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Abstract

The collection of all transcripts in a cell, a tis-
sue, or an organism is called the transcrip-
tome, or meta-transcriptome when dealing 
with the transcripts of a community of differ-
ent organisms. Nowadays, we have a vast 
array of technologies that allow us to assess 
the (meta-)transcriptome regarding its compo-

sition (which transcripts are produced) and the 
abundance of its components (what are the 
expression levels of each transcript), and we 
can do this across several samples, conditions, 
and time-points, at costs that are decreasing 
year after year, allowing experimental designs 
with ever-increasing complexity. Here we will 
present the current state of the art regarding 
the technologies that can be applied to the 
study of plant transcriptomes and their appli-
cations, including differential gene expression 
and coexpression analyses, identification of 
sequence polymorphisms, the application of 
machine learning for the identification of 
alternative splicing and ncRNAs, and the 
ranking of candidate genes for downstream 
studies. We continue with a collection of 
examples of these approaches in a diverse 
array of plant species to generate gene/tran-
script catalogs/atlases, population mapping, 
identification of genes related to stress pheno-
types, and phylogenomics. We finalize the 
chapter with some of our ideas about the 
future of this dynamic field in plant 
physiology.
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2.1  Introduction

The transcriptome is the collection of all RNA 
molecules found at a given time in an organism, 
in a tissue, or in a cell. Researchers today can 
study the full transcriptome, or a targeted tran-
scriptome (a defined subset of transcripts under a 
certain condition) using an array of different 
technologies, like microarrays, reverse transcrip-
tion quantitative PCR (RT-qPCR), and nucleic 
acid sequencing. In most approaches, the popula-
tion of RNA molecules should be first converted 
into the more stable cDNA, but recent advances 
and the development of new sequencing plat-
forms are allowing the direct sequencing of the 
RNA molecules, removing biases that could be 
introduced by the synthesis of cDNA (Garalde 
et  al. 2018; Keller et  al. 2018). Assessing the 
transcriptome offers an overview of the func-
tional component of a genome and of the genes 
that must be active in order to achieve a given 
transcriptional state. Transcriptomics studies 
have been employed to develop catalogs of 
expressed sequences, by the identification of 
mRNAs, small-RNAs (e.g., miRNA, snoRNAs), 
long-non-coding RNAs (lncRNAs) among oth-
ers. Also, to aid in the annotation of newly 
sequenced genomes, improving the inference and 
definition of gene structure, like start and end 
sites of the transcription, position of introns and 
exons, and alternative splicing patterns. Perhaps 
the most prevalent use of transcriptomics is the 
quantification of gene expression levels under 
different conditions aiming at revealing the 
molecular mechanisms underlying the establish-
ment of phenotypes and responses to stresses. 
Transcriptomics is increasingly being used to 
infer the function of genes, by exploiting co-
expression, under the assumption of “guilt-by-
association,” and for the identification of 
coordinated expression modules. The rapidly 
decreasing costs and wide availability of the 
diverse transcriptomics technologies are allow-
ing studies in diverse groups of plants and 
addressing evolutionary questions about the evo-
lution of expression patterns, gene expression 
and regulation networks, at a scale without 
precedent.

The earliest approaches that can be called 
transcriptomics studies relied on sequencing 
expressed sequence tags (ESTs) using the low- 
throughput Sanger chain-termination sequencing 
technology and started in the 1980s (see Fig. 2.1). 
EST sequencing projects were expensive and 
laborious but allowed assessing the functional 
fraction of a genome sequence at a fraction of the 
effort and cost. The wealth of sequence informa-
tion generated in these projects could be lever-
aged with the development of array-based 
hybridization technologies (macroarrays used 
nylon membranes and microarrays used glass 
slides), which offered higher throughput and had 
lower application costs than EST projects, once 
the development of the membranes/slides had 
been deduced. The first use of the words microar-
ray or macroarray in the scientific literature dates 
back to 1996, but their use really takes off in the 
2000s (Fig.  2.1). The use of ESTs and array-
based technologies was superseded by high-
throughput sequencing-based methods, first 
exploiting small transcript signatures (tags) and 
later the sequencing of complete or close to com-
plete transcripts.

In this chapter, we will introduce you to the 
basics of transcriptome studies, applications, and 
some examples in non-model plants.

2.2  Transcriptomics Approaches

2.2.1  Array-Based Approaches

Large-scale characterization of transcriptomes 
was made possible with the use of microarrays. 
In this technology, an array of oligonucleotide 
probes that are complementary to known tran-
scripts is immobilized on a glass slide. Next, 
cDNA molecules synthesized from RNA are 
hybridized with the probes, and signal intensities 
are assessed to provide a measure of transcript 
abundance. This provides an economical way of 
analyzing transcriptomes on a genome-wide 
scale. Microarrays are used nowadays for model 
species and economically important crops, pri-
marily due to low cost and laboratory routine.

D. M. Riaño-Pachón et al.
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However, this approach presents a number of 
disadvantages that have relevant practical impli-
cations. First, previous knowledge about the tran-
scripts of interest is required for designing the 
array chip, which hinders application for non- 
model species. This may introduce bias toward 
the specific sequences used to obtain the probes, 
which is particularly important for genes with 
multiple isoforms. Second, transcript abundance 
estimation is not accurate for lowly expressed 
genes, owing to background noise from nonspe-
cific hybridization, or for very highly expressed 
genes, due to probe saturation. The dynamic 
range of detection is thus limited. Third, cross- 
hybridization of transcripts with similar sequence 
can adversely affect expression estimates. Finally, 
intrinsic differences in hybridization exist 
between probes because of their sequence con-
tent (Marioni et al. 2008; Wang et al. 2009; Zhao 
et al. 2014).

Sequencing-based approaches resolve many 
of these issues and are now the method of choice 
for large-scale transcriptome profiling in a vari-
ety of scenarios. From now on, we will focus on 
these more recent strategies.

2.2.2  Sequencing-Based 
Approaches

In-depth knowledge and understanding of a plant 
genome, or any organism for that matter, involves 
the elaboration of a catalog of the genes present 
in the genome and information about the expres-
sion levels of the transcripts derived from these 
genes under a wide array of conditions. In both 
cases, one requires sequence data.

The most widely used technology in early 
genome projects was Expressed Sequence Tag 
(EST) sequencing (reviewed by Parkinson and 
Blaxter 2009). EST sequencing was employed to 
generate gene catalogs, both in model plants 
(Delseny et al. 1997; Weng et al. 2005; Asamizu 
et al. 1999; Banks et al. 2011) and in crops (e.g., 
Yamamoto and Sasaki 1997; Vettore et al. 2003; 
Ma et al. 2004; Pavy et al. 2005). In many cases, 
ESTs also served as a basis for the development 
of cDNA microarrays to query gene expression 
under different plant conditions or developmental 
stages (Lembke et al. 2012; Pavy et al. 2008). In 
most projects, ESTs were derived from normal-
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ized libraries, which meant that all transcripts 
have approximately the same probability to be 
sequenced. This readily reduces costs for gene 
discovery, but the gene expression levels and the 
dynamics of transcription regulation cannot be 
assessed.

With the creation and advance of high- 
throughput sequencing (HTS) technologies 
toward the end of the 1990s and in the early 
2000s, new approaches were applied to discover 
plant genes and transcripts and to assess the 
dynamics of transcription, and its regulation, 
like alternative transcription starting sites (TSS) 
and alternative splicing form usage. Among 
these approaches, one could mention Cap 
Analysis of Gene Expression—CAGE (de Hoon 
and Hayashizaki 2008) and Serial Analysis of 
Gene Expression—SAGE (Velculescu et  al. 
1995; Matsumura et  al. 2005), to name just a 
few, which are collectively known as tag 
sequencing approaches (Harbers and Carninci 
2005) (see “Tags” in Fig. 2.1). These technolo-
gies started by exploiting the traditional Sanger 
DNA sequencing method to assess transcription, 
but moved soon to exploit the newer, highly par-
allel and HTS technologies, and thus gained suf-
fixes like –deep or –seq and prefixes like ultra–, 
to differentiate them from their older lower 
throughput versions. Briefly, tag sequencing 
approaches aim to generate short sequence tags 
from the transcript ends, either the 5′ or the 3′ 
end. These short tags should unequivocally iden-
tify each transcript or genomic region, although 
it was not uncommon that a single tag could be 
mapped to more than one transcript/gene, par-
ticularly in cases of large gene families which 
are common in plants. In addition, the number of 
tags sequenced for each transcript is directly 
related to the transcript abundance in the original 
sample. Being based on short sequence tags 
from the transcript ends, these approaches were 
better suited for organisms whose genomes were 
already sequenced.

On the one hand, one of the main advantages 
of either EST or tag-sequencing approaches is 
the generation of a digital measure of gene 
expression, the number, or count, of a certain 
event, i.e., the sequencing of a complete, or part 

of a, RNA molecule. In contrast to an analogous 
measure, such as that offered by cDNA microar-
rays which is subject to probe saturation and thus 
has a low dynamic range, this digital measure is 
not saturated in the case of highly abundant tran-
scripts. For the case of lowly expressed tran-
scripts, the trivial alternative is to continue 
counting events until a certain number of rare 
events (lowly expressed transcripts) have been 
achieved, although this could have an important 
impact on the overall cost of the experiment. 
If  lowly expressed transcripts are the focus of 
the  study, then alternative approaches can be 
employed, such as targeted sequencing and 
reverse transcription quantitative PCR 
(RT-qPCR). On the other hand, the main draw-
back of both approaches (ESTs and tag-sequenc-
ing) is that neither of them provides the full 
representation of the underlying transcripts. 
Additionally, tag- sequencing and microarray 
approaches require preexisting knowledge about 
the transcript space of the species of interest, 
which impose serious limitations to its applica-
tion in non-model organisms.

2.2.2.1  RNA-Seq
The sequencing of transcriptomes employing 
HTS technologies, without focus on any particu-
lar region of the mRNA, in contrast to CAGE or 
SAGE, is known as RNA-Seq. The first publica-
tions using the word RNA-Seq appeared between 
2006 and 2008 applied to few organisms 
(Mortazavi et al. 2008; Nagalakshmi et al. 2008; 
Bainbridge et  al. 2006; Wilhelm et  al. 2008; 
Cloonan et al. 2008), also including Arabidopsis 
thaliana, the model land plant (Lister et al. 2008) 
(see “RNA-Seq” in Fig. 2.1).

The synthesis and maturation of transcripts is 
a finely regulated process that allows the plant 
cell to produce the required gene products in the 
proper quantities and at the proper times and 
places. Within a single experiment, RNA-Seq 
allows the discovery of expression levels, splic-
ing events (Marquez et  al. 2012; Shang et  al. 
2017; Brown et al. 2017), RNA editing (Hackett 
and Lu 2017), and mutations (Peng et al. 2016; 
Serin et  al. 2017). RNA-Seq paves the way for 
the understanding of the rules governing RNA 
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regulation and the underlying regulatory net-
works, thus generating new insights on plant 
development and the response to biotic and abi-
otic (Imadi et al. 2015) stresses at the cellular and 
molecular levels.

The main steps in any RNA-Seq project are 
(1) sample preparation, (2) library preparation 
and (3) sample sequencing.

(1) Sample preparation consists on the isola-
tion of RNA from the biological samples of inter-
est. Plant cells have different types of RNA 
molecules, like messenger RNA (mRNA), ribo-
somal RNA (rRNA), transfer RNA (tRNA), and 
other types of non-coding RNA (ncRNA). Over 
95% of the transcript population in a cell consists 
of rRNA and tRNA species (Rosenow et  al. 
2001). Thus, to assess, via HTS technologies, the 
other transcript species, samples must be pro-
cessed in special ways. For instance, if the objec-
tive of the project is to assess mRNAs transcribed 
by RNA pol II (which are mostly genes that will 
eventually undergo translation), one can exploit 
the fact that these eukaryotic mRNAs are polyad-
enylated, by fishing for these transcripts using 
poly-dT oligonucleotides, effectively excluding 
the large fraction of rRNA and other ncRNAs. On 
the other hand, if one is interested in evaluating 
the whole transcriptome (mRNA  +  all types of 
ncRNAs, only excluding rRNA), then there are 
approaches to specifically remove rRNA from 
the sample, usually employing hybridization 
techniques, methods that are usually referred to 
as ribo-depletion (O’Neil et  al. 2013). 
Additionally, the goal of the study could be to 
focus on small ncRNAs, in that case one would 
perform a size fractionation and selection step.

