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Abstract

In eukaryotic organisms, subcellular protein 
location is critical in defining protein function 
and understanding sub-functionalization of 
gene families. Some proteins have defined 
locations, whereas others have low specificity 
targeting and complex accumulation patterns. 
There is no single approach that can be con-
sidered entirely adequate for defining the 
in vivo location of all proteins. By combining 
evidence from different approaches, the 
strengths and weaknesses of different tech-
nologies can be estimated, and a location con-
sensus can be built. The Subcellular Location 
of Proteins in Arabidopsis database (http://
suba.live/) combines experimental data sets 
that have been reported in the literature and is 

analyzing these data to provide useful tools 
for biologists to interpret their own data. 
Foremost among these tools is a consensus 
classifier (SUBAcon) that computes a pro-
posed location for all proteins based on bal-
ancing the experimental evidence and 
predictions. Further tools analyze sets of pro-
teins to define the abundance of cellular struc-
tures. Extending these types of resources to 
plant crop species has been complex due to 
polyploidy, gene family expansion and con-
traction, and the movement of pathways and 
processes within cells across the plant king-
dom. The Crop Proteins of Annotated Location 
database (http://crop- pal.org/) has developed a 
range of subcellular location resources includ-
ing a species-specific voting consensus for 12 
plant crop species that offers collated evidence 
and filters for current crop proteomes akin to 
SUBA.  Comprehensive cross-species com-
parison of these data shows that the sub- 
cellular proteomes (subcellulomes) depend 
only to some degree on phylogenetic relation-
ship and are more conserved in major biosyn-
thesis than in metabolic pathways. Together 
SUBA and cropPAL created reference subcel-
lulomes for plants as well as species-specific 
subcellulomes for cross-species data mining. 
These data collections are increasingly used 
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by the research community to provide a sub-
cellular protein location layer, inform models 
of compartmented cell function and protein–
protein interaction network, guide future 
molecular crop breeding strategies, or simply 
answer a specific question—where is my pro-
tein of interest inside the cell?
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Abbreviation

AMPDB Arabidopsis Mitochondrial Protein 
Database

ASV Alternative splice variant
CAT Co-expression Adjacency Tool
cropPAL Database for crop proteins with 

annotated locations
ER Endoplasmic reticulum
FLAG Epitope polypeptide DYKDDDDK
FP Fluorescent protein
GO Gene Ontology http://www.geneon-

tology.org
GUI Graphical user interface
LOPIT Localization of Organelle Protein by 

Isotope Tagging
MMAP Multiple Marker Abundance 

Profiling
MS Mass spectrometry
MS/MS Tandem mass spectrometry
NPAS Normalized protein abundance 

scores
PAT PPI adjacency tool
PPI Protein–protein interaction
SRM Selected reaction monitoring
SUBA  Subcellular localization database for 

Arabidopsis proteins
TAP Tandem affinity purification

4.1  Introduction

4.1.1  The Historical Context 
of Subcellular Location 
in Proteomics

Subcellular proteomics are an integral part of 
plant proteomics due to the tight connection 
between protein location within cells and their 
function (Weckwerth et  al. 2008; Millar et  al. 
2009; Joshi et al. 2011). The importance of sub-
cellular location of different isozymes of proteins 
in plants has been long recognized (Gottlieb 
1982). However, until recently, most conven-
tional methodologies for determining protein 
locations in the cell have been labor intensive. 
Methodologies such as gold particle marking and 
immunological tagging followed by microscopy 
were used over decades, but both approaches are 
very labor and cost intensive. More recently, PCR 
and cloning techniques, overexpression vectors, 
fluorescent protein (FP) chimerics and expres-
sion in alternative hosts allowed the localization 
of lowly expressed proteins in difficult to study 
organisms (Chiu et  al. 1996). These studies, 
although not high throughput, have been a big 
step forward for rare proteins.

Using mass spectrometry (MS) of tandem 
mass spectrometry (MS/MS) to build compre-
hensive subcellular proteome sets came into the 
picture with improving organellar extractions and 
MS detection for peptides (Heazlewood et  al. 
2005). The organelles and compartments that 
attracted most interest were the major energy 
organelles such as the mitochondrion (Kruft et al. 
2001; Millar et  al. 2001) and the chloroplast 
(Peltier et al. 2001), which had to be physically 
extracted and purified away from the cytosol, 
nucleus, and secretory parts of the cells. 
Following on, research focusing on the secretory 
system needed to distinguish between endoplas-
mic reticulum (ER), Golgi apparatus, and tono-
plast (vascular membrane) within the cell and the 
plasma membrane surrounding the cell. Finally, 
extracellular proteins secreted from cells into the 
apoplast were studied. With higher resolution of 
microscopes and better separation techniques, 
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finer points of differentiation began to distinguish 
suborganellar compartments of these organelles, 
including protein localizations in the inner and 
outer membranes, the intracellular space and the 
matrix of mitochondria (Millar et  al. 2001; 
Werhahn et al. 2001), thylakoids in chloroplasts 
(Schubert et  al. 2002), cytoskeletal structures 
(Hamada et al. 2013), and specific sections of the 
secretory system (Drakakaki et  al. 2012; Heard 
et  al. 2015). With the improvement of MS/MS 
sensitivity, over time more proteins could be 
identified and traced in these purified organellar 
separations.

The Localization of Organelle Protein by 
Isotope Tagging (LOPIT) approach offered an 
alternative for defining the localization of mem-
brane proteins without physical subcellular sepa-
ration to purity (Dunkley et  al. 2004). This 
method, based on profiling protein abundances in 
size separated fractions, has been used to map a 
significant number of proteins from mitochon-
dria, plastids, ER, and secretory compartments 
(Nikolovski et  al. 2012). LOPIT has recently 
been optimized for subcellular protein mapping 
and is used in a variety of global subcellular map-
ping projects spanning plant and disease biology 
(Mulvey et al. 2017).

When considering all subcellular localization 
methods as a whole, the majority of data today 
are derived from proteomic MS methodology due 
to the high-throughput nature of the approach. A 
subcellular proteomics mapping study typically 
produces more than 1000 subcellular localiza-
tions (Heard et al. 2015; Nguyen-Kim et al. 2016; 
Senkler et al. 2017). In contrast, high-throughput 
fluorescent protein (FP) studies report between 
10 and 100 (Cutler et al. 2000; Boruc et al. 2010; 
Inze et  al. 2012) with the largest study to date 
offering 148 protein localizations (Koroleva et al. 
2005). The emerging importance of large data 
mining requires that subcellular location data are 
available as a global data set using all available 
information, making data aggregations for sub-
cellular proteomics increasingly popular 
resources. A growing number of databases avail-
able have generated subcellular proteomics data 
sets containing over 40,000 experimental local-
izations spanning different methodologies. These 

resources often fill gaps in experimental data and 
compare the advantages as well as disadvantages 
of each method using computational strategies.

