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Abstract

Metabolomics is a valuable approach used to 
acquire comprehensive information about the 
set of metabolites in a cell or tissue, enabling 
a functional screen of the cellular activities in 
biological systems. Although metabolomics 
provides a more immediate and dynamic pic-
ture of phenotypes in comparison to the other 
omics, it is also the most complicated to mea-
sure because no single analytical technology 
can capture the extraordinary complexity of 

metabolite diversity in terms of structure and 
physical properties. Metabolomics has been 
extensively employed for a wide range of 
applications in plant science, which will be 
described in detail in this chapter. Among 
them, metabolomics is used for discriminating 
patterns of plant responses to genetic and 
environmental perturbations, as diagnostics 
and prediction tool to elucidate the function of 
genes for important and complex agronomic 
traits in crop species, and flux measurements 
are used to dissect the structure and regulatory 
properties of metabolic networks.
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5.1  Introduction and Overview 
of Plant Metabolomics

Metabolism is a complex, dynamic and highly 
integrated network of pathways driving the pro-
cesses of assimilation, transport and chemical 
modification of small molecules. Its ultimate 
function is to maximize growth, survival and 
reproduction. Metabolites are organic com-
pounds with low molecular weight (<1500 Da), 
and their properties and functionality dictate the 
chemistry of life (Fiehn et al. 2000; Fiehn 2002; 
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Bino et al. 2004; Hall 2006). In the plant king-
dom, more than 200,000 metabolites have been 
estimated (Dixon and Strack 2003; Afendi et al. 
2012). These molecules are extremely diverse in 
their chemical structure and physical properties 
(e.g. polarity, volatility, size, and stability) and 
have a wide range of relative concentrations 
(Bino et al. 2004; Saito and Matsuda 2010; Jorge 
et al. 2016). In addition, plants possess a remark-
able degree of compartmentation within their 
cells (Lunn 2007; Sweetlove and Fernie 2013), 
and the physical separation of metabolic path-
ways enables incompatible reactions to occur 
simultaneously within one cell and also prevents 
metabolic imbalances. Altogether, these features 
make the study of plant metabolism particularly 
challenging (Fiehn et al. 2000; Fiehn 2002; Saito 
and Matsuda 2010).

Traditionally, metabolites were grouped as 
‘primary’ and ‘secondary’. Primary metabolites 
are compounds that play essential roles in basic 
cell metabolism (e.g. amino acids, nucleotides, 
sugars, and lipids) and are required for proper 
growth and development. These substances are 
directly involved in the processes of photosyn-
thesis, respiration, nutrient assimilation, and syn-
thesis of macromolecules (Sulpice and McKeown 
2015). Besides, plants have the ability to synthe-
size other compounds termed as ‘secondary’ or 
specialized metabolites, which were initially 
thought to be functionless end products of metab-
olism with no major significance for plant life 
(Pichersky and Gang 2000; Bourgaud et  al. 
2001). Also, unlike primary metabolites, which 
are found spread throughout the plant kingdom, 
secondary metabolites are often restricted to par-
ticular plant groups (Moore et al. 2014). However, 
many studies have demonstrated that secondary 
metabolites play crucial protective roles in the 
adaptation and survival of plants in different eco-
logical niches and environmental conditions such 
as defence against herbivores, pests and patho-
gens (Nakabayashi and Saito 2015; Tenenboim 
and Brotman 2016). Plant secondary metabolites 
are extremely heterogeneous and diverse in func-
tions, but can be divided into three major groups 
according to their biosynthetic pathways: ter-
penes and steroids, phenolics, and alkaloids 

(Harborne 1999). Although many metabolites 
were initially discovered through the study of 
discrete pathways, the metabolism operates as a 
systemic integrated network (Sweetlove et  al. 
2008; Stitt et  al. 2010a) and efforts have been 
directed to increase the understanding of meta-
bolic networks at a systems level.

The functions of metabolites are also corre-
lated with their abundance, which reflects the 
balance between their rates of synthesis and deg-
radation (Last et  al. 2007). Examples include 
metabolites such as sucrose that is the major 
product of photosynthesis, the systemic form of 
transport sugar, and a signal molecule that 
responds to internal and external environmental 
cues altering development and stress acclimation 
(Rolland et  al. 2006; Ruan 2014), compared to 
intermediates of the glycolytic pathway with low 
steady-state concentration and fast turnover rates 
(Lunn et  al. 2014). Interestingly, some metabo-
lites found in extremely low concentrations also 
play roles as critical signalling molecules modu-
lating plant growth, development, and physiol-
ogy. The levels of the sugar trehalose-6-phosphate 
(Tre6P), the intermediate of trehalose synthesis, 
act as a sensor of sucrose availability (Lunn et al. 
2006, 2014; Yadav et al. 2014) impacting embryo-
genesis, leaf growth and flowering (Lunn et  al. 
2014).

