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15.1 Introduction

Globally, food fish demand has been on the rise for the past seven decades (annual
consumption rate at 3.1%), at a rate nearly double that of the annual global human
population growth (1.6%) (FAO 2020). The sad reality is that the fishing sector
(capture fisheries) which has been the main supplier of food fish over the years is
alone unable to meet the current and future global food fish demand. To meet the
global food fish demand, aquaculture, which is one of the fastest growing food-
producing sectors, is believed to be a good opportunity to complement capture fish-
eries. The stress on aquaculture to close the supply and demand gap of food fish has
led to a shift from extensive to intensive methods such as the recirculatory aquacul-
ture systems (RAS). In the intensive systems, fish are stocked at high density, and
this has been shown to cause stress in farmed fish, thereby affecting fish perfor-
mance and welfare (Sneddon et al. 2016; Hoseini et al. 2019). In addition, these
systems could also be accumulation grounds for pollutants either from water sources
or fish feeds (Wang and Wang 2012; Boonanuntanasarn et al. 2014) and diseases
(Romero et al. 2012; Culot et al. 2019). Thus, since the emerging of intensive farm-
ing systems, the sustainability of aquaculture has been predominantly criticized.

The benefits associated with aquaculture such as the provision of accessible
food, income generation, and community empowerment could have led to the radi-
cal search for effective strategies to mitigate negative impacts, instead of discourag-
ing the practice. One of the emerging technologies is nanotechnology, which is
defined as the ““science and engineering concerned with the design, synthesis, char-
acterization, and application of materials that possess a functional organization on
the nano-metric scale (10~ m) (Silva 2010)”. Nanoparticles are characterized by
higher reactivity and can change the pharmacological properties of active principles
(Jiang et al. 2019). This technology is widely researched in aquaculture for various
purposes such as vaccine delivery (Rajeshkumar et al. 2009), gene transfer (Murata
etal. 1998), drug delivery (Lavertu et al. 2006; Wei et al. 2007), delivery of nutrients
(Ashouri et al. 2015), nutraceuticals (Aklakur et al. 2016), and water filtration and
remediation (Khosravi-Katuli et al. 2017). Therefore, this chapter reviewed the
application of nanotechnology in aquaculture with specific focus on fish nutrition,
diseases, and water quality management (Fig. 15.1), presenting trends and
perspectives.

15.2 Nanotechnology Application in Fish Nutrition

Traditionally, feeding fish has relied on providing fish with food in the form of a
pellet/ bycatch/ fish-offal. The pellet is chiefly formulated based on the daily nutri-
tional fish requirements for major components such as proteins, carbohydrates, fats,
minerals, and vitamins. Recently, nutritionists utilized nanotechnology to create
various delivery systems such as encapsulation, protection, and controlled release of



15 Perspectives of Nanotechnology in Aquaculture: Fish Nutrition, Disease, and Water... 465

[ Nanotechnology ]

Applications

v

A 4 b

Vaccines Water Nutrients

delivery purification Delivery
| J

EfﬁcacyI

Toxicity

T Encapsulation

Bioactive
compounds

Fig. 15.1 Schematic representation of nanotechnology applications in aquaculture. (Adapted
from Shah and Mraz (2020))

micronutrients. Hence, nanotechnology has an important potential to boost nutri-
tional assessment and measures of bioavailability. For instance, ultrasensitive detec-
tion of nutrients and metabolites increases the understanding of nutrient and
biomolecular interactions in specific tissues.

In nutritional research, gastrointestinal tract has always been the preferred and
most important route of feed/food delivery principles including for nanoparticles.
Nanoparticles can route to the gastrointestinal tract in many ways such as (1) inges-
tion or swallow pathway: ingestion directly from food and water and from therapeu-
tic nano-drugs administration; (2) inhalation pathway: inhaled nanoparticles can be
swallowed and enter to the gastrointestinal tract following clearance from the respi-
ratory tract; and (3) oral pathway: oral or smart delivery into gastrointestinal tract,
in which particle uptake in the gastrointestinal tract depends on diffusion and acces-
sibility through mucus and contact with the cells of the gastrointestinal tract (Hoet
et al. 2004). The smaller the particle diameter the faster is the diffusion through
gastrointestinal tract mucus to reach the cells of intestinal lining, followed by uptake
through gastrointestinal tract barrier to reach the blood (Hoet et al. 2004).
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In fish, one important idea is that nanoparticles will enhance aquafeeds by
increasing the proportion of fish feed nutrients that pass across the gut tissue and
into the fish, rather than passing directly through the fish digestive system unused
(Handy 2012). Specifically, the delivery systems of nanoparticles are aimed to
improve the bioavailability, bioaccessibility and hence efficacy of the nutrients by
improving their solubility and protection of fish gut. The delivery systems specifi-
cally consist of micronutrients trapped within nanoparticles that may be fabricated
from surfactants, lipids, proteins, and/or carbohydrates (Joye et al. 2014). The small
particle size in these systems has several advantages over the conventional delivery
systems including improved bioavailability, higher stability to aggregation and
gravitational separation, and higher optical clarity (Joye et al. 2014). For instance,
immuno-modulatory ingredients such as phenolic compounds, vitamins, and miner-
als are being increasingly introduced into aquafeeds to improve fish health and
growth performance. Nevertheless, incorporating these nutraceuticals into feeds is
often challenging due to their low bioavailability, which can be solved by encapsu-
lating the bioactive components. As the size of a particle containing encapsulated
bioactive agents decreases their bioavailability increases, enabling their faster
digestion and absorption. Besides, nanoparticles can be formulated to survive pas-
sage through specific regions of the gastrointestinal tract and then release their pay-
load at a specified point, thus maximizing their potential immune-nutritional
benefits (Jafari and McClements 2017).

