-
hydes and 4-hydroxycoumarin in water (Scheme 25.14).

To develop a benign protocol for 1,4-disubstituted-1,2,3-triazoles, Albadi et al. 
(2014b) deployed the amberlite-supported azide as an alternative source of azide 
ion and CuO@CeO2 as a heterogeneous copper catalyst. In this regard, the CuO@
CeO2-mediated click synthesis of functionalized triazoles by refluxing a mixture of 
aryl terminal alkynes and α-bromo ketones/ benzyl bromides with amberlite- 
supported azide in ethanol could provide excellent isolated yields of various tri-
azoles in an eco-friendly manner (13 examples, 88–92%). In such examples, it is 
verified that the robust CuO@CeO2 with no leeching of Cu could retain the out-
standing catalytic activity after several recycling trials.

Furthermore, the practicality of nanostructured MgO@CeO2 as an active solid 
catalyst in the construction of heterocyclic skeletons was also recognized (Scheme 
25.15). In this setting, a collection of imidazo[4,5-c]pyrazoles (Moydeen et  al. 
2017), 2-amino-4-arylthiophene-3-carboxamides and thieno[2,3-
d]pyrimidin- 4(3H)-one-s (Shafighi et al. 2018) could be furnished in a high effi-
cacy. After several recycles, no significant loss in the performance of recovered 
MgO@CeO2 was observed, indicating the robustness of this titled nanocatalyst dur-
ing the transformation.

Scheme 25.14 Synthesis of biscoumarin derivatives over CuO@CeO2 nanocatalyst
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In 2016, Vijay Kumar et al. (2016) designed the Eu2O3@CeO2 nanocomposite 
for the multicomponent synthesis of phenyldiazenylacridinedione-carboxylic acids. 
For that objective, the binary oxide was prepared from the co-precipitation of 
Ce(NO3)3 and Eu(NO3)3 with NH3 solution upon setting the optimal molar of Ce/Eu 
at a value of 8:2. The structural analysis indicated that the introduction of Eu on 
CeO2 helped to induce the oxygen defects and to increase the surface area, leading 
to the superior catalytic activity of Eu2O3@CeO2 over pure CeO2. Hence, the cataly-
sis of Eu2O3@CeO2 in the aqueous-phase coupling of 1,3-dicarbonyl compounds, 
4-hydroxy-3-methoxy-5-(substituted-phenyl-diazenyl)-benzaldehydes with gly-
cine, enabled high yielding of (4-hydroxy-3-methoxy-5-(substituted- 
phenyldiazenyl)-dihydropyridineacetic acids. As described in the Scheme 25.16, 
Eu2O3@CeO2 served as a heterogeneous Lewis acid in activating the C=O bonds 
during the multicomponent synthesis.

In another study, Ghayour et al. (2018) introduced ZnO@CeO2 with 30.1 wt% of 
ZnO for the solvent-free coupling of aldehydes with 2-amino-4,5,6,7- 
tetrahydrobenzo[b]thiophene-3-carboxamide, where 62–92% yields of the 
thieno[2,3-d]pyrimidin-4(3H)-ones were achievable. To stimulate the construction 
of novel chromene derivatives bearing azo segment, Sagar Vijay Kumar et al. (2016) 

Scheme 25.15 Preparation of diversified heterocycles over MgO@CeO2 nanocatalyst
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devised the co-precipitated nanocomposite of ZrO2@CeO2 (ratio Zr/Ce = 1:1) as a 
potential candidate for the room-temperature condensation of malononitrile, 
4-hydroxy-3-methoxy-5-(substituted-phenyl-diazenyl) benzaldehydes with differ-
ent compounds of 1,3-dicarbonyls. The mechanistic pathway leading to the forma-
tion of 
2-amino-4-(4-hydroxy-3-methoxy-5-(substituted-phenyl-diazenyl)-chromene- 3- 
carbonitriles is assumed to follow a set of Knoevenagel condensation/Michael addi-
tion/tautomerization/annulation reaction, in which ZrO2@CeO2 helped to activate 
the C=O and C ≡ N bond (Scheme 25.17).

