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This book was written with the goal of reaching ungraduated and graduate 
students from different areas related to plant sciences who look for introduc-
tory current knowledge about plant omics and systems biology and those 
scientists and professionals who wants to follow the evolution of the field.

The authors that contributed to this book are expert researchers that are 
currently developing their main research related to the topic they contributed 
to the book chapters.

This book had gathered authors from different countries, who contributed 
to reviewing the latest advances on the areas of functional genomics, includ-
ing transcriptomics, proteomics, metabolomics, and data analysis and dis-
cussed the challenges ahead and the achievements of plant omics that 
contributed to the development of plant biotechnology applications.

The book is organized in ten chapters which describe several recent 
approaches and technical aspects of the omics analysis in plants, as follow:

	 1.	 Introduction: Advances in Plant Omics and Systems Biology
	 2.	 Modern Approaches for Transcriptome Analyses in Plants
	 3.	 Plant Proteomics and Systems Biology
	 4.	 Subcellular Proteomics as a Unified Approach of Experimental 

Localizations and Computed Prediction Data for Arabidopsis and Crop 
Plants

	 5.	 The Contribution of Metabolomics to Systems Biology: Current 
Applications Bridging Genotype and Phenotype in Plant Science

	 6.	 Interactomes: Experimental and In Silico Approaches
	 7.	 Probabilistic Graphical Models Applied to Biological Networks
	 8.	 Cataloging Posttranslational Modifications in Plant Histones
	 9.	 Current Challenges in Plant Systems Biology
	10.	 Contribution of Omics and Systems Biology to Plant Biotechnology

The information contained in this book contributes to describe and discuss 
current methodologies applied in plant omics and systems biology and how 
these approaches led to novel biological data and knowledge. It brings a great 

Preface
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opportunity for a straightforward reading of important aspects of the current 
field in a single book. It also includes discussions on technical and method-
ological issues and successful or advantageous strategies for achieving a sys-
tem view of a biological problem.

Piracicaba, São Paulo, Brazil� Flavia Vischi Winck  

Preface
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ORF	 Open Reading Frame
OsGI	 Oryza sativa GIGANTEA
OsPHO2	 Oryza sativa Phosphate Over-Accumulator 2
OsSIRP2	 Oryza sativa Salt-Induced Ring E3 Ligase 2
OsTKL1	 Oryza sativa Transketolase 1
PAMP	 Pathogen-Associated Molecular Patterns
PAT	 PPI Adjacency Tool
PCA	 Principal Component Analysis
PCA	 Phenazine-1-Carboxylic Acid
PCC	 Pearson Correlation Coefficient
PCR	 Polymerase Chain Reaction
PEBL	 Psychology Experiment Building Language
PGI	 Phosphoglucose Isomerase
PGM	 Probabilistic Graphical Models
PGPB	 Plant Growth-Promoting Bacteria
PGPF	 Plant Growth-Promoting Fungus
PGR	 Plant Growth Regulator
pI	 Isoelectric Point
PIPES	 Piperazine-N,N′-bis(2-Ethanesulfonic Acid)
PlantCyC	 Plant Metabolic Pathways Database
PlantPReS	 Plant Stress Proteome Database
PMN	 Plant Metabolic Network
poly-dT	 Poly-Deoxythymidine
PPDB	 Plastid Proteome DataBase
PPI	 Protein–Protein Interaction
PredSL	 Prediction of Subcellular Location from the 

N-terminal Sequence
PRM	 Parallel Reaction Monitoring
PRR	 Pattern Recognition Receptors
PSoL	 Positive Sample only Learning algorithm
PTI	 Pattern-Triggered Immunity
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RD29B	 Responsive to Desiccation 29B
RF	 Random Forest
RISC	 RNA-Induced Silencing Complexes
RNA	 Ribonucleic Acid
RNA pol II	 RNA Polymerase II
RNAi	 RNA Interference
RNASeq, RNA-Seq	 RNA Sequencing
RNS	 Reactive Nitrogen Species
ROS	 Reactive Oxygen Species
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RP-HPLC	 Reverse Phase-High Performance Liquid 
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RPKM	 Reads Per Kilobase Million
RPM1	 Disease Resistance Protein RPM1
RPS2	 Ribosomal Protein S2
rRNA	 Ribosomal RNA
RSEM	 RNA-Seq by Expectation Maximization
RT-qPCR, qRT-PCR	 Quantitative Reverse Transcriptase Polymerase Chain 
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S	 Serine
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SAGE	 Serial Analysis of Gene Expression
SAIL	 Syngenta Arabidopsis Insertion Library
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SCC	 Spearman’s Correlation Coefficient
SDS-PAGE	 Sodium Dodecyl Sulfate–Polyacrylamide Gel 

Electrophoresis
SILAC	 Stable Isotope Labeling by Amino Acids
siRNA	 Small Interfering RNA
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SMV-RFE	 Support Vector Machines with Recursive Feature 
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SP7	 Rhizophagus Intraradices Secreted Protein 7
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SQDG	 Sulfoquinovosyldiacylglycerol
SRA	 Short Read Archive
SRM	 Selected Reaction Monitoring
SRM	 Selective Reaction Monitoring
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SS4	 Starch Synthase 4
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Abstract

How the complexity of biological systems can 
be understood is currently limited by the 
amount of biological information we have 
available to be incorporate in the vastitude of 
possibilities that could represent how a bio-
logical organism function. This point of view 
is, of course, alive under the paradigm that 
describes a living thing as a whole that could 
never be interpreted as to the sole understand-
ing of its separated parts.

If we are going to achieve the knowledge to 
understand all the complex relations between 
the molecules, pathways, organelles, cells, 
organs, phenotypes, and environments is 
unknown. However, that is exactly what 
moves us toward digging the most profound 

nature of relationships present in the living 
organisms.

During the last 20 years, a big workforce was 
dedicated to the development of techniques, 
instruments, and scientific approaches that 
guided a whole new generation of scientists into 
the universe of omics approaches. The imple-
mentation of technological advances in several 
omics applications, such as transcriptomics, 
proteomics, and metabolomics, has brought to 
light the information that nowadays reshape our 
previous thinking on specific aspects of plant 
sciences, including growth, development, organ 
communication, chromatin states, and metabo-
lism, not to mention the underpinning role of 
regulatory mechanisms that in many cases are 
essentially the basis for the phenotypical expres-
sion of a biological phenomenon and plants 
adaptation to their environment.

In this chapter, some of the original con-
cepts of complex systems theory were briefly 
discussed, and examples of omics approaches 
that are contributing to uncovering emergent 
characteristics of plants are presented and dis-
cussed. The combination of several experi-
mental and computational or mathematical 
approaches indicated that there is room for 
improvements and novel discoveries. 
However, the level of complexity of biological 
systems seems to require and demand us to 
unify efforts toward the integration of the 
large omics datasets already available and the 
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ones to come. This unification may represent 
the necessary breakthrough to the achieve-
ment of the understanding of complex phe-
nomena. To do so, the inclusion of systems 
biology thinking into the training of under-
graduate and graduate students of plant sci-
ences and related areas seems to be also a 
contribution that is necessary to be organized 
and implemented in a worldwide scale.

Keywords

Single cell · Networks · Integration · 
Regulation · Metabolism · Signaling

1.1	 �Overview of Systems Theory 
Applied to Plant Sciences

The extraordinary complexity of cellular 
responses of any living organism has long been 
an attractive topic to scientists, including the 
understanding of what complexity is and how it is 
structured in life.

In the endless endeavor of investigating all 
factors that act concurrently in the definition of 
cell fate, several new discoveries were made. 
In special, at the beginning of the twentieth 
century, several initiatives reemerged to foment 
the integrative (or holistic) investigation of liv-
ing organisms, with a special dedication to 
transdisciplinary studies of animals and plants 
(Drack et  al. 2007) that recapitulated the dif-
ferent views on system theory and thinking and 
a new modern time emerged in system theories 
applied to biology. The basic concepts that per-
meated the system thinking resided in the 
premise that the properties of the whole cannot 
be completely understood from the simple sum 
of the properties of its isolated components 
(Von Bertalanffy 1972).

Therefore, the systems property should 
emerge from the enormous number of dynamic 
interactions (direct and/or indirect) and relations 
between the components (e.g., molecules, organ-
elles, organs, tissues) of the living organisms, 
which indeed represent the complexity of the 
biological systems and that also permits it to 

dynamically respond to environmental changes 
and internal perturbations, which is one of the 
most important characteristics of the living 
organisms.

One of the special messages that remained 
from the studies of the previous century and con-
ceptual elements generated thereof is the need for 
transdisciplinary thinking and methodologies 
that could guide us into the understanding of 
complex phenomena.

In plant sciences, several efforts have been 
made to address complex phenomena, bringing 
novel insights into the structure, organization, 
regulation, and evolution of plant responses. The 
typical research on systems biology usually pro-
poses the cyclic implementation of experimental 
and theoretical analysis of the biological systems 
with the investigation of dynamic biological 
responses. Experiments are performed in labora-
tories and computational and/or mathematical 
modeling and simulation of the biological sys-
tems are applied in an iterative manner (Kitano 
2002). This approach will certainly enhance our 
knowledge of complex systems by gradual incre-
ments and additional breakthroughs that improve 
our understanding of underlying principles of the 
whole biological systems.

The advancement of molecular biology 
approaches and technologies, including the evo-
lution of different types of OMICS analysis 
opened new venues for the analysis of the several 
layers of biological information (here referring to 
pools of different types of molecules) toward the 
reconstruction, generation, and validation of new 
proposed models of biological organisms. The 
progress and dissemination of OMIC approaches 
and high-throughput methods are intimately con-
nected to the advances in plant systems biology 
(Provart and McCourt 2004), and several impor-
tant initiatives have provided significant contri-
butions of novel biological data, construction, 
and maintenance of biological databases that 
could be confidently applied in systems biology 
approaches (Falter-Braun et al. 2019). The under-
lying cellular mechanisms that define plant phe-
notypes are now being investigated through a 
systems approach in different plant models by 
researchers from several countries.

F. V. Winck et al.
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1.2	 �Advances in Omics 
and Systems Biology 
Applications in Plant 
Sciences

More than 10  years ago, proposed modeling 
approaches that integrated chemical and 
mechanical information have revealed impor-
tant aspects of plant development, such as meri-
stem development into shoots or flowers, and 
based on molecular modeling, methodologies 
have also revealed the challenging aspects of 
such studies, such as the need of time-resolved 
information and imaging of biological phenom-
ena integration between molecular data into 
mechanical, phenotypic descriptions of plant 
growth (Chickarmane et al. 2010).

Essential processes such as chromatin 
remodeling and regulation of activation or 
deactivation of transcriptional units or modules 
were investigated through genome-wide analy-
sis and meta-analysis of several datasets of 
Arabidopsis plants histone modifications. The 
analysis performed through a system view 
brought to light the high complexity of chro-
matin remodeling processes, evidencing the 
existence of nine possible different chromatin 
states. Computational analysis of biological 
data originated from published profiles of his-
tone modifications, histone variants, nucleo-
some density, genomic G  +  C content, CG 
methylated residues, and chromatin immuno-
precipitation (ChIP) data for histone acetyla-
tion was performed in an integrative fashion 
and revealed transcriptional active sites, 
repressed sites, elongation signatures, inter-
genic upstream promoter regions, Polycomb, 
intragenic regions associated to short and long 
transcript units and two heterochromatin pro-
files related to intergenic regions and pericen-
tromeric regions. This discovery also revealed 
the correlation between these regions and gene 
expression activation or deactivation, which 
rendered knowledge with a higher confidence 
of topological organization of chromatin 
regions and their association or close proxim-
ity to each other (Sequeira-Mendes et al. 2014). 
This type of information thus suggests that 
chromatin remodeling processes may have a 

mechanism or structured biological informa-
tion that influence a priori the position of the 
main epigenetic modifications, defining the 
chromatin topology in the plant cells.

These findings are intrinsically connected 
with the understanding of the multi-combinatorial 
nature of the control of gene expression. In 
Arabidopsis, for instance, it has been evidenced 
that most gene promoters (63%) are recognized 
by at least two Transcription Factor (TFs) pro-
teins, while some promoters may be recognized 
by up to 18 different TFs, composing a highly 
interconnected hub of molecular interactions. 
Genes that are expressed in many different condi-
tions are usually controlled by many different 
TFs (Brkljacic and Grotewold 2017).

The integration of spatial information of chro-
matin signatures and topology with the most 
recent findings of the distribution of cis-
regulatory modules (CRMs) along the genomes 
may substantially reveal some principles of the 
global regulation of gene expression and caus-
ative structures that can be associated with phe-
notypes of interest, such as plant growth and 
stress responses. An exciting review on gene 
expression control can be consulted in the work 
from Brkljacic and Grotewold (2017). Some 
interesting questions arise from such studies on 
gene combinatorial expression, including the 
possible global and conserved preferences of 
groups or families of TFs for binding to corre-
lated chromatin regions and states, the effects of 
TFs in the regulation of non-available CRMs and 
how the different groups of TFs are associated to 
work together in multiple different complexes, 
depending on the CRMs and chromatin they 
interact.

In this present book, you will find the presen-
tation of interesting examples of epigenetic 
mechanisms and its principles, the basics of 
interaction networks and the strategies to gener-
ate models that can be implemented to describe 
the possible connections of the elements of the 
biological systems.

In a different but complementary perspective, 
the analysis of the transcripts and proteins 
expressed in a cell or tissue will be introduced 
and advances discussed. These omics data have 
rendered a massive amount of qualitative and 

1  Introduction: Advances in Plant Omics and Systems Biology
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quantitative biological information in the last two 
decades. The omics approaches revealed, in sev-
eral instances, with a time resolution, the dynam-
ics of the cellular responses with the indication of 
timely coordinated events, cyclic, inhibited, and 
induced responses of the gene complements 
(transcripts and proteins).

As a side note, the growing volume of multi-
omics information, together with higher computa-
tional processing capabilities, states a duality that 
must be addressed: the enhancement of the inte-
gration of different layers of biological informa-
tion from different datasets towards the 
improvement of the understanding of complex 
systems. This requires extensive communication, 
the development of databases and data sharing 
between researchers. The organization of multina-
tional participative computational repositories and 
open access data analysis platforms guided to con-
tinuous data mining and data integrative analysis 
improvement could integrate the plant systems 
biology community around the problems that con-
cern the major tasks of interpreting the complex 
systems. This would add a social benefit of con-
tributing to expanding the access of non-developed 
countries to the advanced science in the field of 
plant biology and computational biology.

In such context, the Crops in silico initiative 
(https://cropsinsilico.org/) represents an interest-
ing prospect for integrative modeling tools in 
plant sciences. In fact, there is a shortage of 
plant-based multi-scale simulations compared to 
the number of models of mammals, with the 
existing plant models being restricted to time-
limited descriptions of several singular biological 
processes or phenotypic responses to environ-
mental stimuli. There is indeed an urge for the 
development of a virtual physiological plant, 
such a model also integrating developmental tim-
escales and environmental data to plant multi-
omic networks and phenotypes to understand 
response complexities. The initiative tries to 
address such demands through constructing a 
plant community-centered platform, while also 
dealing with usual collective technical barriers: 
visualization, data imputation, coding 
standardizations, and accessibility issues 
(Marshall-Colon et al. 2017).

The massive scale of current transcriptome 
data analysis, in special for model plants such as 
Arabidopsis thaliana, resulted in the identifica-
tion of many different molecular phenotypes, 
generating novel insights on how changes in the 
transcriptional state of the cells are associated 
with global patterns of gene expression control. 
For instance, time-resolved transcriptome analy-
sis of the Arabidopsis root revealed that different 
nitrogen doses induced the modulation of 1153 
genes in a pattern that fits a Michaelis–Menten 
kinetics, indicating the existence of a saturation 
trend of transcripts accumulation or depletion at 
upper levels of nutrient availability. This study 
also revealed that some early responsive TF 
genes are likely related to compound-dose-
responsive transcription (Swift et al. 2020). Even 
though the existence of a gradual transcriptional 
response has been proposed for a while, the deep 
investigation of this type of global patterns is 
necessary, since the promoter architecture of sev-
eral genes revealed the presence of repeated 
binding sites which suggested their capacity to 
interact with several protein complexes contain-
ing TFs (Brady et al. 2006).

These results raised some questions about 
how much of the gene expression control can 
directly be affected by the concentration of exter-
nal compounds following a simple kinetics and if 
this type of control is happening through a direct 
or indirect way at the DNA level in different envi-
ronmental conditions. In the same way, it is 
essential to know how these global patterns are 
established and conserved in the cells, in a multi-
combinatorial regulatory network structure, 
where multiple TFs may bind to multiple cis-
regulatory elements. The understanding of these 
mechanisms can contribute to the identification 
of the nature of the coordination of these modular 
transcriptional states and their integration into 
new cellular functions, opening a new path for 
identification and modeling of causative effects 
on cell functional regulation. In addition, the sev-
eral transcriptome analyses performed in the past 
15 years have also contributed to reveal several 
molecular phenotypes in detail that exposed the 
connection of many biological processes. For 
instance, the transcriptome depicted genome-
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wide oscillations of gene expression, with the 
identification of genes essential for circadian 
rhythm and photosynthesis, cell growth, and divi-
sion, contributed to the identification of the pro-
moter elements correlated to the genes 
unexpectedly modulated under circadian control 
(Harmer et al. 2000). More recently, the involve-
ment of pre-mRNA processing, transcript stabil-
ity, mRNA nuclear export, posttranslation, and 
non-protein coding RNAs (ncRNAs) in particu-
lar, long ncRNAs (lncRNAs), in the regulation of 
circadian rhythm in plants (Romanowski and 
Yanovsky 2015) exposed the complexity of this 
biological process compared to the first model of 
transcriptional–translational feedback loop 
described in plants with the participation of two 
Arabidopsis MYB transcription factors 
CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) 
and LATE ELONGATED HYPOCOTYL (LHY) 
(Alabadi et al. 2001; Schaffer et al. 1998; Strayer 
et al. 2000; Wang and Tobin 1998).

In the light of evolution, the recent efforts on 
the analysis of more than one thousand plant 
transcriptomes opened a new path to a compre-
hensive understanding of evolutionary differ-
ences between plants and their cellular 
mechanisms. The integration of data on plant 
habitat and niches with molecular data may 
reveal novel sets of genes involved in specific 
adaptations and phenotypes. The broad phyloge-
netic analysis based on transcriptome data also 
indicated that most gene expansion events in 
plant lineage have occurred before the appear-
ance of vascular plants (One Thousand Plant 
Transcriptomes 2019), intriguing by its great 
possibilities of future applications in plant 
biotechnology.

In addition, computational resources imple-
mented for plant functional genomics data visu-
alization and mining such as Bio-analytic 
Resource (BAR) for Plant Biology with eFP 
Browser (Winter et al. 2007) have been of great 
benefit to the plant community to interpret such 
vastitude of data. The same is true for other plat-
forms such as Phytozome (Goodstein et al. 2012) 
that over the years have made available hundreds 
of genomic datasets and have expanded its appli-
cations into Phytomine (https://phytozome.jgi.

doe.gov/phytomine/begin.do), integrating 
genomics and functional data and fostering data 
mining. Gramene is also an example bringing 
integration to the plant reactome (http://plantre-
actome.gramene.org/index.php?lang=en). The 
current expansion of such platforms to integrate 
other types of omics data would be beneficial to 
the future of plant systems biology applications.

Proteomics approaches have also revealed 
important aspects of plant phenotypes, especially 
the molecular description of metabolic pathways 
operating in cellular responses, and significantly 
increased the number of proteins identified that 
are related to crops productivity and stress 
responses (Salekdeh and Komatsu 2007). The last 
15  years have witnessed an expansion of pro-
teomics data ranging from land plants to unicel-
lular algae, showing the particularities of these 
organisms in responses to variations of environ-
mental conditions such as light (Mettler et  al. 
2014), CO2 content (Santos and Balbuena 2017), 
metabolic regimes (Vidotti et  al. 2020), among 
others. It is also noticeable that proteomics is 
opening venues for a broader understanding of the 
cell response regulation by revealing the identity 
and possible regulatory role of many proteins that 
undergo posttranslational modifications (Huang 
et al. 2019; Van Leene et al. 2019). The quantita-
tive proteomic profiling of cellular responses has 
been applied to model plant species, and it is 
quickly expanding to cover non-model species, 
which is highly desirable and necessary to uncover 
the vast diversity of metabolic characteristics and 
nuances of the plant species naturally adapted to 
different environmental niches, such as desertic, 
tropical, semiarid, and rainy regions. This and 
other topics of plant proteomics are presented and 
discussed within this book.

The transferable application of omics knowl-
edge into system-biology-based plant breeding is 
one important consequence of the development 
of large biological datasets of omics and plant 
systems biology data (Lavarenne et  al. 2018). 
Natural breeding or genetic engineering of plants 
should now address great problems with a more 
holistic approach of plant systems contributing to 
the generation of novel stress-resistance crops 
(Zhang et al. 2018).
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In a parallel trend, similar paradigmatic break-
throughs in plant systems biology have been 
recently achieved through metabolomics studies. 
Together with improved mass spectrometry (MS) 
techniques, advancements in computational biol-
ogy and bioinformatics have been allowing for 
wider modeling efforts, permitting broader inte-
gration of metabolite data with other large 
amounts of transcriptome and proteome informa-
tion, further bolstering the construction of inter-
actomes. This has important consequences given 
the massive size of the plant metabolome and the 
fact that it is usually the first layer of biological 
information within the cell to be subjected to the 
effects of environmental changes since the 
response at transcriptional level can take longer 
to occur, if not to mention the direct influence of 
metabolites in transcriptional modulation and 
other possible interactions of the metabolome 
with transcripts and proteins.

An applied sample of this trend can be noted 
through the work of Veyel and collaborators with 
a study in Arabidopsis where they developed an 
improved proteomic-compatible, metabolomic-
oriented method for system-wide analyses of 
protein-small molecule complexes. The protein-
metabolite interactome is an often overlooked but 
functionally important regulatory feature to be 
dealt with when studying metabolite-diverse, 
metabolome data-rich systems such as plants—
retroactively, this substantial amount of informa-
tion also makes data collecting and processing 
troublesome. A simple, but innovative addressing 
to this issue is the proposed general-case, large-
scale analysis-oriented co-fractionation method 
instead of canonical approaches such as cross 
linking or protein tagging for search of interac-
tion sites. The approach relies on the hypothesis 
that proteins and protein-bound small molecules 
fractionate together when forming stable com-
plexes: as such, the use of size separation tech-
niques should concentrate protein-metabolite 
complexes in higher molecular weight fractions, 
the process could then be coupled with analytic 
techniques (i.e., mass spectrometry). Apart from 
the technological prospect, this proof-of-concept 
has also identified a plethora of novel stable 
protein-metabolite complexes from the 

Arabidopsis samples, suggesting emergent regu-
latory roles for some small molecules, with 
potential for extension to other biological sys-
tems (Veyel et al. 2017).

The further study of how the metabolic land-
scape of plants is shaped by varying environmen-
tal conditions can also unravel the metalinguistics 
of experimental design in plant sciences. A com-
mon consequence of the application of high-
throughput analytical techniques to biological 
systems is the finding that often formerly over-
looked properties of the environment can exert 
unexpected effects in an organism’s metabolism, 
potentially biasing the reproducibility of some 
experiments. As a matter of fact, sensitivity to 
initial conditions is an inherent condition of com-
plex systems, particularly in a multi-omics 
perspective.

While dealing with experimentation in plants, 
lighting conditions represent an essential, though 
often taken for granted environmental condition. 
Sunlight is characterized by sinusoidal changes 
in irradiance throughout the day cycle, with shad-
ing and clouds momentarily varying the amount 
of light absorbed by the plant. On the other hand, 
artificially lighted growth chambers usually offer 
constant light irradiance (square wave), abrupt 
light–dark shifts and different spectral quality 
when compared to naturally lighted environ-
ments. Ironically, although growth chambers are 
considered essential for experimental reproduc-
ibility for scientific approaches, the vastitude of 
differences from the phenotypes of plants grown 
in such environments with the phenotypes 
observed in plants in natural environments and in 
the field enhance the number of possible dynamic 
phenotypes that may populate the universe of 
metabolomics.

This issue is illustrated through metabolite 
analysis of samples obtained from Arabidopsis 
plants grown under greenhouse and growth 
chamber (with sinusoidal or square lighting 
patterns, fluorescent or sunlight spectra-
simulating LED light) conditions. The combi-
nation of enzymatic assays with HPLC and 
LC-MS indicates major differences (fold 
change) in occurrence of components of central 
carbon and nitrogen pathways when data from 
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greenhouse and growth chamber conditions are 
compared altogether. In the context of adapta-
tion difficulties faced by the plant while dealing 
with unexpected changes in sunlight within and 
between days, emphasis should be placed on 
the importance of variations (for greenhouse 
versus growth chamber experiments) in photo-
assimilate partitioning optimization, amino 
acid synthesis (Ser, Gln, Gly), C:N ratio, and 
synthesis of components of sugar signaling net-
works such as sucrose and the sucrose status 
indicator, trehalose 6-phosphate, those finely 
linked with the sugar feedback-operated regula-
tion of starch metabolism (turnover) and 
sucrose homeostasis through day–night cycles 
by the circadian clock in Arabidopsis: the circa-
dian oscillator itself suffering adjustments 
through feedback from sunlight pattern changes 
(Seki et al. 2017). The metabolite analysis also 
reveals that milder differences were observed 
when comparing different conditions of artifi-
cial illumination (i.e., sinusoidal versus square 
patterns) and that LED lighting may not fully 
represent natural lighting conditions 
(Annunziata et al. 2017).

In this present book, different aspects of 
metabolomics basics and applications are intro-
duced, discussing scientific and methodological 
approaches that are contributing to broadening 
the knowledge on the metabolic regulation of 
plant phenotypes. Nevertheless, the metabolo-
mics analysis still faces a great challenge of iden-
tifying the cellular compartmentalization of the 
metabolites in the different cell responses, which 
may include an extraordinary level of complexity 
in the cellular responses, especially if other dual 
interactions of metabolites, such as metabolite–
protein or metabolite–miRNAs, occur in a dimen-
sion of hundreds of thousands.

1.3	 �Challenges in Plant Systems 
Biology and Paths to Expand 
the Research Field

Besides their sensitivity to initial conditions, bio-
logical systems are also characterized by emer-
gence. The interaction between parts of a system 

can generate emergent properties, sometimes 
loosely linked with such parts. As a remarkable 
example, the use of mass spectrometry (affinity 
purification-mass spectrometry, gas 
chromatography-mass spectrometry) has 
revealed that glycolytic enzymes can mediate 
mitochondria-chloroplast colocalization in 
Arabidopsis. This finding sums to an already 
extensive array of supposed properties of the gly-
colytic pathway in non-plant cells, such as the 
formation of multienzyme complexes, colocal-
ization with ATP-demanding areas and enzyme 
chemotactic movements, not to mention the 
physical association of glycolytic enzymes with 
the mitochondria (Zhang et al. 2020). Along stat-
ing that even well-studied central pathways can 
perform unprecedented roles, one can also argue 
that the given groundbreaking work—in a similar 
fashion to other featured research works—asserts 
the insufficiency of reductionism to deal with 
complexity. This context has a special impact on 
undergraduate biochemistry disciplines.

The known biological complexity substan-
tially impacts experimental design in plant 
molecular physiology studies. In cultivated crops 
where multiple copies of genomes are present, 
the computational challenges alongside those of 
mathematics and statistical genetics are indeed 
formidable. The investigation of emergent prop-
erties emphasizes to us the importance of the 
chosen approach to teach complexity in some life 
science courses. Despite its non-intuitive nature, 
emergence is an important component of the 
Dynamical Systems Theory, which constitutes 
one of the three systems theories, along with 
Bertalanffy’s General Systems Theory and 
Cybernetics: the so-called systems thinking con-
cept has regained recent relevance in primary and 
secondary education. Its crosscutting characteris-
tic and multidisciplinary applicability are espe-
cially helpful in teaching skills to comprehend 
biological complexity (Verhoeff et al. 2018). Yet, 
there is comparatively less extensive research and 
application of systems thinking in STEM educa-
tion, a substantial lack of integration with chem-
istry courses is particularly noticeable while most 
of existing peer-reviewed literature on systems 
thinking generally focuses on biology education. 
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The implementation of systems thinking 
approach in areas such as chemistry and bio-
chemistry may enhance student’s strength in tak-
ing complex decisions that are important for 
global issues, such as sustainability (York et al. 
2019; York and Orgill 2020). Although not exten-
sively, some life science courses have recently 
been incorporating systems theory concepts into 
their programs, a trend exemplified by attempts 
to apply ecological perspectives and systems 
modeling into redesigning an undergraduate bot-
any major course (Zangori and Koontz 2017). 
This is specially targeted at meeting novel 
demands on teaching biological complexity and 
retroactively generates content-changing 
demands for the disciplines that service those 
courses: still, while paramount to most life sci-
ence careers, biochemistry is such a complicated 
example.

The inclusion of space for the teaching of the 
basics of systems biology-related topics such as 
complex system theories that could be explored 
through the concepts of the regulatory landscape 
of biological systems (i.e., molecular binding to 
sites in proteins and nucleic acid sequences as a 
topic for structure–function classes, transcrip-
tional regulation, posttranslational modifica-
tions), multi-omics networks, high-throughput 
techniques for data acquisition (mass spectrome-
try, sequencing), and computational analysis 
would contribute to change the oftentimes dis-
crete, linear fashion for teaching the structure, 
components and behavior of certain well-studied, 
canonical cellular mechanisms and pathways. 
Although time and resource constraints indeed 
interfere in which contents (and to what extent 
they can be deepened) should be taught, one 
could argue that an aged linear, pathway-focused 
attempt to teach basic biochemistry stretches 
away from thoroughly portraying complexity by 
snatching its integrative, network-based, and 
emergent attributes.

Systems biology and omics approaches can 
also be wisely applied to explore more mundane, 
unforeseen problems in teaching scenarios. The 
implementation of basic bioinformatic skills in 
early years of the undergraduate courses in bio-

logical and biochemistry sciences is essential to 
prepare the students for the future of populated 
biological databases and data mining schemes 
that are going to permeate their future academic 
and professional lives. Examples on how to con-
nect the systems biology and omics knowledge 
into the curriculum and lectures for undergradu-
ate students can cross the successful examples of 
omics applications in the several fields of 
research, including plant sciences and the more 
recent synthetic biology approaches for bioprod-
ucts production. Therefore, we envisage that 
some examples of studies presented and dis-
cussed in the present book may in the future be 
applied in systems biology-based graduate and 
undergraduate schools worldwide.
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Abstract

The collection of all transcripts in a cell, a tis-
sue, or an organism is called the transcrip-
tome, or meta-transcriptome when dealing 
with the transcripts of a community of differ-
ent organisms. Nowadays, we have a vast 
array of technologies that allow us to assess 
the (meta-)transcriptome regarding its compo-

sition (which transcripts are produced) and the 
abundance of its components (what are the 
expression levels of each transcript), and we 
can do this across several samples, conditions, 
and time-points, at costs that are decreasing 
year after year, allowing experimental designs 
with ever-increasing complexity. Here we will 
present the current state of the art regarding 
the technologies that can be applied to the 
study of plant transcriptomes and their appli-
cations, including differential gene expression 
and coexpression analyses, identification of 
sequence polymorphisms, the application of 
machine learning for the identification of 
alternative splicing and ncRNAs, and the 
ranking of candidate genes for downstream 
studies. We continue with a collection of 
examples of these approaches in a diverse 
array of plant species to generate gene/tran-
script catalogs/atlases, population mapping, 
identification of genes related to stress pheno-
types, and phylogenomics. We finalize the 
chapter with some of our ideas about the 
future of this dynamic field in plant 
physiology.
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2.1	 �Introduction

The transcriptome is the collection of all RNA 
molecules found at a given time in an organism, 
in a tissue, or in a cell. Researchers today can 
study the full transcriptome, or a targeted tran-
scriptome (a defined subset of transcripts under a 
certain condition) using an array of different 
technologies, like microarrays, reverse transcrip-
tion quantitative PCR (RT-qPCR), and nucleic 
acid sequencing. In most approaches, the popula-
tion of RNA molecules should be first converted 
into the more stable cDNA, but recent advances 
and the development of new sequencing plat-
forms are allowing the direct sequencing of the 
RNA molecules, removing biases that could be 
introduced by the synthesis of cDNA (Garalde 
et  al. 2018; Keller et  al. 2018). Assessing the 
transcriptome offers an overview of the func-
tional component of a genome and of the genes 
that must be active in order to achieve a given 
transcriptional state. Transcriptomics studies 
have been employed to develop catalogs of 
expressed sequences, by the identification of 
mRNAs, small-RNAs (e.g., miRNA, snoRNAs), 
long-non-coding RNAs (lncRNAs) among oth-
ers. Also, to aid in the annotation of newly 
sequenced genomes, improving the inference and 
definition of gene structure, like start and end 
sites of the transcription, position of introns and 
exons, and alternative splicing patterns. Perhaps 
the most prevalent use of transcriptomics is the 
quantification of gene expression levels under 
different conditions aiming at revealing the 
molecular mechanisms underlying the establish-
ment of phenotypes and responses to stresses. 
Transcriptomics is increasingly being used to 
infer the function of genes, by exploiting co-
expression, under the assumption of “guilt-by-
association,” and for the identification of 
coordinated expression modules. The rapidly 
decreasing costs and wide availability of the 
diverse transcriptomics technologies are allow-
ing studies in diverse groups of plants and 
addressing evolutionary questions about the evo-
lution of expression patterns, gene expression 
and regulation networks, at a scale without 
precedent.

The earliest approaches that can be called 
transcriptomics studies relied on sequencing 
expressed sequence tags (ESTs) using the low-
throughput Sanger chain-termination sequencing 
technology and started in the 1980s (see Fig. 2.1). 
EST sequencing projects were expensive and 
laborious but allowed assessing the functional 
fraction of a genome sequence at a fraction of the 
effort and cost. The wealth of sequence informa-
tion generated in these projects could be lever-
aged with the development of array-based 
hybridization technologies (macroarrays used 
nylon membranes and microarrays used glass 
slides), which offered higher throughput and had 
lower application costs than EST projects, once 
the development of the membranes/slides had 
been deduced. The first use of the words microar-
ray or macroarray in the scientific literature dates 
back to 1996, but their use really takes off in the 
2000s (Fig.  2.1). The use of ESTs and array-
based technologies was superseded by high-
throughput sequencing-based methods, first 
exploiting small transcript signatures (tags) and 
later the sequencing of complete or close to com-
plete transcripts.

In this chapter, we will introduce you to the 
basics of transcriptome studies, applications, and 
some examples in non-model plants.

2.2	 �Transcriptomics Approaches

2.2.1	 �Array-Based Approaches

Large-scale characterization of transcriptomes 
was made possible with the use of microarrays. 
In this technology, an array of oligonucleotide 
probes that are complementary to known tran-
scripts is immobilized on a glass slide. Next, 
cDNA molecules synthesized from RNA are 
hybridized with the probes, and signal intensities 
are assessed to provide a measure of transcript 
abundance. This provides an economical way of 
analyzing transcriptomes on a genome-wide 
scale. Microarrays are used nowadays for model 
species and economically important crops, pri-
marily due to low cost and laboratory routine.

D. M. Riaño-Pachón et al.
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However, this approach presents a number of 
disadvantages that have relevant practical impli-
cations. First, previous knowledge about the tran-
scripts of interest is required for designing the 
array chip, which hinders application for non-
model species. This may introduce bias toward 
the specific sequences used to obtain the probes, 
which is particularly important for genes with 
multiple isoforms. Second, transcript abundance 
estimation is not accurate for lowly expressed 
genes, owing to background noise from nonspe-
cific hybridization, or for very highly expressed 
genes, due to probe saturation. The dynamic 
range of detection is thus limited. Third, cross-
hybridization of transcripts with similar sequence 
can adversely affect expression estimates. Finally, 
intrinsic differences in hybridization exist 
between probes because of their sequence con-
tent (Marioni et al. 2008; Wang et al. 2009; Zhao 
et al. 2014).

Sequencing-based approaches resolve many 
of these issues and are now the method of choice 
for large-scale transcriptome profiling in a vari-
ety of scenarios. From now on, we will focus on 
these more recent strategies.

2.2.2	 �Sequencing-Based 
Approaches

In-depth knowledge and understanding of a plant 
genome, or any organism for that matter, involves 
the elaboration of a catalog of the genes present 
in the genome and information about the expres-
sion levels of the transcripts derived from these 
genes under a wide array of conditions. In both 
cases, one requires sequence data.

The most widely used technology in early 
genome projects was Expressed Sequence Tag 
(EST) sequencing (reviewed by Parkinson and 
Blaxter 2009). EST sequencing was employed to 
generate gene catalogs, both in model plants 
(Delseny et al. 1997; Weng et al. 2005; Asamizu 
et al. 1999; Banks et al. 2011) and in crops (e.g., 
Yamamoto and Sasaki 1997; Vettore et al. 2003; 
Ma et al. 2004; Pavy et al. 2005). In many cases, 
ESTs also served as a basis for the development 
of cDNA microarrays to query gene expression 
under different plant conditions or developmental 
stages (Lembke et al. 2012; Pavy et al. 2008). In 
most projects, ESTs were derived from normal-
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ized libraries, which meant that all transcripts 
have approximately the same probability to be 
sequenced. This readily reduces costs for gene 
discovery, but the gene expression levels and the 
dynamics of transcription regulation cannot be 
assessed.

With the creation and advance of high-
throughput sequencing (HTS) technologies 
toward the end of the 1990s and in the early 
2000s, new approaches were applied to discover 
plant genes and transcripts and to assess the 
dynamics of transcription, and its regulation, 
like alternative transcription starting sites (TSS) 
and alternative splicing form usage. Among 
these approaches, one could mention Cap 
Analysis of Gene Expression—CAGE (de Hoon 
and Hayashizaki 2008) and Serial Analysis of 
Gene Expression—SAGE (Velculescu et  al. 
1995; Matsumura et  al. 2005), to name just a 
few, which are collectively known as tag 
sequencing approaches (Harbers and Carninci 
2005) (see “Tags” in Fig. 2.1). These technolo-
gies started by exploiting the traditional Sanger 
DNA sequencing method to assess transcription, 
but moved soon to exploit the newer, highly par-
allel and HTS technologies, and thus gained suf-
fixes like –deep or –seq and prefixes like ultra–, 
to differentiate them from their older lower 
throughput versions. Briefly, tag sequencing 
approaches aim to generate short sequence tags 
from the transcript ends, either the 5′ or the 3′ 
end. These short tags should unequivocally iden-
tify each transcript or genomic region, although 
it was not uncommon that a single tag could be 
mapped to more than one transcript/gene, par-
ticularly in cases of large gene families which 
are common in plants. In addition, the number of 
tags sequenced for each transcript is directly 
related to the transcript abundance in the original 
sample. Being based on short sequence tags 
from the transcript ends, these approaches were 
better suited for organisms whose genomes were 
already sequenced.

On the one hand, one of the main advantages 
of either EST or tag-sequencing approaches is 
the generation of a digital measure of gene 
expression, the number, or count, of a certain 
event, i.e., the sequencing of a complete, or part 

of a, RNA molecule. In contrast to an analogous 
measure, such as that offered by cDNA microar-
rays which is subject to probe saturation and thus 
has a low dynamic range, this digital measure is 
not saturated in the case of highly abundant tran-
scripts. For the case of lowly expressed tran-
scripts, the trivial alternative is to continue 
counting events until a certain number of rare 
events (lowly expressed transcripts) have been 
achieved, although this could have an important 
impact on the overall cost of the experiment. 
If  lowly expressed transcripts are the focus of 
the  study, then alternative approaches can be 
employed, such as targeted sequencing and 
reverse transcription quantitative PCR 
(RT-qPCR). On the other hand, the main draw-
back of both approaches (ESTs and tag-sequenc-
ing) is that neither of them provides the full 
representation of the underlying transcripts. 
Additionally, tag-sequencing and microarray 
approaches require preexisting knowledge about 
the transcript space of the species of interest, 
which impose serious limitations to its applica-
tion in non-model organisms.

2.2.2.1	 �RNA-Seq
The sequencing of transcriptomes employing 
HTS technologies, without focus on any particu-
lar region of the mRNA, in contrast to CAGE or 
SAGE, is known as RNA-Seq. The first publica-
tions using the word RNA-Seq appeared between 
2006 and 2008 applied to few organisms 
(Mortazavi et al. 2008; Nagalakshmi et al. 2008; 
Bainbridge et  al. 2006; Wilhelm et  al. 2008; 
Cloonan et al. 2008), also including Arabidopsis 
thaliana, the model land plant (Lister et al. 2008) 
(see “RNA-Seq” in Fig. 2.1).

The synthesis and maturation of transcripts is 
a finely regulated process that allows the plant 
cell to produce the required gene products in the 
proper quantities and at the proper times and 
places. Within a single experiment, RNA-Seq 
allows the discovery of expression levels, splic-
ing events (Marquez et  al. 2012; Shang et  al. 
2017; Brown et al. 2017), RNA editing (Hackett 
and Lu 2017), and mutations (Peng et al. 2016; 
Serin et  al. 2017). RNA-Seq paves the way for 
the understanding of the rules governing RNA 
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regulation and the underlying regulatory net-
works, thus generating new insights on plant 
development and the response to biotic and abi-
otic (Imadi et al. 2015) stresses at the cellular and 
molecular levels.

The main steps in any RNA-Seq project are 
(1) sample preparation, (2) library preparation 
and (3) sample sequencing.

(1) Sample preparation consists on the isola-
tion of RNA from the biological samples of inter-
est. Plant cells have different types of RNA 
molecules, like messenger RNA (mRNA), ribo-
somal RNA (rRNA), transfer RNA (tRNA), and 
other types of non-coding RNA (ncRNA). Over 
95% of the transcript population in a cell consists 
of rRNA and tRNA species (Rosenow et  al. 
2001). Thus, to assess, via HTS technologies, the 
other transcript species, samples must be pro-
cessed in special ways. For instance, if the objec-
tive of the project is to assess mRNAs transcribed 
by RNA pol II (which are mostly genes that will 
eventually undergo translation), one can exploit 
the fact that these eukaryotic mRNAs are polyad-
enylated, by fishing for these transcripts using 
poly-dT oligonucleotides, effectively excluding 
the large fraction of rRNA and other ncRNAs. On 
the other hand, if one is interested in evaluating 
the whole transcriptome (mRNA  +  all types of 
ncRNAs, only excluding rRNA), then there are 
approaches to specifically remove rRNA from 
the sample, usually employing hybridization 
techniques, methods that are usually referred to 
as ribo-depletion (O’Neil et  al. 2013). 
Additionally, the goal of the study could be to 
focus on small ncRNAs, in that case one would 
perform a size fractionation and selection step.

As part of (2) library preparation, for short-
read HTS technologies (see below for long-read 
HTS technologies), the isolated RNA must be 
converted into double-stranded cDNA and frag-
mented. Fragments should be ligated to adapters 
to allow amplification and sequencing. At this 
point, it is important to remember that a given 
message in the genome is encoded in one of the 
two strands of the DNA double helix, and thus it 
is important in most cases to keep the informa-
tion of which strand was transcribed. In general, 
one can divide the library preparation methods in 

two groups, those that keep the strand informa-
tion (strand-specific protocols) and those that do 
not (often called unstranded protocols). Today, 
most RNA-Seq datasets are still being generated 
using library preparation protocols that do not 
keep the strand information. For instance, from 
219,832 green plant datasets using RNA as 
source in RNA-Seq experiments in the Short 
Read Archive (SRA; https://www.ncbi.nlm.nih.
gov/sra/; July 2020), only 5995 have ‘strand-spe-
cific’ in their description.

(3) Sample sequencing is carried out in mas-
sively parallel sequencing instruments, paying 
attention to the dependence between library prep-
aration method and sequencing instrument. The 
most widely available technologies for RNA-Seq 
are those released by Illumina Inc, i.e., using 
reversible-terminators sequencing-by-synthesis 
technology (Bentley et al. 2008; Illumina 2010), 
within their sequencing instruments MiSeq, 
HiSeq, NextSeq, or NovaSeq. Samples prepared 
with Illumina library construction methods are 
compatible with any of their instruments, the 
only difference being on the throughput obtained, 
e.g., number of sequenced fragments and number 
of samples that can be analyzed simultaneously.

Before you start your RNA-Seq project, you 
must develop the experimental design that will 
allow you to answer biologically relevant ques-
tions with a predefined level of certainty. Here we 
will only highlight two factors among the many 
that must be taken into account during the experi-
mental design phase: (1) number of biological 
replicates and (2) number of sequenced frag-
ments per sample. The number of replicates 
depends on your final goal. On the one hand, if 
your goal is to make a catalog of genes present in 
an organism’s genome, typical when sequencing 
a new genome and preparing for annotating it, 
then preparing a single, or few, library from a 
pool of tissues and/or conditions might be 
enough. On the other hand, if you plan to evalu-
ate the statistically significant differences in gene 
expression values between different conditions, 
then a higher number of replicates is required. 
Depending on the size of the effects that are 
desired to be detected, if only changes around 
two to threefold are sought, then a number of bio-
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logical replicates around five should suffice in 
most cases; a higher number of replicates would 
be required to detect smaller changes in expres-
sion values (Schurch et al. 2016). Regarding the 
number of sequenced fragments, you should keep 
in mind that RNA-Seq is basically a random sam-
pling process. If your goal is to assess statistical 
differences among conditions, you must check 
whether your sampling is deep enough to support 
your conclusions. A few approaches have been 
proposed to check for this, all of them are based 
on resampling your reads, and counting a feature 
of interest for each subsample for increasingly 
large subsamples. If the sequencing depth is high 
enough, you would expect that the number of a 
given feature is close to saturation with increas-
ing number of resampled reads. There are a few 
approaches to achieve this. First you could count 
the number of transcripts that are detected at dif-
ferent fractions of the original datasets, e.g., 5%, 
10%, 20, of the original reads; if sampling is deep 
enough, you would expect to find a plateau 
(Garcia-Ortega and Martinez 2015). Similarly, 
instead of looking at the number of transcripts, 
you can look at the number of exon–exon junc-
tions detected with increasingly large samples of 
the reads; again you expect to achieve a plateau if 
your sequencing depth was saturated. This can be 
achieved with the junction-saturation.py script 
part of RSeQC (Wang et al. 2012). It is important 
to note that, despite sequencing depth being 
important, especially for lowly expressed genes, 
the number of biological replicates is much more 
important, and if you have to choose between 
more depth or more biological replicates, you 
should always choose the latter (Liu et al. 2014; 
Lamarre et al. 2018; Baccarella et al. 2018).

Regarding the sequencing depth, it is impor-
tant to keep in mind that under several condi-
tions, a large fraction of the reads would originate 
from one or a few transcripts. For instance, when 
doing sequencing of total RNA, you will have a 
large fraction of sequencing reads originating 
from rRNA transcripts, which can be up to 90% 
of the total RNA in the cell (Conesa et al. 2016). 
In these cases, you should try to deplete your 
sample from rRNA transcripts, for which several 
options are available in the market (Conesa et al. 

2016; Hrdlickova et  al. 2017; NuGen n.d.; 
siTOOLsBiotech 2018). However, not only 
rRNA transcripts exhibit such high abundance. A 
recent study of the A. thaliana transcriptome 
identified over 4000 ubiquitously and extremely 
highly expressed transcripts (Sun et al. 2014). If 
your specific project aims at assessing the expres-
sion of lowly expressed and rare transcripts, it 
might be important to deplete these ubiquitous 
and highly expressed transcripts, for such case, 
some alternatives for library preparation are 
available, as the AnyDeplete or riboPools tech-
nologies (NuGen n.d.; siTOOLsBiotech 2018).

2.2.2.2	 �Strand-Specific RNA-Seq
The existence of overlapping genes (genes whose 
transcripts are encoded—completely, or most 
frequently partially—in opposite strands of the 
same genomic region) in plants has been known 
for some years (Quesada et al. 1999; Xiao et al. 
2005). Natural antisense transcripts (NATs) are 
RNA molecules that can have regions of sequence 
complementary to other RNAs and that can regu-
late the expression level of their target genes. 
Particularly, cis-NATs are pairs of transcripts that 
overlap on the genome. Disambiguating the 
expression levels of the two overlapping tran-
scripts requires data that keep the information 
about which strand was transcribed (see for 
example, Britto-Kido Sde et  al. 2013; Li et  al. 
2013a; Jin et al. 2008; Riano-Pachon et al. 2016). 
Between 7% and 8% of genes in rice (Osato et al. 
2003) and Arabidopsis (Wang et  al. 2005; Jen 
et  al. 2005), respectively, are cis-NATs, recent 
studies suggesting even higher rates of cis-NATs 
(Oono et al. 2017; Zhao et al. 2018). Figure 2.2 
illustrates the importance to have strand informa-
tion for transcriptome analyses.

Currently, three technologies are widely avail-
able that can maintain strand information: 
Illumina’s TruSeq Stranded library preparation 
kits, Pacific Biosciences’s IsoSeq, and Oxford 
Nanopore Technologies’s direct rRNA sequenc-
ing. Perhaps the most pervasive of the three in the 
market is the one commercialized by Illumina in 
their TruSeq Stranded library preparation kits, 
which use the deoxy-UTP strand-marking strat-
egy. The Illumina instruments are capable of 
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sequencing double-stranded DNA molecules 
(dsDNA), but not single-stranded RNA mole-
cules (ssRNA), so transcript sequences, which 
are made of ssRNA, must be transformed into 
dsDNA molecules by a process called cDNA 
synthesis. Briefly, the RNA molecules are frag-
mented, and each resulting fragment will be used 
for the synthesis of dscDNA in a two-step pro-
cess. The first step, called First-Strand Synthesis 
(FSS), uses random primers, reverse transcrip-
tase, and all the four deoxy nucleotides (dATP, 
dTTP, dCTP, and dGTP), resulting in a hybrid 
double-stranded RNA-DNA molecule. After 
FSS, the RNA molecule is degraded. In the sec-
ond step, called Second-Strand Synthesis, the 
dTTP is replaced with dUTP. At the end of SSS, 
there is a dsDNA molecule, in which the strand 
with dTTP is the reverse complement of the 
sequence that was transcribed, and the strand 

with dUTP corresponds to the transcribed 
sequence. At this stage, the information about 
which strand was transcribed is already encoded 
in the chemistry of the created dscDNA. In the 
following step, the typical asymmetric Illumina 
Y-adapters are ligated to the dscDNA fragments. 
The incorporation of dUTP will quench the syn-
thesis of the second strand during downstream 
amplification steps (Illumina 2017) or could be 
selectively degraded by Uracil-DNA-Glycosylase 
(UDG) (Borodina et al. 2011). Deciding whether 
an RNA-Seq dataset is stranded or not is quite 
easy and can be achieved by visual inspection of 
the reads mapped to either the genome or the 
transcriptome. However, some packages can aid 
inferring this, and are very useful when dealing 
with tens or hundreds of samples, some examples 
are the infer_experiment.py module part of 
RSeQC (Wang et  al. 2012), or the option --lib-

Fig. 2.2  Use of strand-specific information to disambig-
uate the expression of overlapping genes. Two overlap-
ping genes g1 in the Watson strand and g2 in the Crick 
strand shown in two different experimental conditions, X 
and Y. The symbol * indicates that g2 is an unknown 
(unannotated gene). Short sequencing reads appear either 
above or below the DNA strands as short line, each line 
representing a sequencing fragment. (a). The real case: g1 
is expressed in both conditions X and Y, with similar or 
identical abundances, while g2 is only expressed in condi-
tion Y. (b) Sequencing results obtained with a protocol 
that ignores (or loses during library preparation) the infor-
mation about which strand generated the reads. Only 

reads that overlap with annotated features are counted 
(dashed line in condition Y). In condition Y, many of the 
reads originated from the gene g2 will counted as if they 
were from gene g1 (reads shown in black). This will lead 
to the wrong conclusion that the expression of g1 in condi-
tion Y is higher than in condition X. (c) Using a protocol 
that keeps strand information (strand-specific), in condi-
tion Y only the reads in black will be assigned to g1, and 
the additional reads in gray will hint toward the existence 
of an additional gene in the same locus that is only 
expressed in condition Y. The abundances of g1 in condi-
tion X and Y will be similar and will not lead to a differen-
tial expression call, as in (b)
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Type A in Salmon (Patro et  al. 2017), to name 
just a couple.

Data obtained from sequencing libraries pre-
pared in such a way can be exploited either to 
map directly to a reference genome or transcrip-
tome or build a de novo transcriptome assembly, 
in both cases exploiting the strand information 
and leading to correct directionality of the identi-
fied transcripts, with the potential for the identifi-
cation of novel transcripts.

2.2.2.3	 �Long Read RNA Sequencing
Next-generation sequencing (NGS) technologies 
afforded the most widely used tools for transcrip-
tome analysis in the recent years and are likely to 
remain pervasively used for many years to come. 
Still, RNA-Seq is not devoid of biases and limita-
tions, notably about transcript identification and 
isoform disambiguation, as well as expression-
level estimation. Short reads can be ambiguous, 
map to multiple locations, and originate from low-
complexity sequences that hamper alignment.

The ability to sequence full-length transcripts, 
from the 5′ end to the poly-A tail, in principle 
allows complete differentiation of isoforms, with 
no ambiguity in assigning fragments to tran-
scripts. It also eliminates the need for (de novo) 
transcript assembly. Third-generation sequencing 
(TGS) technologies already provide the means 
for achieving this goal, at least for a large fraction 
of the transcripts, with long reads that completely 
cover molecules with lengths upwards of 10 kbp. 
Besides facilitating transcript identification, long 
reads boost transcriptome analyses through the 
discovery of novel genes, novel isoforms, and 
detection of fusion transcripts (Rhoads and Au 
2015; Shi et al. 2016). Even previously annotated 
sequences can be enhanced with these technolo-
gies, through correction of existing gene models 
(Liu et al. 2017). Furthermore, PCR-free proto-
cols get rid of amplification biases that affect 
expression quantification.

One such technology is the Iso-Seq method 
(Rhoads and Au 2015) from Pacific Biosciences 
(PacBio). This isoform sequencing strategy has 
shown power to discriminate transcript isoforms 
in some important species (Abdel-Ghany et  al. 
2016; Li et al. 2018), including some with very 

complex genomes, such as cotton (Wang et  al. 
2018b), coffee (Cheng et al. 2017), and even the 
highly polyploid sugarcane (Hoang et  al. 2017; 
Piriyapongsa et  al. 2018). These studies collec-
tively show that RNA-Seq based exclusively on 
short reads renders a limited view of the transcrip-
tome, because of partial isoform identification 
and inaccuracies in expression quantification.

Long reads can also be obtained with the 
Oxford Nanopore technology. In addition to 
sequencing cDNA molecules, this approach 
allows direct RNA sequencing (Garalde et  al. 
2018), an alternative that removes reverse tran-
scription biases and helps in identifying other 
types of RNA molecules, such as long non-
coding and antisense RNAs (Jenjaroenpun et al. 
2018). These technologies can also be applied for 
characterizing transcriptomes of individual cells 
(Byrne et al. 2017).

Despite these benefits, a series of practical 
concerns still limit the widespread application of 
third-generation sequencing technologies. Even 
though success in sequencing full-length tran-
scripts is highly advantageous for cataloging the 
transcriptome of cells, quantitation is a different 
matter. Although potentially less biased for tran-
script abundance estimation (Byrne et al. 2017), 
the current lower throughput of these approaches 
prevents accurate quantification of transcripts in 
the wide dynamic range of expression levels, 
with more pronounced effects on lowly expressed 
transcripts. Increasing sequencing depth can cir-
cumvent this issue, but this is presently limited 
by the higher cost of long reads, such that efforts 
in improving throughput and lowering costs are 
vital.

Another obstacle is that sequencing errors 
rates are substantially higher for state-of-the-art 
long read technologies (Jenjaroenpun et  al. 
2018). Error rates in Iso-Seq reads can be greatly 
reduced by the so-called circular consensus 
sequence (CCS), in which the same molecule is 
repeatedly sequenced (Rhoads and Au 2015; Liu 
et al. 2017). However, this is not yet feasible for 
long, single-pass transcripts, which still suffer 
from lower sequencing accuracy. Hybrid strate-
gies that combine the transcript identification 
power of TGS with the massive read volume of 
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NGS enable error correction and abundance esti-
mation for a more complete and trustworthy tran-
scriptome characterization (Li et  al. 2018; 
Jenjaroenpun et al. 2018).

2.2.3	 �Transcriptome Assembly

2.2.3.1	 �Genome-Guided Transcriptome 
Assembly

When the genome sequence of the species under 
study is available, one can choose to try assem-
bling the transcriptome from raw data (short 
reads) using the genome as a guide. This proce-
dure consists of mapping the RNA-Seq reads 
onto the reference genome sequence and then 
looking for clusters of sequencing reads repre-
senting putative isoform transcripts that should 
be assembled. During the mapping step, the read 
mapper employed must be aware of spliced-
reads, that is reads that span exon–exon borders, 
like HiSAT2 (Kim et  al. 2015, 2019), STAR 
(Dobin et  al. 2013), or GSNAP (Wu and Nacu 
2010), among others. After reads have been 
mapped and clustered along the genome 
sequence, these clusters of reads are usually rep-
resented as a graph (Florea and Salzberg 2013). 
The graph model could be a splice graph, where 
exons or parts of exons are represented as nodes 
and edges represent possible splice variants, 
implemented in the software Stringtie (Pertea 
et  al. 2015), or an overlap graph, where nodes 
represent sequence fragments or reads (k-mers) 
and edges connect sequence fragments if they 
overlap and have a compatible splice pattern, 
implemented in software such as Cufflinks, 
Scripture, and Trinity (Trapnell et al. 2010; Haas 
et  al. 2013; Guttman et  al. 2010). Alternatively 
the genome sequence could be just used to cluster 
reads together to be then de novo assembled, 
using software such as Trinity (Haas et al. 2013; 
Grabherr et al. 2011).