4.1.2  Collation of Arabidopsis 
Subcellular Data Established 
Subcellular Proteomics

Subcellular proteomics has been refined and 
improved through the aggregation of localization 
data. In plant biology, this first started to take 
shape for the model plant Arabidopsis. Today, the 
SUBcellular location database for Arabidopsis 
proteins (SUBA, http://suba.live) in its fourth 
generation is a substantial collection of manually 
curated published data sets of large-scale subcel-
lular proteomics (MS/MS), FP visualization, pro-
tein–protein interaction (PPI), and subcellular 
targeting calls from 22 prediction programs as 
well as a consensus algorithm (SUBAcon).

The collection started with studies on the 
mitochondrial proteome more than 10 years ago 
(Heazlewood et al. 2004) when an MS study of 
the mitochondrial organelle revealed a large 
number of low-abundance proteins that had been 
predicted to localize elsewhere in the cell. This 
led to the generation of the Arabidopsis 
Mitochondrial Protein Database (AMPDB) that 
offered an overview of the detailed MS data sets 
from 17 published mitochondrial studies as well 
as predictions from six subcellular location algo-
rithms (Heazlewood and Millar 2005). While 
similar efforts for the plastid were realized as the 
Plastid Proteome DataBase (PPDB) at the same 
time (Friso et al. 2004), it became clear that rapid 
expansion of data for many organelles required 
the establishment of a one-stop data collection 
hub for subcellular compartmentalization data. 
An initial data collation and categorization 
showed surprisingly little overlap between data 
sets from different researchers, and their combi-
nation seemed crucial for large-scale data mining 
(Heazlewood et al. 2005). It was then when the 
SUBA acronym was introduced and the data 
aggregation quickly revealed that protein fami-
lies, subsets, and isoforms with distinct subcel-
lular location patterns existed. The analysis of the 
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data also meta-assessed the reliability of experi-
mental data and indicated that most experimental 
methods are more variable and error-prone than 
the wider research community presumed.

Since then, the Arabidopsis subcellular pro-
teome data set and applications associated with 
the collection have been increasing in terms of 
gene annotations, experimental, and computa-
tional data types (Heazlewood et al. 2007; Tanz 
et al. 2013a), as well as high-confidence subsets 
(Arabidopsis Subcellular Reference—ASURE) 
and location consensus classifications 
(SUBAcon) (Hooper et al. 2014) to arrive as the 
current version of SUBA4 that includes a sepa-
rate section with an interactive analysis toolbox 
(Hooper et  al. 2017a). The core experimental 
subcellular location data are now more than ten 
times the volume of the original SUBA1 
(Heazlewood et al. 2007). SUBA started out cat-
egorizing ten distinct subcellular locations cyto-
sol, cytoskeleton, endoplasmic reticulum (ER), 

Golgi, mitochondrion, nucleus, plastid, plasma 
membrane, peroxisome, and vacuole. With 
improving sensitivity of methods used to pin-
point protein locations, SUBA4 expanded this 
into sub-organellar compartments including dif-
ferentiations into distinct membranes and aque-
ous compartments (Fig. 4.1). Experimental data 
pinpointing sub-organellar locations are now 
searchable within SUBA4.

The subcellular proteome data for Arabidopsis 
has increased from representing information on 
only 7% of predicted proteins in 2007 to over 
32% of predicted proteins in 2017 arriving at the 
current >40% coverage in 2021 (Fig. 4.2a). Since 
the foundation of SUBA, Dr JL Heazlewood, Dr 
SK Tanz, Dr CM Hooper, Dr N Ayamanesh, and 
Ms Sally Grasso have been the key curators, 
while Dr J Tonti-Filippini, Dr CM Hooper, and 
Dr IR Castleden have developed most of the GUI 
and database services to enable the user experi-
ence. A small fraction of manual subcellular 

Fig. 4.1 Subcellular and suborganellar structures search-
able within SUBA and cropPAL. The subcellular catego-
ries previously assessed by SUBA1-3 and cropPAL 
included 11 major subcellular locations (UPPER CASE). 

SUBA4 has increased location definition into suborganel-
lar locations (lower case). ER endoplasmic reticulum, 
SUBA subcellular location database for Arabidopsis pro-
teins (http://suba.live/)
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curations were independently derived from 
TAIR, GO, and Swissprot (Lamesch et al. 2012; 
Croft et al. 2014).

4.1.3  The Collation of Plant 
Subcellular Data Progressed 
into Crop Plants by 
Establishing cropPAL

High-throughput genome sequencing technologies, 
computing, and database management have made 
the protein sequences available through http://www.
gramene.org/ for a range of non- model plant spe-
cies of economic importance (Gupta et  al. 2016; 
Tello-Ruiz et al. 2018). This has led to the exponen-
tial growth in the number of available reference 
plant genomes in recent years (Monaco et al. 2014). 

Notably, this includes the improved coverage of the 
bread wheat genome where researchers tackled a 
number of significant problems that occur when 
annotating highly polyploid genome sets (Bolser 
et al. 2015). Proteins across species share important 
similarities in their functional motifs, and this has 
driven linking information on orthologous proteins 
from model plants to less studied crop plants (Otto 
et  al. 2008). Cross-species comparison highlights 
the amount of gene and genome duplication and 
gene loss throughout angiosperm evolution that has 
led to a huge variation in genome size and proteome 
composition between even close relatives (Tang 
et al. 2008). Researching protein specialization and 
sub- functionalization across and within species pro-
vides new insights into why plants differ so exten-
sively in their growth, yield, and response to the 
environment.