15.2.1 Nanoparticles’ Role in Fish Nutrition

In fish nutrition, nanoparticles are playing an important role in improving growth
performance and immuno-biochemical (health) status of fish. They are usually
incorporated in little amount, however, at a higher cost. Therefore, intensive care
should be taken in their usage to maximize their utilization and avoid wastage
(Friends of the Earth 2008). Consequently, many studies have been reported to
address the functions and levels of nanoparticles and various methods have been
adopted in aquatic animals (Table 15.1):

Sahu et al. (2008) conducted a 60 days experiment to investigate the effect of
dietary Curcuma longa nanoparticles (0.1, 0.5, 1.0 and 5.0 g kg™! of orally supple-
mented feed) on enzymatic and immunological profiles of rohu, Labeo rohita
(Ham.), infected with Aeromonas hydrophila. Dietary C. longa nanoparticle signifi-
cantly enhanced lysozyme activity, superoxide anion production, and serum bacte-
ricidal activity; and promoted protection against Aeromonas hydrophila (Sahu et al.
2008). In vitro and in vivo studies on the effects of dietary curcumin nanoparticles
(0.5 & 1%, orally supplemented feed) reported that dietary curcumin nanoparticles
(1) significantly enhanced growth, survival rates, and disease resistance; (2)
decreased lipid peroxidation product; (3) promoted antioxidant status and protein
content; (4) improved liver proactive effects; (5) increased haemoglobin content,
RBC count and haematocrit; and (6) enhanced overall growth performance and
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Table 15.1 Application of nanotechnology/ nanoparticles role in fish nutrition

Nanoparticles

Function

Fish Species

References

Aloe vera

A diet supplemented with 1% Aloe
vera nanoparticles significantly
promoted the growth parameters of
fish in contrast to a control group.

Siberian sturgeon
(Acipenser baerii)

Sharif Rohani
etal. (2017)

Ginger

Fish fed with 1 and 0.5 g ginger
nanoparticles per kg feed showed
100% relative percentage survival,
whereas fish fed with 0.5 g ginger
per kg feed showed 20% mortality
rate and 71% relative percentage
survival. These findings confirmed
that ginger nanoparticles as a
successful formulation in the
prevention of motile Aeromonas
septicaemia in common carp
fingerlings compared to ginger.

Common carp
(Cyprinus carpio)

Korni and Khalil
(2017)

Azolla
microphylla

Significantly ameliorated the levels
of metabolic enzymes, hepatotoxic
markers, oxidative stress markers,
altered tissue enzymes, reduced
hepatic ions, abnormal liver
histology, etc. Based on those results,
it was suggested that Azolla
microphylla phytochemically
synthesized gold nanoparticles as an
effective protector against
acetaminophen-induced hepatic
damage in fresh water common carp.

Common carp fish
(Cyprinus carpio L.)

Kunjiappan
et al. (2015)

Azadirachta
indica (neem)

Significantly elevated functional
activity of immunological parameters
in fish treated with these
nanoparticles. It was concluded that
they have a potential
immunomodulatory and antibacterial
activity.

Mrigala carp
(Cirrhinus mrigala)

Rather et al.
(2017)

Curcuma longa

Significantly enhanced lysozyme
activity, superoxide anion production,
and serum bactericidal activity; and
improved protection against
Aeromonas hydrophila.

Rohu (Labeo
Rohita)

Sahu et al.
(2008)

(continued)
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Table 15.1 (continued)
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Nanoparticles | Function Fish Species References

Curcumin Enhanced growth, survival rates, and | Anabas testudineus | Manju et al.
disease resistance of A. testudineus (Bloch) (2009, 2012,
(Bloch). Promoted antioxidant status 2013)
and protein content of the fish.

Decreased lipid peroxidation
product. Increased haemoglobin
content, RBC count, and haematocrit
in the fish. Improved over all health
status of the fish.

Curcumin Remarkably minimized CCl4- Jian carp (Cyprinus | Cao et al. (2015)
induced liver carpio var. Jian)
damage by upregulating hepatocyte
antioxidative capacity and inhibiting
NF-kB, IL-1b, TNF-a, and IL-12
expression in Jian carp.

Curcumin Notably improved growth Nile tilapia Elgendy et al.
performance, feed utilization, (Oreochromis (2016);
oxidative status, immune responses, | niloticus) Mahmoud et al.
and disease resistance of fish. (2017); Manal
Promoted non-specific immune (2018)
defense mechanisms against Vibrio
alginolyticus. Enhanced hepatic
lesions in aflatoxin B infected fish.

Curcumin Enhanced growth performance and | Mrigala carp Leya et al.
increased disease resistance against | (Cirrhinus mrigala) | (2017)
Edwardsiella tarda infection.

Curcumin Promoted performance of catfish and | Channel catfish Hafiz et al.
increased their disease resistance, (Ictalurus (2017)
reducing use of antimicrobials in fish | punctatus)
farming.