Metabolite levels not only fluctuate according 
to the diel cycle, developmental stage, and envi-
ronmental stimuli but also diverge between dif-
ferent organs, tissues and cells in a multicellular 
organism. It has been assumed that higher plants 
have about 40 distinct cell-types (e.g. trichomes, 
guard, xylem fibres, and parenchyma cells) 
(Martin et al. 2001; Misra et al. 2014) that exhibit 
different morphologies and play specialized 
functions in different plant organs. For example, 
a single leaf contains up to 15 different cell types 
(Martin et al. 2001), and each of them may dis-
play highly contrasting metabolite pools posing a 
difficult task to unbiased identify and quantify 
these small molecules (Bino et al. 2004; Hall and 
Hardy 2012).

Unlike DNA, transcripts, and proteins, metab-
olites are at the endpoint of the flow of genetic 
information and are considered as the nearest 
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molecular readout of the phenotype–genotype 
relationship in a biological system (Fiehn 2002; 
Hall 2006). With the advent of post-genomic era, 
functional genomic studies have been greatly 
accelerated with technological advances in data 
generation from multiple levels (i.e. DNA 
sequences, transcripts, proteins and metabolites) 
using new ‘omics’ tools. While the well- 
established technologies for high-throughput 
DNA sequencing, gene expression analysis (tran-
scriptomics), and protein profiling (proteomics) 
have been routinely adopted and explored in the 
last decades, metabolomics has developed into a 
powerful and complementary analytical technol-
ogy for plant functional genomics in both basic 
and applied research (Fiehn 2002; Bino et  al. 
2004; Hall 2006; Roessner-Tunali 2007).

By definition, metabolomics aims an unbiased 
identification and quantification of all metabo-
lites in a complex biological sample in a particu-
lar experimental condition (Fiehn et  al. 2000; 
Fiehn 2002; Bino et  al. 2004; Hall 2006). This 
well-accepted definition has some relevant ques-
tions. First, similar to other omics, metabolomics 
could be assayed in any level of complexity, such 
as a whole organism, a specific organ, tissue, a 
suspension cultured cell lines or even a single cell 
or cellular compartment depending on the bio-
logical question in investigation (Fiehn 2002). 
This aspect reveals the great potential of plant 
metabolomics to dissect the physiological state in 
a specific biological context, exploring all the 
richness and complexity of these small molecules 
(Hall 2006). Also, compared to transcriptomics 
and proteomics, metabolomics has the great 
advantage to be assayed independently from the 
availability of previous genome or transcriptome 
data, opening new perspectives to use plant 
metabolomics to gain more insights about the 
regulation of metabolism on complex traits in 
non-model and crops species (Hall 2006; 
Watanabe et  al. 2018). Furthermore, metabolo-
mics is the only instrumental tool allowing the 
true measurement of fluxes, essential to a com-
prehensive understanding of metabolism 
(Nikoloski et  al. 2015; Allen 2016; Freund and 
Hegeman 2017).

Second, due to the dynamic nature of the 
metabolism, metabolomics experiments must be 
carefully planned and designed with respect to 
harvesting (e.g. sample type and size, pooling or 
not, replication, time scale) and sample prepara-
tion in order to obtain reliable and biologically 
relevant results. Some excellent literature are 
available to guide beginners in the field (Jenkins 
et al. 2004; Fiehn et al. 2007; Biais et al. 2012; 
Gibon and Rolin 2012; Hall and Hardy 2012; Lu 
et al. 2017).

Third, metabolomics is predicted to take a real 
picture of the total metabolic activities taking 
place in plants in a given experimental condition. 
However, practically, due to the myriad of metab-
olites with different physico-chemical properties, 
particularly for plants, no analytical method is 
able to simultaneously cover all the metabolites 
from a single extract (Fiehn et  al. 2000; Bino 
et  al. 2004; Hall 2006; Roessner-Tunali 2007; 
Hall and Hardy 2012). In this context, the field of 
plant metabolomics has greatly advanced with 
the development of multiple analytical 
approaches in parallel with the continuous 
increase in the plant metabolite databases to 
facilitate metabolite identification.