Fig. 4.2 SUBA database expansion and data use in plant 
biology. (a) Continuous curation and integration of sub-
cellular localization data has increased the number of 
localizations and the coverage of the Arabidopsis pro-
teome throughout SUBA releases from 2005 to 2017. The 
size of SUBA4 at the time of writing in 2020 is indicated. 
(b) The accumulative citation record of published SUBA 

and SUBA tools indicates increasing importance of sub-
cellular proteomics resources (source: Scopus). (c) The 
area of research and (d) species studied was determined 
using keyword-based text mining to show the distribution 
of fields of research that SUBA was used for in the past 
decade. A total of 465 studies that cited SUBA were 
examined. (Figure modified from Hooper et al. 2017a)
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While duplicated proteins may perform simi-
lar functions, small differences in versions that 
reside in distinct subcellular compartments can 
allow distinct optima, better suited to individual 
subcellular compartments. For example, small 
differences in protein sequence can improve 
function in differing pH environments (Scheibe 
et  al. 2005). Therefore, the cost of protein or 
pathway duplication can more than compensate 
the energy investment in transporting them across 
membranes (Wu et al. 2006; Cheung et al. 2013). 
Knowing key turning points between energy bud-
get and protein location during plant evolution 
has become a crucial consideration for studying 
plant product yields and determining the energy 
production of cells. With crop breeding in mind, 
data from the model plant Arabidopsis has been 
useful to bridge knowledge gaps for rice and 
maize through combining information with the 
independent subcellular proteomics data sets that 
exist for these species (Natera et al. 2008; Reiland 
et  al. 2011; Majeran et  al. 2012; Huang et  al. 
2013). This led to the generation of two further 
species-specific subcellular proteomics data-
bases; riceDB for rice (Narsai et  al. 2013) and 
PPDB for maize (Friso et al. 2004; Huang et al. 
2013). Nevertheless, many more crops species 
exists for which Arabidopsis data presented the 
only resource for subcellular location informa-
tion (Hooper et al. 2017a).

Subcellular proteomics and other localization 
data for most crop species exist scattered across 
published scientific reports and is often linked to 
obsolete protein accession annotations that are 
not concurrent with recent genome annotations. 
In this format a significant body of experimental 
subcellular proteomics data for barley (Endler 
et  al. 2006; Ploscher et  al. 2011) and wheat 
(Kamal et al. 2012; Suliman et al. 2013) are dif-
ficult to access for most researchers. The need for 
a cross species protein localization database 
emerged and was formulated in the formation of 
a new resource, crop Proteins with Annotated 
Location (cropPAL, https://crop- pal.org/). The 
cropPAL1 database contained just under 18,000 
of the scattered experimental localizations for 
four mono-cotyledon crops including rice (Oryza 
sativa), maize (Zea mays), wheat (Triticum aesti-

vum), and barley (Hordeum vulgare) connected 
to each other and to Arabidopsis (Hooper et al. 
2016). CropPAL underwent major upgrades to 
include the two additional monocotyledon sor-
ghum (Sorghum bicolor) and banana (Musa acu-
minata) and six additional dicotyledon species 
granola (Brassica napus), field mustard (Brassica 
rapa), soybean (Glycine max), tomato (Solanum 
lycopersicum), potato (Solanum tuberosum), and 
grape vine (Vitis vinifera). In cropPAL2020, sub-
cellular proteomics data from MS/MS and FP 
localization data as well as pre-computed subcel-
lular localizations from 11 predictors were col-
lated (Hooper et  al. 2020). Aligning to the 
Ensembl Plants/Gramene identifiers, experimen-
tal data in cropPAL was linked to the current 
genome annotations by a custom semi-automated 
pipeline. This offers sustainable links of research 
data that had increasingly obsolete identifiers. 
Using this system, available experimental data 
more than tripled to 61,505 localizations and 
generated large enough data sets for statistical 
comparisons between mono- and dicotyledon 
species or cross-species data mining opportuni-
ties between legumes and fruiting crops. 
Altogether, cropPAL2020 collates more than 800 
scientific peer-reviewed studies. These data rep-
resent the collective work of >700 scientists from 
600 organizations in 45 countries showcasing a 
global effort in elucidating protein subcellular 
location divergence and conservation across crop 
species.

The SUBA and cropPAL resources have been 
used for cultivar discrimination, engineering salt- 
resistant crops, increasing protein content, as 
well as improving yield and market value of 
grains, legumes, palm, mango, and tomato 
(Bajpai et al. 2018; Lau et al. 2018; Matamoros 
et  al. 2018; Jiang et  al. 2019; Schneider et  al. 
2019; McKenzie et al. 2020). If subcellular pro-
tein distributions (subcellulomes) are not cata-
loged for a species, scientists often fall back on 
data in Arabidopsis of the nearest species. This 
raises the questions around the validity of these 
discoveries if they are based on the assumption 
that we can borrow cross-species information. 
On the one hand, homology-linking protein sub-
cellular location data is widely accepted on the 
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basis that the metabolic and biosynthetic path-
ways in plants are highly conserved. On the other 
hand, reports exist that highlight the divergence 
in protein subcellular location between species 
by mechanisms of dual targeted proteins or pro-
tein family expansion (Carrie and Whelan 2013; 
Xu et  al. 2013; One Thousand Plant 
Transcriptomes 2019). In context of the diversity 
of species physiology, metabolism capacity, and 
their ability to adapt to different environments, 
subcellular location diversification offers a poten-
tial starting point for plant performance improve-
ment through biotechnological applications. The 
combination of data as well as the linking of 12 
economically important crop species with 
Arabidopsis has placed plant subcellular data at 
the forefront of subcellular proteomics combin-
ing the skills of laboratory methodologies, data 
management and bioinformatics. These compre-
hensive data resources are now ready to aid cur-
rent research questions around crop cell 
compartmentalization and crop biology.

4.2  Research and Technical 
Approach

4.2.1  Visualization and Separation 
of Proteins for Subcellular 
Localization Are Improving

Subcellular compartments and structures in 
plants were first defined by microscopy; what 
could be seen inside cells. Their separation and 
characterization have focused on attempts to 
recover these observed structures, free of con-
taminants. Initial separations are often based on 
the use of empirically derived speeds and times 
of differential centrifugation to enrich compo-
nents of specific size ranges. Second, the use of 
density gradients separates structures based on 
their isopycnic point (buoyant density) which 
enables further purification of subcellular struc-
tures (for review see Taylor and Millar 2017).

Other physical and chemical properties have 
been developed as supplemental or even primary 
methods of isolation of specific structures. 
Electrical processes to separate organelles started 

with laminar-flow electrophoresis and lead to 
development of free-flow electrophoresis to 
purify subcellular particles like endosomes, lyso-
somes, peroxisomes, and ER-vesicles based on 
differences in surface charge. In plants, free-flow 
electrophoresis has been used to purify 
Arabidopsis plasma membrane and the tonoplast 
(Bardy et  al. 1998), mitochondria (Eubel et  al. 
2007), and the Golgi apparatus (Parsons et  al. 
2012). Solid-phase separations through chroma-
tography can also be used but has been typically 
limited to smaller sub-cellular structures such as 
mega Dalton protein complexes, for example, the 
pyruvate dehydrogenase complex (4–10  MDa), 
ribosomes (3–4  MDa), and the proteasome 
(2.5 MDa). Addition of affinity tags to target pro-
teins by chemistry or genetic engineering allows 
isolation of many structures of interest from cells 
using the same affinity system. The DYKDDDDK 
epitope (FLAG) and tandem affinity purification 
(TAP) tagging are typical approaches performed 
in plants, for example, for the Arabidopsis prote-
asome (Book et al. 2010) and cytosolic ribosome 
(Reynoso et  al. 2015). While this is typically 
expensive compared to other approaches, it can 
provide access to structures that either cannot be 
separated or are labile during the sequential phys-
ical processes of traditional isolations.