Curcumin Enhanced the activities of digestive | Mozambique tilapia | Midhun et al.
enzymes. Modulated the expression | (Oreochromis (2016)
of GH in brain and growth factors mossambicus)

such as IGF-1 and IGF-2 in muscle
of O. mossambicus.

Selenium (Se)

Nano-Selenium (Se, 1 mg kg~! diet)
showed significant improvement in
the growth and antioxidant defense
system of common carp in contrast to
a control group.

Common carp
(Cyprinus carpio)

Ashouri et al.
(2015)

Selenium (Se),
zinc (Zn) and
manganese
(Mn)

Dietary nanoparticles such as
nano-selenium (Se), zinc (Zn), and
manganese (Mn) in early weaning
diets enhanced stress resistance and
bone mineralization of gilthead
seabream.

Gilthead seabream
(Sparus aurata)

Izquierdo et al.
(2017)

(continued)
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Table 15.1 (continued)

Nanoparticles | Function Fish Species References

Iron (Fe) A diet supplemented with iron (Fe) | Rainbow trout Mohammadi
nanoparticles and Lactobacillus casei | (Oncorhynchus and Tukmechi
as a probiotic significantly promoted | mykiss) (2015)
growth performance of rainbow trout.

Manganese Dietary MnO nanoparticles Freshwater prawn Asaikkutti et al.

(Mn) (16 mg kg~! diet) significantly (Macrobrachium (2016)
elevated the growth performance and | rosenbergii)
antioxidant defense system of
freshwater prawn.

Copper (Cu) Supplementation of dietary copper Freshwater prawn Muralisankar
(Cu) nanoparticle (20 mg kg~! diet) | (M. rosenbergii) and | et al. (2016); El
significantly improved the growth, Red sea bream Basuini et al.
biochemical status, digestive and (Pagrus major) (2017)
metabolic enzyme activities,
antioxidant, and non-specific
immune response of aquatic animals.

health status of A. festudineus (Bloch) (Manju et al. 2009, 2012, 2013). Cao et al.
(2015) studied the effects of curcumin nanoparticles (0.1%, 0.5%, or 1.0% of orally
supplemented feed) on antioxidative activities and cytokine production in Jian carp
(Cyprinus carpio var. Jian) with CCl-induced liver damage. Dietary curcumin
nanoparticles significantly reduced CCl,-induced liver damage in Jian carp by
upregulating hepatocyte antioxidative capacity and inhibiting NF-kB, IL-1b, TNF-
a, and IL-12 expression (Cao et al. 2015). Supplementation of curcumin nanoparti-
cles (0.5, 1, or 2% of diet) significantly improved non-specific immune defense
mechanisms of fish against Vibrio alginolyticus; promoted hepatic lesions in afla-
toxin B infected fish; improved hepatosomatic index (HIS) values; and enhanced
growth performance, feed utilization, oxidative status, immune responses, and dis-
ease resistance of tilapia, Oreochromis niloticus (Elgendy et al. 2016; Mahmoud
et al. 2017; Manal 2018). Leya et al. (2017) evaluated the effects of curcumin
nanoparticles supplemented diet (0.25, 0.5, 1, 1.5 and 2% of orally supplemented
diet) on growth and non-specific immune parameters of mrigala carp (Cirrhinus
mrigala) against Edwardsiella tarda infection. Dietary curcumin nanoparticles
improved growth performance and increased disease resistance against Edwardsiella
tarda infection in C. mrigala (Leya et al. 2017). Curcumin nanoparticle supplemen-
tation (0.5 & 1% of orally supplemented diet) significantly enhanced performance
and increased disease resistance of catfish, Ictalurus punctatus (Hafiz et al. 2017).
Midhun et al. (2016) evaluated modulation of digestive enzymes, GH, IGF-1, and
IGF-2 genes in the teleost, Tilapia (Oreochromis mossambicus) by dietary curcumin
nanoparticles (0.5 & 1%). Dietary curcumin nanoparticles significantly improved
the activities of digestive enzymes and modulated the expression of GH in brain and
growth factors such as IGF-1 and IGF-2 in the muscles of tilapia, O. mossambicus
(Midhun et al. 2016).
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Studies in other nanoparticles, Sharif Rohani et al. (2017), evaluated the effects
of three different levels (0.5, 1.0, and 1.5% of the diet) of Aloe vera nanoparticles
on the growth performance, survival rate, and body composition of Siberian stur-
geon (Acipenser baerii). This study reported that a diet supplemented with 1% Aloe
vera nanoparticles significantly promoted the growth factors of fish in contrast to a
control group but did not find significant difference in body composition of fish
(Sharif Rohani et al. 2017). Korni and Khalil (2017) studied the effect of ginger and
its nanoparticles on growth performance, cognition capability, immunity, and pre-
vention of motile Aeromonas septicaemia in common carp (Cyprinus carpio) fin-
gerlings. Fish fed with ginger nanoparticles (1 and 0.5 g kg™' of diet) showed better
growth performance, and significantly increased total protein, globulin, and lyso-
zyme of fish; and showed 100% relative percentage survival (RPS) compared to
control group (Korni and Khalil 2017). Kunjiappan et al. (2015) investigated the
hepatoprotective and antioxidant effects of Azolla microphylla-based gold nanopar-
ticles against acetaminophen-induced toxicity in a fresh water common carp fish
(Cyprinus carpio L.). Their results showed that gold nanoparticles significantly
ameliorated the levels of metabolic enzymes, hepatotoxic markers, oxidative stress
markers, altered tissue enzymes, reduced hepatic ions, abnormal liver histology etc.
Based on those results, it was suggested that A. microphylla phytochemically syn-
thesized gold nanoparticles as an effective protector against acetaminophen-induced
hepatic damage in fresh water common carp (Kunjiappan et al. 2015). Rather et al.
(2017) evaluated the immunomodulatory potential of green synthesis of silver
nanoparticles (G-AgNPs) using Azadirachta indica (neem) in Cirrhinus mrigala
fingerlings challenged with Aeromonas hydrophila. This study reported that dietary
G-AgNPs significantly increased the functional activity of immunological parame-
ters (nitro-blue tetrazolium assay, myeloperoxidase activity, phagocytic activity,
anti-protease, and lysozyme activity), enhanced disease resistance and improved
survival rate; and it was concluded that biosynthesized silver nanoparticles have
immunomodulatory and antibacterial activity (Rather et al. 2017). Formulation of
solid lipid nanoparticles-encapsulated 6-coumarin-loaded pectin microparticles
showed improved uptake of the compound by two gilthead seabream (Sparus aurata
L.) cell types compared to a competitor 6-coumarin-loaded pectin microparticles,
which makes solid lipid nanoparticles as suitable nanocarriers for the delivery of
biologically active substances in fish (Trapani et al. 2015).