Basically, there are two general approaches to 
assess the overall metabolome: targeted and 
untargeted analyses (Fiehn 2002; Fernie 2003; 
Goodacre et al. 2004; Last et al. 2007). Targeted 
metabolomics allows an unbiased detection and 
quantification of a predefined set of known 
metabolites, usually applied to screen for selected 
compounds belonging to specific metabolic 
classes (Sawada et  al. 2009; Cajka and Fiehn 
2014). In contrast, untargeted metabolomics 
combines comprehensiveness with robustness to 
detect and quantify known and unidentified com-
ponents. Untargeted analysis has been applied to 
large-scale profiling studies aiming at the identi-
fication of metabolite patterns or ‘fingerprints’ to 
discriminate different plant species/cultivars and 
in response to perturbations without the need of a 
formal metabolite identification (Keurentjes et al. 
2006; Steinfath et al. 2010). In both targeted and 
untargeted strategies, coverage of detected 
metabolites and their obtained level of structural 
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information and quantification (e.g. absolute, 
relative or semi-quantitative) rely on the purpose 
of the study that will influence the choice of the 
most appropriate metabolite extraction and ana-
lytical platform (Hall 2006; Saito and Matsuda 
2010; Lei et al. 2011). A combination of targeted 
and untargeted metabolomics methods has been 
often used in the last years as a complementary 
strategy to address different biological questions 
in the same study (Last et al. 2007; Farag et al. 
2012; Cajka and Fiehn 2014).

Due to the inherent complexity of plant 
metabolism, no ‘silver bullet’ or single technol-
ogy is currently available to cover the full metab-
olome from a single sample. Technological 
developments in analytical methods to analyse 
highly complex mixtures have led to the estab-
lishment of two leading platforms applied to 
plant metabolomics research, namely nuclear 
magnetic resonance (NMR) spectroscopy and 
mass-spectrometry (MS), which can be coupled 
to gas (GC-MS, GC-NMR) or liquid (LC-MS or 
LC-NMR) chromatographic separation methods 
to improve resolution (Last et al. 2007; Kim et al. 
2011; Tenenboim and Brotman 2016; Jorge et al. 
2016). NMR-based metabolomics enables accu-
rate quantification of abundant metabolites and 
resolution of chemical structures with a high 
reproducibility and relatively short time 
(Verpoorte et al. 2007; Kim and Verpoorte 2010; 
Schripsema 2010; Kim et al. 2011; Markley et al. 
2017). Also, a great advantage is its simple sam-
ple preparation as metabolites can be measured 
directly from crude plant extracts or in  vivo 
(Markley et al. 2017). However, the major draw-
backs in NMR reside in its poor sensitivity and 
dynamic range of detection compared to MS, as 
well as problems related with superimposed 
spectrum signals that hamper the structural eluci-
dation process, limiting the numbers of metabo-
lites truly resolved (Kim et  al. 2011; Markley 
et al. 2017).

Unlike NMR, MS is by far the primary detec-
tion method of metabolomics, due to its higher 
sensitivity, accuracy, and speed to detect and 
identify a wide range of metabolites (Last et al. 
2007; Gika et  al. 2014; Aretz and Meierhofer 
2016; Haggarty and Burgess 2017). GC-MS has 

emerged as the gold-standard MS-based method 
for plant metabolite analysis due to numerous 
advantages compared to other analytical instru-
ments such as robust quantification of hundreds 
of naturally volatile metabolites (e.g. alcohols, 
esters and monoterpenes) as well as non-volatile 
and polar metabolites (mainly primary metabo-
lites), which can be converted into volatile and 
thermally stable compounds through derivatiza-
tion (Hall 2006). Furthermore, GC-MS has a 
superior reproducibility and high chromato-
graphic resolution over other analytical instru-
ments (Fernie 2003; Jorge et al. 2016) and allows 
the development of metabolite libraries (Schauer 
et al. 2005; Kopka et al. 2005; Kind et al. 2009). 
Compared to GC-MS, LC-MS is a most versatile 
technique able to detect a broader range of com-
pounds, being the preferred method of choice for 
targeted and untargeted analysis of secondary 
metabolites (Allwood and Goodacre 2010) or 
specific metabolite classes like phosphorylated 
compounds, which are less stable during the 
derivatization process required for GC-MS anal-
ysis (Hall 2006). Dedicated literature concerning 
pros and cons for each technology is available 
(Ward et  al. 2007; Gika et  al. 2014; Engskog 
et al. 2016; Aretz and Meierhofer 2016; Haggarty 
and Burgess 2017; Lu et al. 2017).