A number of different techniques can then be 
used for the assessment of organelle and structure 
contamination including microscopy, the use of 
marker enzyme activity assays, antibodies raised 
to marker proteins, selected reaction monitoring 
(SRM) MS and quantitative MS, or comparisons 
to literature claims of subcellular protein loca-
tions (Taylor et al. 2014; Millar et al. 2009; Taylor 
and Millar 2017). The use of stable isotope label-
ing or quantitation tags during MS can help 
screen out unknown contaminants by ensuring 
the target proteins are quantitatively enriched 
during organellar purification or are enriched 
more than other co-enriched cellular structures 
(Eubel et al. 2008; Mueller et al. 2014).

MS of compartment-enriched samples 
remains the most popular large-scale approach 
for defining subcellular localization of proteins, 
despite ongoing questions around the purity of 
these lists (Joshi et  al. 2011). The FP-tagging 
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approach is generally more accurate, but labor- 
and time-intensive, resulting in small study sizes 
with only a few high-throughput studies (Dunkley 
et al. 2006; Boruc et al. 2010; Lee et al. 2011). 
While the low coverage makes FP insufficient as 
a stand-alone large-scale data set, the collation of 
such studies over the last 15 years has generated 
a sizable subcellular proteome data set that 
remains one of the most widely accepted by biol-
ogists. Notably FP studies show both, where tar-
geted proteins are and are not present, providing 
an internal control to evaluate competing claims 
of location that is sorely missing from most MS/
MS data sets.

4.2.2  Subcellular Proteomics Can 
Be Supplemented 
with Homology Gap-Filling 
and Subcellular Protein 
Location Predictions

The varying number and type of subcellular pro-
teomic studies performed among each plant spe-
cies has led to uneven coverage between species 
and subcellular compartments. Of the 12 crop 
species, the largest number of subcellular local-
ization experimentation to date has been per-
formed in rice, maize, and soybean with tomato 
and wheat catching up steadily (Hooper et  al. 
2020). The proteome coverage of the most com-
prehensive experimental data sets collated for 
rice and tomato reached ~18% followed by soy-
bean and maize with 5–10%. High-throughput 
MS/MS cataloging commonly focused on 
nucleus, plasma membrane, and extracellular 
extractions, for assessing proteins induced and 
secreted during host defense (Shah et  al. 2012; 
Shinano et  al. 2013). In contrast, plastidial and 
mitochondrial purifications for mass spectrome-
try analyses are often studying biogenesis and 
metabolic functions (Huang et al. 2009; Barsan 
et al. 2012; Salvato et al. 2014; Xing et al. 2016). 
Compartment catalogs existing for Arabidopsis 
(Reumann et  al. 2009; Ito et  al. 2011; Parsons 
et al. 2012; Heard et al. 2015) but not yet in crops 
include the cytosol, Golgi (Chateigner-Boutin 
et  al. 2015), endoplasmic reticulum (ER) 

(Komatsu et  al. 2017), and peroxisome (Arai 
et al. 2008). No crop species has been cataloged 
across all compartments, which means experi-
mental data for any systems biology study is too 
sparse for downstream applications.

A recent effort pooled all experimental data 
across 12 crop species and Arabidopsis into bio-
logical MapMan categories to reveal that the per-
centage coverage of biological functions with 
experimental localizations in crops was similar to 
that observed in Arabidopsis (Schwacke et  al. 
2019; Hooper et  al. 2020). Thereafter, the inte-
grated data from the 12 crops increases coverage 
to >70% in most biological categories, showing 
that this can aid coverage of functional categories 
for less researched crops. However, the majority 
of data leading to this coverage derived from the 
well-researched species rice or maize and thus 
remains as valid as the two assumptions that (1) 
experimental error rates are small and that (2) 
subcellular locations are typically conserved. 
Since researchers often study proteins from the 
same compartments and functional categories in 
crops as well as Arabidopsis, gap-filling across 
species reaches a limit. To fill gaps beyond exper-
imental data, predictors are necessary to achieve 
complete subcellulome coverage. A variety of 
proteome-wide subcellular location predictors 
have been developed based on sequence proper-
ties (Shen et al. 2007; Chou and Shen 2010; Yu 
et  al. 2010). This includes various machine- 
learning and pattern recognition approaches 
(Chou and Shen 2007), such as support vector 
machines (Hua and Sun 2001), k-nearest neigh-
bor (Horton et al. 2007), neural networks (Small 
et  al. 2004), and hidden Markov models (Lin 
et  al. 2011). Similar to different experimental 
techniques, these individual approaches have 
their own advantages and shortcomings in terms 
of the number of required features, the danger of 
over-fitting, and the ability to handle multiple 
optima. In order to improve accuracy, single 
machine-learning approaches have been stacked 
into multi-layer algorithms (Petsalaki et al. 2006; 
Pierleoni et al. 2006; Blum et al. 2009). Predictors 
typically derive their subcellular location calcu-
lations using protein sequence features, associ-
ated properties and/or gene ontology (GO) (Shen 
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et  al. 2007), and curator annotations 
(Briesemeister et al. 2010). Thereafter, predictors 
based on protein sequence identify sequence pat-
terns in the primary protein sequence that target 
to individual organelles (Zybailov et  al. 2008; 
Blum et  al. 2009). Using similar or identical 
inputs, distinct machine-learning algorithms 
often yield different results that have shown a 
surprisingly poor overlap (Tanz and Small 2011). 
This variability is the main reason why experi-
mental data are still seen as the gold standard by 
most biologists despite the unresolved difficulties 
associated with the experimental approaches 
themselves (Millar et al. 2009).