As part of (2) library preparation, for short- 
read HTS technologies (see below for long-read 
HTS technologies), the isolated RNA must be 
converted into double-stranded cDNA and frag-
mented. Fragments should be ligated to adapters 
to allow amplification and sequencing. At this 
point, it is important to remember that a given 
message in the genome is encoded in one of the 
two strands of the DNA double helix, and thus it 
is important in most cases to keep the informa-
tion of which strand was transcribed. In general, 
one can divide the library preparation methods in 

two groups, those that keep the strand informa-
tion (strand-specific protocols) and those that do 
not (often called unstranded protocols). Today, 
most RNA-Seq datasets are still being generated 
using library preparation protocols that do not 
keep the strand information. For instance, from 
219,832 green plant datasets using RNA as 
source in RNA-Seq experiments in the Short 
Read Archive (SRA; https://www.ncbi.nlm.nih.
gov/sra/; July 2020), only 5995 have ‘strand-spe-
cific’ in their description.

(3) Sample sequencing is carried out in mas-
sively parallel sequencing instruments, paying 
attention to the dependence between library prep-
aration method and sequencing instrument. The 
most widely available technologies for RNA-Seq 
are those released by Illumina Inc, i.e., using 
reversible-terminators sequencing-by-synthesis 
technology (Bentley et al. 2008; Illumina 2010), 
within their sequencing instruments MiSeq, 
HiSeq, NextSeq, or NovaSeq. Samples prepared 
with Illumina library construction methods are 
compatible with any of their instruments, the 
only difference being on the throughput obtained, 
e.g., number of sequenced fragments and number 
of samples that can be analyzed simultaneously.

Before you start your RNA-Seq project, you 
must develop the experimental design that will 
allow you to answer biologically relevant ques-
tions with a predefined level of certainty. Here we 
will only highlight two factors among the many 
that must be taken into account during the experi-
mental design phase: (1) number of biological 
replicates and (2) number of sequenced frag-
ments per sample. The number of replicates 
depends on your final goal. On the one hand, if 
your goal is to make a catalog of genes present in 
an organism’s genome, typical when sequencing 
a new genome and preparing for annotating it, 
then preparing a single, or few, library from a 
pool of tissues and/or conditions might be 
enough. On the other hand, if you plan to evalu-
ate the statistically significant differences in gene 
expression values between different conditions, 
then a higher number of replicates is required. 
Depending on the size of the effects that are 
desired to be detected, if only changes around 
two to threefold are sought, then a number of bio-
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logical replicates around five should suffice in 
most cases; a higher number of replicates would 
be required to detect smaller changes in expres-
sion values (Schurch et al. 2016). Regarding the 
number of sequenced fragments, you should keep 
in mind that RNA-Seq is basically a random sam-
pling process. If your goal is to assess statistical 
differences among conditions, you must check 
whether your sampling is deep enough to support 
your conclusions. A few approaches have been 
proposed to check for this, all of them are based 
on resampling your reads, and counting a feature 
of interest for each subsample for increasingly 
large subsamples. If the sequencing depth is high 
enough, you would expect that the number of a 
given feature is close to saturation with increas-
ing number of resampled reads. There are a few 
approaches to achieve this. First you could count 
the number of transcripts that are detected at dif-
ferent fractions of the original datasets, e.g., 5%, 
10%, 20, of the original reads; if sampling is deep 
enough, you would expect to find a plateau 
(Garcia-Ortega and Martinez 2015). Similarly, 
instead of looking at the number of transcripts, 
you can look at the number of exon–exon junc-
tions detected with increasingly large samples of 
the reads; again you expect to achieve a plateau if 
your sequencing depth was saturated. This can be 
achieved with the junction-saturation.py script 
part of RSeQC (Wang et al. 2012). It is important 
to note that, despite sequencing depth being 
important, especially for lowly expressed genes, 
the number of biological replicates is much more 
important, and if you have to choose between 
more depth or more biological replicates, you 
should always choose the latter (Liu et al. 2014; 
Lamarre et al. 2018; Baccarella et al. 2018).

Regarding the sequencing depth, it is impor-
tant to keep in mind that under several condi-
tions, a large fraction of the reads would originate 
from one or a few transcripts. For instance, when 
doing sequencing of total RNA, you will have a 
large fraction of sequencing reads originating 
from rRNA transcripts, which can be up to 90% 
of the total RNA in the cell (Conesa et al. 2016). 
In these cases, you should try to deplete your 
sample from rRNA transcripts, for which several 
options are available in the market (Conesa et al. 

2016; Hrdlickova et  al. 2017; NuGen n.d.; 
siTOOLsBiotech 2018). However, not only 
rRNA transcripts exhibit such high abundance. A 
recent study of the A. thaliana transcriptome 
identified over 4000 ubiquitously and extremely 
highly expressed transcripts (Sun et al. 2014). If 
your specific project aims at assessing the expres-
sion of lowly expressed and rare transcripts, it 
might be important to deplete these ubiquitous 
and highly expressed transcripts, for such case, 
some alternatives for library preparation are 
available, as the AnyDeplete or riboPools tech-
nologies (NuGen n.d.; siTOOLsBiotech 2018).

2.2.2.2  Strand-Specific RNA-Seq
The existence of overlapping genes (genes whose 
transcripts are encoded—completely, or most 
frequently partially—in opposite strands of the 
same genomic region) in plants has been known 
for some years (Quesada et al. 1999; Xiao et al. 
2005). Natural antisense transcripts (NATs) are 
RNA molecules that can have regions of sequence 
complementary to other RNAs and that can regu-
late the expression level of their target genes. 
Particularly, cis-NATs are pairs of transcripts that 
overlap on the genome. Disambiguating the 
expression levels of the two overlapping tran-
scripts requires data that keep the information 
about which strand was transcribed (see for 
example, Britto-Kido Sde et  al. 2013; Li et  al. 
2013a; Jin et al. 2008; Riano-Pachon et al. 2016). 
Between 7% and 8% of genes in rice (Osato et al. 
2003) and Arabidopsis (Wang et  al. 2005; Jen 
et  al. 2005), respectively, are cis-NATs, recent 
studies suggesting even higher rates of cis-NATs 
(Oono et al. 2017; Zhao et al. 2018). Figure 2.2 
illustrates the importance to have strand informa-
tion for transcriptome analyses.

Currently, three technologies are widely avail-
able that can maintain strand information: 
Illumina’s TruSeq Stranded library preparation 
kits, Pacific Biosciences’s IsoSeq, and Oxford 
Nanopore Technologies’s direct rRNA sequenc-
ing. Perhaps the most pervasive of the three in the 
market is the one commercialized by Illumina in 
their TruSeq Stranded library preparation kits, 
which use the deoxy-UTP strand-marking strat-
egy. The Illumina instruments are capable of 
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sequencing double-stranded DNA molecules 
(dsDNA), but not single-stranded RNA mole-
cules (ssRNA), so transcript sequences, which 
are made of ssRNA, must be transformed into 
dsDNA molecules by a process called cDNA 
synthesis. Briefly, the RNA molecules are frag-
mented, and each resulting fragment will be used 
for the synthesis of dscDNA in a two-step pro-
cess. The first step, called First-Strand Synthesis 
(FSS), uses random primers, reverse transcrip-
tase, and all the four deoxy nucleotides (dATP, 
dTTP, dCTP, and dGTP), resulting in a hybrid 
double-stranded RNA-DNA molecule. After 
FSS, the RNA molecule is degraded. In the sec-
ond step, called Second-Strand Synthesis, the 
dTTP is replaced with dUTP. At the end of SSS, 
there is a dsDNA molecule, in which the strand 
with dTTP is the reverse complement of the 
sequence that was transcribed, and the strand 

with dUTP corresponds to the transcribed 
sequence. At this stage, the information about 
which strand was transcribed is already encoded 
in the chemistry of the created dscDNA. In the 
following step, the typical asymmetric Illumina 
Y-adapters are ligated to the dscDNA fragments. 
The incorporation of dUTP will quench the syn-
thesis of the second strand during downstream 
amplification steps (Illumina 2017) or could be 
selectively degraded by Uracil-DNA-Glycosylase 
(UDG) (Borodina et al. 2011). Deciding whether 
an RNA-Seq dataset is stranded or not is quite 
easy and can be achieved by visual inspection of 
the reads mapped to either the genome or the 
transcriptome. However, some packages can aid 
inferring this, and are very useful when dealing 
with tens or hundreds of samples, some examples 
are the infer_experiment.py module part of 
RSeQC (Wang et  al. 2012), or the option --lib-

Fig. 2.2 Use of strand-specific information to disambig-
uate the expression of overlapping genes. Two overlap-
ping genes g1 in the Watson strand and g2 in the Crick 
strand shown in two different experimental conditions, X 
and Y. The symbol * indicates that g2 is an unknown 
(unannotated gene). Short sequencing reads appear either 
above or below the DNA strands as short line, each line 
representing a sequencing fragment. (a). The real case: g1 
is expressed in both conditions X and Y, with similar or 
identical abundances, while g2 is only expressed in condi-
tion Y. (b) Sequencing results obtained with a protocol 
that ignores (or loses during library preparation) the infor-
mation about which strand generated the reads. Only 

reads that overlap with annotated features are counted 
(dashed line in condition Y). In condition Y, many of the 
reads originated from the gene g2 will counted as if they 
were from gene g1 (reads shown in black). This will lead 
to the wrong conclusion that the expression of g1 in condi-
tion Y is higher than in condition X. (c) Using a protocol 
that keeps strand information (strand-specific), in condi-
tion Y only the reads in black will be assigned to g1, and 
the additional reads in gray will hint toward the existence 
of an additional gene in the same locus that is only 
expressed in condition Y. The abundances of g1 in condi-
tion X and Y will be similar and will not lead to a differen-
tial expression call, as in (b)

2 Modern Approaches for Transcriptome Analyses in Plants
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Type A in Salmon (Patro et  al. 2017), to name 
just a couple.

Data obtained from sequencing libraries pre-
pared in such a way can be exploited either to 
map directly to a reference genome or transcrip-
tome or build a de novo transcriptome assembly, 
in both cases exploiting the strand information 
and leading to correct directionality of the identi-
fied transcripts, with the potential for the identifi-
cation of novel transcripts.

2.2.2.3  Long Read RNA Sequencing
Next-generation sequencing (NGS) technologies 
afforded the most widely used tools for transcrip-
tome analysis in the recent years and are likely to 
remain pervasively used for many years to come. 
Still, RNA-Seq is not devoid of biases and limita-
tions, notably about transcript identification and 
isoform disambiguation, as well as expression- 
level estimation. Short reads can be ambiguous, 
map to multiple locations, and originate from low-
complexity sequences that hamper alignment.

The ability to sequence full-length transcripts, 
from the 5′ end to the poly-A tail, in principle 
allows complete differentiation of isoforms, with 
no ambiguity in assigning fragments to tran-
scripts. It also eliminates the need for (de novo) 
transcript assembly. Third-generation sequencing 
(TGS) technologies already provide the means 
for achieving this goal, at least for a large fraction 
of the transcripts, with long reads that completely 
cover molecules with lengths upwards of 10 kbp. 
Besides facilitating transcript identification, long 
reads boost transcriptome analyses through the 
discovery of novel genes, novel isoforms, and 
detection of fusion transcripts (Rhoads and Au 
2015; Shi et al. 2016). Even previously annotated 
sequences can be enhanced with these technolo-
gies, through correction of existing gene models 
(Liu et al. 2017). Furthermore, PCR-free proto-
cols get rid of amplification biases that affect 
expression quantification.

One such technology is the Iso-Seq method 
(Rhoads and Au 2015) from Pacific Biosciences 
(PacBio). This isoform sequencing strategy has 
shown power to discriminate transcript isoforms 
in some important species (Abdel-Ghany et  al. 
2016; Li et al. 2018), including some with very 

complex genomes, such as cotton (Wang et  al. 
2018b), coffee (Cheng et al. 2017), and even the 
highly polyploid sugarcane (Hoang et  al. 2017; 
Piriyapongsa et  al. 2018). These studies collec-
tively show that RNA-Seq based exclusively on 
short reads renders a limited view of the transcrip-
tome, because of partial isoform identification 
and inaccuracies in expression quantification.