The choice of the analytical platform is a com-
promise and will be highly dependent on the bio-
logical question and availability of instruments or 
methods. However, metabolome coverage has 
greatly benefited from multiple analytical 
approaches (Marshall and Powers 2017) in paral-
lel with continuous increasing in the plant metab-
olite databases to facilitate metabolite 
identification.

5.2  Applications 
of Metabolomics in Plant 
Sciences

Throughout the substantial advances in metabo-
lomics, this technology has been extensively used 
as a cornerstone in systems biology to elucidate 
the link between genotype–phenotype in plants 
(Aretz and Meierhofer 2016). Deciphering bio-
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synthetic pathways, their regulation and interac-
tions are essential for understanding how plants 
respond to different sorts of perturbations (devel-
opmental, genetic or environmental). This is cru-
cial for functional genomics, metabolic 
engineering, and synthetic biology approaches 
aiming at the accumulation of specific products 
(e.g. pharmacologically relevant metabolites) as 
well as plants with higher vigour and biomass for 
food and fuels. In this section, we will illustrate 
some of the broad potential applicability of 
metabolomics in plant science.

5.2.1  Pattern Recognition 
and Discrimination

Due to their autotrophic nature, plants are 
dependent on the light period to perform photo-
synthesis and usually accumulate carbon 
reserves to support growth and metabolic activ-
ity during the night (Smith and Stitt 2007; Stitt 
et  al. 2010b). Time-resolved measurements of 
the metabolome along the diurnal cycle have 
been investigated in several species from algae 
to higher plants (Bénard et al. 2015; Hirth et al. 
2017), showing that the amplitude and timing of 
metabolic changes vary. Primary metabolite and 
lipid profiling in synchronized growing cells of 
Chlamydomonas reinhardtii revealed interest-
ing patterns along light and dark cycle: (1) most 
amino acids peak after 4  h of light coinciding 
with the commitment point of the cell cycle and 
(2) the turnover of membrane lipids (MGDG, 
SQDG and DGTS) is very distinctive from stor-
age lipids (TAG) (Jüppner et al. 2017). In addi-
tion, these authors identified some new lipid 
species for this model microalgae and pin-
pointed metabolic signatures that can be used as 
biomarkers for several phases of the cell cycle. 
Metabolic profiling in the CAM species Agave 
indicated some differences along the diel cycle 
in comparison to Arabidopsis, not only in malate 
and fumarate, organic acids related to the noc-
turnal CO2 fixation in CAM, but also in ascorbic 
acid known to play a role in redox signalling 
(Abraham et al. 2016).

Plants synthesize a plethora of value-added 
natural products with multiple applications to 
pharmaceutical, cosmetic, food, and agro-
chemical industries. Considering these bioac-
tive molecules, the diversity and 
characterization of compound classes have 
been explored with metabolomics not only in 
model species (Li et al. 2016), but also in citrus 
(Wang et al. 2017), peach (Monti et al. 2016), 
yam (Price et  al. 2017), pine (Meijón et  al. 
2016), wild grassland plants (French et  al. 
2018) and medicinal species (for review see 
Rai et  al. 2017). In an outstanding study, the 
analysis of 17-hydroxygeranyllinalool diter-
pene glycosides in 35 solanaceous species 
identified 105 novel metabolites restricted to 
genera Nicotiana, Capsicum, and Lycium, indi-
cating the potential of metabolomics to differ-
entiate among species (Heiling et  al. 2016). 
This work give evidence that MS metabolo-
mics can be employed to evaluate phylogenetic 
occurrence of many secondary metabolic 
pathways.

With respect to the production of renewable 
fuels, algal biodiesel holds considerable promise 
to meet future energy demands. Microalgae have 
much faster growth rates than crops and are able 
to accumulate enormous amounts of lipids (from 
20% to 40% of dry weight), mainly in the form of 
TAGs (Scranton et al. 2015; Wase et al. 2017). A 
vast collection of recent literature using metabo-
lomics to identify lipid species in microalgae and 
evaluate factors influencing lipid accumulation is 
available (Yao et  al. 2015; Bromke et  al. 2015; 
Chen et  al. 2017; Matich et  al. 2018; Piligaev 
et al. 2018; Yang et al. 2018). A current challenge 
is to promote TAG accumulation and storage 
without penalties on biomass. GC-MS analysis 
of lipids and primary metabolites was utilized to 
test the effect of selected molecules from a high- 
throughput chemical genetics screening aiming 
to identify lipid-activating compounds in C. rein-
hardtii (Wase et al. 2017). These authors verified 
distinct metabolic response to five compounds 
that promoted TAG accumulation, four of them 
without decreasing galactolipids and their effi-
cacy was also proved in three other algal species. 
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This example illustrates the value of metabolo-
mics in assessing the response of plants to 
chemicals.