Furthermore, dietary nano-minerals or dietary minerals at the nanoscale size may
pass into cells more readily than their larger counterparts, and this accelerates their
assimilation process into the fish. For example, dietary selenium (Se, 1 mg kg™' of
diet) nanoparticles significantly promoted growth and antioxidant defense system of
common carp (Cyprinus carpio) in contrast to a control group (Ashouri et al. 2015).
In rainbow trout, a dietary iron (Fe) nanoparticles and Lactobacillus casei as a pro-
biotic significantly improved growth performance and feed utilization, such as
weight gain, specific growth rate, daily growth rate, condition factor, and food con-
version rate (Mohammadi and Tukmechi 2015). Nanoparticles such as nano-
selenium (Se), zinc (Zn) and manganese (Mn) in early weaning diets for gilthead
seabream (Sparus aurata; Linnaeus, 1758) enhanced stress resistance and bone
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mineralization (Izquierdo et al., 2017). Dietary copper (Cu) nanoparticle (20 mg kg™
of diet) significantly improved the growth, biochemical status, digestive and meta-
bolic enzyme activities, antioxidant, and non-specific immune response of red sea
bream, Pagrus major (El Basuini et al. 2017) and freshwater prawn, M. rosenbergii
(Muralisankar et al. 2016). Supplementation of manganese oxide (MnO) nanopar-
ticles (16 mg kg™! diet) significantly elevated the growth performance and antioxi-
dant defense system of freshwater prawn (Macrobrachium rosenbergii) (Asaikkutti
et al. 2016).

15.2.2 Nanotechnology Application in the Aquafeed Industry

There are numerous potential applications of nanotechnology in feed industry,
including: (i) minor modifications of natural ingredients to enhance taste, palatabil-
ity and sensory improvement such as flavor, color, and texture; (ii) enhancing nutri-
tion quality of foods by stabilizing active ingredients such as nutraceuticals in feed
matrices, packaging, and product innovation to extend shelf-life, (iii) increasing
bioavailability of essential nutrients (Food Safety Authority of Ireland 2008). Nano-
delivery of bioactive/nutrient in feedstuffs or in vivo in fish is enabled through
improved knowledge of feed materials at the nanoscale. The different nanomaterials
that have the potential to be used for this purpose are nanocomposites, nanoclays,
and nanotubes. The nanoproducts that would find applications are nanosensors,
nanoimaging, and nanochips and nanofilters. Similarly, the potential nano-delivery
systems are nanocapsules, nanocochleates, nanoballs, nanodevices, nanomachines,
and nanorobots (Thulasi et al. 2013).

In aquafeed, nanotechnology may also play significant roles in the delivery of
micronutrients to aquatic animals. For instance, nanomaterials can be used to coat
nutrients that could normally degrade, such as fatty acids, or have limited assimila-
tion efficiency across the gut of fishes, because they are poorly soluble (i.e. fat-
soluble vitamins) (Handy 2012). Nanoencapsulation technology has been suggested
for vitamins, minerals, carotenoids, and fatty acids, with increasing bioavailability
being the main goal (Acosta 2009; Bouwmeester et al. 2009).

Several vitamins and their precursors, such as carotenoids, are insoluble in water.
Nevertheless, nanotechnology helps to address these problems. Specifically, when
prepared as nanoparticles, these vitamins and their precursors can easily be homog-
enized with cold water, which enables to increase their bioavailability. For example,
Vitamin Bj, absorption from the gut under physiological conditions occurs via
receptor-mediated endocytosis; and the ability to increase oral bioavailability of
various peptides (granulocyte colony stimulating factor, erythropoietin) and parti-
cles by covalent coupling to vitamin B, has been reported by Russell Jones (2001)
and Russell Jones et al. (1999). Vitamin E is a term describing all tocopherol and
tocotrienol derivatives, which exhibit the biological activity of alpha tocopherol. Its
structure is sensitive to light, heat, and oxygen; consequently, synthetic versions of
vitamin E are less expensive, but have lower biological activity (Thulasi et al. 2013).
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Nano-micelles made from casein can be used as a vehicle for hydrophobic ingredi-
ents such as vitamin D, (Semo et al. 2007).