Long reads can also be obtained with the 
Oxford Nanopore technology. In addition to 
sequencing cDNA molecules, this approach 
allows direct RNA sequencing (Garalde et  al. 
2018), an alternative that removes reverse tran-
scription biases and helps in identifying other 
types of RNA molecules, such as long non- 
coding and antisense RNAs (Jenjaroenpun et al. 
2018). These technologies can also be applied for 
characterizing transcriptomes of individual cells 
(Byrne et al. 2017).

Despite these benefits, a series of practical 
concerns still limit the widespread application of 
third-generation sequencing technologies. Even 
though success in sequencing full-length tran-
scripts is highly advantageous for cataloging the 
transcriptome of cells, quantitation is a different 
matter. Although potentially less biased for tran-
script abundance estimation (Byrne et al. 2017), 
the current lower throughput of these approaches 
prevents accurate quantification of transcripts in 
the wide dynamic range of expression levels, 
with more pronounced effects on lowly expressed 
transcripts. Increasing sequencing depth can cir-
cumvent this issue, but this is presently limited 
by the higher cost of long reads, such that efforts 
in improving throughput and lowering costs are 
vital.

Another obstacle is that sequencing errors 
rates are substantially higher for state-of-the-art 
long read technologies (Jenjaroenpun et  al. 
2018). Error rates in Iso-Seq reads can be greatly 
reduced by the so-called circular consensus 
sequence (CCS), in which the same molecule is 
repeatedly sequenced (Rhoads and Au 2015; Liu 
et al. 2017). However, this is not yet feasible for 
long, single-pass transcripts, which still suffer 
from lower sequencing accuracy. Hybrid strate-
gies that combine the transcript identification 
power of TGS with the massive read volume of 
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NGS enable error correction and abundance esti-
mation for a more complete and trustworthy tran-
scriptome characterization (Li et  al. 2018; 
Jenjaroenpun et al. 2018).

2.2.3  Transcriptome Assembly

2.2.3.1  Genome-Guided Transcriptome 
Assembly

When the genome sequence of the species under 
study is available, one can choose to try assem-
bling the transcriptome from raw data (short 
reads) using the genome as a guide. This proce-
dure consists of mapping the RNA-Seq reads 
onto the reference genome sequence and then 
looking for clusters of sequencing reads repre-
senting putative isoform transcripts that should 
be assembled. During the mapping step, the read 
mapper employed must be aware of spliced-
reads, that is reads that span exon–exon borders, 
like HiSAT2 (Kim et  al. 2015, 2019), STAR 
(Dobin et  al. 2013), or GSNAP (Wu and Nacu 
2010), among others. After reads have been 
mapped and clustered along the genome 
sequence, these clusters of reads are usually rep-
resented as a graph (Florea and Salzberg 2013). 
The graph model could be a splice graph, where 
exons or parts of exons are represented as nodes 
and edges represent possible splice variants, 
implemented in the software Stringtie (Pertea 
et  al. 2015), or an overlap graph, where nodes 
represent sequence fragments or reads (k-mers) 
and edges connect sequence fragments if they 
overlap and have a compatible splice pattern, 
implemented in software such as Cufflinks, 
Scripture, and Trinity (Trapnell et al. 2010; Haas 
et  al. 2013; Guttman et  al. 2010). Alternatively 
the genome sequence could be just used to cluster 
reads together to be then de novo assembled, 
using software such as Trinity (Haas et al. 2013; 
Grabherr et al. 2011).

Genome-guided transcriptome assembly is 
usually more precise than de novo transcriptome 
assembly (see below), as it is less sensitive to 
sequencing errors, polymorphisms, and paralo-
gous loci (Ungaro et al. 2017; Zhao et al. 2011). 
It is important to note, though, that it could only 

help in recovering/assembling the transcripts that 
are present in the sequence used as reference, so 
variation between individual, ecotypes, cultivars, 
etc. would be missed. This has been highlighted 
in recent studies about the pan-transcriptome and 
pan-genome of diverse plant species (Gao et al. 
2019; Ma et  al. 2019). Also, if the genome 
sequence used as reference is fragmented, exons 
or whole transcripts could be located in sequenc-
ing gaps. An alternative to overcome these limita-
tions would be the generation of a comprehensive, 
or non-redundant, transcriptome, that leverages 
the information of the genome-guided transcript 
assembly and of de novo transcript assemblies 
(Visser et al. 2015; Jain et al. 2013). The PASA 
pipeline (Haas et al. 2003) and CD-HIT-EST (Fu 
et  al. 2012) can generate such non-redundant 
transcriptome representations, by controlling the 
minimum fraction identity, and length aligned to 
create transcript clusters. Clustering at 100% 
identity would be the most basic level of cluster-
ing, and lower values, like 99% or 95% identity, 
could be useful to cluster transcripts originating 
from the same locus via alternative splicing, 
allelic versions, or closely related paralogous 
genes. GET-HOMOLOGUES-EST could 
enhance the generation of a comprehensive tran-
scriptome, while taking into account coding 
potential, the presence of conserved protein 
domains, and information from closely related 
species or individuals within a polymorphic spe-
cies (Contreras-Moreira et al. 2017).

2.2.3.2  De Novo Transcriptome 
Assembly

The availability of an annotated reference 
genome sequence eases the analysis of RNA-Seq 
data, by dividing the problem of transcript assem-
bly and quantification into substantially smaller 
subsets. In this situation, sets of reads aligning 
against a particular genomic region can be ana-
lyzed independently of the remainder of the 
sequencing data.

It is nevertheless possible to carry out a thor-
ough transcriptome analysis for non-model plant 
species lacking a reference genome (Collins et al. 
2008). When available, the genome sequence of a 
closely related species can be used as a reference. 
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Alternatively, instead of aligning the reads 
against genomic sequences, a transcriptome ref-
erence can be assembled de novo based on the 
RNA-Seq reads alone. This provides a cost- 
effective means of applying functional genomics 
tools to less well-studied organisms. It can also 
shorten the path to biological insight because any 
species can potentially be studied without the 
need for previous genomic knowledge. However, 
de novo transcript assembly is one of the most 
difficult tasks in bioinformatics (Garg and Jain 
2013).

The most widely used de novo transcriptome 
assemblers are based on a de Bruijn graph, a data 
structure that compactly represents the sequences 
of hundreds of millions of short sequencing 
reads. Construction of a de Bruijn graph involves 
parsing the collection of reads and extracting 
k-mers of a certain size. A k-mer is a subsequence 
of length k contained in any biological sequence 
segment, such as a read, a transcript, or even an 
entire chromosome. In a standard de Bruijn 
graph, each existing k-mer is represented by a 
node, or vertex. If a suffix of length k − 1 of a 
given node matches the k  – 1 prefix of another 
node, an edge connecting these vertices is used to 
represent this overlap. After obtaining this graph, 
assembly software packages usually perform sev-
eral (combinations of) steps of error correction, 
graph simplification and collapsing, scaffolding, 
and gap closure. Finally, graph traversal based on 
sequencing read information can be used to 
reconstruct contigs representing transcripts.

Contig assembly algorithms based on de 
Bruijn graphs were initially devised for genome 
assembly based on high depth sequencing data. 
Indeed, many of the currently available transcrip-
tome assemblers were built relying on previously 
existing genome assemblers. For example, Oases 
(Schulz et al. 2012) is a pipeline built on top the 
Velvet genome assembler (Zerbino and Birney 
2008). Similarly, Trans-ABySS (Robertson et al. 
2010) is based on ABySS (Simpson et al. 2009), 
and SOAPdenovo-Trans (Xie et  al. 2014) uses 
the de Bruijn graph from SOAPdenovo2 (Luo 
et al. 2012) as a starting point. Following a more 
widespread adoption of RNA sequencing studies, 
proper de novo assemblers such as Trinity 

(Grabherr et al. 2011; Haas et al. 2013), were also 
developed from scratch to tackle the challenges 
posed by these datasets.

Despite using an underlying data structure 
similar to genome assemblers, these software 
packages take into account unique features of the 
RNA-Seq data to drive the assembly strategy and 
address several particular issues. While the goal 
in genome assembly is to produce a few large 
(chromosome-sized) sequences, transcriptome 
assembly aims to reconstruct tens of thousands of 
sequences, each representing a different tran-
script. Also, coverage depth in RNA sequencing 
is heavily dependent on gene expression levels, 
such that approaches for assembling lowly or 
highly expressed genes can differ.

These de novo assembly methods can natu-
rally handle alternative splicing arising from 
RNA processing after transcription. Ideally, a 
transcriptome assembly should contain full- 
length transcripts accurately representing differ-
ent isoforms, while also separating paralogs from 
large gene families. For polyploid species, the 
presence of multiple alleles and homeologs adds 
another layer of complexity that makes assembly 
an even harder exercise. In this context, it is note-
worthy that long-range information from paired- 
end and/or longer sequencing reads provide a 
valuable resource that can greatly enhance 
assembly quality by simplifying the recovery of 
full-length transcripts.

Even though the current transcriptome assem-
blers are based on similar basic concepts and 
share many features, they differ widely in run-
ning time and required memory. They also stand 
apart in their ability to recover full-length tran-
scripts from datasets with varying sequencing 
depth, obtained from species with distinct tran-
scriptome complexity. Comparisons among 
assemblers can reveal scenarios in which particu-
lar combinations of software and parameters 
show superior performance (Zhao et al. 2011).

Finally, functional annotation of the assem-
bled transcripts is commonly done to provide 
meaningful biological information about each 
resulting sequence. This usually entails adding 
gene ontology terms (Ashburner et  al. 2000; 
Gene Ontology Consortium 2017) and pathway 
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information from KEGG (Kyoto Encyclopedia of 
Genes and Genomes) (Kanehisa and Goto 2000; 
Kanehisa et al. 2016), to the transcripts, as well 
as searching for protein domains. Pipelines for 
performing such annotation include Blast2GO 
(Conesa et al. 2005) and Trinotate (Bryant et al. 
2017).

2.2.3.3  Assessment of Transcript 
Assemblies

The goal of transcriptome assembly, either 
genome-guided or de novo, is to generate a truly 
complete collection of all the transcripts pro-
duced by an organism. However, attaining that 
goal is in most real cases unlikely, some of the 
reasons for this include: (1) Sequencing depth is 
limiting, and lowly abundant transcripts are not 
represented in the sequencing data. (2) Biases of 
the sequencing depth limit the observation of cer-
tain transcripts, e.g., problems with high GC con-
tent sequences. (3) Not all possible transcripts are 
expressed at a given moment, a good transcrip-
tome coverage should include a survey of sam-
ples from different developmental stages, 
growing conditions, tissues, and organs. Thus, 
we need tools to assess the quality and complete-
ness of a generated transcriptome assembly 
(Honaas et al. 2016; Moreton et al. 2015; Li et al. 
2014; Smith-Unna et al. 2016). In the following, 
we describe some of the most important metrics 
to evaluate a transcriptome assembly.

Evaluation of Sequencing Depth
There are two related questions that are often 
asked at the beginning of any transcriptome study 
using NGS. (1) How many reads should be gen-
erated to capture most/all of the transcripts? (2) 
Are the reads generated enough to make statisti-
cal inferences or to get a complete overview of 
the transcriptome? In order to answer these, one 
can evaluate the degree of read saturation present 
in the assembly as a function of sampling effort, 
using an approach analogous to that of species 
accumulation curves (rarefaction curves) in bio-
diversity studies. This approach will allow to 
decide whether sequencing depth has been 
enough to capture all transcripts in the sample 
(Hale et  al. 2009). At the beginning of a study, 

before generating the data, one could carry out a 
pilot study with shallow sequencing depths, that 
could help estimating the depth required to cap-
ture all or most of the transcripts. Alternatively, 
and if a genome reference is available, one could 
evaluate the saturation of orthogonal features, for 
instance the number of exon–exon junctions sup-
ported by the sequencing reads at different levels 
of sequencing effort, this approach has been 
implemented in the tool junction_saturation.py in 
the package RSeQC (Wang et al. 2012).