Scheme 25.16 Preparation of phenyldiazenyl-acridinedione-carboxylic acid derivatives from the 
Eu2O3@CeO2-mediated multicomponent reaction
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Another exemplar of cerium-based mixed metal oxides comes from the prepara-
tion of Ce1Mg0.6Zr0.4O2 composite as reported by Rathod et al. (2010). In this sce-
nario, the aqueous mixture of (NH4)2Ce(NO3)6, Mg (NO3)2 and Zr(NO3)2 was 
co-precipitated with NH3 and PEG-400, followed by calcination at 500 °C to render 
the titled nanocomposite. Through the structural characterization, the authors 
claimed that all three metals (Ce, Mg and Zr) in Ce1Mg0.6Zr0.4O2 had a strong mutual 
interaction and were highly dispersed on the surface. Besides, the insertion of 

Scheme 25.17 Synthesis of novel azo chromenes over ZrO2@CeO2
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magnesium into the lattice of cerium-zirconium led to a decrease in the size of par-
ticles along with an enhancement in the acidic-basic active sites, thereby enhancing 
the efficiency of Ce1Mg0.6Zr0.4O2 NPs in promoting the construction of 
tetrahydrobenzo[b]pyrans. By refluxing the mixture of substituted benzaldehydes, 
malononitrile and dimedone with Ce1Mg0.6Zr0.4O2 in ethanol, the authors were able 
to obtain excellent yields of corresponding pyran derivatives (10 examples, yield: 
90–94%).

Besides, cerium is also treated as a metal dopant in some metal oxides to improve 
the catalytic performance of these materials in various transformations (Fu et al. 
2019; Fayaz et al. 2016; Do et al. 2018). For instance, 5 wt% CeO2 doped on NiMnO 
(calcined at 400 °C) could induce 100% conversion of benzyl alcohol to benzalde-
hyde (Sultana et al. 2015). Doping 2.5 wt% of ceria on CuMnOx helped to improve 
the efficacy of the catalyst in the low temperature oxidation of CO (Dey and Dhal 
2020). Likewise, Samantaray et al. (2012) prepared a set of CeO2@CaO nanocom-
posites by the citrate method and introduced them as main catalysts for the access 
of aminochromenes. It is revealed that the amorphous citrate template enabled the 
generation of macropores on the surface of resulting porous materials, in which the 
phase of binary oxide with the particle size of 5–25 nm was well dispersed in the 
phase of calcia. Furthermore, the incorporation of Ce4+ into the lattice of CaO might 
also increase the active basic sites on the surface of CeO2@CaO composites, thereby 
improving their catalytic capability with respect to that of pure CaO. In this study, 
the authors stated that the CeO2@CaO with 20 mol% of CeO2 displayed the supreme 
performance in providing a structural diversity of 2-amino-2-chromenes (10 exam-
ples, yield: 76–85%) upon treating a mixture of substituted benzaldehydes and 
malononitrile with α-napthol in water at 80 °C. Meanwhile, Maddila et al. (2016) 
explored the recyclable cerium-vanadium-loaded alumina catalyst (Ce-V@Al2O3) 
for the solvent-free synthesis of multisubstituted pyridines. Herein, setting the total 
loading of Ce-V on the Al2O3 support at 2.5 wt% was verified to offer the best result 
thanks to the optimal distribution of acidic-basic sites on the surface of hybrid cata-
lyst. Accordingly, the room-temperature manufacture of functional pyridines from 
aromatic aldehydes, malononitrile and ethanol was accomplished in a facile and 
selective manner (11 examples, yield: 86–94%). Subsequently, CeO2@ZrO2 was 
developed as an effective catalyst to induce the four-component annulation of sub-
stituted benzaldehydes, malononitrile and hydrazine hydrate with ethyl acetoacetate 
at room temperature, where a broad library of pyrano[2,3-c]pyrazole was rendered 
in the range yields of 89–98% (Maddila et  al. 2017a). Alternatively, Khan et  al. 
(2019) reported the high-yielding formation of quinolines from the CeO2@TiO2- 
mediated coupling of anilines, aldehydes with acetophenone in solvent-free 
condition.