Nanoscale mineral supplements might provide a source of trace metals, without
the extensive faecal losses normally associated with mineral salts (e.g. Fe salts;
Carriquiriborde et al. 2004). Nanomaterials may also offer an alternative to organic
forms of food supplements, where antinutritional factors (incidental pesticides,
toxic metals, etc.) in the ingredient can sometimes be a problem (Berntssen
et al. 2010).

Nanomaterials can be used to change the physical properties of aquafeed in addi-
tion to enhancing the bioavailability and stability of aquafeed. For example, feed
wastage and pollution in aquaculture due to poor feed quality (stability, texture or
inappropriate buoyancy of the pellet) is a continuing problem (Handy and Poxton
1993); and small supplementations of nanomaterials can significantly alter the
physical properties of these pellets. Specifically, the additions of single-walled car-
bon nanotubes to trout feed can result in a hard pellet that does not fragment easily
in water (Handy 2012). Rainbow trout readily eat feed containing nanomaterials up
to 100 mg kg~! TiO, nanoparticles (Ramsden et al. 2009) and/or 500 mg kg=' C60
and 500 mg kg™ single-walled carbon nanotubes (Fraser et al., 2010) without loss
of appetite or growth rate. Therefore, adding a few milligrams of nanomaterial/
nanoparticles to aquafeed modify the physical properties of pellets, which could
play important roles in the development of aquafeed industry, ultimately sustainable
growth of aquaculture industry.

15.3 Nanotechnology Application in Aquaculture
Disease Control

Aquaculture sector (especially intensive and super-intensive commercial farms) has
grieved major economic losses because of disease outbreaks caused by several
pathogenic agents (i.e. bacteria, viruses, and parasites) (Huang et al. 2015; Shinn
et al. 2015; Tandel et al. 2017). Traditionally, these pathogens could be treated with
chemical disinfectants and antibiotics either through feed, immersion, or injection.
However, the use of these chemicals in aquaculture has been criticised, because,
they are no longer effective i.e. several pathogenic bacteria i.e. Aeromonas hydroph-
ila, A. salmonicida, Yersinia ruckeri, Vibrio, Listeria, Pseudomonas, and
Edwardsiella species have been reported to be insensitive against most common
antibiotics used in aquaculture (Sgrum 2008; Swain et al. 2014). In addition, the
excessive use of these chemicals in aquaculture could be toxic to other organisms
including humans and the environment (Shah and Mraz 2019; Malheiros et al.
2020). This could have paved ways to the search for better alternative technology to
control bacteria, viruses, and parasites in aquaculture. Today, nanotechnology has
become the new alternative with potential to be used as antimicrobial agents, vac-
cines, and diagnosis tools for disease causing agents in fish farming (Shaalan
et al. 2016).
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15.3.1 Nanoparticles as Antibacterial Agents in Aquaculture

Different metal nanoparticles (biologically or chemically synthesized) have been
recommended as alternative antibacterial agents, with potential to eradicate or
reduce the use of traditional antibiotics in aquaculture (Gunalan et al. 2012; Shaalan
et al. 2016) (Table 15.2). Biologically synthesized metal nanoparticles (derivatives
of plants, bacteria and fungi) are more advocated over chemically synthesized ones
because of their high antimicrobial activity, environmental friendliness, simplicity
and affordability (Kalishwaralal et al. 2008; Gunalan et al. 2012; Prasad 2014;
Prasad et al. 2016, 2018; Srivastava et al. 2021; Sarma et al. 2021). Some of the
antibacterial metal nanoparticles studied in aquaculture include zinc nanoparticles
(ZnNPs), silver nanoparticles (AgNPs), copper oxide (CuONPs), gold nanoparticles
(AuNPs), and titanium dioxide (TiO,NPs) (Swain et al. 2014), with AgNPs, ZnNPs,
and AuNPs being the widely studied nanoparticles. These nanoparticles could be
used either alone or in combination with each other (Venegas et al. 2018). This sec-
tion reviews the commonly reported metal nanoparticles as antibacterial agents in
aquaculture (Table 15.2).

Zinc Nanoparticles (ZnNPs) These nanoparticles are gaining popularity due to
their multifunctional properties; antibacterial and antifungal properties (Wang et al.
2008; Di Cesare et al. 2012). Zinc-oxide (chemically synthesized) reportedly
showed broad spectrum antibacterial activity against Aeromonas hydrophila,
Edwardsiella tarda, Flavobacterium branchiophilum, Vibrio sp., Staphylococcus
aureus, Bacillus cereus, and Citrobacter sp. (Swain et al. 2014), which are some of
the important pathogenic bacteria in aquaculture. Remarkably, ZnO-NPs synthe-
sized with aloe extracts showed high broad antibacterial activity when compared to
the chemically synthesized ZnO nanoparticles (Gunalan et al. 2012). Similarly,
ZnO-NPs synthesized with A. hydrophila showed antibacterial activity against
Enterococcus faecalis, Pseudomonas aeruginosa, Candida albicans, Escherichia
coli, and Aspergillus flavus (Jayaseelan et al. 2012). In addition, dietary supplemen-
tation of ZnO-NPs reportedly enhanced resistance of Labeo rohita (Swain et al.
2019), and Oreochromis mossambicus (Anjugam et al. 2018) against A. hydrophila.
Generally, the antibacterial mechanisms of nanoparticles are fairly understood. The
active oxygen species generated by the metal oxide particles is considered the main
mode of action, thereby these particles inhibit bacterial proliferation by disrupting
the bacterial cell membrane, hence destroying the cell content (Liu et al. 2009;
Gunalan et al. 2012; Bhuyan et al. 2015).