For Arabidopsis, SUBA contains the subcel-
lular location outputs of 22 computational pre-
dictors including: AdaBoost (Niu et  al. 2008), 
ATP (Mitschke et al. 2009), BaCelLo (Pierleoni 
et  al. 2006), ChloroP 1.1 (Emanuelsson et  al. 
1999), EpiLoc (Brady and Shatkay 2008), 
iPSORT (Bannai et  al. 2002), MitoPred (Guda 
et al. 2004), MitoProt (Claros and Vincens 1996), 
MultiLoc2 (Blum et al. 2009), Nucleo (Hawkins 
et al. 2007), PCLR 0.9 (Schein et al. 2001), Plant- 
mPLoc (Chou and Shen 2010), PProwler 1.2 
(Hawkins and Boden 2006), Predotar v1.03 
(Small et  al. 2004), PredSL (Petsalaki et  al. 
2006), PTS1 (Neuberger et  al. 2003), SLPFA 
(Tamura and Akutsu 2007), SLP-Local (Matsuda 
et al. 2005), SubLoc (Hua and Sun 2001), TargetP 
1.1 (Emanuelsson et  al. 2000), WoLF PSORT 
(Horton et  al. 2007), and YLoc (Briesemeister 
et al. 2010). For Arabidopsis, the targeting pre-
dictions were carried out on the full-length pro-
tein sequences obtained from TAIR10 (Lamesch 
et  al. 2012) or Ensembl plants (Kersey et  al. 
2018). The performance of the 22 predictors was 
tested on a high-confidence subcellular location 
reference data set (ASURE) that is accessible 
through SUBA4. The assessment of the predic-
tors indicated that for Arabidopsis some predic-
tors perform better for particular compartments 
and sometimes even better than experimental 
data. This is most visual for nuclear proteins 
where MultiLoc and Yloc outperformed unified 
contradicting MS and FP data (Fig. 4.3). In the 
years since their development, some of the above 
predictors have become unavailable. Hence, for 

cropPAL, the integration of only 11 out of 22 pre-
dictors was suitable or possible (Hooper et  al. 
2020). In total, predictive data sets in cropPAL 
span >6  million predictions, but for complete 
proteomes of all 12 species, only the six predic-
tors MultiLoc2, TargetP, Predotar, YLoc, iPSORT, 
and WolfPSORT were available. The perfor-
mance of predictors and experimental data in 
crop plants remains to be tested when data collec-
tions and high-confidence reference proteomes 
become available. However, a comparative anal-
ysis of crop experimental and predictive data to 
Arabidopsis suggests that the error rates of these 
methods in crops are similar to those seen in 
SUBA (Hooper et al. 2020).

4.2.3  An Objective Collation 
and Unification Strategy Can 
Resolve Varied and Conflicting 
Subcellular Location 
Information

Despite significant technological progress, errors 
in experimental data contribute to overlapping or 
contradicting data sets (Ito et  al. 2011; Elmore 
et  al. 2012; Nikolovski et  al. 2012). As experi-
mental data resources grow and the number of 
predictors increases so do the contradictions, and 
strategies are needed to integrate this multifac-
eted information. SUBAcon was developed to 
integrate the multi- and single-compartment pre-
dictor outputs with all available experimental 
data resources to generate an overall estimation 
of subcellular location for Arabidopsis proteins 
(Hooper et al. 2014).

SUBAcon uses FP and MS/MS data as a fea-
ture and determines the classification strength on 
their location calls when trained on a reference 
data set compared against other available local-
ization features. When searching for other bio-
logical data that can be used as features, 
association data has become a popular choice due 
to the “guilt by association” principle. 
Associations like protein–protein interaction 
(PPI) and transcript co-expression aid the identi-
fication of functional clusters within the pro-
teome. Considering that proteins in functional 
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pathways more often co-locate, the location of a 
PPI partner can be used as indirect experimental 
evidence for protein location. Co-expression and 
PPI-associated protein sets are known for con-
taining higher numbers of same-location protein 
groups than expected by random (Huh et  al. 
2003; Geisler-Lee et al. 2007). PPI data in par-
ticular have been suggested previously to be 
resources for predicting sub-cellular location of 
proteins in multiple eukaryotic species (Shin 
et al. 2009; Jiang and Wu 2012). Less is known 
about the true value of co-expression data for pre-
dicting co-location. These voluminous expres-
sion data sets have been used widely for 
predicting function (Stuart et  al. 2003; 
Heyndrickx and Vandepoele 2012) and are typi-

cally the largest data sets available for most spe-
cies. We showed that co-expression was useful to 
infer subcellular location for proteins with little 
experimental evidence, suggesting that such data 
alone can be highly informative for some com-
partments, rivaling sequence-based prediction 
(Hooper et al. 2014).

The lack of a single best method for inferring 
subcellular location has prompted using all avail-
able knowledge about proteins and is an attrac-
tive approach for forming a consensus view. 
Integrating a number of varied data sources has 
been used in yeast mitochondrial studies for 
some time, where this approach revealed promis-
ing new insights into genes involved in mito-
chondrial functions (Prokisch et  al. 2004). The 
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Fig. 4.3 Performance of individual predictors, experi-
mental data, and SUBAcon. The classification perfor-
mance of six top scoring separate component (lines with 
symbols) in SUBAcon was compared to the overall 
SUBAcon consensus classification using all components 
(gray fill). The comparison of performance indicator 
MCC indicates superior subcellular location classification 

of Arabidopsis proteins when all information was used. 
Individual components generally perform well for some 
compartments allowing choice of best predictor for target 
compartments for Arabidopsis proteins. FP fluorescent 
proteins, MCC Matthews correlation coefficient, MS mass 
spectrometry, PPI protein-protein interaction. (Figure 
modified from Hooper et al. 2014)
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strategy of SUBAcon was to unify FP, MS, PPI, 
co-expression, and prediction data objectively to 
have one output with the highest probability of 
being correct (Fig. 4.4). This generated a data set 
where one protein was assigned one location or a 
set of locations that can be used for downstream 
omics applications. SUBAcon integrated 22 
selected computational predictors into a two- 
phase naive Bayes classifier, which equaled or 
surpassed the classification accuracy for most 
compartments in comparison to single predictors 
even before integrating subcellular proteomics 
data (Figs. 4.3 and 4.4). The assessment of single 
and stepwise integration confirmed that SUBAcon 
objectively weighs individual predictors and 

experimental data to assign proteins to a location 
(or locations) more accurately than any of the 
input predictors or data did separately (Hooper 
et al. 2014). The analysis also confirmed a strong 
influence of experimental data on classification 
outcome; high proportions of FP protein localiza-
tions (~78%) and MS data (~65%) agreed with 
the ASURE locations. In both methodologies, the 
proportion of location mismatches was 
compartment- specific (Fig.  4.3). Consequently, 
the ongoing collation of experimental localiza-
tion data will remain a key aspect of up-to-date 
classification by tools like SUBAcon.