Percent Reads Mapped
The proportion of reads that map back to the 
assembly is also a measure of assembly and data 
quality. In principle one wants most of the origi-
nal read data (after quality trimming) mapping to 
the transcriptome assembly. However, when 
using a genome as a reference (or the transcrip-
tome derived from the genome sequence), a low 
percent of reads mapping could also be indicative 
of large diversity between the reference and the 
sample, or of contamination, and further analyses 
would be required.

Identification of Sets of Conserved Genes
Genes that appear in all of the best-known 
genomes can be exploited to evaluate the com-
pleteness of a transcriptome assembly. The tool 
Benchmarking Universal Single-Copy Ortholog 
(BUSCO) has sets of conserved single-copy 
orthologous genes present at diverse taxonomic 
levels, e.g., Viridiplantae (green plants), 
Embryophyta (land plants) (Waterhouse et  al. 
2017). A transcriptome that was assembled from 
samples representing different developmental 
stages, growth conditions, tissues and organs, 
should have a good representation of these con-
served single-copy gene sets. On the other hand, 
a transcriptome representing a single condition 
could have a low value for this metric, corrobo-
rating its specificity. Alternatively one could also 
compare the assembled transcripts to the tran-
scripts (or proteins) of a related species, these are 
usually called reference-based or comparative 
metrics and are implemented in tools such as 
TransRate (Smith-Unna et al. 2016) or Detonate’s 
REF-EVAL (Li et al. 2014).
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Contamination Screening and Filtration
NGS data can easily be contaminated, but it is 
important to note that there are different sources 
of contaminants. There can be internal contami-
nants, for instance, mitochondrial and plastid 
sequences, or ribosomal RNA sequences. Or 
there could be external contaminants, genetic 
material from other organism present in the sam-
ple, e.g., symbionts, pests, fungi, or bacteria. In 
general, contamination should be removed as 
early as possible, in order to reduce computa-
tional costs, fragmentation of the assembly and 
the chance to generate chimeric transcripts (Zhou 
et  al. 2018). For example, BBDuk (https://jgi.
doe.gov/data- and- tools/bbtools/) can be used to 
efficiently remove rRNA reads by comparing 
them against the SILVA database (Quast et  al. 
2013). A similar approach could be followed to 
eliminate reads from other contaminants if they 
have been previously identified. The presence of 
rRNA could be exploited to identify which con-
taminants (if any) are present in the sample.

2.2.4  Transcript Quantification

2.2.4.1  Alignment/Mapping-Based 
Approaches

Transcriptome characterization via RNA-Seq not 
only provides a catalog of transcripts present in a 
particular sample of cells, but also yields quanti-
tative information that allows expression levels to 
be assessed. This is true both for species with and 
without a reference genome. A major step for 
obtaining expression estimates is to assign 
sequencing reads to genes or transcripts, which is 
commonly accomplished by first aligning them 
to a reference genome or transcriptome sequence.

Development and application of alignment 
algorithms has been one of the most active research 
areas in bioinformatics, and consequently, there is 
a wide range of tools available for various pur-
poses. The majority of alignment algorithms tai-
lored for short reads use indexing strategies that 
can be categorized into two main approaches: a 
seed-and-extend strategy based on hash tables or 
alignment based on a  Burrows- Wheeler transform 
(Flicek and Birney 2009; Trapnell and Salzberg 
2009; Li and Homer 2010).

Short read sequence aligners were initially 
developed for aligning genomic reads against a 
reference genome. In this situation, reads are 
expected to align contiguously against the refer-
ence, except for minor gaps which may stem 
from small indels or sequencing errors. Reads 
from RNA-Seq libraries, on the other hand, origi-
nate from cDNA molecules synthesized from 
mature mRNA templates, from which introns 
have been stripped off. Aligning RNA-Seq reads 
against a reference genome then requires splice- 
aware aligners, which appropriately handle reads 
that span exon junctions, without penalizing long 
gaps corresponding to introns. This class of 
aligners includes TopHat2 (Trapnell et al. 2009; 
Kim et al. 2013), which has been superseded by 
HISAT2 (Kim et  al. 2015) and STAR (Dobin 
et al. 2013). An interesting quality of these align-
ers is that they can not only use previously anno-
tated splice junctions, but also discover novel 
junctions and isoforms.

Following alignment, mapped reads can be 
assigned to annotated features in the genome. A 
simple and widely used way to measure expres-
sion levels is to count the number of reads over-
lapping a feature of interest. This is the approach 
implemented in programs such as HTSeq (Anders 
et  al. 2015) and the featureCounts (Liao et  al. 
2014) component of the Subread package (Liao 
et al. 2013).

Reflecting the nature of gene expression, feature 
annotation follows a hierarchy of terms, with a 
gene frequently corresponding to the highest- level 
term. Any given gene may originate one or more 
transcripts, which in turn may contain one or more 
exons and compose one or more coding sequences. 
Read counts can be obtained for features at any 
level desired, but it is frequent to count reads over-
lapping exons. Depending on the goals of the study, 
features may then be grouped to obtain expression 
levels for meta-features. For instance, counts for all 
exons of a given transcript may be combined to get 
a transcript-level expression estimate, or all exons 
of all transcripts of a gene may be used to yield a 
gene-level read count. It is important to realize that, 
when working with paired-end read information, 
both reads of a pair come from a single molecule 
fragment, such that they should contribute only 
once to the expression count.

D. M. Riaño-Pachón et al.

https://jgi.doe.gov/data-and-tools/bbtools/
https://jgi.doe.gov/data-and-tools/bbtools/


23

It is not always possible to uniquely assign a 
read to a feature or meta-feature. In some cases, 
there are overlapping features in an annotated 
genome reference, as a consequence of the 
structural organization of genes in the species of 
interest. Reads that align to a genomic region 
covered by two or more genes may not unequiv-
ocally be assigned to any one of them. Much of 
this ambiguity can be worked out by using 
stranded RNA- Seq library preparation, because 
overlapping genes may be transcribed in oppos-
ing directions.

Additionally, different gene isoforms can 
share a common exon, such that reads overlap-
ping this exon are ambiguous. Lastly, the aligner 
may report multiple possible mappings for some 
reads, due to sequence similarity between mem-
bers of a gene family, conserved protein domains 
and sequencing errors. The researcher can decide 
whether to simply discard multimapping or 
ambiguous reads, count them for all overlapping 
features or assign them heuristically. It should be 
noted that ambiguities at a given annotation level 
may not represent ambiguities at a higher level 
(e.g., a read mapping to an exon shared by mul-
tiple isoforms is ambiguous at the transcript 
level, but not at the gene level).

When using a de novo assembled transcrip-
tome, introns are virtually absent from the refer-
ence, and therefore, one may use standard 
sequence aligners, such as BWA-MEM (Li and 
Durbin 2009; Li 2013) and Bowtie2 (Langmead 
et  al. 2009; Langmead and Salzberg 2012). 
Splice-aware aligners also have modes for align-
ing reads against a splice junction-free reference 
sequence. For expression level quantification, in 
this case each contig can independently be treated 
as a feature. In fact, some assemblers such as 
Trans-ABySS may internally leverage the align-
ment of reads to contigs and automatically pro-
vide a measure of the per-contig expression level. 
The simplicity of the feature annotation in an 
assembled transcriptome does not mean that 
alignment and quantification are an easier 
endeavor. In fact, the issue of multiply aligned 
reads can be even more challenging in this situa-
tion, as it can be hard to distinguish between 
paralogs of the same gene.

These ambiguity issues have prompted alterna-
tive approaches for obtaining expression esti-
mates to be devised. Because of the uncertainty in 
determining the transcript of origin of sequencing 
reads, one such possibility is to use mixture- 
model procedures that probabilistically assign 
reads to features, instead of simply counting over-
lapped fragments. As an example, the RSEM 
method (Li et al. 2010; Li and Dewey 2011) gen-
erates maximum likelihood or Bayesian expres-
sion estimates based on several variables of the 
annotated feature set and of the aligned reads, 
such as length, orientation, and quality scores. 
The main underlying principle is that uniquely 
aligned reads can also provide information for the 
(probabilistic) assignment of ambiguous reads. 
For example, suppose that two isoforms of a gene 
share one common exon, but also contain one 
exclusive exon each. If a large number of frag-
ments align to one of the exclusive exons, while 
the other shows no overlapping reads, it is likely 
that fragments overlapping the common exon also 
originate from the isoform with a higher expres-
sion level based on the uniquely aligned reads.

Similarly, the Stringtie package formulates the 
simultaneous estimation of isoform assembly and 
abundance as a maximum network flow problem 
(Kovaka et  al. 2019; Pertea et  al. 2015). This 
maximum flow approach has been shown to be as 
accurate as the maximum likelihood approach in 
cufflinks (Trapnell et al. 2010), but it is able to 
recover a larger fraction of bona fide transcripts 
(Kovaka et  al. 2019). In the maximum flow 
approach, a path in the splice graph with the 
heaviest coverage is used to build a flow network, 
this path represents a transcript, which is then 
removed from the splice graph, and a new path 
with the heaviest coverage is sought, until no 
more transcripts are assembled. The coverage for 
each assembled transcript is used to represent 
expression values as FPKM (fragments per kilo-
base million) and TPM (transcripts per million).

These difficulties in estimating expression 
levels are substantial enough for diploid model 
species. The situation may be considerably harder 
for researchers dealing with polyploid organisms, 
because of the added complexity from homeo-
logs and multiple alleles. It is reasonable to 
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assume that probabilistic strategies for read 
assignment may provide more accurate estimates 
of transcript abundance in this case.

Finally, a brief comment on expression-level 
normalization is needed. Transcript read counts 
are influenced by the length of the transcript and 
the size of the sequenced library, i.e., the number 
of fragments obtained from a given sample. Read 
counts are expected to be higher for longer tran-
scripts and larger libraries. Many downstream 
application packages directly handle raw read 
counts, but it is not always straightforward to 
interpret raw values. For reporting expression lev-
els, for instance, it is useful to use normalized val-
ues, such as the TPM (transcripts per million) 
value (Li et al. 2010; Wagner et al. 2012). It repre-
sents the number of transcripts of a certain type 
present in a total of one million sequenced tran-
scripts from a given sample and thus estimates the 
fraction of that transcript in a pool of RNA mole-
cules. The TPM is normalized by the length of the 
transcript, the sequencing depth, and the mean 
transcript length in the sample. Relative expres-
sion levels represented by TPM values do not 
depend on the expression levels of other genes in 
the transcriptome and appropriately measure the 
fraction of fragments from a given gene or iso-
form. Other measure of gene expression includes 
the RPKM (reads per kilobase million) and FPKM 
(fragments per kilobase million), but they have 
been largely superseded by the TPM.

2.2.4.2  Alignment-Free Approaches
Recent methods have tried to let go of the tradi-
tional strategy of mapping reads to a reference 
and then count, to arrive at estimates of gene 
expression levels, approach described above. 
The main reason for this is that these traditional 
approaches require large computational 
resources, and do not scale well with the amount 
of available data. These newer approaches 
implement what they call as pseudo-alignment, 
lightweight mapping, or quasi-mapping (Patro 
et  al. 2017, 2014; Bray et  al. 2016) and are 
known as alignment-free methods. Another 
important difference to the traditional approach 
is that instead of using reference genomes, these 
approaches use reference and well-annotated 

transcriptomes, including transcript isoforms, 
allowing the accurate estimation of isoform 
expression levels. Expression-level estimates at 
the level of isoforms are important given that 
most plant genes are interrupted (i.e., they have 
introns), and the removal of introns is a regu-
lated process that can generate alternative splic-
ing forms, which can have different, even 
antagonistic functions (Shang et  al. 2017). In 
order to estimate isoform expression levels, 
tools like Kallisto or Salmon, let go of the idea 
of knowing where a read aligns in a given tran-
script, with base-to-base correspondence, and 
instead try to identify a transcript, or a set of 
transcripts, that could have originated such read, 
without keeping track of base-to-base corre-
spondences. Such approaches have been shown 
to be extremely fast and accurate (Zhang et al. 
2017). Some of these methods, besides their 
speed, can model different sources of sample- 
specific biases that can affect transcript quantifi-
cation, like sequence-specific, fragment 
GC-content and positional biases (Patro et  al. 
2017; Bray et al. 2016). Refinement of the initial 
lightweight mapping of reads to the transcrip-
tome, using Selective Alignment, allows the 
elimination of most mapping errors, by provid-
ing alignment scores that allow to distinguish 
alternative mapping locations that otherwise 
would appear the same (Srivastava et al. 2019).