Silver Nanoparticles (AgNPs) They have been widely reported to elicit antibac-
terial activity against a broad spectrum of pathogenic bacteria of economic impor-
tance in aquaculture. Silver nanoparticles are reported to inhibit bacterial growth
through different mechanisms: Ag+ binds to the bacterial cell membrane proteins
resulting in the distraction of the membrane (Lara et al. 2010; Aziz et al. 2014,
2015, 2016, 2019), and by disrupting the cell division or bacteria reproduction
process (Huang et al. 2011). A study by Elayaraja et al. (2017) demonstrated that
silver nanoparticles synthesised using bacterial cellulose (Ag-NPs-BC) had high
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Table 15.2 Some nanoparticles studied as antibacterial agents in aquaculture

N. N. Gabriel et al.

Antibacterial
activity (Yes/

Nanoparticles (NPs) Screened bacteria No) References
Zinc nanoparticles Aeromonas hydrophila; Yes Swain et al.
(ZnNPs) Edwardsiella tarda; (2014)
Zinc oxide (ZnO) Flavobacterium
(chemical) branchiophilum; Vibrio sp.;
Staphylococcus aureus; Bacillus
cereus; Citrobacter sp.;
ZnO (chemical) Vibrio harveyi Yes Ramomoorthy
Bulk-ZnO (chemical) No etal. (2013)
7ZnO (Chemical) Serratia marcescens; S. aureus; | Yes Gunalan et al.
Zn0-Aloe vera Proteus mirabilis; C. freundii (2012)
(biological)
ZnO-A. hydrophila Enterococcus faecalis; Yes Jayaseelan et al.
(biological) Pseudomonas aeruginosa; (2012)
Candida albicans; Escherichia
coli; Aspergillus flavus
Dietary ZnONPs A. hydrophila Yes Anjungam et al.
(2018)
7ZnO (chemical) A. salmonicida; Yersinia Yes Shaalan et al.
ruckeri; Aphanomyces invada (2017)
Zn0O-Ag (mixture) Pseudomonas spp. Yes Venegas et al.
(chemical) (2018)
Silver nanoparticles A. salmonicida subsp. Yes Shaalan et al.
(AgNPs) Salmonicida Yes (2018)
AgNPs (chemical) S. aureus; Yes Ayala-Nunes
E. coli O157:H; Yes et al. (2009)
Streptococcus pyogenes; Lara et al. (2010)
V. fluvialis Meneses-
Marquez et al.
(2019)
Ag-TiO,(chemical) A. hydrophila; E. tarda; F. Yes Swain et al.
branchiophilum, Vibrio sp; S. (2014)
aureus; Citrobacter sp.
AgNPs-Citrus limon E. tarda; S. aureus Yes Swain et al.
(biological) (2014)
AgNPs-Tea leaf V. harveyi Yes Vaseeharan et al.
(2010)
AgNPs-Calotropis V. alginolyticus Yes Baskaralingam
gigantea extracts etal. (2012)
(biological)
AgNPs-BC (biological) | V. harveyi; V. parahaemolyticus | Yes Elayaraja et al.
(2017)
AgNPs-red algae V. harveyi; V. Yes Fatima et al.
(biological) parahaemolyticus; (2020)

V. alginolyticus;
V. anguillarum

(continued)
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Table 15.2 (continued)

Antibacterial
activity (Yes/

Nanoparticles (NPs) Screened bacteria No) References
Gold nanoparticles A. hydrophila Yes Vijayakumar
(AuNPs) etal. (2017)
Fucoidan-AuNPs
(biological)
Acanthophora spicifera- | V. harveyi Yes Babu et al. (2020)
AuNPs (biological) S. aureus No
Herbal extracts-AuNPs | A hydrophila Yes Fernando and
(biological) S. agalactiae Yes Cruz (2020)
Anacardium A. hydrophila No
occidentale-AuNPs A. bestiarum Yes Velmurugan et al.
(biological) (2014)

P. fluorescens Yes

E. tarda No
AuNPs-zeolites E. coli; Salmonella typhi Yes Lima et al. (2013)
Nigella sativa essential | S. aureus; V. harveyi Yes Manju et al.
0il-AuNPs (2016)
(NSEO-AuNPs)
AuNPs (chemical) V. parahaemolyticus Yes Tello-Olea et al.

(2019)

Yes = inhibited bacterial growth; No = did not inhibit bacterial growth

bactericidal activity against V. parahaemolyticus and V. harveyi, which are some of
the deadliest bacterial pathogens in shrimp aquaculture. Similarly, biologically
synthesized Ag-NPs were recommended as alternative antibiotics in controlling
S. aureus and E. tarda (Swain et al. 2014), and V. harveyi infection in Feneropenaeus
indicus (Vaseeharan et al. 2010). Interestingly, AgNPs demonstrated effectiveness
against multi-drug resistant bacteria such as methicillin-resistant S. aureus
(MRSA) (Ayala-Nunez et al. 2009), ampicillin-resistant E. coli O157:H;, and
erythromycin-resistant Streptococcus pyogenes (Lara et al. 2010). This is indeed
an indication that these nanoparticles have the ability to eradicate the use of inef-
fective antibiotics to fight bacterial diseases in aquaculture.