In most cases, a proper choice of solvent to dissolve the product, suction filtra-
tion or centrifugation must be employed to separate the heterogeneous catalyst from 
the reaction mixture, causing great annoyances during the catalyst recovery. To 
overcome these barriers, magnetically recoverable nanocatalysts would become 
more ideal in terms of “green chemistry” viewpoint (Polshettiwar et al. 2011). In 
this aspect, superparamagnetic Fe3O4 (magnetite) which is considered as a cheap, 
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stable and easy-to-prepare support has been widely implemented to immobilize 
active catalysts in many reactions (Gawande et  al. 2013a; Sharma et  al. 2016b), 
since the active catalyst@Fe3O4 composite would be easy to recover from the reac-
tion medium by an external magnet. Motivated by these works, Gawande et  al. 
(2013b) designed a magnetic nanocatalyst of magnetite-ceria (CeO2@Fe3O4) for the 
room-temperature construction of dihydropyridines and tetrahydropyridine (Scheme 
25.18). Similarly, Shelkar et al. (2015) designed CeO2@Fe3O4 with 7.44 wt% of Ce 
as a cheap and active nanocatalyst for the C-H functionalization of heteroarenes 
(Scheme 25.19). In this approach, the arylation was implemented by heating the 
mixture of benzoxazole/benzothiazole (1 equiv.) and aryl halides (1 equiv.) with 
K2CO3 (2 equiv.) in DMSO under the assistance of 5 mol% of CeO2@Fe3O4, which 
led to a myriad of 2-aryl-substituted derivatives of benzoxazole and benzothiazole. 

Scheme 25.18 Fabrication and utility of CeO2@Fe3O4 in the manufacture of dihydropyridines 
and tetrahydropyridine
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Strikingly, the CeO2@Fe3O4-mediated N-arylation could be accomplished in 
greener condition by replacing the mixture of aryl halides-DMSO with a cheap 
combination of arenediazonium salts and water. In those examples, the magnetic 
CeO2@Fe3O4 nanocatalyst could be readily recovered and recyclable for several 
batches with a negligible deactivation.

25.2.4  Cerium-Solid Material Composite

25.2.4.1  CeO2-Polymer

In 2005, Sabitha and Shailaja (2005, 2008) designed a hybrid catalyst composed of 
CeO2 NPs and polymer to promote the assembly of heterocycles. For this target, the 
titled composite, CeO2@(VP-co-DVB), was readily prepared from the suspension 
copolymerization of 4-vinylpyridine (VP), 1,4-divinylbenzene (DVB) and CeCl3 in 
basic condition upon using polyvinylpyrrolidone K30 as a removable template and 
an initiator mixture of Lupersol TAEC/Luperox 101 (Scheme 25.20). Strikingly, it 
is indicated that the robust CeO2@(VP-co-DVB) catalyst could induce the synthesis 

Scheme 25.19 C-H functionalization of benzoxazoles and benzothiazoles over magnetic CeO2@
Fe3O4 nanocatalyst

25 Recent Advances in the Synthesis of Heterocycles Over Heterogeneous…



738

of both 3,4-dihydropyrimidines (12 examples, yield: 51–92%) and bis(indolyl)
methanes (18 examples, yield: 74–97%) in high efficacy after multiple recycles.

25.2.4.2  CeO2-Silica

Generally, silica is acknowledged as a versatile solid material owing to its own spe-
cific properties of high surface area, high thermal stability and a great flexibility in 
pore sizes and acidic-basic sites (Agotegaray and Lassalle 2017). Accordingly, sil-
ica has been widely employed as an exceptional template to immobilize active spe-
cies in a well-dispersed manner, therefore providing a great volume of powerful 
silica-supported catalysts in the domain of heterogeneous catalysis (Akelah 1981). 

Scheme 25.20 Preparation and practicality of CeO2@(VP-co-DVB) nanocatalyst in the synthesis 
of 3,4-dihydropyrimidines and bis(indolyl)methanes
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In this context, MCM41 and SBA15 are two exemplary mesoporous silica which 
have widespread applications as either heterogeneous catalysts or solid supports in 
various transformations (Bhattacharyya et al. 2006; Rahmat 2010). Owing to a large 
specific surface area along with a well-defined pore structure of the mesoporous 
template, active species (metals or metal complexes) can be incorporated and uni-
formly dispersed on the wall of mesopores of MCM41/SBA15 to deliver a plenty of 
active heterogeneous catalysts (Liang et al. 2017). For example, Akondi et al. (2012) 
successfully fabricated CeO2@MCM-41 with 15 wt% of Ce (CeO2@MCM-41) by 
the wet impregnation to facilitate the oxidative coupling of 2-naphthol with substi-
tuted anilines. Similarly, the excellent catalytic activity of CeO2@MCM-41 in the 
manufacture of mono- and bis-dihydropyrimidin-2(1H)-ones (Vadivel et al. 2013), 
benzoxanthenones/benzochromenones (Akondi et al. 2014) and caprolactam (Babu 
et al. 2016) was also recorded (Scheme 25.21). In these cases, the immobilization of 
cerium on the inner surface of mesopores of parent MCM41 is accountable for the 
improvement in the stability and catalytic performance with respect to CeO2. 
Besides, Saadati-Moshtaghin and Zonoz (2019) developed a novel three-component 
composite of Fe3O4-MCM41-CeO2 as a new hybrid solid catalyst for the solvent- 
free manufacture of tetrahydobenzo[b]pyrans from the condensation of aromatic 
aldehydes, malononitrile and dimedone (15 examples, yield: 69–96%).

