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Abstract

The development of modern genetic engineer-
ing approaches and high throughput technolo-
gies in biological research, besides the holistic 
view of systems biology, have triggered the 
progress of biotechnology to address plant pro-
ductivity and stress adaptation. Indeed, plant 
biotechnology has the potential to overcome 
many problems we currently face that impair 
our agriculture, such as diseases and pests, 
environmental pressures, or climate change. 
The system biology field encompasses the 
identification of the general principles and pat-
terns found in living systems, by studying the 
molecular diversity and integrate this knowl-
edge in complex models of regulatory net-
works. The “omics,” which comprises but not 
limited to genomic, transcriptomic, proteomic, 
epigenomic, and metabolomic studies in entire 
plants, allow a better understanding of plant 
system biology and further contribute to bio-

technology development. In this chapter, we 
provided an overview on omic studies for the 
searching and identification of metabolites and 
proteins employed by microorganisms to 
develop biotechnological products. Moreover, 
we present an overview of the central aspects 
of small RNA as regulators of gene expression 
connecting system networks and the potential 
application into plant biotechnology.
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10.1	 �Introduction

10.1.1	 �Plants Have Shaped Human 
Life History on Earth

The energy of sunlight converted by algae and 
plants to carbohydrates and other organic mole-
cules is fundamental for life in our planet. Our 
society has developed along with the improve-
ment of our capacity to cultivate and store plants 
as a main source of food through agriculture. 
Climate change, diseases and pests have reduced 
the sources of energy and, besides suitable 
agricultural-land area, represent the main obsta-
cles for the optimal production and yield in agri-
culture nowadays. Furthermore, the population 
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growth rate is rapidly increasing, which raises 
concerns about food security in a near future. To 
balance the equation, many people are trusting on 
the development of plant biotechnology.

Indeed, plant biotechnology have the potential 
to overcome many problems we currently face 
that impair our agriculture, such as diseases and 
pests, environmental pressures or climate change, 
to cite a few examples. However, it is not yet 
known if the rate of plant biotechnology develop-
ment will cope with the always-growing needs 
for food. Besides increasing plant productivity 
and resistance against biotic and abiotic stresses, 
plant biotechnology is also crucial to the devel-
opment of the much needed second and third 
generation biofuels.

In this scenario, “omics” and plant system 
biology emerges as fundamental knowledge to 
understand, not only the physiology of a single 
plant, but also to extrapolate this information to 
more complex natural and anthropogenic ecosys-
tems, which in turn have the potential to acceler-
ate the development of plant biotechnology. 
Besides the biotechnological products that have 
arisen from genetic manipulation of organisms, 
such as genetic modified organisms (GMO), anti-
biotics and vaccines, the modern biotechnology 
provides advances in the study of omics, and con-
sequently to the system biology field. This emerg-
ing field, which is closely related to synthetic 
biology, encompasses the identification of the 
general principles and patterns found in living 
and engineered systems, along with the study of 
the molecular diversity of living organisms, to 
finally, integrate this knowledge in complex mod-
els of the regulatory networks (Breitling 2010).

Several new methods for DNA sequencing 
known as “next-generation” or “second-
generation” sequencing were developed around 
the year 2000, and expand enormously the 
genomic information available nowadays, which 
comprises hundreds of organisms. Together with 
transcriptomics, proteomics, epigenomics, and 
metabolomics studies that are now facilitated by 
high-throughput methodologies and bioinformat-
ics analyses, the enormous growth in omics stud-
ies now makes systems biology expand in 
biological research.

In the next sections, it will be discussed the 
characterization of metabolites and proteins 
employed by plant-associated beneficial microor-
ganisms, and also plant susceptibility genes that 
are targeted by pathogen effectors, in order to 
develop biotechnological products. Additionally, 
the posttranscriptional regulatory role of small 
RNAs, representing another layer of gene expres-
sion regulation, is presented. Finally, our per-
spectives for the contribution of omics and 
systems biology to advance plant biotechnology 
are further discussed.

10.2	 �Development

10.2.1	 �Plant–Microbe Interaction: 
Effectors, Omics 
and Strategies for Plant 
Breeding

Plants are in constant interaction with microbes 
in the environment. The nature of those relation-
ships might range from no obvious interactions 
(not compatible), beneficial (mutualistic) to 
harmful (pathogenic), which also can be influ-
enced by changes in environmental conditions. In 
almost all cases, microbes utilize effectors to 
modulate host physiology aiming to establish 
successful colonization. In this topic we will dis-
cuss the effector-based strategies employed by 
both beneficial and pathogenic microbes, the 
omic tools to identify effectors and plant targets, 
and the biotechnological approaches to engineer 
plants with higher productivity and resistance.

10.2.2	 �Effectors from Beneficial 
Microorganisms

Mutualistic microbes, which provide essential 
biochemical products/processes to host plants, 
are mainly associated with the root system and 
usually referred to as plant growth-promoting 
bacteria (PGPB) and fungi (PGPF) (Pieterse 
et  al. 2014). These beneficial organisms can 
improve plant growth and development by using 
both direct and indirect mechanisms. Probably 
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the most well-known beneficial relationship 
between plants and microorganisms is the inter-
actions of Rhizobium and other nitrogen-fixing 
bacteria with plants colonized by these bacteria.