Genome-guided transcriptome assembly is 
usually more precise than de novo transcriptome 
assembly (see below), as it is less sensitive to 
sequencing errors, polymorphisms, and paralo-
gous loci (Ungaro et al. 2017; Zhao et al. 2011). 
It is important to note, though, that it could only 

help in recovering/assembling the transcripts that 
are present in the sequence used as reference, so 
variation between individual, ecotypes, cultivars, 
etc. would be missed. This has been highlighted 
in recent studies about the pan-transcriptome and 
pan-genome of diverse plant species (Gao et al. 
2019; Ma et  al. 2019). Also, if the genome 
sequence used as reference is fragmented, exons 
or whole transcripts could be located in sequenc-
ing gaps. An alternative to overcome these limita-
tions would be the generation of a comprehensive, 
or non-redundant, transcriptome, that leverages 
the information of the genome-guided transcript 
assembly and of de novo transcript assemblies 
(Visser et al. 2015; Jain et al. 2013). The PASA 
pipeline (Haas et al. 2003) and CD-HIT-EST (Fu 
et  al. 2012) can generate such non-redundant 
transcriptome representations, by controlling the 
minimum fraction identity, and length aligned to 
create transcript clusters. Clustering at 100% 
identity would be the most basic level of cluster-
ing, and lower values, like 99% or 95% identity, 
could be useful to cluster transcripts originating 
from the same locus via alternative splicing, 
allelic versions, or closely related paralogous 
genes. GET-HOMOLOGUES-EST could 
enhance the generation of a comprehensive tran-
scriptome, while taking into account coding 
potential, the presence of conserved protein 
domains, and information from closely related 
species or individuals within a polymorphic spe-
cies (Contreras-Moreira et al. 2017).

2.2.3.2	 �De Novo Transcriptome 
Assembly

The availability of an annotated reference 
genome sequence eases the analysis of RNA-Seq 
data, by dividing the problem of transcript assem-
bly and quantification into substantially smaller 
subsets. In this situation, sets of reads aligning 
against a particular genomic region can be ana-
lyzed independently of the remainder of the 
sequencing data.

It is nevertheless possible to carry out a thor-
ough transcriptome analysis for non-model plant 
species lacking a reference genome (Collins et al. 
2008). When available, the genome sequence of a 
closely related species can be used as a reference. 
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Alternatively, instead of aligning the reads 
against genomic sequences, a transcriptome ref-
erence can be assembled de novo based on the 
RNA-Seq reads alone. This provides a cost-
effective means of applying functional genomics 
tools to less well-studied organisms. It can also 
shorten the path to biological insight because any 
species can potentially be studied without the 
need for previous genomic knowledge. However, 
de novo transcript assembly is one of the most 
difficult tasks in bioinformatics (Garg and Jain 
2013).

The most widely used de novo transcriptome 
assemblers are based on a de Bruijn graph, a data 
structure that compactly represents the sequences 
of hundreds of millions of short sequencing 
reads. Construction of a de Bruijn graph involves 
parsing the collection of reads and extracting 
k-mers of a certain size. A k-mer is a subsequence 
of length k contained in any biological sequence 
segment, such as a read, a transcript, or even an 
entire chromosome. In a standard de Bruijn 
graph, each existing k-mer is represented by a 
node, or vertex. If a suffix of length k − 1 of a 
given node matches the k  – 1 prefix of another 
node, an edge connecting these vertices is used to 
represent this overlap. After obtaining this graph, 
assembly software packages usually perform sev-
eral (combinations of) steps of error correction, 
graph simplification and collapsing, scaffolding, 
and gap closure. Finally, graph traversal based on 
sequencing read information can be used to 
reconstruct contigs representing transcripts.

Contig assembly algorithms based on de 
Bruijn graphs were initially devised for genome 
assembly based on high depth sequencing data. 
Indeed, many of the currently available transcrip-
tome assemblers were built relying on previously 
existing genome assemblers. For example, Oases 
(Schulz et al. 2012) is a pipeline built on top the 
Velvet genome assembler (Zerbino and Birney 
2008). Similarly, Trans-ABySS (Robertson et al. 
2010) is based on ABySS (Simpson et al. 2009), 
and SOAPdenovo-Trans (Xie et  al. 2014) uses 
the de Bruijn graph from SOAPdenovo2 (Luo 
et al. 2012) as a starting point. Following a more 
widespread adoption of RNA sequencing studies, 
proper de novo assemblers such as Trinity 

(Grabherr et al. 2011; Haas et al. 2013), were also 
developed from scratch to tackle the challenges 
posed by these datasets.

Despite using an underlying data structure 
similar to genome assemblers, these software 
packages take into account unique features of the 
RNA-Seq data to drive the assembly strategy and 
address several particular issues. While the goal 
in genome assembly is to produce a few large 
(chromosome-sized) sequences, transcriptome 
assembly aims to reconstruct tens of thousands of 
sequences, each representing a different tran-
script. Also, coverage depth in RNA sequencing 
is heavily dependent on gene expression levels, 
such that approaches for assembling lowly or 
highly expressed genes can differ.

These de novo assembly methods can natu-
rally handle alternative splicing arising from 
RNA processing after transcription. Ideally, a 
transcriptome assembly should contain full-
length transcripts accurately representing differ-
ent isoforms, while also separating paralogs from 
large gene families. For polyploid species, the 
presence of multiple alleles and homeologs adds 
another layer of complexity that makes assembly 
an even harder exercise. In this context, it is note-
worthy that long-range information from paired-
end and/or longer sequencing reads provide a 
valuable resource that can greatly enhance 
assembly quality by simplifying the recovery of 
full-length transcripts.

Even though the current transcriptome assem-
blers are based on similar basic concepts and 
share many features, they differ widely in run-
ning time and required memory. They also stand 
apart in their ability to recover full-length tran-
scripts from datasets with varying sequencing 
depth, obtained from species with distinct tran-
scriptome complexity. Comparisons among 
assemblers can reveal scenarios in which particu-
lar combinations of software and parameters 
show superior performance (Zhao et al. 2011).

Finally, functional annotation of the assem-
bled transcripts is commonly done to provide 
meaningful biological information about each 
resulting sequence. This usually entails adding 
gene ontology terms (Ashburner et  al. 2000; 
Gene Ontology Consortium 2017) and pathway 
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information from KEGG (Kyoto Encyclopedia of 
Genes and Genomes) (Kanehisa and Goto 2000; 
Kanehisa et al. 2016), to the transcripts, as well 
as searching for protein domains. Pipelines for 
performing such annotation include Blast2GO 
(Conesa et al. 2005) and Trinotate (Bryant et al. 
2017).

2.2.3.3	 �Assessment of Transcript 
Assemblies

The goal of transcriptome assembly, either 
genome-guided or de novo, is to generate a truly 
complete collection of all the transcripts pro-
duced by an organism. However, attaining that 
goal is in most real cases unlikely, some of the 
reasons for this include: (1) Sequencing depth is 
limiting, and lowly abundant transcripts are not 
represented in the sequencing data. (2) Biases of 
the sequencing depth limit the observation of cer-
tain transcripts, e.g., problems with high GC con-
tent sequences. (3) Not all possible transcripts are 
expressed at a given moment, a good transcrip-
tome coverage should include a survey of sam-
ples from different developmental stages, 
growing conditions, tissues, and organs. Thus, 
we need tools to assess the quality and complete-
ness of a generated transcriptome assembly 
(Honaas et al. 2016; Moreton et al. 2015; Li et al. 
2014; Smith-Unna et al. 2016). In the following, 
we describe some of the most important metrics 
to evaluate a transcriptome assembly.

Evaluation of Sequencing Depth
There are two related questions that are often 
asked at the beginning of any transcriptome study 
using NGS. (1) How many reads should be gen-
erated to capture most/all of the transcripts? (2) 
Are the reads generated enough to make statisti-
cal inferences or to get a complete overview of 
the transcriptome? In order to answer these, one 
can evaluate the degree of read saturation present 
in the assembly as a function of sampling effort, 
using an approach analogous to that of species 
accumulation curves (rarefaction curves) in bio-
diversity studies. This approach will allow to 
decide whether sequencing depth has been 
enough to capture all transcripts in the sample 
(Hale et  al. 2009). At the beginning of a study, 

before generating the data, one could carry out a 
pilot study with shallow sequencing depths, that 
could help estimating the depth required to cap-
ture all or most of the transcripts. Alternatively, 
and if a genome reference is available, one could 
evaluate the saturation of orthogonal features, for 
instance the number of exon–exon junctions sup-
ported by the sequencing reads at different levels 
of sequencing effort, this approach has been 
implemented in the tool junction_saturation.py in 
the package RSeQC (Wang et al. 2012).

Percent Reads Mapped
The proportion of reads that map back to the 
assembly is also a measure of assembly and data 
quality. In principle one wants most of the origi-
nal read data (after quality trimming) mapping to 
the transcriptome assembly. However, when 
using a genome as a reference (or the transcrip-
tome derived from the genome sequence), a low 
percent of reads mapping could also be indicative 
of large diversity between the reference and the 
sample, or of contamination, and further analyses 
would be required.

Identification of Sets of Conserved Genes
Genes that appear in all of the best-known 
genomes can be exploited to evaluate the com-
pleteness of a transcriptome assembly. The tool 
Benchmarking Universal Single-Copy Ortholog 
(BUSCO) has sets of conserved single-copy 
orthologous genes present at diverse taxonomic 
levels, e.g., Viridiplantae (green plants), 
Embryophyta (land plants) (Waterhouse et  al. 
2017). A transcriptome that was assembled from 
samples representing different developmental 
stages, growth conditions, tissues and organs, 
should have a good representation of these con-
served single-copy gene sets. On the other hand, 
a transcriptome representing a single condition 
could have a low value for this metric, corrobo-
rating its specificity. Alternatively one could also 
compare the assembled transcripts to the tran-
scripts (or proteins) of a related species, these are 
usually called reference-based or comparative 
metrics and are implemented in tools such as 
TransRate (Smith-Unna et al. 2016) or Detonate’s 
REF-EVAL (Li et al. 2014).
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Contamination Screening and Filtration
NGS data can easily be contaminated, but it is 
important to note that there are different sources 
of contaminants. There can be internal contami-
nants, for instance, mitochondrial and plastid 
sequences, or ribosomal RNA sequences. Or 
there could be external contaminants, genetic 
material from other organism present in the sam-
ple, e.g., symbionts, pests, fungi, or bacteria. In 
general, contamination should be removed as 
early as possible, in order to reduce computa-
tional costs, fragmentation of the assembly and 
the chance to generate chimeric transcripts (Zhou 
et  al. 2018). For example, BBDuk (https://jgi.
doe.gov/data-and-tools/bbtools/) can be used to 
efficiently remove rRNA reads by comparing 
them against the SILVA database (Quast et  al. 
2013). A similar approach could be followed to 
eliminate reads from other contaminants if they 
have been previously identified. The presence of 
rRNA could be exploited to identify which con-
taminants (if any) are present in the sample.

2.2.4	 �Transcript Quantification

2.2.4.1	 �Alignment/Mapping-Based 
Approaches

Transcriptome characterization via RNA-Seq not 
only provides a catalog of transcripts present in a 
particular sample of cells, but also yields quanti-
tative information that allows expression levels to 
be assessed. This is true both for species with and 
without a reference genome. A major step for 
obtaining expression estimates is to assign 
sequencing reads to genes or transcripts, which is 
commonly accomplished by first aligning them 
to a reference genome or transcriptome sequence.

Development and application of alignment 
algorithms has been one of the most active research 
areas in bioinformatics, and consequently, there is 
a wide range of tools available for various pur-
poses. The majority of alignment algorithms tai-
lored for short reads use indexing strategies that 
can be categorized into two main approaches: a 
seed-and-extend strategy based on hash tables or 
alignment based on a Burrows-Wheeler transform 
(Flicek and Birney 2009; Trapnell and Salzberg 
2009; Li and Homer 2010).

Short read sequence aligners were initially 
developed for aligning genomic reads against a 
reference genome. In this situation, reads are 
expected to align contiguously against the refer-
ence, except for minor gaps which may stem 
from small indels or sequencing errors. Reads 
from RNA-Seq libraries, on the other hand, origi-
nate from cDNA molecules synthesized from 
mature mRNA templates, from which introns 
have been stripped off. Aligning RNA-Seq reads 
against a reference genome then requires splice-
aware aligners, which appropriately handle reads 
that span exon junctions, without penalizing long 
gaps corresponding to introns. This class of 
aligners includes TopHat2 (Trapnell et al. 2009; 
Kim et al. 2013), which has been superseded by 
HISAT2 (Kim et  al. 2015) and STAR (Dobin 
et al. 2013). An interesting quality of these align-
ers is that they can not only use previously anno-
tated splice junctions, but also discover novel 
junctions and isoforms.

Following alignment, mapped reads can be 
assigned to annotated features in the genome. A 
simple and widely used way to measure expres-
sion levels is to count the number of reads over-
lapping a feature of interest. This is the approach 
implemented in programs such as HTSeq (Anders 
et  al. 2015) and the featureCounts (Liao et  al. 
2014) component of the Subread package (Liao 
et al. 2013).

Reflecting the nature of gene expression, feature 
annotation follows a hierarchy of terms, with a 
gene frequently corresponding to the highest-level 
term. Any given gene may originate one or more 
transcripts, which in turn may contain one or more 
exons and compose one or more coding sequences. 
Read counts can be obtained for features at any 
level desired, but it is frequent to count reads over-
lapping exons. Depending on the goals of the study, 
features may then be grouped to obtain expression 
levels for meta-features. For instance, counts for all 
exons of a given transcript may be combined to get 
a transcript-level expression estimate, or all exons 
of all transcripts of a gene may be used to yield a 
gene-level read count. It is important to realize that, 
when working with paired-end read information, 
both reads of a pair come from a single molecule 
fragment, such that they should contribute only 
once to the expression count.
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It is not always possible to uniquely assign a 
read to a feature or meta-feature. In some cases, 
there are overlapping features in an annotated 
genome reference, as a consequence of the 
structural organization of genes in the species of 
interest. Reads that align to a genomic region 
covered by two or more genes may not unequiv-
ocally be assigned to any one of them. Much of 
this ambiguity can be worked out by using 
stranded RNA-Seq library preparation, because 
overlapping genes may be transcribed in oppos-
ing directions.

Additionally, different gene isoforms can 
share a common exon, such that reads overlap-
ping this exon are ambiguous. Lastly, the aligner 
may report multiple possible mappings for some 
reads, due to sequence similarity between mem-
bers of a gene family, conserved protein domains 
and sequencing errors. The researcher can decide 
whether to simply discard multimapping or 
ambiguous reads, count them for all overlapping 
features or assign them heuristically. It should be 
noted that ambiguities at a given annotation level 
may not represent ambiguities at a higher level 
(e.g., a read mapping to an exon shared by mul-
tiple isoforms is ambiguous at the transcript 
level, but not at the gene level).

When using a de novo assembled transcrip-
tome, introns are virtually absent from the refer-
ence, and therefore, one may use standard 
sequence aligners, such as BWA-MEM (Li and 
Durbin 2009; Li 2013) and Bowtie2 (Langmead 
et  al. 2009; Langmead and Salzberg 2012). 
Splice-aware aligners also have modes for align-
ing reads against a splice junction-free reference 
sequence. For expression level quantification, in 
this case each contig can independently be treated 
as a feature. In fact, some assemblers such as 
Trans-ABySS may internally leverage the align-
ment of reads to contigs and automatically pro-
vide a measure of the per-contig expression level. 
The simplicity of the feature annotation in an 
assembled transcriptome does not mean that 
alignment and quantification are an easier 
endeavor. In fact, the issue of multiply aligned 
reads can be even more challenging in this situa-
tion, as it can be hard to distinguish between 
paralogs of the same gene.

These ambiguity issues have prompted alterna-
tive approaches for obtaining expression esti-
mates to be devised. Because of the uncertainty in 
determining the transcript of origin of sequencing 
reads, one such possibility is to use mixture-
model procedures that probabilistically assign 
reads to features, instead of simply counting over-
lapped fragments. As an example, the RSEM 
method (Li et al. 2010; Li and Dewey 2011) gen-
erates maximum likelihood or Bayesian expres-
sion estimates based on several variables of the 
annotated feature set and of the aligned reads, 
such as length, orientation, and quality scores. 
The main underlying principle is that uniquely 
aligned reads can also provide information for the 
(probabilistic) assignment of ambiguous reads. 
For example, suppose that two isoforms of a gene 
share one common exon, but also contain one 
exclusive exon each. If a large number of frag-
ments align to one of the exclusive exons, while 
the other shows no overlapping reads, it is likely 
that fragments overlapping the common exon also 
originate from the isoform with a higher expres-
sion level based on the uniquely aligned reads.

Similarly, the Stringtie package formulates the 
simultaneous estimation of isoform assembly and 
abundance as a maximum network flow problem 
(Kovaka et  al. 2019; Pertea et  al. 2015). This 
maximum flow approach has been shown to be as 
accurate as the maximum likelihood approach in 
cufflinks (Trapnell et al. 2010), but it is able to 
recover a larger fraction of bona fide transcripts 
(Kovaka et  al. 2019). In the maximum flow 
approach, a path in the splice graph with the 
heaviest coverage is used to build a flow network, 
this path represents a transcript, which is then 
removed from the splice graph, and a new path 
with the heaviest coverage is sought, until no 
more transcripts are assembled. The coverage for 
each assembled transcript is used to represent 
expression values as FPKM (fragments per kilo-
base million) and TPM (transcripts per million).

These difficulties in estimating expression 
levels are substantial enough for diploid model 
species. The situation may be considerably harder 
for researchers dealing with polyploid organisms, 
because of the added complexity from homeo-
logs and multiple alleles. It is reasonable to 
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assume that probabilistic strategies for read 
assignment may provide more accurate estimates 
of transcript abundance in this case.

Finally, a brief comment on expression-level 
normalization is needed. Transcript read counts 
are influenced by the length of the transcript and 
the size of the sequenced library, i.e., the number 
of fragments obtained from a given sample. Read 
counts are expected to be higher for longer tran-
scripts and larger libraries. Many downstream 
application packages directly handle raw read 
counts, but it is not always straightforward to 
interpret raw values. For reporting expression lev-
els, for instance, it is useful to use normalized val-
ues, such as the TPM (transcripts per million) 
value (Li et al. 2010; Wagner et al. 2012). It repre-
sents the number of transcripts of a certain type 
present in a total of one million sequenced tran-
scripts from a given sample and thus estimates the 
fraction of that transcript in a pool of RNA mole-
cules. The TPM is normalized by the length of the 
transcript, the sequencing depth, and the mean 
transcript length in the sample. Relative expres-
sion levels represented by TPM values do not 
depend on the expression levels of other genes in 
the transcriptome and appropriately measure the 
fraction of fragments from a given gene or iso-
form. Other measure of gene expression includes 
the RPKM (reads per kilobase million) and FPKM 
(fragments per kilobase million), but they have 
been largely superseded by the TPM.

2.2.4.2	 �Alignment-Free Approaches
Recent methods have tried to let go of the tradi-
tional strategy of mapping reads to a reference 
and then count, to arrive at estimates of gene 
expression levels, approach described above. 
The main reason for this is that these traditional 
approaches require large computational 
resources, and do not scale well with the amount 
of available data. These newer approaches 
implement what they call as pseudo-alignment, 
lightweight mapping, or quasi-mapping (Patro 
et  al. 2017, 2014; Bray et  al. 2016) and are 
known as alignment-free methods. Another 
important difference to the traditional approach 
is that instead of using reference genomes, these 
approaches use reference and well-annotated 

transcriptomes, including transcript isoforms, 
allowing the accurate estimation of isoform 
expression levels. Expression-level estimates at 
the level of isoforms are important given that 
most plant genes are interrupted (i.e., they have 
introns), and the removal of introns is a regu-
lated process that can generate alternative splic-
ing forms, which can have different, even 
antagonistic functions (Shang et  al. 2017). In 
order to estimate isoform expression levels, 
tools like Kallisto or Salmon, let go of the idea 
of knowing where a read aligns in a given tran-
script, with base-to-base correspondence, and 
instead try to identify a transcript, or a set of 
transcripts, that could have originated such read, 
without keeping track of base-to-base corre-
spondences. Such approaches have been shown 
to be extremely fast and accurate (Zhang et al. 
2017). Some of these methods, besides their 
speed, can model different sources of sample-
specific biases that can affect transcript quantifi-
cation, like sequence-specific, fragment 
GC-content and positional biases (Patro et  al. 
2017; Bray et al. 2016). Refinement of the initial 
lightweight mapping of reads to the transcrip-
tome, using Selective Alignment, allows the 
elimination of most mapping errors, by provid-
ing alignment scores that allow to distinguish 
alternative mapping locations that otherwise 
would appear the same (Srivastava et al. 2019).

2.3	 �Applications

Figure 2.3 shows some of the paths that can be 
followed in RNA-Seq studies. Table  2.1 lists 
some of the main software packages to carry out 
the operations shown in Fig. 2.3.

2.3.1	 �Differential Gene Expression

RNA sequencing is frequently done with the goal 
of detecting differences in expression levels 
between two or more contrasting groups of sam-
ples. One may be interested in evaluating the 
effect of different experimental treatments, geno-
types, or stress conditions, for instance, on the 
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transcriptome of particular cells. Gene or isoform 
expression measures are thus often used for iden-
tifying transcripts that are significantly up- or 
downregulated in a condition of interest, in com-
parison to a distinct condition.

Differences in the expression levels of two 
(groups of) samples can be represented by the 
fold change, which is simply the ratio of the 
expression levels estimated for both cases. 
Usually the expression estimate of a control or 
reference condition is used in the denominator, 
whereas the expression level of the treatment 
group is used in the numerator. As a result, 
genes that are upregulated in the treatment sam-
ples show a fold change greater than one (with 
no upper boundary), while downregulated genes 
display a fold change between zero and one. 
This discrepancy in scale led to the representa-
tion of these ratios in the log2 scale, such that 
fold changes in both directions are symmetric 
around zero.

Several methodologies are available for test-
ing whether an observed fold change is statisti-
cally significant. Many of these methods use read 
count data directly, which calls for modeling of 
the expression levels with discrete distributions. 
The first statistical approaches proposed for such 
tests used the Poisson distribution to model read 
counts, assuming that the variance in the esti-
mates was directly proportional to the mean 
expression level (Wang et al. 2010). This proved 
to be appropriate for technical replicates of the 

same sample (Marioni et al. 2008), but variance 
for biological replicates was shown to be higher 
than expected based on the mean alone (Robinson 
and Smyth 2008).

An alternative to the Poisson distribution is 
the negative binomial, which adds a second 
parameter (often denoted dispersion), allowing 
the sample variance to be different from the 
mean; hence, it corresponds to a Poisson distribu-
tion with overdispersion. This is the approach 
taken by most of the modern differential expres-
sion analysis packages (Wang et  al. 2010; 
Robinson et al. 2010; Trapnell et al. 2013; Love 
et al. 2014).

The need to estimate sample variances makes 
it clear that biological replication is necessary in 
RNA-Seq experiments. Appropriate design plan-
ning is required, and all treatment combinations 
should be replicated, as alternatives devised for 
data without replicates are far from ideal. Yet, 
despite continual reduction in sequencing costs, 
RNA-Seq for large numbers of samples may still 
be impractical for many research goals. In order 
to increase reliability of variance estimates 
obtained from small numbers of replicates, tech-
niques that share information between genes 
were proposed and implemented (Robinson and 
Smyth 2007).

Software packages edgeR (Robinson et  al. 
2010), DESeq (Anders and Huber 2010; Love 
et  al. 2014), and Cuffdiff (Trapnell et  al. 2010, 
2013) are among the most extensively used tools 

Fig. 2.3  General steps in an RNA-Seq analysis pipeline. Not all steps/paths are taken in a given study
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for differential expression analyses. In more 
detail, edgeR uses raw read counts and models 
sample variation in terms of the biological coef-
ficient of variation, which corresponds to the 
square root of the dispersion. It allows estimating 

a common dispersion for all genes, or a trended 
dispersion via a locally weighted adjusted profile 
likelihood for genes with similar average read 
count. It further allows moderated gene-wise dis-
persion estimates to be obtained by a weighted 

Table 2.1  Some of the software packages for different steps in RNA-Seq analysis pipelines

Activity Software Reference
Read pre-processing Sequencing diagnostics FastQC bioinformatics.babraham.ac.uk/projects/

fastqc
RSeQC Wang et al. (2012)
RNA-SeQC DeLuca et al. (2012)

Removal of adapters 
and low-quality bases

Trimmomatic Bolger et al. (2014)
Atropos Didion et al. (2017)
BBDuk sourceforge.net/projects/bbmap/

Removal of ribosomal 
RNA

SortMeRNA Kopylova et al. (2012)
BBDuk sourceforge.net/projects/bbmap/

Identification of 
duplication artifacts

dupRadar Sayols et al. (2016)

De novo transcriptome 
assembly

Trinity Grabherr et al. (2011)
Trans-ABySS Robertson et al. (2010)
Velvet/Oases Schulz et al. (2012)

Genome-guided 
transcriptome 
assembly

Trinity Grabherr et al. (2011)
Stringtie Kovaka et al. (2019)
PASA Haas et al. (2003)

Assessment of 
transcriptome 
assembly

BUSCO Waterhouse et al. (2017)
DETONATE Li et al. (2014)
Transrate Smith-Unna et al. (2016)

Functional annotation Trinotate Bryant et al. (2017)
Blast2GO Conesa et al. (2005)

Read mapping STAR Dobin et al. (2013)
GSNAP Wu and Nacu (2010)
HISAT2 Kim et al. (2015), Kim et al. (2019)

Transcript/gene 
expression-level 
quantitation

Stringtie Kovaka et al. (2019)
featureCounts Liao et al. (2014)
kallisto Bray et al. (2016)
Salmon Patro et al. (2017)

Differential expression 
analyses

Limma Ritchie et al. (2015)
edgeR Robinson et al. (2010)
Ballgown Frazee et al. (2015)
Sleuth Pimentel et al. (2017)
DESeq2 Love et al. (2014)

Co-expression network 
inference

WGCNA Langfelder and Horvath (2008)
HRR Liesecke et al. (2018)
HCCA Mutwil et al. (2010)

Polymorphism 
analyses

GATK DePristo et al. (2011), McKenna et al. 
(2010)

NGSEP V4.0 sourceforge.net/p/ngsep/
Functional enrichment goseq Young et al. (2010)

topGO Alexa et al. (2006)
Blast2GO Conesa et al. (2005)
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likelihood method combining individual and 
trended or common estimates (McCarthy et al. 
2012). Normalization is carried out with a 
trimmed mean of log2 fold changes (Robinson 
and Oshlack 2010).

Similarly, the DESeq2 package uses size fac-
tors estimated based on the median of ratios of 
observed read counts to normalize expression 
levels. It empirically estimates the relationship 
between mean and variance of the negative bino-
mial distribution, fitting a smooth curve of the 
dispersion as a function of the average expression 
of genes with similar means. Finally, it employs 
empirical Bayes approaches to shrink gene-wise 
dispersion estimates and also the fold changes, 
which is particularly relevant for lowly expressed 
genes and/or those with highly variable expres-
sion levels. Both edgeR and DESeq were initially 
designed for performing differential expression 
analyses of simple experiments, commonly 
involving pairwise comparisons of contrasting 
conditions. More recent implementations of 
edgeR and DESeq2 allow fitting generalized lin-
ear models for analysis of more complex designs, 
with the inclusion of experimental blocking fac-
tors and modeling of interactions, for example.

Cuffdiff 2 was developed for testing differen-
tial expression at both the isoform and the gene 
levels. Instead of using raw read counts, it models 
variability across replicated expression estimates 
by jointly considering overdispersion and uncer-
tainty in the assignment of reads to their possible 
originating transcripts. Because of differences in 
the normalization procedures and model 
assumptions, these methods differ in their statis-
tical power to detect differential expression over 
the range of expression values, as well as in the 
occurrence of false positives. Note also that con-
ducting differential expression analyses at the 
transcript level may have important implications 
for statistical power. Greater uncertainty in 
expression estimates, because of more ambigu-
ously mapped reads, negatively influences statis-
tical power. Differential isoform expression 
analyses may require higher coverage depth, as 
more reads are needed to provide accurate esti-
mates of individual isoform expression levels, 
especially for genes with many isoform variants 

and many shared exons. On the other hand, fail-
ure to adequately model uncertainty in read to 
transcript assignment can result in higher rates of 
false positives, even at the gene level.

RNA-Seq is a high-throughput screen that 
yields quantitative information for tens of thou-
sands of genes (or hundreds of thousands of tran-
scripts). Consequently, statistical tests are applied 
for multiple comparisons, which can result in 
many false positives if liberal significance levels 
are used for individual tests. Multiple testing cor-
rection is generally used to control for the occur-
rence of such false positives. One of most 
well-known corrections is the Benjamini and 
Hochberg (Benjamini and Hochberg 1995) false 
discovery rate (FDR) correction, aimed at con-
trolling the proportion of false discoveries among 
the rejected hypotheses, while minimizing the 
drop in statistical power.

The output of these analyses is a list of signifi-
cantly differentially expressed genes. Because of 
the large number of genes studied, this list may 
be quite long, which complicates summarization 
and reporting of the results. More easily interpre-
table biological meaning can be extracted from 
such lists through functional enrichment analy-
ses, that look for overrepresented groups of genes 
among the statistically significant ones. 
Groupings of interest are usually obtained by cat-
egorizing genes according to their functional 
annotation, including gene ontology terms and/or 
biological pathways. Each functional group is 
tested for overrepresentation in the gene list 
against a background set, which includes all 
(expressed) genes in the transcriptome.

2.3.2	 �Co-expression Networks

Networks have recently emerged as a robust and 
holistic approach to understand complex cellular 
processes that comprise multiple and parallel 
interactions between cellular constituents such as 
DNA, RNA, and proteins. The network approach 
allows analyzing components and interactions as 
a system instead of analyzing them as separate 
entities. In a general way, a network, or graph, is 
defined as a set of elements called nodes, which 
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are related through connections called edges. 
When edges have a direction, that is, they have 
source and target nodes, the network is called 
directed; otherwise, the network is undirected. 
These simple definitions are used to create bio-
logical networks that model cellular processes by 
taking nodes to represent molecules such as 
genes, proteins, or metabolites, and edges to rep-
resent physical, functional, or chemical interac-
tions (Barabasi and Oltvai 2004). Depending on 
the molecules and interactions used, biological 
networks can be gene co-expression networks 
(GCN), genetic interaction networks, gene regu-
latory networks, protein–protein interaction (PPI) 
networks, metabolic networks, and signaling net-
works (Serin et al. 2016; Vital-Lopez et al. 2012). 
This section will focus on gene co-expression net-
works, in which each node corresponds to a gene, 
and edges represent co-expression relationships.

An advantageous feature of GCNs is the abil-
ity to reduce data complexity drastically. Nodes 
in a GCN, rather than solely representing a gene 
per se, represent its whole expression profile 
when the studied organism is under a condition, 
such as a treatment or biotic/abiotic stress. Edges 
in a GCN represent associations between gene 
expression profiles and can be interpreted as the 
simultaneous and coordinated expression of two 
or more genes under the studied perturbations. 
Thus, GCNs reduce the complexity of expression 
data of multiple samples from one or multiple 
experiments.

GCNs can be constructed from expression 
data derived from DNA microarrays and RNA-
Seq. Traditionally DNA microarrays were the 
primary source of data expression for construct-
ing GCNs, as this technology has been used 
intensively for almost two decades in gene 
expression studies. Recently, with the advent of 
next-generation sequencing (NGS) technologies, 
RNA-Seq has turned in a natural source for con-
structing GCNs. Among the advantages that 
microarrays had over RNA-Seq for the recon-
struction of GCNs, we can name the considerable 
amount of information available in public data-
bases, the well-established and mature data nor-
malization approaches, and data homogeneity. 
Although RNA-Seq was shown as a promising 

source of data for GCNs (Iancu et al. 2012), some 
limitations related to normalization methods used 
for this technology were also demonstrated 
(Giorgi et al. 2013). However, with the increased 
number of RNA-Seq samples publicly available, 
more recent studies have shown that bigger data-
sets can overcome those caveats (Ballouz et  al. 
2015; Huang et al. 2017a) and highlight multiple 
advantages of RNA-Seq over microarrays for 
GCNs.

GCN inference comprises three main steps: 
similarity calculation, filtering, and edges con-
struction (Serin et  al. 2016). In the first step, a 
measure of similarity (or relatedness) is com-
puted for each pair of genes. Multiple measures 
can be used in this step, such as mutual informa-
tion (MI) (Meyer et al. 2008, 2007), or the preva-
lent correlation coefficients. The latter category 
includes the Pearson correlation coefficient 
(PCC), Spearman’s correlation coefficient (SCC), 
and biweight midcorrelation (bicor) (Langfelder 
and Horvath 2008). Although MI is useful for 
finding nonlinear relationships between genes 
(Langfelder and Horvath 2008), it has been 
shown that it has several caveats and can be out-
performed in many situations by correlation mea-
sures (Liesecke et al. 2018; Song et al. 2012). In 
the second step, the pairs of genes (edges) are 
either filtered based on a relatedness threshold 
that specifies the minimum level of similarity 
between expression profiles to define if a pair of 
genes is connected, or weighted. When using a 
threshold, it can be defined as a simple cutoff 
(hard threshold) (Tsaparas et al. 2006; Qiao et al. 
2017), or as a result of more elaborated 
approaches. Some of these approaches include 
selecting a subset of the most positive/negative 
correlations (Lee et  al. 2004), relying on topo-
logical features of co-expression networks like 
the clustering coefficient (Elo et  al. 2007) or a 
power law distribution of the number of edges 
per node (Zhang and Horvath 2005), or applying 
models such as the Random Matrix Theory (Luo 
et al. 2007). Finally, in the third step, edges of the 
GCN are defined based on the resultant list of 
genes after filtering.

Depending on the type of connection between 
nodes, GCNs can be unweighted and weighted. 
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In the unweighted networks, edges indicate 
whether there is an association between a pair of 
nodes. They are derived from applying a hard 
threshold, i.e., an edge is present if the similarity 
measure between nodes is above the cutoff value. 
In the weighted networks, the degree of associa-
tion between nodes is quantified by an attribute 
called weight, which commonly corresponds to a 
value in the range [0, 1]. This weight can result 
from applying a soft similarity threshold 
(Langfelder and Horvath 2008; Zhang and 
Horvath 2005) or from assigning a value derived 
from correlations such as the coefficient rank 
(Ballouz et al. 2015).

After constructing a GCN, a wide repertoire 
of analyses from graph theory, computer sci-
ence, and engineering can be applied for eluci-
dating valuable information hidden in the 
expression data. For example, by applying clus-
tering algorithms like the hierarchical clustering 
(Langfelder and Horvath 2008), or the Markov 
Cluster (Zhang et  al. 2012), it is possible to 
identify groups of highly coexpressed nodes 
(modules) with similar functions or involved in 
common biological processes. Modules are 
annotated with functional and metabolic infor-
mation publicly available in databases such as 
Gene Ontology (GO, http://www.geneontology.
org), Reactome (https://reactome.org/), and the 
Kyoto Encyclopedia of Genes and Genomes 
(KEGG, http://www.genome.jp/kegg/).

Another example of methods applied to GCNs 
are the topological analyses that examine the 
structural properties of networks. One of the 
most used topological properties is the node 
degree, which indicates how many connections 
each node has. It has been suggested that some 
biological networks are scale-free, which means 
that their degree distribution P(k) approximates a 
power law P(k) ~ k−γ (Barabasi and Oltvai 2004). 
However, in many cases, proper statistical tests 
have revealed otherwise (Arita 2005; Broido and 
Clauset 2019; Lima-Mendez and van Helden 
2009; Khanin and Wit 2006; Stumpf and Ingram 
2005), and methods that strongly rely on the 
power-law distribution of the node degree must 
be assessed critically. In general, biological net-
works, including co-expression networks, exhibit 

many nodes poorly connected (low degree) and a 
relatively small number of nodes with many con-
nections. Highly connected nodes (hubs) are usu-
ally representative of the biological function 
associated with a module and also have been 
associated with interesting processes like regula-
tion (Hollender et  al. 2014), and evolution 
(Masalia et al. 2017). Another biologically rele-
vant topological property is the betweenness cen-
trality that indicates the level to which a node 
works as a bridge between other nodes and allows 
to detect bottlenecks (genes with high centrality). 
Since high connectivity and betweenness central-
ity tend to be related to essentiality in functional 
processes (Carlson et al. 2006), they can be used 
to identify key genes with biological relevance. 
Other topological properties with biological rel-
evance, including clustering coefficient, density, 
centralization, and heterogeneity, have also been 
explored (Dong and Horvath 2007; Horvath and 
Dong 2008).

GCNs have been used mainly for two pur-
poses, gene function prediction, and the selection 
and prioritization of genes associated with spe-
cific phenotypes like diseases or traits. The first 
application is derived from module identification 
and annotation, which infer functions for unchar-
acterized genes following the “guilt by associa-
tion” principle (Oliver 2000). For instance, 
functions for unknown genes have been predicted 
in yeast (Luo et al. 2007) and grapevine (Liang 
et al. 2014) using GCNs. The second application 
is perhaps the most popular of GCNs, and it is 
derived from exploiting network centrality prop-
erties (e.g., degree and betweenness) combined 
with module information. For example, several 
studies have used GCNs to identify genes associ-
ated with traits of interest in plants, such as heat 
shock recovery in grapevine (Liang et al. 2014), 
aluminum stress response in soybean (Das et al. 
2017), sugar/acid ratio in sweet orange (Qiao 
et al. 2017), regulation of cell wall biosynthesis 
in sugarcane and bamboo (Ferreira et  al. 2016; 
Ma et  al. 2018), wood formation in Populus 
trichocarpa (Shi et  al. 2017), the regulation of 
catechins, theanine, and caffeine metabolism in 
the tea plant Camellia sinensis (Tai et al. 2018), 
and plant height in maize (Wang et al. 2018a).
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GCNs also have some caveats that are worth 
mentioning. GCNs provide only direct informa-
tion for co-expression and not of direct interac-
tions between its components like in PPIs. 
Additional information such as functional rela-
tionships or the essentiality of genes is elucidated 
by applying analyses that can be prone to biases, 
for example, clustering or annotation methods. 
Biologically meaningful conclusions are only 
supported by reliable networks that sometimes 
are difficult to obtain due to multiple factors in 
the construction like the amount and quality of 
the expression data, or the appropriate selection 
of similarity measures, parametrization (e.g., 
thresholds), and clustering methods.

Despite the caveats and difficulties in their 
inference, it has been shown that GCNs remain 
useful tools in gene expression analysis. They 
allow to reduce the complexity of the currently 
growing expression data, suggest functions of 
unknown genes, and identify essential genes 
involved in biological processes of interest.

2.3.3	 �Polymorphisms

Sequencing reads from RNA-Seq studies are 
often used for identifying polymorphisms in the 
expressed regions of the genome. The principles 
of variant identification from transcriptomic data 
are similar to those involved in variant calling 
from DNA sequencing and many important 
applications are possible. Briefly, software such 
as GATK (McKenna et al. 2010; DePristo et al. 
2011) and BCFtools (Li et al. 2009; Li 2011) tra-
verse genomic positions from a reference 
sequence and compare the aligned reads to iden-
tify single-nucleotide polymorphisms (SNPs) 
and insertions and deletions (indels). However, 
there are important particularities when working 
with RNA-Seq data and care must be taken when 
interpreting the results.

If these aligned reads are originated from tran-
scriptomics datasets, polymorphic sites can only 
be identified between expressed transcripts. This 
is useful, for instance, if the goal is to search for 
imbalance of expression levels among different 
alleles of the same gene, or allele-specific expres-
sion (Pham et al. 2017; Shao et al. 2019). Accuracy 

for detecting polymorphisms and estimating allele 
expression ratios depends on the depth of cover-
age. This can be improved by increasing the 
sequencing depth but also depends on the expres-
sion level of each gene (Castel et al. 2015). Highly 
expressed genes naturally draw on a larger pro-
portion of the sequencing data and thus offer more 
power to identify variants and higher accuracy of 
allelic expression estimates. On the other hand, 
lowly expressed genes are more prone to false 
negatives and require deeper sequencing to accu-
rately identify polymorphisms.

Also, the fact that identified variants are con-
strained to expressed exons can limit the scope of 
the study. Polymorphic sites in introns, regula-
tory and intergenic sequences, which can be more 
numerous and may have key biological signifi-
cance, cannot be identified from RNA-Seq data 
alone (Cubillos et  al. 2012; Magalhaes et  al. 
2007). Genomic variants located in alleles that 
are not expressed in a given transcriptome will 
also be missed. Finally, many possible posttran-
scriptional modifications may negatively impact 
variant calling results and lead to flawed conclu-
sions (Lee et al. 2013).

Variant calling efforts and studies of allelic 
imbalance are even more complicated in poly-
ploid organisms, where more than two different 
alleles can be found (Cai et al. 2020). First, for 
allopolyploids, it can be difficult to differentiate 
between true alleles and homeologous sequences, 
which may not be polymorphic within each sub-
genome (Yang et  al. 2018a). Additionally, it is 
important to note that allele ratio information 
from RNA-Seq data is not appropriate for quanti-
tative genotyping (estimating genomic dosage) in 
autopolyploids, because of differences in the 
expression levels of different alleles. In other 
words, while the variation in allelic expression 
levels does provide valuable biological informa-
tion, these ratios are affected by expression con-
trol mechanisms and do not necessarily reflect 
allele dosage at the DNA level (Pham et al. 2017).

Considering these complications and limita-
tions, in most scenarios a combination of variant 
calling with other strategies is more valuable, 
such as identifying polymorphisms from both 
RNA-Seq and whole-genome sequencing (WGS) 
data, for instance.
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2.3.4	 �Machine Learning 
Technologies 
for Transcriptomics

The advent of high-throughput technologies like 
microarrays and next-generation sequencing has 
led researchers in biosciences to face the chal-
lenges of analyzing large amounts of data. These 
challenges include heterogeneity, high dimen-
sionality, noisiness, incompleteness, and compu-
tational expensiveness, among others. Machine 
learning (ML) has emerged as a suitable solution 
for analyzing massive data while dealing well 
with its challenges. ML has been extensively 
applied for large-scale data analysis in fields such 
as genetics (Libbrecht and Noble 2015), biomed-
icine (Mamoshina et al. 2016; Leung et al. 2016), 
genomics, transcriptomics, proteomics, and sys-
tems biology (Larranaga et  al. 2006; Min et  al. 
2017). This section presents an overview of ML 
that includes basic concepts and applications on 
transcriptomics in plants.

ML can be defined as the computational pro-
cess of automatically learning from experience to 
make predictions on new data (Murphy 2012). 
The process of learning is carried out by 
extracting knowledge from exemplary data by 
identifying hidden patterns. ML methods are 
classified into two main groups, supervised and 
unsupervised learning. Supervised learning is a 
predictive approach that comprises data exam-
ples with inputs and outputs. This approach uses 
evidence from the example data to make a model 
that generates reasonable predictions for new 
unseen datasets. More formally, the example data 
corresponds to a set of input–output pairs D 
called training set and defined as,

	 D x yi i i

N
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�
,

1
,	

where xi is a training input of the set x, yi is the 
response variable that represents an output from 
the set y, and N is the number of training exam-
ples. Hence, the model is trained to learn how to 
map each xi to a corresponding output yi.

Supervised learning methods can be subdi-
vided into two categories according to the nature 
of predictions. When the response variable is dis-
crete or categorical, e.g., male or female, healthy 

or diseased, the method falls into the classifica-
tion category. General applications of classifica-
tion algorithms are voice and handwriting 
recognition, and document and image classifica-
tion. Common algorithms of this category include 
support vector machines (SVM) Support Vector 
Regression (SVR), k-nearest neighbor (KNN), 
decision trees, logistic regression, and neural net-
works. When the response variable is continuous, 
e.g., the height of a person, or a temperature, the 
method corresponds to the regression category. 
Regression algorithms include linear and nonlin-
ear models, neural networks, and regularization. 
A variation of the late category is the ordinal 
regression, which comprises methods whose 
response variable has a natural ordering.

The second main group of ML, unsupervised 
learning, uses data examples with just inputs, i.e., 
the set

	 D xi i
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This type of ML tries to elucidate hidden pat-

terns in data, which can be considered “interest-
ing” to the researcher. In this case, there is no 
information about the kind of patterns that are 
expected to be found in the data. Unsupervised 
learning, also called knowledge discovery, is 
more commonly used than unsupervised tech-
niques. Two notorious categories within unsuper-
vised learning are clustering and dimensionality 
reduction. Clustering algorithms are intended to 
group data by looking for similarities among the 
features of each element from the input. Standard 
clustering algorithms include k-means, self-
organized maps (SOM), hierarchical clustering, 
and hidden Markov models. Dimensionality 
reduction algorithms try to extract the “essence” 
of data (Murphy 2012) by selecting a subset of 
features that represents better the dataset (feature 
selection) or by transforming the high-dimensional 
space of the original data into a lower one (feature 
extraction). Usual algorithms for dimensionality 
reduction are principal component analysis 
(PCA), linear discriminant analysis (LDA), and 
generalized discriminant analysis (GDA).

Supervised ML techniques have been applied 
in transcriptomics-related tasks such as assembly, 
identification, and abundance estimation of tran-
scripts, splicing sites/events detection, non-coding 

2  Modern Approaches for Transcriptome Analyses in Plants



32

RNA identification, and gene selection. 
Transcriptome assembly is one of the essential 
tasks in RNA-Seq-based studies that is followed 
by analyses such as, the estimation of gene expres-
sion levels or differential gene/trnascript expres-
sion. IsoLasso is a reference-based RNA-Seq 
transcriptome assembler that uses an ML regres-
sion algorithm called Least Absolute Shrinkage 
and Selection Operator (LASSO) and has the 
interesting feature of identifying and quantifying 
novel isoforms (Li et  al. 2011b). Another 
ML-based tool for transcript identification and 
abundance estimation is SLIDE, which uses a lin-
ear model that models the sampling probability of 
RNA-Seq reads from mRNA isoforms, and a 
modified LASSO algorithm for estimating param-
eters (Li et  al. 2011a). Unlike IsoLasso, SLIDE 
requires the coordinates of transcripts and exons 
previously assembled with other tools.

Identifying splicing sites and splicing events 
is crucial for determining isoforms and, thus, for 
estimating the abundance of transcripts. 
TrueSight is a tool developed for detecting splice 
junctions (SJs) based on an iterative regression 
algorithm that uses RNA-Seq mapping informa-
tion and splicing signals from the DNA sequence 
of a reference genome (Li et al. 2013b). TrueSight 
was tested using simulated and real datasets from 
humans, D. melanogaster, C. elegans, and A. 
thaliana, and showed better specificity and sensi-
tivity compared to other SJs detection applica-
tions. A recently developed tool called 
DeepBound also uses alignment information to 
determine SJs and infer boundaries of expressed 
transcripts from RNA-Seq data (Shao et  al. 
2017). DeepBound utilizes deep convolutional 
neural fields (DeepCNF), a technique that 
belongs to an emerging ML branch referred to as 
deep learning (Mamoshina et al. 2016; Min et al. 
2017; Angermueller et al. 2016). All the described 
applications for transcript abundance and SJ 
detection can be used in plants. However, except 
for SLIDE, these tools are not suitable for being 
applied directly to non-model species, as they 
depend on a reference genome.

In plants, supervised learning methods have 
also been used for detecting alternative splicing 
(AS) events. SVM classifiers were employed to 

detect two types of AS events, exon skips and 
intron retentions, in A. thaliana from tiling arrays 
data (Eichner et al. 2011). EST and cDNA data 
were used for training with two SVM layers: one 
for classifying sequence segments as introns or 
exons, assigning probabilities of being included 
in mature mRNA, and a second layer to predict 
AS events by using the probabilities from the first 
layer. In addition to SVM, Random Forest (RF) 
has been used to detect intron retention in A. 
thaliana, the most common type of alternative 
splicing in this species. These RF were created 
using a hybrid approach that combines essential 
features (i.e., length, nucleotide occurrence prob-
abilities, AT and GC content) with additional fea-
tures (i.e., common motifs, splice sites, and 
flanking sequences) to differentiate retained 
introns from constitutively spliced introns. These 
RFs had a better classification performance than 
SVM (Mao et al. 2014).

Noncoding RNAs (ncRNAs) are determinant 
in cellular processes like regulation and alterna-
tive splicing. Several ML methods have been 
applied to discover ncRNAs, including micro 
RNAs (miRNA) and long non-coding RNAs 
(lncRNA), using NGS datasets. In the case of 
miRNAs, decision trees (based on the C4.5 algo-
rithm) combined with genetic algorithms, 
allowed the prediction of miRNA targets in 
humans from datasets that comprise genomic and 
transcriptomic information (Rabiee-Ghahfarrokhi 
et al. 2015). miRNAs were predicted in 18 differ-
ent plant species from data extracted from RNA-
Seq, chromosome sequences, or ESTs, exploiting 
decision trees (C5.0 algorithm) (Williams et  al. 
2012). An SVM approach was employed to iden-
tify miRNAs associated with cold stress in A. 
thaliana (Zhou et  al. 2008). Multiple Kernel 
Learning has been applied to the identification of 
circularRNA, a type of lncRNA, in humans, 
which can identify them with high accuracy in de 
novo assembled transcriptomes (Pan and Xiong 
2015).

Gene selection from expression data is a prob-
lem in which ML methods can be used naturally. 
Given an expression dataset that usually com-
prises thousands of genes, the goal here is to 
select a handful of relevant genes associated with 
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a specific condition of interest, e.g., a disease or a 
treatment. A common ML-based approach for 
gene selection from expression datasets is vari-
able ranking, in which genes (variables) are pri-
oritized according to a value derived from the 
applied classification algorithm. This value is a 
proxy for the importance or relevance of each 
gene among the whole dataset. In this way, genes 
at the top of the rank are more relevant to the con-
dition of interest, e.g., healthy/diseased tissue, 
treated/untreated tissue, and genes at the lower 
positions are redundant and less relevant. 
Following this approach, ML algorithms such as 
RFs, SVMs, and decision trees have been used 
with microarray data to select subsets of cancer-
related genes which can be used as markers in 
diagnosis (Diaz-Uriarte and Alvarez de Andres 
2006; Horng et al. 2009; Guyon et al. 2002).

Although most of the proposed ML-based 
gene selection methods are tested in cancer 
expression datasets, some studies have applied 
similar approaches to plants using gene expres-
sion data from microarrays. An SVM with 
Recursive Feature Elimination (SVM-RFE) 
and a Radial Basis Function (RBF) was used to 
identify four genes related to resistance to tun-
gro disease in rice (Ren et al. 2010). This was 
a modification of the application of the same 
technique to cancer (Guyon et  al. 2002). A 
caveat in this study is the small dataset used 
(21 samples), as the amount of data for training 
is a decisive factor to get revealing results in 
ML.  A further study refined the same SVM-
RFE approach to identify genes related to 
drought resistance in A. thaliana (Liang et al. 
2011). Although authors of this study used a 
dataset with only 22 samples, they mitigated 
the small sample size effect by implementing a 
Leave One Out Cross Validation (LOOCV) 
scheme to select the training dataset and boot-
strapping strategy to iterate the variable rank-
ing process. In such a way, a subset of ten 
genes were identified, seven of which have pre-
vious biological information that links them to 
processes involved in drought resistance. ML 
and GCN were combined into the R package 
“machine learning-based differential network 
analysis” (mlDNA), which implements a two-

phase ML method for selecting genes from 
expression data. In the first phase, the method 
identifies and discards irrelevant genes from 
the dataset using an RF classifier with the 
Positive Sample only Learning algorithm 
(PSoL), a technique that discriminates positive 
from negative data after using only positive 
samples for training. The second phase involves 
the construction of GCNs from the filtered 
genes, the extraction of topological features 
from the GCNs, and an RF algorithm to select 
the candidate genes based on the extracted fea-
tures. This approach proved to successfully 
select candidate genes in A. thaliana respond-
ing to drought, cold, heat, wound, and geno-
toxic stress conditions (Huang et al. 2011).

2.4	 �Case/Examples 
of Transcriptomics in Non-
model Plants

Perhaps the most notable quality of transcrip-
tomics is the possibility of producing robust 
amounts of data for a reduced representation of 
the genome, which is of importance in non-model 
plant species and species with complex genomes. 
This quality allows for a diverse series of biologi-
cal questions to be asked and for which answers 
can be obtained. In this section we will exemplify 
the most relevant uses of recent transcriptomics 
studies.

2.4.1	 �Construction of Improved 
Transcripts Catalogs

Although, in principle, transcriptomic studies 
derived from RNA-Seq do not require any prior 
genetic information, it is true that having a high-
quality reference transcriptome undoubtedly 
favors high-quality research. Current assembly 
tools and sequencing technologies have advanced 
our capacity to produce de novo assemblies. In 
constructing high-quality transcriptomes for 
polyploid (allopolyploid) species, where two or 
more sub-genomes are present, one particular 
challenge is the identification of homeologous 
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copies of the same genes which tend to be highly 
similar and difficult to separate in a de novo 
assembly. Classical assemblers such as 
SOAPdenovo-Trans Trinity and TransAByss 
have been tested for this task. This is exemplified 
in the study by (Chopra et  al. 2014) aiming at 
reconstructing the transcriptome of tetraploid and 
diploid peanut species, using RNA-Seq data. 
After examining several variables including con-
tig length and number, results showed that Trinity 
and TransAByss performed in a similar way for 
the diploid species, while Trinity performed bet-
ter for the tetraploid genotype. In addition, the 
transcriptome produced for the tetraploid geno-
type almost doubled in number of contigs, total 
size and transcript N50 compared to the existing 
resources. It also produced at least 40% more 
full-length sequences.

Others have searched to develop specific soft-
ware to tackle the problem. Such is the case of 
the software HomeoSplitter which takes into 
consideration the elevated rates of heterozygosity 
of certain contigs (alleles) to target possible 
homeoalleles. Once identified, the software uses 
a likelihood model-based method to disentangle 
the mixed alleles taking into consideration their 
expression levels. For durum wheat (Triticum 
turgidum) HomeoSplitter showed capacity to 
separate homeologous sequences, as assessed by 
comparison to the diploid progenitors, and 
allowed to recover a greater number of SNPs for 
the population genotyped (Ranwez et al. 2013).

From the sequencing-and-assembly point of 
view, this issue has been approached through the 
use of normalized libraries, which increases the 
likelihood of seeing rare or less abundant tran-
script, and the use of single-molecule long read 
sequencing technologies, which can produce near 
complete transcript sequences represented in a 
single-sequencing read. The protocol called Iso-
Seq has been applied to several crop species, 
including sorghum (Abdel-Ghany et  al. 2016), 
maize (Wang et  al. 2016), cotton (Wang et  al. 
2018b), coffee (Cheng et al. 2017), Salvia miltior-
rhiza (Xu et  al. 2015), grape wine (Minio et  al. 
2019), the Chinese herb Astragalus membrana-
ceus (Li et al. 2017a), Arabidopsis pumila (Yang 
et al. 2018b), the shrub Zanthoxylum bungeanum 

(Tian et al. 2018), the giant timber bamboo native 
to China (Zhang et al. 2018), wild strawberry (Li 
et  al. 2017b), and the highly complex sugarcane 
(Hoang et  al. 2017). Iso-Seq has been shown to 
recover full-length isoforms, which was not pos-
sible with short-read technologies, but also it has 
allowed the detection of alternative start sites, 
alternative splicing and alternative polyadenyl-
ation (Zhao et al. 2019). In the case of sugarcane, 
Iso-Seq was further complemented with short 
RNA-Seq reads in order to correct errors present 
in long reads. The same dataset also served to 
compare the transcriptomes created by the hybrid 
approach and a de novo approach based solely on 
RNA-Seq reads. The hybrid transcriptome recov-
ered more full-length transcripts, with a longer 
N50, more ORFs and predicted transcripts, and 
higher average length of the largest 1000 proteins, 
compared to the de novo contigs. Importantly, 
RNA-Seq covered more gene content, and more 
RNA classes than Iso-Seq, which was attributed to 
the greater sequencing depth (Hoang et al. 2017).

Oxford Nanopore Technologies (ONT) have a 
platform option that allows for the direct sequenc-
ing of RNA molecules, which in addition to pro-
ducing full-length transcript sequences, study of 
alternative polyadenylation and splice and start 
sites, reveals the status of RNA modifications, 
and could revolutionize the transcriptomics field 
(Hussain 2018). This approach is still very recent 
and has not yet been applied to many plant spe-
cies. Direct RNA sequencing was performed on 
seeds of soybean to quantify transcript degrada-
tion as a proxy of seed viability (Fleming et al. 
2018). Eukaryotic transcripts are usually modi-
fied on their 5′-end by the addition of a 
7-methylguanylate (m7G) cap which protects 
mRNA from decay and has several implications 
in mRNA-downstream processes. However, a 
recent study, using direct RNA sequencing, 
showed that in A. thaliana, up to 5% of the tran-
scripts of several thousand genes have instead a 
NAD+ cap (Zhang et al. 2019a), an RNA modifi-
cation that had been reported before in bacteria 
(Chen et  al. 2009), yeast (Walters et  al. 2017), 
and humans (Jiao et al. 2017).

Overall, despite current advances in the con-
struction of de novo transcriptomes, there is still 
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room for improvement in assemblers tailored to 
polyploid genomes. Also, given the current rate 
of innovation in high-throughput sequencing, and 
provided a decrease in costs, the construction of 
novel transcriptomes through the use of long 
RNA molecules are expected to increase rapidly.

2.4.2	 �Populations Mapping

Transcriptomics can also be used to identify 
polymorphisms to map populations of interest. 
Two alternative strategies are often followed: In 
the first, the genetic variants are identified from 
transcriptomic data, from a diverse group of indi-
viduals. The variants identified are then used to 
design probes to test DNA samples from the 
same or an alternative, bigger, population. 
Contrary to the classic DNA mapping studies, 
this strategy increases the probability of identify-
ing causal mutations given that the majority of 
the selected variants will be located within cod-
ing sequences. This is specially the case of spe-
cies with big genomes and a high percentage of 
repetitive sequences which, for mapping studies, 
require a considerable number of markers to 
increase the probability of having a significant 
association. Markers, particularly SNP and SSR, 
derived from transcriptomic data have been pro-
duced for different crops including, but not lim-
ited to soybean (Guo et  al. 2018), sugarcane 
(Bundock et al. 2009), grasspea (Hao et al. 2017), 
peanut (Chopra et  al. 2015), and oilseed rape 
(Trick et  al. 2009). More recently, and through 
the implementation of the Bulk Segregant RNA-
Seq analyses (BSR-Seq) principle, which 
requires the formation of pooled samples con-
trasting for the phenotype of interest, markers 
linked to traits of interest have been mapped in 
crop species such as wheat (Wang et  al. 2017; 
Ramirez-Gonzalez et  al. 2015; Wu et  al. 2018) 
and Chinese cabbage (Huang et al. 2017b).