Metabolomics is also incredibly useful to rec-
ognize a wide range of other patterns that were 
not mentioned in this section, such as metabolic 
responses along plant development (Wang et al. 
2016; Czedik-Eysenberg et  al. 2016; Watanabe 
et  al. 2018) and under stressful conditions that 
restrict growth (Obata and Fernie 2012; Arbona 
and Gomez-Cadenas 2016; Jorge et  al. 2016). 
The latter has a huge impact on agriculture due to 
the identification of markers for increased stress 
tolerance.

5.2.2  Functional Genomics

Mutants and transgenic lines are excellent tools 
to determine gene function in plant morphology, 
biochemistry, and physiology. Metabolomics is 
very powerful to distinguish among genotypes 
even in the absence of growth phenotypes 
(Fukushima et  al. 2014b), boosting functional 
readouts in comparison to classical chemical or 
genetic screens evaluating growth responses. 
Therefore, it is routinely employed for character-
izing mutants and genetically modified (GM) 
lines.

Arabidopsis thaliana was the first plant 
genome to be completely sequenced, and 
although there are vast genetic resources for this 
species, only about 12% of gene function assign-
ments were based on in  vivo characterization 
(Rhee and Mutwil 2014). T-DNA sequence- 
indexed mutant collections have enabled allele 
coverage for most Arabidopsis genes (O’Malley 
et al. 2015), serving as basis for both forward and 
reverse genetic strategies. Metabolomics has 
been employed to determine the metabolomes of 
several lines containing T-DNA insertions in 
genes of unknown functions. A combination of 
various analytical platforms (including LC-MS, 
CE-MS, UHPLC-QTOF-MS, and GC–TOF-MS) 
was used to analyse 69 mutants, ensuring detec-
tion of important metabolic alterations and cre-
ation of a public database (Quanbeck et al. 2012). 
In a recent work, Monne et al. (2018) have bio-

chemically characterized the properties of recom-
binant mitochondrial carriers previously thought 
to be uncoupling proteins 1 and 2, and detected 
their ability to transport amino acids. GC-MS 
metabolite profiling in T-DNA insertion mutants 
confirmed massive changes in organic and amino 
acids, enabling to assign a new function for these 
proteins as aspartate and glutamate transporters.

The combination of multiple analytical plat-
forms revealed minimal or no clear metabolic dif-
ferences between conventional and GM lines of 
tomato (Kusano et al. 2011) and soybean (Kusano 
et al. 2015), respectively, showing that metabolo-
mics is also valuable to analyse risk assessment 
of GM crops.

5.2.3  Metabolomics as a Prediction 
Tool

Improving crop productivity has been a major 
issue concerning growing world population and 
climate change (White et al. 2016; van der Kooi 
et al. 2016; Shih et al. 2016; Altieri and Nicholls 
2017; Frieler et  al. 2017). As the composite of 
metabolic reactions represent the outcome of 
determinant genes generating the phenotype, 
metabolomics has contributed to improve the 
understanding of the genetic architecture and the 
key elements underlying biological functions and 
agronomic traits (Kumar et al. 2017). Attributes 
such as quality, shelf life, biomass production, 
yield, and resistance to diseases are controlled by 
multiple genes, and their genomic regions are 
known as quantitative trait loci (QTLs) (Collard 
et al. 2005). QTL mapping reveals the localiza-
tion of loci, enabling the identification of coregu-
lated compounds in naturally variable phenotypes 
(Keurentjes et al. 2006), with specific impact on 
crop breeding. However, many traits are con-
trolled by a large number of QTLs (Bernardo 
2008; Xu and Crouch 2008), which also have 
strong interactions with the environment. 
Metabolomics has greatly assisted genetic analy-
ses to clarify the relationship between genetic 
and biochemical bases of plant metabolism 
(Fernie and Tohge 2017), serving as a tool to 
increase breeding efficiency. The pioneer works 
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on metabolite-based QTL (mQTL) were per-
formed with Arabidopsis (Meyer et  al. 2007, 
2010; Lisec et  al. 2008, 2009) and tomato 
(Schauer et al. 2006), aiming to predict biomass 
production. These works opened new perspec-
tives for using metabolites as biomarkers for 
accurate estimation of plant performance based 
on parental information (for review see Fernandez 
et al. 2016), and since then, several studies in rice 
(Matsuda et  al. 2012; Dan et  al. 2016), potato 
(Sprenger et  al. 2017), tomato (Quadrana et  al. 
2014; Toubiana et  al. 2015), wheat (Hill et  al. 
2015), and other crops have been conducted. In 
general, those works provide hints on heritable 
mechanisms affecting the levels of metabolites, 
show that various mQTLs have a strong influence 
on metabolite levels and pinpoint mQTL hotspots, 
suggesting that modification of small genomic 
regions could control the metabolic status. 
Depending on the density of the genetic map, it is 
even possible to identify candidate genes involved 
in particular pathways. Gong et  al. (2013) suc-
cessfully assigned the function of genes to many 
mQTLs related to flavonoid metabolism and 
other mQTLs of unknown functions in rice. 
Moreover, they performed functional character-
ization of three candidate genes confirming their 
relationship to the accumulation of the corre-
sponding metabolites and could also reconstruct 
some metabolic pathways.