Apart from MCM41, silica (SiO2) is also regarded as a versatile solid support in 
heterogeneous catalysis (Ramazani et al. 2017). From the perspective of economi-
cal metrics, no template-directed SiO2 is considered cheaper and more 

Scheme 25.21 Utility of CeO2@MCM41 in the assembly of benzoxanthenones, benzochrome-
nones and caprolactam
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easy-to-prepare than MCM41. Moreover, the “sol-gel chemistry” is also acknowl-
edged as a powerful tool in preparing metal oxides and oxide-supported metal cata-
lysts (Esposito 2019). Prompted by these reasons, Akondi et al. (2016) later deployed 
sol-gel-derived SiO2 in place of MCM41 to immobilize CeO2 for the fabrication of 
nanostructured CeO2@SiO2. The textural analysis indicated that Ce4+ species from 
the oxidation of Ce3+ were successfully incorporated and tightly bound inside the 
mesoporous silica framework during the preparative procedure, thereby hampering 
the possible leaching of cerium to the reaction media. With only 0.9 mol% of meso-
porous CeO2@SiO2 as main catalyst, the multicomponent condensation of aliphatic/
aromatic aldehydes, 2-napthol and phenyl hydrazine with ethyl acetoacetate in 
water was induced to trigger a library of substituted pyrazolones in high yield and 
selectivity. The mechanism leading to the formation of substituted pyrazolones over 
CeO2@SiO2 is suggested to follow a sequential reaction of Knoevenagel condensa-
tion/Michael addition through two different pathways (Scheme 25.22).

25.2.4.3  CeO2-Clay Composite

Another noticeable class of biomaterial is associated with hydroxyapatite [HAP; 
Ca10(PO4)6(OH)2] (Lu et al. 2019). This functional solid is highly recognized due to 
its outstanding properties such as high thermal stability, strong adsorption capabil-
ity and tunable acidity/basicity (Pokhrel 2018). Accordingly, several investigations 
on the application of HAP as a solid catalyst or support in heterogeneous catalysis 
have been well executed (Fihri et al. 2017; Dobosz et al. 2016; Yan et al. 2016). In 
a typical study, Maddila et al. (2017b) doped ceria nanoparticles on hydroxyapatite 
(CeO2@HAP) to induce the high-yielding assembly of pyrido[2,3-d]pyrimidine 
derivatives from the room-temperature coupling of benzaldehydes, dimethylbarbi-
turic acid and ammonium acetate.

Honeycomb monolith (HM) is a type of solid material containing an extended 
matrix of long parallel and straight channels which are separated by thin walls 
(Govender and Friedrich 2017). This unique structural property generates a large 
number of void fractions and a large surface area to volume ratio. Furthermore, 
other major merits of honeycomb monolithic material encompass the high thermal 
conductivities, low pressure drops and ease of manufacturing and recyclability 
(Sungkono et al. 1997; Boger et al. 2004; Hosseini et al. 2020). Due to these rea-
sons, HMs coated with metals/metal oxides are currently explored as heterogeneous 
catalysts in the NOx reduction, N2O decomposition, removal of SO2-NOx, syngas 
production, CO oxidation (Russo et  al. 2007; Rico-Pérez et  al. 2013; Vita et  al. 
2018a; Vita et al. 2018b; Davo-Quinonero et al. 2019) and organic synthesis (Gatica 
et  al. 2016; Pratap et  al. 2020). Recently, Venkatesh et  al. (2015) prepared and 
applied the synthetic cordierite HM (Mg2Al4Si5O18) as a support to immobilize a set 
of cerium-based solid acids (i.e. sulphated CeO2, CeO2-ZrO2 and sulphated CeO2- 
ZrO2) for the assembly of quinoxaline framework. It is disclosed that these cerium- 
based solid acids after coating with cordierite HM could display their supremacy 
over corresponding powder solid acids for the assembly of quinoxalines. In this 
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setting, high surface area, good dispersion of active sites and strong acidity of these 
acid-coated cordierites were acknowledged as main factors accounting for the high 
yield and selectivity of final products. Owing to high numbers of moderate and 
strong acid sites, HM-coated CeO2-ZrO2 was selected as the potential candidate for 
this synthetic paradigm, finally providing a group of quinoxalines in the range 