In the second strategy, transcriptomics data is 
produced for a biparental population, and the 
markers identified (SNP markers) are directly 
used for construction of genetic maps. The value 
of these maps lies in the fact that “unlike sequence 
assembly, linkage analysis is essentially unaf-

fected by allopolyploidy and repeated sequences 
as long as homeologous recombination is rare 
and genome-specific alleles can be identified” 
(reviewed in McKay and Leach 2011). This strat-
egy, to the best of our knowledge, has been only 
used in the tetraploid Brassica napus (oilseed 
rape) (Bancroft et  al. 2011). In this case, twin 
genetic maps were constructed for the two pro-
genitor species (B. oleracea and B. rapa) of the 
modern B. napus genotypes, which also served as 
parents for the population tested. These genetic 
maps were next aligned to the existing genome of 
B. napus and that of A. thaliana. The whole strat-
egy allowed to identify genome rearrangements 
between B. oleracea and B. rapa and therefore 
helped to refine the existing assemblies for these 
species. Likewise, it helped to pinpoint genomic 
regions involved in the recent breeding history of 
the crop. Considering these implications and the 
urgent necessity of genomic tools to tackle poly-
ploid genomes, it is expected that linkage maps 
derived from transcriptomic data will be on the 
rise.

2.4.3	 �Stress-Related Studies

As sessile organisms, plants must deal with a 
variety of environmental conditions that can 
impact on their potential for growth and repro-
duction. In order to study the molecular mecha-
nisms underlying the response to such conditions 
plant transcriptomics is being widely used. The 
most common approach consists of comparing 
gene expression levels of a specific genotype 
under a control and a stress-induced treatment. 
Oftentimes, contrasting genotypes (tolerant and 
susceptible) for the trait of interest are used. By 
identifying the changes in gene expression 
between control and treatment conditions, it is 
possible to determine the mRNAs activated by 
the stress under consideration. This in turn allows 
for exploring the mRNAs that are differentially 
expressed among the genotypes selected (tolerant 
vs. susceptible). Following this approach, it has 
been possible to study the molecular regulation 
of salt stress tolerance in cotton (Zhang et  al. 
2016a), the roles of the photosynthetic system 
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during drought in upland rice (Zhang et  al. 
2016b), the molecular mechanisms driving cop-
per stress tolerance in grapevine (Leng et  al. 
2015), the mechanisms for lipid accumulation in 
response to nitrogen deprivation in the green 
algae Chlamydomonas reinhardtii (Park et  al. 
2015), the molecular responses underlying 
drought tolerance in sugarcane (Pereira-Santana 
et al. 2017; Belesini et al. 2017), just to mention 
a few.

Perhaps, one of the most studied traits through 
comparative transcriptomic is drought. When 
“drought” and “RNA-Seq” are used as keywords 
in PubMed, 217 different titles, excluding 
reviews, show up as a result. Studies have been 
performed on nearly every major crop (Zhang 
et al. 2014; Chen et al. 2016; Divya Bhanu et al. 
2016; Mofatto et al. 2016), but also on non-major 
crops and other plants whose original habitat are 
water-deprived locations and thus can contribute 
to better understanding of the physiological bases 
of this condition (Gross et al. 2013; Yang et al. 
2015; Li et al. 2015). In polyploids, the challenge 
resides on having a high-quality reference tran-
scriptome that allows to distinguish among 
isoforms derived from different sub-genomes. In 
fact, in hexaploid wheat, where different genomic 
resources have been recently developed (Pearce 
et al. 2015), it has been found that a large propor-
tion of wheat homeologs exhibited expression 
partitioning under normal and abiotic stresses, 
indicating a specialized gene expression coordi-
nation among genomes.

2.4.4	 �Phylogenomics

Phylogenomics is a new biological discipline 
focusing on the resolution of relationships among 
taxa and the reconstruction of evolutionary histo-
ries through the use of genomic data. It involves 
the analysis of entire genomes, transcriptomes, or 
specific sequences that can be targeted (Yu et al. 
2018) through the mining of already published 
information (Washburn et al. 2017).

In order to resolve relationships among spe-
cies, phylogenomics relies heavily on the identi-
fication of single-copy genes to reduce the 

possibility of paralogy and thus limiting to con-
clusions based solely on orthologous genes. 
However, information on single-copy genes is 
difficult to obtain especially for non-model, poly-
ploid species, where the entire genome is 
expected to be duplicated. Chloroplast genes are 
often targeted for phylogenomics; however, this 
part of the plant genome has its own problems 
such as a low recombinant nature, and thus low 
polymorphism levels, exclusive maternal inheri-
tance, and these genes are subject to processes 
such as chloroplast capture and hybrid speciation 
which reduce its resolution capacity. Still, due to 
its high-throughput nature, transcriptomics offers 
the possibility to mine for nuclear single-copy 
markers in a rich set of genic sources. This is 
even possible in the case of polyploids and 
despite their repetitive nature. Due to evolution-
ary mechanisms such as gene conversion and 
loss, the number of retained duplicates in poly-
ploids decreases over the time, allowing single-
copy signals (coding and non-coding sequences) 
to arise (Wen et al. 2015). In the case of ferns, for 
example, which have a long history of poly-
ploidy, 20 new nuclear regions spanning ten cod-
ing sequences have been identified by comparative 
transcriptomics which has increased significantly 
the taxonomic resolution across these group of 
plants (Rothfels et al. 2013).

Comparative transcriptomics can also contrib-
ute to detect and characterize polyploidy specia-
tion. Although ancient polyploidy could be 
reconstructed through the comparison of high-
quality, chromosome-level genomes, the lack of 
high-quality assemblies for the vast majority of 
polyploid species has positioned transcriptomics 
as a viable alternative. For this purpose, the rate 
of synonymous substitution (Ks), in coding 
sequences, derived from transcriptomics is 
widely used. This is possible because whole-
genome duplications produce peaks in the cumu-
lative distributions of pairwise Ks between 
paralogs within a genome. By evaluating the dis-
tribution of Ks among evolutionary lineages, it 
has been possible to better understand polyploidy 
speciation in the flax genus (Sveinsson et  al. 
2014), the evolution of gene families like CYP75 
after the events of whole-genome duplication 
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(Zhang et  al. 2019b), the redistribution of the 
seed plants in phylogenetic trees explaining the 
origin of angiosperms (Ran et al. 2018), the evo-
lutionary patterns of agricultural traits in straw-
berry (Qiao et al. 2016), or the origin and early 
diversification of green (One Thousand Plant 
Transcriptomes Initiative 2019) and land plants 
(Wickett et al. 2014), among others.

2.5	 �Future Directions in the Field

Over the past decades, transcriptomics has seen a 
revolution. The technologies employed to pro-
duce expression data are nowadays much more 
efficient and with their regular decrease in costs, 
they are a realistic possibility even for small labs, 
and so it has become practical to be applied to 
non-model exotic plant species, and to perform 
more complex experimental designs. Nonetheless, 
the cost of sequencing is still not at reach for proj-
ects in which hundreds to thousands of samples 
need to be sequenced. This level of sequencing 
capacity is a reality for consortiums and greater 
collaborative efforts but not for smaller groups, 
which commonly have the possibility of greater 
access to genetically diverse samples but smaller 
budgets. Further decrease in library preparation 
and sequencing costs will ameliorate this though.

Technical advances have made it possible to 
directly sequence RNA molecules, and together 
with PCR-free protocols, they aid in eliminating 
potential sources of bias that could be introduced 
during library preparation. In addition to building 
comprehensive transcript catalogs, these 
advances will allow more reliable estimation of 
transcript abundances when it becomes afford-
able to sequence at higher depths of coverage. 
Recently published genome assemblies are 
increasingly resolving the different sequence 
haplotypes in organims with ploidy levels greater 
than one in these cases long-read RNA sequenc-
ing will allow the study of allele-specific expres-
sion with unprecedented levels of detail.

Along with this new technological capacity to 
produce data, the questions that may be answered 
with transcriptomics-based strategies have also 
matured. However, for many of these questions, 

their answers are limited by the available bioin-
formatic software. For example, all the efforts 
that have been made to confidently identify 
orthologous genes and in general to filter out the 
noise caused by polyploidy are encouraging 
because, among other reasons, this has increased 
our understanding of complex genomes. 
Nonetheless, only a handful of genes or a small 
portion of the transcriptomes are used for these 
purposes. It is then reasonable to believe that fur-
ther efforts in software development are neces-
sary to truly take advantage of the level of 
information being produced in transcriptomics 
studies. A similar situation happens with all the 
studies aiming at better understanding of specific 
phenomena (e.g., stress-related studies) that after 
producing high-quality, robust data are still left 
with lists of hundreds to thousands of differen-
tially expressed genes, from which it is difficult 
to define the key players for the process under 
study. Perhaps this type of studie could benefit 
from the integration of different OMICs 
approaches to the same problems, with a more 
integrative approach which requires further 
advances in tool development, for instance 
including machine learning algorithms, neces-
sary to mine for the most relevant transcripts.

Overall, we can confidently say that the last 
decade has been a defining one for plant tran-
scriptomics thanks to the greater access to 
sequencing data. However, the same break-
through has yet to impact data analyses and stor-
age. Our data processing capabilities are being 
surpassed by our capacity to produce data, and it 
is imperative to face this challenge if we want to 
further increase our ability to address the chal-
lenges posed by climate change, speed up the 
efforts to breed crop plants, and deepen our 
understanding of the history of evolution of 
plants.
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Abstract

Proteome analysis of model and non-model 
plants is a genuine scientific field in expan-
sion. Several technological advances have 
contributed to the implementation of different 
proteomics approaches for qualitative and 
quantitative analysis of the dynamics of cel-
lular responses at the protein level. The design 
of time-resolved experiments and the emer-
gent use of multiplexed proteome analysis 
using chemical or isotopic and isobaric label-
ing strategies as well as label-free approaches 
are generating a vast amount of proteomics 
data that is going to be essential for analysis of 
protein posttranslational modifications and 
implementation of systems biology 
approaches. Through the target proteomics 

analysis, especially the ones that combine the 
untargeted methods, we should expect an 
improvement in the completeness of the iden-
tification of proteome and reveal nuances of 
regulatory cellular mechanisms related to 
plant development and responses to environ-
mental stresses. Both genomic sequencing and 
proteomic advancements in the last decades 
coupled to integrative data analysis are enrich-
ing biological information that was once con-
fined to model plants. Therewith, predictions 
of a changing environment places proteomics 
as an especially useful tool for crops 
performance.

Keywords

Mass spectrometry · Protein · 2-DE · 
Quantitative · Expression

3.1	 �Introduction

Proteins are fundamental macromolecules that 
execute a vast number of biological functions in 
the organisms, ranging from structural activities 
to exceptionally precise regulatory roles inside 
the cells. These characteristics intrigued scien-
tists for centuries and the protein sequences 
started to be detailed in the twentieth century, 
with the sequencing of the first protein, phenyl-
alanyl chain of insulin 1, in 1951 by Sanger and 
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Tuppy (1951) using partial hydrolysis techniques. 
For the first time, they presented a structured 
amino acid sequence composition encoded by the 
DNA of the living organisms. Many other pro-
teins were sequenced thereof using biochemical 
sequencing analysis established by Edman 
(1949). At the same pace, with the development 
of ionization methods used for mass spectrome-
try (MS), specially the electrospray ionization 
(Fenn et  al. 1989), the analysis of intact or 
digested proteins increased significantly. Several 
biochemical and molecular properties of thou-
sands of proteins were identified and are cur-
rently well known, with the precise description of 
their amino acid sequence, tridimensional struc-
ture, activities, and chemical modifications. The 
unique functional and molecular characteristic of 
each protein species is outstandingly provocative 
and has revealed the enormous complexity of the 
possible molecular interactions these molecules 
can perform in a biological system. This also 
revealed the need for systems analysis in plant 
species, focusing in quantifying the changes in 
abundance and modifications of a large number 
of proteins simultaneously, and if possible, with a 
cell or tissue spatial and time resolution.

Today, we understand that a single-protein 
sequence can execute single or multiple biologi-
cal roles, depending on the chemical modifica-
tions these proteins present in their structure and 
their sub-cellular compartmentalization.

With the vast information about how cellular 
systems function, it has become imperative since 
the beginning of the 1990s the study of compre-
hensive amount of proteins simultaneously in a 
cell or tissue. The need for the identification of all 
proteins was urgent, and the term Proteome was, 
therefore, first mentioned in 1995 by Wilkins 
et al. (1996), indicating an age of dramatic change 
on biology scale which has begun with the avail-
ability of complete genomic sequences of many 
organisms. As stated by Wilkins, the proteome is 
the entire protein complement expressed by a 
genome. By nature, the proteome is dynamic, 
being representative of the whole-protein 
repertoire of a cell or tissue in a certain time and 
condition. For instance, the proteome is different 
every period of the lifetime of a plant, or in 

response to any challenging environmental stress. 
The proteome also includes, a priori, all different 
chemical modifications proteins may present, 
which are usually present as posttranslational 
modifications (PTMs) of the synthesized proteins 
or may be introduced by dynamic processes of 
chemical modifications of amino acids during 
cellular signaling events. The alterations on the 
protein abundance and PTMs are especially 
important for defining the cell fate in response to 
changes in environmental conditions, and current 
proteome research addresses many of these alter-
ations using highly-sensitive analytical tools and 
sophisticated computational data analysis. The 
proteome of different species has been explored 
using different techniques, ranging from the use 
of two-dimensional polyacrylamide gel electro-
phoresis (2-DE) and its modified form 2D DIGE 
(two-dimensional difference gel electrophoresis) 
(Jorrin-Novo et al. 2019; Martins de Souza et al. 
2008), passing through isotope and isobaric 
labeling (Pappireddi et al. 2019), leading to the 
massive proteome analysis using shotgun 
approaches and stable isotope labeling or label-
free relative quantification (de Godoy et  al. 
2008), which further was followed by target 
approaches (Rodiger and Baginsky 2018), MS 
imaging (Boughton et  al. 2016; Kaspar et  al. 
2011) and, more recently, single-cell proteomics 
(Marx 2019).

In the current days, there is an understanding 
that the identification of all intricated connec-
tions of the proteins inside the cells must be 
revealed. However, to detect the proteome of a 
cell or to represent it in a systems analysis is not 
a trivial task, but many efforts have been done to 
address several technical challenges. The avail-
ability of large datasets of plant proteomes in dif-
ferent experimental and field conditions generated 
by the unprecedent analysis of the proteome of 
several plant species is opening an exceptional 
path to the discovery of previous unknown cellu-
lar mechanisms and molecular emergent 
patterns.

In the last 21  years, the analysis of plant or 
plant-related proteome has increased from four 
scientific papers a year in 1998 to 1483 scientific 
papers a year in 2019 according to the PubMed 
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repository (https://pubmed.ncbi.nlm.nih.gov/) 
queried through the keywords “plant proteomics.” 
During this period of time, several technical 
advances have been established for the analysis 
of plant proteomics, including the optimization 
of techniques and instrumentation. The proteome 
analysis in general had begun basically through 
gel-based approaches, usually with Two-
Dimensional Polyacrylamide gel Electrophoresis 
(2D-PAGE) coupled to peptide sequencing or 
Mass Spectrometry (MS) (Shevchenko et  al. 
1996a, b). Further approaches expanded to appli-
cations using liquid chromatography (LC) cou-
pled to tandem MS, including shotgun analysis 
(Neubauer et  al. 1998; Ong and Mann 2005), 
selected/parallel reaction monitoring (SRM/
PRM) (Picotti and Aebersold 2012) and target 
data acquisition (TDA) (Schmidt et  al. 2009). 
Recent applications suggest the combination of 
the TDA with tandem MS/MS analysis using 
Data-Dependent Acquisition (DDA) or Data-
Independent Acquisition (DIA) as a valuable way 
to get hypothesis-driven and non-hypothesis-
driven quantitative data collection from the same 
sample (Hart-Smith et  al. 2017), even for the 
analysis of protein post-translational modifica-
tions (Pappireddi et al. 2019).

The analysis of the proteome for many differ-
ent plant species had applied many of the 
approaches mentioned and increased our knowl-
edge of plant molecular physiology and evolution 
in an enormous way. The level of details identi-
fied by proteomics analysis revealed a large pro-
portion of the repertoire of cellular mechanisms 
and proteins that define the underlying principles 
of plant development and metabolism, including 
seed germination (He and Yang 2013), root 
growth (Li et al. 2019), stress responses (Kosova 
et al. 2014), senescence (Kim et al. 2016), light 
responses (Mettler et al. 2014), among others.

Plant proteome analysis can be performed 
using many different techniques and computa-
tional resources through diverse approaches. 
Each of these approaches will complement our 
knowledge of plant phenotypes and influence in 
the future directions of plant proteomics and sys-
tems biology. The information available today 
and further development of novel techniques for 

proteome analysis will definitely pave the way to 
a more comprehensive understanding of the com-
plex phenomena that take place in plants and how 
the numerous set of molecular interactions and 
mechanisms are built and retained in the cells in 
response to varying environmental and intracel-
lular conditions.

3.2	 �Research and Technical 
Approaches

3.2.1	 �The Gel-Electrophoresis-
Based Plant Proteome 
Analysis

At the end of the 1990s, beginning of 2000s, 
there was a modest racing into defining the so-
called reference gel or reference proteome of an 
organism or organismal phenotype. Two-
dimensional polyacrylamide gel electrophoresis 
(2-DE) has been used as one of the most powerful 
techniques of protein separation in a couple of 
technical steps (O’Farrell 1975). In 2-DE, the 
proteins contained in a biological sample are usu-
ally separated in a polyacrylamide gel by their 
isoelectric point (pI) and molecular weight (mW). 
Usually proteins are solubilized by chaotropic 
chemicals, such as urea and thiourea and solvated 
by non-ionic detergents. The first dimension of 
separation occurs with the migration of proteins 
in their intact form through an electric field, per-
meating an inert gel matrix soaked with ampho-
teric substances that form a transient gradient, 
allowing the proteins to move in these conditions 
toward the electrodes until they reach to their iso-
electric point (pI), where they achieve their mini-
mal solubility, thus high precipitation. In the 
second dimension of the 2-DE, the proteins sepa-
rated and immobilized in the first gel dimension 
are separated by their molecular weight through 
SDS-PAGE. This will result in a two-dimensional 
plan with y and x axis, with proteins separated, 
respectively, by molecular mass (MW) and iso-
electric point (pI) visualized as separated gel pro-
tein “spots” that can be visualized through dying 
techniques using, for instance, Coomassie Blue 
or Silver nitrate chemicals (Shevchenko et  al. 
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1996a, b). In an optimal situation, the results of 
the gel staining will reveal the whole set of pro-
teins from the biological sample analyzed, repre-
sented by protein spots. Each spot may contain 
one or more proteins with the approximate same 
biochemical characteristics. In proteome 
approaches, each spot is cut from the gel and 
digested with specific enzymes (e.g., Trypsin, 
Lys-C) that are going to generate peptides which 
can be identified through sequencing or MS anal-
ysis. Using gel-based approaches, the identifica-
tion of the repertoire of proteins from different 
parts of the plants and those involved in complex 
developmental processes was possible and con-
tributed to elucidate how proteins interconnect to 
each other to define a systemic function. The ini-
tial efforts into the analysis of the proteome of 
several important plant species had been done 
using gel-based approaches, and revealed impor-
tant aspects of the plant structure and molecular 
physiology, including the analysis of green and 
etiolated shoots of rice (Komatsu et  al. 1999), 
Arabidopsis seed germination and priming 
(Gallardo et  al. 2001), maize leaves (Porubleva 
et al. 2001), Medicago mycorrhizal roots (Bestel-
Corre et al. 2002), among others.

However, the gel-based proteomics analysis 
has several limitations and are difficult to be 
implemented in a large-scale proteomics analy-
sis. Two-dimensional gels are quite laborious and 
time-consuming to be performed, which renders 
extra difficulty levels to other limitations in 2-DE 
gels that include problems with protein spot reso-
lution, gel reproducibility, and low throughput. 
Usually, in a 2-DE gel, it is possible to separate 
approximately one thousand proteins simultane-
ously, but, due to the possible overlap between 
protein spots with similar mW and pI, the protein 
separation of some protein spots is not complete.

Nowadays, still, 2-DE is considered a comple-
mentary approach for some applications such as 
subcellular proteomics, analysis of low-
complexity samples, and study of protein iso-
forms and their modifications (Jorrin-Novo et al. 
2019). The approaches in subcellular proteomics 
are not going to be addressed here since this topic 
is presented in a specific chapter of this book.

The 2-DE-based proteomics coupled to pro-
tein sequencing or MS techniques has contrib-
uted greatly to the development of plant proteomic 
analysis since the 1990s and has continuously 
adding important knowledge.

The diversity of 2-DE-based proteomic 
applications is vast, including analysis of plant 
structure (Giavalisco et al. 2005), plant–patho-
gen interactions and molecular signaling 
(Delaunois et  al. 2014), and plant metabolism 
(Chang et al. 2017), to mention a few examples. 
Many of the proteomics results (including 
2-DE-gel image) were also made available 
through public repositories, such as GABI 
Primary Database of Arabidopsis (URL: https://
www.gabipd.org/).

One important aspect of the use 2-DE-based 
comparative proteomics resides in the fact that 
this approach can be implemented for any plant 
species, no matter if a genome sequence is avail-
able to this species. With that in mind, it is of 
great importance that comparisons between pro-
teome profiles of non-model plants are investi-
gated, elucidating the differences in the cellular 
responses of the many plant species that are of 
regionally importance to local agriculture and 
may not have their genome sequenced in the near 
future. The 2-DE-based proteomics may be a 
way to sustain this endeavor.

3.2.2	 �Mass Spectrometry-Based 
Proteomics

Among the methods that succeed in answering 
the increased demand for high-throughput pro-
teomics approaches, the MS is currently the most 
applied and developed technique. Mass spec-
trometry is an analytical technique that is applied 
in many different fields of applications, including 
elemental analysis, organic and bio-organic anal-
ysis, structure elucidation, characterization of 
ionic species and reactions, and spectral imaging. 
In all these applications, the use of MS is aiming 
to identify a compound from the molecular or 
atomic mass(es) of its constituents (Gross 2017). 
So, an important aspect of proteome analysis 
resides in the fact that the chemical species, in 
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this case proteins or peptides, must be ionized to 
be analyzed through a mass spectrometer.

From the first attempts to understand electric 
discharges in gases and charged ions made by 
Joseph John Thomson with his first instrument 
that separated ions by mass-to-charge ratio to the 
most recent mass spectrometers that use high-
resolution mass analyzers, there was a huge 
improvement and expansion of the applications 
of MS in Biochemistry and Biological Sciences 
(Gross 2017).

The mass spectrometry is the analytical tech-
nique that significantly generated our current 
substantial amount of plant proteomics data 
available. The development and evolution of 
ionization methods for proteins and peptides 
had contributed drastically to the change in pro-
teomics scale, allowing the easy ionization of 
peptides and proteins into gas phase. These 
technical developments were complemented by 
the co-evolution of the sample preparation for 
proteomics, types of ionization techniques, and 
mass analyzers integrated into mass spectrome-
ters, which significantly enhanced proteome 
coverage, the mass resolution, and throughput 
obtained for the mass-to-charge measurements. 
A recent review presented an overview about 
the protein extraction and preparation for pro-
teomics analysis, discussing many approaches 
applicable for plant proteomics (Patole and 
Bindschedler 2019).

For qualitative and quantitative proteome 
analysis, two types of MS applications have been 
used more frequently to the identification of pro-
teins: the matrix-assisted laser desorption/ioniza-
tion mass spectrometry (MALDI-MS) 
(Hillenkamp and Karas 1990), and liquid-
chromatography (LC) coupled to electrospray 
ionization mass spectrometry (ESI-MS) (Smith 
et al. 1990). In the LC-MS analysis, the peptides 
obtained from the digestion of the total proteome 
are separated by liquid chromatography prior to 
the injection into the ion source of the MS instru-
ments, where the peptides are ionized. After that 
the peptides are analyzed by the instruments 
resulting in the identification of their mass, and 
usually thousands of proteins can be identified in 
a shotgun MS analysis.

The implementation of high-throughput shot-
gun MS analysis in plant proteomics is usu-
ally  dependent on the existence of a genome 
sequence or customized protein sequence data-
bases derived from transcriptomic analyses 
(RNA-Seq data) for the plant species under 
investigation. Protein identification has evolved 
through the development of different computa-
tional tools and strategies that allowed the MS 
data to be analyzed by a series of steps that per-
mit the identification of the best protein hits (or 
protein groups) in a statistical-based computa-
tional analysis. Protein identification is basically 
performed computationally by comparing the 
mass of the peptides analyzed (precursor ions) 
experimentally from the mass spectra data with 
the mass of the precursor ions generated in silico 
based on the translated genome of the plant spe-
cies under study. Therefore, the protein identifi-
cation in this case results from a probability 
analysis of the best protein hit or group of protein 
hits. The abundance of the peptide ions analyzed 
is determined, usually, by the arbitrary signal 
intensity measures for each peptide ion analyzed 
in a MS scan or by the counts of MS spectra for a 
given precursor ion, which gives the information 
useful for quantitative proteomics, using label-
free or labeled approaches.

Recent analysis using sensitive and efficient 
mass spectrometers that have high-resolution 
mass analyzers has revealed the identity of thou-
sands of proteins, increasing the capacity to 
observe broad mechanisms that take place intra 
and intercellularly. However, it is still highly 
challenging to analyze the whole set of proteins 
from a cell or tissue. Thus, the plant proteome 
analysis performed nowadays is still representing 
a partial view of the total cellular proteome.

Nevertheless, more than 10  years ago, the 
impact of proteomics analysis to the understand-
ing of plant development and responses to biotic 
and abiotic stresses and to the identification of 
the protein repertoire of organelles, tissues and 
sub-cellular compartments was already clear 
(Wienkoop et al. 2010). Several initiatives includ-
ing the creation of LC-MS/MS spectral library 
repository ProMEX with 116,364 tryptic peptide 
product ion spectra entries of 13 plant species 
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(Wienkoop et  al. 2012) and the creation of the 
Multinational Arabidopsis Steering 
Subcommittee to coordinate Arabidopsis pro-
teome international research were efforts toward 
the consolidation of databases and data resources 
that contributed to address some of the main 
challenges on plant proteomics through the cre-
ation of integrated proteome repositories and 
data analysis platforms, including MASCP Gator 
(Joshi et  al. 2011). Other efforts such as 
International Plant Proteomics Organization 
(INPPO) (http://www.inppo.com/) were also on 
place. Currently, some of the most complete 
information about Arabidopsis proteome are 
organized in the ProteomicsDB (https://www.
proteomicsdb.org), which contains MS-based 
proteomics meta-data and proteomics expression 
profiles for 30 different tissues, that can be visu-
alized through body maps (Samaras et al. 2020). 
Another source of plant proteomics data is the 
PlantPReS (URL www.proteome.ir), an online 
database of plant proteome related to stresses, 
containing more than 20,413 protein entries and 
their expression patterns, extracted from 456 
manually curated articles (Mousavi et al. 2016). 
Alternatively, there is the ATHENA (Arabidopsis 
THaliana ExpressioN Atlas; http://athena.pro-
teomics.wzw.tum.de:5002/master_arabidopsis-
shiny/) database, which has a collection of more 
than 18,000 proteins and their expression profiles 
for a set of 30 matching tissues from Arabidopsis 
thaliana (Col-0). It allows the user to explore the 
comparative expression analysis of proteins in 
different tissues, to visualize enriched pathways, 
phosphorylation sites, and similar global gene 
expression profiles in different tissues of 
Arabidopsis thaliana.

Very recently, a detailed MS-based draft of the 
Arabidopsis proteome was described (Mergner 
et  al. 2020) based on the information retrieved 
from the proteomics databases ProteomicsDB 
and ATHENA. In this draft, the molecular data 
retrieved from more than 18,000 proteins identi-
fied revealed that most transcripts and proteins 
are actually expressed in a non-tissue-specific 
manner, with only a few transcripts or proteins 
being expressed in a tissue-specific manner, as it 
was evidenced for the proteins exclusively identi-

fied in pollen. The authors have found that differ-
ent tissue types may have distinct quantitative 
abundance patterns of proteins, showing a posi-
tive correlation (Pearson’s correlation r = 0.28–
0.7) between the transcript and protein levels in 
most tissues (Mergner et al. 2020). However, in 
recent single-cell proteomics approaches, this 
behavior was not observed for most of the genes, 
and there was low correlation of mRNA and pro-
tein levels in root hair analysis (Wang et al. 2016), 
with higher positive correlation of transcript and 
protein levels found mostly for highly expressed 
genes.

Some other multi-omics databases and frame-
works are operating to integrate functional 
genomics data providing annotation and visual-
ization options for diverse plant species, includ-
ing platforms such as ePlant (http://bar.utoronto.
ca/eplant/), Virtual Plant (http://virtualplant.bio.
nyu.edu/cgi-bin/vpweb/), MapMan (https://map-
man.gabipd.org/mapmanstore) (Schwacke et  al. 
2019), PLAZA (https://bioinformatics.psb.ugent.
be/plaza/), Plant Metabolic Network (PMN) 
(https://plantcyc.org/), Plant Reactome (https://
plantreactome.gramene.org/), among others. 
Right now, some of these platforms contain 
mostly genomics and transcriptomics datasets, 
with few proteomics datasets. However, the inte-
gration of several layers of plant omics informa-
tion seems to be in the horizon of these platforms, 
which is essential for integrative analysis and 
modeling approaches and the continuous devel-
opment of systems biology studies in plants 
(Falter-Braun et al. 2019).

The permanent development and improve-
ment of such databases is essential to guarantee 
the availability of plant proteomics data for future 
integrative omics analysis. As the proteomics 
data is everyday more abundant, it would be 
important to include omics data of all plant spe-
cies in these repositories, not only model plants, 
since the proteomics data is currently the linkage 
point between the transcriptome information and 
the cell metabolism.

Quantitative MS-based proteomics seems to 
be currently the most prominent proteomics 
approach for investigating plant molecular phe-
notypes. Some of the most recent approaches for 
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discovery quantitative proteomics (non-targeted 
proteomics) include chemical labeling of the pro-
teins or peptides. The most common strategies 
for relative and quantitative analysis of plant pro-
teomics include one of the following techniques: 
isobaric tags for relative and absolute quantita-
tion (iTRAQ) (Unwin et al. 2005), tandem mass 
tags (TMT) (Thompson et  al. 2003), metabolic 
labeling such as stable isotope labeling by amino 
acids (SILAC) (Ong et al. 2002), and stable iso-
tope 15N (Oda et al. 1999) or label-free quantifi-
cation (Washburn et al. 2001).

In many different studies performed using 
shotgun proteomics with LC and tandem MS 
(MS/MS), the use of data-dependent acquisition 
(DDA) was the method of choice, combined or 
not with peptide labeling with tandem mass tag 
(TMT) for quantitative or absolute quantification 
in proteomic analysis.

Multiplexing TMT or the use of other peptide 
labeling techniques, such as isobaric labeling, 
has been recently applied for the comparative 
proteome analysis, revealing cellular mecha-
nisms and elucidating the role of candidate genes 
in diverse cellular responses. The time-resolved 
analysis of plant processes combined with the 
quantitative comparative proteomics is revealing 
novel aspects of plant molecular physiology and 
will certainly serve as basis for modeling and rec-
ognition of regulatory principles of cell response 
and metabolism.

For instance, in a time-resolved redox pro-
teome analysis using thiol-specific iodo TMTs 
and LC-MS/MS analysis, the evidences for a fun-
damental strategy of rapid control of the cell 
metabolism during seed germination through the 
modifications of cysteines were confirmed. This 
biological process seems to be controlled by the 
function of hundreds of Cys-based redox switches 
which are operational even when hormonal and 
genetic programs are not yet functional. With 741 
Cys peptides identified and quantified, it was 
demonstrated that tricarboxylic acid cycle is reg-
ulated by thioredoxins (TRX), through the TRX-
mediated redox modulation of the activity of 
succinate dehydrogenase and fumarase. The 
proteome analysis also indicated that all shifts 
observed were reductive, indicating the influx of 

electrons into the complex cellular thiol redox 
systems during the early stages of seed germina-
tion (Nietzel et al. 2020).

A recent proteome analysis of autophagy-
deficient Arabidopsis seedlings indicated that 
this process is a response rapidly activated under 
diverse stimuli, including microbial elicitors, 
danger signals, and hormones. Quantitative com-
parative proteome analysis using TMTs identi-
fied more than 11,000 proteins and showed that 
autophagy is associated with cellular phenotypic 
plasticity. In autophagy-deficient cells, the plas-
ticity was reduced, and the cell dedifferentiation 
impaired, indicating that autophagy is an essen-
tial mechanism for cells to reprogramming their 
development in response to several different 
stimulus, being necessary for wound-induced 
dedifferentiation and tissue repair (Rodriguez 
et al. 2020).

In another approach, the information about the 
differences between plant tissues (roots, above-
ground parts, cauline leaves, 13 stages of flowers, 
and organs/stages) was investigated through pro-
teome and phosphoproteome analysis performed 
with LC-MS/MS and iTRAQ labeling of six 
developmental stages of 16-day-old Arabidopsis 
plants. This work revealed the identity of 2187 
proteins and the pattern of protein expression 
phosphorylated peptides (Lu et  al. 2020). The 
comparative proteomics analysis indicated that 
reproductive organs expressed, in a more promi-
nent manner, proteins related to translation and 
metabolic processes, while plant seedlings pres-
ent a protein repertoire enriched in proteins 
related to oxidation-reduction and responses to 
different stresses. In the same work, the tran-
scription factor and transcriptional regulator pro-
teins were identified and a network of putative 
kinase substrates was generated, reinforcing evi-
dences that bZIP16 transcription factor may be 
the substrate of Map kinase 6 (MAPK6) during 
floral development, integrating light and hor-
mone signaling pathways during early seedling 
development (Lu et al. 2020).

Some plant proteomic approaches also 
included the implementation of Data-Independent 
Acquisition (DIA) (Venable et  al. 2004), which 
acquires data from MS1 and MS2 spectra in MS/
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MS applications, without pre-selection of precur-
sor ions. The acquired data is usually analyzed by 
computational creation of spectral libraries and/
or by using these libraries or consulting preexist-
ing libraries for searching characteristic mass 
spectra (Zhang et al. 2020).

A complementation between discovery and 
targeted proteomics approaches can be initially 
addressed by sequential window acquisition of 
all theoretical mass spectra (SWATH)/DIA 
(data-independent acquisition) and by compar-
ison of these spectra with constructed spectral 
libraries. For instance, by developing a mass 
spectra library, the effects of abscisic acid in 
Arabidopsis were investigated (Zhang et  al. 
2019). An extensive analysis of Arabidopsis 
proteome performed the quantification of 8793 
proteins using a combination of untargeted 
LC-MS/MS using DDA and DIA and genera-
tion of a spectral library. The effects of the hor-
mone abscisic acid (ABA) in Arabidopsis 
proteome was investigated, rendering detailed 
evidences of the previously described role of 
oxidative-reduction processes induced by ABA 
in the cells, and the transitory or gradual 
response of plant metabolism exposed to ABA 
with an initial reduction of the metabolic cel-
lular activity and increase in ribosome biogen-
esis after 2  h of ABA posttreatment followed 
by an increased metabolism of carbohydrate 
and sucrose, and reduced metabolism of 
N-acetylglucosamine and macromolecules at 
72 h posttreatment (Zhang et al. 2019).

Within an integrative omics analysis, a quan-
titative label-free proteomics approach investi-
gated the role of autophagy in maize (Zea mays). 
Wild-type maize background plants (W22) 
where compared with mutant plants for ATG12 
protein, one of the proteins identified as 
AUTOPHAGY-RELATED (ATG) (McLoughlin 
et al. 2018). The study was conducted in selected 
two leaves (two and four), which are rapidly 
expanding sink tissues, in response to short 
nitrogen stress. The quantitative proteome anal-
ysis revealed main biological processes affected 
in nitrogen starved and non-starved plants, indi-
cating that autophagy is involved in many nutri-
ent recycling mechanisms, but it is also an 

important mechanism in the maintenance of 
normal protein abundance in plants. Other 
effects of the mutation of atg12 were observed 
in the alteration of the abundance of proteins 
related to biosynthesis of phenylpropanoids, 
fatty acids, aromatic amino acids, and the posi-
tive correlation of the proteome and transcrip-
tome data for genes associated with 
phenylpropanoid metabolism and glutathione 
transferase activities. These results suggested 
that alterations in the autophagic turnover of 
molecules such as pigments, antioxidants, lip-
ids, among others, are essential for the resulting 
plant leaf phenotype, even under non-stress, 
nitrogen-rich conditions (McLoughlin et  al. 
2018). Further studies of the maize proteome 
under carbon-stress conditions reinforced the 
aspects of autophagy as a critical process for 
proteostasis in plants, likely by the recycling of 
proteins and organelles. To increase the number 
of proteins identified, the authors performed 
two MS runs in a data-dependent mode and 
another two runs of the same extracts using an 
exclusion list of the 5000 most prominent pep-
tides from the first analysis, which increased the 
depth of the proteome analysis of the further 
runs (McLoughlin et  al. 2020). The proteome 
results of this approach indicated that leaves of 
maize atg12 mutant have increased levels of 
ribosome-associate proteins, and proteins 
related to redox homeostasis and catabolism of 
fatty acids, amino acids, small molecules, 
nucleotides, and glutathione (GSH), suggesting 
that even under conditions of impaired autoph-
agy, the cells respond partially in a similar way 
as with full autophagy systems. These effects 
may be part of a complex compensatory mecha-
nism that may take place in plants serving as 
alternative for the deficient autophagy 
(McLoughlin et al. 2020).

The quantitative proteome analysis is signifi-
cantly contributing to increase our understanding 
of several complex phenomena in plants. Large 
studies using time-resolved in-depth quantitative 
approaches will certainly disclose regulatory 
aspects of the cellular mechanisms related to the 
control of cell growth, carbon usage, and stress 
responses in plants.
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3.2.3	 �Proteomics Analyses 
of Posttranslational 
Modifications (PTMs)

With the increased throughput and mass resolu-
tion of the current MS instruments, the identifica-
tion of chemical modifications of peptides or 
intact proteins occurs through  the analysis of 
posttranslational modifications (PTMs), which 
do refer to the covalent and generally enzymatic 
modification of proteins following protein bio-
synthesis. These modifications generally include 
potential changes in protein sub-cellular localiza-
tion, protein stabilization/degradation, enzyme 
activity, and interactions with protein partners or 
other biomolecules (Friso and van Wijk 2015; 
Spoel 2018). The occurrence of PTMs greatly 
expands proteome complexity and diversity, 
affecting numerous cellular signaling events and 
responses to the environment (Friso and van Wijk 
2015; Larsen et al. 2006). Based on the type of 
modification, more than 300 potential PTMs can 
occur in  vivo including: (a) reversible/irrevers-
ible addition of chemical groups (phosphoryla-
tion, acetylation, methylation, and redox-based 
modifications), (b) reversible addition of poly-
peptides (ubiquitination, SUMOylation, and 
other modifications by ubiquitin-like (Ubl) poly-
peptide), (c) reversible addition of complex mol-
ecules (glycosylation, attachment of lipids, 
ADP-ribosylation, and AMPylation), and (d) 
irreversible direct modification of amino acids 
(deamidation, eliminylation) or protein cleavage 
by proteolysis (Larsen et  al. 2006; Spoel 2018; 
Vu et al. 2018). In addition, apart from a single 
regulatory PTM role, there is also potential cross-
talk with other PTMs, making the mechanisms 
and dynamics of protein modification still more 
complex (Arsova et al. 2018; Du et al. 2019; Vu 
et al. 2018).

The study of PTMs is considered technically 
demanding due to the labile nature, low stoichi-
ometry, and abundance of protein modification 
when analyzing whole-cell lysates (Larsen et al. 
2006; Swaney and Villen 2016). Therefore, a 
PTM enrichment step for modified peptides is 
normally necessary before MS analysis (Murray 
et  al. 2012; Swaney and Villen 2016). Dealing 

with complex plant proteomes of model and non-
model species, it is important to select adequate 
proteomic approaches aiming the identification 
of proteins and analysis of their dynamic PTMs 
(Hu et al. 2015). Traditionally, PTMs have been 
identified by Edman degradation, amino acid 
analysis, isotopic labeling, or immunochemistry 
(Larsen et  al. 2006). Nowadays, shotgun pro-
teomics is one of the most widely used approaches 
to analyze PTMs (Yu et al. 2020). The adoption 
of large-scale quantitative proteomic approaches 
including isotope-coded affinity tags (ICATs), 
tandem mass tags (TMTs), and isobaric tags for 
relative, and absolute quantitation (iTRAQ) is 
enabling a more confident identification and mul-
tiplexed quantitation of PTMs (Hu et  al. 2015; 
Liu et al. 2019; Murray et al. 2012). Once a PTM 
site is identified, biological characterization of 
protein modifications can be addressed with tar-
geted MS-based quantitative approaches such as 
multiplexed selective reaction monitoring (SRM) 
or Sequential Windowed Acquisition of All 
Theoretical Fragment Ion Mass Spectra (SWATH 
MS) (Arsova et al. 2018; Sidoli et al. 2015).

Several aspects of plant metabolism and 
development involve signaling events. Different 
inorganic or organic compounds can function as 
signaling molecules that are going to regulate the 
plant cell behavior. Among the many possible 
molecular events that may take place in plant sig-
naling mechanisms, the posttranslational modifi-
cation of proteins is of upmost interest as it 
controls a vast set of cellular responses, including 
growth, membrane trafficking, gene expression, 
degradation, to mention a few.

The use of proteomics to uncover signaling 
mechanisms is step by step taking advantage of 
the high resolution and throughput of the MS 
instruments to uncover the signaling networks 
of the plant cells. In the current investigations, 
the analysis of protein targets of the reactive 
oxygen species (ROS) and reactive nitrogen 
species (RNS) is gaining more attention due to 
their promising role in plant growth through 
the redox homeostasis. The investigation of the 
cellular role of these chemical species can be 
done through the analysis of the chemical 
modifications in the target molecules generated 
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by the reactions with reactive oxygen and/or 
nitrogen species.

Among the several possible protein oxidore-
duction PTMs that can be identified in plants, the 
protein nitrosation (or nitrosylation) which repre-
sents target protein alterations in response to the 
function of nitric oxide has gained more attention 
as central process in defining carbon and nitrogen 
metabolism in land plants (Nabi et al. 2020) and 
microalgae under stress conditions (De Mia et al. 
2019; Morisse et al. 2014).

Cysteine S-nitrosation is a redox-based PTM 
that mediates major physiological and biochemi-
cal effects of nitric oxide (NO). Emerging evi-
dence indicates that protein S-nitrosation is 
ubiquitously involved in the regulation of plant 
development and stress responses (Feng et  al. 
2019; Gong et al. 2019). Despite its importance 
in plants, studies exploring protein signaling 
pathways that are regulated by S-nitrosation dur-
ing plant development and embryogenesis are 
still scarce, particularly in non-model plant spe-
cies. For instance, using redox proteome analysis 
of S-nitrosation, a considerable array of proteins 
associated with a large variety of molecular func-
tions were identified in Brazilian pine proteome, 
generating novel insights into the roles of 
S-nitrosation during somatic and zygotic embryo 
development. Using a method adapted to the 
Biotin-Switch (Forrester et  al. 2009), replacing 
biotin with the iodo-TMT126 (iodo-Tandem 
Mass Tag), the occurrence of in vivo and in vitro 
S-nitrosation was investigated during somatic 
and zygotic embryo formation of Brazilian pine 
(Araucaria angustifolia (Bertol.) Kuntze), an 
endangered native conifer of South America.

Previous analyses using physiological, tran-
scriptomic, and quantitative proteomics 
approaches (dos Santos et  al. 2016; Elbl et  al. 
2015; Silveira et al. 2006) suggested a potential 
influence of the redox environment and nitric 
oxide production during Brazilian pine embryo 
formation. The S-nitrosoproteome analyses iden-
tified 158 S-nitrosylated proteins in vitro (i.e., via 
the incorporation of a NO donor), with 36 pro-
teins detected during seed development (globular 
embryo until late cotyledonal stage) and 122 pro-
teins detected during somatic embryo formation 

(transition from proembryogenic masses to early 
somatic embryos). This study indicated that most 
S-nitrosylated proteins were involved in metabo-
lism of primary compounds (carbohydrates and 
nucleic acids) and cellular processes and signal-
ing (turnover of proteins and chaperones). For 
late-stage embryogenesis, functions associated 
with S-nitrosylated proteins were stress resis-
tance (abiotic stress response), cellular processes 
(signal translation, chaperones, and protein turn-
over), and metabolism (energy production, trans-
port, and carbohydrate metabolism). Interestingly, 
47 proteins were identified as endogenous 
S-nitrosylated during early and late-stage 
embryogenesis, suggesting a role of this PTM 
during Brazilian pine embryo formation. The 
possibility of generating a stable bond between 
Cys and iodo-TMT126 enabled the identification 
of labeled peptides using mass spectrometry and 
the determination of the position of nitrosylated 
Cys residues. The identification of the possible 
cellular biological processes affected in non-
model plants by NO reinforce the observations 
about the myriad of functions regulated by the 
protein PTMs generated by ROS and RNS, which 
are likely coordinated by a complex regulatory 
network (Leon and Costa-Broseta 2020). The 
cellular effects coordinated by these networks are 
possibly accomplished by the interplay between 
redox homeostasis systems which involve cyste-
ine oxidative modifications and the systems of 
thioredoxins and disulfide reductases, which are 
expressed by several genes in plants, composing 
a highly complex regulatory mechanism of cel-
lular response (Navrot et al. 2011).

3.3	 �Proteomics of Non-model 
Species

The many challenges already present in the plant 
proteomics analysis are more pronounced in the 
investigation of non-model plant species. This is 
especially true after the past decade, when the 
number of species with a fully sequenced genome 
grew substantially, with non-model plant species 
distinguished by the lack of experimentally vali-
dated functional evidence for a great variety of 
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annotated genes. This scarcity on information 
may result from long life cycle, large genome 
size (often polyploid) and recalcitrance to labora-
torial cultivation, whose characteristics are 
opposed to model plants, such as Arabidopsis 
thaliana. The study on non-model plants greatly 
relied on establishing gene and protein sequence 
homology analyses with model organisms, but 
this approach is questionable when there is only 
far phylogenetic relation between the species 
analyzed. As the more distant organisms are phy-
logenetically lesser there can be functional 
extrapolation (Heck and Neely 2020). Plants are 
physiologically diverse, implying that sometimes 
homology-based annotation does not accurately 
indicate the function of groups of genes or their 
relation to complex cellular mechanisms. 
Additional co-expression or regression analyses 
have been shown as powerful tools to be used for 
the search of functional categories and novel 
pathways inherent of non-model plant proteomes, 
which may guide functional investigations in 
non-model plant species.

Currently, the progress on genome sequencing 
and annotation, followed by advances in bioin-
formatics and data integration offer analytical 
tools similar to the ones used for model plants 
(Bolger et al. 2017). We are now living the post-
model organism era, whose resources have been 
being well utilized and essential for non-model 
plants research, such as crops (Heck and Neely 
2020). One example is sugarcane, a C4 grass able 
to accumulate large amounts of sucrose and con-
sidered the world’s leading biomass crop (Souza 
et al. 2019). For a long time, rice (also a monocot 
but with a C3 metabolism) and maize were the 
“model” organisms phylogenetically closer to 
sugarcane. The first sugarcane proteomic studies 
tested different extraction methods (Amalraj 
et al. 2010), identified specific classes (Cesarino 
et al. 2012), and provided the characterization of 
abiotic stress-response (Zhou et al. 2012). Until 
2013, proteomes surveys of this crop were scarce 
(Boaretto and Mazzafera 2013). However, after 
several perseverant efforts on Saccharum spp. 
genome sequencing and assembly (Boaretto and 
Mazzafera 2013; Garsmeur et al. 2018; Grativol 
et al. 2014; Miller et al. 2017; Okura et al. 2016; 

Riano-Pachon and Mattiello 2017; Souza et  al. 
2019; Vettore et al. 2003; Vilela et al. 2017), the 
catalog of proteins identified by mass spectrom-
etry largely increased for both descriptive and 
several sorts of biological conditions (for a 
review see Miller et al. 2017). In this highly poly-
ploid species, the identification of glycoside 
hydrolases (GH) at the protein level paved the 
way for target experimentation. Domain predic-
tion and homology investigation indicated that 
members of the GH families are numerous in 
sugarcane, but only dedicated extraction and 
analyses of proteomic pipelines could point to 
which exact proteins and at which amount were 
present in different organs and developmental 
stages (Calderan-Rodrigues et  al. 2014, 2016; 
Fonseca et al. 2018). Combined omics and pro-
tein activity essays from these retrieved GHs 
showed that the cell wall degradation occurring 
on a particular tissue was timely orchestrated by 
different proteins that tackled pectin, callose, 
hemicelluloses, and cellulose at last (Grandis 
et al. 2019). The GHs identified in this cell disas-
sembly mechanism could be manipulated in a 
timely controlled fashion to produce plants more 
amenable to saccharification resulting in aug-
mented ethanol yield. For dedicated functional 
studies, an alternative that has been used for non-
model plants is the transference of the target gene 
to a model host, allowing a better comprehension 
of the metabolic changes. This approach was suc-
cessfully employed for the sugarcane cell wall-
related transcription factor SHINE (Martins et al. 
2018) and a Dirigent-Jacalin (Andrade et  al. 
2019).

So far, the selection of target genes for non-
model plants has been performed mostly based 
on genomic, transcriptomic, or in silico data. 
Furthermore, the possibility to promptly generate 
RNAseq data can provide draft proteome data-
bases for MS-identification, which makes the use 
of proteogenomics a powerful tool to study non-
model plant species (Armengaud et  al. 2014). 
One of the frontiers to be crossed relies on a more 
straightforward use of plant proteomics as an 
instrument to select the expressing alleles and 
thus markers more successfully related to pheno-
type. However, proteomic pipelines did not reach 
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the same advancement levels as transcriptomic 
ones, and we urge to have sensitive, high-
throughput, and low-cost technologies in order to 
make this possible (Peace et al. 2019).

The study of non-model plants is extensively 
laborious and sometimes does not attract as many 
attention as the possibility to deepen the investi-
gation on known biological pathways by using 
model plants. However, proteomic investigations 
of non-model species have brought light to excit-
ing discoveries related to plant metabolic and 
developmental specificities (Grandis et al. 2019; 
Sergeant et  al. 2019), biomass accumulation 
(Calderan-Rodrigues et  al. 2019), disease 
responses (Diaz-Vivancos et  al. 2006; He et  al. 
2012; Tahara et al. 2003; Zhang et al. 2015), and 
several sorts of abiotic stresses (Aghaei and 
Komatsu 2013; Cia et al. 2018; Huang and Sethna 
1991; Wang et al. 2017). Research in this area not 
only contributed to biological insights from these 
specific conditions and species but also provided 
a more complete picture of the whole autotrophic 
nature, allowing to deepen the evolutionary dis-
cussion as well. Once confined to conditional 
conclusions, non-model plant proteomics can 
now take a step further, and instead of conflictive, 
data integration between model and non-model 
ones and target experimentation will allow these 
two groups to be considered of the same level. 
This will attract interest for non-model species 
research and will fuel a virtuous cycle to provide 
more and more biological information.

3.4	 �Future Directions

The recent advances in proteomics analysis of 
model and non-model plant species have demon-
strated that the evolution of techniques and 
instrumentation had revolutionized how fast we 
can identify the plant molecular phenotypes. 
Emergent characteristics have been uncovered by 
the proteomics, and the proper discovery of many 
linkages between transcriptomics and other 
omics through the quantification of proteins is 
revealing several processes and cellular mecha-
nisms that may play fundamental role in regulat-
ing cell growth and metabolism.

It is clear that a big challenge in the proteomics 
field is the limitation of analyzing, at the same 
time, all aspects of the plant proteome, specially 
the regulation of cellular responses, such as the 
function of transcription factors and regulators, 
the roles of PTMs, and redox homeostasis in cel-
lular phenotypes. The analysis of how individual 
cells respond and contribute to an organismic 
phenotype are revealing how complex the inter-
action between cells are in defining a phenotype. 
For instance, there are already indications of 
molecular similarities between different tissues 
or parts of a plant but vast differences at the level 
of cell types or individual cells. The combination 
of the total proteome analysis of organisms with 
targeted cell type proteome may drive compre-
hensive systems analysis of plant phenotypes, 
mixing the power of holistic analysis with the 
observation of cell type specificities, specially 
the regulatory ones.

The analysis of plant phenotypes has been 
performed using different proteomics approaches, 
which in many cases integrate cell biology and 
analytical techniques. This knowledge, mainly 
based on the application of shotgun mass 
spectrometry-based proteomics, has brought to 
light specific quantitative and qualitative infor-
mation of the molecular physiology of plants.

Nevertheless, plant proteomics at the single-
cell level or single-cell type can and will likely 
contribute to the understanding of the dynamic 
changes that occur in cells in response to environ-
mental alterations and to regulatory aspects of the 
plant differentiation or development. It may also 
disclose the importance, rules, and the degree of 
heterogeneous responses cell population exert in 
defining a plant phenotype, elucidating how dif-
ferent mechanisms are coordinated to generate a 
phenotype from a series of individual cellular 
responses (Libault et al. 2017).

The use of gel-based proteomics approach is 
probably taking a more consistent path toward 
the comparative analysis of subcellular pro-
teomes and targeted analysis of protein com-
plexes, while been extensively used for 
comparative proteomics analysis of non-model 
plant species coupled to protein identification 
by MS.
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Time-resolved plant shotgun MS-based pro-
teomics analysis is still the most prominent 
approach currently applied in the plant proteomic 
science and will remain like that for the near 
future, unless a large-scale protein sequencing 
strategy is developed that could compete or sub-
stitute the MS-based proteomics, for some analy-
sis at least.

This technical advance would contribute to 
drastically expand the number of proteome stud-
ies of non-model plant species, bringing more 
information for a future large comparative sys-
tems biology analysis, which may reveal emer-
gent properties of the plant development and 
responses to environmental changes.
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Abstract

In eukaryotic organisms, subcellular protein 
location is critical in defining protein function 
and understanding sub-functionalization of 
gene families. Some proteins have defined 
locations, whereas others have low specificity 
targeting and complex accumulation patterns. 
There is no single approach that can be con-
sidered entirely adequate for defining the 
in vivo location of all proteins. By combining 
evidence from different approaches, the 
strengths and weaknesses of different tech-
nologies can be estimated, and a location con-
sensus can be built. The Subcellular Location 
of Proteins in Arabidopsis database (http://
suba.live/) combines experimental data sets 
that have been reported in the literature and is 

analyzing these data to provide useful tools 
for biologists to interpret their own data. 
Foremost among these tools is a consensus 
classifier (SUBAcon) that computes a pro-
posed location for all proteins based on bal-
ancing the experimental evidence and 
predictions. Further tools analyze sets of pro-
teins to define the abundance of cellular struc-
tures. Extending these types of resources to 
plant crop species has been complex due to 
polyploidy, gene family expansion and con-
traction, and the movement of pathways and 
processes within cells across the plant king-
dom. The Crop Proteins of Annotated Location 
database (http://crop-pal.org/) has developed a 
range of subcellular location resources includ-
ing a species-specific voting consensus for 12 
plant crop species that offers collated evidence 
and filters for current crop proteomes akin to 
SUBA.  Comprehensive cross-species com-
parison of these data shows that the sub-
cellular proteomes (subcellulomes) depend 
only to some degree on phylogenetic relation-
ship and are more conserved in major biosyn-
thesis than in metabolic pathways. Together 
SUBA and cropPAL created reference subcel-
lulomes for plants as well as species-specific 
subcellulomes for cross-species data mining. 
These data collections are increasingly used 
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by the research community to provide a sub-
cellular protein location layer, inform models 
of compartmented cell function and protein–
protein interaction network, guide future 
molecular crop breeding strategies, or simply 
answer a specific question—where is my pro-
tein of interest inside the cell?

Keywords

Arabidopsis · SUBA · CropPAL · SUBAcon · 
Crops · Protein localization · Subcellular 
location · System biology · Protein location · 
Subcellular compartment

Abbreviation

AMPDB	 Arabidopsis Mitochondrial Protein 
Database

ASV	 Alternative splice variant
CAT	 Co-expression Adjacency Tool
cropPAL	 Database for crop proteins with 

annotated locations
ER	 Endoplasmic reticulum
FLAG	 Epitope polypeptide DYKDDDDK
FP	 Fluorescent protein
GO	 Gene Ontology http://www.geneon-

tology.org
GUI	 Graphical user interface
LOPIT	 Localization of Organelle Protein by 

Isotope Tagging
MMAP	 Multiple Marker Abundance 

Profiling
MS	 Mass spectrometry
MS/MS	 Tandem mass spectrometry
NPAS	 Normalized protein abundance 

scores
PAT	 PPI adjacency tool
PPI	 Protein–protein interaction
SRM	 Selected reaction monitoring
SUBA 	 Subcellular localization database for 

Arabidopsis proteins
TAP	 Tandem affinity purification

4.1	 �Introduction

4.1.1	 �The Historical Context 
of Subcellular Location 
in Proteomics

Subcellular proteomics are an integral part of 
plant proteomics due to the tight connection 
between protein location within cells and their 
function (Weckwerth et  al. 2008; Millar et  al. 
2009; Joshi et al. 2011). The importance of sub-
cellular location of different isozymes of proteins 
in plants has been long recognized (Gottlieb 
1982). However, until recently, most conven-
tional methodologies for determining protein 
locations in the cell have been labor intensive. 
Methodologies such as gold particle marking and 
immunological tagging followed by microscopy 
were used over decades, but both approaches are 
very labor and cost intensive. More recently, PCR 
and cloning techniques, overexpression vectors, 
fluorescent protein (FP) chimerics and expres-
sion in alternative hosts allowed the localization 
of lowly expressed proteins in difficult to study 
organisms (Chiu et  al. 1996). These studies, 
although not high throughput, have been a big 
step forward for rare proteins.