In order to produce a classifier taking crop 
species-specific differences as well as error rates 

Fig. 4.4 The SUBAcon prediction and unification strat-
egy. The subcellular location information from 22 predic-
tors, fluorescent tagging, mass spectrometry, protein–protein 
interaction and co-expression (experimental data) and the 
ASURE standard was used to train a naive Bayes algorithm 
in two phases. Phase 1 (top) distinguished cytosol, mito-
chondrion, nucleus, peroxisome, and plastid from secretory 

proteins. Phase 2 (middle) used six secretory predictors and 
the experimental data to classify endoplasmic reticulum, 
extracellular, Golgi, plasma membrane and vacuole pro-
teins. The secretory classifications were combined with the 
phase 1 locations and present the final SUBAcon output 
(bottom). ASURE Arabidopsis Subcellular Reference stan-
dard. (Figure modified from Hooper et al. 2014)
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of methodologies into account, a cross-species 
gold standard not biased by experimental and 
homology inference like ASURE is essential. 
Such a gold standard does not yet exist for these 
crops. Therefore, within cropPAL, a winner- 
takes- all (WTA) uniform location call was 
derived for each crop protein by vote-counting 
experimental locations and adding all predictors 
as one vote with each predictor a fraction of that 
vote (Hooper et al. 2020). This weights the final 
location call toward experimental locations when 
available and allowing predictors to gap-fill when 
not. When comparing the error rates, the accu-
racy of both, MS/MS and FP methodologies in 
the cropPAL collection, was comparable to that 
previously reported in Arabidopsis (Hooper et al. 
2014). As expected, FP localizations were overall 
more accurate (61–87%), while the accuracy of 
MS/MS data varied significantly with compart-
ment (22–85%). The overall accuracy of the crop 
WTA calls when compared to the inferred crop 
reference was estimated as greater than 67%, 
supporting the use of the voting system.

Using the WTA, individual species-specific 
subcellular protein distributions (subcellulomes) 
were generated that proved to be similar across 
crops and Arabidopsis. These data resources act 
as reference distributions of subcellular locations 
for proteins as well as biological categories in 
crops (Hooper et al. 2020) marking the beginning 
of detailed species-specific subcellulome cata-
logs backed by experimental data. Indeed, the 
study showed that while close evolutionary rela-
tionship between species is evident in the higher 
agreement of their subcellulomes, there was no 
obvious difference between monocot and dicot 
species. The current practice of using Arabidopsis 
data for dicot research versus rice for monocot 
research and arguing for species-specific differ-
ences is challenging. While most species agree 
substantially (60–80%) in their protein subcellu-
lar locations, the agreement is not equally distrib-
uted across biological functions. Underexplored 
subcellular divergence information was found in 
particular in metabolic categories. Metabolic 
diversification has been reported in a number 
pathways including enzymes of the amino acid 
metabolism (Schenck and Last 2020) as well as 

subcellular partitioning of effector or signaling 
proteins specific to tissues or metabolic changes 
upon stimuli (Powers et  al. 2019). On the pro-
teomics level, the differences between species are 
often subtle shifts in the distribution of a number 
of proteins with similar functions between two or 
more subcellular locations (Hooper et al. 2020). 
Such shifts are mainly due to alternative splice 
variants (ASV) or duplications of genes that are 
more likely to be retained if subcellularly diverse 
(Avelange-Macherel et al. 2018).

4.2.4  Subcellular Proteomics Data 
Resources in SUBA Have 
Contributed to Over 900 
Downstream Scientific 
Reports

SUBA has been cited more than 700 times aver-
aging 30 published studies per year (Fig. 4.2b). 
The subcellular proteomics data of SUBA has 
been more commonly used for exploring protein 
and gene functions and improving the interpreta-
tion of transcriptomics, proteomics, genetics, and 
bioinformatics data (Fig. 4.2c). The use of SUBA 
has reached beyond Arabidopsis showing appli-
cation in agricultural hypothesis formation 
around pressing questions in rice, barley, maize, 
soybean, and wheat biology (Fig. 4.2d).

In research, SUBA has contributed to the 
development of widely used organelle marker 
sets (Nelson et  al. 2007), protein family clone 
collections for functional genomics (Lao et  al. 
2014), as well as facilitated the functional eluci-
dation of protein families involved in plant 
growth regulation (Zentella et al. 2007). The lat-
ter resources and knowledge were used in over 
900 downstream studies. Over the last decade, 
SUBA has played a pivotal role in estimating 
plant cell energy budgets (Cheung et  al. 2013) 
and the costs of maintaining the plant proteome 
in different compartments (Li et al. 2017). In the 
context of systems biology approaches, knowl-
edge of proteome-wide subcellular locations is 
an important component for defining functional 
neighborhoods and deducing metabolic and sig-
naling networks within complex eukaryotic cells 
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(Waese et  al. 2017). It has also been used for 
exploring sugar metabolism networks in barley 
(Lunn et  al. 2014) and demonstrating sub- 
functionalization of gene family expansions 
(Tanz et al. 2013b). This shaped our understand-
ing of the subcellular plant metabolism in order 
to resolve diurnal relationships of plant metabo-
lism (Furtauer et al. 2019) as well as contributed 
to increasing the resolution and accuracy of 
mathematical representations of plant cell and 
tissue metabolism during the last 5 years (Shi and 
Schwender 2016). The in silico estimation of 
organellar protein abundance (Hooper et  al. 
2017b) influenced concepts of subcellular pheno-
typing that helped achieve cultivar-specific dis-
crimination through rapid estimation of organellar 
differences (Schneider et al. 2019). The breath of 
work benefitting from SUBA highlights the 
importance of ongoing efforts in developing this 
central subcellular resource.

The smaller fraction of crop research using 
SUBA highlights the importance of improving 
the linkage of SUBA across species-specific bor-
ders as well as the need to improve linkage of 
comprehensive subcellular data collections for 
more crop species. The compendium of cropPAL 
begins to address this challenge across 12 crop 
species, and it has provided protein localization 
data since 2015. Right from the start, cropPAL 
the subcellular proteomics data contributed to the 
characterization of protein families across spe-
cies (Chen et al. 2016a) as well as to a high con-
fidence training set used for a novel plant and 
effector protein localization prediction algorithm 
(Sperschneider et al. 2017). Increasing awareness 
put cropPAL forward as a valuable resource for 
developing accurate proteomics pathways and 
network maps in economically important crops 
(Larrainzar and Wienkoop 2017).