Scheme 25.22 Four-component assembly of substituted pyrazolones over CeO2@SiO2 
nanocomposite

25 Recent Advances in the Synthesis of Heterocycles Over Heterogeneous…



742

yields of 72–89%. Strikingly, the spent catalyst could undergo six circulations with 
a negligible drop in the catalytic activity.

25.2.4.4  CeO2-Carbon Template

Thanks to the unique properties (e.g. large surface area, excellent crystallinity, high 
physical/chemical/thermal stability and well-defined porosity), multi-walled carbon 
nanotubes (MWCNTs) have been exploited as versatile support in the fabrication of 
heterogeneous catalysts for the divergent synthesis of heterocycles (Safari and 
Gandomi-Ravandi 2014a, b, c; Zarnegar et  al. 2015). By following this trend, 
Harikrishna et  al. (2020) recently developed ceria-doped MWCNTs (CeO2/
MWCNTs) with 2.5 wt% of CeO2 as a heterogeneous catalyst for the one-pot syn-
thesis of pyridine-3-carboxamides. Under the promotion of recyclable CeO2/
MWCNTs nanocatalyst, the four-component coupling of acetoacetanilide, ammo-
nium acetate and substituted aromatic aldehydes with ethyl cyanoacetate took place 
with no difficulty at room temperature. Accordingly, excellent isolated yields of 
pyridine-3-carboxamides (90–97%) could be delivered within a short period of time.

25.2.5  CeO2 as Solid Support

In addition to being exploited as effective catalysts in the construction of diversified 
heterocyclic frameworks, several research groups also attempted to utilize the ver-
satility of CeO2 as a solid support to immobilize palladium metal (Pd@CeO2) to 
facilitate the assembly of heterocycles (Scheme 25.23). For instance, Chen et al. 
(2014) reported the remarkable activity of Pd@CeO2 in the oxidative synthesis of 
N-(2-pyridyl)indole derivatives. In this study, the Pd@CeO2 was demonstrated to 
outperform other commercial catalysts (e.g. Rh@C, Ru@C and Pd@C) for this 
oxidative C-H activation. Unfortunately, the spent Pd@CeO2 could not be recycled 
well, delivering a sharp drop in the yield of annulated products after two recycling 
tests. Later, Zhang et al. (2017) developed a facile one-pot redox strategy to fabri-
cate self-assembled Pd/CeO2 hybrid catalyst with 5.82 wt% of Pd, where the high- 
temperature stage of calcination and reduction was avoided in the pretreatment. 
Thanks to the high surface area and defect sites of CeO2, the Pd/CeO2 catalyst was 
able to trigger a quantitative yield of gamma-valerolactone (GVL) from the hydro-
genation of levulinic acid (LA) under mild condition (90 °C, 4 bar of H2), which 
showed the catalytic superiority over commercial Pd/C (yield: 7.5%) and conven-
tional Pd/CeO2 derived from the precipitation-reduction method (yield: 45.3%). In 
another case, Ge et al. (2018) applied Pd/CeO2 (3 wt% Pd) as an effective nanopho-
tocatalyst to trigger the photochemical synthesis of asymmetrical heterobiaryls.