2.3  Applications

Figure 2.3 shows some of the paths that can be 
followed in RNA-Seq studies. Table  2.1 lists 
some of the main software packages to carry out 
the operations shown in Fig. 2.3.

2.3.1  Differential Gene Expression

RNA sequencing is frequently done with the goal 
of detecting differences in expression levels 
between two or more contrasting groups of sam-
ples. One may be interested in evaluating the 
effect of different experimental treatments, geno-
types, or stress conditions, for instance, on the 
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transcriptome of particular cells. Gene or isoform 
expression measures are thus often used for iden-
tifying transcripts that are significantly up- or 
downregulated in a condition of interest, in com-
parison to a distinct condition.

Differences in the expression levels of two 
(groups of) samples can be represented by the 
fold change, which is simply the ratio of the 
expression levels estimated for both cases. 
Usually the expression estimate of a control or 
reference condition is used in the denominator, 
whereas the expression level of the treatment 
group is used in the numerator. As a result, 
genes that are upregulated in the treatment sam-
ples show a fold change greater than one (with 
no upper boundary), while downregulated genes 
display a fold change between zero and one. 
This discrepancy in scale led to the representa-
tion of these ratios in the log2 scale, such that 
fold changes in both directions are symmetric 
around zero.

Several methodologies are available for test-
ing whether an observed fold change is statisti-
cally significant. Many of these methods use read 
count data directly, which calls for modeling of 
the expression levels with discrete distributions. 
The first statistical approaches proposed for such 
tests used the Poisson distribution to model read 
counts, assuming that the variance in the esti-
mates was directly proportional to the mean 
expression level (Wang et al. 2010). This proved 
to be appropriate for technical replicates of the 

same sample (Marioni et al. 2008), but variance 
for biological replicates was shown to be higher 
than expected based on the mean alone (Robinson 
and Smyth 2008).

An alternative to the Poisson distribution is 
the negative binomial, which adds a second 
parameter (often denoted dispersion), allowing 
the sample variance to be different from the 
mean; hence, it corresponds to a Poisson distribu-
tion with overdispersion. This is the approach 
taken by most of the modern differential expres-
sion analysis packages (Wang et  al. 2010; 
Robinson et al. 2010; Trapnell et al. 2013; Love 
et al. 2014).

The need to estimate sample variances makes 
it clear that biological replication is necessary in 
RNA-Seq experiments. Appropriate design plan-
ning is required, and all treatment combinations 
should be replicated, as alternatives devised for 
data without replicates are far from ideal. Yet, 
despite continual reduction in sequencing costs, 
RNA-Seq for large numbers of samples may still 
be impractical for many research goals. In order 
to increase reliability of variance estimates 
obtained from small numbers of replicates, tech-
niques that share information between genes 
were proposed and implemented (Robinson and 
Smyth 2007).

Software packages edgeR (Robinson et  al. 
2010), DESeq (Anders and Huber 2010; Love 
et  al. 2014), and Cuffdiff (Trapnell et  al. 2010, 
2013) are among the most extensively used tools 

Fig. 2.3 General steps in an RNA-Seq analysis pipeline. Not all steps/paths are taken in a given study
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for differential expression analyses. In more 
detail, edgeR uses raw read counts and models 
sample variation in terms of the biological coef-
ficient of variation, which corresponds to the 
square root of the dispersion. It allows estimating 

a common dispersion for all genes, or a trended 
dispersion via a locally weighted adjusted profile 
likelihood for genes with similar average read 
count. It further allows moderated gene-wise dis-
persion estimates to be obtained by a weighted 

Table 2.1 Some of the software packages for different steps in RNA-Seq analysis pipelines

Activity Software Reference
Read pre-processing Sequencing diagnostics FastQC bioinformatics.babraham.ac.uk/projects/

fastqc
RSeQC Wang et al. (2012)
RNA-SeQC DeLuca et al. (2012)

Removal of adapters 
and low-quality bases

Trimmomatic Bolger et al. (2014)
Atropos Didion et al. (2017)
BBDuk sourceforge.net/projects/bbmap/

Removal of ribosomal 
RNA

SortMeRNA Kopylova et al. (2012)
BBDuk sourceforge.net/projects/bbmap/

Identification of 
duplication artifacts

dupRadar Sayols et al. (2016)

De novo transcriptome 
assembly

Trinity Grabherr et al. (2011)
Trans-ABySS Robertson et al. (2010)
Velvet/Oases Schulz et al. (2012)

Genome-guided 
transcriptome 
assembly

Trinity Grabherr et al. (2011)
Stringtie Kovaka et al. (2019)
PASA Haas et al. (2003)

Assessment of 
transcriptome 
assembly

BUSCO Waterhouse et al. (2017)
DETONATE Li et al. (2014)
Transrate Smith-Unna et al. (2016)

Functional annotation Trinotate Bryant et al. (2017)
Blast2GO Conesa et al. (2005)

Read mapping STAR Dobin et al. (2013)
GSNAP Wu and Nacu (2010)
HISAT2 Kim et al. (2015), Kim et al. (2019)

Transcript/gene 
expression-level 
quantitation

Stringtie Kovaka et al. (2019)
featureCounts Liao et al. (2014)
kallisto Bray et al. (2016)
Salmon Patro et al. (2017)

Differential expression 
analyses

Limma Ritchie et al. (2015)
edgeR Robinson et al. (2010)
Ballgown Frazee et al. (2015)
Sleuth Pimentel et al. (2017)
DESeq2 Love et al. (2014)

Co-expression network 
inference

WGCNA Langfelder and Horvath (2008)
HRR Liesecke et al. (2018)
HCCA Mutwil et al. (2010)

Polymorphism 
analyses

GATK DePristo et al. (2011), McKenna et al. 
(2010)

NGSEP V4.0 sourceforge.net/p/ngsep/
Functional enrichment goseq Young et al. (2010)

topGO Alexa et al. (2006)
Blast2GO Conesa et al. (2005)
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likelihood method combining individual and 
trended or common estimates (McCarthy et al. 
2012). Normalization is carried out with a 
trimmed mean of log2 fold changes (Robinson 
and Oshlack 2010).

Similarly, the DESeq2 package uses size fac-
tors estimated based on the median of ratios of 
observed read counts to normalize expression 
levels. It empirically estimates the relationship 
between mean and variance of the negative bino-
mial distribution, fitting a smooth curve of the 
dispersion as a function of the average expression 
of genes with similar means. Finally, it employs 
empirical Bayes approaches to shrink gene-wise 
dispersion estimates and also the fold changes, 
which is particularly relevant for lowly expressed 
genes and/or those with highly variable expres-
sion levels. Both edgeR and DESeq were initially 
designed for performing differential expression 
analyses of simple experiments, commonly 
involving pairwise comparisons of contrasting 
conditions. More recent implementations of 
edgeR and DESeq2 allow fitting generalized lin-
ear models for analysis of more complex designs, 
with the inclusion of experimental blocking fac-
tors and modeling of interactions, for example.

Cuffdiff 2 was developed for testing differen-
tial expression at both the isoform and the gene 
levels. Instead of using raw read counts, it models 
variability across replicated expression estimates 
by jointly considering overdispersion and uncer-
tainty in the assignment of reads to their possible 
originating transcripts. Because of differences in 
the normalization procedures and model 
 assumptions, these methods differ in their statis-
tical power to detect differential expression over 
the range of expression values, as well as in the 
occurrence of false positives. Note also that con-
ducting differential expression analyses at the 
transcript level may have important implications 
for statistical power. Greater uncertainty in 
expression estimates, because of more ambigu-
ously mapped reads, negatively influences statis-
tical power. Differential isoform expression 
analyses may require higher coverage depth, as 
more reads are needed to provide accurate esti-
mates of individual isoform expression levels, 
especially for genes with many isoform variants 

and many shared exons. On the other hand, fail-
ure to adequately model uncertainty in read to 
transcript assignment can result in higher rates of 
false positives, even at the gene level.

RNA-Seq is a high-throughput screen that 
yields quantitative information for tens of thou-
sands of genes (or hundreds of thousands of tran-
scripts). Consequently, statistical tests are applied 
for multiple comparisons, which can result in 
many false positives if liberal significance levels 
are used for individual tests. Multiple testing cor-
rection is generally used to control for the occur-
rence of such false positives. One of most 
well-known corrections is the Benjamini and 
Hochberg (Benjamini and Hochberg 1995) false 
discovery rate (FDR) correction, aimed at con-
trolling the proportion of false discoveries among 
the rejected hypotheses, while minimizing the 
drop in statistical power.

The output of these analyses is a list of signifi-
cantly differentially expressed genes. Because of 
the large number of genes studied, this list may 
be quite long, which complicates summarization 
and reporting of the results. More easily interpre-
table biological meaning can be extracted from 
such lists through functional enrichment analy-
ses, that look for overrepresented groups of genes 
among the statistically significant ones. 
Groupings of interest are usually obtained by cat-
egorizing genes according to their functional 
annotation, including gene ontology terms and/or 
biological pathways. Each functional group is 
tested for overrepresentation in the gene list 
against a background set, which includes all 
(expressed) genes in the transcriptome.

2.3.2  Co-expression Networks

Networks have recently emerged as a robust and 
holistic approach to understand complex cellular 
processes that comprise multiple and parallel 
interactions between cellular constituents such as 
DNA, RNA, and proteins. The network approach 
allows analyzing components and interactions as 
a system instead of analyzing them as separate 
entities. In a general way, a network, or graph, is 
defined as a set of elements called nodes, which 
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are related through connections called edges. 
When edges have a direction, that is, they have 
source and target nodes, the network is called 
directed; otherwise, the network is undirected. 
These simple definitions are used to create bio-
logical networks that model cellular processes by 
taking nodes to represent molecules such as 
genes, proteins, or metabolites, and edges to rep-
resent physical, functional, or chemical interac-
tions (Barabasi and Oltvai 2004). Depending on 
the molecules and interactions used, biological 
networks can be gene co-expression networks 
(GCN), genetic interaction networks, gene regu-
latory networks, protein–protein interaction (PPI) 
networks, metabolic networks, and signaling net-
works (Serin et al. 2016; Vital-Lopez et al. 2012). 
This section will focus on gene co-expression net-
works, in which each node corresponds to a gene, 
and edges represent co-expression relationships.

An advantageous feature of GCNs is the abil-
ity to reduce data complexity drastically. Nodes 
in a GCN, rather than solely representing a gene 
per se, represent its whole expression profile 
when the studied organism is under a condition, 
such as a treatment or biotic/abiotic stress. Edges 
in a GCN represent associations between gene 
expression profiles and can be interpreted as the 
simultaneous and coordinated expression of two 
or more genes under the studied perturbations. 
Thus, GCNs reduce the complexity of expression 
data of multiple samples from one or multiple 
experiments.

GCNs can be constructed from expression 
data derived from DNA microarrays and RNA- 
Seq. Traditionally DNA microarrays were the 
primary source of data expression for construct-
ing GCNs, as this technology has been used 
intensively for almost two decades in gene 
expression studies. Recently, with the advent of 
next-generation sequencing (NGS) technologies, 
RNA-Seq has turned in a natural source for con-
structing GCNs. Among the advantages that 
microarrays had over RNA-Seq for the recon-
struction of GCNs, we can name the considerable 
amount of information available in public data-
bases, the well-established and mature data nor-
malization approaches, and data homogeneity. 
Although RNA-Seq was shown as a promising 

source of data for GCNs (Iancu et al. 2012), some 
limitations related to normalization methods used 
for this technology were also demonstrated 
(Giorgi et al. 2013). However, with the increased 
number of RNA-Seq samples publicly available, 
more recent studies have shown that bigger data-
sets can overcome those caveats (Ballouz et  al. 
2015; Huang et al. 2017a) and highlight multiple 
advantages of RNA-Seq over microarrays for 
GCNs.