SUBA and cropPAL also hold considerable 
contributions to molecular breeding concepts for 
increased crop quality and global food security. 
Highlights include the recent report listing the 
use of SUBA4 for unraveling crucial adaptation 
mechanisms for salinity tolerance in plants that 
provide promising genetic targets for engineering 
salt-resistant crops (Jiang et al. 2019) as well as 
the reviewed importance of SUBA resources for 

molecular biomarker identification for address-
ing a variety of diseases, yield quality and sus-
tainability challenges within the palm oil industry 
(Lau et al. 2018). It is particularly exciting to see 
the rising influence of cropPAL on agricultural 
breeding strategies including the identification of 
genetic breeding targets for improved mango 
peel features increasing the mango market value 
(Bajpai et  al. 2018) and the identification of 
molecular targets that expand flowering duration 
for increasing pollination opportunities and yield 
in rice (Chen et al. 2016b).

Tackling a serious global concern about nitro-
gen integration and protein increase in crops, 
SUBA4 was used in guiding the discovery of pro-
teins regulating the nitrogen metabolism in root 
nodules (Matamoros et al. 2018) while cropPAL 
was named one of the “key aspects that need to 
be strengthened in the future” considering the 
large number of proteins involved in nitrogen- 
fixation efficiency (Larrainzar and Wienkoop 
2017). These resources will be crucial in the near 
future for unraveling the complexity of nitrate 
metabolism in plants with the aim to guide 
molecular breeding strategies toward securing 
nutrition of global food crops under changing 
environments.

4.2.5  The Collation and Integration 
of Arabidopsis Subcellular 
Proteomics Data Presents 
Opportunities for New 
Approaches for In Silico 
Analysis

Both SUBA and cropPAL subcellular data col-
lections are data warehouses publicly available 
through http://suba.live and http://crop- pal.org, 
respectively, that provide easy GUI-based data 
search and filtering functions. The web portals 
enable biologically meaningful subcellular loca-
tion annotations and integrations by APIs or 
focused list creation through the web query 
builder. Users do not need computational exper-
tise to mine the data sets for subcellular loca-
tions, methodology, protein properties, gene 
associations, authorship, or country of data ori-
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gin. In addition, the interface offers a BLAST 
function for scientists researching alternative 
crops that enables to link their sequence of inter-
est to the closest match in the SUBA or cropPAL 
data set. Within SUBA4, a separate toolbox exists 
that contains tools that allow immediate access 
and analysis of the core Arabidopsis subcellular 
location data in linkage to external user data 
sources. The toolbox currently offers the Multiple 
Marker Abundance Profiling tool (MMAP), the 
Co-expression Adjacency Tool (CAT), and the 
PPI Adjacency Tool (PAT). Each tool provides a 
unique link to the subcellular location consensus 
(SUBAcon).

For Arabidopsis, the co-expression data and 
PPI data sets were linked to the unified SUBAcon 
calls. The SUBAcon calls of each protein partner 
were joined and categorized into proximity rela-
tionships according to their biological interpreta-
tion, such as location within the same organelle, 
neighboring organelle, or distant organelles. The 
subcellular locations, proximity relationships, 
mutual rank and average correlation coefficient 
data allow user-lead prioritizing of strong asso-
ciations. With the CAT tool, the user can assess a 
list of proteins for their subcellular location in 
context with their gene expression association, 
allowing to discover potential relationships 
between proteins based on the vast amount of 
expression data available.

The PAT tool uses experimental evidence 
from 26,327 unique PPI and assigns subcellular 
location derived from SUBAcon to each protein. 
This allows the interpretation of protein associa-
tions in context of proteins proximity in the cell. 
Thereafter, proteins located within the same sub-
cellular compartment can interact and proteins on 
outer membranes or interfaces of one organelle 
can also interact with proteins from neighboring 
organelles. The PAT tool allows filtering for loca-
tion pairings to target specific organellar or inter- 
organellar interactions for hypotheses formation 
around PPI networks that influence biological 
processes.

The newest showcase using the full range of 
proteomics integrated into subcellular proteomics 
is the MMAP tool (Hooper et al. 2017b). This tool 
can estimate the proportion of different subcellu-

lar protein structures in a user-provided list of 
Arabidopsis Gene Identifiers (AGIs). It is based 
on combining localization information from 
SUBA and quantitative MS observations of pro-
teins collated in the MASCP gator database (Joshi 
et al. 2011; Mann et al. 2013). While relative pro-
tein quantitation is possible using quantitative MS 
such approaches are expensive or moderately 
accurate (Thompson et al. 2003; Cox and Mann 
2008; Arike and Peil 2014; Christoforou et  al. 
2016). Using available quantitative tissue pro-
teome data indicates that such data can be stan-
dardized to achieve a more true representation of 
an Arabidopsis protein observation (Wang et  al. 
2012, 2015). In order to achieve a subcellular pro-
teome quantitation including low-abundance pro-
teins in specific organelles, data from over 100 
publications describing enriched subcellular pro-
teomes, organelles and protein complexes derived 
from public databases were added and normalized 
to an in silico protein abundance score (Sun et al. 
2009; Ferro et al. 2010; Hooper et al. 2017a). The 
novel way of using normalized protein abundance 
scores (NPAS) for 23,191 proteins contained 
2602 proteins that had not previously been scored, 
and it covers a total of 85% of the predicted 
Arabidopsis proteome (Wang et al. 2012).

The user can submit custom AGI lists to the 
MMAP tool and receive the number of distinct 
proteins per each organelle as well as an estimate 
of relative protein abundance composition com-
pared to expected subcellular abundances. The 
tool was developed because conventional meth-
ods for determining organellar abundance rely on 
a few marker proteins, which can be hit and miss 
considering the variety of biological conditions 
the data are derived from. A high-confidence sub-
cellular marker lists for Arabidopsis was gener-
ated using SUBAcon, which can gather a high 
probability list of proteins for each organelle. 
Extensive manual curation and cross- examination 
against experimental data verified these data for 
use in the in silico tool enabling ad hoc estimates 
of relative organelle abundance. Thereafter, the 
tool allows assessment of experimental data 
before committing to further experimentation. 
While the latter was the original aim of the devel-
opers, the tool offers additional opportunities for 
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subcellular proteomics to drive big data questions 
in the near future.