Direct mechanisms, such as nitrogen fixation, 
phosphorous solubilization and production of 
growth-promoting compounds as plant regulators 
(auxin, cytokinin, gibberellin), refer to a directly 
induction of plant growth and development by 
microbe-associated molecules (Olanrewaju et al. 
2017). The production of auxins by beneficial 
microbes has been greatly explored due to the 
numerous positive effects that this versatile hor-
mone can cause, for instance by regulating cell 
division and cell enlargement to provide growth 
of roots, stem and leaves (Vanneste and Friml 
2009). The indole-3-acetic acid (IAA) produced 
by the plant-associated microorganisms can stim-
ulate root development if the plant IAA concen-
tration is insufficient, or causes contrary effect to 
inhibit root growth in cases where the concentra-
tion of the hormone is optimal (Spaepen et  al. 
2007). In Triticum aestivum, the IAA content 
produced by strains belonging mainly to Bacillus 
and Pseudomonas species increased the number 
of tillers, the spike length and seed weight, dem-
onstrating the potential of this hormone to 
increase plant growth and yield (Ali et al. 2009). 
Cytokinin is also produced by soil microorgan-
isms capable to work as a plant growth regulator 
(PGR) (Arkhipova et al. 2007). Cytokinins con-
tent can cause beneficial effects on plant growth 
and yield, by acting in a lot of biological pro-
cesses, including cell division, cell enlargement, 
tissue expansion, stomatal opening and shoot 
growth (Weyens et al. 2009). For example, treat-
ment of Platycladus orientalis (oriental thuja) 
seedling with cytokinin produced by Bacillus 
subtilis increased drought stress tolerance thus 
improving plant health (Liu et al. 2013).

Indirect mechanisms, such as production of 
antibiotics, quorum quenching and induced sys-
temic resistance (ISR), refer to an indirectly 
induction of plant growth and development by 
the inhibition of pathogens attack (Olanrewaju 
et  al. 2017). Bacteria from the genera 
Pseudomonas and Bacillus have been shown to 
produce a large variety of effectors with antimi-

crobial properties, such as ecomycins, 2,4 
Diacetyl Phloroglucinol (DAPG), Phenazine-1-
carboxylic acid (PCA), subtilin, TasA, and sub-
lancin (Goswami et al. 2016). Beneficial microbes 
can also inhibit infection of phytopathogenic 
bacteria by disrupting their communication 
(Olanrewaju et al. 2017). In response to fluctua-
tions in cell population density, quorum-sensing 
bacteria synthesize extracellular signaling mole-
cules, called autoinducers, which triggers gene 
expression regulations in proximal bacterial 
cells. By using quorum sensing, bacteria can reg-
ulate a diverse array of physiological activities, 
such as biofilm formation and virulence, in a 
coordinated action within bacterial population 
(Miller and Bassler 2001). Some beneficial 
PGPBs produce lactonase enzymes that degrade 
pathogen-produced autoinducer, thus disrupting 
quorum sensing and preventing bacterial patho-
gens from inhibiting plant growth (Olanrewaju 
et al. 2017).

Indirect promotion of plant growth by benefi-
cial microbes can also be achieved by triggering 
the ISR, a plant priming for defense against sub-
sequent attacks from a broad spectrum of patho-
gens and herbivores. Induced resistance is 
triggered not locally at the site of contact with the 
mutualistic microbe but also systemically in plant 
parts that were not exposed to the inducer. Both 
PGPB and PGPF in the rhizosphere have been 
described to stimulate plant health by triggering 
the plant immune system (Pieterse et al. 2014). 
For instance, pioneer studies reported that plants 
with root system colonized by a PGPB strain of 
Pseudomonas fluorescens had a higher production 
of antimicrobial phytoalexins and enhanced 
resistance to the pathogen Fusarium oxysporum 
(Van Peer et al. 1991).

Similarly, the colonization of cucumber roots 
by Pseudomonas and Serratia PGPB strains 
resulted in reduced anthracnose disease symp-
toms caused by Colletotrichum orbiculare (Wei 
et  al. 1991). Since then, numerous studies had 
reported the ability of plant growth-promoting 
microbes to induce ISR and enhance plant health 
(Pieterse et al. 2014). Many microbial effectors 
responsible for the onset of ISR have been 
described. Examples from PGPB include antibi-
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otics, homoserine lactones, iron-regulated sidero-
phores, lipopolysaccharides-containing cell wall 
and flagella. Volatiles such as 2R,3R-butanediol 
and C13 synthesized by B. subtilis and 
Paenibacillus polymyxa, respectively, also elicit 
ISR. ISR-inducing effectors from PGPF include 
enzymatic proteins, such as xylanases and celu-
lases (Pieterse et al. 2014).

Besides effectors that induce systemic plant 
defenses, beneficial microbes might also deliver 
effectors that suppress local plant defenses to 
help the establishment of mutualistic interactions 
with the host. Some effectors, employed by 
PGPB and PGPF to overcome plant immune 
responses, have been described, e.g., the SP7 
from Rhizophagus intraradices (Kloppholz et al. 
2011). Suppression of plant defenses is a mecha-
nism also typically exerted by effectors from 
pathogenic microbes to achieve successful infec-
tion, and it will be addressed in the following 
subtopic.

10.2.3	 �Effectors of Plant-Pathogens

During the co-evolution of plants and pathogens, 
plants have developed a multilayered immune 
system to self-protect while adapted pathogens 
acquired mechanisms to overcome its defenses. 
At the cell surface, plants carry pattern recogni-
tion receptors (PRRs) to recognize conserved 
molecules associated to pathogens/microbes 
(pathogen/microbe-associated molecular pat-
terns—PAMPs/MAMPs) and elicit the so-called 
pattern-triggered immunity (PTI). To counteract 
PTI, specialized pathogens deliver effector pro-
teins that suppress the plant defense signaling 
and induce an effector-triggered susceptibility 
(ETS). As a counter-counter-defense strategy, 
plants have evolved proteins coded by resistance 
genes (R genes) to sense the effectors or their 
effects in plant cells, triggering the effector-
triggered immunity (ETI) (Fig. 10.1) (Jones and 
Dangl 2006).