Gold Nanoparticles (AuNPs) They are one of the emerging nanoparticles, and
they can be more preferred mainly because of their less toxicity to animals (Li et al.
2014). Different gold nanoparticles have been reported to possess antibacterial
properties, with the potential to eliminate bacteria responsible for huge production
and economic losses in aquaculture (Table 15.2). A study by Vijayakumar et al.
(2017) demonstrated that fucoidan (marine polysaccharide)-coated gold nanoparti-
cles (Fu-AuNPs) inhibited the biofilm of A. hydrophila, and reduced mortality in
A. hydrophila-infected Oreochromis mossambicus juveniles. Acanthophora spic-
ifera (marine red algae)-mediated gold particles (As-AulNPs) exhibited the highest
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antibacterial activity against V. harveyi than S. aureus (Babu et al. 2020). Gold
nanoparticles reportedly act against bacterial pathogens via a number of pathways
such as their ability to collapse the bacterial membrane potential, inhibit ATPase
activities, and subsequently the ATP level; and inhibit the subunit of ribosome from
binding tRNA (Cui et al. 2012). In addition, AuNPs synthesized with crude herbal
extracts reportedly inhibited A. hydrophila biofilm formation via the disruption of
their quorum sensing ability (communication between cells) (Fernando and Cruz
2020). The communication between bacterial cells has been the target to control
bacterial virulence for promising antibacterial agents (Rasmussen et al. 2005).

15.3.2 Nanoparticles as Vaccine/Drug Delivery Vector

In aquaculture, drugs are traditionally administered through feed, injection, or
immersion. The traditional drug delivery methods are considered to be ineffective
for several reasons such as poor bioavailability and absorption of the drugs to the
targeted cells (Moges et al. 2020). Recently, the use of nanoparticles in drug formu-
lation and delivery has gained attention in the fight against pathogens in aquaculture
(Table 15.3). With this technology, the compound of interest (i.e. antibiotics, vita-
mins, vaccines, probiotics) is encapsulated into a compound of the nanoscale,
thereby increasing absorption of the compound to targeted region, because nanopar-
ticles are able to penetrate through cellular barriers (Sivakumar 2016; Moges et al.
2020); hence better protection against pathogens compared to traditional drug deliv-
ery methods.

Chitosan (Chit.) (polysaccharides) and poly-lactic glycolipids acid (PLGA)
(copolymer) nanoparticles are the widely studied nanoparticles for drug delivery.
These nanoparticles are commonly used due to their outstanding physiochemical
properties such as biocompatibility, bioactivity, non-toxicity, and biodegradability
(De Jong and Borm 2008; Lii et al. 2009). Chitosan nanoparticles combined with
infectious salmon anaemia virus (ISAV) gene as an adjuvant were used to develop a
DNA vaccine to control ISAV in Atlantic salmon culture (Rivas-Aravena et al.
2015). Chitosan nanoparticles-based vaccine was developed for Lates calcarifer
against V. anguillarum (Rajesh Kumar et al. 2008). In addition, PLGA nanoparticles
loaded with rifampicin were reported to show efficacy against Mycobacterium
marinum in zebra fish larvae (Fenaroli et al. 2014). The use of chitosan and PLGA
nanoparticles in combination were also reported in aquaculture. For instance, a
plasmid DNA vaccine (pDNA) combined with PLGA and chitosan nanoparticles
complex (pDNA-PLGA-Chit-NPs) significantly activated immune parameters in
Labeo rohita and increased their survival after Edwardsiella tarda infection (Leya
et al. 2020). This is said to be attributed to the ability of the complex vaccine to act
synergistically to provide the host with amplified protective immunity against
pathogens (Leya et al. 2020).
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Table 15.3 Some chitosan and Poly lactic-co-glycotic acid nanoparticles studied as drug delivery

agents in aquaculture

Nanoparticles (Chit-PLGA) Pathogens Fish species References
pDNA-PLGA-Chit-NPs Edwardsiella tarda | Labeo rohita Leya et al.
pDNA-PLGA-NPs (2020)
PLGA-NPs

Chit-NPs

Chit-ISAV Alphavirus Atlantic salmon Rivas-Aravena

ctal. (2015)

Chit-DNA (pVAOMP38)

Vibrio anguillarum

Lates calcarifer

Rajesh Kumar
et al. (2008)

Chit-DNA (pEGFP-N2OMPK, | V. Acanthopagrus Lietal. (2013)
pDNA) parahaemolyticus | schlegelii Bleeker
Chit-inactivated E. ictaluri and | E. ictalurid Pelteobagrus Zhang et al.
infectious spleen and kidney fulvidraco; Siniperca | (2019)
Necrosis virus. chuasi Zhu et al.
(2019)
Chit-Piscirickettsia salmonis Piscirickettsia Dario rerio Tandberg et al.
membrane salmonis (2018)
PLGA-rifampicin Mycobacterium Dario rerio Fenaroli et al.
marinum (2014)

Chit Chitosan, PLGA Poly lactic-co-glycotic acid, NPs Nanoparticles, p plasmid; ISAV Infectious
Atlantic salmon anaemia virus

15.4 Nanotechnology Application for Water Quality
Management in Aquaculture

In aquaculture, animals are fed with high-protein feeds, and fertilizers, especially in
semi-intensive systems, are used to stimulate natural feeds to sustain the growth of
farmed animals and stimulate production. However, the challenge is in the handling/
management of uneaten feed and waste products, which often contribute to the cul-
ture water quality (Ninh et al. 2016). Consequently, water in poorly managed aqua-
culture systems may be enriched with nutrients and organic and suspended matter
(Boyd 2001; Sikder et al. 2016) which are associated with negative effects on fish
growth, increased fish stress, and high risks of infectious diseases (Boyd and Tucker
1998; Boyd 2001). Water quality management is, therefore, vital for aquaculture
operations.