GCN inference comprises three main steps: 
similarity calculation, filtering, and edges con-
struction (Serin et  al. 2016). In the first step, a 
measure of similarity (or relatedness) is com-
puted for each pair of genes. Multiple measures 
can be used in this step, such as mutual informa-
tion (MI) (Meyer et al. 2008, 2007), or the preva-
lent correlation coefficients. The latter category 
includes the Pearson correlation coefficient 
(PCC), Spearman’s correlation coefficient (SCC), 
and biweight midcorrelation (bicor) (Langfelder 
and Horvath 2008). Although MI is useful for 
finding nonlinear relationships between genes 
(Langfelder and Horvath 2008), it has been 
shown that it has several caveats and can be out-
performed in many situations by correlation mea-
sures (Liesecke et al. 2018; Song et al. 2012). In 
the second step, the pairs of genes (edges) are 
either filtered based on a relatedness threshold 
that specifies the minimum level of similarity 
between expression profiles to define if a pair of 
genes is connected, or weighted. When using a 
threshold, it can be defined as a simple cutoff 
(hard threshold) (Tsaparas et al. 2006; Qiao et al. 
2017), or as a result of more elaborated 
approaches. Some of these approaches include 
selecting a subset of the most positive/negative 
correlations (Lee et  al. 2004), relying on topo-
logical features of co-expression networks like 
the clustering coefficient (Elo et  al. 2007) or a 
power law distribution of the number of edges 
per node (Zhang and Horvath 2005), or applying 
models such as the Random Matrix Theory (Luo 
et al. 2007). Finally, in the third step, edges of the 
GCN are defined based on the resultant list of 
genes after filtering.

Depending on the type of connection between 
nodes, GCNs can be unweighted and weighted. 
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In the unweighted networks, edges indicate 
whether there is an association between a pair of 
nodes. They are derived from applying a hard 
threshold, i.e., an edge is present if the similarity 
measure between nodes is above the cutoff value. 
In the weighted networks, the degree of associa-
tion between nodes is quantified by an attribute 
called weight, which commonly corresponds to a 
value in the range [0, 1]. This weight can result 
from applying a soft similarity threshold 
(Langfelder and Horvath 2008; Zhang and 
Horvath 2005) or from assigning a value derived 
from correlations such as the coefficient rank 
(Ballouz et al. 2015).

After constructing a GCN, a wide repertoire 
of analyses from graph theory, computer sci-
ence, and engineering can be applied for eluci-
dating valuable information hidden in the 
expression data. For example, by applying clus-
tering algorithms like the hierarchical clustering 
(Langfelder and Horvath 2008), or the Markov 
Cluster (Zhang et  al. 2012), it is possible to 
identify groups of highly coexpressed nodes 
(modules) with similar functions or involved in 
common biological processes. Modules are 
annotated with functional and metabolic infor-
mation publicly available in databases such as 
Gene Ontology (GO, http://www.geneontology.
org), Reactome (https://reactome.org/), and the 
Kyoto Encyclopedia of Genes and Genomes 
(KEGG, http://www.genome.jp/kegg/).

Another example of methods applied to GCNs 
are the topological analyses that examine the 
structural properties of networks. One of the 
most used topological properties is the node 
degree, which indicates how many connections 
each node has. It has been suggested that some 
biological networks are scale-free, which means 
that their degree distribution P(k) approximates a 
power law P(k) ~ k−γ (Barabasi and Oltvai 2004). 
However, in many cases, proper statistical tests 
have revealed otherwise (Arita 2005; Broido and 
Clauset 2019; Lima-Mendez and van Helden 
2009; Khanin and Wit 2006; Stumpf and Ingram 
2005), and methods that strongly rely on the 
power-law distribution of the node degree must 
be assessed critically. In general, biological net-
works, including co-expression networks, exhibit 

many nodes poorly connected (low degree) and a 
relatively small number of nodes with many con-
nections. Highly connected nodes (hubs) are usu-
ally representative of the biological function 
associated with a module and also have been 
associated with interesting processes like regula-
tion (Hollender et  al. 2014), and evolution 
(Masalia et al. 2017). Another biologically rele-
vant topological property is the betweenness cen-
trality that indicates the level to which a node 
works as a bridge between other nodes and allows 
to detect bottlenecks (genes with high centrality). 
Since high connectivity and betweenness central-
ity tend to be related to essentiality in functional 
processes (Carlson et al. 2006), they can be used 
to identify key genes with biological relevance. 
Other topological properties with biological rel-
evance, including clustering coefficient, density, 
centralization, and heterogeneity, have also been 
explored (Dong and Horvath 2007; Horvath and 
Dong 2008).

GCNs have been used mainly for two pur-
poses, gene function prediction, and the selection 
and prioritization of genes associated with spe-
cific phenotypes like diseases or traits. The first 
application is derived from module identification 
and annotation, which infer functions for unchar-
acterized genes following the “guilt by associa-
tion” principle (Oliver 2000). For instance, 
functions for unknown genes have been predicted 
in yeast (Luo et al. 2007) and grapevine (Liang 
et al. 2014) using GCNs. The second application 
is perhaps the most popular of GCNs, and it is 
derived from exploiting network centrality prop-
erties (e.g., degree and betweenness) combined 
with module information. For example, several 
studies have used GCNs to identify genes associ-
ated with traits of interest in plants, such as heat 
shock recovery in grapevine (Liang et al. 2014), 
aluminum stress response in soybean (Das et al. 
2017), sugar/acid ratio in sweet orange (Qiao 
et al. 2017), regulation of cell wall biosynthesis 
in sugarcane and bamboo (Ferreira et  al. 2016; 
Ma et  al. 2018), wood formation in Populus 
trichocarpa (Shi et  al. 2017), the regulation of 
catechins, theanine, and caffeine metabolism in 
the tea plant Camellia sinensis (Tai et al. 2018), 
and plant height in maize (Wang et al. 2018a).
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GCNs also have some caveats that are worth 
mentioning. GCNs provide only direct informa-
tion for co-expression and not of direct interac-
tions between its components like in PPIs. 
Additional information such as functional rela-
tionships or the essentiality of genes is elucidated 
by applying analyses that can be prone to biases, 
for example, clustering or annotation methods. 
Biologically meaningful conclusions are only 
supported by reliable networks that sometimes 
are difficult to obtain due to multiple factors in 
the construction like the amount and quality of 
the expression data, or the appropriate selection 
of similarity measures, parametrization (e.g., 
thresholds), and clustering methods.

Despite the caveats and difficulties in their 
inference, it has been shown that GCNs remain 
useful tools in gene expression analysis. They 
allow to reduce the complexity of the currently 
growing expression data, suggest functions of 
unknown genes, and identify essential genes 
involved in biological processes of interest.

2.3.3  Polymorphisms

Sequencing reads from RNA-Seq studies are 
often used for identifying polymorphisms in the 
expressed regions of the genome. The principles 
of variant identification from transcriptomic data 
are similar to those involved in variant calling 
from DNA sequencing and many important 
applications are possible. Briefly, software such 
as GATK (McKenna et al. 2010; DePristo et al. 
2011) and BCFtools (Li et al. 2009; Li 2011) tra-
verse genomic positions from a reference 
sequence and compare the aligned reads to iden-
tify single-nucleotide polymorphisms (SNPs) 
and insertions and deletions (indels). However, 
there are important particularities when working 
with RNA-Seq data and care must be taken when 
interpreting the results.

If these aligned reads are originated from tran-
scriptomics datasets, polymorphic sites can only 
be identified between expressed transcripts. This 
is useful, for instance, if the goal is to search for 
imbalance of expression levels among different 
alleles of the same gene, or allele-specific expres-
sion (Pham et al. 2017; Shao et al. 2019). Accuracy 

for detecting polymorphisms and estimating allele 
expression ratios depends on the depth of cover-
age. This can be improved by increasing the 
sequencing depth but also depends on the expres-
sion level of each gene (Castel et al. 2015). Highly 
expressed genes naturally draw on a larger pro-
portion of the sequencing data and thus offer more 
power to identify variants and higher accuracy of 
allelic expression estimates. On the other hand, 
lowly expressed genes are more prone to false 
negatives and require deeper sequencing to accu-
rately identify polymorphisms.

Also, the fact that identified variants are con-
strained to expressed exons can limit the scope of 
the study. Polymorphic sites in introns, regula-
tory and intergenic sequences, which can be more 
numerous and may have key biological signifi-
cance, cannot be identified from RNA-Seq data 
alone (Cubillos et  al. 2012; Magalhaes et  al. 
2007). Genomic variants located in alleles that 
are not expressed in a given transcriptome will 
also be missed. Finally, many possible posttran-
scriptional modifications may negatively impact 
variant calling results and lead to flawed conclu-
sions (Lee et al. 2013).

Variant calling efforts and studies of allelic 
imbalance are even more complicated in poly-
ploid organisms, where more than two different 
alleles can be found (Cai et al. 2020). First, for 
allopolyploids, it can be difficult to differentiate 
between true alleles and homeologous sequences, 
which may not be polymorphic within each sub-
genome (Yang et  al. 2018a). Additionally, it is 
important to note that allele ratio information 
from RNA-Seq data is not appropriate for quanti-
tative genotyping (estimating genomic dosage) in 
autopolyploids, because of differences in the 
expression levels of different alleles. In other 
words, while the variation in allelic expression 
levels does provide valuable biological informa-
tion, these ratios are affected by expression con-
trol mechanisms and do not necessarily reflect 
allele dosage at the DNA level (Pham et al. 2017).

Considering these complications and limita-
tions, in most scenarios a combination of variant 
calling with other strategies is more valuable, 
such as identifying polymorphisms from both 
RNA-Seq and whole-genome sequencing (WGS) 
data, for instance.

D. M. Riaño-Pachón et al.



31

2.3.4  Machine Learning 
Technologies 
for Transcriptomics

The advent of high-throughput technologies like 
microarrays and next-generation sequencing has 
led researchers in biosciences to face the chal-
lenges of analyzing large amounts of data. These 
challenges include heterogeneity, high dimen-
sionality, noisiness, incompleteness, and compu-
tational expensiveness, among others. Machine 
learning (ML) has emerged as a suitable solution 
for analyzing massive data while dealing well 
with its challenges. ML has been extensively 
applied for large-scale data analysis in fields such 
as genetics (Libbrecht and Noble 2015), biomed-
icine (Mamoshina et al. 2016; Leung et al. 2016), 
genomics, transcriptomics, proteomics, and sys-
tems biology (Larranaga et  al. 2006; Min et  al. 
2017). This section presents an overview of ML 
that includes basic concepts and applications on 
transcriptomics in plants.

ML can be defined as the computational pro-
cess of automatically learning from experience to 
make predictions on new data (Murphy 2012). 
The process of learning is carried out by 
 extracting knowledge from exemplary data by 
identifying hidden patterns. ML methods are 
classified into two main groups, supervised and 
unsupervised learning. Supervised learning is a 
predictive approach that comprises data exam-
ples with inputs and outputs. This approach uses 
evidence from the example data to make a model 
that generates reasonable predictions for new 
unseen datasets. More formally, the example data 
corresponds to a set of input–output pairs D 
called training set and defined as,

 D x yi i i

N
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�
,

1
, 

where xi is a training input of the set x, yi is the 
response variable that represents an output from 
the set y, and N is the number of training exam-
ples. Hence, the model is trained to learn how to 
map each xi to a corresponding output yi.

Supervised learning methods can be subdi-
vided into two categories according to the nature 
of predictions. When the response variable is dis-
crete or categorical, e.g., male or female, healthy 

or diseased, the method falls into the classifica-
tion category. General applications of classifica-
tion algorithms are voice and handwriting 
recognition, and document and image classifica-
tion. Common algorithms of this category include 
support vector machines (SVM) Support Vector 
Regression (SVR), k-nearest neighbor (KNN), 
decision trees, logistic regression, and neural net-
works. When the response variable is continuous, 
e.g., the height of a person, or a temperature, the 
method corresponds to the regression category. 
Regression algorithms include linear and nonlin-
ear models, neural networks, and regularization. 
A variation of the late category is the ordinal 
regression, which comprises methods whose 
response variable has a natural ordering.