While the MMAP tool is relatively new and 
not yet widely applied, its function has been dem-
onstrated on data derived from Golgi (Parsons 
et  al. 2012), chloroplast (Zybailov et  al. 2008), 
and plasma membrane proteomes (de Michele 
et  al. 2016; Elmore et  al. 2012), where the tool 
output directly corresponds to the changes in 
organellar protein abundance measured by spec-
tral counting (Hooper et al. 2017b). The MMAP 
tool was able to retrospectively demonstrate pro-
gressive Golgi enrichment in silico equivalent to 
immunoblotting but was also able to show how 
other compartments were enriched or depleted at 
the same time without any further experimenta-
tion (Cox and Mann 2008). In better- known 
organelles, such as chloroplasts (Zybailov et  al. 
2008), the MMAP tool revealed that current plas-
tidial isolation procedures deplete all other organ-
elle fractions and only plastidial proteins enrich 
(Uberegui et al. 2015; Yin et al. 2015). Using the 
MMAP tool to compare two plasma membrane 
isolations demonstrated that the free- flow electro-
phoresis was better able to decrease the contami-
nation of plastid, Golgi, and mitochondria 
(Elmore et al. 2012; de Michele et al. 2016).

Using this tool, a cross analysis of all pro-
teomes in SUBA can be done very rapidly, show-
ing that mitochondrial, plastidial, and peroxisomal 
protein isolations are among the purest, whereas 
current plasma membrane, cytosol, and vacuole 
separation techniques cannot achieve the same 
purities (Fig.  4.5). The data also highlight the 
problem that attempts to detect low abundance 
proteins within organellar extractions lead to a 
near exponential increase in captured impurities.

One of the unexplored functions of subcellular 
proteomics and quantitative proteomics is its use 
in analyzing tissue proteomes and potentially 
proteomes from different biological conditions in 
terms of subcellular proteome shifts or relative 
subcellular structure abundances. Using the 
MMAP tool, the plasmodesmata proteome 
(Fernandez-Calvino et al. 2011) showed predom-
inance in the fraction of Golgi, vacuole, peroxi-
some, mitochondria, cytosolic, and plasma 
membrane compared to standard values allowing 

a superior analytical interpretation to the meth-
ods used by the authors in the study.

The MMAP tool allows the rapid generation of 
a holistic overview of relative organelle abun-
dance for different tissues (Fig. 4.6), the same tis-
sue following a treatment or environmental 
stimuli, or in mutant proteome phenotyping. Such 
analyses give an insight into how organelle pro-
portions relate to tissue function. Analysis of MS/
MS data from different tissues confirmed observed 
and biological relevant differences in organelles 
in cotyledons, leaf, root, and pollen tissues that 
would have taken considerable experimental 
efforts to otherwise confirm (Dunand et al. 2007; 
Grobei et al. 2009; Piques et al. 2009; Baerenfaller 
et al. 2011). The MMAP tool is open access and 
only requires a list of protein identifiers, thus a 
broad range of conditions can be queried beyond 
the ones listed above. It is yet to be seen how this 
tool can help interpret a variety of biological data 
including available proteomics, gene expression 
(Birnbaum et al. 2003) as well as protein turnover 
rate data (Li et al. 2012, 2017).
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Fig. 4.5 Subcellular proteomics purity for Arabidopsis 
preparations. Published organellar separations during the 
last 15  years were retrieved from SUBA4 (http://suba.
live). The lists of organellar proteins were loaded into the 
MMAP tool (http://suba.live/toolbox- app.html) and the 
obtained enrichment data was extrapolated to cover the 
whole protein list. Obtained fractions were graphed for 
each organelle as median bar showing purity of individual 
studies in dots. MMAP multiple marker abundance 
profiling
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4.3  Future Directions in the Field

Despite the reasonable coverage of subcellular 
proteomics in Arabidopsis, recent tools have pin-
pointed that there are large gaps in the analysis of 
subcellular proteomes that require specialized 
attention. This includes the nucleus where only 
22% of the proteome have experimental data 
attached to it, whereas more than 50% of the 
plastid and peroxisome proteins have been exper-
imentally observed. Similarly, when using the 
MMAP tool, the unknown proteins are generally 
low-expressed proteins that are not easy to mea-
sure by MS/MS or FP.  The organelle-specific 
coverage was reflected in the struggle to find 
enough markers for the MMAP lists (Hooper 
et al. 2017b). Only two data sets describing ER 
(Dunkley et al. 2006; Nikolovski et al. 2012) and 
five data sets describing Golgi or Trans-Golgi 
network enrichments exist (Dunkley et al. 2006; 
Drakakaki et  al. 2012; Parsons et  al. 2012; 
Nikolovski et al. 2014; Heard et al. 2015), com-
pared to over 30 plastidial and mitochondrial 
separations that are available in SUBA. Using the 
MMAP tool to assess the subproteomes has 
shown that we need to pay particular attention to 

the nuclear and ER proteomes, as they have the 
poorest coverage and a poor purity (Figs. 4.5 and 
4.6). Targeted subcellular proteome mapping 
may be a much-needed focus for generating more 
complete subcellular proteomes for these less 
covered organelles or low abundance protein 
families.

While Arabidopsis subcellular proteomics has 
developed a solid omics presence, for crops this 
field is only now emerging. This is reflected in 
the much lower experimental coverage of crop 
proteomes for subcellular location. Considering 
that subcellular location has been regarded as 
crucial for determining protein function and 
belonging to biological processes and pathways 
(Cook and Cristea 2019), this is surprising and 
unsatisfying. The recent development of 
SUBAcon for Arabidopsis and WTA for crops 
enabled to fill these gaps and generated large 
enough data sets to assess the conservation of 
subcellular locations across 12 crop species and 
Arabidopsis. Subcellular location divergence of 
proteins is species-specific and harbors unex-
plored potential for data-driven agricultural 
breeding strategies. An increased understanding 
of how the subcellular location differences influ-
ence plant metabolism would be beneficial for 
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designing breeding strategies toward more sus-
tainable varieties. Protein subcellular location 
shifts have shown to increase plant growth, bio-
synthesis of secondary metabolites relevant to 
industrial production and therapeutic application 
(Shen et  al. 2019) and comparable strategies in 
protein biosynthesis has the potential to achieve 
crop varieties with higher protein content in 
crops. Computational modeling approaches are 
emerging as a promising way to test current 
hypotheses around crop metabolic traits based on 
protein subcellular location shifts (Terasawa 
et al. 2016; Tabbita et al. 2017). However, such 
metabolic models currently rely on available sub-
cellular data (Vinga et al. 2010) mainly derived 
from Arabidopsis through SUBA (Mintz-Oron 
et  al. 2012). Other species data has been too 
sparse causing errors and redundancies in crop 
metabolic models resulting in the removal of 
potentially species-specific reactions (Seaver 
et  al. 2012). The growing subcellular location 
resources SUBA and cropPAL will be an exciting 
contribution to achieving a better species-specific 
representation of such models in the near future.
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