High-throughput genotyping technologies 
have revolutionized genome-wide association 
studies (GWAS), another method suitable for 
mapping the loci responsible for natural varia-
tions in a phenotype of interest. GWAS focus on 
the identification of significantly associated 
genetic polymorphisms in a large population and 
has some advantages in comparison to traditional 
QTL mapping (Korte and Farlow 2013). 
Metabolomics has also been combined with 
GWAS originating high-resolution maps of 
genomic regions related with metabolite varia-
tion (Luo 2015; Fernie and Tohge 2017). A com-
prehensive study of maize kernel metabolism 
combined metabolomics analysis by LC-MS/MS 
and GWAS in an association panel in different 
locations (Wen et al. 2014). The results made it 
possible to verify and update the annotation of 

many maize genes through the identification of 
novel metabolites and genes involved in the for-
mation of phenolamides and flavonoids, and also 
to explore biomarkers for kernel weight. Other 
few recent examples are (1) evaluation of metab-
olites in maize roots and identification and vali-
dation of a terpene synthase gene that plays a role 
in antifungal defence (Ding et al. 2017) and (2) 
discovery of candidate genes contributing to ste-
roidal glycoalkaloid and flavonoid metabolism in 
tomato fruit along domestication, with some of 
the genes annotated and characterized (Zhu et al. 
2018).

Metabolomics has also been employed solely 
to investigate the relationship between biochemi-
cal characteristics and geographic origins, geno-
typic characteristics and morphological traits in 
seeds of 100 cultivars of japonica and indica rice 
(Hu et al. 2014). Non-targeted UHPLC-MS/MS 
and GC-MS revealed opposite abundance of 
some metabolites (e.g. asparagine and alanine) 
between japonica and indica cultivars, suggest-
ing different strategies for nitrogen utilization in 
rice seeds. Few significantly different metabolite 
and morphological trait correlations between the 
two subgroups indicated that they tend to be 
subspecies- specific (Hu et  al. 2014). Another 
study in a panel of sorghum breeding lines deter-
mined associations between metabolites in leaves 
and morpho-physiological traits, revealing that 
chlorogenic and shikimic acids are related to 
photosynthesis, initial plant growth, and final 
biomass (Turner et al. 2016). Together, the above- 
mentioned studies are examples of the building 
bases for ameliorating agronomic traits in crops.

5.2.4  Flux Analysis

Although steady-state measurements of metab-
olites are very valuable for giving a general 
overview of metabolic alterations in response to 
a defined perturbation, they do not provide 
detailed information about flux distributions. 
Therefore, conventional metabolomics and flux 
analysis are complementary approaches for 
characterizing the plant metabolic network. 
Metabolic reactions are catalysed by enzymes 
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and depend on the concentration of substrate 
and end products. On another hand, metabolites 
can regulate enzyme activity at several levels, 
from allosteric to transcriptional regulation 
(Wegner et al. 2015). A large number of metabo-
lites are intermediates of branched and circular 
metabolic pathways, and frequently metabolite 
levels and enzyme activities have only poor cor-
relations with transcripts or proteins (Gibon 
et al. 2004; Piques et al. 2009; Stitt and Gibon 
2014), which also do not correlate with fluxes 
(Fernie and Stitt 2012; Schwender et al. 2014). 
Those findings place posttranslational modifica-
tions of enzymes as regulatory events integrat-
ing signalling, gene expression, and metabolism 
(Grabsztunowicz et  al. 2017; O’Leary and 
Plaxton 2017).