Using mass spectrometry (MS) of tandem 
mass spectrometry (MS/MS) to build compre-
hensive subcellular proteome sets came into the 
picture with improving organellar extractions and 
MS detection for peptides (Heazlewood et  al. 
2005). The organelles and compartments that 
attracted most interest were the major energy 
organelles such as the mitochondrion (Kruft et al. 
2001; Millar et  al. 2001) and the chloroplast 
(Peltier et al. 2001), which had to be physically 
extracted and purified away from the cytosol, 
nucleus, and secretory parts of the cells. 
Following on, research focusing on the secretory 
system needed to distinguish between endoplas-
mic reticulum (ER), Golgi apparatus, and tono-
plast (vascular membrane) within the cell and the 
plasma membrane surrounding the cell. Finally, 
extracellular proteins secreted from cells into the 
apoplast were studied. With higher resolution of 
microscopes and better separation techniques, 
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finer points of differentiation began to distinguish 
suborganellar compartments of these organelles, 
including protein localizations in the inner and 
outer membranes, the intracellular space and the 
matrix of mitochondria (Millar et  al. 2001; 
Werhahn et al. 2001), thylakoids in chloroplasts 
(Schubert et  al. 2002), cytoskeletal structures 
(Hamada et al. 2013), and specific sections of the 
secretory system (Drakakaki et  al. 2012; Heard 
et  al. 2015). With the improvement of MS/MS 
sensitivity, over time more proteins could be 
identified and traced in these purified organellar 
separations.

The Localization of Organelle Protein by 
Isotope Tagging (LOPIT) approach offered an 
alternative for defining the localization of mem-
brane proteins without physical subcellular sepa-
ration to purity (Dunkley et  al. 2004). This 
method, based on profiling protein abundances in 
size separated fractions, has been used to map a 
significant number of proteins from mitochon-
dria, plastids, ER, and secretory compartments 
(Nikolovski et  al. 2012). LOPIT has recently 
been optimized for subcellular protein mapping 
and is used in a variety of global subcellular map-
ping projects spanning plant and disease biology 
(Mulvey et al. 2017).

When considering all subcellular localization 
methods as a whole, the majority of data today 
are derived from proteomic MS methodology due 
to the high-throughput nature of the approach. A 
subcellular proteomics mapping study typically 
produces more than 1000 subcellular localiza-
tions (Heard et al. 2015; Nguyen-Kim et al. 2016; 
Senkler et al. 2017). In contrast, high-throughput 
fluorescent protein (FP) studies report between 
10 and 100 (Cutler et al. 2000; Boruc et al. 2010; 
Inze et  al. 2012) with the largest study to date 
offering 148 protein localizations (Koroleva et al. 
2005). The emerging importance of large data 
mining requires that subcellular location data are 
available as a global data set using all available 
information, making data aggregations for sub-
cellular proteomics increasingly popular 
resources. A growing number of databases avail-
able have generated subcellular proteomics data 
sets containing over 40,000 experimental local-
izations spanning different methodologies. These 

resources often fill gaps in experimental data and 
compare the advantages as well as disadvantages 
of each method using computational strategies.

4.1.2	 �Collation of Arabidopsis 
Subcellular Data Established 
Subcellular Proteomics

Subcellular proteomics has been refined and 
improved through the aggregation of localization 
data. In plant biology, this first started to take 
shape for the model plant Arabidopsis. Today, the 
SUBcellular location database for Arabidopsis 
proteins (SUBA, http://suba.live) in its fourth 
generation is a substantial collection of manually 
curated published data sets of large-scale subcel-
lular proteomics (MS/MS), FP visualization, pro-
tein–protein interaction (PPI), and subcellular 
targeting calls from 22 prediction programs as 
well as a consensus algorithm (SUBAcon).

The collection started with studies on the 
mitochondrial proteome more than 10 years ago 
(Heazlewood et al. 2004) when an MS study of 
the mitochondrial organelle revealed a large 
number of low-abundance proteins that had been 
predicted to localize elsewhere in the cell. This 
led to the generation of the Arabidopsis 
Mitochondrial Protein Database (AMPDB) that 
offered an overview of the detailed MS data sets 
from 17 published mitochondrial studies as well 
as predictions from six subcellular location algo-
rithms (Heazlewood and Millar 2005). While 
similar efforts for the plastid were realized as the 
Plastid Proteome DataBase (PPDB) at the same 
time (Friso et al. 2004), it became clear that rapid 
expansion of data for many organelles required 
the establishment of a one-stop data collection 
hub for subcellular compartmentalization data. 
An initial data collation and categorization 
showed surprisingly little overlap between data 
sets from different researchers, and their combi-
nation seemed crucial for large-scale data mining 
(Heazlewood et al. 2005). It was then when the 
SUBA acronym was introduced and the data 
aggregation quickly revealed that protein fami-
lies, subsets, and isoforms with distinct subcel-
lular location patterns existed. The analysis of the 
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data also meta-assessed the reliability of experi-
mental data and indicated that most experimental 
methods are more variable and error-prone than 
the wider research community presumed.

Since then, the Arabidopsis subcellular pro-
teome data set and applications associated with 
the collection have been increasing in terms of 
gene annotations, experimental, and computa-
tional data types (Heazlewood et al. 2007; Tanz 
et al. 2013a), as well as high-confidence subsets 
(Arabidopsis Subcellular Reference—ASURE) 
and location consensus classifications 
(SUBAcon) (Hooper et al. 2014) to arrive as the 
current version of SUBA4 that includes a sepa-
rate section with an interactive analysis toolbox 
(Hooper et  al. 2017a). The core experimental 
subcellular location data are now more than ten 
times the volume of the original SUBA1 
(Heazlewood et al. 2007). SUBA started out cat-
egorizing ten distinct subcellular locations cyto-
sol, cytoskeleton, endoplasmic reticulum (ER), 

Golgi, mitochondrion, nucleus, plastid, plasma 
membrane, peroxisome, and vacuole. With 
improving sensitivity of methods used to pin-
point protein locations, SUBA4 expanded this 
into sub-organellar compartments including dif-
ferentiations into distinct membranes and aque-
ous compartments (Fig. 4.1). Experimental data 
pinpointing sub-organellar locations are now 
searchable within SUBA4.

The subcellular proteome data for Arabidopsis 
has increased from representing information on 
only 7% of predicted proteins in 2007 to over 
32% of predicted proteins in 2017 arriving at the 
current >40% coverage in 2021 (Fig. 4.2a). Since 
the foundation of SUBA, Dr JL Heazlewood, Dr 
SK Tanz, Dr CM Hooper, Dr N Ayamanesh, and 
Ms Sally Grasso have been the key curators, 
while Dr J Tonti-Filippini, Dr CM Hooper, and 
Dr IR Castleden have developed most of the GUI 
and database services to enable the user experi-
ence. A small fraction of manual subcellular 

Fig. 4.1 Subcellular and suborganellar structures search-
able within SUBA and cropPAL. The subcellular catego-
ries previously assessed by SUBA1-3 and cropPAL 
included 11 major subcellular locations (UPPER CASE). 

SUBA4 has increased location definition into suborganel-
lar locations (lower case). ER endoplasmic reticulum, 
SUBA subcellular location database for Arabidopsis pro-
teins (http://suba.live/)
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curations were independently derived from 
TAIR, GO, and Swissprot (Lamesch et al. 2012; 
Croft et al. 2014).

4.1.3	 �The Collation of Plant 
Subcellular Data Progressed 
into Crop Plants by 
Establishing cropPAL

High-throughput genome sequencing technologies, 
computing, and database management have made 
the protein sequences available through http://www.
gramene.org/ for a range of non-model plant spe-
cies of economic importance (Gupta et  al. 2016; 
Tello-Ruiz et al. 2018). This has led to the exponen-
tial growth in the number of available reference 
plant genomes in recent years (Monaco et al. 2014). 

Notably, this includes the improved coverage of the 
bread wheat genome where researchers tackled a 
number of significant problems that occur when 
annotating highly polyploid genome sets (Bolser 
et al. 2015). Proteins across species share important 
similarities in their functional motifs, and this has 
driven linking information on orthologous proteins 
from model plants to less studied crop plants (Otto 
et  al. 2008). Cross-species comparison highlights 
the amount of gene and genome duplication and 
gene loss throughout angiosperm evolution that has 
led to a huge variation in genome size and proteome 
composition between even close relatives (Tang 
et al. 2008). Researching protein specialization and 
sub-functionalization across and within species pro-
vides new insights into why plants differ so exten-
sively in their growth, yield, and response to the 
environment.

Fig. 4.2  SUBA database expansion and data use in plant 
biology. (a) Continuous curation and integration of sub-
cellular localization data has increased the number of 
localizations and the coverage of the Arabidopsis pro-
teome throughout SUBA releases from 2005 to 2017. The 
size of SUBA4 at the time of writing in 2020 is indicated. 
(b) The accumulative citation record of published SUBA 

and SUBA tools indicates increasing importance of sub-
cellular proteomics resources (source: Scopus). (c) The 
area of research and (d) species studied was determined 
using keyword-based text mining to show the distribution 
of fields of research that SUBA was used for in the past 
decade. A total of 465 studies that cited SUBA were 
examined. (Figure modified from Hooper et al. 2017a)
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While duplicated proteins may perform simi-
lar functions, small differences in versions that 
reside in distinct subcellular compartments can 
allow distinct optima, better suited to individual 
subcellular compartments. For example, small 
differences in protein sequence can improve 
function in differing pH environments (Scheibe 
et  al. 2005). Therefore, the cost of protein or 
pathway duplication can more than compensate 
the energy investment in transporting them across 
membranes (Wu et al. 2006; Cheung et al. 2013). 
Knowing key turning points between energy bud-
get and protein location during plant evolution 
has become a crucial consideration for studying 
plant product yields and determining the energy 
production of cells. With crop breeding in mind, 
data from the model plant Arabidopsis has been 
useful to bridge knowledge gaps for rice and 
maize through combining information with the 
independent subcellular proteomics data sets that 
exist for these species (Natera et al. 2008; Reiland 
et  al. 2011; Majeran et  al. 2012; Huang et  al. 
2013). This led to the generation of two further 
species-specific subcellular proteomics data-
bases; riceDB for rice (Narsai et  al. 2013) and 
PPDB for maize (Friso et al. 2004; Huang et al. 
2013). Nevertheless, many more crops species 
exists for which Arabidopsis data presented the 
only resource for subcellular location informa-
tion (Hooper et al. 2017a).

Subcellular proteomics and other localization 
data for most crop species exist scattered across 
published scientific reports and is often linked to 
obsolete protein accession annotations that are 
not concurrent with recent genome annotations. 
In this format a significant body of experimental 
subcellular proteomics data for barley (Endler 
et  al. 2006; Ploscher et  al. 2011) and wheat 
(Kamal et al. 2012; Suliman et al. 2013) are dif-
ficult to access for most researchers. The need for 
a cross species protein localization database 
emerged and was formulated in the formation of 
a new resource, crop Proteins with Annotated 
Location (cropPAL, https://crop-pal.org/). The 
cropPAL1 database contained just under 18,000 
of the scattered experimental localizations for 
four mono-cotyledon crops including rice (Oryza 
sativa), maize (Zea mays), wheat (Triticum aesti-

vum), and barley (Hordeum vulgare) connected 
to each other and to Arabidopsis (Hooper et al. 
2016). CropPAL underwent major upgrades to 
include the two additional monocotyledon sor-
ghum (Sorghum bicolor) and banana (Musa acu-
minata) and six additional dicotyledon species 
granola (Brassica napus), field mustard (Brassica 
rapa), soybean (Glycine max), tomato (Solanum 
lycopersicum), potato (Solanum tuberosum), and 
grape vine (Vitis vinifera). In cropPAL2020, sub-
cellular proteomics data from MS/MS and FP 
localization data as well as pre-computed subcel-
lular localizations from 11 predictors were col-
lated (Hooper et  al. 2020). Aligning to the 
Ensembl Plants/Gramene identifiers, experimen-
tal data in cropPAL was linked to the current 
genome annotations by a custom semi-automated 
pipeline. This offers sustainable links of research 
data that had increasingly obsolete identifiers. 
Using this system, available experimental data 
more than tripled to 61,505 localizations and 
generated large enough data sets for statistical 
comparisons between mono- and dicotyledon 
species or cross-species data mining opportuni-
ties between legumes and fruiting crops. 
Altogether, cropPAL2020 collates more than 800 
scientific peer-reviewed studies. These data rep-
resent the collective work of >700 scientists from 
600 organizations in 45 countries showcasing a 
global effort in elucidating protein subcellular 
location divergence and conservation across crop 
species.

The SUBA and cropPAL resources have been 
used for cultivar discrimination, engineering salt-
resistant crops, increasing protein content, as 
well as improving yield and market value of 
grains, legumes, palm, mango, and tomato 
(Bajpai et al. 2018; Lau et al. 2018; Matamoros 
et  al. 2018; Jiang et  al. 2019; Schneider et  al. 
2019; McKenzie et al. 2020). If subcellular pro-
tein distributions (subcellulomes) are not cata-
loged for a species, scientists often fall back on 
data in Arabidopsis of the nearest species. This 
raises the questions around the validity of these 
discoveries if they are based on the assumption 
that we can borrow cross-species information. 
On the one hand, homology-linking protein sub-
cellular location data is widely accepted on the 
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basis that the metabolic and biosynthetic path-
ways in plants are highly conserved. On the other 
hand, reports exist that highlight the divergence 
in protein subcellular location between species 
by mechanisms of dual targeted proteins or pro-
tein family expansion (Carrie and Whelan 2013; 
Xu et  al. 2013; One Thousand Plant 
Transcriptomes 2019). In context of the diversity 
of species physiology, metabolism capacity, and 
their ability to adapt to different environments, 
subcellular location diversification offers a poten-
tial starting point for plant performance improve-
ment through biotechnological applications. The 
combination of data as well as the linking of 12 
economically important crop species with 
Arabidopsis has placed plant subcellular data at 
the forefront of subcellular proteomics combin-
ing the skills of laboratory methodologies, data 
management and bioinformatics. These compre-
hensive data resources are now ready to aid cur-
rent research questions around crop cell 
compartmentalization and crop biology.

4.2	 �Research and Technical 
Approach

4.2.1	 �Visualization and Separation 
of Proteins for Subcellular 
Localization Are Improving

Subcellular compartments and structures in 
plants were first defined by microscopy; what 
could be seen inside cells. Their separation and 
characterization have focused on attempts to 
recover these observed structures, free of con-
taminants. Initial separations are often based on 
the use of empirically derived speeds and times 
of differential centrifugation to enrich compo-
nents of specific size ranges. Second, the use of 
density gradients separates structures based on 
their isopycnic point (buoyant density) which 
enables further purification of subcellular struc-
tures (for review see Taylor and Millar 2017).

Other physical and chemical properties have 
been developed as supplemental or even primary 
methods of isolation of specific structures. 
Electrical processes to separate organelles started 

with laminar-flow electrophoresis and lead to 
development of free-flow electrophoresis to 
purify subcellular particles like endosomes, lyso-
somes, peroxisomes, and ER-vesicles based on 
differences in surface charge. In plants, free-flow 
electrophoresis has been used to purify 
Arabidopsis plasma membrane and the tonoplast 
(Bardy et  al. 1998), mitochondria (Eubel et  al. 
2007), and the Golgi apparatus (Parsons et  al. 
2012). Solid-phase separations through chroma-
tography can also be used but has been typically 
limited to smaller sub-cellular structures such as 
mega Dalton protein complexes, for example, the 
pyruvate dehydrogenase complex (4–10  MDa), 
ribosomes (3–4  MDa), and the proteasome 
(2.5 MDa). Addition of affinity tags to target pro-
teins by chemistry or genetic engineering allows 
isolation of many structures of interest from cells 
using the same affinity system. The DYKDDDDK 
epitope (FLAG) and tandem affinity purification 
(TAP) tagging are typical approaches performed 
in plants, for example, for the Arabidopsis prote-
asome (Book et al. 2010) and cytosolic ribosome 
(Reynoso et  al. 2015). While this is typically 
expensive compared to other approaches, it can 
provide access to structures that either cannot be 
separated or are labile during the sequential phys-
ical processes of traditional isolations.

A number of different techniques can then be 
used for the assessment of organelle and structure 
contamination including microscopy, the use of 
marker enzyme activity assays, antibodies raised 
to marker proteins, selected reaction monitoring 
(SRM) MS and quantitative MS, or comparisons 
to literature claims of subcellular protein loca-
tions (Taylor et al. 2014; Millar et al. 2009; Taylor 
and Millar 2017). The use of stable isotope label-
ing or quantitation tags during MS can help 
screen out unknown contaminants by ensuring 
the target proteins are quantitatively enriched 
during organellar purification or are enriched 
more than other co-enriched cellular structures 
(Eubel et al. 2008; Mueller et al. 2014).

MS of compartment-enriched samples 
remains the most popular large-scale approach 
for defining subcellular localization of proteins, 
despite ongoing questions around the purity of 
these lists (Joshi et  al. 2011). The FP-tagging 
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approach is generally more accurate, but labor- 
and time-intensive, resulting in small study sizes 
with only a few high-throughput studies (Dunkley 
et al. 2006; Boruc et al. 2010; Lee et al. 2011). 
While the low coverage makes FP insufficient as 
a stand-alone large-scale data set, the collation of 
such studies over the last 15 years has generated 
a sizable subcellular proteome data set that 
remains one of the most widely accepted by biol-
ogists. Notably FP studies show both, where tar-
geted proteins are and are not present, providing 
an internal control to evaluate competing claims 
of location that is sorely missing from most MS/
MS data sets.

4.2.2	 �Subcellular Proteomics Can 
Be Supplemented 
with Homology Gap-Filling 
and Subcellular Protein 
Location Predictions

The varying number and type of subcellular pro-
teomic studies performed among each plant spe-
cies has led to uneven coverage between species 
and subcellular compartments. Of the 12 crop 
species, the largest number of subcellular local-
ization experimentation to date has been per-
formed in rice, maize, and soybean with tomato 
and wheat catching up steadily (Hooper et  al. 
2020). The proteome coverage of the most com-
prehensive experimental data sets collated for 
rice and tomato reached ~18% followed by soy-
bean and maize with 5–10%. High-throughput 
MS/MS cataloging commonly focused on 
nucleus, plasma membrane, and extracellular 
extractions, for assessing proteins induced and 
secreted during host defense (Shah et  al. 2012; 
Shinano et  al. 2013). In contrast, plastidial and 
mitochondrial purifications for mass spectrome-
try analyses are often studying biogenesis and 
metabolic functions (Huang et al. 2009; Barsan 
et al. 2012; Salvato et al. 2014; Xing et al. 2016). 
Compartment catalogs existing for Arabidopsis 
(Reumann et  al. 2009; Ito et  al. 2011; Parsons 
et al. 2012; Heard et al. 2015) but not yet in crops 
include the cytosol, Golgi (Chateigner-Boutin 
et  al. 2015), endoplasmic reticulum (ER) 

(Komatsu et  al. 2017), and peroxisome (Arai 
et al. 2008). No crop species has been cataloged 
across all compartments, which means experi-
mental data for any systems biology study is too 
sparse for downstream applications.

A recent effort pooled all experimental data 
across 12 crop species and Arabidopsis into bio-
logical MapMan categories to reveal that the per-
centage coverage of biological functions with 
experimental localizations in crops was similar to 
that observed in Arabidopsis (Schwacke et  al. 
2019; Hooper et  al. 2020). Thereafter, the inte-
grated data from the 12 crops increases coverage 
to >70% in most biological categories, showing 
that this can aid coverage of functional categories 
for less researched crops. However, the majority 
of data leading to this coverage derived from the 
well-researched species rice or maize and thus 
remains as valid as the two assumptions that (1) 
experimental error rates are small and that (2) 
subcellular locations are typically conserved. 
Since researchers often study proteins from the 
same compartments and functional categories in 
crops as well as Arabidopsis, gap-filling across 
species reaches a limit. To fill gaps beyond exper-
imental data, predictors are necessary to achieve 
complete subcellulome coverage. A variety of 
proteome-wide subcellular location predictors 
have been developed based on sequence proper-
ties (Shen et al. 2007; Chou and Shen 2010; Yu 
et  al. 2010). This includes various machine-
learning and pattern recognition approaches 
(Chou and Shen 2007), such as support vector 
machines (Hua and Sun 2001), k-nearest neigh-
bor (Horton et al. 2007), neural networks (Small 
et  al. 2004), and hidden Markov models (Lin 
et  al. 2011). Similar to different experimental 
techniques, these individual approaches have 
their own advantages and shortcomings in terms 
of the number of required features, the danger of 
over-fitting, and the ability to handle multiple 
optima. In order to improve accuracy, single 
machine-learning approaches have been stacked 
into multi-layer algorithms (Petsalaki et al. 2006; 
Pierleoni et al. 2006; Blum et al. 2009). Predictors 
typically derive their subcellular location calcu-
lations using protein sequence features, associ-
ated properties and/or gene ontology (GO) (Shen 

C. M. Hooper et al.



75

et  al. 2007), and curator annotations 
(Briesemeister et al. 2010). Thereafter, predictors 
based on protein sequence identify sequence pat-
terns in the primary protein sequence that target 
to individual organelles (Zybailov et  al. 2008; 
Blum et  al. 2009). Using similar or identical 
inputs, distinct machine-learning algorithms 
often yield different results that have shown a 
surprisingly poor overlap (Tanz and Small 2011). 
This variability is the main reason why experi-
mental data are still seen as the gold standard by 
most biologists despite the unresolved difficulties 
associated with the experimental approaches 
themselves (Millar et al. 2009).

For Arabidopsis, SUBA contains the subcel-
lular location outputs of 22 computational pre-
dictors including: AdaBoost (Niu et  al. 2008), 
ATP (Mitschke et al. 2009), BaCelLo (Pierleoni 
et  al. 2006), ChloroP 1.1 (Emanuelsson et  al. 
1999), EpiLoc (Brady and Shatkay 2008), 
iPSORT (Bannai et  al. 2002), MitoPred (Guda 
et al. 2004), MitoProt (Claros and Vincens 1996), 
MultiLoc2 (Blum et al. 2009), Nucleo (Hawkins 
et al. 2007), PCLR 0.9 (Schein et al. 2001), Plant-
mPLoc (Chou and Shen 2010), PProwler 1.2 
(Hawkins and Boden 2006), Predotar v1.03 
(Small et  al. 2004), PredSL (Petsalaki et  al. 
2006), PTS1 (Neuberger et  al. 2003), SLPFA 
(Tamura and Akutsu 2007), SLP-Local (Matsuda 
et al. 2005), SubLoc (Hua and Sun 2001), TargetP 
1.1 (Emanuelsson et  al. 2000), WoLF PSORT 
(Horton et  al. 2007), and YLoc (Briesemeister 
et al. 2010). For Arabidopsis, the targeting pre-
dictions were carried out on the full-length pro-
tein sequences obtained from TAIR10 (Lamesch 
et  al. 2012) or Ensembl plants (Kersey et  al. 
2018). The performance of the 22 predictors was 
tested on a high-confidence subcellular location 
reference data set (ASURE) that is accessible 
through SUBA4. The assessment of the predic-
tors indicated that for Arabidopsis some predic-
tors perform better for particular compartments 
and sometimes even better than experimental 
data. This is most visual for nuclear proteins 
where MultiLoc and Yloc outperformed unified 
contradicting MS and FP data (Fig. 4.3). In the 
years since their development, some of the above 
predictors have become unavailable. Hence, for 

cropPAL, the integration of only 11 out of 22 pre-
dictors was suitable or possible (Hooper et  al. 
2020). In total, predictive data sets in cropPAL 
span >6  million predictions, but for complete 
proteomes of all 12 species, only the six predic-
tors MultiLoc2, TargetP, Predotar, YLoc, iPSORT, 
and WolfPSORT were available. The perfor-
mance of predictors and experimental data in 
crop plants remains to be tested when data collec-
tions and high-confidence reference proteomes 
become available. However, a comparative anal-
ysis of crop experimental and predictive data to 
Arabidopsis suggests that the error rates of these 
methods in crops are similar to those seen in 
SUBA (Hooper et al. 2020).

4.2.3	 �An Objective Collation 
and Unification Strategy Can 
Resolve Varied and Conflicting 
Subcellular Location 
Information

Despite significant technological progress, errors 
in experimental data contribute to overlapping or 
contradicting data sets (Ito et  al. 2011; Elmore 
et  al. 2012; Nikolovski et  al. 2012). As experi-
mental data resources grow and the number of 
predictors increases so do the contradictions, and 
strategies are needed to integrate this multifac-
eted information. SUBAcon was developed to 
integrate the multi- and single-compartment pre-
dictor outputs with all available experimental 
data resources to generate an overall estimation 
of subcellular location for Arabidopsis proteins 
(Hooper et al. 2014).

SUBAcon uses FP and MS/MS data as a fea-
ture and determines the classification strength on 
their location calls when trained on a reference 
data set compared against other available local-
ization features. When searching for other bio-
logical data that can be used as features, 
association data has become a popular choice due 
to the “guilt by association” principle. 
Associations like protein–protein interaction 
(PPI) and transcript co-expression aid the identi-
fication of functional clusters within the pro-
teome. Considering that proteins in functional 
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pathways more often co-locate, the location of a 
PPI partner can be used as indirect experimental 
evidence for protein location. Co-expression and 
PPI-associated protein sets are known for con-
taining higher numbers of same-location protein 
groups than expected by random (Huh et  al. 
2003; Geisler-Lee et al. 2007). PPI data in par-
ticular have been suggested previously to be 
resources for predicting sub-cellular location of 
proteins in multiple eukaryotic species (Shin 
et al. 2009; Jiang and Wu 2012). Less is known 
about the true value of co-expression data for pre-
dicting co-location. These voluminous expres-
sion data sets have been used widely for 
predicting function (Stuart et  al. 2003; 
Heyndrickx and Vandepoele 2012) and are typi-

cally the largest data sets available for most spe-
cies. We showed that co-expression was useful to 
infer subcellular location for proteins with little 
experimental evidence, suggesting that such data 
alone can be highly informative for some com-
partments, rivaling sequence-based prediction 
(Hooper et al. 2014).

The lack of a single best method for inferring 
subcellular location has prompted using all avail-
able knowledge about proteins and is an attrac-
tive approach for forming a consensus view. 
Integrating a number of varied data sources has 
been used in yeast mitochondrial studies for 
some time, where this approach revealed promis-
ing new insights into genes involved in mito-
chondrial functions (Prokisch et  al. 2004). The 
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Fig. 4.3  Performance of individual predictors, experi-
mental data, and SUBAcon. The classification perfor-
mance of six top scoring separate component (lines with 
symbols) in SUBAcon was compared to the overall 
SUBAcon consensus classification using all components 
(gray fill). The comparison of performance indicator 
MCC indicates superior subcellular location classification 

of Arabidopsis proteins when all information was used. 
Individual components generally perform well for some 
compartments allowing choice of best predictor for target 
compartments for Arabidopsis proteins. FP fluorescent 
proteins, MCC Matthews correlation coefficient, MS mass 
spectrometry, PPI protein-protein interaction. (Figure 
modified from Hooper et al. 2014)
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strategy of SUBAcon was to unify FP, MS, PPI, 
co-expression, and prediction data objectively to 
have one output with the highest probability of 
being correct (Fig. 4.4). This generated a data set 
where one protein was assigned one location or a 
set of locations that can be used for downstream 
omics applications. SUBAcon integrated 22 
selected computational predictors into a two-
phase naive Bayes classifier, which equaled or 
surpassed the classification accuracy for most 
compartments in comparison to single predictors 
even before integrating subcellular proteomics 
data (Figs. 4.3 and 4.4). The assessment of single 
and stepwise integration confirmed that SUBAcon 
objectively weighs individual predictors and 

experimental data to assign proteins to a location 
(or locations) more accurately than any of the 
input predictors or data did separately (Hooper 
et al. 2014). The analysis also confirmed a strong 
influence of experimental data on classification 
outcome; high proportions of FP protein localiza-
tions (~78%) and MS data (~65%) agreed with 
the ASURE locations. In both methodologies, the 
proportion of location mismatches was 
compartment-specific (Fig.  4.3). Consequently, 
the ongoing collation of experimental localiza-
tion data will remain a key aspect of up-to-date 
classification by tools like SUBAcon.

In order to produce a classifier taking crop 
species-specific differences as well as error rates 

Fig. 4.4  The SUBAcon prediction and unification strat-
egy. The subcellular location information from 22 predic-
tors, fluorescent tagging, mass spectrometry, protein–protein 
interaction and co-expression (experimental data) and the 
ASURE standard was used to train a naive Bayes algorithm 
in two phases. Phase 1 (top) distinguished cytosol, mito-
chondrion, nucleus, peroxisome, and plastid from secretory 

proteins. Phase 2 (middle) used six secretory predictors and 
the experimental data to classify endoplasmic reticulum, 
extracellular, Golgi, plasma membrane and vacuole pro-
teins. The secretory classifications were combined with the 
phase 1 locations and present the final SUBAcon output 
(bottom). ASURE Arabidopsis Subcellular Reference stan-
dard. (Figure modified from Hooper et al. 2014)
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of methodologies into account, a cross-species 
gold standard not biased by experimental and 
homology inference like ASURE is essential. 
Such a gold standard does not yet exist for these 
crops. Therefore, within cropPAL, a winner-
takes-all (WTA) uniform location call was 
derived for each crop protein by vote-counting 
experimental locations and adding all predictors 
as one vote with each predictor a fraction of that 
vote (Hooper et al. 2020). This weights the final 
location call toward experimental locations when 
available and allowing predictors to gap-fill when 
not. When comparing the error rates, the accu-
racy of both, MS/MS and FP methodologies in 
the cropPAL collection, was comparable to that 
previously reported in Arabidopsis (Hooper et al. 
2014). As expected, FP localizations were overall 
more accurate (61–87%), while the accuracy of 
MS/MS data varied significantly with compart-
ment (22–85%). The overall accuracy of the crop 
WTA calls when compared to the inferred crop 
reference was estimated as greater than 67%, 
supporting the use of the voting system.

Using the WTA, individual species-specific 
subcellular protein distributions (subcellulomes) 
were generated that proved to be similar across 
crops and Arabidopsis. These data resources act 
as reference distributions of subcellular locations 
for proteins as well as biological categories in 
crops (Hooper et al. 2020) marking the beginning 
of detailed species-specific subcellulome cata-
logs backed by experimental data. Indeed, the 
study showed that while close evolutionary rela-
tionship between species is evident in the higher 
agreement of their subcellulomes, there was no 
obvious difference between monocot and dicot 
species. The current practice of using Arabidopsis 
data for dicot research versus rice for monocot 
research and arguing for species-specific differ-
ences is challenging. While most species agree 
substantially (60–80%) in their protein subcellu-
lar locations, the agreement is not equally distrib-
uted across biological functions. Underexplored 
subcellular divergence information was found in 
particular in metabolic categories. Metabolic 
diversification has been reported in a number 
pathways including enzymes of the amino acid 
metabolism (Schenck and Last 2020) as well as 

subcellular partitioning of effector or signaling 
proteins specific to tissues or metabolic changes 
upon stimuli (Powers et  al. 2019). On the pro-
teomics level, the differences between species are 
often subtle shifts in the distribution of a number 
of proteins with similar functions between two or 
more subcellular locations (Hooper et al. 2020). 
Such shifts are mainly due to alternative splice 
variants (ASV) or duplications of genes that are 
more likely to be retained if subcellularly diverse 
(Avelange-Macherel et al. 2018).

4.2.4	 �Subcellular Proteomics Data 
Resources in SUBA Have 
Contributed to Over 900 
Downstream Scientific 
Reports

SUBA has been cited more than 700 times aver-
aging 30 published studies per year (Fig. 4.2b). 
The subcellular proteomics data of SUBA has 
been more commonly used for exploring protein 
and gene functions and improving the interpreta-
tion of transcriptomics, proteomics, genetics, and 
bioinformatics data (Fig. 4.2c). The use of SUBA 
has reached beyond Arabidopsis showing appli-
cation in agricultural hypothesis formation 
around pressing questions in rice, barley, maize, 
soybean, and wheat biology (Fig. 4.2d).

In research, SUBA has contributed to the 
development of widely used organelle marker 
sets (Nelson et  al. 2007), protein family clone 
collections for functional genomics (Lao et  al. 
2014), as well as facilitated the functional eluci-
dation of protein families involved in plant 
growth regulation (Zentella et al. 2007). The lat-
ter resources and knowledge were used in over 
900 downstream studies. Over the last decade, 
SUBA has played a pivotal role in estimating 
plant cell energy budgets (Cheung et  al. 2013) 
and the costs of maintaining the plant proteome 
in different compartments (Li et al. 2017). In the 
context of systems biology approaches, knowl-
edge of proteome-wide subcellular locations is 
an important component for defining functional 
neighborhoods and deducing metabolic and sig-
naling networks within complex eukaryotic cells 
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(Waese et  al. 2017). It has also been used for 
exploring sugar metabolism networks in barley 
(Lunn et  al. 2014) and demonstrating sub-
functionalization of gene family expansions 
(Tanz et al. 2013b). This shaped our understand-
ing of the subcellular plant metabolism in order 
to resolve diurnal relationships of plant metabo-
lism (Furtauer et al. 2019) as well as contributed 
to increasing the resolution and accuracy of 
mathematical representations of plant cell and 
tissue metabolism during the last 5 years (Shi and 
Schwender 2016). The in silico estimation of 
organellar protein abundance (Hooper et  al. 
2017b) influenced concepts of subcellular pheno-
typing that helped achieve cultivar-specific dis-
crimination through rapid estimation of organellar 
differences (Schneider et al. 2019). The breath of 
work benefitting from SUBA highlights the 
importance of ongoing efforts in developing this 
central subcellular resource.

The smaller fraction of crop research using 
SUBA highlights the importance of improving 
the linkage of SUBA across species-specific bor-
ders as well as the need to improve linkage of 
comprehensive subcellular data collections for 
more crop species. The compendium of cropPAL 
begins to address this challenge across 12 crop 
species, and it has provided protein localization 
data since 2015. Right from the start, cropPAL 
the subcellular proteomics data contributed to the 
characterization of protein families across spe-
cies (Chen et al. 2016a) as well as to a high con-
fidence training set used for a novel plant and 
effector protein localization prediction algorithm 
(Sperschneider et al. 2017). Increasing awareness 
put cropPAL forward as a valuable resource for 
developing accurate proteomics pathways and 
network maps in economically important crops 
(Larrainzar and Wienkoop 2017).

SUBA and cropPAL also hold considerable 
contributions to molecular breeding concepts for 
increased crop quality and global food security. 
Highlights include the recent report listing the 
use of SUBA4 for unraveling crucial adaptation 
mechanisms for salinity tolerance in plants that 
provide promising genetic targets for engineering 
salt-resistant crops (Jiang et al. 2019) as well as 
the reviewed importance of SUBA resources for 

molecular biomarker identification for address-
ing a variety of diseases, yield quality and sus-
tainability challenges within the palm oil industry 
(Lau et al. 2018). It is particularly exciting to see 
the rising influence of cropPAL on agricultural 
breeding strategies including the identification of 
genetic breeding targets for improved mango 
peel features increasing the mango market value 
(Bajpai et  al. 2018) and the identification of 
molecular targets that expand flowering duration 
for increasing pollination opportunities and yield 
in rice (Chen et al. 2016b).

Tackling a serious global concern about nitro-
gen integration and protein increase in crops, 
SUBA4 was used in guiding the discovery of pro-
teins regulating the nitrogen metabolism in root 
nodules (Matamoros et al. 2018) while cropPAL 
was named one of the “key aspects that need to 
be strengthened in the future” considering the 
large number of proteins involved in nitrogen-
fixation efficiency (Larrainzar and Wienkoop 
2017). These resources will be crucial in the near 
future for unraveling the complexity of nitrate 
metabolism in plants with the aim to guide 
molecular breeding strategies toward securing 
nutrition of global food crops under changing 
environments.

4.2.5	 �The Collation and Integration 
of Arabidopsis Subcellular 
Proteomics Data Presents 
Opportunities for New 
Approaches for In Silico 
Analysis

Both SUBA and cropPAL subcellular data col-
lections are data warehouses publicly available 
through http://suba.live and http://crop-pal.org, 
respectively, that provide easy GUI-based data 
search and filtering functions. The web portals 
enable biologically meaningful subcellular loca-
tion annotations and integrations by APIs or 
focused list creation through the web query 
builder. Users do not need computational exper-
tise to mine the data sets for subcellular loca-
tions, methodology, protein properties, gene 
associations, authorship, or country of data ori-
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gin. In addition, the interface offers a BLAST 
function for scientists researching alternative 
crops that enables to link their sequence of inter-
est to the closest match in the SUBA or cropPAL 
data set. Within SUBA4, a separate toolbox exists 
that contains tools that allow immediate access 
and analysis of the core Arabidopsis subcellular 
location data in linkage to external user data 
sources. The toolbox currently offers the Multiple 
Marker Abundance Profiling tool (MMAP), the 
Co-expression Adjacency Tool (CAT), and the 
PPI Adjacency Tool (PAT). Each tool provides a 
unique link to the subcellular location consensus 
(SUBAcon).

For Arabidopsis, the co-expression data and 
PPI data sets were linked to the unified SUBAcon 
calls. The SUBAcon calls of each protein partner 
were joined and categorized into proximity rela-
tionships according to their biological interpreta-
tion, such as location within the same organelle, 
neighboring organelle, or distant organelles. The 
subcellular locations, proximity relationships, 
mutual rank and average correlation coefficient 
data allow user-lead prioritizing of strong asso-
ciations. With the CAT tool, the user can assess a 
list of proteins for their subcellular location in 
context with their gene expression association, 
allowing to discover potential relationships 
between proteins based on the vast amount of 
expression data available.

The PAT tool uses experimental evidence 
from 26,327 unique PPI and assigns subcellular 
location derived from SUBAcon to each protein. 
This allows the interpretation of protein associa-
tions in context of proteins proximity in the cell. 
Thereafter, proteins located within the same sub-
cellular compartment can interact and proteins on 
outer membranes or interfaces of one organelle 
can also interact with proteins from neighboring 
organelles. The PAT tool allows filtering for loca-
tion pairings to target specific organellar or inter-
organellar interactions for hypotheses formation 
around PPI networks that influence biological 
processes.

The newest showcase using the full range of 
proteomics integrated into subcellular proteomics 
is the MMAP tool (Hooper et al. 2017b). This tool 
can estimate the proportion of different subcellu-

lar protein structures in a user-provided list of 
Arabidopsis Gene Identifiers (AGIs). It is based 
on combining localization information from 
SUBA and quantitative MS observations of pro-
teins collated in the MASCP gator database (Joshi 
et al. 2011; Mann et al. 2013). While relative pro-
tein quantitation is possible using quantitative MS 
such approaches are expensive or moderately 
accurate (Thompson et al. 2003; Cox and Mann 
2008; Arike and Peil 2014; Christoforou et  al. 
2016). Using available quantitative tissue pro-
teome data indicates that such data can be stan-
dardized to achieve a more true representation of 
an Arabidopsis protein observation (Wang et  al. 
2012, 2015). In order to achieve a subcellular pro-
teome quantitation including low-abundance pro-
teins in specific organelles, data from over 100 
publications describing enriched subcellular pro-
teomes, organelles and protein complexes derived 
from public databases were added and normalized 
to an in silico protein abundance score (Sun et al. 
2009; Ferro et al. 2010; Hooper et al. 2017a). The 
novel way of using normalized protein abundance 
scores (NPAS) for 23,191 proteins contained 
2602 proteins that had not previously been scored, 
and it covers a total of 85% of the predicted 
Arabidopsis proteome (Wang et al. 2012).

The user can submit custom AGI lists to the 
MMAP tool and receive the number of distinct 
proteins per each organelle as well as an estimate 
of relative protein abundance composition com-
pared to expected subcellular abundances. The 
tool was developed because conventional meth-
ods for determining organellar abundance rely on 
a few marker proteins, which can be hit and miss 
considering the variety of biological conditions 
the data are derived from. A high-confidence sub-
cellular marker lists for Arabidopsis was gener-
ated using SUBAcon, which can gather a high 
probability list of proteins for each organelle. 
Extensive manual curation and cross-examination 
against experimental data verified these data for 
use in the in silico tool enabling ad hoc estimates 
of relative organelle abundance. Thereafter, the 
tool allows assessment of experimental data 
before committing to further experimentation. 
While the latter was the original aim of the devel-
opers, the tool offers additional opportunities for 
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subcellular proteomics to drive big data questions 
in the near future.

While the MMAP tool is relatively new and 
not yet widely applied, its function has been dem-
onstrated on data derived from Golgi (Parsons 
et  al. 2012), chloroplast (Zybailov et  al. 2008), 
and plasma membrane proteomes (de Michele 
et  al. 2016; Elmore et  al. 2012), where the tool 
output directly corresponds to the changes in 
organellar protein abundance measured by spec-
tral counting (Hooper et al. 2017b). The MMAP 
tool was able to retrospectively demonstrate pro-
gressive Golgi enrichment in silico equivalent to 
immunoblotting but was also able to show how 
other compartments were enriched or depleted at 
the same time without any further experimenta-
tion (Cox and Mann 2008). In better-known 
organelles, such as chloroplasts (Zybailov et  al. 
2008), the MMAP tool revealed that current plas-
tidial isolation procedures deplete all other organ-
elle fractions and only plastidial proteins enrich 
(Uberegui et al. 2015; Yin et al. 2015). Using the 
MMAP tool to compare two plasma membrane 
isolations demonstrated that the free-flow electro-
phoresis was better able to decrease the contami-
nation of plastid, Golgi, and mitochondria 
(Elmore et al. 2012; de Michele et al. 2016).

Using this tool, a cross analysis of all pro-
teomes in SUBA can be done very rapidly, show-
ing that mitochondrial, plastidial, and peroxisomal 
protein isolations are among the purest, whereas 
current plasma membrane, cytosol, and vacuole 
separation techniques cannot achieve the same 
purities (Fig.  4.5). The data also highlight the 
problem that attempts to detect low abundance 
proteins within organellar extractions lead to a 
near exponential increase in captured impurities.

One of the unexplored functions of subcellular 
proteomics and quantitative proteomics is its use 
in analyzing tissue proteomes and potentially 
proteomes from different biological conditions in 
terms of subcellular proteome shifts or relative 
subcellular structure abundances. Using the 
MMAP tool, the plasmodesmata proteome 
(Fernandez-Calvino et al. 2011) showed predom-
inance in the fraction of Golgi, vacuole, peroxi-
some, mitochondria, cytosolic, and plasma 
membrane compared to standard values allowing 

a superior analytical interpretation to the meth-
ods used by the authors in the study.

The MMAP tool allows the rapid generation of 
a holistic overview of relative organelle abun-
dance for different tissues (Fig. 4.6), the same tis-
sue following a treatment or environmental 
stimuli, or in mutant proteome phenotyping. Such 
analyses give an insight into how organelle pro-
portions relate to tissue function. Analysis of MS/
MS data from different tissues confirmed observed 
and biological relevant differences in organelles 
in cotyledons, leaf, root, and pollen tissues that 
would have taken considerable experimental 
efforts to otherwise confirm (Dunand et al. 2007; 
Grobei et al. 2009; Piques et al. 2009; Baerenfaller 
et al. 2011). The MMAP tool is open access and 
only requires a list of protein identifiers, thus a 
broad range of conditions can be queried beyond 
the ones listed above. It is yet to be seen how this 
tool can help interpret a variety of biological data 
including available proteomics, gene expression 
(Birnbaum et al. 2003) as well as protein turnover 
rate data (Li et al. 2012, 2017).
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Fig. 4.5  Subcellular proteomics purity for Arabidopsis 
preparations. Published organellar separations during the 
last 15  years were retrieved from SUBA4 (http://suba.
live). The lists of organellar proteins were loaded into the 
MMAP tool (http://suba.live/toolbox-app.html) and the 
obtained enrichment data was extrapolated to cover the 
whole protein list. Obtained fractions were graphed for 
each organelle as median bar showing purity of individual 
studies in dots. MMAP multiple marker abundance 
profiling
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4.3	 �Future Directions in the Field

Despite the reasonable coverage of subcellular 
proteomics in Arabidopsis, recent tools have pin-
pointed that there are large gaps in the analysis of 
subcellular proteomes that require specialized 
attention. This includes the nucleus where only 
22% of the proteome have experimental data 
attached to it, whereas more than 50% of the 
plastid and peroxisome proteins have been exper-
imentally observed. Similarly, when using the 
MMAP tool, the unknown proteins are generally 
low-expressed proteins that are not easy to mea-
sure by MS/MS or FP.  The organelle-specific 
coverage was reflected in the struggle to find 
enough markers for the MMAP lists (Hooper 
et al. 2017b). Only two data sets describing ER 
(Dunkley et al. 2006; Nikolovski et al. 2012) and 
five data sets describing Golgi or Trans-Golgi 
network enrichments exist (Dunkley et al. 2006; 
Drakakaki et  al. 2012; Parsons et  al. 2012; 
Nikolovski et al. 2014; Heard et al. 2015), com-
pared to over 30 plastidial and mitochondrial 
separations that are available in SUBA. Using the 
MMAP tool to assess the subproteomes has 
shown that we need to pay particular attention to 

the nuclear and ER proteomes, as they have the 
poorest coverage and a poor purity (Figs. 4.5 and 
4.6). Targeted subcellular proteome mapping 
may be a much-needed focus for generating more 
complete subcellular proteomes for these less 
covered organelles or low abundance protein 
families.

While Arabidopsis subcellular proteomics has 
developed a solid omics presence, for crops this 
field is only now emerging. This is reflected in 
the much lower experimental coverage of crop 
proteomes for subcellular location. Considering 
that subcellular location has been regarded as 
crucial for determining protein function and 
belonging to biological processes and pathways 
(Cook and Cristea 2019), this is surprising and 
unsatisfying. The recent development of 
SUBAcon for Arabidopsis and WTA for crops 
enabled to fill these gaps and generated large 
enough data sets to assess the conservation of 
subcellular locations across 12 crop species and 
Arabidopsis. Subcellular location divergence of 
proteins is species-specific and harbors unex-
plored potential for data-driven agricultural 
breeding strategies. An increased understanding 
of how the subcellular location differences influ-
ence plant metabolism would be beneficial for 
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designing breeding strategies toward more sus-
tainable varieties. Protein subcellular location 
shifts have shown to increase plant growth, bio-
synthesis of secondary metabolites relevant to 
industrial production and therapeutic application 
(Shen et  al. 2019) and comparable strategies in 
protein biosynthesis has the potential to achieve 
crop varieties with higher protein content in 
crops. Computational modeling approaches are 
emerging as a promising way to test current 
hypotheses around crop metabolic traits based on 
protein subcellular location shifts (Terasawa 
et al. 2016; Tabbita et al. 2017). However, such 
metabolic models currently rely on available sub-
cellular data (Vinga et al. 2010) mainly derived 
from Arabidopsis through SUBA (Mintz-Oron 
et  al. 2012). Other species data has been too 
sparse causing errors and redundancies in crop 
metabolic models resulting in the removal of 
potentially species-specific reactions (Seaver 
et  al. 2012). The growing subcellular location 
resources SUBA and cropPAL will be an exciting 
contribution to achieving a better species-specific 
representation of such models in the near future.
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Abstract

Metabolomics is a valuable approach used to 
acquire comprehensive information about the 
set of metabolites in a cell or tissue, enabling 
a functional screen of the cellular activities in 
biological systems. Although metabolomics 
provides a more immediate and dynamic pic-
ture of phenotypes in comparison to the other 
omics, it is also the most complicated to mea-
sure because no single analytical technology 
can capture the extraordinary complexity of 

metabolite diversity in terms of structure and 
physical properties. Metabolomics has been 
extensively employed for a wide range of 
applications in plant science, which will be 
described in detail in this chapter. Among 
them, metabolomics is used for discriminating 
patterns of plant responses to genetic and 
environmental perturbations, as diagnostics 
and prediction tool to elucidate the function of 
genes for important and complex agronomic 
traits in crop species, and flux measurements 
are used to dissect the structure and regulatory 
properties of metabolic networks.
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5.1	 �Introduction and Overview 
of Plant Metabolomics

Metabolism is a complex, dynamic and highly 
integrated network of pathways driving the pro-
cesses of assimilation, transport and chemical 
modification of small molecules. Its ultimate 
function is to maximize growth, survival and 
reproduction. Metabolites are organic com-
pounds with low molecular weight (<1500 Da), 
and their properties and functionality dictate the 
chemistry of life (Fiehn et al. 2000; Fiehn 2002; 
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Bino et al. 2004; Hall 2006). In the plant king-
dom, more than 200,000 metabolites have been 
estimated (Dixon and Strack 2003; Afendi et al. 
2012). These molecules are extremely diverse in 
their chemical structure and physical properties 
(e.g. polarity, volatility, size, and stability) and 
have a wide range of relative concentrations 
(Bino et al. 2004; Saito and Matsuda 2010; Jorge 
et al. 2016). In addition, plants possess a remark-
able degree of compartmentation within their 
cells (Lunn 2007; Sweetlove and Fernie 2013), 
and the physical separation of metabolic path-
ways enables incompatible reactions to occur 
simultaneously within one cell and also prevents 
metabolic imbalances. Altogether, these features 
make the study of plant metabolism particularly 
challenging (Fiehn et al. 2000; Fiehn 2002; Saito 
and Matsuda 2010).

Traditionally, metabolites were grouped as 
‘primary’ and ‘secondary’. Primary metabolites 
are compounds that play essential roles in basic 
cell metabolism (e.g. amino acids, nucleotides, 
sugars, and lipids) and are required for proper 
growth and development. These substances are 
directly involved in the processes of photosyn-
thesis, respiration, nutrient assimilation, and syn-
thesis of macromolecules (Sulpice and McKeown 
2015). Besides, plants have the ability to synthe-
size other compounds termed as ‘secondary’ or 
specialized metabolites, which were initially 
thought to be functionless end products of metab-
olism with no major significance for plant life 
(Pichersky and Gang 2000; Bourgaud et  al. 
2001). Also, unlike primary metabolites, which 
are found spread throughout the plant kingdom, 
secondary metabolites are often restricted to par-
ticular plant groups (Moore et al. 2014). However, 
many studies have demonstrated that secondary 
metabolites play crucial protective roles in the 
adaptation and survival of plants in different eco-
logical niches and environmental conditions such 
as defence against herbivores, pests and patho-
gens (Nakabayashi and Saito 2015; Tenenboim 
and Brotman 2016). Plant secondary metabolites 
are extremely heterogeneous and diverse in func-
tions, but can be divided into three major groups 
according to their biosynthetic pathways: ter-
penes and steroids, phenolics, and alkaloids 

(Harborne 1999). Although many metabolites 
were initially discovered through the study of 
discrete pathways, the metabolism operates as a 
systemic integrated network (Sweetlove et  al. 
2008; Stitt et  al. 2010a) and efforts have been 
directed to increase the understanding of meta-
bolic networks at a systems level.

The functions of metabolites are also corre-
lated with their abundance, which reflects the 
balance between their rates of synthesis and deg-
radation (Last et  al. 2007). Examples include 
metabolites such as sucrose that is the major 
product of photosynthesis, the systemic form of 
transport sugar, and a signal molecule that 
responds to internal and external environmental 
cues altering development and stress acclimation 
(Rolland et  al. 2006; Ruan 2014), compared to 
intermediates of the glycolytic pathway with low 
steady-state concentration and fast turnover rates 
(Lunn et  al. 2014). Interestingly, some metabo-
lites found in extremely low concentrations also 
play roles as critical signalling molecules modu-
lating plant growth, development, and physiol-
ogy. The levels of the sugar trehalose-6-phosphate 
(Tre6P), the intermediate of trehalose synthesis, 
act as a sensor of sucrose availability (Lunn et al. 
2006, 2014; Yadav et al. 2014) impacting embryo-
genesis, leaf growth and flowering (Lunn et  al. 
2014).

Metabolite levels not only fluctuate according 
to the diel cycle, developmental stage, and envi-
ronmental stimuli but also diverge between dif-
ferent organs, tissues and cells in a multicellular 
organism. It has been assumed that higher plants 
have about 40 distinct cell-types (e.g. trichomes, 
guard, xylem fibres, and parenchyma cells) 
(Martin et al. 2001; Misra et al. 2014) that exhibit 
different morphologies and play specialized 
functions in different plant organs. For example, 
a single leaf contains up to 15 different cell types 
(Martin et al. 2001), and each of them may dis-
play highly contrasting metabolite pools posing a 
difficult task to unbiased identify and quantify 
these small molecules (Bino et al. 2004; Hall and 
Hardy 2012).

Unlike DNA, transcripts, and proteins, metab-
olites are at the endpoint of the flow of genetic 
information and are considered as the nearest 
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molecular readout of the phenotype–genotype 
relationship in a biological system (Fiehn 2002; 
Hall 2006). With the advent of post-genomic era, 
functional genomic studies have been greatly 
accelerated with technological advances in data 
generation from multiple levels (i.e. DNA 
sequences, transcripts, proteins and metabolites) 
using new ‘omics’ tools. While the well-
established technologies for high-throughput 
DNA sequencing, gene expression analysis (tran-
scriptomics), and protein profiling (proteomics) 
have been routinely adopted and explored in the 
last decades, metabolomics has developed into a 
powerful and complementary analytical technol-
ogy for plant functional genomics in both basic 
and applied research (Fiehn 2002; Bino et  al. 
2004; Hall 2006; Roessner-Tunali 2007).

By definition, metabolomics aims an unbiased 
identification and quantification of all metabo-
lites in a complex biological sample in a particu-
lar experimental condition (Fiehn et  al. 2000; 
Fiehn 2002; Bino et  al. 2004; Hall 2006). This 
well-accepted definition has some relevant ques-
tions. First, similar to other omics, metabolomics 
could be assayed in any level of complexity, such 
as a whole organism, a specific organ, tissue, a 
suspension cultured cell lines or even a single cell 
or cellular compartment depending on the bio-
logical question in investigation (Fiehn 2002). 
This aspect reveals the great potential of plant 
metabolomics to dissect the physiological state in 
a specific biological context, exploring all the 
richness and complexity of these small molecules 
(Hall 2006). Also, compared to transcriptomics 
and proteomics, metabolomics has the great 
advantage to be assayed independently from the 
availability of previous genome or transcriptome 
data, opening new perspectives to use plant 
metabolomics to gain more insights about the 
regulation of metabolism on complex traits in 
non-model and crops species (Hall 2006; 
Watanabe et  al. 2018). Furthermore, metabolo-
mics is the only instrumental tool allowing the 
true measurement of fluxes, essential to a com-
prehensive understanding of metabolism 
(Nikoloski et  al. 2015; Allen 2016; Freund and 
Hegeman 2017).

Second, due to the dynamic nature of the 
metabolism, metabolomics experiments must be 
carefully planned and designed with respect to 
harvesting (e.g. sample type and size, pooling or 
not, replication, time scale) and sample prepara-
tion in order to obtain reliable and biologically 
relevant results. Some excellent literature are 
available to guide beginners in the field (Jenkins 
et al. 2004; Fiehn et al. 2007; Biais et al. 2012; 
Gibon and Rolin 2012; Hall and Hardy 2012; Lu 
et al. 2017).

Third, metabolomics is predicted to take a real 
picture of the total metabolic activities taking 
place in plants in a given experimental condition. 
However, practically, due to the myriad of metab-
olites with different physico-chemical properties, 
particularly for plants, no analytical method is 
able to simultaneously cover all the metabolites 
from a single extract (Fiehn et  al. 2000; Bino 
et  al. 2004; Hall 2006; Roessner-Tunali 2007; 
Hall and Hardy 2012). In this context, the field of 
plant metabolomics has greatly advanced with 
the development of multiple analytical 
approaches in parallel with the continuous 
increase in the plant metabolite databases to 
facilitate metabolite identification.

Basically, there are two general approaches to 
assess the overall metabolome: targeted and 
untargeted analyses (Fiehn 2002; Fernie 2003; 
Goodacre et al. 2004; Last et al. 2007). Targeted 
metabolomics allows an unbiased detection and 
quantification of a predefined set of known 
metabolites, usually applied to screen for selected 
compounds belonging to specific metabolic 
classes (Sawada et  al. 2009; Cajka and Fiehn 
2014). In contrast, untargeted metabolomics 
combines comprehensiveness with robustness to 
detect and quantify known and unidentified com-
ponents. Untargeted analysis has been applied to 
large-scale profiling studies aiming at the identi-
fication of metabolite patterns or ‘fingerprints’ to 
discriminate different plant species/cultivars and 
in response to perturbations without the need of a 
formal metabolite identification (Keurentjes et al. 
2006; Steinfath et al. 2010). In both targeted and 
untargeted strategies, coverage of detected 
metabolites and their obtained level of structural 
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information and quantification (e.g. absolute, 
relative or semi-quantitative) rely on the purpose 
of the study that will influence the choice of the 
most appropriate metabolite extraction and ana-
lytical platform (Hall 2006; Saito and Matsuda 
2010; Lei et al. 2011). A combination of targeted 
and untargeted metabolomics methods has been 
often used in the last years as a complementary 
strategy to address different biological questions 
in the same study (Last et al. 2007; Farag et al. 
2012; Cajka and Fiehn 2014).

Due to the inherent complexity of plant 
metabolism, no ‘silver bullet’ or single technol-
ogy is currently available to cover the full metab-
olome from a single sample. Technological 
developments in analytical methods to analyse 
highly complex mixtures have led to the estab-
lishment of two leading platforms applied to 
plant metabolomics research, namely nuclear 
magnetic resonance (NMR) spectroscopy and 
mass-spectrometry (MS), which can be coupled 
to gas (GC-MS, GC-NMR) or liquid (LC-MS or 
LC-NMR) chromatographic separation methods 
to improve resolution (Last et al. 2007; Kim et al. 
2011; Tenenboim and Brotman 2016; Jorge et al. 
2016). NMR-based metabolomics enables accu-
rate quantification of abundant metabolites and 
resolution of chemical structures with a high 
reproducibility and relatively short time 
(Verpoorte et al. 2007; Kim and Verpoorte 2010; 
Schripsema 2010; Kim et al. 2011; Markley et al. 
2017). Also, a great advantage is its simple sam-
ple preparation as metabolites can be measured 
directly from crude plant extracts or in  vivo 
(Markley et al. 2017). However, the major draw-
backs in NMR reside in its poor sensitivity and 
dynamic range of detection compared to MS, as 
well as problems related with superimposed 
spectrum signals that hamper the structural eluci-
dation process, limiting the numbers of metabo-
lites truly resolved (Kim et  al. 2011; Markley 
et al. 2017).