With the aim of improving the isolated yields of benzimidazoylquinoxalines 
from current protocols, Climent et  al. (2013) established an alternative synthetic 
pattern where the Au@CeO2 with 2.33  wt% of Au was exploited as a potential 
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catalyst candidate. With the assistance of titled material, the trial for benzimidazoyl-
quinoxalines could be attempted via two different manners (Scheme 25.24). In the 
straightforward approach, the oxidative coupling of the biomass-derived glycerol 
with 1,2-phenylene diamine was carried out in diglyme at 140 °C. In this case, two 
intermediates of quinoxalin-2-ylmethanol A and 1-(1H-benzo-[d]imidazol-2-yl)
ethane-1,2-diol B were simultaneously generated from the coupling of 1,2- phenylene 
diamine with glyceraldehyde derived from the oxidation of glycerol. Afterwards, 
these intermediates would slowly undergo the oxidative condensation with 
1,2- phenylene diamine to render the final 2-(1H-benzo[d]imidazol-2-yl)quinoxa-
line products (11 examples, yield: 24–80%). To expand the synthetic scope for con-
structing the benzimidazoylquinoxaline derivatives containing different substituents 
on both heteroaromatic moieties, the authors turned to deploy the one-pot two-step 
strategy upon starting with glyceraldehyde. In such case, 
1-(1H-benzo-[d]imidazol- 2-yl)ethane-1,2-diol B would be generated in water as the 
sole intermediate under the catalysis of Au@CeO2 at room temperature, which was 
subsequently converted into a variety of substituted 2-(1H-benzo[d]imidazol-2-yl)
quinoxaline upon oxidative coupling with substituted 1,2-phenylene diamines in 
diglyme at 140 °C (12 examples, yield: 63–79%). In each recycling trial, the recov-
ered Au@CeO2 was introduced to the calcination in O2 at 250 °C prior to use, show-
ing no significant loss in the original catalytic activity.

Scheme 25.23 Construction of various heterocyclic structures over Pd@CeO2 nanocomposite
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Furthermore, the practicality and efficiency of ceria-supported ruthenium (Ru@
CeO2) or ceria-supported platinum (Pt@CeO2) as recyclable catalysts in the con-
struction and functionalization of heterocycles such as indoles (Shimura et  al. 
2011), quinazolinones (An et al. 2018), ɤ-valerolactone (Gao et al. 2020), oxindoles 
(Chaudhari et al. 2014a) and quinazolines (Chaudhari et al. 2014b) have been real-
ized in recent years (Scheme 25.25).

Another typical implementation of ceria-supported metal in the construction and 
functionalization of heteroarenes was introduced by Amadine et al. (2014), where 

Scheme 25.24 Au@CeO2-catalyzed synthesis of benzimidazoylquinoxalines
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the ceria-supported copper nanoparticles (Cu@CeO2) displayed the excellent cata-
lytic activity in the N-arylation of indole with various aryl bromides. Although 
82–89% isolated yields of N-arylated indoles could be achieved under optimal con-
ditions, a considerable drop in the activity of spent Cu@CeO2 was observed after 
three cycles. In this context, the reasons were likely attributed to the unavoidable 
oxidation of Cu0 to Cu2+ and the poisonous deposition of in situ generated KBr on 
the surface of Cu@CeO2. Later, Amini et al. (2016) reported the utility of robust 
Cu@CeO2 nanocomposite (10 wt% Cu) to formulate a collection of 1,2,3-triazole 
derivatives (yield: 62–96%) from the 1,3-dipolar cycloaddition of terminal alkynes 
with sodium azide and benzyl halide derivatives in water.

Scheme 25.25 Assembly of functionalized heterocycles over Ru@CeO2 and Pt/CeO2 catalyst
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25.3  Cerium-Based Catalysts for the Vapour-Phase Synthesis 
of Heterocycles

Recently, the catalysis of ceria-supported metal oxides for the vapour-phase synthe-
sis of γ-butyrolactone (GBL) has been investigated due to the great importance and 
high output demand of GBL in industry (Schwarz et  al. 2019). For example, 
Bhanushali et al. (2019) introduced the ceria supported copper (CuO@CeO2) with 
10  wt.% of Cu as an effective catalyst for the fixed-bed dehydrogenation of 
1,4-butanediol (1,4-BDO) at 240 °C. Thanks to the high surface area, good disper-
sion of cooper on the ceria support and an enhancement in basicity, the CuO@CeO2 
could induce the dehydrogenation in an effective manner to trigger 93% conversion 
of 1,4-BDO and 98% selectivity of GBL. Subsequently, 10 wt% of Cu supported on 
CeO2-Al2O3 (3:1 ratio) catalyst was able to promote the one-pot synthesis of GBL 
and benzyl alcohol from the simultaneous 1,4-BDO dehydrogenation and benzalde-
hyde hydrogenation, in which 90% conversion of 1,4-BDO and 95% selectivity of 
GBL were accomplished (Bhanushali et  al. 2020a). Lately, 99% yield and 99% 
selectivity of GBL from the direct dehydrogenation of 1,4-BDO at 240 °C could be 
reachable in the presence of mesoporous 10  wt% CuO@CeO2-Al2O3 (3:1 ratio) 
(Bhanushali et al. 2020b). In these examples, a remarkable decrease in conversion 
of 1,4-BDO up to 45% was unavoidable due to the coke deposition and agglomera-
tion of copper nanoparticles after a long-time span on stream at high temperature.