Fig. 10.1  Multilayered plant immune system. Plants carry 
pattern recognition receptors (PRRs) that recognize patho-
gen/microbe—associated molecular patterns (PAMPs/
MAMPs) and elicit the pattern-triggered immunity (PTI). 
Adapted pathogens have acquired effector proteins that are 

delivered in the host cell to suppress PTI, inducing an effec-
tor-triggered susceptibility (ETS). As a counter-counter-
defense strategy, plants have acquired resistance (R) 
proteins that recognize the effectors or their effects in plant 
cells, triggering the effector-triggered immunity (ETI)
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Most R genes encode members of a family of 
nucleotide-binding leucine-rich repeat (NLR) 
receptors that recognize specific pathogen effec-
tors. The first described R gene, Pto, was identi-
fied more than 20 years ago in tomato conferring 
resistance to strains of Pseudomonas syringae 
carrying specific effectors (former called as avir-
ulence genes) (Martin et al. 1993; Scofield et al. 
1996). Since then, several R genes have been 
identified in distinct plant species, as promoters 
of resistance to all kinds of pathogens. Classic 
examples include the tobacco gene N that confers 
resistance to tobacco mosaic virus (TMV) 
(Whitham et al. 1994), the Arabidopsis RPS2 and 
RPM1 that recognize effectors from P. syringae 
(Bent et  al. 1994; Grant et  al. 1995), and the 
tomato Cf-2 and Cf-9 that promotes resistance to 
Cladosporium fulvum (Jones et al. 1994; Dixon 
et  al. 1996). When pathogens attempt to over-
come plant defenses by delivering effector mole-
cules, R genes-encoded proteins might recognize 
either the effectors itself or plant affected pro-
teins, triggering a signaling cascade that culmi-
nate in the plant resistance.

Along with suppression of plant defenses, 
pathogen effectors might exploit the so-called 
plant susceptibility genes (S genes) that facili-
tates the infection process or supports compati-
bility with a pathogen (Zaidi et al. 2018). Proteins 
coded by S genes might assist pathogen in several 
steps of the establishment of a compatible inter-
action such as host recognition, penetration, pro-
liferation and spread. The best-known example of 
an S gene is the Mildew resistance locus O (Mlo) 
that encodes a membrane-associated protein 
required for powdery mildew fungal penetration 
of host epidermal cells. Besides Mlo, the rice 
SWEET genes were identified as susceptibility 
genes to bacterial blight (Zhou et al. 2015). The 
associated pathogen, Xanthomonas oryzae, 
encodes transcription activator-like (TAL) effec-
tors that recognize specific regions (effector 
binding elements, EBE) in the promoter of the 
SWEET genes and induce their expression (Zhou 
et al. 2015). Because SWEET genes encode sugar 
transporters, they likely promote susceptibility to 
bacterial blight by triggering sugar release to the 
apoplast and thus providing nutrient to the patho-

gen (Blanvillain-Baufumé et  al. 2016). In fact, 
several S genes targeted by Xanthomonas spp. 
TAL effectors have been identified (Hutin et al. 
2015). Another S gene recently characterized is 
the citrus LOB1, which support host susceptibil-
ity to citrus canker disease, caused by 
Xanthomonas citri subsp citri (Hu et  al. 2014). 
Like X. oryzae, X. citri also uses its TAL effectors 
to bind EBEs in the promoter of LOB1 and 
induce its expression (Hu et  al. 2014). Even 
though its biological role remains to be deter-
mined, induction of LOB1 using custom-
designed TAL effectors leads to similar citrus 
canker symptoms (Zhang et al. 2017), highlight-
ing its central role in the development of the 
disease.

10.2.4	 �Omics as Tools to Identify 
Microbe Effectors and Plant 
Targets

The increasing advances in omics technologies 
are boosting the discovery of microbial effectors 
in a rapid and efficient manner. Next-generation 
sequencing technologies are used to sequence 
microbe genomes, allowing in silico prediction of 
effectors. Putative effectors can be predicted from 
sequence datasets by detecting features associated 
to secreted proteins, such as the presence of a sig-
nal peptide, the absence of transmembrane and 
membrane anchorage domains, and small 
sequence size/length (Dalio et al. 2017). Genome 
sets from different strains of the same microbe 
can be compared by searching for core effectors, 
known to be important for the microbe coloniza-
tion and, hence, less subjected to mutations that 
could help them to escape from introduced 
sources of plant resistance (Dangl et  al. 2013). 
Following such strategies, sets of effectors of sev-
eral microorganisms have been disclosed with 
high efficiency (Vleeshouwers and Oliver 2014). 
Further proteomic and transcriptomic data, from 
microbe upon contact with plant signals, help to 
select secreted proteins potentially involved in the 
host–microbe interaction.

Once the most promising effector candidates 
are selected, their biological activity can be vali-
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dated by transient or stable gene expression in 
plants (Dalio et  al. 2017). The set of transcrip-
tomic, proteomic, metabolomic, and phenomic 
data from transformed plants compared to wild 
type shall settle the status of the predicted protein 
as a true effector and can contribute to the eluci-
dation of plant modifications imposed by effector 
activity. Further approaches to validate effector 
function is knocking out or knocking down the 
effector gene-by-gene editing or silencing (Dalio 
et  al. 2017). In such cases, the obtainment of 
omics data from both microbe with the disrupted 
gene and colonized test-plant are also useful to 
demonstrate that the function of the effector is 
compromised.

Subsequently, the identification of effectors 
has facilitated the discovery of corresponding 
plant target genes. “Effectoromics” studies have 
been successful in identifying a growing list of 
effectors and their corresponding R and S genes 
(Dangl et  al. 2013; Vleeshouwers and Oliver 
2014). By using the functionally validated effec-
tor, plants can be screened for proteins that 
directly interact with the effector. For instance, 
candidate targets for effector manipulation can be 
elucidated using yeast two-hybrid screening, 
which has been applied at genomic scale, or pull-
down assays followed by proteomics identifica-
tion of interacting proteins (Dalio et  al. 2017). 
Irrespective if those or other approaches are 
employed, the searching for targeted R or S genes 
directed by effector-based screens provide higher 
throughput and more straightforward phenotypes 
than pathogen-based screens (Dalio et al. 2017; 
Vleeshouwers and Oliver 2014). Similar strategy 
could be employed to identify plant targets from 
beneficial microbe effectors.