Fluxes are challenging to determine because 
no simple methodology is able to follow the 
dynamic rate of metabolite interconversions or 
the intracellular activity of multiple enzymes 
(Kruger and Ratcliffe 2015). Flux analyses 
make it possible to determine metabolic path-
ways that are actively operating and how their 
activity is coordinated with additional pathways 
to establish a balanced network (Nikoloski et al. 
2015). This information can be used to estimate 
optimal configuration for a network and fluxes 
for the production of interesting end-products 
(Farre et al. 2014). The measurement of metab-
olome-wide fluxes is an emerging field contrib-
uting to a more integrated output of cellular 
function (Salon et al. 2017).

The use of isotope labelling with radioactive 
or stable isotopes is a classical biochemical 
technique for measuring intracellular fluxes 
(Freund and Hegeman 2017) and is known as 
metabolic flux analysis (MFA). Briefly, MFA 
consists of monitoring the redistribution of the 
labelled compound in a large number of metab-
olites using MS or NMR, building a model of 
the network, fitting the model to the MS or 
NMR data in order to obtain a set of fluxes, and 
extensive statistics to evaluate the reliability of 
the estimated flux (Kruger et  al. 2012; Kruger 
and Ratcliffe 2015; Allen et  al. 2015; Salon 
et al. 2017). MS enables resolving fragments or 
complete isotopic composition of a metabolite, 
whereas NMR allows to measure positional 

labelling information. It is worthwhile mention-
ing that some elements must be taken into con-
sideration when performing this sort of 
experiment, involving the labelling magnitude 
of the precursor substrate molecule through the 
system, the size of the metabolite pool and the 
conversion rate of the precursor substrate into 
the metabolite (Nikoloski et al. 2015). In the last 
years, various protocols to perform MFA in 
plants have been described (Cocuron and Alonso 
2014; Heise et al. 2014; Tivendale et al. 2016; 
Dethloff et  al. 2017; Obata et  al. 2017; Acket 
et  al. 2017). Stable isotope-labelling experi-
ments with 13C-pyruvate, 13C-glutamate and 
15N-ammonium were used to evaluate a switch 
of the tricarboxylic acid cycle to a noncyclic 
operation mode under hypoxia in soybean 
(António et  al. 2016). The monitoring of label 
redistribution with GC-TOF-MS showed that 
metabolic alterations were independent from 
the supply of isotope-labelled substrate and 
accumulation of alanine, GABA, and succinate 
occur due to activation of alanine metabolism 
and GABA shunt.

The other approach typically used to esti-
mate fluxes is a constraint model combining 
genomic information and biochemical data to 
predict metabolic fluxes through the network, 
namely flux balance analysis (FBA). As FBA 
demands fewer measurements, it is often easier 
to implement than MFA (Kruger and Ratcliffe 
2015). FBA is frequently employed to predict 
fluxes to maximize biomass production or min-
imize energy consumption (Colombie et  al. 
2015; Yuan et al. 2016), and substantial prog-
ress in plant metabolic modelling has been 
achieved in recent years (Shi and Schwender 
2016). The power of FBA prediction was con-
firmed comparing flux profiles between guard 
and mesophyll leaf cells. Modelling predicted 
a C4-like metabolism in guard cells (due to 
higher anaplerotic CO2 fixation into oxaloace-
tate) and higher fluxes through sucrose synthe-
sis as a result of a futile cycle, which could be 
confirmed with a 13C-labelling experiment 
using isolated mesophyll and guard cells 
(Robaina-Estévez et al. 2017). This study dem-
onstrates the application of FBA to investigate 
different cellular types.
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5.2.5  Integration with Other Omics

The integration of metabolomics with other high- 
throughput technologies permits a more holistic 
view of biological phenomena, as exemplified by 
the mQTL and GWAS studies above mentioned. 
Another case is the investigation of transcripts and 
metabolites in duckweed, the smallest and fastest 
growing aquatic flowering plants, aimed at eluci-
dating the phenotype of starch accumulation under 
nitrogen starvation. Duckweeds are able to accu-
mulate impressive amounts of starch, evidencing 
their potential for bioethanol production (Xu et al. 
2011; Cui and Cheng 2015; Fujita et  al. 2016). 
RNASeq analysis hypothesized more partitioning 
into starch due to the up-regulation of enzymes 
involved in gluconeogenesis and down- regulation 
of glycolysis, as well as alterations in genes coding 
for enzymes of starch and sucrose synthesis (Yu 
et al. 2017). Metabolite profiling by LC-MS/MS 
confirmed higher ADP-glucose and lower UDP-
glucose amounts, substrates for starch and sucrose 
synthesis, respectively, and enzymatic activity of 
the enzymes producing these substrates was also 
in agreement with transcript and metabolic data. 
Only due to the integration of the different infor-
mation levels, it was possible to confirm that the 
increased starch content was a consequence of 
increased output from gluconeogenesis and TCA 
pathways (Yu et al. 2017).