Thanks to the high atom-economic, low cost and benign aspects, the vapour- 
phase synthesis of 3-methylindole from glycerol and aniline has drawn much inter-
est over the past few years. In such transformation, the heterogeneous catalysts 
containing a large specific area along with a great number of weak acidic sites are 
strongly required to offer high yield and selectivity of the target product (Sun et al. 
2010; Cui et al. 2013). Recently, Ke et al. (2020) applied the Cu/MIL-101 modified 
with CeO2 (0.03 mmol/g) to prepare 59% yield of 3-methylindole from this syn-
thetic paradigm. In this study, the authors stated that the addition of CeO2 was con-
ducive to the catalytic activity for the sake of (i) enhancing the mutual interaction of 
Cu and MIL-101; (ii) inhibiting the sintering of active components during the trans-
formation; and (iii) increasing the number of weak acid sites on the surface of cata-
lyst. Later, Qu et  al. (2020) successfully fabricated mesoporous catalyst of Ag/
SBA-15 modified with ZnO-CeO2 (1  mmol/g of Ag, 1  mmol/g of ZnO and 
0.05 mmol/g of CeO2) to upgrade the yield of 3-methylindole up to 62%.

25.4  Cerium-Based Catalysts for the Synthesis 
of CO2-Derived Heterocycles

Apart from being employed as heterogeneous catalysts in the manufacture of CO2- 
based products such as ureas (Tamura et al. 2016a), carbamates (Tomishige et al. 
2019), carbonates (Tomishige et  al. 2020) and polycarbonates (Gu et  al. 2019; 
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Tamura et al. 2016b), cerium-based materials have been widely applied in the cata-
lytic fixation of CO2 towards heterocycles as well. For example, Tamura et  al. 
(2013a) established a novel catalyst system composed of CeO2 and 2-propanol to 
promote the synthesis of cyclic ureas from CO2 and diamines. In this study, it is 
revealed that the presence of 2-propanol was essential to suppress the competitive 
formation of N-alkylated amines. Through the kinetic and FTIR investigations, the 
CeO2-mediated cyclization is proposed to follow a cascade reaction of (i) simulta-
neous adsorption of diamine with CO2 and CeO2 to generate carbamic acid and 
carbamate adspecies on ceria; (ii) decomposition of carbamate species to a free 
amino group; (iii) annulation to cyclic urea by the intramolecular attack of amino 
group to the activated carbamate part; and (iv) desorption of the cyclic urea product 
and regeneration of CeO2 (Scheme 25.26).

For the manufacture of CO2-based cyclic carbonates such as ethylene carbonate 
(EC) and propylene carbonate (PC), Tomishige et al. (2004) reported the coupling 
pattern of ethylene glycol (EG) or propylene glycol (PG) with CO2 over CexZr1−xO2 
solid solution. The authors stated that the acetonitrile as solvent helped to improve 
the catalytic activity and the equilibrium yield of carbonates in this reaction. 
Additionally, the maximal yield of both EC and PC could be obtained with CeO2–
ZrO2 (Ce/[Ce+Zr] = 0.5) calcined at 800 °C or CeO2–ZrO2 (Ce/[Ce+Zr] = 0.2 and 
0.33) calcined at 1000 °C. Later, Honda et al. (2014) examined the convenience of 
CeO2 for the approach to five-/six-membered cyclic carbonates from diols and CO2. 
It is verified that the introduction of excessive 2-cyanopyridine (2-CP) as a dehy-
drating agent was indispensable to overcome the equilibrium limitation, where the 
in situ generated water was effectively trapped by 2-CP. In the mechanistic descrip-
tion (Scheme 25.27), CeO2 served as a Lewis acid to deprotonate the O-H bond of 
diol, thereby generating the cerium alkoxide I at the first stage. Afterwards, this 
alkoxide would allow the insertion of CO2 to form the carbonate specie II, followed 
by the intramolecular cyclization and dehydration to result in the final cyclic 
carbonate.