This effector-rationalized approach (Dangl 
et al. 2013) was used to search for the source of 
Phytophthora infestans resistance in the potato 
“Sarpo Mira,” one of the few cultivars reported to 
retain field resistance to late blight for several 
years (Rietman et al. 2012). A collection of core 
effectors was predicted from P. infestans genome 
and expressed in potato leaves. The induced resis-
tance response to specific effectors, whose corre-
sponding R genes were mostly known, enabled 
the dissection of R genes that confers late blight 
resistance in “Sarpo Mira” genotype (Rietman 

et al. 2012). Similar strategies can be used to pro-
vide breeding programs with R genes for deploy-
ment in susceptible genotypes. A different 
approach relied on the TAL effectors from 
Xanthomonas species, which binds EBE regions 
in the promoter of S genes, inducing their expres-
sion and facilitating pathogen infection. Using the 
knowledge on EBE regions, an engineered R gene 
was produced by adding EBE regions to the pro-
moter of Xa27 gene and deployed in rice (Hummel 
et  al. 2012). The synthetic R gene was success-
fully activated by TAL effectors, conferring rice 
resistance to both bacterial blight and bacterial 
leaf streak (Hummel et al. 2012). Besides deploy-
ing engineered R genes, S genes targeted by TAL 
effectors have been edited to generate resistant 
genotypes. Using an effector-rationalized 
approach, the discovery of Xanthomonas TAL 
binding sites combined with transcriptomic data 
has led to the discovery of several S genes for dif-
ferent Xanthomonas/host interaction (Hutin et al. 
2015). The identified S genes are greatly increas-
ing the knowledge on Xanthomonas-causing dis-
eases and have now been used as targets for gene 
editing to confer resistance to such diseases 
(Hutin et al. 2015; Li et al. 2012).

10.2.5	 �Biotechnology Approaches 
for Genetic Engineering 
Plants to Improve 
Productivity and Disease 
Resistance

Crops have been selected for higher yield and dis-
ease resistance throughout the history of agricul-
ture (Table  10.1). Traditional breeding methods 
allowed the introgression of interesting traits well 
before the comprehension of the molecular mech-
anisms involved in plant–microbe interactions. 
Currently, the elucidation of effector-targeted 
plant genes is used by breeding programs to 
develop crop varieties with higher levels of resis-
tance and productivity. Combined with 
conventional time-consuming breeding tech-
niques, technologies based on genetic engineering 
(Fig. 10.2) have been used to improve and speed 
up the process of developing high-yield and dura-
ble disease-resistant crop varieties (Table 10.1).
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Table 10.1  Historical scientific events that have developed the modern biotechnology

Years Scientist/pioneer/discoverer Innovative events
8500 bc Southwest Asians Emergence of plant and animal domestication
1675 Anton Van Leeuwenhoek Discovery of microorganisms by “The Father of Microbiology”
1862–
1885

Louis Pasteur Discoveries of the principles of vaccination, microbial fermentation, 
and pasteurization

1865 Gregor Mendel Establishment of the principles of genetics and theories of heredity by 
“The Father of Genetics”

1919 Károly Ereky Creation of the term biotechnology
1928 Ludwig von Bertalanffy Proposition of the general systems theory, one of the precursors of 

systems biology
1929 Alexander Fleming Purification of penicillin from the fungus Penicillium notatum
1930 George Beadle and Edward 

Tatum
Confirmation that genes direct the production of proteins

1944 Oswald Avery Identification of DNA as the material of which genes and 
chromosomes are made and transmit the genetic information

1953 Francis Crick, Maurice 
Wilkins, and James Watson

Revelation of the structure of DNA molecule

1961 François Jacob and Jacques 
Monod

Elucidation of the control of enzyme expression levels as the result of 
regulation of DNA transcription

1967 Har Gobing Khorana and 
Marshall Niremberg

Elucidation of the genetic code

1972 Paul Berg Development of recombinant DNA techniques—“the emergence of 
genetic engineering”

1976 Walter Fiers Sequencing of the first complete genome of bacteriophage
1976 Herbert Boyer and Robert 

Swanson
Establishment of the first biotechnology company, the Genentech

1977 Frederick Sanger Determination of the first DNA sequence
1978 Werner Arber, Daniel Nathans, 

and Hamilton Smith
Isolation of restriction enzymes from bacteria

1982 Richard Palmiter Generation of the first genetic modified organism (GMO)
1985 Kary Banks Mullis Development of the polymerase chain reaction (PCR) technique
1986 Thomas H. Roderick Creation of the term genomics
1986 USA and France Establishment of the first field trials of transgenic tobacco resistant to 

herbicide
1994 USA Approval of the first GMO to be commercially available, a transgenic 

tomato
1998 Washington Uni and Sanger 

Institute
Sequencing of the first complete animal genome, of the 
Caenorhabditis elegans

1998 Craig Mello and Andrew Fire Elucidation of the mechanism of RNA interference (RNAi) in animals
1998 Peter Waterhouse and 

Ming-Bo Wang
Discovery that the double-stranded RNA (dsRNA) induces the RNAi 
in plants

2000s Roche, ABI, and Solexa/
Illumina technologies

Development of high throughput-sequencing technologies

2000s Several Emergence of modern systems biology approaches, “the age of 
systems”

2000 Arabidopsis Genome Initiative Sequencing of the first complete plant genome, of the Arabidopsis 
thaliana

2002 Koichi Tanaka, John Fenn, 
and Kurt Wüthrich

Recognition for the development of identification and structure 
analyses for proteomics

2008 Solexa/Illumina technologies Development of RNA-seq for modern transcriptomic studies
2012 Jennifer Doudna and 

Emmanuelle Charpentier
Development of a precise gene editing technology using 
CRISPR-Cas9

2017 David Liu and Feng Zhang Development of a flexible RNA base editing technology using 
CRISPR-Cas13
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Transgenic approaches have been used to 
introduce genes of interest in plant species, 
including dominant R genes for disease resistance 
(Dangl et al. 2013). For instance, transgenic toma-
toes with field-level resistance to bacterial spot 
disease were produced by transferring the R gene 
Bs2 from pepper (Horvath et al. 2012). Similarly, 
the gene RB from potato wild relatives was intro-
duced in the cultivated potato by transgeny and 
generated increased resistance to late blight 
(Halterman et  al. 2008). Showing that R genes 
from non-hosts can effectively promote plant 
resistance, the maize R gene Rxo1 was used to 
generate a transgenic rice, conferring resistance to 
bacterial streak (Zhao et al. 2005). The downside 
of using dominant R genes to generate plant resis-
tance is that they usually present a short life in the 
field due to the adaptative potential of the corre-
sponding pathogen effectors (Dangl et al. 2013). 
On the one hand, stacking multiple R genes 
simultaneously should provide more durable 
resistance since multiple effector genes would 
have to suffer mutation to evade resistance (Dangl 
et al. 2013). On the other hand, enhancing plant 
resistance by disrupting S genes rather than 
expressing R genes is an attractive approach.