The second main group of ML, unsupervised 
learning, uses data examples with just inputs, i.e., 
the set

 D xi i

N
� � � �1

. 
This type of ML tries to elucidate hidden pat-

terns in data, which can be considered “interest-
ing” to the researcher. In this case, there is no 
information about the kind of patterns that are 
expected to be found in the data. Unsupervised 
learning, also called knowledge discovery, is 
more commonly used than unsupervised tech-
niques. Two notorious categories within unsuper-
vised learning are clustering and dimensionality 
reduction. Clustering algorithms are intended to 
group data by looking for similarities among the 
features of each element from the input. Standard 
clustering algorithms include k-means, self- 
organized maps (SOM), hierarchical clustering, 
and hidden Markov models. Dimensionality 
reduction algorithms try to extract the “essence” 
of data (Murphy 2012) by selecting a subset of 
features that represents better the dataset (feature 
selection) or by transforming the high- dimensional 
space of the original data into a lower one (feature 
extraction). Usual algorithms for dimensionality 
reduction are principal component analysis 
(PCA), linear discriminant analysis (LDA), and 
generalized discriminant analysis (GDA).

Supervised ML techniques have been applied 
in transcriptomics-related tasks such as assembly, 
identification, and abundance estimation of tran-
scripts, splicing sites/events detection, non- coding 
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RNA identification, and gene selection. 
Transcriptome assembly is one of the essential 
tasks in RNA-Seq-based studies that is followed 
by analyses such as, the estimation of gene expres-
sion levels or differential gene/trnascript expres-
sion. IsoLasso is a reference-based RNA-Seq 
transcriptome assembler that uses an ML regres-
sion algorithm called Least Absolute Shrinkage 
and Selection Operator (LASSO) and has the 
interesting feature of identifying and quantifying 
novel isoforms (Li et  al. 2011b). Another 
ML-based tool for transcript identification and 
abundance estimation is SLIDE, which uses a lin-
ear model that models the sampling probability of 
RNA-Seq reads from mRNA isoforms, and a 
modified LASSO algorithm for estimating param-
eters (Li et  al. 2011a). Unlike IsoLasso, SLIDE 
requires the coordinates of transcripts and exons 
previously assembled with other tools.

Identifying splicing sites and splicing events 
is crucial for determining isoforms and, thus, for 
estimating the abundance of transcripts. 
TrueSight is a tool developed for detecting splice 
junctions (SJs) based on an iterative regression 
algorithm that uses RNA-Seq mapping informa-
tion and splicing signals from the DNA sequence 
of a reference genome (Li et al. 2013b). TrueSight 
was tested using simulated and real datasets from 
humans, D. melanogaster, C. elegans, and A. 
thaliana, and showed better specificity and sensi-
tivity compared to other SJs detection applica-
tions. A recently developed tool called 
DeepBound also uses alignment information to 
determine SJs and infer boundaries of expressed 
transcripts from RNA-Seq data (Shao et  al. 
2017). DeepBound utilizes deep convolutional 
neural fields (DeepCNF), a technique that 
belongs to an emerging ML branch referred to as 
deep learning (Mamoshina et al. 2016; Min et al. 
2017; Angermueller et al. 2016). All the described 
applications for transcript abundance and SJ 
detection can be used in plants. However, except 
for SLIDE, these tools are not suitable for being 
applied directly to non-model species, as they 
depend on a reference genome.

In plants, supervised learning methods have 
also been used for detecting alternative splicing 
(AS) events. SVM classifiers were employed to 

detect two types of AS events, exon skips and 
intron retentions, in A. thaliana from tiling arrays 
data (Eichner et al. 2011). EST and cDNA data 
were used for training with two SVM layers: one 
for classifying sequence segments as introns or 
exons, assigning probabilities of being included 
in mature mRNA, and a second layer to predict 
AS events by using the probabilities from the first 
layer. In addition to SVM, Random Forest (RF) 
has been used to detect intron retention in A. 
thaliana, the most common type of alternative 
splicing in this species. These RF were created 
using a hybrid approach that combines essential 
features (i.e., length, nucleotide occurrence prob-
abilities, AT and GC content) with additional fea-
tures (i.e., common motifs, splice sites, and 
flanking sequences) to differentiate retained 
introns from constitutively spliced introns. These 
RFs had a better classification performance than 
SVM (Mao et al. 2014).

Noncoding RNAs (ncRNAs) are determinant 
in cellular processes like regulation and alterna-
tive splicing. Several ML methods have been 
applied to discover ncRNAs, including micro 
RNAs (miRNA) and long non-coding RNAs 
(lncRNA), using NGS datasets. In the case of 
miRNAs, decision trees (based on the C4.5 algo-
rithm) combined with genetic algorithms, 
allowed the prediction of miRNA targets in 
humans from datasets that comprise genomic and 
transcriptomic information (Rabiee-Ghahfarrokhi 
et al. 2015). miRNAs were predicted in 18 differ-
ent plant species from data extracted from RNA- 
Seq, chromosome sequences, or ESTs, exploiting 
decision trees (C5.0 algorithm) (Williams et  al. 
2012). An SVM approach was employed to iden-
tify miRNAs associated with cold stress in A. 
thaliana (Zhou et  al. 2008). Multiple Kernel 
Learning has been applied to the identification of 
circularRNA, a type of lncRNA, in humans, 
which can identify them with high accuracy in de 
novo assembled transcriptomes (Pan and Xiong 
2015).

Gene selection from expression data is a prob-
lem in which ML methods can be used naturally. 
Given an expression dataset that usually com-
prises thousands of genes, the goal here is to 
select a handful of relevant genes associated with 
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a specific condition of interest, e.g., a disease or a 
treatment. A common ML-based approach for 
gene selection from expression datasets is vari-
able ranking, in which genes (variables) are pri-
oritized according to a value derived from the 
applied classification algorithm. This value is a 
proxy for the importance or relevance of each 
gene among the whole dataset. In this way, genes 
at the top of the rank are more relevant to the con-
dition of interest, e.g., healthy/diseased tissue, 
treated/untreated tissue, and genes at the lower 
positions are redundant and less relevant. 
Following this approach, ML algorithms such as 
RFs, SVMs, and decision trees have been used 
with microarray data to select subsets of cancer- 
related genes which can be used as markers in 
diagnosis (Diaz-Uriarte and Alvarez de Andres 
2006; Horng et al. 2009; Guyon et al. 2002).

Although most of the proposed ML-based 
gene selection methods are tested in cancer 
expression datasets, some studies have applied 
similar approaches to plants using gene expres-
sion data from microarrays. An SVM with 
Recursive Feature Elimination (SVM-RFE) 
and a Radial Basis Function (RBF) was used to 
identify four genes related to resistance to tun-
gro disease in rice (Ren et al. 2010). This was 
a modification of the application of the same 
technique to cancer (Guyon et  al. 2002). A 
caveat in this study is the small dataset used 
(21 samples), as the amount of data for training 
is a decisive factor to get revealing results in 
ML.  A further study refined the same SVM-
RFE approach to identify genes related to 
drought resistance in A. thaliana (Liang et al. 
2011). Although authors of this study used a 
dataset with only 22 samples, they mitigated 
the small sample size effect by implementing a 
Leave One Out Cross Validation (LOOCV) 
scheme to select the training dataset and boot-
strapping strategy to iterate the variable rank-
ing process. In such a way, a subset of ten 
genes were identified, seven of which have pre-
vious biological information that links them to 
processes involved in drought resistance. ML 
and GCN were combined into the R package 
“machine learning-based differential network 
analysis” (mlDNA), which implements a two- 

phase ML method for selecting genes from 
expression data. In the first phase, the method 
identifies and discards irrelevant genes from 
the dataset using an RF classifier with the 
Positive Sample only Learning algorithm 
(PSoL), a technique that discriminates positive 
from negative data after using only positive 
samples for training. The second phase involves 
the construction of GCNs from the filtered 
genes, the extraction of topological features 
from the GCNs, and an RF algorithm to select 
the candidate genes based on the extracted fea-
tures. This approach proved to successfully 
select candidate genes in A. thaliana respond-
ing to drought, cold, heat, wound, and geno-
toxic stress conditions (Huang et al. 2011).

2.4  Case/Examples 
of Transcriptomics in Non- 
model Plants

Perhaps the most notable quality of transcrip-
tomics is the possibility of producing robust 
amounts of data for a reduced representation of 
the genome, which is of importance in non-model 
plant species and species with complex genomes. 
This quality allows for a diverse series of biologi-
cal questions to be asked and for which answers 
can be obtained. In this section we will exemplify 
the most relevant uses of recent transcriptomics 
studies.

2.4.1  Construction of Improved 
Transcripts Catalogs

Although, in principle, transcriptomic studies 
derived from RNA-Seq do not require any prior 
genetic information, it is true that having a high- 
quality reference transcriptome undoubtedly 
favors high-quality research. Current assembly 
tools and sequencing technologies have advanced 
our capacity to produce de novo assemblies. In 
constructing high-quality transcriptomes for 
polyploid (allopolyploid) species, where two or 
more sub-genomes are present, one particular 
challenge is the identification of homeologous 
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copies of the same genes which tend to be highly 
similar and difficult to separate in a de novo 
assembly. Classical assemblers such as 
SOAPdenovo-Trans Trinity and TransAByss 
have been tested for this task. This is exemplified 
in the study by (Chopra et  al. 2014) aiming at 
reconstructing the transcriptome of tetraploid and 
diploid peanut species, using RNA-Seq data. 
After examining several variables including con-
tig length and number, results showed that Trinity 
and TransAByss performed in a similar way for 
the diploid species, while Trinity performed bet-
ter for the tetraploid genotype. In addition, the 
transcriptome produced for the tetraploid geno-
type almost doubled in number of contigs, total 
size and transcript N50 compared to the existing 
resources. It also produced at least 40% more 
full-length sequences.

Others have searched to develop specific soft-
ware to tackle the problem. Such is the case of 
the software HomeoSplitter which takes into 
consideration the elevated rates of heterozygosity 
of certain contigs (alleles) to target possible 
homeoalleles. Once identified, the software uses 
a likelihood model-based method to disentangle 
the mixed alleles taking into consideration their 
expression levels. For durum wheat (Triticum 
turgidum) HomeoSplitter showed capacity to 
separate homeologous sequences, as assessed by 
comparison to the diploid progenitors, and 
allowed to recover a greater number of SNPs for 
the population genotyped (Ranwez et al. 2013).

From the sequencing-and-assembly point of 
view, this issue has been approached through the 
use of normalized libraries, which increases the 
likelihood of seeing rare or less abundant tran-
script, and the use of single-molecule long read 
sequencing technologies, which can produce near 
complete transcript sequences represented in a 
single-sequencing read. The protocol called Iso-
Seq has been applied to several crop species, 
including sorghum (Abdel-Ghany et  al. 2016), 
maize (Wang et  al. 2016), cotton (Wang et  al. 
2018b), coffee (Cheng et al. 2017), Salvia miltior-
rhiza (Xu et  al. 2015), grape wine (Minio et  al. 
2019), the Chinese herb Astragalus membrana-
ceus (Li et al. 2017a), Arabidopsis pumila (Yang 
et al. 2018b), the shrub Zanthoxylum bungeanum 

(Tian et al. 2018), the giant timber bamboo native 
to China (Zhang et al. 2018), wild strawberry (Li 
et  al. 2017b), and the highly complex sugarcane 
(Hoang et  al. 2017). Iso-Seq has been shown to 
recover full-length isoforms, which was not pos-
sible with short-read technologies, but also it has 
allowed the detection of alternative start sites, 
alternative splicing and alternative polyadenyl-
ation (Zhao et al. 2019). In the case of sugarcane, 
Iso-Seq was further complemented with short 
RNA-Seq reads in order to correct errors present 
in long reads. The same dataset also served to 
compare the transcriptomes created by the hybrid 
approach and a de novo approach based solely on 
RNA-Seq reads. The hybrid transcriptome recov-
ered more full-length transcripts, with a longer 
N50, more ORFs and predicted transcripts, and 
higher average length of the largest 1000 proteins, 
compared to the de novo contigs. Importantly, 
RNA-Seq covered more gene content, and more 
RNA classes than Iso-Seq, which was attributed to 
the greater sequencing depth (Hoang et al. 2017).