Unlike NMR, MS is by far the primary detec-
tion method of metabolomics, due to its higher 
sensitivity, accuracy, and speed to detect and 
identify a wide range of metabolites (Last et al. 
2007; Gika et  al. 2014; Aretz and Meierhofer 
2016; Haggarty and Burgess 2017). GC-MS has 

emerged as the gold-standard MS-based method 
for plant metabolite analysis due to numerous 
advantages compared to other analytical instru-
ments such as robust quantification of hundreds 
of naturally volatile metabolites (e.g. alcohols, 
esters and monoterpenes) as well as non-volatile 
and polar metabolites (mainly primary metabo-
lites), which can be converted into volatile and 
thermally stable compounds through derivatiza-
tion (Hall 2006). Furthermore, GC-MS has a 
superior reproducibility and high chromato-
graphic resolution over other analytical instru-
ments (Fernie 2003; Jorge et al. 2016) and allows 
the development of metabolite libraries (Schauer 
et al. 2005; Kopka et al. 2005; Kind et al. 2009). 
Compared to GC-MS, LC-MS is a most versatile 
technique able to detect a broader range of com-
pounds, being the preferred method of choice for 
targeted and untargeted analysis of secondary 
metabolites (Allwood and Goodacre 2010) or 
specific metabolite classes like phosphorylated 
compounds, which are less stable during the 
derivatization process required for GC-MS anal-
ysis (Hall 2006). Dedicated literature concerning 
pros and cons for each technology is available 
(Ward et  al. 2007; Gika et  al. 2014; Engskog 
et al. 2016; Aretz and Meierhofer 2016; Haggarty 
and Burgess 2017; Lu et al. 2017).

The choice of the analytical platform is a com-
promise and will be highly dependent on the bio-
logical question and availability of instruments or 
methods. However, metabolome coverage has 
greatly benefited from multiple analytical 
approaches (Marshall and Powers 2017) in paral-
lel with continuous increasing in the plant metab-
olite databases to facilitate metabolite 
identification.

5.2	 �Applications 
of Metabolomics in Plant 
Sciences

Throughout the substantial advances in metabo-
lomics, this technology has been extensively used 
as a cornerstone in systems biology to elucidate 
the link between genotype–phenotype in plants 
(Aretz and Meierhofer 2016). Deciphering bio-
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synthetic pathways, their regulation and interac-
tions are essential for understanding how plants 
respond to different sorts of perturbations (devel-
opmental, genetic or environmental). This is cru-
cial for functional genomics, metabolic 
engineering, and synthetic biology approaches 
aiming at the accumulation of specific products 
(e.g. pharmacologically relevant metabolites) as 
well as plants with higher vigour and biomass for 
food and fuels. In this section, we will illustrate 
some of the broad potential applicability of 
metabolomics in plant science.

5.2.1	 �Pattern Recognition 
and Discrimination

Due to their autotrophic nature, plants are 
dependent on the light period to perform photo-
synthesis and usually accumulate carbon 
reserves to support growth and metabolic activ-
ity during the night (Smith and Stitt 2007; Stitt 
et  al. 2010b). Time-resolved measurements of 
the metabolome along the diurnal cycle have 
been investigated in several species from algae 
to higher plants (Bénard et al. 2015; Hirth et al. 
2017), showing that the amplitude and timing of 
metabolic changes vary. Primary metabolite and 
lipid profiling in synchronized growing cells of 
Chlamydomonas reinhardtii revealed interest-
ing patterns along light and dark cycle: (1) most 
amino acids peak after 4  h of light coinciding 
with the commitment point of the cell cycle and 
(2) the turnover of membrane lipids (MGDG, 
SQDG and DGTS) is very distinctive from stor-
age lipids (TAG) (Jüppner et al. 2017). In addi-
tion, these authors identified some new lipid 
species for this model microalgae and pin-
pointed metabolic signatures that can be used as 
biomarkers for several phases of the cell cycle. 
Metabolic profiling in the CAM species Agave 
indicated some differences along the diel cycle 
in comparison to Arabidopsis, not only in malate 
and fumarate, organic acids related to the noc-
turnal CO2 fixation in CAM, but also in ascorbic 
acid known to play a role in redox signalling 
(Abraham et al. 2016).

Plants synthesize a plethora of value-added 
natural products with multiple applications to 
pharmaceutical, cosmetic, food, and agro-
chemical industries. Considering these bioac-
tive molecules, the diversity and 
characterization of compound classes have 
been explored with metabolomics not only in 
model species (Li et al. 2016), but also in citrus 
(Wang et al. 2017), peach (Monti et al. 2016), 
yam (Price et  al. 2017), pine (Meijón et  al. 
2016), wild grassland plants (French et  al. 
2018) and medicinal species (for review see 
Rai et  al. 2017). In an outstanding study, the 
analysis of 17-hydroxygeranyllinalool diter-
pene glycosides in 35 solanaceous species 
identified 105 novel metabolites restricted to 
genera Nicotiana, Capsicum, and Lycium, indi-
cating the potential of metabolomics to differ-
entiate among species (Heiling et  al. 2016). 
This work give evidence that MS metabolo-
mics can be employed to evaluate phylogenetic 
occurrence of many secondary metabolic 
pathways.

With respect to the production of renewable 
fuels, algal biodiesel holds considerable promise 
to meet future energy demands. Microalgae have 
much faster growth rates than crops and are able 
to accumulate enormous amounts of lipids (from 
20% to 40% of dry weight), mainly in the form of 
TAGs (Scranton et al. 2015; Wase et al. 2017). A 
vast collection of recent literature using metabo-
lomics to identify lipid species in microalgae and 
evaluate factors influencing lipid accumulation is 
available (Yao et  al. 2015; Bromke et  al. 2015; 
Chen et  al. 2017; Matich et  al. 2018; Piligaev 
et al. 2018; Yang et al. 2018). A current challenge 
is to promote TAG accumulation and storage 
without penalties on biomass. GC-MS analysis 
of lipids and primary metabolites was utilized to 
test the effect of selected molecules from a high-
throughput chemical genetics screening aiming 
to identify lipid-activating compounds in C. rein-
hardtii (Wase et al. 2017). These authors verified 
distinct metabolic response to five compounds 
that promoted TAG accumulation, four of them 
without decreasing galactolipids and their effi-
cacy was also proved in three other algal species. 
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This example illustrates the value of metabolo-
mics in assessing the response of plants to 
chemicals.

Metabolomics is also incredibly useful to rec-
ognize a wide range of other patterns that were 
not mentioned in this section, such as metabolic 
responses along plant development (Wang et al. 
2016; Czedik-Eysenberg et  al. 2016; Watanabe 
et  al. 2018) and under stressful conditions that 
restrict growth (Obata and Fernie 2012; Arbona 
and Gomez-Cadenas 2016; Jorge et  al. 2016). 
The latter has a huge impact on agriculture due to 
the identification of markers for increased stress 
tolerance.

5.2.2	 �Functional Genomics

Mutants and transgenic lines are excellent tools 
to determine gene function in plant morphology, 
biochemistry, and physiology. Metabolomics is 
very powerful to distinguish among genotypes 
even in the absence of growth phenotypes 
(Fukushima et  al. 2014b), boosting functional 
readouts in comparison to classical chemical or 
genetic screens evaluating growth responses. 
Therefore, it is routinely employed for character-
izing mutants and genetically modified (GM) 
lines.

Arabidopsis thaliana was the first plant 
genome to be completely sequenced, and 
although there are vast genetic resources for this 
species, only about 12% of gene function assign-
ments were based on in  vivo characterization 
(Rhee and Mutwil 2014). T-DNA sequence-
indexed mutant collections have enabled allele 
coverage for most Arabidopsis genes (O’Malley 
et al. 2015), serving as basis for both forward and 
reverse genetic strategies. Metabolomics has 
been employed to determine the metabolomes of 
several lines containing T-DNA insertions in 
genes of unknown functions. A combination of 
various analytical platforms (including LC-MS, 
CE-MS, UHPLC-QTOF-MS, and GC–TOF-MS) 
was used to analyse 69 mutants, ensuring detec-
tion of important metabolic alterations and cre-
ation of a public database (Quanbeck et al. 2012). 
In a recent work, Monne et al. (2018) have bio-

chemically characterized the properties of recom-
binant mitochondrial carriers previously thought 
to be uncoupling proteins 1 and 2, and detected 
their ability to transport amino acids. GC-MS 
metabolite profiling in T-DNA insertion mutants 
confirmed massive changes in organic and amino 
acids, enabling to assign a new function for these 
proteins as aspartate and glutamate transporters.

The combination of multiple analytical plat-
forms revealed minimal or no clear metabolic dif-
ferences between conventional and GM lines of 
tomato (Kusano et al. 2011) and soybean (Kusano 
et al. 2015), respectively, showing that metabolo-
mics is also valuable to analyse risk assessment 
of GM crops.

5.2.3	 �Metabolomics as a Prediction 
Tool

Improving crop productivity has been a major 
issue concerning growing world population and 
climate change (White et al. 2016; van der Kooi 
et al. 2016; Shih et al. 2016; Altieri and Nicholls 
2017; Frieler et  al. 2017). As the composite of 
metabolic reactions represent the outcome of 
determinant genes generating the phenotype, 
metabolomics has contributed to improve the 
understanding of the genetic architecture and the 
key elements underlying biological functions and 
agronomic traits (Kumar et al. 2017). Attributes 
such as quality, shelf life, biomass production, 
yield, and resistance to diseases are controlled by 
multiple genes, and their genomic regions are 
known as quantitative trait loci (QTLs) (Collard 
et al. 2005). QTL mapping reveals the localiza-
tion of loci, enabling the identification of coregu-
lated compounds in naturally variable phenotypes 
(Keurentjes et al. 2006), with specific impact on 
crop breeding. However, many traits are con-
trolled by a large number of QTLs (Bernardo 
2008; Xu and Crouch 2008), which also have 
strong interactions with the environment. 
Metabolomics has greatly assisted genetic analy-
ses to clarify the relationship between genetic 
and biochemical bases of plant metabolism 
(Fernie and Tohge 2017), serving as a tool to 
increase breeding efficiency. The pioneer works 
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on metabolite-based QTL (mQTL) were per-
formed with Arabidopsis (Meyer et  al. 2007, 
2010; Lisec et  al. 2008, 2009) and tomato 
(Schauer et al. 2006), aiming to predict biomass 
production. These works opened new perspec-
tives for using metabolites as biomarkers for 
accurate estimation of plant performance based 
on parental information (for review see Fernandez 
et al. 2016), and since then, several studies in rice 
(Matsuda et  al. 2012; Dan et  al. 2016), potato 
(Sprenger et  al. 2017), tomato (Quadrana et  al. 
2014; Toubiana et  al. 2015), wheat (Hill et  al. 
2015), and other crops have been conducted. In 
general, those works provide hints on heritable 
mechanisms affecting the levels of metabolites, 
show that various mQTLs have a strong influence 
on metabolite levels and pinpoint mQTL hotspots, 
suggesting that modification of small genomic 
regions could control the metabolic status. 
Depending on the density of the genetic map, it is 
even possible to identify candidate genes involved 
in particular pathways. Gong et  al. (2013) suc-
cessfully assigned the function of genes to many 
mQTLs related to flavonoid metabolism and 
other mQTLs of unknown functions in rice. 
Moreover, they performed functional character-
ization of three candidate genes confirming their 
relationship to the accumulation of the corre-
sponding metabolites and could also reconstruct 
some metabolic pathways.

High-throughput genotyping technologies 
have revolutionized genome-wide association 
studies (GWAS), another method suitable for 
mapping the loci responsible for natural varia-
tions in a phenotype of interest. GWAS focus on 
the identification of significantly associated 
genetic polymorphisms in a large population and 
has some advantages in comparison to traditional 
QTL mapping (Korte and Farlow 2013). 
Metabolomics has also been combined with 
GWAS originating high-resolution maps of 
genomic regions related with metabolite varia-
tion (Luo 2015; Fernie and Tohge 2017). A com-
prehensive study of maize kernel metabolism 
combined metabolomics analysis by LC-MS/MS 
and GWAS in an association panel in different 
locations (Wen et al. 2014). The results made it 
possible to verify and update the annotation of 

many maize genes through the identification of 
novel metabolites and genes involved in the for-
mation of phenolamides and flavonoids, and also 
to explore biomarkers for kernel weight. Other 
few recent examples are (1) evaluation of metab-
olites in maize roots and identification and vali-
dation of a terpene synthase gene that plays a role 
in antifungal defence (Ding et al. 2017) and (2) 
discovery of candidate genes contributing to ste-
roidal glycoalkaloid and flavonoid metabolism in 
tomato fruit along domestication, with some of 
the genes annotated and characterized (Zhu et al. 
2018).

Metabolomics has also been employed solely 
to investigate the relationship between biochemi-
cal characteristics and geographic origins, geno-
typic characteristics and morphological traits in 
seeds of 100 cultivars of japonica and indica rice 
(Hu et al. 2014). Non-targeted UHPLC-MS/MS 
and GC-MS revealed opposite abundance of 
some metabolites (e.g. asparagine and alanine) 
between japonica and indica cultivars, suggest-
ing different strategies for nitrogen utilization in 
rice seeds. Few significantly different metabolite 
and morphological trait correlations between the 
two subgroups indicated that they tend to be 
subspecies-specific (Hu et  al. 2014). Another 
study in a panel of sorghum breeding lines deter-
mined associations between metabolites in leaves 
and morpho-physiological traits, revealing that 
chlorogenic and shikimic acids are related to 
photosynthesis, initial plant growth, and final 
biomass (Turner et al. 2016). Together, the above-
mentioned studies are examples of the building 
bases for ameliorating agronomic traits in crops.

5.2.4	 �Flux Analysis

Although steady-state measurements of metab-
olites are very valuable for giving a general 
overview of metabolic alterations in response to 
a defined perturbation, they do not provide 
detailed information about flux distributions. 
Therefore, conventional metabolomics and flux 
analysis are complementary approaches for 
characterizing the plant metabolic network. 
Metabolic reactions are catalysed by enzymes 
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and depend on the concentration of substrate 
and end products. On another hand, metabolites 
can regulate enzyme activity at several levels, 
from allosteric to transcriptional regulation 
(Wegner et al. 2015). A large number of metabo-
lites are intermediates of branched and circular 
metabolic pathways, and frequently metabolite 
levels and enzyme activities have only poor cor-
relations with transcripts or proteins (Gibon 
et al. 2004; Piques et al. 2009; Stitt and Gibon 
2014), which also do not correlate with fluxes 
(Fernie and Stitt 2012; Schwender et al. 2014). 
Those findings place posttranslational modifica-
tions of enzymes as regulatory events integrat-
ing signalling, gene expression, and metabolism 
(Grabsztunowicz et  al. 2017; O’Leary and 
Plaxton 2017).

Fluxes are challenging to determine because 
no simple methodology is able to follow the 
dynamic rate of metabolite interconversions or 
the intracellular activity of multiple enzymes 
(Kruger and Ratcliffe 2015). Flux analyses 
make it possible to determine metabolic path-
ways that are actively operating and how their 
activity is coordinated with additional pathways 
to establish a balanced network (Nikoloski et al. 
2015). This information can be used to estimate 
optimal configuration for a network and fluxes 
for the production of interesting end-products 
(Farre et al. 2014). The measurement of metab-
olome-wide fluxes is an emerging field contrib-
uting to a more integrated output of cellular 
function (Salon et al. 2017).

The use of isotope labelling with radioactive 
or stable isotopes is a classical biochemical 
technique for measuring intracellular fluxes 
(Freund and Hegeman 2017) and is known as 
metabolic flux analysis (MFA). Briefly, MFA 
consists of monitoring the redistribution of the 
labelled compound in a large number of metab-
olites using MS or NMR, building a model of 
the network, fitting the model to the MS or 
NMR data in order to obtain a set of fluxes, and 
extensive statistics to evaluate the reliability of 
the estimated flux (Kruger et  al. 2012; Kruger 
and Ratcliffe 2015; Allen et  al. 2015; Salon 
et al. 2017). MS enables resolving fragments or 
complete isotopic composition of a metabolite, 
whereas NMR allows to measure positional 

labelling information. It is worthwhile mention-
ing that some elements must be taken into con-
sideration when performing this sort of 
experiment, involving the labelling magnitude 
of the precursor substrate molecule through the 
system, the size of the metabolite pool and the 
conversion rate of the precursor substrate into 
the metabolite (Nikoloski et al. 2015). In the last 
years, various protocols to perform MFA in 
plants have been described (Cocuron and Alonso 
2014; Heise et al. 2014; Tivendale et al. 2016; 
Dethloff et  al. 2017; Obata et  al. 2017; Acket 
et  al. 2017). Stable isotope-labelling experi-
ments with 13C-pyruvate, 13C-glutamate and 
15N-ammonium were used to evaluate a switch 
of the tricarboxylic acid cycle to a noncyclic 
operation mode under hypoxia in soybean 
(António et  al. 2016). The monitoring of label 
redistribution with GC-TOF-MS showed that 
metabolic alterations were independent from 
the supply of isotope-labelled substrate and 
accumulation of alanine, GABA, and succinate 
occur due to activation of alanine metabolism 
and GABA shunt.

The other approach typically used to esti-
mate fluxes is a constraint model combining 
genomic information and biochemical data to 
predict metabolic fluxes through the network, 
namely flux balance analysis (FBA). As FBA 
demands fewer measurements, it is often easier 
to implement than MFA (Kruger and Ratcliffe 
2015). FBA is frequently employed to predict 
fluxes to maximize biomass production or min-
imize energy consumption (Colombie et  al. 
2015; Yuan et al. 2016), and substantial prog-
ress in plant metabolic modelling has been 
achieved in recent years (Shi and Schwender 
2016). The power of FBA prediction was con-
firmed comparing flux profiles between guard 
and mesophyll leaf cells. Modelling predicted 
a C4-like metabolism in guard cells (due to 
higher anaplerotic CO2 fixation into oxaloace-
tate) and higher fluxes through sucrose synthe-
sis as a result of a futile cycle, which could be 
confirmed with a 13C-labelling experiment 
using isolated mesophyll and guard cells 
(Robaina-Estévez et al. 2017). This study dem-
onstrates the application of FBA to investigate 
different cellular types.
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5.2.5	 �Integration with Other Omics

The integration of metabolomics with other high-
throughput technologies permits a more holistic 
view of biological phenomena, as exemplified by 
the mQTL and GWAS studies above mentioned. 
Another case is the investigation of transcripts and 
metabolites in duckweed, the smallest and fastest 
growing aquatic flowering plants, aimed at eluci-
dating the phenotype of starch accumulation under 
nitrogen starvation. Duckweeds are able to accu-
mulate impressive amounts of starch, evidencing 
their potential for bioethanol production (Xu et al. 
2011; Cui and Cheng 2015; Fujita et  al. 2016). 
RNASeq analysis hypothesized more partitioning 
into starch due to the up-regulation of enzymes 
involved in gluconeogenesis and down-regulation 
of glycolysis, as well as alterations in genes coding 
for enzymes of starch and sucrose synthesis (Yu 
et al. 2017). Metabolite profiling by LC-MS/MS 
confirmed higher ADP-glucose and lower UDP-
glucose amounts, substrates for starch and sucrose 
synthesis, respectively, and enzymatic activity of 
the enzymes producing these substrates was also 
in agreement with transcript and metabolic data. 
Only due to the integration of the different infor-
mation levels, it was possible to confirm that the 
increased starch content was a consequence of 
increased output from gluconeogenesis and TCA 
pathways (Yu et al. 2017).

By combining photosynthetic rate, measure-
ments of metabolites, transcripts and proteins, 
polysome loading and growth analysis, it was 
possible to achieve a systemic response of metab-
olism and growth after a shift to higher irradiance 
in the non-saturating range for photosynthesis in 
the algal C. reinhardtii (Mettler et al. 2014). This 
temporal analysis revealed an initial increase in 
photosynthesis prior to stimulation of growth to 
match increased carbon fixation, and higher met-
abolic fluxes leading to accumulation of meta-
bolic intermediates and starch. Transcriptional 
and posttranscriptional regulation were found to 
be important after primary changes in metabo-
lites, leading to alterations in the abundance of 
particular proteins, which also brought about 
subsequently changes in the levels of metabo-
lites. This is an outstanding work showing that 
the different levels of information present very 

distinct temporal kinetics, and are orchestrated to 
ensure fast readjustment of metabolism in a fluc-
tuating light environment.

Usually, the integration of data from two 
system-levels is primarily made on simple 
correlations methods (Rajasundaram and Selbig 
2016). However, several statistical methods and 
tools are available for network visualization, 
pathway analyses, genome-scale metabolic 
reconstruction and integration of multidimen-
sional data (Rohn et al. 2012; Bartel et al. 2013; 
Fukushima et  al. 2014a; Villaveces et  al. 2015; 
Bersanelli et  al. 2016; Sajitz-Hermstein et  al. 
2016; Schwahn et al. 2017; Therrien-Laperrière 
et al. 2017; Robaina-Estevez and Nikoloski 2017; 
Basu et al. 2017).

The use of biological networks for integrative 
analysis offers new directions to identify how 
large networks are coregulated. More recently, 
integrative approaches were shown to provide 
systemic views of plant defence against insects 
(Barah and Bones 2015), secondary wall forma-
tion (Li et al. 2016), structure and regulation of 
metabolic pathways (Tohge et al. 2015), hormone 
signalling (Yoshida et al. 2015), and single cells 
(Colomé-Tatché and Theis 2018). The integra-
tion of multi-omics data has expanded the mech-
anistic comprehension of plant metabolism and 
function.

5.3	 �Final Considerations 
and Future Perspectives

Since the appearance of metabolomics almost 
two decades ago, higher resolution analytical 
platforms and their use in combination have 
enabled the detection of hundreds of metabolic 
features within a complex biological sample. 
However, a significant portion of these detected 
peaks usually cannot be identified, hindering the 
accomplishment of a complete metabolome. The 
elucidation of new metabolites is still very labori-
ous and remains an enormous challenge. Serial 
combination of columns in tandem and column 
switching are means to improve metabolome 
coverage. In addition to the technological 
advances, efforts in sharing reference compounds 
and organization of metabolite spectral signa-
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tures in public libraries, as well as standardiza-
tion of protocols to report metabolite data will 
definitely increase identification confidence and 
take a leap forward in the use of metabolomics as 
discovery tool.

Another bottleneck in metabolomics is 
highly compartmentalization of plant metabo-
lism with a range of biochemical steps in a 
single pathway taking place in different cellu-
lar organelles and/or being catalysed by iso-
forms of enzymes at different subcellular 
locations. Strategies to track spatial distribu-
tion of metabolites and proteins include isola-
tion or organelles, fractionation techniques, 
immunohistochemistry and the powerful flux 
analyses, which has increased the understand-
ing about how metabolic pathways are inte-
grated. These approaches together with natural 
variation might unravel crucial metabolic mod-
ules contributing for efficient manipulation of 
plant metabolism via metabolic engineering.

There is a growing interest in using metabolo-
mics for a wide range of biological targets, and 
although it has still some limitations, metabolo-
mics use alone or combined with other omics 
technologies is revolutionizing plant biology and 
crop breeding providing new insights into genetic 
regulation of metabolism, cellular function and 
the structure of metabolic networks.
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Abstract

Any part of the Central Dogma of Molecular 
Biology (DNA replication, transcription, and 
translation) is based on an intricate protein–
protein interaction. On this chapter, we will 
navigate over the techniques that enable us to 
construct or fulfill the gaps on an interactome 
study, directly using assessment of the bio-
chemical and/or molecular machinery that 
allow two proteins to interact with each 
other; or rely on computational biology tech-
niques to gather information on PPI from 
public available databases and evaluate this 
interaction.
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6.1	 �Introduction

The intricate machinery that sustains all living 
forms is built upon a large well lubricated net-
work of interaction among different biochemical 
entities, specially, relying on the protein–protein 
interactions (PPI). Proteins on their course of 
action, hardly ever act as a lone wolf since their 
functions tend to be regulated by other proteins to 
properly achieve its goal.

Protein–protein interactions are the central 
controller to all biological processes and its rev-
elation provide the basis to comprehend biology 
as an integrated system. Michael Cusick, on his 
2005 manuscript entitled “Interactome: gateway 
into systems biology,” states that “the full inter-
actome network is the complete collection of all 
physical protein–protein interactions that can 
take place within a cell.”

The interactome is the next big step for System 
Biology, after massive worldwide effort for DNA, 
RNAs, and proteins sequencing and subsequent 
gene annotation for many model and non-model 
organisms. The PPI from a specific cell or organ 
unravel the roles of each interactor on a signal 
transduction pathway, improving the discover, 
quantification and new biochemical targets for 
biotechnology.
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6.2	 �Molecular Technologies 
for Protein–Protein 
Interactions (PPI) 
Identification

The plant cell requires a tight coordination of 
protein expression, assembly, modification, 
aggregation into complexes and subcellular 
localization, in order to properly function. 
Therefore, it is important to know how proteins 
work to fully understand how a plant cell works. 
In addition, as proteins mostly act gathered in 
complexes rather than isolated, it is critical to 
understand how proteins interact inside these 
complexes. What keep proteins together in the 
macromolecular complexes are protein–protein 
interactions (PPI). Such interactions are crucial 
for the maintenance of the cell as a working unity 
in every plant tissue. The PPI study also helps to 
elucidate protein cellular localization, which is 
also relevant to understand protein function. That 
is why the PPI study provides insights about cell 
physiology.

PPI can be investigated through many differ-
ent technologies, used to discover, to confirm or 
to characterize PPIs and analyze protein proxim-
ity on a molecular level in plants. Some tech-
niques are tailored to investigate protein 
interactions on a binary level or on a multicom-
plex level with high accuracy. Others allow PPI 
investigation by imaging living cells or protein 
complexes, using organisms, purified proteins 
and cell lysates. There are techniques better 
suited for PPI screening, while other methods are 
convenient for confirming PPIs. Before starting a 
full set of experiments to analyze a specific PPI, 
a few issues should be considered to avoid both 
false positive and false negative interactions. 
Meticulously experiment planning is critical and 
it is advised to combine at least two different 
independent molecular methods in PPI analysis 
(Braun et al. 2013; Hayes et al. 2016). Besides, 
for already known PPIs, information regarding 
the binding affinity of the proteins involved in an 
interaction is useful (Perkins et al. 2010). It also 
helps on the experiment design when there is 
prior knowledge about binding domains of the 
interacting proteins (Keskin et  al. 2016) and 

about subcellular location where proteins interact 
(Hayes et al. 2016). To help designing PPI analy-
sis in plants, a brief description of the most well-
established molecular technologies used to study 
protein interactions in plants is shown thereupon, 
as well as some examples of these technologies 
applied on plant PPIs analysis.

6.2.1	 �Yeast Two Hybrid (Y2H)

Y2H might be the most popular technique to 
investigate PPI and for many scientists this is the 
starting point for PPI studies. This in vivo method 
is based on the direct interaction between two 
proteins fused to halves of a transcription factor 
inside yeast nucleus, which reconstructs a tran-
scription factor that expresses a reporter gene. 
This reporter gene is in charge of yeast survival 
on selective media (Fields and Song 1989). There 
are many versions of this technique (Bruckner 
et al. 2009; White 1996), but Y2H general prin-
ciple is quite simple. A transcription factor split 
in two halves: one half is a DNA-binding domain 
(DB), that allows DNA binding (called bait), and 
the second half is a transcriptional activation 
domain (AD), that activates the gene reporter 
expression (called prey). The transcription of the 
reporter gene allows yeast to grow in a selective 
media (Ito et al. 2001) only when a given pair of 
proteins fused to bait and prey halves physically 
interact. Y2H is often used as a screening method 
to start searching for PPI. This method is suitable 
because it is easy to operate and inexpensive, 
ideal to start screening PPIs (Braun et al. 2013). 
Y2H has several limitations, like generate false 
positive PPIs. Because the candidate interacting 
proteins should be expressed in yeast nucleus, 
Y2H might detect interactions between proteins 
unnaturally co-localized. Also, Y2H might fail to 
identify interactions involving proteins requiring 
post-translational modifications, proteins with 
transient interactions or proteins expressed and 
or active on the membrane (Braun et al. 2009). 
That is why Y2H is a technique to be applied in 
combination with other PPI detection technolo-
gies. In plants, there are many examples of PPI 
analysis done using Y2H. The first plant interac-
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tome, the Arabidopsis Interactome 1 (AI-1), was 
completed using Y2H and shows around 6200 
interactions among 2700 proteins, approximately 
(Arabidopsis Interactome Mapping 2011). In 
tomato, Y2H was used to examine the interac-
tions of ABA signaling core components (Chen 
et al. 2016). In tobacco, Y2H assays showed the 
role of 14-3-3 isoforms in plant signaling by 
mapping the interaction between protein 14-3-3 
and enzyme sucrose-6-phosphate synthase (SPS) 
(Bornke 2005; Ferro and Trabalzini 2013).

6.2.2	 �Pull-Down

Pull-down assays are widely used for PPI detec-
tion and/or confirmation. This in vitro technique 
is based on affinity purification, similarly to co-
immunoprecipitation (Co-IP). The difference 
between them is, while Co-IP uses antibodies 
fused to known proteins, pull-down uses tags 
fused to known proteins. In pull-down experi-
ments, a known protein is expressed in cells with 
a tag (called bait). This fused protein is immobi-
lized to an affinity matrix specifically compatible 
with this tag. The interacting candidate proteins 
(called preys) are trapped in a protein complex 
attached to matrix. After a few purification steps, 
this protein complex is eluted and ready to analy-
sis on SDS-PAGE and western blot or mass spec-
trometry (Louche et al. 2017). The bait proteins 
can come from various sources, such as cell 
lysate, expression systems or purified. That is 
also true for the prey proteins, depending on the 
purpose of the pull-down assay, which could be 
PPI identification or characterization of a known 
PPI. A crucial step in a pull-down assay prepara-
tion is the choice of a tag. Since the tag is going 
to act as the link between the specific affinity 
matrix and the protein complex, aspects such as 
size and polarity of a tag before expressing the 
bait fused protein must be considered. The gluta-
thione S-transferase (GST) tag has affinity for 
glutathione-based matrixes. GST tags are signifi-
cantly large (26 kDa), expensive, and can interact 
in a nonspecific fashion. An extensively used tag 
is the histidine (His) tag. This tag is made of six 
histidine amino acid residues and has a high 

affinity for nickel-based resins, such Ni-NTA 
agarose. This is a small tag (1.1 kDa), unlikely to 
affect the bait protein folding and it is inexpen-
sive. Even though pull-down is a good method to 
study PPI in complexes, this might not be the best 
approach to investigate transient PPIs. An exam-
ple of pull-down assays use in plants comes from 
rice RING UB E3 ligase (OsSIRP2), whose gene 
is upregulated under abiotic stress conditions 
(i.e., salinity stress). E3 ligase was shown to 
interact with TRANSKETOLASE 1 (OsTKL1) 
under salinity conditions and to increase OsTKL1 
degradation (Chapagain et  al. 2017). Pull-down 
experiments were also done to confirm interac-
tions between JASMONATE ZIM DOMAIN 
(JAZ) protein and NOVEL INTERACTOR OF 
JAZ (NINJA) transcriptional repressor in jasmo-
nate responses (Pauwels et al. 2010).

6.2.3	 �Co-immunoprecipitation 
(Co-IP)

This technique is another in vitro method based 
on affinity purification for PPI analysis in a larger 
scale on protein complexes. Co-IP is generally 
used for PPI confirmation and/or characterization 
(Dwane and Kiely 2011; Hayes et al. 2016; Rao 
et  al. 2014). Similarly to the pull-down mecha-
nism, Co-IP assays are based on a known protein 
(called bait), with which other proteins in a com-
plex (called prey) interact. The complex is iso-
lated due to the connection between the bait 
protein and a specific antibody. For Co-IP, whole 
cell lysates can be used as a starting point, as well 
as purified proteins. The protein complex detected 
due to the antibody specific connection can be 
immobilized in a matrix, isolated, eluted and ana-
lyzed by western blot or mass spectrometry. 
Because this method allows the use of cell lysate, 
Co-IP is a suitable approach for proteins bearing 
post-translational modifications and is also indi-
cated to analyze endogenous proteins (Rao et al. 
2014). Besides, Co-IP can evaluate proteins PPIs 
in their native conformation and it is relatively 
inexpensive. A great disadvantage of Co-IP for 
plant studies is the fact that it is a technique based 
on the use of antibodies, since there is little vari-
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ety of antibodies for plant proteins (Braun et al. 
2013). Also, Co-IP produces background and 
false positives, requiring careful planning and 
use of negative controls (Braun et  al. 2013; 
Ransone 1995). Transient PPI are challenging to 
be detected using Co-IP.  In Arabidopsis, Co-IP 
assays were used to expose the interactions of 
EFR receptor kinases triggered by innate immu-
nity responses (Roux et al. 2011). Recently, the 
interaction between PROTEIN TARGETING TO 
STARCH (PTST) PTST2 and PTST3 with 
STARCH SYNTHASE4 (SS4) was shown to be 
related to starch granule initiation regulation in 
Arabidopsis leaves (Seung et al. 2017).

6.2.4	 �Tandem Affinity Purification: 
Mass Spectrometry (TAP-MS)

This is a high throughput method for PPIs identi-
fication, designed to investigate them in the cell 
standard conditions (Rigaut et al. 1999). TAP-MS 
employs a tag fused to the C- or N-terminus of a 
known protein, called bait (Kaiser et al. 2008). As 
the tag used in TAP-MS assays is built as a dou-
ble tag, with two proteins connected by a prote-
ase, this method requires a two-step purification 
using two immobilized matrixes with affinity for 
each part of the double tag (Gunzl and Schimanski 
2009). The protein complex that interacts with 
the bait protein is isolated from the initial cell 
lysate or purified protein solution and subse-
quently analyzed by mass spectrometry. There 
are several types of double tags used in 
TAP-MS.  One of them is the combination of a 
double-protein-A domain connected by a tobacco 
etch virus (TEV) protease cleavage site to a 
calmodulin-binding peptide (Rigaut et al. 1999). 
Another tag is the GS tag, which has a double-
protein-G domain and a streptavidin-binding-
peptide connected by a protease from TEV or 
rhinovirus 3C (Braun et al. 2013; Van Leene et al. 
2008). TAP-MS is a very efficient method able to 
detect both transient and stable PPI (Yates et al. 
2009). However, due to the necessity of specific 
equipment, it can be expensive. The fused tag 
might interfere in the bait protein expression and 
folding, and the two-round purification might 

interfere in the final PPI yielding in an initial pro-
tein material. In plants, TAP-MS was used to elu-
cidate the TCP4 complex components, helping to 
regulate the expression of CONSTANS (CO) at 
the right time of the day (Kubota et al. 2017). A 
classic example of TAP-MS in plants is the plat-
form for Arabidopsis cell suspension cultures 
created to analyze protein complexes (Van Leene 
et al. 2011).

6.2.5	 �Förster Resonance Energy 
Transfer

The resonance energy transfer methods are 
proximity-dependent techniques that use recom-
binant fused proteins to analyze proteins pairs 
within a distance of 10 nm or less from each other 
(Kerppola 2006; Piston and Kremers 2007). The 
interacting proteins pairs are fused to donor-
acceptor molecules pairs, either fluorescent or 
bioluminescent, and the energy of an excited 
donor molecule is transferred to the acceptor 
molecule, which emits energy as photons (Lonn 
and Landegren 2017; Wiens and Campbell 2018). 
There are two different methods based on the 
principle of resonance energy transfer, according 
to the molecular nature of the donor-acceptor 
pair: Fluorescent Resonance Energy Transfer 
(FRET) (Piston and Kremers 2007) and 
Bioluminescent Resonance Energy Transfer 
(BRET) (Pfleger and Eidne 2006). FRET is based 
on fluorophores donor-acceptors pairs. An exam-
ple of widely used donor-acceptor pairs in FRET 
assays are Cyan Fluorescent Protein (CFP), used 
as the donor fluorophore, and Yellow Fluorescent 
Protein (YFP), used as the acceptor fluorophore. 
Each one of these fluorescent proteins is fused to 
an interacting protein from a PPI pair and, in case 
both interacting proteins are brought together in a 
distance of 10 nm or less, light emission can be 
imaged using standard confocal microscopy or 
wide-field microscope, for example (Lonn and 
Landegren 2017). BRET depends upon an 
enzyme-catalyzed luminescence reaction. The 
oxidation reaction of a compatible substrate, such 
as coelenterazine, by luciferase enzyme causes 
emission of bioluminescence. In BRET, the lucif-
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erase acts as the donor that excites the acceptor 
fluorophore, if the acceptor-donor pair is within a 
radius of 10  nm or less. The bioluminescence 
emission can be captured using a cooled-CCD 
camera (Lonn and Landegren 2017; Xu et  al. 
2007, 1999). In both FRET and BRET, PPI can 
be imaged in situ and in planta. Nonetheless, both 
techniques require expensive equipment for anal-
ysis. BRET assays were efficiently used to image 
tobacco and Arabidopsis tissues (Xu et al. 2007), 
and also to show the role of interaction between 
enzymes SUCROSE PHOSPHATE SYNTHASE 
(SPS) and SUCROSE PHOSPHATE 
PHOSPHATASE (SPP) in Arabidopsis growth 
(Maloney et al. 2015). FRET assays were applied 
on experiments to identify interactions between 
VACUOLAR SORTING RECEPTORS (VSRs) 
and vacuole-targeted proteins, crucial to target 
proteins for degradation in the vacuole (Kunzl 
et al. 2016).

6.2.6	 �Bimolecular Fluorescence 
Complementation (BiFC)

This molecular in vivo method for PPI analysis 
is an established form of protein complementa-
tion assay (PCA), based on protein-fragment 
complementation. In BiFC assays, a fluorescent 
protein, like GFP or YFP, is split in half and each 
of these parts is fused to the N- or C-terminal 
end of a candidate interacting proteins pair. Note 
that those fluorescent protein parts alone are 
unfunctional. If the recombinant protein pair 
interacts, both fluorescent protein halves are 
linked and the fluorescent protein is restored to 
its full folded version (Ghosh et al. 2000; Lonn 
and Landegren 2017). The resultant fluorescence 
emission can be imaged using live microscopy 
or confocal microscopy. In plants, BiFC experi-
ments are mostly performed prior to transient 
protein expression in either Nicotiana or 
Arabidopsis (Bracha-Drori et  al. 2004; Braun 
et al. 2013; Citovsky et al. 2008). Even though 
BiFC is a suitable method for identifying the 
subcellular cell location where PPI occurs, the 
recombinant fluorescent fused half-protein 
might affect protein conformation and location. 

Another limitation is that BiFC assays might 
give high background fluorescence because of 
the fluorescent protein parts spontaneous self-
assembling. The spontaneous self-assembling 
might also generate false positives and, there-
fore, BiFC experiments need a very careful plan-
ning and rigorous control. As an alternative to 
BiFC, but using the same PCA principle, there is 
the Bimolecular Luminescent Complementation 
(BiLC). BiLC uses luciferases from different 
sources instead of fluorescent proteins for com-
plementation (Buntru et  al. 2016; Wiens and 
Campbell 2018). In plants, BiFC assays were 
performed to prove the homodimerization of 
transcription factors LATERAL ORGAN 
BOUNDARIES DOMAIN/ASYMMETRIC 
LEAVES2-LIKEs (LBD) LBD16 and LBD18, 
required for activating lateral root formation in 
Arabidopsis (Lee et  al. 2017). In rice, experi-
ments showed the relationship between flower-
ing time and phosphorus homeostasis with help 
of BiFC experiments confirming the interaction 
between proteins UBIQUITIN-CONJUGATING 
E2 ENZYME (OsPHO2) and GIGANTEA 
(OsGI) (Li et  al. 2017). BiLC performed in 
Nicotiana showed PPIs in the Golgi apparatus 
relevant to xyloglucan biosynthesis (Lund et al. 
2015).

6.3	 �In Silico Approaches 
for Protein–Protein 
Interactions (PPI) 
Identification

6.3.1	 �Databases

Independently on which molecular technique has 
been used to identify protein interaction, it is nec-
essary to storage this information in a way that 
useful information might be gathered from the 
data set, enabling data comparison, exchange and 
verification. This storage can be done locally 
using a correlational database manager, such as 
MySQL or its fork MariaDB, or on spreadsheet 
software.

The basic database structure and elements for 
PPI stowage are presented on Table 6.1.
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6.3.2	 �In Silico PPI Reliability Based 
on Interaction Topology

Two related mathematical approaches, the 
Czekanowski-Dice distance (CD-distance) (Brun 
et  al. 2003) and Functional Similarity Weight 
(FSW) (Chua et al. 2006), have been proposed to 

assess the reliability of protein interaction data 
based on the number of common neighbors of 
two proteins.

The FSW algorithm was originally proposed 
by Chua et al. (2006) and the functional similar-
ity weight index on a pair of proteins A and B in 
an interaction graph (FSWA,B) is defined as:
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where
NA = set of interaction partners of A; NB = set 

of interaction partners of B; λA,B is a weight to 
penalize similarity weights between protein pairs 
when any of the proteins has few interacting part-
ners and is calculated as:
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where
Navg = Average of interactions made by each 

protein on a database.
The Czekanowski-Dice distance between two 

proteins a and b is given by:
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Na

′

 = a set of proteins that contain a and its 
interaction neighbors; aΔb  =  symmetric differ-
ence between two sets, a and b.

Both algorithms were initially projected to 
predict protein functions, and lately have been 
shown to perform well for assessing the reliabil-
ity of protein interactions (Liu et al. 2009). Wong 
(2008) has shown that using FSW, which esti-
mates the strength of functional association, to 
remove unreliable interactions (low FSW) 
improves the performance of clustering 
algorithms.

The effectiveness of using FSW as a PPI reli-
ability index was demonstrated using 19,452 
interactions in yeast obtained from the GRID 
database (Breitkreutz et al. 2003). Over 80% of 
the top 10% of protein interactions ranked by 
FSW have a common cellular role, and over 90% 
of them have a common subcellular localization 
(Chen et al. 2006b, c).

One example of FSW application can be seen 
on the Arabidopsis thaliana protein interaction 
network database—AtPIN (Brandao et al. 2009). 
Due to its integrative profile, the reliability index 
for a reported PPI can be postulated in terms of 

Table 6.1  Basic PPI database schema elements for storing interaction information

IntA IntB Type Method Pub FSW
AT5G47790 AT5G63310 Predicted Affinity 

Capture-MS
Mol Syst Biol. 2007;3:89. 
Epub 2007 Mar 13

0.0410

AT1G09570 AT5G63310 Experimental Yeast two hybrid J Biol Chem. 2005 Feb 
18;280(7):5740–9. Epub 2004 
Nov 23

0.0465

IntA = interactor A; IntB = interactor B; Type = How this interaction was identified; Method = Experimental: This 
means that the indicated PPI was experimentally demonstrated using the same organism model of study. Predicted: The 
indicated PPI was proposed based on orthology studies; Pub =  indicated reference to the publication of which this 
interaction was annotated from; FSW = the Functional Similarity Weight. It represents the proportion of interaction 
partners that two proteins have in common
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interaction partners proportion that two proteins 
have in common, and these pairs of interacting 
proteins highly ranked by this method are likely 
to be true positive interactors. Contrariwise, the 
proteins pairs lowly ranked are likely to be false 
positives. With the same benchmarking approach 
indicated above, the top 10% of protein interac-
tions, ranked by FSW in AtPIN (release 9 of 
AtPINDB), have indicated that 59% of PPIs 
share the same subcellular compartment, and 
83% have the same function or participate in the 
same cellular process. A decent FSW value 
threshold starting point is the top 20%, since 
Chua et al. (2006) and Chen et al. (2006b) have 
demonstrated that a protein pair having a high 
FSW value, above this value, is likely to share a 
common function.

The most interesting feature of the CD-distance 
and FSW is that they can rank the reliability of an 
interaction between a pair of proteins using only 
the topology of the interactions between that pair 
and their neighbors within a short radius in a 
graph network (Chen et al. 2006b, c).

6.3.3	 �PPI Reliability Evaluation 
Based on Subcellular 
Localization

An additional reliability checking point for in 
silico PPI predictions is the Cellular Compartment 
Classification or C3. The C3 value is represented 
as classes and is calculated using simple mathe-
matical sum of three parameters:

	 C A B C3 � � � 	

where
A  =  type of interaction; B  =  co-localization; 

C  =  determination of subcellular localization 
(experimentally or predicted).

Table 6.2 presents a summary of the possible 
entering values to calculate C3.

Considering all possibilities, it is possible to 
divide the PPIs in a dataset into four classes:

•	 Class A (C3  =  7): The PPI and subcellular 
location have seemed to be experimentally 

demonstrated and both proteins are 
co-localized.

•	 Class B (C3  =  5): The PPI and subcellular 
location have been experimentally shown; 
however, the proteins were localized to differ-
ent subcellular compartments.

•	 Class C (C3 = 3): Same as Class A, but the PPI 
is based on prediction analyses.

•	 Class D (C3 = 6): Same as Class A, but subcel-
lular location is based on prediction analyses.

6.3.4	 �Publicly Available Databases

We are living on the Big Data ages, and several 
available databases with proteins interactions 
have arisen over the past decades. Zahiri et  al. 
(2013) present on their manuscript a comprehen-
sive list of the most popular PPI repositories for 
model organisms. To integrate the major public 
interaction data providers in a mutual agreement 
to share data, to develop a distinct set of curation 
rules for collect data from directly deposited PPI 
data and/or from peer-reviewed publications, the 
IMEx was created, acronym for International 
Molecular Exchange Consortium (Orchard et al. 
2012).

IMEx aims to make these interactions material 
available in an intuitive browsing and search 
interface on a single website. One of the key 
points of this concatenated and curated dataset is 
to provide all the information in standard format, 
facilitating the usage and incorporation of this 
data on a variety of bio computational 
applications.

This sharing standardization is mandatory 
since each database provider might storage its 
PPI datasets on a particular format. Currently, the 
most used standard format for molecular interac-
tion data exchange is the PSI-MI XML (Kerrien 
et  al. 2007), proposed by the Proteomics 
Standards Initiative, maintained by the Human 
Proteome Organization (HUPO). Another very 
popular exchange format is the PSI-mitab, differ-
ently from PSI-MI XML, all the molecular inter-
actions are presented on tab-delimited format 
with up to 42 fields of information. Both formats 
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previously cited, and a few other molecular inter-
actions exchange layouts can be found at HUPO 
GitHub address at https://github.com/HUPO-PSI 
or at the HUPO-PSI web site (http://www.psidev.
info/).

The four most active and cited IMEx partners’ 
datasets are presented on Table 6.3. All of them 
are focused on model organisms PPIs and shar-
able information on standards formats previously 
discussed.

6.3.5	 �In Silico Predictions

All the members within a protein family are 
homologous and can be further separated into 
orthologs, which are genes of different species 
that evolved from a common ancestral gene by 
speciation. Generally, orthologs retain the same 
molecular function during evolution. Researchers 
rely on these characteristics to predict possible 
interactions for a non-model organism from a 
well curated and annotated PPI dataset.

Studies using multiple sequences alignment, 
from different organisms, have demonstrated that 
when average amino acid identity is over 50% of 
correctly aligned residues, we assume that the 
involved proteins will present the same ancestry, 

and, therefore, might be considered orthologs 
(Ogden and Rosenberg 2007; Thompson et  al. 
1999). There are many ways to detect orthologs 
genes/proteins;

6.3.5.1	 �Reciprocal BLAST
The simplest is the reciprocal BLAST analyses. 
Having two datasets named Species A and 
Species B, two separated blast datasets so-called 
A_DB and B_DB are created. Basically, the 
appropriate BLAST program is run querying 
Species A on B_DB and Species B on A_DB, 
using arbitrary threshold for sequence similarity 
over 80%. A second parameter to evaluate is the 
e-value but keeping in mind that e-value depends 
on the database size, so, the larger the database, 
the smaller the e-value can be. A good cutoff 
starting point is something between 10−5 and 
10−20. Moreno-Hagelsieb has summarized few 
hints on how to choose the best BLAST parame-
ters values for reciprocal BLAST ortholog identi-
fication approach (Moreno-Hagelsieb and 
Latimer 2008). To identify the best reciprocal hit 
among all sequences on the datasets, the 
BackBlast Reciprocal Blast script (https://github.
com/LeeBergstrand/) can be used to automate the 
analyses process. The BackBlast algorithm will 
identify those best reciprocal hits and return a fil-

Table 6.2  Numeric values for each parameter for C3 calculation

Parameter Value Description
Type of interaction 4 Based on experimental data

0 No experimental data available (predicted)
Co-localization 2 Same cellular compartment

0 Different cellular compartment
Determination of subcellular localization 1 Based on experimental analyses

0 If one or both are predicted

Table 6.3  Largest IMEx partners caretakers of publicly available data

Database URL References
Biological General Repository for Interaction Datasets 
(Biogrid)

http://www.thebiogrid.org Stark et al. (2006)

Database of interacting proteins (DIP) http://dip.doe-mbi.ucla.edu Salwinski et al. (2004), 
Xenarios et al. (2002)

IntAct http://www.ebi.ac.uk/intact/ Orchard et al. (2014)
Molecular Interaction Database (MINT DB) http://mint.bio.uniroma2.it/mint Licata et al. (2012)
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tered list of most plausible orthologs among 
Species A and Species B. Now it is possible to 
transfer PPI information from one dataset to 
another.

6.3.5.2	 �OrthoMCL
Its algorithm firstly identify sequence similarities 
by reciprocal best BLAST, and then, joins pro-
teins into ortholog groups based on normalized 
BLAST scores between proteins using Markov 
clustering (Enright et al. 2002; Li et al. 2003). It 
is also available in the orthoMCL-DB website 
(Chen et  al. 2006a), which contains ortholog 
groups for most completely sequenced and anno-
tated eukaryotes and for a number of completely 
sequenced and annotated prokaryotes (http://
orthomcl.org/). There is an ample tutorial written 
by Fischer et  al. (2011), encompassing all the 
steps needed to identify the most plausible 
orthologs.

6.3.5.3	 �InParanoid
This program uses the pairwise similarity scores 
between two datasets, calculated using BLASTP, 
for assembling orthology groups. These orthol-
ogy groups are initially composed of two so-
called seed orthologs found by reciprocal best 
hits between two datasets. On second step, more 
sequences are added to the group if the sequences 
in the two datasets are closer to the correspond-
ing seed ortholog than to any sequence not pres-
ent into the ortholog group in question. The 
orthology group participants are now called 
inparalogs, and, a confidence value is provided 
for each of them, representing how closely related 
it is to its seed ortholog (O’Brien et al. 2005). The 
Inparanoid DB (Sonnhammer and Ostlund 2015) 
is an online database for ortholog groups with 
inparalogs (http://inparanoid.sbc.su.se/).
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Abstract

Biological networks can be defined as a set of 
molecules and all the interactions among 
them. Their study can be useful to predict 
gene function, phenotypes, and regulate 
molecular patterns. Probabilistic graphical 
models (PGMs) are being widely used to inte-
grate different data sources with modeled bio-
logical networks. The inference of these 
models applied to large-scale experiments of 
molecular biology allows us to predict influ-
ences of the experimental treatments in the 
behavior/phenotype of organisms. Here, we 
introduce the main types of PGMs and their 
applications in a biological networks context.

Keywords

System biology · Biological networks · 
Bioinformatics

7.1	 �Biological Regulatory 
Networks

Biological networks are a generic term that 
embraces protein–protein interaction (PPI) net-
work, gene regulatory networks and metabolic 
networks. This study can be useful to predict 
gene function and/or interactions, identify func-
tional associations, detect modular complexes 
that work together, identify groups of genes 
responsible for phenotypic characteristics.

The research is based on the central dogma in 
which the flow of information starts from DNA, 
it is transcribed in a RNA and can be translated 
into a protein. This process results in the produc-
tion of the specific biomolecules (RNAs, pro-
teins) needed for the realization and maintenance 
of the vital cellular activity. Changes in this flow 
regulates molecules concentration and ensures 
that all intermediaries of metabolic pathways will 
be in adequate quantities and the pathways and 
processes will be deactivated when not needed.

DNA modifications or compaction can influ-
ence which sequences are available for transcrip-
tion as well as the transcription rate. The amount 
of protein produced depends on the amount of 
mRNA synthetized and the rate at which it is 
degraded. There are also posttranscriptional reg-
ulations through alternative splicing, mRNAs 
transport outside the nucleus and its stabilization, 
microRNAs pathways. The availability of factors 
necessary for translation may also regulate the 
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amount of mRNA that is translated, and noncod-
ing RNAs and proteins can cause posttransla-
tional modifications in translation products, also 
affecting gene expression.

The biological systems involve several molec-
ular entities connected by direct interactions that 
might lead to the activation or repression of more 
complex networks. These networks are charac-
terized by the set of molecular species and their 
interactions, which together control and affect 
several cellular processes (Karlebach and Shamir 
2008). They can represent the set of interactions 
among genes, transcription factors, and other 
biomolecules. All genes depend on one or more 
biochemical signals as an activator to start the 
transcription or an inhibitor to prevent or reduce 
their expression even if in the presence of an 
appropriated activator (Chen et al. 2001).

Data availability from high-throughput tech-
niques and public molecular biology databases 
has provided the opportunity to conduct genome-
wide studies of biological processes that arise 
from interactions between genetic entities (Costa 
et  al. 2008) and combine them with other data 
sources, amplifying our assumptions through the 
observation of the amount of molecules and the 
application of mathematical methods and statisti-
cal analysis.

7.2	 �Probabilistic Graphical 
Models

Modern molecular biology experiments, such as 
chip-arrays, RNA-seq, mass spectrometry, 
allowed us to measure the behavior of thousands 
of genes and/or proteins simultaneously under 
different conditions. Moreover, data science has 
provided tools and the ability to integrate many 
information resources, increasing the analytical 
power that enhances our capability for new dis-
coveries and better visualizations.

Probabilistic Graphical Models (PGM) are a 
combination of graph and probability theories 
(Larrañaga et  al. 2012), and they are models of 
joint distributions in which paradigms of random 
sampling are assumed (Dobra et al. 2004). It is a 
powerful tool used to analyze and visualize condi-
tional dependencies among genes or other bio-
logical entities. These graphs have nodes that are 

different variables involved in a problem and the 
edges are assumptions of conditional dependence, 
in other words, probabilistic relationships between 
them (Buntine 1996). When there is no edge it is 
assumed that the variables are independents 
(Buntine 1996). The most used types of PGM in 
biology are Bayesian networks (Pearl 1997; 
Young et al. 2014; Lan et al. 2016; Su et al. 2013; 
Nagarajan and Scutari 2013; Vera-Licona et  al. 
2014; Spirtes et al. 2000; Friedman et al. 2000a; 
Bansal et  al. 2007) and Graphical Gaussian 
Models (Wu et  al. 2003; Schäfer and Strimmer 
2005; Werhli et al. 2006; Ma et al. 2007).

These models are useful to describe explicitly 
our hypothesis about the relationship between 
two types of data: gene expression and binding 
sites (Friedman 2004). The learning process can 
combine evidences from several datasets and 
more robust conclusions due to the different 
treatment given to datasets inside only one model 
(Friedman 2004).

In a Graphical Model, the first-order neigh-
bors of a specific gene A are genes that, together, 
provide the set of predictors of variation of the 
gene expression in A, and they become A condi-
tionally independent of all other genes (Dobra 
et al. 2004). Some genes can be slightly related to 
A, but hugely correlated in terms of partial cor-
relation considering other neighbors and then 
they will be identified as neighbors of A (Dobra 
et al. 2004).

This kind of relationship between a pair of 
genes could not be identified by methods based on 
correlation, and they can be important in a bio-
logical pathway (Dobra et al. 2004). Then, another 
key interest applied on these models is the capac-
ity of expanding our ability to identify genes can-
didates that can play important role in a specific 
pathway under investigation (Dobra et al. 2004).

Algorithms for PGM inference can be classi-
fied in two types (Su et  al. 2013; Scutari and 
Nagarajan 2011; Berkan Sesen et  al. 2013): 
Constraint-based methods that focus on identify-
ing conditional independence relationships 
between variables using observed data and Score-
based methods, which consider the number of all 
possible network structures and assign a score to 
each one that measures how well it explains the 
observed set of data. These approaches require 
high computational effort.
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7.3	 �Data Preparation 
and Normalization

The first step inferring networks is to make sure 
the quality of the data is good and all values on 
datasets are comparable. Working with data from 
different experiments requires normalization to 
reduce noise due to the measures and experimen-
tal differences.

Noise and its variation across molecular enti-
ties are caused by factors, such as: (1) stochastic 
mechanisms from systems dynamics; (2) sensi-
tivity and precision of the experiment measure-
ment; (3) abundant variations of specific 
molecules; (4) preferential binding affinities; and 
(5) experimental artifacts that are an outcome of 
the estimation process (Nagarajan and Scutari 
2013; Okoniewski and Miller 2006; Steen 1992; 
Welsh et al. 2015).

These variations are caused by uncontrollable 
errors unrelated to the biological variation, and 
they are also known as batch effects (Gagnon-
Bartsch and Speed 2012). Batch effects are a type 
of potential latent variable in genomic experi-
ments (Leek et  al. 2012). Understanding and 
identifying the impact of the source of noise on 
network inference procedure is a critical point to 
avoid identification of spurious associations 
(Nagarajan and Scutari 2013) and ensure the 
reproducibility of the experiments.

Such complex phenotypic traits are character-
ized by a high level of unpredictability, as both the 
number and nature of the interactions are difficult 
to distinguish using conventional methods (Su 
et al. 2013). It is required the development of tools 
and methods able to transform all these heteroge-
neous data into biological knowledge about the 
underlying mechanism (Larrañaga et al. 2006).

Most probabilistic methods are computation-
ally expensive, thus, sometimes, genes of interest 
need to be selected with a previous analysis. 
Some methods also require previous discretiza-
tion of the data and this process can cause loss of 
information.

From a statistical point of view, the great 
problem of biological experiments is that the 
number of samples in biological large-scale 
experiments is insufficient to estimate accurate 
networks and entails a large number of spurious 

edges in the model (Husmeier 2003). The num-
ber of genes (p) is much larger than the number 
of observations (n) (Wang et al. 2013; Djebbari 
and Quackenbush 2008; Tamada et al. 2003). In 
addition, the number of actual regulators for a 
particular gene is only a small fraction of the 
number of possible regulators (Young et  al. 
2014). It is important to select a model or algo-
rithm able to overcome this problem and work 
with a minimal number of samples.