Along with the introduction of foreign genes 
by conventional transgeny, the disruption of 
native gene functions might be achieved by gene 
silencing or editing. Gene silencing can be acti-
vated by the presence of double-stranded RNAs 
(dsRNA) and results in the cleavage or transla-
tion inhibition of RNAs. Briefly, dsRNA triggers 
their own cleavage by Dicer nucleases, produc-
ing small interfering RNAs (siRNA), which in 
turn are recruited by RNA-induced silencing 
complexes (RISC) that target RNAs with 
sequence homology to the incorporated siRNA 
(Kamthan et  al. 2015). Transgenic plants with 
constructs designed to produce siRNA contain in 
the dsRNA a sequence to target gene, a technol-
ogy known as RNA interference (RNAi). With 
the employment of engineered siRNA, RNAi 
can be used to manipulate gene expression and 
suppress undesirable traits such as susceptibility 
to pathogens.

The RNAi system have been applied as a strat-
egy to control plant insects (Galdeano et al. 2017; 
Mao et al. 2007), viruses (Fuentes et al. 2016; Niu 
et al. 2006) and other attackers by directly target-
ing the pathogen/herbivore genes. Another 
approach is the use of RNAi to target plant S 

Fig. 10.2  Genetic engineering approaches to generate 
plants with improved disease resistance. (a) Transgeny to 
introduce genes of interest in wild type plants, including 
resistance (R) genes. (b) Gene editing to disrupt native 
genes such as susceptibility (S) genes. Sire-directed gene 
editing can be achieved using tools such as CRISPR/Cas9 
system, that introduce double-stranded DNA breaks and 

triggers an error-prone DNA repair pathway, resulting in 
indels mutations (*). (c) Gene silencing to disrupt the 
function of undesirable genes (e.g., S genes). RNA inter-
ference can promote the cleavage or translation inhibition 
of mRNAs, knocking down the expression of the target 
gene

R. J. D. Dalio et al.
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genes. Such strategy was used to silence the potato 
SYR1 gene, resulting in reduced formation of 
papillae components in response to infection with 
P. infestans and increased resistance to late blight 
(Eschen-Lippold et al. 2012). In another example, 
RNAi was employed to silence SSI2 (suppressor 
of salicylate insensitivity of npr1-5) gene in rice, a 
negative regulator of plant defenses, conferring 
resistance to fungal blast and bacterial leaf blight 
diseases (Jiang et al. 2009). We will discuss more 
about sRNAs in the next chapter section.

Besides gene silencing, an increasing approach 
within molecular plant breeding is the use of site-
directed genome editing. One of the most revolu-
tionary tools within gene editing techniques is 
the CRISPR-Cas9 system. With CRISPR/Cas9 
tool, double-stranded DNA breaks can be intro-
duced at specific genome regions by a site-
specific nuclease, leading to the activation of 
DNA repair pathways. In the absence of a repair 
template, the non-homologous end-joining 
(NHEJ) pathway repairs the DNA in an error-
prone process that often causes insertions or 
deletions around the DNA breaks, generating 
mutated alleles (Zaidi et  al. 2018). Though 
recently developed, CRISPR/Cas9 system has 
already been applied in several economically 
important crops such as rice (Jiang et al. 2013), 
maize (Char et  al. 2017), tomato (Brooks et  al. 
2014), and sweet orange (Jia and Wang 2014). 
CRISPR quickly became successful due to its 
high simplicity, efficiency, specificity and versa-
tility (Bortesi and Fischer 2015; Zaidi et  al. 
2018). The major advantage of the gene editing, 
however, is the possibility to generate genetically 
modified cultivars that lack transgenes in the final 
line and thus can be exempted from GMO 
legislation and are more likely to be accepted by 
the public. Without transgenes or other foreign 
DNA sequences, some genome-edited plants 
using CRISPR already evaded regulation by 
USDA and are reaching market in record time 
(Waltz 2018).

In the context of developing disease resis-
tance, S genes are promising targets for gene 
editing, since their mutation can limit the ability 
of a pathogen to cause disease. By using gene 
editing, the S gene LOB1 was successfully modi-

fied in grapefruit, generating plants without 
symptoms of Xanthomonas citri bacterial infec-
tion (Jia et  al. 2017). Likewise, CRISPR/Cas9 
was used to edit the rice S gene SWEET13, result-
ing in resistance to bacterial blight (Zhou et al. 
2015). Regarding fungal pathogens, gene editing 
disabled multiple homeoalleles of MLO gene in 
wheat, conferring heritable broad-spectrum resis-
tance to powdery mildew (Wang et  al. 2014). 
Resistance to potyviruses was obtained in 
Arabidopsis (Pyott et  al. 2016) and cucumber 
(Chandrasekaran et al. 2016) by disrupting the S 
gene eIF4E (eukaryotic translation initiation fac-
tor E), which codes for a protein essential to the 
viral infection cycle. The CRISPR/Cas9 system 
was also employed in tomato to inactivate DMR6 
(downy mildew resistance 6), an S gene involved 
in the homeostasis of the defense hormone sali-
cylic acid, generating plants with high levels of 
resistance to a wide variety of pathogens 
(Thomazella et al. 2016). The results obtained so 
far using CRISPR technology have proven that 
mutation on S genes can generate plant resistance 
to several diseases. Ongoing studies are focusing 
in obtaining final lines that do not contain foreign 
DNA to facilitate consumer acceptance. The use 
of genome editing to mutate S genes is emerging 
as a revolutionary approach to provide a 
transgene-free, long term, and efficient control 
measure of plant diseases.