Contrary to conventional wastewater treatment methods such as chemical treat-
ment, filtration, and ion exchange (Muzammil et al. 2016), aquaculture effluents are
treated via sedimentation, constructed wetlands, and water treatment reservoirs
(Boyd 2001; Kerepeczki et al. 2011). However, these techniques are said to be inef-
fective in the complete removal of contaminants (Le et al. 2019). Therefore, the use
of nanomaterials has been recommended as the best alternative technology in the
purification of water either for human consumption (Gehrke et al. 2015) or fish
culture (Sichula et al. 2011). This section outlines the use of nano-catalysts and
nano-adsorbents for wastewater treatment in aquaculture.
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15.4.1 Nanocatalysts and Nanoadsorbents in Aquaculture

Nano-catalysts are being employed in wastewater treatment for the chemical oxida-
tion of organic and inorganic pollutants (Muzammil et al. 2016). Titanium oxide
(TiO,) and Zinc oxide (ZnO) are some of the widely used nanoparticles in photoca-
talysis. Their efficiency depends on the interaction with light energy and presence
of metallic nanoparticles/semi-conductor metals (Acheampong and Antwi 2016).
For instance, titanium oxide (TiO,) was reported to remove bacterial cells (Litter
2015). This is because, TiO, possess high antimicrobial abilities that permits its use
in inactivating pathogenic organisms such as bacteria found in wastewater (Wu
et al. 2014; Amin et al. 2014). In another study, TiO, was reported to reduce the
viability of several waterborne pathogens such as protozoa, fungi, E. coli, and
P. aeruginosa, after 8 hours of simulated solar exposure (Amin et al. 2014). In addi-
tion, titanium was able to remove heavy metals such as chromium and arsenic from
wastewater (Litter 2015).

A study by Le et al. (2019) tested the removal of heavy metal ions using rod-
shaped ZnO particles under utraviolet light and visible light. This study observed that
ZnO nanoparticles could remove heavy metal ions such as Cu(II), Ag(I) and Pb(II) at
an efficiancy rate greater than 85%, but not very efficient at removing Cr(VI), Mn(II),
Cd(I), and Ni(Il) ions, regardless of the light source used. Similar to TiO, ZnO
nanoparticle produced by solution combustion method (SCM) has also demonstrated
effectiveness in removing E. coli from water (Masoumbaigi et al. 2015). Another
important nano-catalyst in wastewater treatment is nanosilver. These nanoparticles
synthesized with fungal species have been reported to remove E. coli, Staphylococcus
sps, and Pseudomonas sps in wastewater (Moustafa 2017), which are some of the
pathogenic bacteria in aqauculture as demostrated above in Sect. 15.3.

In addition to nanocatalysts, nanoadsorbents are likewise impressive water treat-
ment methods, used to remove heavy metals, nutrients, and microbes from water
(Thines et al. 2017). One such nanoadsorbent is activated charcoal (AC). A study by
Aly et al. (2016) and Sichula et al. (2011) indicated that AC successfully removed
ammonia from aquaculture production systems and reduced unionized ammonia con-
centrations in O. niloticus culture respectively. The application of nanocatalysts and
nanoadsorbents is, therefore, a promising approach for the management of water qual-
ity in aquaculture production systems. By adopting nanotechnologies, microbial and
heavy metal contamination can be adressed in aqauculture and in so doing, manage
the challenges of nutrient accumulation, ultimately disease proliferation.

15.5 Conclusion and Future Perspectives

Challenges associated with increased intensification in aquaculture such as poor
feed quality and utilization, increased disease outbreaks, and poor water quality
cannot be overemphasised. This chapter has provided substantial evidence that
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nanomaterials have the potential to enhance feed quality (nutritional and physical
properties), feed utilization, drug formulation and delivery, disease treatment, and
water quality management in aquaculture; hence improving fish growth and better
economic return. Despite promising research findings, the speed of implementation
of this technology in aquaculture is still limited. One of the limitations is the com-
plex manufacturing process of nanomaterials, which requires expensive equipments
and services, and this could directly influence the cost of nanoproducts. Therefore,
small-scale fish farmers may be financially limited to participate in the manufactur-
ing process of the nanomaterials. Another limitation is that some nanoparticles, par-
ticularly the chemically synthesized ones, are toxic to animals at higher dosages and
may negatively affect the development of animals (Verma et al. 2017, 2018).

Moving forward, there is a need to adopt nanoparticles manufacturing approaches
such as biological methods, which are described to be simple and produce non-
toxic, environmentally friendly, and affordable products (Kalishwaralal et al. 2008;
Prabhu and Poulose 2012; Thangadurai et al. 2020, 2021; Maddela et al. 2021). This
way, aquaculture farmers at all levels (from small scale to commercial) would be
able to harness the benefits associated with nanotechnology. All in all, nanotechnol-
ogy is playing important roles in the sustainable development of aquaculture.
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