Making effective use of prior knowledge is 
also crucial in any inference problem (Jaynes 
1984), because it is usually vastly underdeter-
mined due to insufficient data quantity and/or 
quality. Prior information about the topology of 
the network can be available from two different 
sources (Vera-Licona et al. 2014): (1) from previ-
ous biological knowledge and (2) from knowl-
edge acquired from the prior use of another 
inference method, thus applying other method as 
a “meta-inference method.”

The former is available in several public data-
bases, such as National Center for Biotechnology 
Information—NCBI database (Agarwala et  al. 
2016), Gene Ontology (Ashburner et  al. 2000), 
Kyoto encyclopedia for genes and genomes—
KEGG (Kanehisa and Goto 2000), MetaCyc, 
EcoCyC (Karp 2000), and Plant Metabolic 
Pathways Database—PlantCyC, MIPS yeast 
pathways (Guldener 2006), MEROPS (Rawlings 
et  al. 2016), BioGRID (Stark 2006), Reactome 
(Joshi-Tope et  al. 2005), etc. The latter can be 
included limiting the space of all possible net-
work topologies. It can be done setting the prob-
ability of weak connections to 0, simply imposing 
a maximum number of regulators per gene (Vera-
Licona et al. 2014) or choosing which genes can 
be regulators in the network.

7.4	 �Graph Theory and Biological 
Networks

Graph theory describes the properties that allow 
the mathematic representation and understanding 
of the networks (Garroway et al. 2008). The use 
of graphs allows the probability model to be 
structurally visualized without losing mathemati-
cal details. These approaches use the observa-
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tions to fill many details of the model and also 
provide principles to combine local multiple 
models in a joint global model (Friedman 2004).

A network is composed of a set of random 
variables X  =  {X1, X2, …, Xn} describing the 
observations and a graph denoted as G = (V, E) in 
which each node or vertex v ∈  V is associated 
with one of the random variables in X. The edges 
e ∈ E express the dependence/coexpression rela-
tionships among the variables X.

X can be composed of variables with continu-
ous or discrete values. Thus, the set of nodes V is 
given by V = Δ ∪ Γ, where Δ and Γ are sets of 
nodes representing discrete (values that can be 
counted) and continuous (values obtained from 
measures) variables (Bøttcher and Dethlefsen 
2003a). The set of variables X can be denoted 
X = (Xv)v∈V = (I, Y) = ((Iδ)δ∈Δ, (Yγ)γ∈Γ), where I and 
Y are sets of discrete and continuous variables 
(Bøttcher and Dethlefsen 2003a). For a discrete 
variable, δ, Γδ denotes the set of levels (Bøttcher 
and Dethlefsen 2003a).

Each edge ep = (i, j) represents the connection 
between the vertices i and j. If the edges have 
direction, the graph is called a directed graph, 
and G is an ordered pair G = (V, E→), where V is 
the set of vertices and E→ is the set of ordered 
pairs of arcs. The edge origins from node i to 
node j are called regulator and target, respectively. 
If there is no information about the direction, the 
graph is undirected. In addition, the graph is 
signed when its edges indicate if the relationships 
between the nodes are positive/induction or nega-
tive/repression. When the relationships are not 
indicated, the graph is unsigned.

7.4.1	 �Concepts and Properties

Betweenness: number of shortest paths between 
pairs of other vertices that pass through the 
vertice v (Garroway et al. 2008).

Centrality measures the relative position of a 
node or an edge in terms of connectivity or 
facility of node interaction (Albert 2005). It is 
based on the number of shortest paths that 
pass through the given vertex. A node with 
high centrality is thus crucial to efficient com-
munication (He et al. 2007).

Connection density: the ratio of number of edges 
in the network by the total number of all pos-
sible edges (Sharan et al. 2007).

Clustering Coefficient: a measure of the probabil-
ity of two neighbors of a given node being 
themselves connected (Garroway et al. 2008). 
This coefficient is given by the ratio (Costa 
et al. 2008):

	
cci

i
=

number of edgesamongneighbors

number possibleamongneimax. gghbors 	

Degree distribution: the distribution of node degree 
values of a network, and it is important to mea-
sure network topology (Garroway et al. 2008). 
It represents the probability of a node having a 
given number of degree (Costa et al. 2008).

Diameter: maximum distance between any two 
of its vertices (Sharan et al. 2007).

Guilt by Association: genes with similar func-
tional properties will tend to interact (Ballouz 
et al. 2015) or stay more connected in the net-
work and exhibit similar profiles in network 
data.

Hubs: nodes with high degree or high centrality 
(Bullmore and Sporns 2009).

Module: a set of nodes that have strong interac-
tions and a common function (Alon 2003).

Network Motifs: a set of genes or gene products 
with specific molecular functions arranged 
together corresponding to patterns of connec-
tivity which are statistically more abundant in 
real networks than in their respectively ran-
dom versions (Costa et  al. 2008). The most 
common are the feed-forward loops, in which 
a transcription factor and its downstream tar-
get both regulate a third target (Alm and Arkin 
2003).

Node degree: the number of direct connections 
that it establishes in the network (Lesne 2006). 
When the graph is directed, it can be distin-
guished as incoming-degree, considering the 
number of edges that connects it to the node 
and as outgoing-degree, considering the num-
ber of edges that originates from the node 
(Morris et al. 2012).

Path Length: minimum number of edges that 
must be traversed to go from one node to 
another (Sharan et al. 2007).
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Robustness refers either to the structural integrity 
of the network following deletion of nodes or 
edges or to the effects of perturbations on 
local or global network states (Bullmore and 
Sporns 2009).

7.4.2	 �Types of Topology

The topology of a network is how its nodes and 
edges are arranged. It can provide deeper infor-
mation about the network because it allows the 
extraction of information about biological sig-
nificance across the comparisons with patterns 
and rules already known (Garroway et al. 2008). 
There are basically three types of topology:

Random: also known as Erdös–Rényi (ER) 
model. Each pair of nodes has an equal prob-
ability, p, of being connected (Bollobas 1984). 
A class of networks characterized by a short 
path length, the node degree follows a Poisson 
distribution indicating that most nodes have, 
approximately, the same number of links 
(Barabasi and Oltvai 2004), and a small aver-
age clustering coefficient (Garroway et  al. 
2008).

Scale-free: its degree distributions follow a power 
law (Barabasi and Oltvai 2004). Each new 
node that is added to the network connects, 
preferentially, to other nodes that already have 
high degree. A class of networks characterized 
by a short path length and a power law degree 
distribution. The average clustering coeffi-
cient can vary. Most nodes have relatively few 
connections, while a few nodes are highly 
connected (Barabasi and Oltvai 2004). 
Because most nodes are not particularly well 
connected, the random removal of even a high 
proportion of nodes tends to have little impact 
on the network’s characteristic path length 
(Bullmore and Sporns 2009). However, the 
targeted removal of the most connected nodes 
leads to a rapid increase in the characteristic 
path length and network fragmentation 
(Garroway et al. 2008).

Small-world: this property combines high levels of 
local clustering among nodes of a network and 

short paths that globally link all nodes of the 
network. This means that all nodes of a large 
system are linked through relatively few inter-
mediate steps, despite the fact that most nodes 
maintain only a few direct connections 
(Bullmore and Sporns 2009). It presents a large 
mean clustering coefficient and binomial 
degree distribution (Garroway et al. 2008). If a 
node is removed, the high feature of clustering 
might create alternate paths between nodes and 
such impact of node removal could be less than 
on random networks (Garroway et al. 2008).

7.4.3	 �Bayesian Networks (BNs)

Bayesian networks (BNs) are a type of model 
that represents causal relationships between the 
variables (Pearl 1997). They represent the depen-
dency structure between multiple entities that 
interact locally and are useful to describe process 
in which the value of each component depends 
directly on the values of a relatively small num-
ber of components (Friedman et al. 2000a). The 
probabilistic nature of this approach is able to 
deal with the noise from biological process and 
experiments, making a robust and reliable infer-
ence (Husmeier 2003).

BN consists of two components (Aguilera 
et al. 2011): (1) A network structure in the form 
of a directed graph. In this graph, nodes represent 
the random variables, and directed edges repre-
sent stochastic dependencies among variables; 
(2) a set of conditional probability distributions 
specified by parameters, one for each variable, 
characterizing the stochastic dependencies repre-
sented by the edges.

The network structure is represented by graph 
G, as described above. For each node v, with par-
ents pa(v), a local probability distribution, 
p(xv|xpa(v)) is defined (Bøttcher and Dethlefsen 
2003a). This set of local probability distribution 
for all variables in the network is P. The Bayesian 
network for a set of random variables X is the pair 
(G, P) (Bøttcher and Dethlefsen 2003a). The 
relationships are originated from a node, called 
parent node, and reach another, called descendent 
node.
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BN can have both discrete and continuous 
variables. It is an important tool to integrate dif-
ferent types of datasets. It gives us the opportu-
nity of visualizing which variables are more 
related to a specific state and which one contrib-
utes to the increase/decrease or activation/deacti-
vation of a state.

A rule that characterizes a BN is the Markov 
condition (Klinke et  al. 2014; Friedman et  al. 
2000b). It states that a node is conditionally inde-
pendent of its non-descendants given its parents 
(Werhli et al. 2006). Based on this, the joint prob-
ability distribution for the entire set of variables 
represented by BN can be decomposed into a 
product of conditional probabilities (Su et  al. 
2013) following the equation:
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where Xi are random variables and πM (Xi) are 
parents of a node Xi in the M model.

The base of many search algorithms for BN 
learning from data is in this rule because it allows 
the division of the total probability distribution in 
modules that can interconnect, and the network 
will show all the significant dependencies without 
disintegrating the information (Sebastiani et  al. 
2005). This property reduces the number of nec-
essary parameters to characterize the joint prob-
ability distribution of the variables (Sebastiani 
et al. 2005).

Inferring a model of BN for biological net-
works requires finding a graph G that better 
describes the dataset d. It is realized by the choice 
of a function that measures the score of each pos-
sible topology of a network (graph G) in relation 
to the dataset and then it searches for the graph 
that maximizes the score (Bansal et  al. 2007). 
The metric punctuation can be defined using the 
Bayes’ Theorem:

	

P G d
P d G P G

P d
|

|
� � � � �� � �

� � 	

in which P(G) can contain a prior knowledge 
about the network structure, if available, or can 
be a non-informative constant prior; P(d|G) is a 
function to be chosen by the algorithm that evalu-

ates the probability of the data d being generate 
by the graph G (Bansal et al. 2007).

The most popular methods for score quantifi-
cation are the Minimal Description Length 
(MDL) and the Bayesian Dirichlet Equivalence 
(BDe). Both methods incorporate a penalty for 
the complexity to avoid over adjusted data 
(Wilczyński and Dojer 2009). BDe score corre-
sponds to the posterior probability of a network 
to a dataset (Wilczyński and Dojer 2009). MDL 
score is originated from Information Theory and 
corresponds to the length of the data compressed 
with the compression model derived from the 
network structure, and it also has a statistic inter-
pretation with an approach of the posterior prob-
ability (Wilczyński and Dojer 2009).

Testing all possible combinations of interac-
tions between the genes and choosing a graph 
with higher score is a complex problem with high 
computational cost, which increases exponen-
tially with the number of variables. Thereby heu-
ristic methods are used, such as Greedy-Hill 
Climbing, Monte Carlo Markov Chain (MCMC), 
or Simulated Annealing (Heckerman et al. 1995). 
Greedy search examines a single random change 
in the network and keep it if the score is higher or 
discard if it is slower than the current. Simulated 
Annealing uses some parameters to do the search. 
MCMC samples consider a probability 
distribution.

BNs can be static when derived from steady-
state data and allow only acyclic graphs (Bansal 
et  al. 2007). This constraint is disadvantageous 
since feedback mechanisms are an essential fea-
ture of biological systems (Husmeier 2003). BNs 
can also be dynamic, derived from dynamic and 
time-series datasets, which can be used to predict 
cyclic phenomena, overcoming the static BN 
limitation (Yu et al. 2004).

The nodes in the graph represent the stochas-
tic variables, and the edges directed dependency 
relationships between the variables, quantified by 
the conditional probability distributions 
(Sebastiani et  al. 2005). The family of condi-
tional probability distributions and their parame-
ters specify the functional form of the conditional 
probabilities associated with the edges, that is, 
they indicate the nature of the interactions and 
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the intensities of these interactions (Werhli et al. 
2006).

Figure 7.1 shows an example of a BN.  This 
network was obtained using microarray data 
from sugarcane (McCormick et  al. 2008). 
Sugarcane leaves were treated with exposition to 
cold (treated leaf) or normal temperature (control 
leaf). We can observe, in this example, a gene 
related with stress response that is a hub in the 
network. Its expression is activated in the 
“Treated Leaf” and suppressed in the “Control 
Leaf.” Moreover, this central gene is related with 
the expression of several other genes of stress 
response, and it suppresses a gene of sugar sig-
naling, an important category for this kind of 
experiment.

There are many software formats for BN 
inferring. Here, we list some of them:

•	 BaNJO (https://users.cs.duke.edu/~amink/
software/banjo/): developed in Java, efficient 
for large datasets. It can infer static or dynamic 
networks. It requires high memory when 
working with many experiments. Low perfor-
mance with noisy data. Allows multiprocess-
ing and time limit. Accepts only discrete 
variables.

•	 BNFinder (Dojer et al. 2013): it can infer both 
static and dynamic networks. It allows con-
figuration of prior information. There are three 
types of scoring BDe (Bayesian Dirichlet 

equivalence), MIT (Mutual Information Test) 
and MDL (Minimum Description Length). 
The choice of the score depends on the size of 
the dataset and computational cost. Developed 
in Python. Memory can be a limiting factor. 
Allows multiprocessing and continuous or 
discrete variables.

•	 PEBL (Shah and Woolf 2013): it is a Python 
library. Allows both discrete or continuous 
variables and multiprocessing. It uses BDe 
score and Gibbs Sampler. It has low sensitiv-
ity, so it generates network with low density.

•	 ScanBMA (Young et al. 2014): it searches the 
model space more efficiently and thoroughly 
than previous algorithms. It infers dynamic 
networks. It uses Bayesian Information 
Criterion (BIC) as scoring function. Only 
dynamic networks.

•	 R packages:
–– deal (Bøttcher and Dethlefsen 2003b) and 

BNArray (Chen et  al. 2006): deal owns 
proceedings to include prior, estimate 
parameters, calculate scores. BNArray pro-
vide features in the context of gene expres-
sion. They work together. Used for small 
networks.

–– bnlearn (Scutari and Nagarajan 2011) and 
gRain (Højsgaard 2012): it allows discrete 
or continuous variables. Possibility of 
using several learning and classifier meth-

Fig. 7.1  Example of a Bayesian network. Subnetwork 
learnt from microarray data of leaves of sugarcane 
exposed to cold and control situation. Circles represent 

the genes and diamonds represent discrete variables, in 
this case, the treatments (Murad 2013)
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ods for the network. gRain creates condi-
tional probability tables.

–– BANFF (Young et  al. 2014): data prepro-
cessing, efficient Bayesian model fitting 
with diagnostics, quantitatively and graphi-
cally summarizing posterior samples of 
parameters.

7.4.4	 �Graphical Gaussian Models 
(GGMs)

GGMs, also known as covariance selection mod-
els, are a strategy for undirected graphs G infer-
ence. It assumes multivariate Gaussian 
distribution for underlying data (Wang et  al. 
2013) and satisfies the pairwise conditional inde-
pendence restrictions, which are shown in the 
independence graph of a jointly normal set of 
random variables (Wu et al. 2003). The inference 
of GGMs is based on a (stable) estimation of the 
covariance matrix of this distribution (Werhli 
2012). This kind of inference has lower computa-
tional cost when compared with BNs.

An edge connects a pair of genes if they are 
partially correlated (Krämer et al. 2009). Partial 
correlation only measures the strength of direct 
interaction and is used to infer conditional 
independence relationships (Krämer et al. 2009). 
Once a direct gene association network is com-
plete, the knowledge about indirect gene associa-
tions can be easily obtained (Wang et al. 2013). 
When compared with traditional correlation 
methods, they allow to distinguish direct and 
indirect relationships, so the graph is sparser, or 
less dense.

For two random variables, Xi and Xj, on the 
remaining variables in the data set, the partial 
correlation coefficient between Xi and Xj is given 
by the Pearson correlation of the residuals from 
both regressions (Krumsiek et  al. 2011). The 
effects of all other variables on Xi and Xj are 
removed and the remaining signals are compared 
to test if the variables are still correlated 
(Krumsiek et al. 2011). Then it is determined if 
the association of Xi and Xj is direct and not medi-
ated by the other variables (Krumsiek et  al. 
2011).

For an undirected graph G = (V, E), let Xv ≡ X 
be a random normal p-vector indexed by V = {1, 
…, p} with probability distribution Pv. For a GGM 
with graph G, the sufficient statistics are given by 
the sample mean vector and the sample covariance 
matrices SCC for C  ∈  C, where C is the set of 
cliques of G. A condition is necessary for the com-
putation of several statistical quantities, such as 
the maximum likelihood estimates, and the partial 
correlations are that SCC has full rank for all C ∈ C.

Figure 7.2 represents a subnetwork of a 
Gaussian Graphical Model for microarray data 
from Arabidopsis thaliana (Ma et  al. 2007). 
Partial correlation was used to infer co-
regulation patterns between gene pairs condi-
tioned on the behavior of other genes. They 
found locally coherent subnetworks mainly 
related to metabolic functions, and stress 
responses emerged.

Some R packages used to infer these models 
are listed below:

GeneNet (Schäfer and Strimmer 2005): it uses 
time-series expression data. It has functions to 
estimate partial correlation matrix, assesses 
significance of the edges, and generates the 
network.

gRc (Højsgaard and Lauritzen 2007): two types 
of models: RCON models: selected elements 
of the concentration matrix (the inverse cova-
riance matrix) are restricted to being identical. 
RCOR models: the partial correlations are 
restricted to being equal rather than the 
concentrations.

FastGGM (Wang et  al. 2016): It quickly esti-
mates the precision matrix, partial correla-
tions, as well as p-values and confidence 
intervals for the graph.

GGMridge (Ha et  al. 2015): it implements an 
approach of three steps. Obtains a penalized 
estimate of a partial correlation matrix, selects 
non-zero entries of this matrix and reestimates 
the partial correlation coefficients at these 
non-zero entries. It promises to be a method 
with good accuracy on predictions.

GGMSelect (Giraud et al. 2012): It is a fast algo-
rithm. Procedure in two stages: builds a family 
of candidate graphs from the data-driven 
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method or some prior knowledge and then 
selects one graph according to a dedicated crite-
rion based on conditional least-squares. It 
focuses on data with samples size n smaller than 
number of variables p showing consistency.

7.5	 �Network Representation 
and Visualization Tools

There are four main types of network representa-
tion. First, as a graph such as the one described 
previously (Fig.  7.3a). Second, as an adjacency 
matrix A with elements aij that can be 0 for no 
relationship or equal to 1 when the genes are cor-
related. If the graph is undirected, this matrix is 
symmetric, the elements aij = aji for any i and j. 
The third way is the circular plot (Fig. 7.3b). And 
the last, as the table with three columns, in which 
the first and third columns are the genes and the 
one in the middle is the type of interaction between 
them. This representation can also have more col-
umns representing parameters of the edges.

The most used software formats for network 
visualization are listed below:

Cytoscape (Shannon et al. 2003): friendly graphi-
cal interface, but computationally expensive. 
It does not support the view of very large net-
works. It has plugins that provide network 
analysis and data integration.

Pajek (Batagelj and Marver 1998) and Medusa 
(Pavlopoulos et al. 2011): these software for-
mats are also used in other areas of knowl-
edge. Well-known among all programs, and 
they use pajek and net format files. They can 
work fast with large networks.

circlize (Gu et al. 2014) and igraph (Csárdi and 
Nepusz 2006): R packages. igraph is used for 
graph representation and circlize for circular 
plots also known as chord diagram.

Gephi (Bastian et al. 2009): it is a platform for 
graph visualization. Intuitive graphical inter-
face. It can work with large networks. Also, it 
has plugins and shows metrics about the 
network.

Fig. 7.2  Subnetwork of 
a Gaussian graphical 
model obtained from A. 
thaliana microarray data 
(Ma et al. 2007). Nodes 
represent the genes and 
the edges co-regulation 
between them
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Cataloging Posttranslational 
Modifications in Plant Histones
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Abstract

Eukaryotic DNA exist in the nuclei in the 
form of a complex with proteins called chro-
matin. Access to the information encoded in 
the DNA requires the opening of the chroma-
tin. Modulation of the chromatin structure is 
therefore an important layer of regulation for 
DNA-templated processes. The basic unit of 
the chromatin is the nucleosome, which con-
tains DNA wrapped around an octamer of his-
tones, H2A, H2B, H3, and H4. Because 
histones are a structural part of the nucleo-
some, its modification can lead to changes in 
chromatin structure. Amino acid residues in 
histones could be modified with at least 20 dif-
ferent types of functional groups leading to a 
vast number of modified residues. Here, an 
overview of the histone modifications found in 
plants is provided. We focus mainly in 
proteomic-based studies either aimed to iden-

tify PTMs on purified histones or proteome-
wide analysis of particular modifications. The 
strategies used for cataloging modifications in 
plants are also described. Profiling of histone 
modifications is important to begin to under-
stand their functions as mediators of gene 
regulation in plant biological systems.

Keywords

Chromatin · Core histones · Histone modifi-
cations · Proteomics · Mass spectrometry · 
Acetylation · Methylation · Acylation

8.1	 �Introduction

Eukaryotic DNA is organized inside the nucleus 
by histones and other proteins in the polymer 
called chromatin. The basic structure of the chro-
matin has remained unchanged in all eukaryotic 
lineages with the nucleosome as its basic unit. 
The nucleosome consist of ~150  bp of DNA 
wrapped around an octamer containing two cop-
ies of the core histones, H2A, H2B, H3, and H4. 
In the chromatin, nucleosomes are organized into 
linear arrays that may be further arranged into 
higher-order structures with the help of the linker 
histone H1 (Luger et al. 1997).

The presence of chromatin is restrictive to 
transcription and other DNA-templated pro-
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cesses. Indeed, changes in chromatin structure 
are required for the proper expression of a gene to 
be reached (Struhl 1993). Consequently, mecha-
nisms modulating accessibility to chromatin may 
have a higher hierarchy in the regulation of the 
gene expression programs encoded in the 
genome. Regulation of chromatin structure 
involves mechanisms for the stabilization and 
assembling of nucleosomes into higher-order 
structures, but also for the disruption of nucleo-
some condensation. Some of these mechanisms 
are based on the modification of DNA and his-
tones, ATP-dependent remodeling of the chroma-
tin and the post-replicative incorporation of 
histone isoforms (variants) into nucleosomes 
(Feng et al. 2010; Tessarz and Kouzarides 2014; 
Swygert and Peterson 2014).

As structural components of the nucleosome, 
histones, and the DNA itself are poised to become 
targets of mechanisms modulating chromatin 
structure. Regulation is usually achieved by modi-
fying DNA with methyl groups and histones with 
several functional groups. Indeed, histones are sub-
ject to a myriad of posttranslational modifications 
(PTMs) which include phosphorylation, acetyla-
tion, methylation (monomethylation, dimethyl-
ation, and trimethylation), propionylation, 
butyrylation, crotonylation, 
2-hydroxylisobutyrylation, β-hydroxybutyrylation, 
malonylation, benzoylation, succinylation, glutary-
lation, formylation, hydroxylation, ubiquitination, 
SUMOylation, O-GlcNAcylation, ADP-
ribosylation, proline isomerization, and citrullina-
tion (Huang et al. 2015, 2014, 2018; Sabari et al. 
2017). These modifications occur in over 120 
amino acid residues, specially lysine, arginine, ser-
ine, threonine, tyrosine, and alanine, in the core, 
H2B, H2A, H3, and H4, and also the H1 linker his-
tones (Tan et al. 2011b; Huang et al. 2014). PTMs 
of histones are usually clustered at their N-terminal 
tails, and the C-terminal tail of histone H2A, but 
there is evidence of them occurring in the globular 
domains as well (Mersfelder and Parthun 2006). 
Modifying histones with different functional 
groups may affect nucleosome structure in at least 
two ways. First, modifications, especially those 
changing the polarity of the residues involved, may 
function by disrupting histone-DNA and histone-

histone interactions, leading to changes in chroma-
tin structure. Second, histone PTMs may result in 
recruiting and/or eviction of binding modules, and 
their effector complexes, that regulate chromatin 
structure (Tessarz and Kouzarides 2014; Berger 
2007; Kouzarides 2007; Taverna et  al. 2007a). 
While binding modules recognize histone PTMs 
acting as chromatin “readers,” other proteins enzy-
matically add or cleave modifications at specific 
amino acid residues becoming chromatin “writers” 
and “erasers,” respectively (Kouzarides 2007; 
Tessarz and Kouzarides 2014; Taverna et al. 2007a; 
Berger 2007). “Writers”, “readers,” and “erasers” 
carefully regulate the dynamics of histone modifi-
cations, which in turn influence all the DNA-
templated process including transcription, 
replication, and DNA repair among others 
(Kouzarides 2007; Tessarz and Kouzarides 2014).

Histone modifications, alone or in combina-
tion, may index a specific chromatin domain that 
like a “histone code” can be translated by effector 
complexes into a specific biological readout 
(Jenuwein and Allis 2001; Strahl and Allis 2000). 
However, histone modifications appear to be 
more complex than just a code input producing a 
distinct output. Instead, individual histone modi-
fications may have different meanings that may 
only become clear in the context of other modifi-
cations, or even genomic regions (Berger 2007; 
Kouzarides 2007; Sims and Reinberg 2008; 
Cerutti and Casas-Mollano 2009). In addition, 
the functional meaning of some histone modifi-
cations may be different between lineages indi-
cating that the histone code may not be universal 
(Cerutti and Casas-Mollano 2009; Feng and 
Jacobsen 2011; Fuchs et al. 2006).

Many histone modifications are conserved 
between plant and animals, even their functional 
meaning appear to be the same. For other his-
tone PTMs, however, differences in their bio-
logical connotation are seemingly clear 
suggesting that novel functions, and also modi-
fications, may have emerged during plant and 
animal evolution (Fuchs et  al. 2006; Feng and 
Jacobsen 2011; Cerutti and Casas-Mollano 
2009). Thus, elucidating the plant “dialect” of 
the histone language will require an initial 
inventory of all the histone modifications and 
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their subsequent characterization in several 
plant species. This chapter provides information 
on the histone modifications identified in differ-
ent plant species by several proteomic-based 
approaches. Examples of functional clues 
deduced from these studies are also described in 
order to provide examples of how these tech-
niques may serve beyond merely cataloging his-
tone modifications. An overview of the methods 
used to profile posttranslational modifications in 
plants is also given. Completing a catalog of 
histone modifications will not only be the first 
step into their characterization but also these 
same techniques may be used to obtain func-
tional information. Considering the importance 
of chromatin structure in the regulation of gene 
expression, a complete characterization of his-
tone modifications will be necessary for the 
understanding of plant biological systems.

8.2	 �Profiling of Histone 
Modifications in Plants

Initial studies of histone PTMs and their func-
tions in plants have been carried out using 
modification-specific antibodies raised against a 
modified amino acid residue in a particular posi-
tion. The use of these antibodies has allowed the 
characterization of function, dynamic and 
genome distribution of a few histone modifica-
tions. However, the availability of robust, very 
specific, commercially available antibodies, 
restrict severely and create bias in the type and 
number of histone modifications that could be 
analyzed. To overcome the problems inherent to 
the use of antibodies, proteomic approaches 
based on the use of mass spectrometry can help 
us to identify the site and type of modification 
present in a particular histone (Wu et  al. 2009; 
Johnson et  al. 2004). Together with antibody-
based strategies, proteomic approaches have 
allowed for the identification of an increasing 
number of histone modification types present in 
many histone residues in mammalian cells 
(Huang et al. 2014).

Attempts to use mass spectrometry to cata-
log PTMs have been carried out in a variety of 

tissues and a number of plant species, including 
Arabidopsis, cauliflower, soybean, rice, sugar-
cane, papaya, wheat, Brachypodium, tobacco, 
tomato, and Physcomitrella. In addition, while 
some of these studies were directed to a single 
type of modification in whole proteomes, oth-
ers concentrate on finding several PTMs in core 
or even single histone types (Table  8.1). With 
relatively few proteomic studies, profiling of 
histone modifications in plants is running 
behind that of other organisms. Indeed, from 
the 20 types of histone PTMs that had been 
reported, only nine, phosphorylation, acetyla-
tion, methylation (monomethylation, dimethyl-
ation, trimethylation), succinylation, 
crotonylation, butyrylation, malonylation, 
ubiquitination, 2-hydroxyisobutyrylation have 
been identified in plants so far (Table 8.1).

In terms of cataloging histone modifications 
plants, initial studies were first carried out in 
Arabidopsis thaliana. In this plant, Zhang et al. 
(2007) analyzed methylation (at lysine and argi-
nine), acetylation (at lysine), phosphorylation 
(at serine, threonine, and tyrosine) and ubiquiti-
nation (at lysine) profiles in the four core his-
tones. Mass spectrometry analysis of histone 
modifications from Arabidopsis suggested con-
servation of modification sites between plants, 
yeast, and animals. The conserved nature of 
some histone modifications, especially acetyla-
tion and methylation, was already demonstrated 
with the use of modification-specific antibodies 
and have since then confirmed in other plant 
species for many amino acid residues by mass 
spectrometry or immunoblot analysis. For 
instance, the residues Lysine 9 (K9), K14, K18, 
K23, K27, K36 of histone H3 and K5, K8, K12, 
K16, K20 of H4 are all commonly acetylated in 
Arabidopsis, sugarcane, and animals (Mahrez 
et  al. 2016; Moraes et  al. 2015; Huang et  al. 
2014; Berr et  al. 2011). The presence of simi-
larly modified residues between plants and ani-
mals is not very surprising given the highly 
conserved nature of amino acid sequence of the 
core histones, especially histone H3 and H4 
(Malik and Henikoff 2003).

Besides conserved PTMs, Zhang et al. (2007) 
also found several modified residues that were 
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Table 8.1  Profiling of histone modifications in plants

Species Plant material used
Targeted 
proteins Modifications analyzed/discovereda References

Arabidopsis 
thaliana

Inflorescences H3 Methylation (K); acetylation (K) Johnson et al. (2004)
Above ground plant 
tissues

H2A, H2B, 
H3, H4

Methylation (K); acetylation (K); 
phosphorylation (S); 
ubiquitination (K)

Zhang et al. (2007)

Cultured cells H2B Methylation (K, A); acetylation 
(K); ubiquitination (K)

Bergmuller et al. 
(2007)

Leaves Whole 
proteome

Acetylation (K) Hartl et al. (2017)

Oryza sativa Cell suspension and 
protoplasts

H3 Methylation (K); acetylation (K) Tan et al. (2011a)

Whole plants, 
developing seeds, 
embryo, leaf blades

Whole 
proteome

Acetylation (K) Meng et al. (2018), 
Xiong et al. (2016), 
Xue et al. (2018), He 
et al. (2016)

Leaves Whole 
proteome

Ubiquitination (K) Xie et al. (2015)

Seedlings H2A, H2B, 
H3, H4

Crotonylation (K); butyrylation 
(K)

Lu et al. (2018)

Leaves Whole 
proteome

Crotonylation (K) Liu et al. (2018c)

Developing seeds Whole 
proteome

Malonylation (K) Mujahid et al. (2018)

Seedling leaves Whole 
proteome

Acetylation (K); succinylation 
(K)

Zhou et al. (2018)

Developing seeds, 
seedlings

Whole 
proteome

2-hydroxyisobutyrylation (K) Meng et al. (2017), 
Xue et al. (2020)

Glycine max Leaves H3, H4 Methylation (K); acetylation (K) Wu et al. (2009)
Developing seeds Whole 

proteome
Acetylation (K) Smith-Hammond 

et al. (2014)
Brassica 
oleracea

Cauliflower heads H3 Methylation (K); acetylation (K) Mahrez et al. (2016)

Saccharum sp. Leaf rolls H3, H4 Methylation (K, R); acetylation 
(K, S, T, Y)

Moraes et al. (2015)

Triticum 
aestivum

leaves Whole 
proteome

Ubiquitination (K) Zhang et al. (2017)

Seedlings Whole 
proteome

Malonylation Liu et al. (2018a)

Lycopersicon 
esculentum

Mixture of roots, 
stems, and leaves

Whole 
proteome

Succinylation (K) Jin and Wu (2016)

Nicotiana 
tabacum

Seedling leaves Whole 
proteome

Crotonylation (K) Sun et al. (2017)

Carica papaya Fruits Whole 
proteome

Crotonylation (K) Liu et al. (2018b)

Brachypodium 
distachyon

Seedling leaves Whole 
proteome

Acetylation (K); succinylation 
(K)

Zhen et al. (2016)

Physcomitrella 
patens

Whole plants Whole 
proteome

2-hydroxyisobutyrylation (K) Yu et al. (2017)

K, lysine; S, serine; A, adenine; R, arginine; T, threonine; and Y, tyrosine
aThe letters within parenthesis refer to the modified amino acid
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considered unique to plants. Among these were 
H3K20 acetylation and the absence of H3K79 
methylation in Arabidopsis. However, shortly 
after H3K20 acetylation was shown to exist in 
yeast and later found in animals (Garcia et  al. 
2007a; Zheng et al. 2013). H3K79 methylation a 
conserved modification found in mammals, 
Drosophila and yeast (Feng et al. 2002), but not 
in Arabidopsis, was later detected in soybean 
(Wu et al. 2009). Although, to our knowledge the 
occurrence of methyl H3K79 has not been 
reported in any other plant, its presence in soy-
bean suggests that this residue may indeed be 
methylated in other plant species. The apparent 
absence of certain modified residues may reflect 
differences in the abundance of these modifica-
tions between different organisms and even tis-
sues. Furthermore, histone isolation methods, 
sensitivity of the mass spectrometry platforms 
used and limitations in the protein sequences 
available, may all contribute to the differences in 
the histone modifications observed.

Not all histone modifications previously con-
sidered unique to plants have been detected in 
other organisms suggesting they may be truly 
plant-specific. In addition, mass spectrometry-
based proteomic approaches have the advantage 
of allowing the identification of histone isoforms, 
or variants, that are also part of the chromatin 
together with the canonical core histones. While 
some variants are conserved between animals 
and plants, some others are plant-specific and 
contain non-conserved residues that could harbor 
modifications. In fact, some of the plant-specific 
modifications reported in Arabidopsis including 
acetylation of K144 and phosphorylation of ser-
ine 145 (S145) in H2A.W.6 and H2A.W.7, and 
phosphorylation of S141 and S129  in H2A.W.6 
are all found in the C-terminal part of H2A.W 
type of plant-specific variants (Zhang et al. 2007). 
In Arabidopsis, the three H2A.W variants were 
shown to promote chromatin condensation by 
enhancing fiber–fiber interactions via their 
C-terminal motif KSPKK, whereas H2A.W.7 is 
involved the response to DNA damage in consti-
tutive heterochromatin (Yelagandula et al. 2014; 
Lorkovic et al. 2017). Interestingly, acetylation at 
K144 and phosphorylation of S145 localize to 

the C-terminal KSPKK motif suggesting that 
these modifications may have a mechanistic sig-
nificance in the functions attributed to the H2A.W 
variants. However, up to now the role of these 
modifications during heterochromatin formation 
and DNA damage response remains unexplored.

Another study in Arabidopsis focused on a 
histone that has been less well studied, the H2B 
or HTB (for histone H Two B). Bergmuller et al. 
(2007) used purified histone H2B from 
Arabidopsis to identify histone modifications 
specific to this protein form and its variants. From 
the 11 putative isoforms identified in the 
Arabidopsis genome, five different H2B proteins, 
HTB1, HTB2, HTB4, HTB9, and HTB11, were 
detected in histones isolated from cell suspension 
cultures. Interestingly, these same five isoforms 
were those whose expression was the highest in 
cell suspension cultures indicating these were the 
most abundant proteins owing to their gene 
expression levels (Bergmuller et  al. 2007). 
Considering that the five histones identified in 
cell suspensions are highly expressed in the shoot 
apex, a highly dividing tissue, it is likely that 
these H2B isoforms correspond to canonical core 
histones characterized by their deposition in 
chromatin during the S-phase of the cell cycle. In 
contrast, the remaining HTB genes are expressed 
in a tissue/organ-specific or developmentally reg-
ulated manner. For instance, HTB8 is specifically 
expressed in seeds and the pollen sperm cell 
whereas HTB3 transcripts are enriched in mature 
leaves (Jiang et  al. 2020). Similarly, expression 
of HTB7 and HTB10 is restricted to reproductive 
tissues whereas HTB5 and HTB6 display prefer-
ential expression in sperm cells (Jiang et  al. 
2020). The specific expression patterns exhibit 
by the latter group of HTB genes suggest they 
may encode specialized variants. Indeed, it has 
recently been shown that HTB8 encode a novel 
seed-specific variant present in other angio-
sperms and HTB3 is a replacement histone 
deposited in chromatin outside the S-phase (Jiang 
et al. 2020).

Among the modifications identified in the 
Arabidopsis H2B isoforms, lysine acetylation 
was the most numerous. K5, K10, K15, K27, 
K33, and K34 were found acetylated in histone 
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HTB2, whereas similar residues were acetylated 
in HTB9 and HTB11 (Bergmuller et  al. 2007). 
The localization of acetylated lysine residues in 
Arabidopsis HTB isoforms suggest that this 
modification is limited to the N-terminal tail 
domain, which in the isoforms HTB2, HTB9, and 
HTB11 extends beyond the 45th residue. Lysine 
methylation, in contrast, was less extensive being 
dimethylation at K11 of HTB2 and monomethyl-
ation at K3 of HTB11 the only sites detected. 
One ubiquitination site was also found corre-
sponding to K145 of HTB9 (Bergmuller et  al. 
2007). However, because the tryptic peptide 
“AVTKFTSS” in which this modification was 
found is common to most of the Arabidopsis H2B 
isoforms, it was not possible to determine which 
isoforms, if not all, carry this modification. 
Notably, H2B ubiquitination is the only modifi-
cation in plant H2B for which a function is 
known. During photomorphogenesis in 
Arabidopsis, gene activation is usually character-
ized by increased H2B ubiquitination levels 
along their transcribed regions (Bourbousse et al. 
2012). In addition, genome-wide analysis of mul-
tiple histone modifications in Arabidopsis showed 
that H2B ubiquitination tends to be associated 
with highly expressed genes together with other 
activating marks such as, H3K56ac (Histone H3 
lysine 56 acetylation), H3K4me3 (H3K4 trimeth-
ylation), and H3K36me3 (Roudier et  al. 2011). 
Thus, H2B ubiquitination (in HTB9K145 and 
equivalent residues) represents a modification 
associated with gene activity. In addition, its dis-
tribution across transcribed regions of expressed 
genes indicates this modification is likely linked 
to transcriptional elongation (Bourbousse et  al. 
2012; Roudier et al. 2011).

Analysis of histone H2B from Arabidopsis 
also identified different methylation states of the 
N-terminal alanine residue. Mono-, di-, and tri-
methylation of the N-terminal alanine was found 
in HTB1, HTB4, HTB9, and HTB11. Due to the 
similarity in sequence at the N-terminal end, it 
was not possible to determine the exact isoform to 
which each modification corresponds, but it was 
shown that they occur at least in the HTB9/HTB1 
and HTB4/HTB11 pairs (Bergmuller et al. 2007). 
N-terminal methylation of histone H2B have also 

been observed in other organisms. In Tetrahymena, 
the N-terminal alanine of histone H2B was found 
to be trimethylated (Nomoto et  al. 1982). 
Similarly, H2B, H2A, and H4  in the trypanoso-
matid Trypanosoma brucei, are methylated at the 
N-terminal alanine, even though; only mono-
methylation was observed (Janzen et  al. 2006; 
Mandava et  al. 2007; Picchi et  al. 2017). 
N-terminal proline has been also found methyl-
ated, although only to dimethyl proline, in the his-
tone H2B of Drosophila and several invertebrates 
(Webb et al. 2010; Desrosiers and Tanguay 1988). 
The functional roles of N-terminal methylation of 
histones remain unknown, but clues are emerging 
from recent studies in other chromatin-associated 
proteins. In human DDB2 (DNA damage-binding 
protein 2), a protein that participates in global 
genome nucleotide excision repair, the α-amino 
group of its N-terminal alanine residue is also 
mono-, di-, and trimethylated like in H2B (Cai 
et al. 2014). More important, N-terminal methyla-
tion is required for nuclear localization and pro-
motes recruitment of DDB2 to UV light-induced 
DNA lesions such as cyclobutane pyrimidine 
dimers (Cai et al. 2014). In a similar way, chroma-
tin association of RCC1 (Regulator of chromo-
some condensation 1), a protein involved in 
nuclear transport to the cytoplasm, nuclear 
envelop assembly and mitosis, requires N-terminal 
methylation of serine or proline (Chen et  al. 
2007). Also, human CENP-B (Centromere pro-
tein B) is trimethylated at its N-terminal glycine, 
a modification that facilitates binding to their tar-
get sequence, the CENP-B box, in the centromere 
(Dai et  al. 2013). Interestingly, it was proposed 
that while monomethylation of the α amine group 
will have a small effect, the addition of two and 
three methyl groups will produce a permanent 
positive charge at the N-terminal amino acid 
(Stock et  al. 1987). The resulting structure may 
have an increased affinity for the negatively 
charged phosphates of the DNA (Cai et al. 2014; 
Chen et al. 2007). Thus, it is tempting to speculate 
that N-terminal alanine methylation of histone 
H2B in Arabidopsis may result in altered interac-
tions between H2B and the other histones, or with 
the DNA, leading to changes in chromatin 
structure.
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Recent studies aimed to catalog PTMs in other 
plant species have updated their searches to 
include newly discovered modifications resulting 
in an expanded repertoire of histone marks. The 
discovery of serine, threonine and tyrosine 
O-acetylation, a novel H3 modification present in 
several organisms including yeast, Tetrahymena 
and metazoans (Britton et  al. 2013), prompted 
the search for similar modifications in sugarcane 
histones. Indeed, peptides containing 
O-acetylation in serine 10 (S10), threonine 22 
(T22), S28, tyrosine 41 (Y41), Y54 of histone 
H3, and T30 of histone H4 were detected in a 
mass spectrometry analysis of histones from sug-
arcane (Moraes et al. 2015). In humans, histone 
H3 serine 10 acetylation (H3S10ac) is enriched 
during the S-phase of the cell cycle, suggesting it 
may play a role in DNA replication and/or his-
tone deposition (Britton et  al. 2013). H3S10ac 
was also enriched in induced pluripotent stem 
cells indicating that it may also be involved in the 
maintenance of the pluripotent state (Britton 
et  al. 2013). However, further evidence of the 
functional significance of H3S10ac or any other 
serine, threonine or tyrosine acetylation is lack-
ing for in any organism.

8.2.1	 �Novel Lysine Acylations 
Discovered in Plants

Recent reports suggest that besides acetylation, 
lysine could be modified with a number of other 
acyl groups including, propionylation, butyryla-
tion, crotonylation, 2-hydroxyisobutyrylation, 
β-hydroxybutyrylation, benzoylation, malonyl-
ation, glutarylation, and succinylation (Sabari 
et  al. 2017; Huang et  al. 2018, 2014). Five of 
these novel lysine acylations, succinylation, mal-
onylation, butyrylation, crotonylation, and 
2-hydroxyisobutyrylation, have been proven to 
exist in histones from several plant species 
(Table 8.1, Fig. 8.1).

In rice, enrichment of lysine succinylated pep-
tides using an anti-succinyllysine pan antibody 
lead to the discovery of lysine succinylation in 
2593 proteins (Zhou et al. 2018). K36 and K79 of 
histone H3 (isoforms H3.3 and H3.1, respec-

tively); K13, K23, K67, K86, K137, and K145 of 
H2B (isoform H2B.7); K114 and K128 of H2A 
(isoform H2A.3); and K31 and K91 of Histone 
H4 were all found succinylated in rice. In another 
study, succinylation of K56 of H3 and K108, 
K137, and K145 of H2B (isoform H2B.1) were 
found in Brachypodium (Zhen et al. 2016). Also 
in tomato, antibody-based enrichment of lysine 
succinylated peptides lead to the discovery of 
lysine succinylation in 202 proteins (Jin and Wu 
2016). From the peptides analyzed, it was 
deduced that K79 of histone H3 and K22 of the 
H2B isoform, H2B.3, were succinylated in 
tomato. From all the succinylated residues found 
in plants, succinyl H3K56 and H4K91 were also 
found in human, mouse and Drosophila, whereas 
succinyl H3K79 and H4K31 were found in the 
same organisms, but also in yeast cells (Xie et al. 
2012). Even though H2B and H2A are less con-
served than H3 and H4 between animals and 
plants, similar succinylated residues were also 
observed. H2BK108 and H2BK116, correspond-
ing to rice H2BK137 and H2BK145, respec-
tively, are succinylated in mammals and plants. 
However, other conserved residues found succi-
nylated in plants were not modified in mamma-
lian or yeast cells. H3K36, H2BK86 (equivalent 
to mammalian H2BK57) and H2AK114 (equiva-
lent to mammalian H2AK99) are all succinylated 
in plants but not in mammals. Yet, for other resi-
dues, conservation of succinylation is not possi-
ble to stablish. For instance, the succinylation of 
the residues equivalent to the plant H2BK13, 
H2BK23, H2BK67, and H2B.3K22 is not possi-
ble to stablish since the N-terminal tail of plant 
histone H2B is not very well conserved with that 
of mammals. Taken together these observations 
suggest that even though lysine succinylation is 
conserved between plant and animals, there is 
also a number of plant-specific residues succinyl-
ated in plants. Intriguingly, lysine succinylation 
is rare in the H2B N-terminal tail of animals (Xie 
et al. 2012; Huang et al. 2014) indicating that this 
could be a specific feature of plant histone H2B.

Lysine crotonylation sites have been compre-
hensively determined in rice histones (Lu et  al. 
2018). By using mass spectrometry to analyze 
isolated histones, Lu et  al. (2018) were able to 
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identify 45 lysine crotonylation sites in H3, H2A, 
H2B, and H4. Few of these sites were indepen-
dently identified in another study aimed at the 
identification of global protein crotonylation in 
rice (Liu et al. 2018c). K9, K14, K18, K23, K27, 
K56, K79 and K122 of H3 and K8, K12, K16, 

K31, K79, and K91 of H4 were shown to be cro-
tonylated in rice (Lu et al. 2018). The remaining 
31 crotonylation sites were found distributed 
between the lysines of the histones H2A, H2B, 
and their variants (Lu et al. 2018). Lysine croto-
nylation has also been studied in tobacco, this 

2-hydroxyisobutyrylation 

Succinylation

Acetylation

Malonylation

(A) Histone H

(B) Histone H

ARTKQTARKSTGGKAPRKQLATKAARKSA…GGVKKPH…RE
4 9 14 18 23 27 3637

SGRGKGGKGLGKGGAKRHRKVLRDNIQGITKPAIRRLARR
5 8 12 16 20 31

GGVKRIS…RGVLKIFLE…ARRKTVTA…YALKRQGR…GFGG
91795944

IRKYQKST…LIRKLP…QDFKTD…IHAKRVTIMPKDI…ERA
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Fig. 8.1  Lysine acylation sites identified in histone H3 (a) and H4 (b) from plants. The amino acid sequence of the 
histones shown correspond to H3.1 and H4.1 from Arabidopsis. Gray and black letters indicate residues corresponding 
to the N-terminal tail and globular domains, respectively. Lysine residues are indicated in blue and their position is 
indicated by the numbers bellow. All lysine acylation sites indicated correspond to residues modified in at least one plant 
species. Modifications non-conserved with animals are highlighted with a gray square
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time using affinity enrichment of crotonylated 
peptides in the whole proteome with an anti-
crotonyllysine pan antibody. Although this study 
was not targeted at histones, lysine crotonylation 
was found in the four core histones (Sun et  al. 
2017). K56, K79 and K122 of histone H3; K59 
and K91 of histone H4; K127 of histone H2A, 
isoform H2A.1; and K18, K55, K60, K102, 
K125, and K133 of histone H2B, isoform H2B.2, 
were found to be crotonylated in tobacco (Sun 
et al. 2017). Similarly, a proteomic study of cro-
tonylation in Carica papaya fruits identified 
lysine crotonylation in three sites in the histone 
H3 and five sites in H2B (Liu et al. 2018b). All 
these sites, with the exception of H2B.11K99, 
were previously identified as crotonylated in 
either rice or tobacco. The majority of the sites 
identified in the histones H3 (K9, K18, K23, 
K27, K56, K79, and K122) and H4 (K8, K12, 
K16, K59, and K91) of rice, tobacco or papaya 
were previously shown to be crotonylated in 
mammalian cells (Tan et al. 2011b; Huang et al. 
2014). Similarly, residues crotonylated in H2A 
and H2B in the above mentioned plants were also 
found to contain the same modification in 
humans. For instance, the equivalent residue to 
tobacco H2AK127, human H2AK118, and the 
residues corresponding to tobacco H2BK125 and 
H2BK133 (human H2BK108 and H2B116, 
respectively) were previously demonstrated to be 
crotonylated in mammals (Tan et  al. 2011b; 
Huang et  al. 2014). However, crotonylation of 
other conserved residues in rice and tobacco core 
histones appears to be unique to plants. For 
instance, crotonylation of rice H3K14, H4K31, 
H4K79; and tobacco H2BK60 and H2BK102 
(corresponding to human H2BK43 and H2BK85, 
respectively) has not been observed in humans so 
far. Furthermore, lysine residues, not conserved 
with mammalian histones, are also crotonylated 
in rice and tobacco. The residue crotonylated in 
the N-terminal tail of tobacco, H2B.2K18, was 
also modified in another H2B isoform, 
H2B.1K24. The counterpart of these residues 
does not exist human H2B indicating that croto-
nyl H2B.2K18 and H2B.1K24 are plant-specific 
modifications. Thus, it is apparent that while cro-
tonylation of some lysine residues is conserved 

between animals and plants, other residues are 
specifically modified in plants.

Proteome-wide analyses using pan anti-
malonyllysine antibodies allowed the discovery 
of several malonyl lysine residues in the histones 
of wheat and rice (Mujahid et al. 2018; Liu et al. 
2018a). In wheat, 14 malonylation sites were 
identified in the four core histones (Liu et  al. 
2018a). K56, K79, K122, and K31, K79, K91 
were shown to be malonylated in the histones H3 
and H4, respectively (Liu et al. 2018a). H2AK16, 
H2AK130, H2BK13, H2BK16; H2B.2K35, 
H2B.2K111, H2B.2K134, and H2BK142 were 
also found malonylated in wheat (Liu et  al. 
2018a). In rice, proteomic analysis found a single 
site malonylated in one of the histone H2B iso-
forms, H2B.11K61 (Mujahid et  al. 2018). 
Notably, some of these malonylation sites also 
occur in human and mouse histones. Wheat 
H3K56, H3K79, H3K122, H4K31, H4K79, 
H2B.2K142 (equivalent of human H2BK116) 
and H2B.11K61 (equivalent to human H2BK46) 
are all also malonylated in mammalian histones 
(Mujahid et al. 2018; Colak et al. 2015; Xie et al. 
2012). The remaining malonylated residues 
found in wheat histones are either conserved but 
not modified in human cells (H4K91, H2AK130, 
H2B.2K35, H2B.2K111, and H2B.2K134) or 
correspond to plant-specific residues (H2AK16, 
H2BK13, and H2BK16).

Lysine butyrylation have been determined in 
isolated histones from rice (Lu et al. 2018). Four 
butyrylation sites, H3K14, H4K12, H2B.7K42, 
and H2B.7K114, were detected by mass spec-
trometry in rice seedlings. From these sites 
H3K14 and H4K12 are also butyrylated in human 
histones whereas H2B.7K42 an H2BK114 are 
plant-specific residues (Kebede et  al. 2017). 
Thus, similar to other modifications, butyrylation 
may occur in the same residues in animals and 
plants but also in non-conserved lysines.

2-hydroxyisobutyrylation of lysines have been 
characterized in the proteomes of two plant spe-
cies, rice and the moss Physcomitrella patens (Yu 
et al. 2017; Meng et al. 2017; Xue et al. 2020). In 
rice, proteome-wide analysis of 
2-hydroxyisobutyrylation found 16 modified 
lysines in core histones; three residues in histone 
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H3, four in histone H4, three in histone H2A and 
six in histone H2B (Meng et al. 2017). Similarly, 
in Physcomitrella 19 lysine residues in core his-
tones were found to have this modification, 
including; five sites in histone H3, three sites in 
histone H4, four sites in histone H2A and seven 
sites in histone H2B (Yu et al. 2017). From the 
modification sites found in both species, 
2-hydroxyisobutyrylation of all of the lysine resi-
dues in histones H3 and H4, H3K23, H3K26, 
H3K56, H3K79, H3K122, H4K31, H4K59, 
H4K79 and H4K91, was also found in mamma-
lian cells (Meng et al. 2017; Yu et al. 2017; Huang 
et al. 2014; Dai et al. 2014). In addition, the plant 
residues corresponding to the human H2A and 
H2B lysines, H2AK95, H2BK43, H2BK46, 
H2BK57, H2BK85, H2BK108 and H2BK116, 
were also 2-hydroxyisobutyrylated in either rice, 
Physcomitrella or both (Meng et  al. 2017; Yu 
et al. 2017; Huang et al. 2014; Dai et al. 2014). 
Interestingly, the equivalent of the human 
H2AK99 residue, Physcomitrella H2AK114 and 
rice H2AK14, is modified only in the last two 
organisms suggesting these may be plant-specific 
modifications. Furthermore, several residues 
unique to plant H2A and H2B (H2AK22, 
H2AK43, H2AK136, and H2BK107), were also 
2-hydroxyisobutyrylated. Interestingly, rice 
H2B.9K107, a lysine without a corresponding 
residue in mammalian H2B, was shown to be 
2-hydroxyisobutyrylated in three different iso-
forms, H2B.9, H2B.2, and H2B.10 (Meng et al. 
2017). Thus, even though lysine 
2-hydroxyisobutyrylation is conserved between 
animals and plants, especially at residues corre-
sponding to histones H3 and H4, there are still 
some plant-specific modifications localized in the 
more divergent histones H2A and H2B.

With the exception of acetylation, the number 
of crotonyl and 2-hydroxyisobutyryl lysine resi-
dues is larger than any other acylation studied in 
plants (Fig.  8.1). In mammalian cells, 
2-hydroxyisobutyrylation was shown to be pres-
ent in 63 lysine residues, which surpasses that of 
other lysine acylations, including acetylation 
(Dai et al. 2014). In plants, after acetylation, the 
number of crotonylated lysine residues is the 
largest among all histone acylations. However, 

while lineage-specific differences in the number 
of acylations may have a biological connotation, 
we should take in account that detection of lysine 
crotonylation, and also butyrylation, was carried 
out in isolated histones whereas the other acyl 
modifications were discovered in whole-
proteome studies, not specifically directed to his-
tones. Indeed, the apparent clustering of succinyl, 
malonyl and 2-hydroxyisobutyryl lysine residues 
in the histone globular domain (Fig. 8.1) could be 
due in part to the use of trypsin in proteome-wide 
studies that may lead to the generation of very 
small, hydrophilic peptides from the lysine/
arginine-rich histone tails (see Sect. 8.3 for dis-
cussion). Future studies targeted to the identifica-
tion of acyl lysine and other PTMs in purified 
histones will shed more light into the true extent 
of these modifications in plant histones.

Lysine acetylation is likely the most studied 
histone modification and one of the first PTMs to 
be discovered in the histones of any eukaryote 
(Allfrey et al. 1964). Conversely, for other lysine 
acylations, which were only recently identified, 
there is limited information on their functional 
significance. Nevertheless, it was postulated 
since the beginning that because lysine acylation 
will require the corresponding acyl-CoA as 
groups donors, these modifications might serve 
as a way to modulate chromatin, and gene expres-
sion, in response to metabolic changes (Dai et al. 
2014; Dutta et  al. 2016). Since their discovery, 
few non-acetyl lysine acylations have been char-
acterized. In human somatic cells and during 
mouse spermatogenesis, histone lysine crotonyl-
ation was shown associated with active promot-
ers and enhancers suggesting a role for this PTM 
in gene activation (Tan et al. 2011b). In addition, 
the “writers”, “erasers,” and “readers” of histone 
crotonylation have been identified in mammals. 
Histone crotonylation is deposited by the histone 
acetyltransferase p300/CBP (CREB-binding pro-
tein), but could also be removed by histone 
deacetylates from the “Sirtuin” family, Sirt1, 
Sirt2, and Sirt3 (Sabari et  al. 2018; Bao et  al. 
2014). The YEATS (Yaf9, ENL, AF9, Taf14, 
Sas5) domain was identified as a chromatin bind-
ing module with a preference for crotonylated 
lysines (Zhao et al. 2016; Li et al. 2016; Andrews 
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et  al. 2016). More important, YEATS domain-
containing proteins, such as AF9, are able to 
stimulate transcription linking histone crotonyl-
ation to gene expression (Li et al. 2016). In the 
same way as crotonylation, lysine butyrylation 
and 2-hydroxyisobutyrylation were also linked to 
active gene transcription in liver cells and during 
male germ cell differentiation, respectively (Dai 
et al. 2014; Kebede et al. 2017). In rice, histone 
lysine butyrylation and crotonylation have been 
also associated with actively transcribed chroma-
tin and were shown to co-localize with acetyla-
tion suggesting they may function similarly to 
their animal counterparts (Lu et  al. 2018; Liu 
et al. 2019, 2018c). Association with highly tran-
scribed genes is not restricted to crotonylation, 
butyrylation and 2-hydroxyisobutyrylation since 
several other histone lysine acylations are associ-
ated with the promoters of active genes in a pat-
tern that resembles that of lysine acetylation 
(Dutta et  al. 2016). Thus, it was proposed by 
Dutta et  al. (2016) that transcription could be 
stimulated using alternative strategies (i.e., dif-
ferent lysine acylations marks) that reflect the 
balance of metabolites in the cell.