In the production of glycerol carbonate, Liu et al. (2016) carried out the CeO2- 
mediated carbonylation of glycerol with CO2 in the presence of DMF and dehydrat-
ing agent (2-cyanopyridine). For this purpose, the authors attempted three types of 
CeO2 derived from the traditional precipitation (TP), hydrothermal (HT) and citrate 
sol-gel (SG) method for the CO2 carbonylation. From the CO2-TPD and H2-TPR 
analysis, the basicity and oxygen vacancy density of these designed CeO2 followed 
the order of nano-rod CeO2 (HT) > nanoparticulate CeO2 (TP) > sponge-like CeO2 
(SG). Hence, the highest yield of glycerol carbonate (78.9%) was provided under 
the mediation of nano-rod CeO2 upon heating glycerol with CO2 at 150 °C. By fol-
lowing the same strategy, Liu et al. (2018) applied the Ce098Zr002O2 derived from the 
hydrothermal method to deliver 36.3% yield of glycerol carbonate.

To investigate the conversion of CO2 into 2-oxazolidinones, Juarez et al. (2010) 
examined CeO2 NP (5 nm) and commercial CeO2 (40 nm) to promote the coupling 
of CO2 and ω-aminoalcohols. Due to the high density of defects on the surface, the 
CeO2 NPs (5 nm) displayed the best results in converting CO2, and N-alkyl substi-
tuted aminoethanols into corresponding N-alkyl 1,3-oxazolidin-2-ones at 
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160 °C. Later, Tamura et al. (2013b) stated that a variety of aminoalcohols could be 
selectively converted into corresponding cyclic carbamates in high yields (88–99%) 
over the catalytic system of CH3CN-CeO2. In particular, the chiral configuration of 
chiral centre at the α-position of the hydroxyl group of starting aminoalcohols was 
kept intact after the reaction. From the kinetic studies and FTIR analyses, the mech-
anistic pathway leading to the generation of 2-oxazolidinones over CeO2 is sug-
gested to follow four consecutive steps as shown in Scheme 25.28.

Scheme 25.26 Synthesis of cyclic ureas from CO2 and diamines over CeO2 in 2-propanol
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25.5  Summary and Outlook

The great importance and omnipresence of heterocyclic frameworks in natural 
products, bioactive molecules, pharmaceuticals and key building blocks have con-
tinuously raised the interest in developing novel, eco-friendly and sustainable pro-
tocols to improve the time/energy consumption, atom economy and selectivity 
during the manufacture. In this chapter, the broad practicality of cerium-based 
nanomaterials as both catalysts and solid supports in the synthesis and functional-
ization of heterocycles was summarized, where a diversity of heterocyclic skeletons 
containing nitrogen, oxygen and/or sulphur atom was constructed successfully 
under heterogeneous conditions. For this objective, well-defined cerium-based 
materials such as cerium oxide/mixed oxides, cerium composites and ceria- 
supported metals were fabricated over different procedures including co- 
precipitation, sol-gel, hydrothermal, wet impregnation and so on. With tunable 
modifications of morphology, acidity-basicity, redox properties and oxygen storage 
capacity, these nanocatalysts turned out to be potential heterogeneous candidates 
for the divergent synthesis of heterocyclic compounds. Particularly, their excellent 
catalytic performances were also recognized in the chemical fixation of CO2, where 
valuable cyclic products of ureas, carbonates and carbamates were accomplished in 
great success. In such transformations, cheap, robust, easy-to-handle and recover-
able nature are noticeable merits of these cerium-based nanomaterials in compari-
son with other benchmark catalysts. However, further improvements in this synthetic 

Scheme 25.27 Synthesis of cyclic carbonates from CO2 and diols under the catalysis of CeO2 and 
2-cyanopyridine
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strategy need to be carried out, where the development of simple, cheap and effec-
tive processes for the fabrication of cerium-based nanomaterials is strongly desired. 
In this manner, utilizing the latest advent of nanotechnology in controlling the size, 
shape and composition of final cerium oxide/mixed oxides is considered of great 
importance to maximize the number and strength of active sites for specific reac-
tions. Moreover, the architecture of the solid supports and their interaction with 
cerium nanoparticles need to be carefully considered as well. In another aspect, the 
catalysis of cerium-based nanostructures in the MCR patterns should be further 
explored to expand the molecular complexity of heterocyclic frameworks. Last but 
not least, solvent-free or aqueous-phase paradigms are highly appreciated for the 
eco-friendly and sustainable synthesis of heterocycles.

Scheme 25.28 CeO2-mediated coupling of CO2 and aminoalcohols towards N-alkyl 
1,3-oxazolidin-2-ones
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