Apart from breeding strategies to obtain 
genetically engineered plant, another biotechnol-
ogy strategy used to improve plant health is the 
use of heterologous expression systems to pro-
duce molecules of interest. This approach can be 
used to large-scale production of effectors from 
mutualistic microbes that stimulate plant growth 
or disease resistance. Heterologous expression of 
microbe-associated quorum quenching mole-
cules have been explored aiming disruption of 
biofilm-forming phytopathogenic bacteria (Kalia 
2015). For instance, the aiiA gene coding for lac-
tonase effectors from distinct Bacillus species 
was engineered into Lysobacter enzymogenes 
and E. coli, resulting in reduced virulence of 
Pectobacterium carotovorum on Chinese cab-
bage (Qian et  al. 2010) and attenuated soft rot 
symptoms of Erwinia carotovora in potato, 
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respectively (Pan et al. 2008). Similar strategy of 
recombinant protein systems can be used to syn-
thesize other effectors from beneficial microbes 
in a commercial scale to increase plant health 
such as growth-promoting hormones, hydrolytic 
enzymes, siderophores, or antibiotics.

The improved identification of microbe effec-
tors using omics technologies is providing valu-
able resources for plant breeding programs. 
Knowledge of microbe effectors and their target 
plant genes can be applied in combination with 
biotechnology techniques to speed up the devel-
opment of plant varieties with higher productiv-
ity and durable disease resistance.

10.2.6	 �Gene Expression Regulation 
by Small Noncoding RNAs

The comprehension of system biology depends 
on a wide data collection, integration and analy-
sis of biological molecules, focusing on interac-
tions and emerging properties. In this context, the 
small noncoding-RNAs (sRNAs) has appeared, 
in the last couple of decades, as active and essen-
tial regulatory molecules for protein-coding gene 
expression, influencing several interconnected 
biochemical pathways. Therefore, the identifica-
tion of sRNAs and characterization of their inter-
active network, including the discovery of sRNA 
target genes and associated biochemical path-
ways is crucial for the application of systems 
biology to plant biotechnology.

In this section, we provide an overview of the 
central aspects of endogenous sRNAs, mostly 
microRNAs (miRNAs), function during plant 
development and the evolutionary history of 
MIRNA genes. MiRNAs have been shown to act 
as posttranscriptional regulators, directing 
several essential processes in the plant, and 
miRNA-based technology is also a target for 
plant engineering to achieve high yields, quality 
and stress resistance. The applications of sRNAs 
e miRNAs research on plant biotechnology and 
the importance to incorporate these regulatory 
molecules into systems biology are further 
discussed.

10.2.6.1	 �Biological Roles of Plant 
miRNAs

Expansion of the miRNA regulatory system is 
associated with requirements for additional 
endogenous control of genomic information 
(Mattick 2004). The remarkable and constant 
expansion of miRNAome coincides with the 
major morphological innovations present in the 
animal bilaterians, vertebrates, and placental 
mammals, where many tissue- and organ-specific 
miRNA/target regulatory associations could have 
been fundamental to the emergence of complex 
bodies. This is reflected in the strong correlation 
between the number of MIR families contained in 
an organism and its position in the hierarchy of 
the animal kingdom (Hertel et al. 2006; Sempere 
et  al. 2006). Moreover, there is a correlation 
between the number of target genes regulated by 
a miRNA and the age of a MIR gene. In animals, 
the number of targets of an individual miRNA 
also appears to increase over evolutionary time, 
with the more phylogenetically ancient miRNAs 
having more target genes than young miRNAs 
(Brennecke et al. 2005).

In plants, analyses of the miRNAome of com-
mon ancestors have suggested that only a few 
MIR genes are highly conserved across the entire 
kingdom (Cuperus et  al. 2011; Nozawa et  al. 
2010; Ma et al. 2010). The sRNAs derived from 
conserved MIR families represent the most abun-
dant miRNAs in a particular miRNAome, as a 
result of a moderate to high levels of MIR gene 
expression (Axtell 2008; Cuperus et  al. 2011). 
These conserved miRNAs are usually derived 
from multi-gene MIR families, containing identi-
cal or highly similar mature miRNA sequences 
(Jones-Rhoades 2012). A high level of functional 
redundancy is noticed among members of the 
same MIR family (Sieber et al. 2007; Allen et al. 
2007). However, the expansion of MIR gene fam-
ilies, combined with the occurrence of mutations 
outside the mature miRNA sequence, would pro-
vide diversification of the spatiotemporal expres-
sion in different MIR family members (Li and 
Mao 2007).

The development of multicellular organisms 
depends on complex regulatory networks that 
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integrate endogenous and environmental signals. 
The signaling effectors in this process include 
phytohormones, peptides, transcription factors, 
and sRNAs, which are globally interconnected 
over long and short distances within the plant, 
acting in a spatiotemporal manner (Sparks et al. 
2013).

Phytohormones are important mediators 
throughout plant development, perceiving and 
transmitting the internal and external cues, and 
whose signaling pathways are under constant 
cross-talk mechanisms to adjust the responses 
(Vanstraelen and Benková 2012). A close rela-
tionship between miRNAs and phytohormones 
has been seen in several studies, showing inter-
sections in their pathways and feedback mecha-
nisms where MIR genes respond to hormones 
which in turn regulate several genes involved in 
hormonal signaling pathways (Liu and Chen 
2009; Liu et al. 2009; Curaba et al. 2014). Tissue- 
or stage-specific miRNA accumulation often 
plays a central role affecting, directly or indi-
rectly, the expression of genes to adjust the tran-
scriptome in accordance with the development 
requirements, in a highly dynamic regulatory net-
work (Válóczi et al. 2006; Meng et al. 2011). The 
fine-tuning regulation of plant development by 
miRNA has been revealed from the characteriza-
tion of several plant mutants, either impaired in 
steps of the miRNA biogenesis, displaying pleio-
tropic developmental defects, or impaired in par-
ticular MIR genes and targets, leading to more 
specific developmental defects (Mallory and 
Vaucheret 2006). However, pleiotropic defects 
have been also observed, mostly in cases where a 
miRNA has several targets.