The presence of conserved acyl lysine resi-
dues, including succinylation, malonylation, cro-
tonylation, butyrylation and 
2-hydroxyisobutyrylation, in the histones of ani-
mals and plants indicates these modifications 
may have been present in the last common ances-
tor of these organisms. Furthermore, together 
with the PTMs one may expect that their “read-
ers”, “writers,” and “erasers” have also been con-
served throughout evolution. Indeed, homologs 
of the enzymes and effector proteins associated 
to histone lysine crotonylation, the acetyltrans-
ferase p300/CBP, Sirtuin deacetylases, and 
YEATS domain-containing proteins, are present 
in plants (Pandey et  al. 2002; Zacharaki et  al. 
2012). Interestingly, several of these lysine acyla-
tions in plant histones occurs in the same residue 
(Fig. 8.1) so that in a given loci a lysine may be 
modified with either acylation. In animals, com-
petition between acyl modifications in the same 
residues at promoter regions appears to constitute 
an important regulatory mechanism (Goudarzi 
et al. 2016).

8.2.2	 �Beyond Identification 
of Histone Modifications

Mass spectrometry-based proteomic analysis of 
histones is not only a mean for the identification 
of PTMs but also may offer additional informa-
tion that could be used to begin inferring the 
function of certain modifications. Histone PTMs 
do not occur alone and a single histone may con-
tain combinations of modifications that index a 
particular locus. For example, a histone that con-
tains a modification associated with gene silenc-
ing may contain additional PTMs also associated 
with gene silencing, a “guilt by association” 
argument. This same histone may also lack PTMs 
indexing the opposite gene state, i.e., gene activ-
ity. For instance, the mark associated with tran-
scriptional activity, H3K4me3, usually occur 
together with multiple acetylated sites at H3K9 
and H3K14, H3K18, H3K23, and H3K27 
(Taverna et al. 2007b; Hazzalin and Mahadevan 
2005). In contrast, H3K4me3 do not coexist in 
the same tail with the euchromatic silencing 
mark, H3K27me3, because methylation of 
H3K27 is inhibited by either H3K4me3 or 
H3K36me3 (Voigt et  al. 2012). Acetylation at 
H3K9, H3K14, and H3K27 also co-occurs with 
H3K4me1 indexing active enhancers, while 
H3K4me1 and low levels of H3K14 acetylation 
marks inactive or poised enhancers (Karmodiya 
et al. 2012). Thus, variations in the combination 
of different PTMs, with similar or even opposite 
functions, may lead to unique functional 
outcomes.

Due to its ability to determine more than one 
modification in the same peptide, mass spectrom-
etry is able to provide initial information on the 
mutual exclusion or co-occurrence of modifica-
tions. This is especially true for the heavily modi-
fied histone tails in which neighboring residues 
are usually modified. In Arabidopsis and sugar-
cane, analysis of the peptide “KSTGGKAPR,” 
corresponding to residues 9–17 of the histone 
H3, revealed the presence of acetylation and 
methylation at both H3K9 and H3K14. From 
these modifications, mono- and dimethylation 
were the predominant marks at K9, whereas K14 
was typically acetylated. However, in spite of 
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their abundance methylation at K9 and acetyl 
K14 were rarely found in the same peptide imply-
ing their roles may be incompatible or even 
antagonistic (Johnson et al. 2004; Moraes et al. 
2015). Indeed, both modifications index opposite 
chromatin states in plants; H3K9me2 is a histone 
mark associated with the transcriptionally silent 
heterochromatin, and transposable elements and 
repeats in euchromatic regions, whereas 
H3K14ac is associated with active genes in 
euchromatin (Earley et al. 2006; Bernatavichute 
et al. 2008; Chen et al. 2010). In Arabidopsis, the 
promoters of active rRNA genes are associated 
with H3K4me3 and acetylation of several resi-
dues including H3K14. Conversely, silent RNA 
loci lose their acetylation marks and become 
associated with H3K9me2 and DNA methylation 
(Earley et al. 2006). In the same way, induction 
of the abscisic acid (ABA)-responsive genes, 
ABA INSENSITIVE 1 (ABI1), ABI2, and 
RESPONSIVE TO DESSICATION 29B (RD29B), 
and the salt stress-responsive genes, DRE-
BINDING PROTEIN 2A (DREB2A), RD29A, and 
RD29B correlates with increased H3K14ac, and 
H3K9ac, but also decreased H3K9me2 (Chen 
et  al. 2010). None of these modifications have 
been studied in sugarcane, but the similarities in 
occurrence with Arabidopsis may be an indica-
tion that these PTMs may have similar functions 
in this crop (Moraes et al. 2015).

Recently, O-acetylation of serine, threonine 
and tyrosine (S/T/Y) was described as a novel 
modification found in several eukaryotes includ-
ing yeast, Tetrahymena, metazoans, and plants 
(Moraes et al. 2015; Britton et al. 2013). In sug-
arcane, when peptides containing S/T/Y acetyla-
tion are found with other PTMs, these are 
frequently lysine and arginine methylation, but 
rarely acetylation. This observation suggests that 
S/T/Y acetylation could coexist with silencing 
marks such as H3K9me1/3 and H3K27me3, but 
not at all with lysine acetylation, PTMs usually 
associated with gene expression. The function of 
these modifications is currently unknown, but it 
was proposed that acetylation of H3S10 might 
inhibit phosphorylation of the same residue, 
blocking the formation of H3S10ph (Britton 
et al. 2013). H3S10ph can modulate the binding 

of effector proteins to the neighboring methyl 
H3K9 forming a methyl/phospho or binary 
switch (Fischle et al. 2003). Considering all the 
S/T/Y acetylation sites found in histones H3 and 
H4 of sugarcane are adjacent to a lysine residue, 
and in one case to an arginine, it is possible to 
assume that S/T/Y acetylation may help to fine 
tune the interactions between methylation and 
phosphorylation in these binary switches. Future 
research will provide more information on the 
interplay between lysine methylation, and acety-
lation and phosphorylation of S/T/Y.

Under the right conditions, quantitative data 
on the histone PTMs in different samples could 
be obtained with mass spectrometry. When his-
tone derivatization followed by trypsin digestion 
is used (see Sect. 8.3.2), it leads to the generation 
of defined peptides (Johnson et al. 2004). Thus, if 
all the modified versions of a particular peptide 
(isoforms) can be accounted for, after mass spec-
trometry, the relative abundance of the modifica-
tions can be determined by dividing the peak area 
(peak integration of the ion chromatogram) of a 
particular isoform by the sum of the areas of all 
the isoforms (Johnson et al. 2004; Moraes et al. 
2015). Using this approach, the relative levels of 
H3K9me2 in histone H3 were measured at ~10% 
and ~40% in Arabidopsis and sugarcane, respec-
tively (Moraes et al. 2015; Johnson et al. 2004). 
These estimates are consistent with the content of 
heterochromatin in Arabidopsis (~10%) and sug-
arcane (~50%) suggesting that the relative level 
H3K9me2, a mark for constitutive heterochroma-
tin in plants, may correlate with the heterochro-
matic content in plant genomes.

Another interesting observation comes from 
the analysis of the peptide corresponding to resi-
dues 27–40 of the histone H3. This region allows 
distinguishing between H3 variants, H3.1 
(KSAPATGGVKKPHR) and H3.3 
(KSAPTTGGVKKPHR), due to an A versus T 
change at amino acid 31 (Johnson et  al. 2004). 
Comparative analysis of the relative levels of 
modifications in these two peptides demonstrate 
that H3.1 was enriched in the silencing mark, 
H3K27me3, whereas H3.3 contains higher levels 
of H3K36me2/3 a mark associated with tran-
scriptionally active genes (Johnson et  al. 2004; 
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Moraes et  al. 2015). These observations agree 
with the distributions of these histones in the 
Arabidopsis genome. H3.1 is deposited into 
chromatin during replication and is associated to 
transcriptionally silent regions enriched in methyl 
H3K27, methyl H3K9, and DNA methylation. In 
contrast, H3.3 deposition correlates with tran-
scriptional activity and is distributed in gene bod-
ies and a subset of promoters (Shu et  al. 2014; 
Stroud et  al. 2012). Thus, the determination of 
the relative abundance of modifications lends 
support for the involvement of H3.3  in active 
transcription and H3.1 in silent chromatin.

Mass spectrometry could be carried out in a 
quantitative way to compare the levels of PTMs 
in different samples. In this way, quantitative dif-
ferences in histone modifications may be deter-
mined between different tissues, organs, 
genotypes, treatments, and even species, allow-
ing for the identification of particular modifica-
tions associated to the biological differences 
among samples. There have been at least two 
reports using mass spectrometry to compare his-
tone modifications in two different samples. In 
Arabidopsis, mass spectrometry was used to 
determine quantitative differences in lysine meth-
ylation of histone H3 between wild-type and a 
mutant in KRYPTONITE (KYP), a gene encoding 
a methyltransferase specific for H3K9 (Johnson 
et  al. 2004). In this work, stable isotopes were 
used to label peptides coming from the wild-type 
and the kyp mutant in order to differentiate them 
during mass spectrometry. With this method, 
Johnson et  al. (2004) found that the levels of 
H3K9me2/3 were reduced in the kyp mutant 
when compared to the wild-type, confirming pre-
vious observation stating that KRYPTONITE is 
indeed a methyltransferase responsible for 
H3K9me2 in vivo.

The development of newer-generation mass 
spectrometry equipment made possible novel 
quantitative approaches based on the targeted 
analysis of peptides (Liebler and Zimmerman 
2013). One of these approaches, LC/MRM-MS 
(liquid chromatography/multiple reaction 
monitoring-mass spectrometry) was used to 
quantify differences in histone PTMs between 
wild-type Arabidopsis and the null-mutant clf-29 

(Chen et al. 2015). CLF (CURLY LEAF) is one 
of three histone methyltransferases in Arabidopsis 
responsible for the deposition of H3K27me3 at 
its target genes (Schubert et al. 2006; Jiang et al. 
2008). Chen et al. (2015) shown that indeed the 
clf-29 mutant contains significantly reduced 
amounts of H3K27me3 when compared to wild-
type plants. These results were comparable to 
independent determinations of H3K27me3 using 
immunoblots with an anti-H3K27me3 antibody. 
Quantification of a dozen other modified lysines 
did not reveal any other changes with the excep-
tion of a 12% increase in H3K36me3 detected in 
the clf-29 mutant. Thus, LC/MRM-MS not only 
confirmed that H3K27me3 is dependent on CLF, 
but also hint to the possibility of a crosstalk 
between H3K27me3 and H3K36me3 (Chen et al. 
2015). Analysis of such large number of modifi-
cations between two different genotypes will be 
cumbersome and time-consuming using immu-
noblots with specific antibodies.

8.3	 �Strategies for the Analysis 
of Plant Histone 
Modifications

Several approaches have been used to catalog 
PTMs in plant histones. They may be divided in 
two depending on whether a study is focused on 
identifying a particular type of modification 
occurring in the whole-proteome or multiple 
modifications occurring in core histones or even 
a histone type in particular (Fig.  8.2). These 
approaches have also been combined in order to 
obtain information on a single type of modifica-
tion, usually occurring at very low levels in 
histones.

8.3.1	 �The Whole-Proteome 
Approach

The whole-proteome approach has been applied 
in several plant species and using a variety of 
organs and tissues (Table 8.1). This methodology 
is used when the target is a modification in par-
ticular and not a specific family of proteins so 
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homogenization

Peptide enrichment
• Immunoaffinity

with pan-antibody

Trypsin digestion
(Optional: RP-HPLC 

peptide fractionation)

Nuclei isolation

Assignment of peptides and 
modifications

Mass spectrometry
• LC-MS/MS
• MALDI-TOF
• MALDI-CID

Extraction of histones
• Acid extraction
• Cationic exchange

Fractionation of 
histones:
• RP-HPLC
• SDS-PAGE

Affinity 
Enrichment

Data analysis

Organism-specific 
protein database
• whole proteome
• Histones

Acquired tandem 
mass spectra

Theoretical tandem 
mass spectra

Protein digestion
• Trypsin
• Arg-C

Chemical 
derivatization
• In-gel
• In-solution

Total protein extraction
(denaturing conditions)

Starting material
(Whole plants, organs, 

tissues, etc.)

Fig. 8.2  Schematic overview of the proteomic 
approaches used to characterize histone modifications in 
plants. All the strategies, and their variations, used in 
plants are integrated in the diagram. The unique steps 

involved in the analysis of single modifications in whole 
proteomes or multiple modifications in isolated histones 
are enclosed in a light red rectangle in the left and a light 
blue rectangle in the right, respectively
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that the whole proteome is explored and not only 
histones or a specific family of proteins. The 
modifications analyzed using this approach 
include acetylation, ubiquitination, malonylation, 
succinylation, crotonylation, and 
2-hydroxyisobutyrylation specifically on lysines 
(Table  8.1). Even though these studies usually 
report the presence of the target modification in a 
wide range of proteins, we could mine the data 
reported in order to find PTMs in the proteins of 
interest, histones in this case.

The process of identifying modifications in a 
whole-proteome analysis (Fig.  8.2) starts by 
grinding the tissues of interest with liquid nitro-
gen and resuspending the homogenized tissues in 
a denaturing buffer usually containing urea as a 
chaotropic agent, protease inhibitor cocktails, 
and, when available, inhibitors for the enzymes 
that may otherwise remove the modifications. 
Then, the amount of proteins in the homogenate 
is quantified and subjected to trypsin digestion. 
At this point, the complexity of the peptide mix-
ture produced after trypsin digestion may be 
reduced by fractionating the samples using 
reverse phase-high performance liquid chroma-
tography (RP-HPLC). Because RP-HPLC frac-
tioning led to an increased number of samples to 
be handled this step is usually skipped and after 
trypsin digestion peptides are usually precipi-
tated and resuspended in a buffer suitable for 
affinity enrichment. In all the studies described 
here, affinity enrichment has been carried out 
using a pan antibody recognizing a modified 
amino acid regardless of the residues surround-
ing it. Many of these pan antibodies are commer-
cially available, facilitating the study of several 
PTMs. Once the fractions are enriched for pep-
tides containing the target modification, they are 
analyzed using a mass spectrometry platform. 
The platform of choice for this type of whole-
proteome analysis is LC-MS/MS (liquid 
chromatography-tandem mass spectrometry) in 
which an online reverse phase column separate 
the peptides before injecting them in the tandem 
mass spectrometer.

After mass spectrometry, the MS/MS spec-
trum obtained for each peptide analyzed is con-
verted into searchable data (peptide mass, 

fragment ions peaks and intensities). For data-
base search, all the protein entries corresponding 
to the organism under study are digested in silico. 
Then, the masses of the intact peptides and their 
expected fragment ions are calculated. After that, 
the experimental and calculated MS/MS spectra 
are compared, first for matches between the total 
mass of the peptides and then for matching of the 
masses of the fragment ions (Cottrell 2011). 
Because we are interested in the modifications 
present in the peptides, the mass of the modifica-
tion added to the peptide is taken into consider-
ation during the database search, as it is the 
expected mass of the fragment ions resulting 
from the fragmentation of the peptide with the 
modification present at a particular residue. 
Protein identification software like Mascot and 
SEQUEST are often used for identifying the 
PTMs of interest. The search engine will finally 
provide with a list of peptides found containing 
the modification under study indicating the posi-
tion of the modified site and protein entry to 
which it corresponds. However, manual valida-
tion of the results is always required (Garcia et al. 
2007b).

8.3.2	 �Approaches Based on Histone 
Purification

The second approach based on the analysis of 
core histones involves the extraction of histones 
from the initial plant material (Fig. 8.2). The first 
step in the purification of histones involves the 
isolation of intact nuclei from plant cells. Just by 
performing this step, the complexity of the sam-
ple is reduced because virtually all the histones 
are forming part of the chromatin inside the 
nucleus and, in addition, ~40% of the mamma-
lian diploid nucleus composition correspond to 
histones (Dumortier and Muller 2007). In order 
to release the nuclei from the cells, the plant 
material needs to be homogenized to disrupt the 
rigid plant cell walls but leaving the nuclei intact. 
Blender-type homogenizer works with most plant 
tissues but also grinding the samples in liquid 
nitrogen have proven to be effective in homoge-
nizing plant tissues without disintegrating the 
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nuclei (Sikorskaite et al. 2013). During or after 
homogenization, depending on the use of a 
blender or liquid nitrogen for cell disruption, a 
buffer is added to stabilize the nuclei and protect 
the chromatin from degradation during the isola-
tion process. The nuclear isolation buffer usually 
includes: chromatin stabilizers (MgCl2, sperm-
ine), membrane stabilizers (sucrose, glycerol, 
hexylene glycol) inorganic salts (KCl, NaCl) to 
provide proper ionic strength, inhibitor cocktails 
(for proteases, phosphatases, acetylases, deacety-
lases) and organic buffers (MOPS, Tris, HEPES, 
PIPES) to maintain the pH of the solution around 
7.0–8.0. After homogenization, the non-ionic 
detergent Triton X-100 is added to the buffer to 
reach a concentration high enough to disrupt the 
membranes of the chloroplast and mitochondria, 
but not the nuclear envelope (Sikorskaite et  al. 
2013; Loureiro et al. 2006). After suspension in 
the buffer, intact cells, large pieces of tissues and 
debris are filtered out using Miracloth. The fil-
tered solution contains the nuclei, which in virtue 
of its large size could then be separated from the 
rest of the solution by low-speed centrifugation. 
The nuclei isolated in this way may also contain 
membrane pieces and sometimes starch grains 
(Sikorskaite et al. 2013), but it is usually suitable 
for histone extraction.

Histones are composed of basic amino acids 
that allow them to interact with the phosphate 
groups of the DNA. This basic property of his-
tones is used to isolate them from crude nuclear 
preparations. One method homogenizes the 
nuclei in diluted acid solutions (HCL or H2SO4) 
in which histones are soluble but other nuclear 
proteins precipitate. Precipitated proteins are 
removed by high-speed centrifugation and the 
extracted histones are concentrated by precipita-
tion with strong acids, like TCA, or dialyzed with 
diluted acetic acid and lyophilized (Shechter 
et al. 2007; Sidoli et al. 2016). A second approach 
uses cation exchange chromatography with the 
resin BioRex-70 to separate histones from other 
nuclear proteins (Waterborg et  al. 1995; 
Waterborg 2000).

Both methods produce fairly pure bulk his-
tones consisting of the linker histone H1 and the 
core histones H2A, H2B, H3, and H4 and also 

their variants. In plants, acid extraction have been 
successfully used to isolate histones for mass 
spectrometry analysis from Arabidopsis, soy-
bean, cauliflower and rice (Bergmuller et  al. 
2007; Wu et  al. 2009; Mahrez et  al. 2016; Tan 
et al. 2011a), whereas cation exchange chroma-
tography with BioRex-70 have been carried out 
in Arabidopsis and sugarcane (Zhang et al. 2007; 
Moraes et al. 2015).

Bulk histones could be fractionated into indi-
vidual histones by RP-HPLC. The high resolu-
tion of RP-HPLC allows the separation of 
individual, highly pure histones (Shechter et al. 
2007). Both individually separated and bulk his-
tones have been used for mass spectrometry anal-
ysis in several plant species (Table 8.1). However, 
before mass spectrometry histones are converted 
into small peptides, usually by digesting them 
with endoproteases such as trypsin. Digestion 
with trypsin, which cuts at arginine and lysine, is 
problematic for histones because their basic 
nature is given by a high content of lysine and 
arginine residues especially in their tails. Thus, 
digestion of histones with trypsin will produce 
very small peptides difficult to analyze by mass 
spectrometry. To overcome this problem, his-
tones could be digested with limited amounts of 
trypsin or for limited time so that not all residues 
are cleaved by the enzyme. This approach was 
used to determine PTMs in histones H2A, H2B, 
H3, and H4 from Arabidopsis, and H3 and H4 
from soybean (Wu et al. 2009; Bergmuller et al. 
2007; Zhang et al. 2007). Another approach is to 
replace trypsin by Arg-C, an endoprotease that 
cleaves only at arginine residues producing larger 
peptides from histones. Arg-C has been used so 
far to analyze histone H3 from Arabidopsis and 
Cauliflower (Mahrez et  al. 2016; Zhang et  al. 
2007). Analysis of histones using both approaches 
have been carried out in order to increase the 
chance of finding a larger number of modified 
residues (Mahrez et al. 2016; Zhang et al. 2007).

Even though the methodologies mentioned 
above have been successfully used to identify 
histone modifications, they have some draw-
backs. For example, the peptides produced by 
limited trypsin digestion are often irreproducible 
and Arg-C is apparently less efficient and not as 
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specific as trypsin (Plazas-Mayorca et al. 2009). 
To avoid these shortcomings, derivatization 
methods that chemically block lysine residues so 
that trypsin will only cleave at arginine residues, 
producing uniform peptides, have been devel-
oped. The most used method involves the propio-
nylation of unmodified and monomethyl lysines 
before trypsin digestion and then of the free 
amino group in the N-terminus of the digested 
peptides. Propionylation of histones not only 
results in reproducible peptide fragments, but 
also in less hydrophilic peptides that could be 
better separated in RP-HPLC and improve frag-
mentation of the peptides producing MS/MS 
spectra that are easier to interpret (Garcia et al. 
2007b). The generation of uniform peptides dur-
ing tryptic digestion of histones have additional 
advantages, for example allowing quantification 
of the relative amounts of some PTMs (see Sect. 
8.2.2). Propionylation of histones using propi-
onic anhydride has been applied to find PTMs in 
the histones H3 and H4 from sugarcane and H3 
from Arabidopsis (Johnson et  al. 2004; Moraes 
et  al. 2015). A similar propionylation method, 
using propionic acid N-hydroxysuccinimide ester 
(NHS-propionate), was also used to analyze 
modifications in Arabidopsis histone H3 (Chen 
et al. 2015).

After digestion with endoproteases, samples 
could be enriched for peptides carrying particular 
types of modifications, especially those present at 
very low levels, using affinity chromatography or 
pan antibodies. Zhang et  al. (2007) carried out 
affinity chromatography with titanium dioxide 
(TiO2) to selectively enrich for phosphopeptides 
in histones from Arabidopsis digested with tryp-
sin. Interestingly, in this work the authors were 
able to find several phosphorylated residues in 
histones H2A and H2B (Zhang et  al. 2007). 
Another study in Arabidopsis used IMAC (immo-
bilized metal affinity chromatography) also to 
enrich for phosphopeptides in the histone H3 
from Arabidopsis but not phosphorylated residue 
was reported. In rice, enrichment of crotonylated 
and butyrylated peptides after trypsin digestion 
of purified histones was achieved using anti-
butyryllysine and anti-crotonyllysine pan anti-
bodies (Lu et al. 2018).

The platform of choice for the analysis of his-
tone peptides and their modifications is LC-MS/
MS, but, other methods have also been used 
including matrix-assisted laser desorption/ion-
ization time-of-flight (MALDI-TOF/TOF) and 
hybrid linear ion trap Fourier transform ion 
cyclotron resonance trap (LTQ-FTICR). The 
advantages and drawbacks of the different mass 
spectrometers will not be detailed here as it is 
beyond the scope of this chapter.

Once the experimental MS/MS spectra are 
obtained, the database search is carried out in the 
same way as for the whole-proteome approach 
(see Sect. 8.3.1). However, the generation of the 
theoretical MS/MS spectra could be done either 
using all the protein entries in existence for the 
organism under study or a custom database could 
be constructed by using just sequences corre-
sponding to the histones from the particular 
organism. The latter approach has the advantage 
of greatly reducing the number of proteins to be 
searched and by curating the protein sequences, 
we will avoid mispredicted and misannotated 
entries in the database, especially those present in 
poorly annotated genomes. In species without a 
genome database, the proteins sequences of the 
histones from related species could be used and/or 
histone sequences could be obtained from contigs 
made of Expressed Sequence Tags (ESTs) or 
RNA Sequencing data. Since histones are highly 
conserved, using the protein sequences from a 
close relative often works well for histones H3 
and H4. However, histone H2A and H2B are usu-
ally more divergent and lineage-specific variants 
may be present on particular species. For the 
search of modifications, the differential mass of 
the added groups is considered. However, since 
not all residues are completely modified and some 
may be modified with different functional groups, 
all possible peptide configurations must be con-
sidered in the search. Thus, the possible combina-
tions increase exponentially with the addition of a 
modification to the search. Although, several 
search engines have been used to identify PTMs 
in histones, pFind and Mascot, have been shown 
to produce the most confident results (Yuan et al. 
2014). However, manual inspection of the data is 
always necessary after database search.
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The use of either approach for cataloging pro-
tein modifications have yield important informa-
tion which can be used to start the functional 
analysis of specific PTMs. Whole-proteome anal-
ysis have allowed the identification of several 
modified residues with a number of functional 
groups, especially acylations. However, because 
of the high number of lysine and arginine resi-
dues in histones, the use of trypsin digestion will 
produce samples with underrepresented peptides 
from histones. This bias could be easily observed 
in Fig.  8.1, in which most of the modifications 
identified by whole-proteome approaches are 
clustered in the globular domains of the histone, 
the region containing less lysine and arginine 
residues. Other drawback of the whole-proteome 
analysis is the high complexity of the samples, 
which may hamper the detection of low abun-
dance modifications. The use of purified histones, 
on the other hand, has the advantage of focusing 
on a reduced number of proteins allowing the 
identification of even low abundance modifica-
tions. However, purification procedures may lead 
to the loss of some modifications, especially 
those for which inhibitor cocktails for PTM mod-
ifying enzymes are not available. With the 
increased availability of pan antibody recogniz-
ing specific modifications regardless of their 
sequence context, the ability of carrying out 
enrichment of modified peptides from isolated 
histones will improve our ability to detect his-
tones modifications.

8.4	 �Perspective

In recent years, there have been many advances 
in the discovery and cataloging of PTMs in his-
tones and whole proteomes from several organ-
isms. The biological function of several 
modifications, including the “readers”, “writers,” 
and “erasers” of these modifications, have been 
also began to be known and understood in plants. 
This knowledge is, however, limited to a few 
modifications like acetylation, methylation, 
phosphorylation, ubiquitination, crotonylation, 
and butyrylation. The discovery of new func-
tional groups that can be added to amino acid 

residues and for which no function is currently 
known have added more complexity and make us 
realize that we are far from deciphering the “his-
tone code.” Fortunately, recent advances in pro-
teomics, mass spectrometry and the availability 
of new antibodies can help us advance our under-
standing of the role histone modifications play in 
plants and other organisms.

The cataloging of histone modifications is just 
the initial step in trying to understand the com-
plexities of the functional interactions between 
histone modifications. Such catalog may provide 
initial candidates to begin functional character-
ization and information on crosstalk of modifica-
tions that may point to a biological role. 
Unfortunately, the profiling of histone modifica-
tions in plants is lagging behind from other 
organisms such as mammals. There have been 
few studies focused in identifying PTMs in plant 
histones and most aimed at newly discovered 
modifications have been done using whole pro-
teomic approaches, which have bias against his-
tones (see Sect. 8.3.2). In addition, previous 
analysis of histone PTMs did not include the 
search for many novel types of modifications that 
were not yet discovered at that time. Thus, future 
work should aim to provide a more extensive 
catalog of histone PTMs in plants, especially of 
the newly identified modifications. Improvements 
in sample preparation, development of more sen-
sitive mass spectrometry approaches, novel algo-
rithms for database search and the availability of 
pan antibodies for specific modifications should 
all allow for a comprehensive identification of 
histone modifications even those present at very 
low levels.

Histone PTMs do not occur alone but often 
in complex, non-random combinations with 
numerous others (Taverna et al. 2007b). Thus, 
one of the major goals in the field is to deter-
mine the functional meaning of the combina-
tion of modifications that do exist in vivo. So 
far in plants, all the analysis of histone modifi-
cations have made use of endoproteases that 
cleave the protein into small peptides analyzed 
by mass spectrometry, an approach called bot-
tom-up (Moradian et al. 2014). Despite the fact 
that some information of co-occurring histone 
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PTMs have been obtained with this approach 
(see Sect. 8.2.2), this have been limited to 
neighboring residues and additional informa-
tion regarding long-range combination of mod-
ifications is lost when the protein is cleaved. 
Thus, in order to obtain more data on co-occur-
ring histone modifications in plant histones, 
other strategies such as top-down and middle-
down mass spectrometry need to be applied. 
Middle-down mass spectrometry methods 
could be used to detect combinations of modi-
fications in the histone tails whereas top-down 
mass spectrometry could be applied to PTMs 
in whole-proteins (Moradian et  al. 2014; 
Molden and Garcia 2014). These methods will 
provide important information on combina-
tions of histone modifications naturally occur-
ring in plants and help us to start unraveling 
their functions.

As discussed in Sect. 8.2.2, quantitative 
proteomics methods are amenable to the analy-
sis of changes in histone modifications between 
two different genetic backgrounds. Novel 
quantitative approaches, like LC/MRM-MS, 
may be used to measure changes in hundreds 
of histone modifications between wild-type 
plants and knock-out mutants for “writers” or 
“erasers” and help us to determine their target 
PTMs (Liebler and Zimmerman 2013; Chen 
et al. 2015). Similarly, quantitative differences 
in histone modifications could be analyzed in 
different tissues, organs and during plant 
development using this approach. Another 
interesting application would be to measure the 
crosstalk of modifications that occur when the 
deletion of a “writer” or an “eraser” cause a 
PTM to be depleted or enriched. This type of 
experiments could provide additional informa-
tion of already known histone PTMs and their 
interplay with other modifications.

While determining the complete repertoire of 
histone modifications, their combinations and 
quantitative changes during development may 
provide clues about their functional significance, 
these approaches are usually not enough to obtain 
a complete picture of their biological meaning 
(Janssen et al. 2017). To this end, other comple-
mentary approaches need to be applied in order 

to gain additional insights. Among these 
techniques, chromatin immunoprecipitation 
(ChIP) followed by microarray hybridization 
(ChIP-chip) or high-throughput sequencing 
(ChIP-Seq) are one of the most informative tech-
niques used because it allow us to determine the 
genome-wide distribution of histone modifica-
tions (Schmitz and Zhang 2011). In addition, by 
combining ChIP-chip or ChIP-Seq with tran-
scriptomic profiling of RNAs, using high-
throughput RNA sequencing (RNA-Seq), a 
correlation between enrichment or depletion of 
histone modifications and gene activity could be 
obtained along the whole genome (Schmitz and 
Zhang 2011).

The integrated genome-wide profiling of sev-
eral histone PTMs, using ChIP-chip, suggest 
that they may be combined to produce only few 
chromatin states in Arabidopsis and other meta-
zoans (Roudier et al. 2011). This low combina-
torial complexity may also be reflected in the 
non-random co-occurrence of histone modifica-
tions mention above (Taverna et al. 2007b). This 
apparent simplicity of chromatin organization 
may work in our favor when determining the 
functions of histone modifications. However, 
the complete understanding of how histone 
PTMs relate to biological function will imply to 
combine genomic, transcriptomic and pro-
teomic data into a coherent unit. This is a chal-
lenging task given the different layers of 
information that need to be integrated in order 
to understand how these individual parts work 
as a single biological system. However, in spite 
of the challenges, the integration of “omics” 
data is becoming one of the new frontiers in bio-
logical research.
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Abstract

Plants, as biological systems, are organized 
and regulated by a complex network of inter-
actions from the genetic to the morphological 
level and suffer substantial influence from the 
environment. Reductionist approaches have 
been widely used in plant biology but have 
failed to reveal the mechanisms by which 
plants can growth under adverse conditions. It 
seems likely, therefore, that to understand the 
complexity of plant metabolic responses it is 
necessary to adopt non-reductionist 
approaches such as those from systems biol-
ogy. Although such approaches seem method-
ologically complex to perform and difficult to 
interpret, they have been successfully applied 
in both metabolic and gene expression net-
works in a wide range of microorganisms and 
more recently in plants. Given the advance of 
techniques that allow complex analysis of 
plant cells, high quantities of data are cur-
rently generated and are available for in silico 
analysis and mathematical modeling. It is 
increasingly recognized, therefore, that the 
use of different methods such as graph analy-

sis and dynamic network modeling are needed 
to better understand this abundance of infor-
mation. However, before these practical 
advances, one of the main challenges cur-
rently in plant biology is to change the para-
digm from the classical reductionism to the 
systemic level, which requires not only scien-
tific but also educational changes.

Keywords

Biological network · Genome-scale metabolic 
models · Mathematical modeling · Metabolic 
fluxes · Systems biology

9.1	 �Introduction

As sessile organisms, land plants are constantly 
subjected to changing environmental conditions 
that trigger local and systemic responses through-
out the plant and ultimately have a significant 
impact upon plant survival, growth, and yield. 
Changes in the climate are likely to lead to 
increased incidence of several stresses including 
drought, temperature extremes, flooding and salin-
ity that are in turn expected to reduce plant produc-
tivity. Therefore, plant stress responses represent a 
high priority area in plant science research, with 
one important aim being the production of stress-
tolerant varieties of important crops species. Plant 
responses to stress are, however, highly complex, 
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often involving large-scale alterations in metabo-
lism, signaling and gene expression at the cellular 
level, together with changes in whole plant physi-
ology and morphology. Under stress conditions, 
the changes that occur simultaneously in these 
multiple interconnected levels of cellular organi-
zation can make it difficult to understand the 
mechanisms responsible for stress tolerance as 
well as to identify and generate stress-tolerant 
genotypes (Bertolli et al. 2014). This problem is 
to some extent exacerbated by the relatively lim-
ited application of systems biology in plant sci-
ence. The knowledge concerning the structure, 
function, and modulation of complex plant net-
works, such as the plant metabolic network, is 
therefore limited when compared to that for 
microorganisms (Jeong et al. 2000; Stelling et al. 
2002; Almaas et  al. 2004; Bruggeman and 
Westerhoff 2007).

Reductionist approaches have generally 
focused on understanding individual cellular 
components, their chemical composition and 
their biological functions under different envi-
ronmental conditions (Palsson 2006; Lorenz 
et  al. 2009). However, given that the way in 
which a complex network operates and responds 
to changing conditions may not be immediately 
apparent from the individual properties of its 
parts and the fact that the properties of individual 
parts cannot always be understood outside of a 
network context, reductionist approaches do not 
allow a complete characterization of plant pheno-
types (Souza et  al. 2016). In contrast, systemic 
analyses overcome these limitations, leading to 
new interpretations of biological process 
(Barabási and Oltvai 2004; Friboulet and Thomas 
2005). Systems biology approaches have been 
applied to understand the dynamics of the rela-
tionship between plant cells and their surround-
ing environment (Medeiros et al. 2015). Although 
such approaches may seem methodologically 
complex to perform and difficult to understand, a 
relatively simple network model for plant physi-
ological studies has been proposed (Sato et  al. 
2010; Bertolli et  al. 2013) together with more 
complex networks used in conjunction with tran-
scriptomic, proteomic, metabolomic, and meta-
bolic flux data. In this chapter, we discuss the 

current challenges faced when applying systems 
biology to plants, with a focus on the plant meta-
bolic network and the responses of plants to 
stress conditions.

The maintenance of biological systems occurs 
through modulation of complex regulatory net-
works working at different scales. As biological 
systems, plants have the capacity to modulate 
their metabolic networks according to ambient 
conditions. This occurs to optimize growth and 
development under constraining environmental 
conditions (Amzallag 2001; Barabási and Oltvai 
2004). The severity of such constraints, the 
genetic background of the organism, its individ-
ual history, and its phenotypic plasticity deter-
mines survival or death under non-favorable 
conditions (Pastori and Foyer 2002; Daloso 2014; 
Souza and Lüttge 2015). Furthermore, plant tol-
erance to one or more environmental stress fac-
tors depends on a complex interaction network 
able to create responses at different levels of the 
plant (Buescher et  al. 2012; Nakashima et  al. 
2014) and has been associated with a complex of 
genes co-adapted to the environmental condition 
(Graham et  al. 1993) as well as to an “internal 
memory” of the genotype (Trewavas 2005; 
Tafforeau et  al. 2006; Virlouvet and Fromm 
2015). Therefore, given that different individuals 
can respond differently to a stress factor, which 
hampers the distinction of susceptible from toler-
ant genotypes by reductionism approaches, the 
use of systems biology methods enables not only 
the integration of different levels of the organism 
but also the possibility to obtain insights into 
emergent mechanisms used by a genotype to sur-
vive and grow under stress conditions.

Large-scale data generated through omic tech-
nologies have been used to obtain unprecedented 
levels of details regarding the structure and orga-
nization of biological networks and interactions 
between their different components (Hyduke and 
Palsson 2010; Fernie and Stitt 2012; Amaral and 
Souza 2017). Furthermore, the advance of data 
production by omic platforms enables the estab-
lishment of genome-scale metabolic models that 
predict metabolic responses of single cells, 
organs, and plant individuals under different con-
ditions (Poolman et  al. 2009; de Oliveira 
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Dal’Molin et  al. 2010; Williams et  al. 2010; 
Blazier and Papin 2012; Arnold and Nikoloski 
2014; Robaina-Estévez et al. 2017). The ultimate 
goal of these models is to increase our ability to 
predict plant behavior under field conditions 
which may ultimately help to select genotypes 
with greater yield and/or stress tolerance. 
However, one of the current challenges is to fill 
the gap between plant responses obtained under 
controlled and under natural environmental con-
ditions, in which the models created for and from 
plants grown under controlled conditions must be 
able to predict the responses of plants in the field. 
Here we provide a brief historical perspective of 
plant systems biology and highlight the current 
technical and theoretical challenges in this field. 
We conclude by providing a perspective on how 
systems biology approaches may be used to 
improve our understanding of plant behavior.

9.2	 �From the Genomic 
to the Plant Systems 
Biology Era

Plant biology has changed dramatically in the 
last two decades. Much of our knowledge of 
plant molecular biology comes from studies 
using Arabidopsis thaliana (L.) Heynh. as a 
model. After the sequencing of its genome (The 
Arabidopsis Genome Initiative 2000) and the 
establishment of a protocol to easily insert 
transgenes (Clough and Bent 1998), which 
enable the launch of stock centers of mutants 
(e.g., SALK, SAIL, GABI), Arabidopsis became 
and remains by far the most thoroughly investi-
gated plant on earth. Making use of the large 
amount of data obtained through genome 
sequencing, however, is a nontrivial task which 
has required greater participation of computa-
tional biologists and bioinformaticians in plant 
biology, and allowed questions about the defini-
tion of a gene, the organization of genomes and 
the significance of repeated sequences to be 
tackled. However, after obtaining an under-
standing of the basic concepts of genome orga-
nization, another significant challenge became 
apparent, given that following sequencing 31% 

of Arabidopsis genes were unclassified and only 
9% of the genes identified had been experimen-
tally characterized (The Arabidopsis Genome 
Initiative 2000). The elucidation of the function 
of these uncharacterized genes is one of the 
most important objectives of the post-genomic 
or functional genomic era.

The current era of functional genomics has 
been characterized by the collection of large 
amounts of data using different “omic” plat-
forms. Transcriptomic and proteomic platforms 
were initially developed for plants with sequenced 
genomes, however techniques such as microar-
rays are now being replaced by RNA sequencing 
methods (RNA-Seq) which do not necessarily 
require a previously sequenced genome and 
hence increase the number of species that can be 
investigated (Wang et  al. 2009). In parallel, 
advances in mass spectrometry (MS)-based plat-
forms have not only contributed to the develop-
ment of more sophisticated proteomic techniques 
but have also led to the inclusion of metabolo-
mics amongst the platforms available for the pro-
duction of large-scale plant biology data 
(Roessner et  al. 2000). Crucially, the combina-
tion of these omic platforms with reverse genet-
ics has been a powerful tool in functional 
genomics, in which the expression of a gene or a 
set of genes is altered, and the plant phenotype is 
observed through the eyes of multiple large-scale 
omic platforms. This approach has greatly 
increased our understanding of the function of 
genes that were previously only poorly character-
ized. However, there are two principal reasons to 
believe that this approach is unlikely to ever 
reveal the function of all genes within any given 
plant. Firstly, plant metabolism and plant signal-
ing are highly plastic systems, with a great deal 
of redundancy, meaning that perturbations in a 
single gene can often be compensated by other 
gene products. Secondly, it is likely that the func-
tion of many genes simply cannot be understood 
from a reductionist point of view alone; they have 
functions that manifest themselves at the level of 
organization and operation of biological 
systems.

In order to overcome the limitations imposed 
by the use of reductionists approaches, the appli-
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cation of network principles from the general 
systems theory to biological organisms has 
changed substantially our view of biological 
organisms, and led to what might be called a sys-
tems biology era (Kitano 2002). Remarkable 
studies in systems biology using microbes as 
model organisms showed that the modulation and 
the behavior of metabolic networks are similar to 
that observed in complex nonbiological networks 
(Jeong et al. 2000; Wagner and Fell 2001). This 
indicates that biological organisms such as plants 
can be interpreted using network principles. 
Thus, the recent visualization and interpretation 
of large-scale omic-based data have followed the 
principles of network biology (Barabási and 
Oltvai 2004), which is one of the main contribu-
tions of the systems biology to plant biology 
(Toubiana et al. 2013). In the next sections, we 
discuss the technical and methodological limita-
tions and challenges associated to the investiga-
tion of plants using the main omic approaches 
named transcriptomic, proteomic, and 
metabolomic.

9.3	 �Data Production for Plant 
Systems Biology: Technical 
Limitations of Omic 
Approaches

Systems biology aims to understand the struc-
ture and function of biological systems as a 
whole rather than their components in isolation. 
Omic platforms, therefore, make important con-
tributions to this field, as they may yield the data 
necessary to build the models needed to investi-
gate complex systems, reveal previously uniden-
tified interactions between network components 
and generate the experimental data necessary to 
test system-scale hypotheses. Despite the sophis-
ticated technology currently available for such 
analyses, technical limitations still prevent us 
from detecting all biochemical and molecular 
responses that plants are capable of manifesting. 
One of the main challenges in plant systems 
biology is the generation of large-scale datasets, 
with proteomic and metabolomic datasets 
deserving a particular consideration, given that 

current coverage of proteins and metabolites is 
well below that known to exist in the plant king-
dom. In contrast, transcriptomics requires less 
improvement in terms of coverage of analytes. 
Analyses such as microarrays and RNA-Seq can 
be used to detect expression of almost the entire 
set of Arabidopsis genes. However, the success 
of current transcriptomic approaches varies 
according to the complexity of the genome of the 
plant species, influenced by the size of the 
genome, the number of genes, chromosomes, 
and the genome ploidy. It is noteworthy that the 
relationship between number of genes is not 
directly proportional to the number of chromo-
somes or the size of the genome of a plant spe-
cies, but it seems reasonable to assume that the 
application of microarray or RNA-Seq platforms 
is more difficult and requires more extensive in 
silico analysis for plants with larger genomes 
(Wang et al. 2009).

In contrast to transcriptomic, substantial 
improvements are needed in proteomic and 
metabolomic approaches. The acquisition of 
large-scale protein and metabolite data has 
mainly made use of chromatographic techniques 
coupled to mass spectrometry (MS), meaning 
that most of the technical limitations of pro-
teomic and metabolomic platforms are related to 
the capacity of the chromatography to separate 
the analytes and the ability of the MS to detect 
and identify them. This become even more com-
plex in proteins that have been subjected to a 
posttranslational modification (Friso and van 
Wijk 2015). In this case, besides detecting and 
identifying the protein, the posttranslational 
modification must be identified typically requir-
ing special protocols and high-resolution MS 
platforms. Further improvement of MS-based 
approaches therefore seems to be a key area in 
which technical advances could benefit plant sys-
tems biology, aiming to increase the number of 
proteins detected as well as to improve the meth-
ods used to identity posttranslational modifica-
tions at large scale. This will help plant biologists 
to understand how metabolic pathways are regu-
lated at the posttranslational level and permit sig-
nificant improvements to be made to current 
metabolic models (Fernie 2012), particularly 
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with regards their capacity to predict the effects 
of stress conditions.

In a similar manner to proteomics, one of the 
current limitations of metabolomics is related to 
the capacity of different platforms to identify and 
quantify the massive diversity of primary and 
secondary metabolites that plants can produce. 
This is in part related to the restricted availability 
of standards necessary for the establishment of 
MS-based libraries; while it has been estimated 
that plant kingdom contains approximately 
200,000 metabolites, the mass spectral libraries 
only contain a small fraction of this number 
(Weckwerth 2003; Saito and Matsuda 2010). 
Inevitably though, the diversity and complexity 
of the chemical structures of plant metabolites 
means that no single analytical platform will ever 
be able to uncover all of cellular metabolism. For 
example, a well-established gas chromatography 
coupled to a time of flight MS (GC-TOF-MS) 
metabolomic platform is suitable only for polar 
metabolites, restricting its use to the study of pri-
mary metabolism (Lisec et al. 2006). Alternative 
platforms for molecules separation such as liquid 
chromatography (LC) and capillary electropho-
resis (CE) can also be coupled to different types 
of MS instruments that have varying mass ana-
lyzers (e.g., Quadrupole, Orbitrap, Triple 
Quadrupole, ToF, qToF) and have seen signifi-
cant application in plant metabolomics (Tolstikov 
and Fiehn 2002; Arrivault et  al. 2009; Urakami 
et al. 2010). The simultaneous use of these plat-
forms substantially increases the number of 
metabolites detected allowing the creation of 
more detailed picture of metabolism which is of 
fundamental importance in corroborating the pre-
dictions that can be obtained from genome-scale 
metabolic models (Fernie 2012; Medeiros et al. 
2015). It is noteworthy that great advances have 
been observed in this field thanks to the collabo-
ration between companies, researchers and the 
different metabolomic and MS societies. Thus, 
although metabolomics is currently far from 
being able to detect and identify the entire set of 
plant metabolites, the complex puzzle of metabo-
lism has been substantially improved in the last 
decade and trends suggest that the combination 
of MS-based metabolomic methods and the 

mathematical modeling approaches that we dis-
cuss below represent a powerful strategy for pre-
dictive metabolic engineering (Sweetlove et  al. 
2003, 2017; Nikoloski et al. 2015).

Plant metabolomics is also complicated by the 
fact that most plant cells contains three compart-
mented genomes and numerous organelles that 
interact through a complex signaling network 
(Sweetlove and Fernie 2013), making the identi-
fication of metabolic responses at the subcellular 
level extremely challenging. While gene expres-
sion can be analyzed at the subcellular level 
through the origin of the transcript or subcellular 
location of the protein identified, the investiga-
tion of metabolic responses at the subcellular 
level is more complex. In contrast to mRNA and 
proteins, where the identity of them is given by 
their sequence, metabolites found in different 
organelles have identical chemical structures. 
Thus, in order to determine metabolite levels 
with subcellular resolution, the different organ-
elles must be physically separated and the accu-
mulation of metabolites in different subcellular 
fractions determined. In this vein, the non-
aqueous fractionation (NAF) methods can be 
used to perform this type of separation (Krueger 
et  al. 2014; Medeiros et  al. 2017) and thus to 
overcome this limitation of metabolomics.

The rapid turnover of certain metabolites also 
presents a challenge to plant metabolomics. 
Despite methodologies for labeling and rapid 
freezing of whole Arabidopsis plants and maize 
leaves that have been established (Szecowka 
et al. 2013; Arrivault et al. 2017), changes in met-
abolic fluxes and metabolite pools are faster than 
the methods commonly used to freeze and ana-
lyze plant materials. Thus, another challenge in 
metabolomics is to improve methods available 
for observation of the dynamics and compart-
mentalization of metabolism (Sweetlove and 
Fernie 2013). Recent reports have carried out real 
time in situ metabolic analysis through the use of 
Förster Resonance Energy Transfer (FRET) sen-
sors (De Col et  al. 2017; Rizza et  al. 2017; 
Wagner et al. 2019; Nietzel et al. 2020). However, 
this analysis requires previous transformation of 
the plant material, limiting the number of metab-
olites that can be investigated at once and hence 
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the volume of data that can be obtained on the 
responses of the whole metabolome. Taken 
together, these facts indicate that metabolomics 
must be improved to achieve higher or total cov-
erage as it is obtained through transcriptomic and 
proteomic platforms. However, thanks to the 
advances made in MS and cooperation between 
research groups with expertise in different metab-
olomic platforms most of these challenges should 
be at least partially overcome in the near future.

9.4	 �Methodological Limitations 
of Omic Approaches: 
From Alive vs. Dead 
Comparisons to More Dose 
and Dynamic Analyses

Another challenge in the use of omic approaches 
in plant systems biology originates from the way 
in which most experiments are carried out. Most 
plant studies using omic platforms have been car-
ried out on plant material collected at a single 
time point, in which a control sample (e.g., non-
stressed or wild-type plant) is compared to a 
plant subjected to “a non-normal growth condi-
tion” (e.g., stressed plants) or to a genetically 
modified plant. This sort of strategy often ignores 
the dynamics of the responses and assumes that 
the picture taken by a particular omic platform 
reveals the main response of the organism under 
the condition analyzed. This is the opposite to 
one of the main principles of systems biology, a 
scientific area that aim to understand the dynam-
ics of the relationships between the different ele-
ments that compose an organism (Kitano 2002; 
Friboulet and Thomas 2005). Special care should 
be taken when an omic platform is used to 
analyze gene expression through measurement of 
the mRNA or protein levels as changes at these 
levels are not always correlated with changes at 
the metabolic level. This may occur, in certain 
cases, due to a temporal difference between 
changes in gene expression and in metabolism. 
For instance, the metabolic responses to oxida-
tive stress are much faster than changes in the 
level of mRNA accumulation (Lehmann et  al. 
2009), as turnover of metabolites occurs at the 

milli-second scale (Buziol et al. 2002). Thus, the 
ideal and the challenge is to analyze the meta-
bolic state of the cell in different time points in 
ultra-short time scale (Nöh et al. 2007) in order to 
understand the dynamics of cellular metabolic 
responses.

Given the higher stability of mRNA and pro-
tein abundance compared to metabolite content 
and taking into account the velocity of biochemi-
cal reactions and post translational modifications 
that underpin metabolic fluxes (Szecowka et al. 
2013; Ma et al. 2014; Arrivault et al. 2017), it is 
particularly important, therefore, to consider the 
dynamics of the responses rather than a single 
time point comparison between treated and non-
treated samples in order to construct a complete 
picture of plant responses. Additionally, in plant 
stress experiments different doses of the stressor, 
such as different concentrations of a heavy metal 
or different levels of drought, are needed 
(Greenham et al. 2017). This strategy may pro-
vide substantial information regarding the 
dynamics of the responses under different levels 
of stress which is fundamental to understand 
plant acclimation under adverse conditions. The 
data produced from this sort of experiment will 
certainly be useful in the building and curation of 
dynamic models of metabolism. This is of pivotal 
importance given that steady-state-based model-
ing is well established while dynamic modeling 
still needs profound improvement. In the next 
section, we provide a brief overview on the tran-
sition between the general systems theory from 
physics to systems biology and argue the changes 
required in plant science for the complete estab-
lishment of plant systems biology.

9.5	 �Toward a Systemic Plant 
Biology

As discussed above, many of the advances in plant 
biology in the last decades were driven by the 
advent of analytical tools that enable large-scale 
analysis of gene expression and metabolism. 
However, systems biology did not originate with 
large-scale data analysis and instead has its origins 
in the general systems theory originally proposed 
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by Ludwig von Bertalanffy (von Bertalanffy 
1968). It is clear that the large-scale omic plat-
forms have substantially contributed to systems 
biology by providing an unprecedented quantity 
and quality of data from different levels of organ-
ismal organization. Indeed, these platforms have 
helped to confirm one of the main principles from 
General Systems Theory which is that organisms 
cannot easily be described as the sum of their 
parts; emergent properties may be detected from 
the study of the whole system and cannot be iden-
tified when looking at the elements of the system 
in isolation (Souza et al. 2016). Thus, omic plat-
forms facilitate a shift from a theoretical to a prac-
tical application of this systems biology principle. 
This does not, however, mean that systems biology 
depends entirely on use of omic platforms, nor 
does it mean that any large-scale exercise in data 
accumulation represents systems biology. Indeed, 
systems biology approaches have been applied to 
the analysis of biological sub-networks without 
the use of omic approaches, especially in other 
areas of plant biology such as plant ecology 
(Odum 1983). Therefore, it is necessary to avoid 
the use of the term systems biology when referring 
to works that have only used omic platforms.

Omic platforms have allowed plant biologists 
to produce more data than it can readily be ana-
lyzed and interpreted. This has transformed plant 
biology into a data-rich multidisciplinary field, 
where expertise in mathematics and computa-
tional science is increasingly recognized as funda-
mental to a plant biologist. In this vein, an 
important current challenge in plant systems biol-
ogy is the shift from a reductionism paradigm to a 
more systemic view of plant science, something 
that will require profound theoretical and practi-
cal changes in plant science. First, the formation 
of plant biologists and biotechnologists must be 
dramatically changed in the (under)graduate pro-
grams. It is urgently needed to increase the num-
ber of mathematicians and computational 
scientists in these programs. The challenge is to 
form professionals that have at least basic skills of 
mathematical modeling and computational sci-
ence with a complete background of biology. To 
achieve this, it is first necessary to recognize sys-
tems biology as the future of plant science. Efforts 

from universities and the different plant biology 
societies are needed to overcome the reduction-
ism view of plant science at global scale. It is 
important to mention that this strategy has already 
been adopted in several universities as well as and 
it will not abolish science made at reductionist 
level. Several important areas of our society 
depend on the basic science produced under the 
eyes of the classical reductionism. However, the 
well-recognized power of systems biology in 
identifying and predicting responses already 
shown in ecology, medicine, social, and sexual 
networks must be also applied in plant biology.

Beyond these philosophical and educational 
changes, it is important to mention that the exper-
imental design, the elaboration of hypotheses and 
currently accepted theories in plant biology may 
also be influenced by systems biology principles. 
Firstly, a “design-build-test-learn” cycle with the 
help of mathematical models and bioinformatics 
tools may be incorporated in the design of new 
experiments (Gutierrez et  al. 2005; Sweetlove 
et al. 2017) (Fig. 9.1). Given the amount of omics 
data available for in silico analysis and the num-
ber of models already created to predict signaling 
and metabolic responses (Li et  al. 2006; Hills 
et  al. 2012; Chatterjee et  al. 2017; Lima et  al. 
2017; Robaina-Estévez et al. 2017; Zuniga et al. 
2017; Christopher et  al. 2019; Shameer et  al. 
2019; Benes et al. 2020; Vallarino et al. 2020) it 
seems likely that the classical way of generating 
hypothesis, based solely on a previous experi-
mental observation, is becoming obsolete. 

Fig. 9.1  The design-build-test-learn cycle

9  Current Challenges in Plant Systems Biology



162

Previous observations are certainly important, 
but before a hypothesis is experimentally tested, 
a previous in silico analysis may provide great 
insights into that hypothesis as well, aiding in the 
conceiving novel experimental design. In turn, 
the results obtained from such experiments may 
help to improve in silico models and hence their 
power to predict plant responses, closing the 
“design-build-test-learn” cycle (Fig. 9.1).

The adoption of the general systems theory 
in plant biology allows different perspective that 
may change many paradigms within plant biol-
ogy. For instance, the idea that plants tend to 
direct their metabolism toward homeostasis, a 
metabolic state far from the dynamic of chaos, 
can be substantially changed after observing the 
dynamics of plant responses using systems biol-
ogy tools. Indeed, nonlinear chaotic dynamic 
has been already observed in the dynamics of 
sap flow (Souza et al. 2004b), stomatal conduc-
tance (Souza et al. 2004a), CO2 fixation in CAM 
plants (Lüttge and Beck 1992), and in glycoly-
sis (Nielsen et al. 1997). Furthermore, the anal-
ysis and interpretation of data acquired from 
plants may change using systems biology tools. 
For instance, the visualization of data in sys-
tems biology is often carried out through net-
works. In biology, this approach has been used 
since Barabási’s works when it was demon-
strated that biological networks have similar 
structures as nonbiological networks (Jeong 
et  al. 2000, 2001). In this context, network 
parameters such as node, hub, hub-like nodes, 
density and degree of connectivity of the net-
work will prove to be more important for the 
comprehension of the biological phenomena 
than univariate statistical analysis such as aver-
age and variance analysis. Therefore, the recon-
struction of networks from the genetic to the 
morphological level, the integration between the 
different sub-networks that compose a plant 
individual and the creation of mathematical 
modeling tools that can predict the behavior of 
these networks remains an important challenge 
for the next decade. In the next sections, we dis-
cuss the methods that have been used to analyze 
metabolic networks in plants and highlight the 
challenges that plant biologists are facing.

9.6	 �Reconstructing Plant 
Metabolic Networks: 
The Challenge to Reach 
an Integrative Nonsteady 
State Large-Scale Modeling 
Platform

Large-scale gene expression data from different 
tissues under several environmental conditions 
are available for Arabidopsis plants, which has 
led to well-established gene expression and co-
expression networks (Toubiana et  al. 2013; 
Ruprecht et  al. 2017). However, large-scale 
protein-protein interaction and metabolic net-
works have received greater attention in yeast, 
bacteria, C. elegans, mammalians and other 
organisms rather than in plants. The identifica-
tion, analysis and modeling of these networks 
represent important goals of plant systems biol-
ogy. Crucially though, we must also focus on 
studying the interactions between networks at 
different levels of organization, as current studies 
and models tend to be limited to a specific level, 
such as gene networks (Thum et al. 2008; Urano 
et  al. 2009; Usadel et  al. 2009; Ruprecht et  al. 
2017), protein-protein interaction networks 
(Jones et  al. 2014; Zhang et  al. 2017) or meta-
bolic networks (Williams et al. 2010; Arnold and 
Nikoloski 2014; Robaina Estévez and Nikoloski 
2015). Thus, one of the great challenges is to 
integrate these different networks and models. 
With this in hand we will be better able to under-
stand the behavior of the entire plant network and 
predict plant responses in the field and thus opti-
mize growth and yield of crop plants under 
adverse conditions. In this section we focus par-
ticularly on metabolic network modeling given 
that this seems to be the most challenging task to 
achieve in plant systems biology.

Since the first work published using a large-
scale plant metabolomic platform (Roessner 
et al. 2000), the number of metabolite profiling 
studies has increased substantially, thanks to the 
use and evolution of GC-MS and LC-MS plat-
forms. However, snapshot analyses of plant 
metabolism may only poorly reflect the flow of 
material through the metabolic network and 
hence yield little insight into how metabolic 
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fluxes respond to environmental, genetic or 
developmental perturbations. Indeed, theoretical 
and experimental analyses indicate that altera-
tions in metabolic flux may lead to increases, 
decreases or no effect at all of metabolite abun-
dances—a problem compounded by the fact that 
often, due to subcellular compartmentation, it is 
not possible to directly measure the intermediates 
of any given metabolic pathway. Methods for the 
quantification and prediction of metabolic fluxes, 
therefore, represent important systems biology 
tools. While radiolabeling remains a sensitive 
method for the investigation of specific metabolic 
processes (Kruger et  al. 2017), fluxes in plant 
metabolism at the network level are studied using 
either metabolic flux analysis (MFA) or stoichio-
metric modeling. In the case of MFA, plant mate-
rial is initially labeled using stable isotopes such 
as 13C, 18O, or 15N (Silva et al. 2016), either indi-
vidually or in combination (António et al. 2016), 
until metabolic and isotopic steady state is 
reached and further measurement of isotope 
incorporation using MS or nuclear magnetic res-
onance (NMR) spectroscopy is done.