By combining photosynthetic rate, measure-
ments of metabolites, transcripts and proteins, 
polysome loading and growth analysis, it was 
possible to achieve a systemic response of metab-
olism and growth after a shift to higher irradiance 
in the non-saturating range for photosynthesis in 
the algal C. reinhardtii (Mettler et al. 2014). This 
temporal analysis revealed an initial increase in 
photosynthesis prior to stimulation of growth to 
match increased carbon fixation, and higher met-
abolic fluxes leading to accumulation of meta-
bolic intermediates and starch. Transcriptional 
and posttranscriptional regulation were found to 
be important after primary changes in metabo-
lites, leading to alterations in the abundance of 
particular proteins, which also brought about 
subsequently changes in the levels of metabo-
lites. This is an outstanding work showing that 
the different levels of information present very 

distinct temporal kinetics, and are orchestrated to 
ensure fast readjustment of metabolism in a fluc-
tuating light environment.

Usually, the integration of data from two 
system- levels is primarily made on simple 
 correlations methods (Rajasundaram and Selbig 
2016). However, several statistical methods and 
tools are available for network visualization, 
pathway analyses, genome-scale metabolic 
reconstruction and integration of multidimen-
sional data (Rohn et al. 2012; Bartel et al. 2013; 
Fukushima et  al. 2014a; Villaveces et  al. 2015; 
Bersanelli et  al. 2016; Sajitz-Hermstein et  al. 
2016; Schwahn et al. 2017; Therrien-Laperrière 
et al. 2017; Robaina-Estevez and Nikoloski 2017; 
Basu et al. 2017).

The use of biological networks for integrative 
analysis offers new directions to identify how 
large networks are coregulated. More recently, 
integrative approaches were shown to provide 
systemic views of plant defence against insects 
(Barah and Bones 2015), secondary wall forma-
tion (Li et al. 2016), structure and regulation of 
metabolic pathways (Tohge et al. 2015), hormone 
signalling (Yoshida et al. 2015), and single cells 
(Colomé-Tatché and Theis 2018). The integra-
tion of multi-omics data has expanded the mech-
anistic comprehension of plant metabolism and 
function.

5.3  Final Considerations 
and Future Perspectives

Since the appearance of metabolomics almost 
two decades ago, higher resolution analytical 
platforms and their use in combination have 
enabled the detection of hundreds of metabolic 
features within a complex biological sample. 
However, a significant portion of these detected 
peaks usually cannot be identified, hindering the 
accomplishment of a complete metabolome. The 
elucidation of new metabolites is still very labori-
ous and remains an enormous challenge. Serial 
combination of columns in tandem and column 
switching are means to improve metabolome 
coverage. In addition to the technological 
advances, efforts in sharing reference compounds 
and organization of metabolite spectral signa-
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tures in public libraries, as well as standardiza-
tion of protocols to report metabolite data will 
definitely increase identification confidence and 
take a leap forward in the use of metabolomics as 
discovery tool.

Another bottleneck in metabolomics is 
highly compartmentalization of plant metabo-
lism with a range of biochemical steps in a 
single pathway taking place in different cellu-
lar organelles and/or being catalysed by iso-
forms of enzymes at different subcellular 
locations. Strategies to track spatial distribu-
tion of metabolites and proteins include isola-
tion or organelles, fractionation techniques, 
immunohistochemistry and the powerful flux 
analyses, which has increased the understand-
ing about how metabolic pathways are inte-
grated. These approaches together with natural 
variation might unravel crucial metabolic mod-
ules contributing for efficient manipulation of 
plant metabolism via metabolic engineering.

There is a growing interest in using metabolo-
mics for a wide range of biological targets, and 
although it has still some limitations, metabolo-
mics use alone or combined with other omics 
technologies is revolutionizing plant biology and 
crop breeding providing new insights into genetic 
regulation of metabolism, cellular function and 
the structure of metabolic networks.
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