During seed development, miR160 and 
miR167 regulation of the auxin-related transcrip-
tion factors, ARF17 and ARF6/8, affect embryo 
development, seed production and germination 
rates (Mallory et al. 2005; Todesco et al. 2010). 
The gibberellin (GA)- and abscisic acid 
(ABA)-regulated transcription factors 
MYELOBLASTOSIS (MYB) GAMYB-like genes 
MYB33/65 are regulated by miR159, affecting 
seed size and fertility (Allen et al. 2007). In the 
early stages of embryogenesis, miR165/166 and 

miR394 seem to be essential for stem cell differ-
entiation and shoot apical meristem (SAM) 
maintenance. MiR165/166 regulates the 
HD-ZIPIII transcription factors to define the vas-
cular cell types in the roots and maintain cell plu-
ripotency in the SAM, via association with 
AGO10 (Carlsbecker et al. 2010; Zhu et al. 2011) 
whereas miR394 is required for stem cell differ-
entiation and targets an F-Box encoding gene 
LCR (Knauer et al. 2013; Litholdo et al. 2016). 
Although these studies did not show any phyto-
hormone relationship with these miRNAs regula-
tion, hormones, such as auxin and cytokinin 
could be contributing to this cell differentiation 
processes (Knauer et  al. 2013; Leibfried et  al. 
2005).

During leaf development, miR165/166 and 
miR394 also play an important role. MiR165/166, 
in conjunction with miR390/ta-siRNAs, deter-
mine the abaxial-adaxial leaf polarity (Nogueira 
et  al. 2007), and miR394 influences leaf shape 
and curvature, which is suggested to involve 
auxin signaling (Song et al. 2012). The miR393 
regulation of the auxin receptors TIR1 and AUXIN 
SIGNALING F-BOX (AFBs) genes also mediates 
some auxin-related aspects of leaf development 
(Si-Ammour et al. 2011). Moreover, miR164 and 
miR319 are important regulators during leaf ini-
tiation, growth and differentiation, by targeting 
CUC1/CUC2 and TCP transcription factors 
genes, respectively (Pulido and Laufs 2010).

During the plant life cycle, miR156 and 
miR172 are the main players regulating the tran-
sition from juvenile to adult vegetative phase, 
and from the vegetative to reproductive phase 
(Spanudakis and Jackson 2014). Both miRNAs 
regulate transcription factors, including 11 genes 
encoding SPL protein regulated by miR156, and 
six AP2-like genes regulated by miR172. 
Interestingly, both miRNAs show opposite 
expression pattern during phase changes, medi-
ated by integrated and coordinated transcriptional 
activation of their pathways (Wu et  al. 2009). 
Additionally, miR159, miR319, and miR390 also 
regulate flowering time, implying that GA and 
auxin might coordinate the regulation of these 
miRNAs.
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During root development, the regulation of 
HD-ZIPIII genes by miR165/166 modulates lat-
eral root initiation, vascular tissue differentiation 
and nitrogen-fixing nodule development 
(Boualem et  al. 2008; Carlsbecker et  al. 2010; 
Miyashima et al. 2011). Another auxin-dependent 
process in the roots involves miR160 regulation 
of the transcription factors ARF10/ARF16, and 
the miR390-triggered production of ta-siRNAs, 
targeting ARF4 (Wang et  al. 2005; Yoon et  al. 
2010). Moreover, miR828-triggered ta-siRNAs 
target members of MYB transcription factors, 
playing a role in root hair patterning and anthocy-
anin production (Luo et al. 2012; Xia et al. 2012).

Interestingly, the complex network of interac-
tions between miRNAs and hormonal signaling 
pathways integrates plant development and stress 
response signals. For instance, the miR393 regu-
lation of the F-Box genes TIR1 and AFB2 medi-
ates the auxin-dependent root development in 
response to ABA-related drought stress (Chen 
et al. 2012). Moreover, the metabolism of some 
inorganic nutrients depends on the gene regula-
tion mediated by mobile miRNAs, such as 
miR395, miR398, and miR399, which are 
responsive to starvation of sulfur, copper/zinc, 
and phosphate, respectively (Kawashima et  al. 
2009; Yamasaki et al. 2007; Bari et al. 2006). All 
the MIR genes exemplified in this section are 
conserved among several evolutionary distant 
plant species, demonstrating the crucial roles of 
these conserved miRNAs in fundamental and 
ubiquitous aspects of plant development. 
However, non-conserved MIRs has also been 
uncovered, such as miR824 that is only found in 
Brassicaceae yet plays a role in development. It 
regulates the conserved transcription factor 
AGAMOUS-LIKE16 (AGL16), which is impor-
tant for normal stomata development (Kutter 
et  al. 2007). This suggests that non-conserved 
miRNAs can emerge and acquire developmental 
functions in a restricted number of species.

The majority of MIR loci identified in a spe-
cific miRNAome have been found to be young, 
non-conserved microRNAs (Jones-Rhoades 
2012; Axtell 2013). It has been assumed that 
most of the recently evolved MIR genes are short-
lived, imprecisely processed, and functionally 

irrelevant. This is mostly due to the lack of identi-
fied and/or validated target genes and therefore 
some of the non-conserved miRNAs are likely to 
be under neutral selective pressure (Axtell 2008; 
Jones-Rhoades 2012). However, these assump-
tions could be the result of restricted spatiotem-
poral expression pattern of young MIRs or their 
expression being activated only under a particu-
lar stress condition. Moreover, it has been sug-
gested that recently evolved miRNAs could have 
a distinct mode of interaction with their target 
genes or even in their mode of targeting, which 
might prevent the identification of the targets 
using the usual rules and approaches (Axtell 
2008, Cuperus et al. 2011).