Medium-scale metabolic network models 
have been used to interpret the isotope labeling 
data and, in this manner, determine metabolic 
fluxes. Such studies in plants have revealed the 
operation of novel metabolic processes 
(Schwender et al. 2004) and the effects of growth 
conditions (Williams et al. 2008; Allen and Young 
2013) and mutations (Lonien and Schwender 
2009) on fluxes. They have also produced insights 
into reactions contributing to cofactor and carbon 
balances, information that is difficult to obtain 
using other methods (Allen et  al. 2009; 
Masakapalli et al. 2013). Furthermore, advance-
ments in both analytical methods and theoretical 
tools should lead to the expansion of the use of 
these methods, and have also begun to make the 
study of photoautotrophic metabolism possible 
through the use of instationary flux analysis 
(Szecowka et al. 2013; Ma et al. 2014; Arrivault 
et  al. 2017). Photosynthetic metabolism cannot 
readily be investigated using steady state-based 
flux analysis, and it is anticipated that instation-
ary analysis should see wider use in the near 
future. Spatial resolution of metabolic fluxes, 

both at the cellular and subcellular level remains 
a challenge for isotope labeling-based methods, 
though highly compartmented cellular models 
have been used in some studies (Masakapalli 
et al. 2010) and methods have also been proposed 
for measurement of cell type specific fluxes 
(Rossi et al. 2017).

While MFA continues to prove a highly valu-
able tool for the study of plant metabolism it has 
two significant drawbacks. Firstly, not all experi-
mental systems can readily be labeled using sta-
ble isotopes to obtained meaningful data. 
Secondly, and perhaps more importantly in terms 
of systems biology, MFA is not a tool for the pre-
diction of fluxes, as the flux distribution within 
the metabolic network is fitted to the experimen-
tal isotope labeling data. This means that MFA 
cannot be used to directly predict the effects of 
environmental or genetic alterations on meta-
bolic fluxes, although it can be used to formulate 
hypotheses regarding the operation of the plant 
metabolic network that can be tested through fur-
ther experimentation. Stoichiometric modeling, 
on the other hand, can be used to predict how 
fluxes may respond to perturbations in the meta-
bolic network. Here, metabolic models are built 
from simple stoichiometric descriptions of indi-
vidual reactions. Such models may therefore be 
extremely large, and indeed so-called genome-
scale models aim to include all reactions for 
which genes encoding the respective enzyme 
have been annotated in the genome. Extensive 
curation is typically needed to fill gaps in path-
ways and place reactions in the correct subcellu-
lar location. In this way, genome-scale models 
have been produced for Arabidopsis (Poolman 
et  al. 2009; de Oliveira Dal’Molin et  al. 2010; 
Williams et al. 2010; Arnold and Nikoloski 2014) 
and crops including rice (Mohanty et  al. 2016; 
Chatterjee et al. 2017), corn (Seaver et al. 2015), 
and tomato (Yuan et al. 2016). The construction 
of additional models for further crop plants rep-
resents an important goal in metabolic modeling. 
Once built, constraints are introduced and flux 
balance analysis (FBA) carried out allowing the 
use of the model to test and generate hypotheses 
about the operation of the metabolic network. 
The constraints often take the form of measure-
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ments of biomass composition, production or 
consumption that fix the rates of entry and 
removal of material from the model. This 
approach was, for example, used to investigate 
changes in metabolism during tomato fruit ripen-
ing (Colombié et al. 2017). However, a number 
of methods also exist for the integration of large-
scale gene expression data into metabolic models 
(Robaina Estévez and Nikoloski 2014) and these 
approaches are beginning to see significant use. 
For example, gene expression data for guard cells 
and mesophyll cells was recently used to produce 
specific models for these two cell types and in 
this way uncovers differences in their predicted 
metabolism. Remarkably, part of the predictions 
generated by these models was successfully con-
firmed by 13C-labeling kinetic analysis (Robaina-
Estévez et  al. 2017), highlighting the power of 
systems biology approaches for the establish-
ment of hypothesis to be experimentally assessed 
following the idea of the “design-build-test-
learn” cycle (Fig. 9.1).

Given the successes obtained using stoichio-
metric models to explore the metabolism of single 
cell types under constant conditions, the next logi-
cal step is to use such models to explore the larger 
scale temporal and spatial organization of plants. 
For example, a duplicated genome-scale model of 
Arabidopsis, where one sub-model represents 
daytime metabolism and second nighttime metab-
olism, correctly predicted certain known features 
of C3 and CAM leaf metabolism, including diur-
nal patterns of starch accumulation and degrada-
tion (Cheung et  al. 2014; Shameer et  al. 2018). 
This approach could in theory be extended to even 
more complex biological metabolic rhythms. 
Ultimately, it seems likely that stoichiometric 
metabolic models will need to be integrated with 
other types of model, including those representing 
signaling processes, gene expression and whole 
plant development and growth, in a similar man-
ner to that use to construct a “digital Arabidopsis” 
based on a functional-structural model, carbon 
dynamic model, photothermal model and photo-
periodism model (Chew et  al. 2014, 2016). 
Genome-scale stoichiometric models could also 
be integrated with the sophisticated crop models 
that are used to predict yield under field condi-
tions. Such models often include parameters, such 

as carbon conversion efficiencies (Setiyono et al. 
2010) that can be determined using genome-scale 
metabolic models, potentially helping to bridge 
the gap between gene function and whole plant 
growth and development.

Given the advances achieved in understanding 
metabolic networks in microorganisms, it seems 
likely that our comprehension of the function and 
key points of regulation of plant metabolic net-
works will be improved through use of both MFA 
and mathematical modeling coupled with sophisti-
cated laboratory experiments. For example, a 
recent adaptive laboratory evolution study using 
whole-genome sequencing and MFA revealed how 
Escherichia coli adapt its metabolism to overcome 
the negative effects of a mutation in phosphoglu-
cose isomerase (PGI), an important glycolytic 
enzyme (Long et al. 2017). The application of such 
an approach in plant science will certainly provide 
great insight into how plants adapt their metabo-
lism under adverse conditions. The challenge will 
be to transfer the knowledge obtained from steady 
state MFA and FBA to a dynamic view of the entire 
plant metabolic network and from studies with 
model plants such as Arabidopsis in the laboratory 
to crop plants in the field. In the next section we 
will explore this last challenge.

9.7	 �From Arabidopsis to Crops, 
from the Phytotron 
to the Field: The Challenge 
for Crop Yield Improvement

The higher degree of complexity of plant cells 
compared to animals is mainly due to their capac-
ity to quickly respond to changing environmental 
conditions. For instance, specialized cells such as 
the guard cells found at leaf epidermis integrate a 
number of different environmental and different 
endogenous signals to ultimately determine the 
appropriate degree of stomatal opening (Assmann 
and Jegla 2016). Furthermore, plants possess a 
complex hormonal and signaling network that 
responds to pathogen infection and herbivore 
attack together with the capacity to trigger more 
rapid responses on repeated exposure to a given 
stress condition (Ding et al. 2012; Virlouvet and 
Fromm 2015). This plasticity is of pivotal impor-
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tance given the sessile nature of plants, in which 
a plant must adapt their metabolism under 
adverse conditions in order to grow and repro-
duce. In this sense, it is almost impossible to 
identify markers and understand how plants 
respond to a specific environmental condition by 
looking at the parts that make up a plant (Bertolli 
et al. 2014). This has tremendous importance in 
plant breeding. For example, a number of quanti-
tative trait loci (QTL) and genes have been iden-
tified that confer increased drought tolerance 
(Tuberosa and Salvi 2006), and countless articles 
indicating that manipulation of a particular gene 
confers higher drought tolerance in Arabidopsis 
in a laboratory setting. However, we are failing to 
transfer the technology from the laboratory to the 
field, i.e., there are few commercially growth 
plants that exploit this knowledge (Nuccio et al. 
2018). Why have we had so little success? There 
are multiple reasons for this lack of success 
(Flexas 2016; Nunes-Nesi et al. 2016), however, 
one of these is the use of reductionist approaches 
to identify plant stress metabolic responses as 
described above. Furthermore, experiments with 
combinations of stresses and measurements of 
the dynamics of the response are scarce, espe-
cially under field conditions, a major problem 
considering that different stresses often occur 
simultaneously. Therefore, the main challenge in 
molecular plant breeding is to fulfill the gap 
between the knowledge obtained in plants grow-
ing under controlled conditions to the field. As 
perspective, a recent study have fulfilled this gap 
in which the metabolite profiling of maize roots 
grown under controlled conditions could predict 
the hybrid performance in the field (Lima et al. 
2017), indicating that this challenge could be 
overcome in the near future through the use of 
omic technologies and systems biology tools.

9.8	 �Concluding Remarks 
and Future Perspectives

The next decade will likely be marked by consid-
erable advances in both analytical omic tools and 
the development of new techniques for modeling 
plant networks. Technical advances will require 
increased links between industries and research 

institutes. This is already reality in several coun-
tries, but more groups with different aims in plant 
science need to be integrated. Advances in mod-
eling of plant systems will require the increased 
participation of mathematicians and computa-
tional scientists in plant biology research. This 
will help current plant biologists analyze and 
interpret omic data using systems biology tools, 
favor a change from reductionist to a more sys-
temic view of plant biology and contribute to the 
training of a new generation of plant biologists 
able to use mathematical and modeling tools as 
basic research skills.

Development of software and the application 
of multivariate statistical analysis have contrib-
uted substantially to the analysis of large-scale 
omic data. The current challenge is to improve 
cross scale statistical analysis and create cross 
scale models to integrate different levels of 
observation and thus to have a better picture of 
the responses at whole plant network level. 
Furthermore, there is also a need to make the 
analysis of metabolic flux a routine part of plant 
biology, which has long been neglected (Fernie 
et  al. 2005). While several pieces of software 
have been used for MFA and FBA of plants 
these analyses are relatively little used, espe-
cially when compared to transcriptomic, pro-
teomic, and metabolomics methods. This may 
be due the fact that network flux analysis is the 
most recently established omic platform and 
suffers from difficult to perform experiments 
and complex data analysis. In order to increase 
the number of fluxomic studies and their contri-
bution to plant systems biology, the main chal-
lenges are (1) advances in analytical techniques 
discussed above, (2) development of methods 
for short time scale MFA in whole plants under 
different conditions; and (3) improvements in 
software for the calculation and analysis of iso-
tope enrichment. Taken together, overcoming 
the challenges discussed in this chapter will cer-
tainly change plant biology and will improve 
our understanding of the plant growth, develop-
ment and responses to a changing environment. 
This, in turn, will increase the power of predic-
tive metabolic engineering and provide 
improved perspectives for the increasing crop 
yield in the near future.
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This cycle was originally proposed by Lee 
J. Sweetlove, Jens Nielsen, and Alisdair R. Fernie 
as a strategy to be adopted for engineering plant 
central metabolism (Sweetlove et al. 2017). Here 
we suggest the adoption of this cycle as a strategy 
to be used in plant systems biology studies in 
general. This idea is also influenced by the prin-
ciples of the previously proposed systems biol-
ogy cycle (Gutierrez et  al. 2005), in which the 
establishment of hypothesis is aided by predic-
tions made using systemic tools such as mathe-
matical models and bioinformatics analyses. By 
adopting such an experimental approach, the 
design of the experiment, the organism to be 
tested, and the execution of the experiment per se 
will be based not only in previous experimental 
observations but, fundamentally, also in model-
ing predictions and simulations. The knowledge 
obtained from such experiments (the learn part of 
the cycle) is of fundamental importance not only 
to increase our understanding regarding the bio-
logical phenomena under investigation such as 
plant response to stress conditions but also to 
curate the models being used. In turn, well-
established models will help the elaboration of 
critical hypothesis to be tested and ultimately 
speed up plant metabolic engineering and the 
breeding of stress-tolerant genotypes.
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Abstract

The development of modern genetic engineer-
ing approaches and high throughput technolo-
gies in biological research, besides the holistic 
view of systems biology, have triggered the 
progress of biotechnology to address plant pro-
ductivity and stress adaptation. Indeed, plant 
biotechnology has the potential to overcome 
many problems we currently face that impair 
our agriculture, such as diseases and pests, 
environmental pressures, or climate change. 
The system biology field encompasses the 
identification of the general principles and pat-
terns found in living systems, by studying the 
molecular diversity and integrate this knowl-
edge in complex models of regulatory net-
works. The “omics,” which comprises but not 
limited to genomic, transcriptomic, proteomic, 
epigenomic, and metabolomic studies in entire 
plants, allow a better understanding of plant 
system biology and further contribute to bio-

technology development. In this chapter, we 
provided an overview on omic studies for the 
searching and identification of metabolites and 
proteins employed by microorganisms to 
develop biotechnological products. Moreover, 
we present an overview of the central aspects 
of small RNA as regulators of gene expression 
connecting system networks and the potential 
application into plant biotechnology.

Keywords

Plant biotechnology · Plant-microbe interac-
tion · Effectors · Small RNAs · Omics

10.1	 �Introduction

10.1.1	 �Plants Have Shaped Human 
Life History on Earth

The energy of sunlight converted by algae and 
plants to carbohydrates and other organic mole-
cules is fundamental for life in our planet. Our 
society has developed along with the improve-
ment of our capacity to cultivate and store plants 
as a main source of food through agriculture. 
Climate change, diseases and pests have reduced 
the sources of energy and, besides suitable 
agricultural-land area, represent the main obsta-
cles for the optimal production and yield in agri-
culture nowadays. Furthermore, the population 
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growth rate is rapidly increasing, which raises 
concerns about food security in a near future. To 
balance the equation, many people are trusting on 
the development of plant biotechnology.

Indeed, plant biotechnology have the potential 
to overcome many problems we currently face 
that impair our agriculture, such as diseases and 
pests, environmental pressures or climate change, 
to cite a few examples. However, it is not yet 
known if the rate of plant biotechnology develop-
ment will cope with the always-growing needs 
for food. Besides increasing plant productivity 
and resistance against biotic and abiotic stresses, 
plant biotechnology is also crucial to the devel-
opment of the much needed second and third 
generation biofuels.

In this scenario, “omics” and plant system 
biology emerges as fundamental knowledge to 
understand, not only the physiology of a single 
plant, but also to extrapolate this information to 
more complex natural and anthropogenic ecosys-
tems, which in turn have the potential to acceler-
ate the development of plant biotechnology. 
Besides the biotechnological products that have 
arisen from genetic manipulation of organisms, 
such as genetic modified organisms (GMO), anti-
biotics and vaccines, the modern biotechnology 
provides advances in the study of omics, and con-
sequently to the system biology field. This emerg-
ing field, which is closely related to synthetic 
biology, encompasses the identification of the 
general principles and patterns found in living 
and engineered systems, along with the study of 
the molecular diversity of living organisms, to 
finally, integrate this knowledge in complex mod-
els of the regulatory networks (Breitling 2010).

Several new methods for DNA sequencing 
known as “next-generation” or “second-
generation” sequencing were developed around 
the year 2000, and expand enormously the 
genomic information available nowadays, which 
comprises hundreds of organisms. Together with 
transcriptomics, proteomics, epigenomics, and 
metabolomics studies that are now facilitated by 
high-throughput methodologies and bioinformat-
ics analyses, the enormous growth in omics stud-
ies now makes systems biology expand in 
biological research.

In the next sections, it will be discussed the 
characterization of metabolites and proteins 
employed by plant-associated beneficial microor-
ganisms, and also plant susceptibility genes that 
are targeted by pathogen effectors, in order to 
develop biotechnological products. Additionally, 
the posttranscriptional regulatory role of small 
RNAs, representing another layer of gene expres-
sion regulation, is presented. Finally, our per-
spectives for the contribution of omics and 
systems biology to advance plant biotechnology 
are further discussed.

10.2	 �Development

10.2.1	 �Plant–Microbe Interaction: 
Effectors, Omics 
and Strategies for Plant 
Breeding

Plants are in constant interaction with microbes 
in the environment. The nature of those relation-
ships might range from no obvious interactions 
(not compatible), beneficial (mutualistic) to 
harmful (pathogenic), which also can be influ-
enced by changes in environmental conditions. In 
almost all cases, microbes utilize effectors to 
modulate host physiology aiming to establish 
successful colonization. In this topic we will dis-
cuss the effector-based strategies employed by 
both beneficial and pathogenic microbes, the 
omic tools to identify effectors and plant targets, 
and the biotechnological approaches to engineer 
plants with higher productivity and resistance.

10.2.2	 �Effectors from Beneficial 
Microorganisms

Mutualistic microbes, which provide essential 
biochemical products/processes to host plants, 
are mainly associated with the root system and 
usually referred to as plant growth-promoting 
bacteria (PGPB) and fungi (PGPF) (Pieterse 
et  al. 2014). These beneficial organisms can 
improve plant growth and development by using 
both direct and indirect mechanisms. Probably 
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the most well-known beneficial relationship 
between plants and microorganisms is the inter-
actions of Rhizobium and other nitrogen-fixing 
bacteria with plants colonized by these bacteria.

Direct mechanisms, such as nitrogen fixation, 
phosphorous solubilization and production of 
growth-promoting compounds as plant regulators 
(auxin, cytokinin, gibberellin), refer to a directly 
induction of plant growth and development by 
microbe-associated molecules (Olanrewaju et al. 
2017). The production of auxins by beneficial 
microbes has been greatly explored due to the 
numerous positive effects that this versatile hor-
mone can cause, for instance by regulating cell 
division and cell enlargement to provide growth 
of roots, stem and leaves (Vanneste and Friml 
2009). The indole-3-acetic acid (IAA) produced 
by the plant-associated microorganisms can stim-
ulate root development if the plant IAA concen-
tration is insufficient, or causes contrary effect to 
inhibit root growth in cases where the concentra-
tion of the hormone is optimal (Spaepen et  al. 
2007). In Triticum aestivum, the IAA content 
produced by strains belonging mainly to Bacillus 
and Pseudomonas species increased the number 
of tillers, the spike length and seed weight, dem-
onstrating the potential of this hormone to 
increase plant growth and yield (Ali et al. 2009). 
Cytokinin is also produced by soil microorgan-
isms capable to work as a plant growth regulator 
(PGR) (Arkhipova et al. 2007). Cytokinins con-
tent can cause beneficial effects on plant growth 
and yield, by acting in a lot of biological pro-
cesses, including cell division, cell enlargement, 
tissue expansion, stomatal opening and shoot 
growth (Weyens et al. 2009). For example, treat-
ment of Platycladus orientalis (oriental thuja) 
seedling with cytokinin produced by Bacillus 
subtilis increased drought stress tolerance thus 
improving plant health (Liu et al. 2013).

Indirect mechanisms, such as production of 
antibiotics, quorum quenching and induced sys-
temic resistance (ISR), refer to an indirectly 
induction of plant growth and development by 
the inhibition of pathogens attack (Olanrewaju 
et  al. 2017). Bacteria from the genera 
Pseudomonas and Bacillus have been shown to 
produce a large variety of effectors with antimi-

crobial properties, such as ecomycins, 2,4 
Diacetyl Phloroglucinol (DAPG), Phenazine-1-
carboxylic acid (PCA), subtilin, TasA, and sub-
lancin (Goswami et al. 2016). Beneficial microbes 
can also inhibit infection of phytopathogenic 
bacteria by disrupting their communication 
(Olanrewaju et al. 2017). In response to fluctua-
tions in cell population density, quorum-sensing 
bacteria synthesize extracellular signaling mole-
cules, called autoinducers, which triggers gene 
expression regulations in proximal bacterial 
cells. By using quorum sensing, bacteria can reg-
ulate a diverse array of physiological activities, 
such as biofilm formation and virulence, in a 
coordinated action within bacterial population 
(Miller and Bassler 2001). Some beneficial 
PGPBs produce lactonase enzymes that degrade 
pathogen-produced autoinducer, thus disrupting 
quorum sensing and preventing bacterial patho-
gens from inhibiting plant growth (Olanrewaju 
et al. 2017).

Indirect promotion of plant growth by benefi-
cial microbes can also be achieved by triggering 
the ISR, a plant priming for defense against sub-
sequent attacks from a broad spectrum of patho-
gens and herbivores. Induced resistance is 
triggered not locally at the site of contact with the 
mutualistic microbe but also systemically in plant 
parts that were not exposed to the inducer. Both 
PGPB and PGPF in the rhizosphere have been 
described to stimulate plant health by triggering 
the plant immune system (Pieterse et al. 2014). 
For instance, pioneer studies reported that plants 
with root system colonized by a PGPB strain of 
Pseudomonas fluorescens had a higher production 
of antimicrobial phytoalexins and enhanced 
resistance to the pathogen Fusarium oxysporum 
(Van Peer et al. 1991).

Similarly, the colonization of cucumber roots 
by Pseudomonas and Serratia PGPB strains 
resulted in reduced anthracnose disease symp-
toms caused by Colletotrichum orbiculare (Wei 
et  al. 1991). Since then, numerous studies had 
reported the ability of plant growth-promoting 
microbes to induce ISR and enhance plant health 
(Pieterse et al. 2014). Many microbial effectors 
responsible for the onset of ISR have been 
described. Examples from PGPB include antibi-
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otics, homoserine lactones, iron-regulated sidero-
phores, lipopolysaccharides-containing cell wall 
and flagella. Volatiles such as 2R,3R-butanediol 
and C13 synthesized by B. subtilis and 
Paenibacillus polymyxa, respectively, also elicit 
ISR. ISR-inducing effectors from PGPF include 
enzymatic proteins, such as xylanases and celu-
lases (Pieterse et al. 2014).

Besides effectors that induce systemic plant 
defenses, beneficial microbes might also deliver 
effectors that suppress local plant defenses to 
help the establishment of mutualistic interactions 
with the host. Some effectors, employed by 
PGPB and PGPF to overcome plant immune 
responses, have been described, e.g., the SP7 
from Rhizophagus intraradices (Kloppholz et al. 
2011). Suppression of plant defenses is a mecha-
nism also typically exerted by effectors from 
pathogenic microbes to achieve successful infec-
tion, and it will be addressed in the following 
subtopic.

10.2.3	 �Effectors of Plant-Pathogens

During the co-evolution of plants and pathogens, 
plants have developed a multilayered immune 
system to self-protect while adapted pathogens 
acquired mechanisms to overcome its defenses. 
At the cell surface, plants carry pattern recogni-
tion receptors (PRRs) to recognize conserved 
molecules associated to pathogens/microbes 
(pathogen/microbe-associated molecular pat-
terns—PAMPs/MAMPs) and elicit the so-called 
pattern-triggered immunity (PTI). To counteract 
PTI, specialized pathogens deliver effector pro-
teins that suppress the plant defense signaling 
and induce an effector-triggered susceptibility 
(ETS). As a counter-counter-defense strategy, 
plants have evolved proteins coded by resistance 
genes (R genes) to sense the effectors or their 
effects in plant cells, triggering the effector-
triggered immunity (ETI) (Fig. 10.1) (Jones and 
Dangl 2006).

Fig. 10.1  Multilayered plant immune system. Plants carry 
pattern recognition receptors (PRRs) that recognize patho-
gen/microbe—associated molecular patterns (PAMPs/
MAMPs) and elicit the pattern-triggered immunity (PTI). 
Adapted pathogens have acquired effector proteins that are 

delivered in the host cell to suppress PTI, inducing an effec-
tor-triggered susceptibility (ETS). As a counter-counter-
defense strategy, plants have acquired resistance (R) 
proteins that recognize the effectors or their effects in plant 
cells, triggering the effector-triggered immunity (ETI)
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Most R genes encode members of a family of 
nucleotide-binding leucine-rich repeat (NLR) 
receptors that recognize specific pathogen effec-
tors. The first described R gene, Pto, was identi-
fied more than 20 years ago in tomato conferring 
resistance to strains of Pseudomonas syringae 
carrying specific effectors (former called as avir-
ulence genes) (Martin et al. 1993; Scofield et al. 
1996). Since then, several R genes have been 
identified in distinct plant species, as promoters 
of resistance to all kinds of pathogens. Classic 
examples include the tobacco gene N that confers 
resistance to tobacco mosaic virus (TMV) 
(Whitham et al. 1994), the Arabidopsis RPS2 and 
RPM1 that recognize effectors from P. syringae 
(Bent et  al. 1994; Grant et  al. 1995), and the 
tomato Cf-2 and Cf-9 that promotes resistance to 
Cladosporium fulvum (Jones et al. 1994; Dixon 
et  al. 1996). When pathogens attempt to over-
come plant defenses by delivering effector mole-
cules, R genes-encoded proteins might recognize 
either the effectors itself or plant affected pro-
teins, triggering a signaling cascade that culmi-
nate in the plant resistance.

Along with suppression of plant defenses, 
pathogen effectors might exploit the so-called 
plant susceptibility genes (S genes) that facili-
tates the infection process or supports compati-
bility with a pathogen (Zaidi et al. 2018). Proteins 
coded by S genes might assist pathogen in several 
steps of the establishment of a compatible inter-
action such as host recognition, penetration, pro-
liferation and spread. The best-known example of 
an S gene is the Mildew resistance locus O (Mlo) 
that encodes a membrane-associated protein 
required for powdery mildew fungal penetration 
of host epidermal cells. Besides Mlo, the rice 
SWEET genes were identified as susceptibility 
genes to bacterial blight (Zhou et al. 2015). The 
associated pathogen, Xanthomonas oryzae, 
encodes transcription activator-like (TAL) effec-
tors that recognize specific regions (effector 
binding elements, EBE) in the promoter of the 
SWEET genes and induce their expression (Zhou 
et al. 2015). Because SWEET genes encode sugar 
transporters, they likely promote susceptibility to 
bacterial blight by triggering sugar release to the 
apoplast and thus providing nutrient to the patho-

gen (Blanvillain-Baufumé et  al. 2016). In fact, 
several S genes targeted by Xanthomonas spp. 
TAL effectors have been identified (Hutin et al. 
2015). Another S gene recently characterized is 
the citrus LOB1, which support host susceptibil-
ity to citrus canker disease, caused by 
Xanthomonas citri subsp citri (Hu et  al. 2014). 
Like X. oryzae, X. citri also uses its TAL effectors 
to bind EBEs in the promoter of LOB1 and 
induce its expression (Hu et  al. 2014). Even 
though its biological role remains to be deter-
mined, induction of LOB1 using custom-
designed TAL effectors leads to similar citrus 
canker symptoms (Zhang et al. 2017), highlight-
ing its central role in the development of the 
disease.

10.2.4	 �Omics as Tools to Identify 
Microbe Effectors and Plant 
Targets

The increasing advances in omics technologies 
are boosting the discovery of microbial effectors 
in a rapid and efficient manner. Next-generation 
sequencing technologies are used to sequence 
microbe genomes, allowing in silico prediction of 
effectors. Putative effectors can be predicted from 
sequence datasets by detecting features associated 
to secreted proteins, such as the presence of a sig-
nal peptide, the absence of transmembrane and 
membrane anchorage domains, and small 
sequence size/length (Dalio et al. 2017). Genome 
sets from different strains of the same microbe 
can be compared by searching for core effectors, 
known to be important for the microbe coloniza-
tion and, hence, less subjected to mutations that 
could help them to escape from introduced 
sources of plant resistance (Dangl et  al. 2013). 
Following such strategies, sets of effectors of sev-
eral microorganisms have been disclosed with 
high efficiency (Vleeshouwers and Oliver 2014). 
Further proteomic and transcriptomic data, from 
microbe upon contact with plant signals, help to 
select secreted proteins potentially involved in the 
host–microbe interaction.

Once the most promising effector candidates 
are selected, their biological activity can be vali-
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dated by transient or stable gene expression in 
plants (Dalio et  al. 2017). The set of transcrip-
tomic, proteomic, metabolomic, and phenomic 
data from transformed plants compared to wild 
type shall settle the status of the predicted protein 
as a true effector and can contribute to the eluci-
dation of plant modifications imposed by effector 
activity. Further approaches to validate effector 
function is knocking out or knocking down the 
effector gene-by-gene editing or silencing (Dalio 
et  al. 2017). In such cases, the obtainment of 
omics data from both microbe with the disrupted 
gene and colonized test-plant are also useful to 
demonstrate that the function of the effector is 
compromised.

Subsequently, the identification of effectors 
has facilitated the discovery of corresponding 
plant target genes. “Effectoromics” studies have 
been successful in identifying a growing list of 
effectors and their corresponding R and S genes 
(Dangl et  al. 2013; Vleeshouwers and Oliver 
2014). By using the functionally validated effec-
tor, plants can be screened for proteins that 
directly interact with the effector. For instance, 
candidate targets for effector manipulation can be 
elucidated using yeast two-hybrid screening, 
which has been applied at genomic scale, or pull-
down assays followed by proteomics identifica-
tion of interacting proteins (Dalio et  al. 2017). 
Irrespective if those or other approaches are 
employed, the searching for targeted R or S genes 
directed by effector-based screens provide higher 
throughput and more straightforward phenotypes 
than pathogen-based screens (Dalio et al. 2017; 
Vleeshouwers and Oliver 2014). Similar strategy 
could be employed to identify plant targets from 
beneficial microbe effectors.

This effector-rationalized approach (Dangl 
et al. 2013) was used to search for the source of 
Phytophthora infestans resistance in the potato 
“Sarpo Mira,” one of the few cultivars reported to 
retain field resistance to late blight for several 
years (Rietman et al. 2012). A collection of core 
effectors was predicted from P. infestans genome 
and expressed in potato leaves. The induced resis-
tance response to specific effectors, whose corre-
sponding R genes were mostly known, enabled 
the dissection of R genes that confers late blight 
resistance in “Sarpo Mira” genotype (Rietman 

et al. 2012). Similar strategies can be used to pro-
vide breeding programs with R genes for deploy-
ment in susceptible genotypes. A different 
approach relied on the TAL effectors from 
Xanthomonas species, which binds EBE regions 
in the promoter of S genes, inducing their expres-
sion and facilitating pathogen infection. Using the 
knowledge on EBE regions, an engineered R gene 
was produced by adding EBE regions to the pro-
moter of Xa27 gene and deployed in rice (Hummel 
et  al. 2012). The synthetic R gene was success-
fully activated by TAL effectors, conferring rice 
resistance to both bacterial blight and bacterial 
leaf streak (Hummel et al. 2012). Besides deploy-
ing engineered R genes, S genes targeted by TAL 
effectors have been edited to generate resistant 
genotypes. Using an effector-rationalized 
approach, the discovery of Xanthomonas TAL 
binding sites combined with transcriptomic data 
has led to the discovery of several S genes for dif-
ferent Xanthomonas/host interaction (Hutin et al. 
2015). The identified S genes are greatly increas-
ing the knowledge on Xanthomonas-causing dis-
eases and have now been used as targets for gene 
editing to confer resistance to such diseases 
(Hutin et al. 2015; Li et al. 2012).

10.2.5	 �Biotechnology Approaches 
for Genetic Engineering 
Plants to Improve 
Productivity and Disease 
Resistance

Crops have been selected for higher yield and dis-
ease resistance throughout the history of agricul-
ture (Table  10.1). Traditional breeding methods 
allowed the introgression of interesting traits well 
before the comprehension of the molecular mech-
anisms involved in plant–microbe interactions. 
Currently, the elucidation of effector-targeted 
plant genes is used by breeding programs to 
develop crop varieties with higher levels of resis-
tance and productivity. Combined with 
conventional time-consuming breeding tech-
niques, technologies based on genetic engineering 
(Fig. 10.2) have been used to improve and speed 
up the process of developing high-yield and dura-
ble disease-resistant crop varieties (Table 10.1).
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Table 10.1  Historical scientific events that have developed the modern biotechnology

Years Scientist/pioneer/discoverer Innovative events
8500 bc Southwest Asians Emergence of plant and animal domestication
1675 Anton Van Leeuwenhoek Discovery of microorganisms by “The Father of Microbiology”
1862–
1885

Louis Pasteur Discoveries of the principles of vaccination, microbial fermentation, 
and pasteurization

1865 Gregor Mendel Establishment of the principles of genetics and theories of heredity by 
“The Father of Genetics”

1919 Károly Ereky Creation of the term biotechnology
1928 Ludwig von Bertalanffy Proposition of the general systems theory, one of the precursors of 

systems biology
1929 Alexander Fleming Purification of penicillin from the fungus Penicillium notatum
1930 George Beadle and Edward 

Tatum
Confirmation that genes direct the production of proteins

1944 Oswald Avery Identification of DNA as the material of which genes and 
chromosomes are made and transmit the genetic information

1953 Francis Crick, Maurice 
Wilkins, and James Watson

Revelation of the structure of DNA molecule

1961 François Jacob and Jacques 
Monod

Elucidation of the control of enzyme expression levels as the result of 
regulation of DNA transcription

1967 Har Gobing Khorana and 
Marshall Niremberg

Elucidation of the genetic code

1972 Paul Berg Development of recombinant DNA techniques—“the emergence of 
genetic engineering”

1976 Walter Fiers Sequencing of the first complete genome of bacteriophage
1976 Herbert Boyer and Robert 

Swanson
Establishment of the first biotechnology company, the Genentech

1977 Frederick Sanger Determination of the first DNA sequence
1978 Werner Arber, Daniel Nathans, 

and Hamilton Smith
Isolation of restriction enzymes from bacteria

1982 Richard Palmiter Generation of the first genetic modified organism (GMO)
1985 Kary Banks Mullis Development of the polymerase chain reaction (PCR) technique
1986 Thomas H. Roderick Creation of the term genomics
1986 USA and France Establishment of the first field trials of transgenic tobacco resistant to 

herbicide
1994 USA Approval of the first GMO to be commercially available, a transgenic 

tomato
1998 Washington Uni and Sanger 

Institute
Sequencing of the first complete animal genome, of the 
Caenorhabditis elegans

1998 Craig Mello and Andrew Fire Elucidation of the mechanism of RNA interference (RNAi) in animals
1998 Peter Waterhouse and 

Ming-Bo Wang
Discovery that the double-stranded RNA (dsRNA) induces the RNAi 
in plants

2000s Roche, ABI, and Solexa/
Illumina technologies

Development of high throughput-sequencing technologies

2000s Several Emergence of modern systems biology approaches, “the age of 
systems”

2000 Arabidopsis Genome Initiative Sequencing of the first complete plant genome, of the Arabidopsis 
thaliana

2002 Koichi Tanaka, John Fenn, 
and Kurt Wüthrich

Recognition for the development of identification and structure 
analyses for proteomics

2008 Solexa/Illumina technologies Development of RNA-seq for modern transcriptomic studies
2012 Jennifer Doudna and 

Emmanuelle Charpentier
Development of a precise gene editing technology using 
CRISPR-Cas9

2017 David Liu and Feng Zhang Development of a flexible RNA base editing technology using 
CRISPR-Cas13
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Transgenic approaches have been used to 
introduce genes of interest in plant species, 
including dominant R genes for disease resistance 
(Dangl et al. 2013). For instance, transgenic toma-
toes with field-level resistance to bacterial spot 
disease were produced by transferring the R gene 
Bs2 from pepper (Horvath et al. 2012). Similarly, 
the gene RB from potato wild relatives was intro-
duced in the cultivated potato by transgeny and 
generated increased resistance to late blight 
(Halterman et  al. 2008). Showing that R genes 
from non-hosts can effectively promote plant 
resistance, the maize R gene Rxo1 was used to 
generate a transgenic rice, conferring resistance to 
bacterial streak (Zhao et al. 2005). The downside 
of using dominant R genes to generate plant resis-
tance is that they usually present a short life in the 
field due to the adaptative potential of the corre-
sponding pathogen effectors (Dangl et al. 2013). 
On the one hand, stacking multiple R genes 
simultaneously should provide more durable 
resistance since multiple effector genes would 
have to suffer mutation to evade resistance (Dangl 
et al. 2013). On the other hand, enhancing plant 
resistance by disrupting S genes rather than 
expressing R genes is an attractive approach.

Along with the introduction of foreign genes 
by conventional transgeny, the disruption of 
native gene functions might be achieved by gene 
silencing or editing. Gene silencing can be acti-
vated by the presence of double-stranded RNAs 
(dsRNA) and results in the cleavage or transla-
tion inhibition of RNAs. Briefly, dsRNA triggers 
their own cleavage by Dicer nucleases, produc-
ing small interfering RNAs (siRNA), which in 
turn are recruited by RNA-induced silencing 
complexes (RISC) that target RNAs with 
sequence homology to the incorporated siRNA 
(Kamthan et  al. 2015). Transgenic plants with 
constructs designed to produce siRNA contain in 
the dsRNA a sequence to target gene, a technol-
ogy known as RNA interference (RNAi). With 
the employment of engineered siRNA, RNAi 
can be used to manipulate gene expression and 
suppress undesirable traits such as susceptibility 
to pathogens.

The RNAi system have been applied as a strat-
egy to control plant insects (Galdeano et al. 2017; 
Mao et al. 2007), viruses (Fuentes et al. 2016; Niu 
et al. 2006) and other attackers by directly target-
ing the pathogen/herbivore genes. Another 
approach is the use of RNAi to target plant S 

Fig. 10.2  Genetic engineering approaches to generate 
plants with improved disease resistance. (a) Transgeny to 
introduce genes of interest in wild type plants, including 
resistance (R) genes. (b) Gene editing to disrupt native 
genes such as susceptibility (S) genes. Sire-directed gene 
editing can be achieved using tools such as CRISPR/Cas9 
system, that introduce double-stranded DNA breaks and 

triggers an error-prone DNA repair pathway, resulting in 
indels mutations (*). (c) Gene silencing to disrupt the 
function of undesirable genes (e.g., S genes). RNA inter-
ference can promote the cleavage or translation inhibition 
of mRNAs, knocking down the expression of the target 
gene
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genes. Such strategy was used to silence the potato 
SYR1 gene, resulting in reduced formation of 
papillae components in response to infection with 
P. infestans and increased resistance to late blight 
(Eschen-Lippold et al. 2012). In another example, 
RNAi was employed to silence SSI2 (suppressor 
of salicylate insensitivity of npr1-5) gene in rice, a 
negative regulator of plant defenses, conferring 
resistance to fungal blast and bacterial leaf blight 
diseases (Jiang et al. 2009). We will discuss more 
about sRNAs in the next chapter section.

Besides gene silencing, an increasing approach 
within molecular plant breeding is the use of site-
directed genome editing. One of the most revolu-
tionary tools within gene editing techniques is 
the CRISPR-Cas9 system. With CRISPR/Cas9 
tool, double-stranded DNA breaks can be intro-
duced at specific genome regions by a site-
specific nuclease, leading to the activation of 
DNA repair pathways. In the absence of a repair 
template, the non-homologous end-joining 
(NHEJ) pathway repairs the DNA in an error-
prone process that often causes insertions or 
deletions around the DNA breaks, generating 
mutated alleles (Zaidi et  al. 2018). Though 
recently developed, CRISPR/Cas9 system has 
already been applied in several economically 
important crops such as rice (Jiang et al. 2013), 
maize (Char et  al. 2017), tomato (Brooks et  al. 
2014), and sweet orange (Jia and Wang 2014). 
CRISPR quickly became successful due to its 
high simplicity, efficiency, specificity and versa-
tility (Bortesi and Fischer 2015; Zaidi et  al. 
2018). The major advantage of the gene editing, 
however, is the possibility to generate genetically 
modified cultivars that lack transgenes in the final 
line and thus can be exempted from GMO 
legislation and are more likely to be accepted by 
the public. Without transgenes or other foreign 
DNA sequences, some genome-edited plants 
using CRISPR already evaded regulation by 
USDA and are reaching market in record time 
(Waltz 2018).

In the context of developing disease resis-
tance, S genes are promising targets for gene 
editing, since their mutation can limit the ability 
of a pathogen to cause disease. By using gene 
editing, the S gene LOB1 was successfully modi-

fied in grapefruit, generating plants without 
symptoms of Xanthomonas citri bacterial infec-
tion (Jia et  al. 2017). Likewise, CRISPR/Cas9 
was used to edit the rice S gene SWEET13, result-
ing in resistance to bacterial blight (Zhou et al. 
2015). Regarding fungal pathogens, gene editing 
disabled multiple homeoalleles of MLO gene in 
wheat, conferring heritable broad-spectrum resis-
tance to powdery mildew (Wang et  al. 2014). 
Resistance to potyviruses was obtained in 
Arabidopsis (Pyott et  al. 2016) and cucumber 
(Chandrasekaran et al. 2016) by disrupting the S 
gene eIF4E (eukaryotic translation initiation fac-
tor E), which codes for a protein essential to the 
viral infection cycle. The CRISPR/Cas9 system 
was also employed in tomato to inactivate DMR6 
(downy mildew resistance 6), an S gene involved 
in the homeostasis of the defense hormone sali-
cylic acid, generating plants with high levels of 
resistance to a wide variety of pathogens 
(Thomazella et al. 2016). The results obtained so 
far using CRISPR technology have proven that 
mutation on S genes can generate plant resistance 
to several diseases. Ongoing studies are focusing 
in obtaining final lines that do not contain foreign 
DNA to facilitate consumer acceptance. The use 
of genome editing to mutate S genes is emerging 
as a revolutionary approach to provide a 
transgene-free, long term, and efficient control 
measure of plant diseases.

Apart from breeding strategies to obtain 
genetically engineered plant, another biotechnol-
ogy strategy used to improve plant health is the 
use of heterologous expression systems to pro-
duce molecules of interest. This approach can be 
used to large-scale production of effectors from 
mutualistic microbes that stimulate plant growth 
or disease resistance. Heterologous expression of 
microbe-associated quorum quenching mole-
cules have been explored aiming disruption of 
biofilm-forming phytopathogenic bacteria (Kalia 
2015). For instance, the aiiA gene coding for lac-
tonase effectors from distinct Bacillus species 
was engineered into Lysobacter enzymogenes 
and E. coli, resulting in reduced virulence of 
Pectobacterium carotovorum on Chinese cab-
bage (Qian et  al. 2010) and attenuated soft rot 
symptoms of Erwinia carotovora in potato, 
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respectively (Pan et al. 2008). Similar strategy of 
recombinant protein systems can be used to syn-
thesize other effectors from beneficial microbes 
in a commercial scale to increase plant health 
such as growth-promoting hormones, hydrolytic 
enzymes, siderophores, or antibiotics.

The improved identification of microbe effec-
tors using omics technologies is providing valu-
able resources for plant breeding programs. 
Knowledge of microbe effectors and their target 
plant genes can be applied in combination with 
biotechnology techniques to speed up the devel-
opment of plant varieties with higher productiv-
ity and durable disease resistance.

10.2.6	 �Gene Expression Regulation 
by Small Noncoding RNAs

The comprehension of system biology depends 
on a wide data collection, integration and analy-
sis of biological molecules, focusing on interac-
tions and emerging properties. In this context, the 
small noncoding-RNAs (sRNAs) has appeared, 
in the last couple of decades, as active and essen-
tial regulatory molecules for protein-coding gene 
expression, influencing several interconnected 
biochemical pathways. Therefore, the identifica-
tion of sRNAs and characterization of their inter-
active network, including the discovery of sRNA 
target genes and associated biochemical path-
ways is crucial for the application of systems 
biology to plant biotechnology.

In this section, we provide an overview of the 
central aspects of endogenous sRNAs, mostly 
microRNAs (miRNAs), function during plant 
development and the evolutionary history of 
MIRNA genes. MiRNAs have been shown to act 
as posttranscriptional regulators, directing 
several essential processes in the plant, and 
miRNA-based technology is also a target for 
plant engineering to achieve high yields, quality 
and stress resistance. The applications of sRNAs 
e miRNAs research on plant biotechnology and 
the importance to incorporate these regulatory 
molecules into systems biology are further 
discussed.

10.2.6.1	 �Biological Roles of Plant 
miRNAs

Expansion of the miRNA regulatory system is 
associated with requirements for additional 
endogenous control of genomic information 
(Mattick 2004). The remarkable and constant 
expansion of miRNAome coincides with the 
major morphological innovations present in the 
animal bilaterians, vertebrates, and placental 
mammals, where many tissue- and organ-specific 
miRNA/target regulatory associations could have 
been fundamental to the emergence of complex 
bodies. This is reflected in the strong correlation 
between the number of MIR families contained in 
an organism and its position in the hierarchy of 
the animal kingdom (Hertel et al. 2006; Sempere 
et  al. 2006). Moreover, there is a correlation 
between the number of target genes regulated by 
a miRNA and the age of a MIR gene. In animals, 
the number of targets of an individual miRNA 
also appears to increase over evolutionary time, 
with the more phylogenetically ancient miRNAs 
having more target genes than young miRNAs 
(Brennecke et al. 2005).

In plants, analyses of the miRNAome of com-
mon ancestors have suggested that only a few 
MIR genes are highly conserved across the entire 
kingdom (Cuperus et  al. 2011; Nozawa et  al. 
2010; Ma et al. 2010). The sRNAs derived from 
conserved MIR families represent the most abun-
dant miRNAs in a particular miRNAome, as a 
result of a moderate to high levels of MIR gene 
expression (Axtell 2008; Cuperus et  al. 2011). 
These conserved miRNAs are usually derived 
from multi-gene MIR families, containing identi-
cal or highly similar mature miRNA sequences 
(Jones-Rhoades 2012). A high level of functional 
redundancy is noticed among members of the 
same MIR family (Sieber et al. 2007; Allen et al. 
2007). However, the expansion of MIR gene fam-
ilies, combined with the occurrence of mutations 
outside the mature miRNA sequence, would pro-
vide diversification of the spatiotemporal expres-
sion in different MIR family members (Li and 
Mao 2007).

The development of multicellular organisms 
depends on complex regulatory networks that 
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integrate endogenous and environmental signals. 
The signaling effectors in this process include 
phytohormones, peptides, transcription factors, 
and sRNAs, which are globally interconnected 
over long and short distances within the plant, 
acting in a spatiotemporal manner (Sparks et al. 
2013).

Phytohormones are important mediators 
throughout plant development, perceiving and 
transmitting the internal and external cues, and 
whose signaling pathways are under constant 
cross-talk mechanisms to adjust the responses 
(Vanstraelen and Benková 2012). A close rela-
tionship between miRNAs and phytohormones 
has been seen in several studies, showing inter-
sections in their pathways and feedback mecha-
nisms where MIR genes respond to hormones 
which in turn regulate several genes involved in 
hormonal signaling pathways (Liu and Chen 
2009; Liu et al. 2009; Curaba et al. 2014). Tissue- 
or stage-specific miRNA accumulation often 
plays a central role affecting, directly or indi-
rectly, the expression of genes to adjust the tran-
scriptome in accordance with the development 
requirements, in a highly dynamic regulatory net-
work (Válóczi et al. 2006; Meng et al. 2011). The 
fine-tuning regulation of plant development by 
miRNA has been revealed from the characteriza-
tion of several plant mutants, either impaired in 
steps of the miRNA biogenesis, displaying pleio-
tropic developmental defects, or impaired in par-
ticular MIR genes and targets, leading to more 
specific developmental defects (Mallory and 
Vaucheret 2006). However, pleiotropic defects 
have been also observed, mostly in cases where a 
miRNA has several targets.

During seed development, miR160 and 
miR167 regulation of the auxin-related transcrip-
tion factors, ARF17 and ARF6/8, affect embryo 
development, seed production and germination 
rates (Mallory et al. 2005; Todesco et al. 2010). 
The gibberellin (GA)- and abscisic acid 
(ABA)-regulated transcription factors 
MYELOBLASTOSIS (MYB) GAMYB-like genes 
MYB33/65 are regulated by miR159, affecting 
seed size and fertility (Allen et al. 2007). In the 
early stages of embryogenesis, miR165/166 and 

miR394 seem to be essential for stem cell differ-
entiation and shoot apical meristem (SAM) 
maintenance. MiR165/166 regulates the 
HD-ZIPIII transcription factors to define the vas-
cular cell types in the roots and maintain cell plu-
ripotency in the SAM, via association with 
AGO10 (Carlsbecker et al. 2010; Zhu et al. 2011) 
whereas miR394 is required for stem cell differ-
entiation and targets an F-Box encoding gene 
LCR (Knauer et al. 2013; Litholdo et al. 2016). 
Although these studies did not show any phyto-
hormone relationship with these miRNAs regula-
tion, hormones, such as auxin and cytokinin 
could be contributing to this cell differentiation 
processes (Knauer et  al. 2013; Leibfried et  al. 
2005).

During leaf development, miR165/166 and 
miR394 also play an important role. MiR165/166, 
in conjunction with miR390/ta-siRNAs, deter-
mine the abaxial-adaxial leaf polarity (Nogueira 
et  al. 2007), and miR394 influences leaf shape 
and curvature, which is suggested to involve 
auxin signaling (Song et al. 2012). The miR393 
regulation of the auxin receptors TIR1 and AUXIN 
SIGNALING F-BOX (AFBs) genes also mediates 
some auxin-related aspects of leaf development 
(Si-Ammour et al. 2011). Moreover, miR164 and 
miR319 are important regulators during leaf ini-
tiation, growth and differentiation, by targeting 
CUC1/CUC2 and TCP transcription factors 
genes, respectively (Pulido and Laufs 2010).

During the plant life cycle, miR156 and 
miR172 are the main players regulating the tran-
sition from juvenile to adult vegetative phase, 
and from the vegetative to reproductive phase 
(Spanudakis and Jackson 2014). Both miRNAs 
regulate transcription factors, including 11 genes 
encoding SPL protein regulated by miR156, and 
six AP2-like genes regulated by miR172. 
Interestingly, both miRNAs show opposite 
expression pattern during phase changes, medi-
ated by integrated and coordinated transcriptional 
activation of their pathways (Wu et  al. 2009). 
Additionally, miR159, miR319, and miR390 also 
regulate flowering time, implying that GA and 
auxin might coordinate the regulation of these 
miRNAs.
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During root development, the regulation of 
HD-ZIPIII genes by miR165/166 modulates lat-
eral root initiation, vascular tissue differentiation 
and nitrogen-fixing nodule development 
(Boualem et  al. 2008; Carlsbecker et  al. 2010; 
Miyashima et al. 2011). Another auxin-dependent 
process in the roots involves miR160 regulation 
of the transcription factors ARF10/ARF16, and 
the miR390-triggered production of ta-siRNAs, 
targeting ARF4 (Wang et  al. 2005; Yoon et  al. 
2010). Moreover, miR828-triggered ta-siRNAs 
target members of MYB transcription factors, 
playing a role in root hair patterning and anthocy-
anin production (Luo et al. 2012; Xia et al. 2012).

Interestingly, the complex network of interac-
tions between miRNAs and hormonal signaling 
pathways integrates plant development and stress 
response signals. For instance, the miR393 regu-
lation of the F-Box genes TIR1 and AFB2 medi-
ates the auxin-dependent root development in 
response to ABA-related drought stress (Chen 
et al. 2012). Moreover, the metabolism of some 
inorganic nutrients depends on the gene regula-
tion mediated by mobile miRNAs, such as 
miR395, miR398, and miR399, which are 
responsive to starvation of sulfur, copper/zinc, 
and phosphate, respectively (Kawashima et  al. 
2009; Yamasaki et al. 2007; Bari et al. 2006). All 
the MIR genes exemplified in this section are 
conserved among several evolutionary distant 
plant species, demonstrating the crucial roles of 
these conserved miRNAs in fundamental and 
ubiquitous aspects of plant development. 
However, non-conserved MIRs has also been 
uncovered, such as miR824 that is only found in 
Brassicaceae yet plays a role in development. It 
regulates the conserved transcription factor 
AGAMOUS-LIKE16 (AGL16), which is impor-
tant for normal stomata development (Kutter 
et  al. 2007). This suggests that non-conserved 
miRNAs can emerge and acquire developmental 
functions in a restricted number of species.

The majority of MIR loci identified in a spe-
cific miRNAome have been found to be young, 
non-conserved microRNAs (Jones-Rhoades 
2012; Axtell 2013). It has been assumed that 
most of the recently evolved MIR genes are short-
lived, imprecisely processed, and functionally 

irrelevant. This is mostly due to the lack of identi-
fied and/or validated target genes and therefore 
some of the non-conserved miRNAs are likely to 
be under neutral selective pressure (Axtell 2008; 
Jones-Rhoades 2012). However, these assump-
tions could be the result of restricted spatiotem-
poral expression pattern of young MIRs or their 
expression being activated only under a particu-
lar stress condition. Moreover, it has been sug-
gested that recently evolved miRNAs could have 
a distinct mode of interaction with their target 
genes or even in their mode of targeting, which 
might prevent the identification of the targets 
using the usual rules and approaches (Axtell 
2008, Cuperus et al. 2011).

10.2.7	 �Recent Applications of Omics 
and Small RNA Research 
in Plant Biotechnology

The development of modern genetic engineering 
approaches and high-throughput technologies in 
biological research, besides the holistic view of 
systems biology, have triggered the progress of 
biotechnology to address plant productivity and 
stress adaptation (Table  10.1). The introduction 
of transgenes into plants has been widely and 
efficiently used for crop breeding, generating 
genetically modified organism with desired traits. 
Currently, the available omics information for 
selection of specific characteristics for breeding 
has offered a range of opportunities. Due to 
omics-scale molecular analysis and elucidation 
of genetic information and interactive networks, 
the modern biotechnology has the potential to 
target any traits for breeding, by interfering in 
one or multiple genes and/or networks.

Small RNA research has many potential appli-
cations in the plant biotechnology, aiming to 
increase food production, disease and pest con-
trols, and to overcome the consequences of cli-
mate change (Zhou and Luo 2013; Kamthan et al. 
2015; Zhang and Wang 2015, 2016; Liu et  al. 
2017). Several miRNAs may target multiple genes 
at a same time and it has been shown that manipu-
lating a single MIR gene can significantly interfere 
in intricated gene networks, to provide an appro-
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priate strategy for crop improvement. For instance, 
MIR156—the sRNA miR156 targets transcription 
factors-encoding genes, namely SQUAMOSA-
promoter binding like proteins (SPL) (Schwab 
et  al. 2005; Wang et  al. 2008; Yamaguchi et  al. 
2009; Lal et  al. 2011; Kim et  al. 2012), and an 
increase by more than 100% in plant biomass is 
observed by overexpressing MIR156 in different 
plant species, including Arabidopsis, rice, tomato, 
and switchgrass (Schwab et  al. 2005; Fu et  al. 
2012; Xie et al. 2012).

MiRNAs also play an important role in plant 
responses to biotic and abiotic stresses (Ku et al. 
2015; Litholdo et al. 2017), and accordingly, the 
manipulation of miRNAs to increase plant 
defenses has been applied to several plants, includ-
ing agricultural crop species (Djami-Tchatchou 
et al. 2017). The first MIR gene revealed to play a 
role in plant stress responses was the MIR393—
miR393 regulates the auxin signaling transcription 
factors and the overexpression of this miRNA 
leads to inhibition of bacterial growth (Navarro 
et  al. 2006). Transgenic plants overexpressing 
miR7696 and miR396 also confers enhanced 
resistance to rice blast infection and cyst nematode 
infection in Arabidopsis, respectively (Campo 
et  al. 2013; Hewezi et  al. 2008). For abiotic 
stresses, the increased abundance of miR169  in 
transgenic tomato plants enhanced drought toler-
ance, by regulating target genes involved in stoma-
tal opening, transpiration rate, and therefore, leaf 
water loss (Zhang et al. 2011). MiR319 has been 
shown to confer resistance to different environ-
mental conditions, such as cold, salt and drought 
stress—transgenic rice and creeping bentgrass 
plants, overexpressing miR319, showed respec-
tively increased tolerance to these conditions 
(Yang et al. 2013; Zhou et al. 2013).

Besides the manipulation of single miRNA/
target genes module, to generate transgenic 
plants, the miRNA-mediated gene silencing 
serves also as a biotechnological tool and is cur-
rently applied in plant science, to generate 
mutants of theoretically any gene of interest. 
Individual genes can be silenced by introducing 
into plants engineered RNA silencing expression 
constructs, such as artificial miRNAs to target 
and inactivate endogenous gene expression 

(Molesini et al. 2012). This approach can disrupt 
the production of a specific unwanted compound, 
for example the caffeine to deliver a decaffein-
ated coffee plant. Conversely, the expression of 
endogenous small RNAs can be altered by sup-
pression or overexpression of the mature sRNA 
sequence to alter plant development and protec-
tion (Djami-Tchatchou et al. 2017). The deregu-
lation of specific plant miRNAs, and consequently 
the target gene(s), can aim numerous purposes, 
such as an increase in plant biomass, tolerance to 
biotic and abiotic stresses, fruit maturation con-
trol, and production of compounds of interest 
(Molesini et al. 2012; Sunkar et al. 2012; Zhang 
2015).

10.3	 �Concluding remarks

With this chapter, we provided an overview on 
omic studies for the searching and identification 
of metabolites and proteins employed by micro-
organisms to develop biotechnological products. 
Additionally, we present an overview of the cen-
tral aspects of small RNA as regulators of gene 
expression connecting system networks and the 
potential application into plant biotechnology. 
First used to generate virus resistance, several 
other RNAi strategies have been used for trans-
kingdom gene regulation. Double-stranded RNA 
(dsRNA) produced by plants to target pathogen 
endogenous gene and reduced virulence has been 
one of the most successful approach to control 
insects, nematodes, and more recently, fungi. 
Host-induced gene silencing (HIGS) by the gen-
eration of transgenic plants carrying pathogen-
targeting constructs, and spraying dsRNA 
solution in target organisms are experimentally 
validated in biotechnology approaches.

The omics, which comprises but not limited to 
genomic, transcriptomic, proteomic, epigenomic, 
and metabolomic studies in entire plants, allow a 
better understanding of plant biology and con-
tribute further to biotechnology development. 
Recent methodological advances are enabling 
biological analyses of single-cells to provide 
opportunities to enhance our understanding of 
plant biology as a system (Libault et  al. 2017). 
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During the last decade, the discovery of regula-
tory small RNAs altered the perception that only 
protein-coding genes are the players in gene reg-
ulatory network, since sRNAs emerged as central 
players in the transcriptional and posttranscrip-
tional gene expression. The change in paradigm 
altered the way system biology is comprehended 
and how we can use this regulatory mechanism to 
improve biotechnology toolbox.
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