Oxford Nanopore Technologies (ONT) have a 
platform option that allows for the direct sequenc-
ing of RNA molecules, which in addition to pro-
ducing full-length transcript sequences, study of 
alternative polyadenylation and splice and start 
sites, reveals the status of RNA modifications, 
and could revolutionize the transcriptomics field 
(Hussain 2018). This approach is still very recent 
and has not yet been applied to many plant spe-
cies. Direct RNA sequencing was performed on 
seeds of soybean to quantify transcript degrada-
tion as a proxy of seed viability (Fleming et al. 
2018). Eukaryotic transcripts are usually modi-
fied on their 5′-end by the addition of a 
7- methylguanylate (m7G) cap which protects 
mRNA from decay and has several implications 
in mRNA-downstream processes. However, a 
recent study, using direct RNA sequencing, 
showed that in A. thaliana, up to 5% of the tran-
scripts of several thousand genes have instead a 
NAD+ cap (Zhang et al. 2019a), an RNA modifi-
cation that had been reported before in bacteria 
(Chen et  al. 2009), yeast (Walters et  al. 2017), 
and humans (Jiao et al. 2017).

Overall, despite current advances in the con-
struction of de novo transcriptomes, there is still 
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room for improvement in assemblers tailored to 
polyploid genomes. Also, given the current rate 
of innovation in high-throughput sequencing, and 
provided a decrease in costs, the construction of 
novel transcriptomes through the use of long 
RNA molecules are expected to increase rapidly.

2.4.2  Populations Mapping

Transcriptomics can also be used to identify 
polymorphisms to map populations of interest. 
Two alternative strategies are often followed: In 
the first, the genetic variants are identified from 
transcriptomic data, from a diverse group of indi-
viduals. The variants identified are then used to 
design probes to test DNA samples from the 
same or an alternative, bigger, population. 
Contrary to the classic DNA mapping studies, 
this strategy increases the probability of identify-
ing causal mutations given that the majority of 
the selected variants will be located within cod-
ing sequences. This is specially the case of spe-
cies with big genomes and a high percentage of 
repetitive sequences which, for mapping studies, 
require a considerable number of markers to 
increase the probability of having a significant 
association. Markers, particularly SNP and SSR, 
derived from transcriptomic data have been pro-
duced for different crops including, but not lim-
ited to soybean (Guo et  al. 2018), sugarcane 
(Bundock et al. 2009), grasspea (Hao et al. 2017), 
peanut (Chopra et  al. 2015), and oilseed rape 
(Trick et  al. 2009). More recently, and through 
the implementation of the Bulk Segregant RNA- 
Seq analyses (BSR-Seq) principle, which 
requires the formation of pooled samples con-
trasting for the phenotype of interest, markers 
linked to traits of interest have been mapped in 
crop species such as wheat (Wang et  al. 2017; 
Ramirez-Gonzalez et  al. 2015; Wu et  al. 2018) 
and Chinese cabbage (Huang et al. 2017b).

In the second strategy, transcriptomics data is 
produced for a biparental population, and the 
markers identified (SNP markers) are directly 
used for construction of genetic maps. The value 
of these maps lies in the fact that “unlike sequence 
assembly, linkage analysis is essentially unaf-

fected by allopolyploidy and repeated sequences 
as long as homeologous recombination is rare 
and genome-specific alleles can be identified” 
(reviewed in McKay and Leach 2011). This strat-
egy, to the best of our knowledge, has been only 
used in the tetraploid Brassica napus (oilseed 
rape) (Bancroft et  al. 2011). In this case, twin 
genetic maps were constructed for the two pro-
genitor species (B. oleracea and B. rapa) of the 
modern B. napus genotypes, which also served as 
parents for the population tested. These genetic 
maps were next aligned to the existing genome of 
B. napus and that of A. thaliana. The whole strat-
egy allowed to identify genome rearrangements 
between B. oleracea and B. rapa and therefore 
helped to refine the existing assemblies for these 
species. Likewise, it helped to pinpoint genomic 
regions involved in the recent breeding history of 
the crop. Considering these implications and the 
urgent necessity of genomic tools to tackle poly-
ploid genomes, it is expected that linkage maps 
derived from transcriptomic data will be on the 
rise.

2.4.3  Stress-Related Studies

As sessile organisms, plants must deal with a 
variety of environmental conditions that can 
impact on their potential for growth and repro-
duction. In order to study the molecular mecha-
nisms underlying the response to such conditions 
plant transcriptomics is being widely used. The 
most common approach consists of comparing 
gene expression levels of a specific genotype 
under a control and a stress-induced treatment. 
Oftentimes, contrasting genotypes (tolerant and 
susceptible) for the trait of interest are used. By 
identifying the changes in gene expression 
between control and treatment conditions, it is 
possible to determine the mRNAs activated by 
the stress under consideration. This in turn allows 
for exploring the mRNAs that are differentially 
expressed among the genotypes selected (tolerant 
vs. susceptible). Following this approach, it has 
been possible to study the molecular regulation 
of salt stress tolerance in cotton (Zhang et  al. 
2016a), the roles of the photosynthetic system 
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during drought in upland rice (Zhang et  al. 
2016b), the molecular mechanisms driving cop-
per stress tolerance in grapevine (Leng et  al. 
2015), the mechanisms for lipid accumulation in 
response to nitrogen deprivation in the green 
algae Chlamydomonas reinhardtii (Park et  al. 
2015), the molecular responses underlying 
drought tolerance in sugarcane (Pereira-Santana 
et al. 2017; Belesini et al. 2017), just to mention 
a few.

Perhaps, one of the most studied traits through 
comparative transcriptomic is drought. When 
“drought” and “RNA-Seq” are used as keywords 
in PubMed, 217 different titles, excluding 
reviews, show up as a result. Studies have been 
performed on nearly every major crop (Zhang 
et al. 2014; Chen et al. 2016; Divya Bhanu et al. 
2016; Mofatto et al. 2016), but also on non-major 
crops and other plants whose original habitat are 
water-deprived locations and thus can contribute 
to better understanding of the physiological bases 
of this condition (Gross et al. 2013; Yang et al. 
2015; Li et al. 2015). In polyploids, the challenge 
resides on having a high-quality reference tran-
scriptome that allows to distinguish among 
 isoforms derived from different sub-genomes. In 
fact, in hexaploid wheat, where different genomic 
resources have been recently developed (Pearce 
et al. 2015), it has been found that a large propor-
tion of wheat homeologs exhibited expression 
partitioning under normal and abiotic stresses, 
indicating a specialized gene expression coordi-
nation among genomes.

2.4.4  Phylogenomics

Phylogenomics is a new biological discipline 
focusing on the resolution of relationships among 
taxa and the reconstruction of evolutionary histo-
ries through the use of genomic data. It involves 
the analysis of entire genomes, transcriptomes, or 
specific sequences that can be targeted (Yu et al. 
2018) through the mining of already published 
information (Washburn et al. 2017).

In order to resolve relationships among spe-
cies, phylogenomics relies heavily on the identi-
fication of single-copy genes to reduce the 

possibility of paralogy and thus limiting to con-
clusions based solely on orthologous genes. 
However, information on single-copy genes is 
difficult to obtain especially for non-model, poly-
ploid species, where the entire genome is 
expected to be duplicated. Chloroplast genes are 
often targeted for phylogenomics; however, this 
part of the plant genome has its own problems 
such as a low recombinant nature, and thus low 
polymorphism levels, exclusive maternal inheri-
tance, and these genes are subject to processes 
such as chloroplast capture and hybrid speciation 
which reduce its resolution capacity. Still, due to 
its high-throughput nature, transcriptomics offers 
the possibility to mine for nuclear single-copy 
markers in a rich set of genic sources. This is 
even possible in the case of polyploids and 
despite their repetitive nature. Due to evolution-
ary mechanisms such as gene conversion and 
loss, the number of retained duplicates in poly-
ploids decreases over the time, allowing single- 
copy signals (coding and non-coding sequences) 
to arise (Wen et al. 2015). In the case of ferns, for 
example, which have a long history of poly-
ploidy, 20 new nuclear regions spanning ten cod-
ing sequences have been identified by comparative 
transcriptomics which has increased significantly 
the taxonomic resolution across these group of 
plants (Rothfels et al. 2013).

Comparative transcriptomics can also contrib-
ute to detect and characterize polyploidy specia-
tion. Although ancient polyploidy could be 
reconstructed through the comparison of high- 
quality, chromosome-level genomes, the lack of 
high-quality assemblies for the vast majority of 
polyploid species has positioned transcriptomics 
as a viable alternative. For this purpose, the rate 
of synonymous substitution (Ks), in coding 
sequences, derived from transcriptomics is 
widely used. This is possible because whole- 
genome duplications produce peaks in the cumu-
lative distributions of pairwise Ks between 
paralogs within a genome. By evaluating the dis-
tribution of Ks among evolutionary lineages, it 
has been possible to better understand polyploidy 
speciation in the flax genus (Sveinsson et  al. 
2014), the evolution of gene families like CYP75 
after the events of whole-genome duplication 
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(Zhang et  al. 2019b), the redistribution of the 
seed plants in phylogenetic trees explaining the 
origin of angiosperms (Ran et al. 2018), the evo-
lutionary patterns of agricultural traits in straw-
berry (Qiao et al. 2016), or the origin and early 
diversification of green (One Thousand Plant 
Transcriptomes Initiative 2019) and land plants 
(Wickett et al. 2014), among others.

2.5  Future Directions in the Field

Over the past decades, transcriptomics has seen a 
revolution. The technologies employed to pro-
duce expression data are nowadays much more 
efficient and with their regular decrease in costs, 
they are a realistic possibility even for small labs, 
and so it has become practical to be applied to 
non-model exotic plant species, and to perform 
more complex experimental designs. Nonetheless, 
the cost of sequencing is still not at reach for proj-
ects in which hundreds to thousands of samples 
need to be sequenced. This level of sequencing 
capacity is a reality for consortiums and greater 
collaborative efforts but not for smaller groups, 
which commonly have the possibility of greater 
access to genetically diverse samples but smaller 
budgets. Further decrease in library preparation 
and sequencing costs will ameliorate this though.

Technical advances have made it possible to 
directly sequence RNA molecules, and together 
with PCR-free protocols, they aid in eliminating 
potential sources of bias that could be introduced 
during library preparation. In addition to building 
comprehensive transcript catalogs, these 
advances will allow more reliable estimation of 
transcript abundances when it becomes afford-
able to sequence at higher depths of coverage. 
Recently published genome assemblies are 
increasingly resolving the different sequence 
haplotypes in organims with ploidy levels greater 
than one in these cases long-read RNA sequenc-
ing will allow the study of allele-specific expres-
sion with unprecedented levels of detail.

Along with this new technological capacity to 
produce data, the questions that may be answered 
with transcriptomics-based strategies have also 
matured. However, for many of these questions, 

their answers are limited by the available bioin-
formatic software. For example, all the efforts 
that have been made to confidently identify 
orthologous genes and in general to filter out the 
noise caused by polyploidy are encouraging 
because, among other reasons, this has increased 
our understanding of complex genomes. 
Nonetheless, only a handful of genes or a small 
portion of the transcriptomes are used for these 
purposes. It is then reasonable to believe that fur-
ther efforts in software development are neces-
sary to truly take advantage of the level of 
information being produced in transcriptomics 
studies. A similar situation happens with all the 
studies aiming at better understanding of specific 
phenomena (e.g., stress-related studies) that after 
producing high-quality, robust data are still left 
with lists of hundreds to thousands of differen-
tially expressed genes, from which it is difficult 
to define the key players for the process under 
study. Perhaps this type of studie could benefit 
from the integration of different OMICs 
approaches to the same problems, with a more 
integrative approach which requires further 
advances in tool development, for instance 
including machine learning algorithms, neces-
sary to mine for the most relevant transcripts.

Overall, we can confidently say that the last 
decade has been a defining one for plant tran-
scriptomics thanks to the greater access to 
sequencing data. However, the same break-
through has yet to impact data analyses and stor-
age. Our data processing capabilities are being 
surpassed by our capacity to produce data, and it 
is imperative to face this challenge if we want to 
further increase our ability to address the chal-
lenges posed by climate change, speed up the 
efforts to breed crop plants, and deepen our 
understanding of the history of evolution of 
plants.
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