10.2.7	 �Recent Applications of Omics 
and Small RNA Research 
in Plant Biotechnology

The development of modern genetic engineering 
approaches and high-throughput technologies in 
biological research, besides the holistic view of 
systems biology, have triggered the progress of 
biotechnology to address plant productivity and 
stress adaptation (Table  10.1). The introduction 
of transgenes into plants has been widely and 
efficiently used for crop breeding, generating 
genetically modified organism with desired traits. 
Currently, the available omics information for 
selection of specific characteristics for breeding 
has offered a range of opportunities. Due to 
omics-scale molecular analysis and elucidation 
of genetic information and interactive networks, 
the modern biotechnology has the potential to 
target any traits for breeding, by interfering in 
one or multiple genes and/or networks.

Small RNA research has many potential appli-
cations in the plant biotechnology, aiming to 
increase food production, disease and pest con-
trols, and to overcome the consequences of cli-
mate change (Zhou and Luo 2013; Kamthan et al. 
2015; Zhang and Wang 2015, 2016; Liu et  al. 
2017). Several miRNAs may target multiple genes 
at a same time and it has been shown that manipu-
lating a single MIR gene can significantly interfere 
in intricated gene networks, to provide an appro-
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priate strategy for crop improvement. For instance, 
MIR156—the sRNA miR156 targets transcription 
factors-encoding genes, namely SQUAMOSA-
promoter binding like proteins (SPL) (Schwab 
et  al. 2005; Wang et  al. 2008; Yamaguchi et  al. 
2009; Lal et  al. 2011; Kim et  al. 2012), and an 
increase by more than 100% in plant biomass is 
observed by overexpressing MIR156 in different 
plant species, including Arabidopsis, rice, tomato, 
and switchgrass (Schwab et  al. 2005; Fu et  al. 
2012; Xie et al. 2012).

MiRNAs also play an important role in plant 
responses to biotic and abiotic stresses (Ku et al. 
2015; Litholdo et al. 2017), and accordingly, the 
manipulation of miRNAs to increase plant 
defenses has been applied to several plants, includ-
ing agricultural crop species (Djami-Tchatchou 
et al. 2017). The first MIR gene revealed to play a 
role in plant stress responses was the MIR393—
miR393 regulates the auxin signaling transcription 
factors and the overexpression of this miRNA 
leads to inhibition of bacterial growth (Navarro 
et  al. 2006). Transgenic plants overexpressing 
miR7696 and miR396 also confers enhanced 
resistance to rice blast infection and cyst nematode 
infection in Arabidopsis, respectively (Campo 
et  al. 2013; Hewezi et  al. 2008). For abiotic 
stresses, the increased abundance of miR169  in 
transgenic tomato plants enhanced drought toler-
ance, by regulating target genes involved in stoma-
tal opening, transpiration rate, and therefore, leaf 
water loss (Zhang et al. 2011). MiR319 has been 
shown to confer resistance to different environ-
mental conditions, such as cold, salt and drought 
stress—transgenic rice and creeping bentgrass 
plants, overexpressing miR319, showed respec-
tively increased tolerance to these conditions 
(Yang et al. 2013; Zhou et al. 2013).

Besides the manipulation of single miRNA/
target genes module, to generate transgenic 
plants, the miRNA-mediated gene silencing 
serves also as a biotechnological tool and is cur-
rently applied in plant science, to generate 
mutants of theoretically any gene of interest. 
Individual genes can be silenced by introducing 
into plants engineered RNA silencing expression 
constructs, such as artificial miRNAs to target 
and inactivate endogenous gene expression 

(Molesini et al. 2012). This approach can disrupt 
the production of a specific unwanted compound, 
for example the caffeine to deliver a decaffein-
ated coffee plant. Conversely, the expression of 
endogenous small RNAs can be altered by sup-
pression or overexpression of the mature sRNA 
sequence to alter plant development and protec-
tion (Djami-Tchatchou et al. 2017). The deregu-
lation of specific plant miRNAs, and consequently 
the target gene(s), can aim numerous purposes, 
such as an increase in plant biomass, tolerance to 
biotic and abiotic stresses, fruit maturation con-
trol, and production of compounds of interest 
(Molesini et al. 2012; Sunkar et al. 2012; Zhang 
2015).

10.3	 �Concluding remarks

With this chapter, we provided an overview on 
omic studies for the searching and identification 
of metabolites and proteins employed by micro-
organisms to develop biotechnological products. 
Additionally, we present an overview of the cen-
tral aspects of small RNA as regulators of gene 
expression connecting system networks and the 
potential application into plant biotechnology. 
First used to generate virus resistance, several 
other RNAi strategies have been used for trans-
kingdom gene regulation. Double-stranded RNA 
(dsRNA) produced by plants to target pathogen 
endogenous gene and reduced virulence has been 
one of the most successful approach to control 
insects, nematodes, and more recently, fungi. 
Host-induced gene silencing (HIGS) by the gen-
eration of transgenic plants carrying pathogen-
targeting constructs, and spraying dsRNA 
solution in target organisms are experimentally 
validated in biotechnology approaches.

The omics, which comprises but not limited to 
genomic, transcriptomic, proteomic, epigenomic, 
and metabolomic studies in entire plants, allow a 
better understanding of plant biology and con-
tribute further to biotechnology development. 
Recent methodological advances are enabling 
biological analyses of single-cells to provide 
opportunities to enhance our understanding of 
plant biology as a system (Libault et  al. 2017). 
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During the last decade, the discovery of regula-
tory small RNAs altered the perception that only 
protein-coding genes are the players in gene reg-
ulatory network, since sRNAs emerged as central 
players in the transcriptional and posttranscrip-
tional gene expression. The change in paradigm 
altered the way system biology is comprehended 
and how we can use this regulatory mechanism to 
improve biotechnology toolbox.
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